USENIX Association

Proceedings of the
28th USENIX Security Symposium

August 14-16, 2019
Santa Clara, CA, USA

Conference Organizers

Program Co-Chairs
Nadia Heninger, University of Pennsylvania

Patrick Traynor, University of Florida

Program Committee
Yasemin Acar, Leibniz University Hannover

Sadia Afroz, University of California, Berkeley/
International Computer Science Institute

Devdatta Akhawe, Dropbox

Johanna Amann, International Computer Science Institute
Adam Aviv, United States Naval Academy

Michael Bailey, University of Illinois at Urbana—Champaign
Adam Bates, University of Illinois at Urbana—Champaign
Vincent Bindschaedler, University of Florida

Joseph Bonneau, New York University

Nikita Borisov, University of Illinois at Urbana—Champaign
Sven Bugiel, CISPA Helmholtz Center i.G.

Kevin Butler, University of Florida

Joe Calandrino, Federal Trade Commission

Stefano Calzavara, Universita Ca’ Foscari Venezia
Yinzhi Cao, Johns Hopkins University

Srdjan Capkun, ETH Zurich

Lorenzo Cavallaro, King’s College London

Stephen Checkoway, Oberlin College

Bill Cheswick, AT&T Labs—Research

Marshini Chetty, Princeton University

Mihai Christodorescu, VISA Research

Erinn Clark, First Look Media

George Danezis, University College London

Nathan Dautenhahn, Rice University

Roger Dingledine, The Tor Project

Adam Doupe, Arizona State University

Thomas Dullien, Google

Zakir Durumeric, Stanford University

Manuel Egele, Boston University

William Enck, North Carolina State University

Roya Ensafi, University of Michigan

David Evans, University of Virginia

Sascha Fahl, Leibniz University Hannover

Giulia Fanti, Carnegie Mellon University

Nick Feamster, Princeton University

Adrienne Porter Felt, Google

Earlence Fernandes, University of Washington

David Freeman, Facebook

Daniel Genkin, University of Michigan

Neil Gong, lowa State University

Matthew Green, Johns Hopkins Information Security
Institute

Rachel Greenstadt, Drexel University

Daniel Gruss, Graz University of Technology

Joseph Lorenzo Hall, Center for Democracy & Technology
Xiali (Sharon) Hei, University of Louisiana at Lafayette
Thorsten Holz, Ruhr-University Bochum

Trent Jaeger, The Pennsylvania State University

Rob Jansen, U.S. Naval Research Laboratory

Mobin Javed, Lahore University of Management Sciences
Chris Kanich, University of Illinois at Chicago

Vasileios Kemerlis, Brown University

Yongdae Kim, Korea Advanced Institute of Science and
Technology (KAIST)

Lea Kissner, Humu

Yoshi Kohno, University of Washington

Farinaz Koushanfar, University of California, San Diego
Katharina Krombholz, CISPA Helmholtz Center i.G.
Ben Laurie, Google

Tancrede Lepoint, Google

Martina Lindorfer, Technische Universitit Wien
Allison Mankin, Salesforce

Ivan Martinovic, Oxford University

Stephen McCamant, University of Minnesota

Jon McCune, Google

Patrick McDaniel, The Pennsylvania State University
Sarah Meiklejohn, University College London

Jelena Mirkovic, USC/Information Sciences Institute
Prateek Mittal, Princeton University

Veelasha Moonsamy, Utrecht University

Adwait Nadkarni, College of William & Mary

Yossi Oren, Ben-Gurion University of the Negev
Nicolas Papernot, The Pennsylvania State University
Kenny Paterson, Royal Holloway

Mathias Payer, Ecole Polytechnique Fédérale de Lausanne
(EPFL)

Giancarlo Pellegrino, Stanford University

Christina Popper, New York University Abu Dhabi

Brad Reaves, North Carolina State University

Elissa Redmiles, University of Maryland

Konrad Rieck, Technische Universitdit Braunschweig
Tom Ristenpart, Cornell Tech

Tom Ritter, Mozilla

Franziska Roesner, University of Washington
Ahmad-Reza Sadeghi, Technische Universitit Darmstadt
Prateek Saxena, National University of Singapore

Nolen Scaife, University of Florida

Wendy Seltzer, W3C/Massachusetts Institute of Technology
Micah Sherr, Georgetown University

Deian Stefan, University of California, San Diego

Ben Stock, CISPA Helmholtz Center i.G.

Gianluca Stringhini, Boston University

Dave ‘Jing’ Tian, University of Florida

Luke Valenta, University of Pennsylvania

Ingrid Verbauwhede, Katholieke Universiteit Leuven
David Wagner, University of California, Berkeley
Byron Williams, University of Florida

Eric Wustrow, University of Colorado Boulder
Wenyuan Xu, Zhejiang University

Yuval Yarom, University of Adelaide and Data61
Tuba Yavuz, University of Florida

Daniel Zappala, Brigham Young University
Mary Ellen Zurko, MIT Lincoln Laboratory

Invited Talks Chair
Devdatta Akhawe, Dropbox

Invited Talks Committee
Alex Gantman, Qualcomm

Giancarlo Pellegrino, Stanford University
Elissa Redmiles, University of Maryland

Lightning Talks Chair

Christina Garman, Purdue University

Poster Session Chair
Brad Reaves, North Carolina State University

Test of Time Awards Committee
Matt Blaze, University of Pennsylvania

Dan Boneh, Stanford University

Kevin Fu, University of Michigan

Fabian Monrose, The University of North Carolina at
Chapel Hill

Steering Committee
Matt Blaze, University of Pennsylvania

Dan Boneh, Stanford University

William Enck, North Carolina State University
Kevin Fu, University of Michigan

Casey Henderson, USENIX Association
Thorsten Holz, Ruhr-Universitédt Bochum
Jaeyeon Jung, Samsung Electronics

Engin Kirda, Northeastern University
Tadayoshi Kohno, University of Washington
Adrienne Porter Felt, Google

Thomas Ristenpart, Cornell Tech

David Wagner, University of California, Berkeley

External Reviewers

Hadi Abdullah Joel Frank
Bander Alsulami Vanessa Frost
Cornelius Aschermann Ankit Gangwal
Teodora Baluta Peng Gao
Gabrielle Beck Washington Garcia
Logan Blue Jordy Gennissen
Nicole Borrelli Lukas Giner

Sam Bretheim Steve Gomez
Marcus Brinkmann Martin Grothe
Claudio Canella Muhammad Haris
Benton Case Mughees
Berkay Celik Marcella Hastings
Alishah Chator Grant Hernandez
Rahul Chatterjee Grant Ho
Qingrong Chen Stefan Hoffmann
Joseph Choi Liz Izhikevich
David Clayton Sakshi Jain
Shaanan Cohney Tyler Kaczmarek
Edwin Dauber George Kappos
Giulio De Pasquale Gabrielle Kaptchuk
Sergi Delgado Segura Katarina Kohls
Henri Maxime Demoulin Aashish Kolluri

Brian Desnoyers
Karim Eldefrawy
Evan Evtimov
Dennis Felsch

Georg Koppen
Ben Kreuter
Deepak Kumar
Daniele Lain

Sebastian Lauer Will Scott
Kevin Liao Karn Seth
Moritz Lipp Hovav Shacham
Alwin Maier Rich Shay
Patrick McCorry Shiqi Shen
Robert Merget Tom Shrimpton

Muhammad Shujaat Mirza
Rafael Misoczki
Vladislav Mladenov
Ivica Nikolic

Liang Niu

Aleatha Parker-Wood
Paul Pearce

Feargus Pendlebury
Mike Perry

Fabio Pierazzi

Ania Piotrowska
Erwin Quiring
Sanjeev Reddy

Paul Rosler

David Rupprecht

M. Sadegh Riazi
Theodor Schnitzler
Sergej Schumilo
Roei Schuster
Michael Schwarz

Camelia Simoiu
Douglas Stebila
Mohammad Taha Khan
Kejsi Take

Dennis Tatang

Aaron Tomb

Mathy Vanhoef

Luis Vargas

Liang Wang
Alexander Warnicke
Christian Wressnegger
Karl Wiist

Xiaojun Xu

Nian Xue

Haaroon Yousaf
Pinghai Yuan

Yupeng Zhang
Maximilian Zinkus

Message from the
28th USENIX Security Symposium
Program Co-Chairs

Welcome to the USENIX Security Symposium in Santa Clara, CA! We hope you enjoy the outstanding technical program
and invited talks. Now in its 28th year, the symposium brings together researchers and practitioners from across the field.
We encourage you to engage with the community through our events, hallway track, and questions for speakers.

This was an exciting year for the USENIX Security Symposium as we transitioned to a new paper reviewing model with
multiple submission deadlines. We want to use this opportunity to detail the model we instituted this year, as well as the
process we used to develop it.

The USENIX board asked us in June of 2018 if we would be willing to move to multiple submission deadlines for the 2019
Symposium, and tasked us with developing a plan to do so. We studied the processes and choices made by conferences that
had previously transitioned to multiple submission deadlines, including the IEEE Symposium on Security and Privacy, the
Privacy-Enhancing Technologies Symposium, the ACM International Conference on Mobile Computing and Networking,
and the Conference on Cryptographic Hardware and Embedded Systems, and consulted with former and current chairs of
these conferences. We then developed a preliminary plan that we presented to the USENIX Security Steering Committee for
feedback. After incorporating their suggested changes and receiving approval, we presented the plan to the USENIX Security
community at USENIX Security 2018 in August 2018 in a community meeting to gather feedback before publishing the of-
ficial Call for Papers.

We made the following choices in designing the new submission model:

e There would be four evenly-spaced submission deadlines throughout the year. We felt that this was a “sweet spot” that
would allow for the two-and-a-half-month review cycle that the community was used to, while still giving authors
multiple opportunities to submit their work when they felt it was ready. Since 2019 was a transitional year, we had two
submission deadlines. The first deadline in the fall was November 15, 2018, and the second deadline in the winter was
February 15, 2019.

» Like other conferences that have transitioned to multiple deadlines, we instituted a paper revision and resubmission pro-
cess, which we describe in more detail below.

e To try to make the reviewing and revision process as constructive as possible, we introduced “journal-style” review-
ing outcomes. That is, instead of rating papers “Accept”, “Weak Accept”, “Weak Reject”, or similar, we specified that
reviewers could give outcomes of “Accept”, “Minor Revision”, “Major Revision”, “Reject and Resubmit”, and “Reject”.

“Accept” has the same meaning as before. “Minor Revision” replaces “Accept with Shepherding”. Papers with this outcome
were assigned a shepherd who articulated a specific list of textual changes, such as adding additional citations or clarifying
details of experiments, that the authors were requested to make, with the specific guidance that papers in this category were
not accepted until the changes were made to the reviewers’ satisfaction.

“Major Revision” was the most significant change to the process. Papers receiving this outcome were returned to the authors
with a list of specific changes requested by the reviewers. These included performing additional experiments, adding ad-
ditional case studies or analyses, or requests for rewriting that were considered beyond the scope of what a shepherd could
reasonably guide. Authors of “Major Revision” papers were invited to resubmit to either of the next two submission deadlines,
with the promise that we would attempt to assign the same set of reviewers to review the resubmission, and that the resubmis-
sion would be evaluated according to the reviews and the specific changes requested by the reviewers. Papers receiving this
outcome were considered to still be under submission for the next two deadlines, and we asked authors to explicitly withdraw
their papers from consideration if they wished to submit the same work to another conference.

Finally, papers that were rejected could receive two possible outcomes. A “Reject and Resubmit” outcome was intended

to signal to the authors that the reviewers thought the work could likely be revised to be accepted, but that the scope of the
changes reviewers felt was required for acceptance was beyond what the reviewers could articulate in a specific list of “Major
Revision” requests, or would likely take longer than the four months that authors would have to revise their work for a “Major
Revision”. Papers receiving this outcome could not submit to either of the next two submission deadlines. Papers receiving a
“Reject” outcome were not allowed to resubmit for a full year after the submission date.

e There would be two in-person program committee meetings a year. While program committee meetings are expen-
sive and time-consuming, we received feedback from many community members that they serve an important role for
calibration and discussion. In the 2019 transitional year, we held only one in-person meeting associated with the winter
submission deadline.

e Asin previous years, for each submission deadline, we used a double-blind review process with two rounds of reviews.

We expected the total number of submissions to increase this year, in line with the experience of other conferences that have
transitioned to multiple submission deadlines. Accordingly, we gathered the largest program committee ever, with 100 mem-
bers and two chairs. We endeavored to assemble a diverse program committee in terms of area of expertise, seniority level,
geography, gender, race, and institution type. Members of the resulting program committee were 19% from industry, govern-
ment, or nonprofit, 25% female, and 27% based outside the US. The 2018 USENIX Security chairs invited members of the
community to volunteer themselves and others to serve on the 2019 program committee using a web form; we found this to
be an incredibly valuable resource when assembling our program committee.

A major goal of our changes to the reviewing system was to focus on returning helpful, constructive reviews to authors,

and to provide as much guidance as possible in moving submitted papers towards publication. Following last year, we also
assembled a Review Task Force (RTF) of five experienced program committee members to help ensure review quality and
encourage positive discussion. RTF members provided feedback on reviews, helped manage online discussion, and acted as
proxies for program committee members not in attendance in the in-person program committee meeting, in exchange for a
reduced reviewing workload. We found significant value in the RTF, and expanded their roles this year, particularly in facili-
tating online discussion and helping reviewers calibrate the new review outcomes across papers.

We received 260 submissions in the fall November 15, 2018 deadline. We administratively rejected four papers for violating
the call for papers, and two papers were withdrawn, leaving 254 submissions to be considered in Fall Round 1. Each paper
was assigned two reviews in the first round. Following three weeks of review and a week of online discussion, 93 papers were
early rejected on December 14. Of these, 41 were Rejected and 45 received a Reject and Resubmit outcome. A paper was
rejected if it received only scores of Reject or Reject and Resubmit, and neither reviewer saw value in additional reviews. The
outcome was agreed upon by the reviewers. Authors of rejected papers were not given the opportunity to appeal. We believed
that this early rejection step was critical, because it meant that the authors could immediately begin making changes to their
submission and have it evaluated by other reviewers at another venue. The authors of the remaining 161 papers were given
the opportunity to respond to the reviews and specific questions from the reviewers. Each fall Round 2 paper received two

or more additional reviews. After three more weeks of reviewing and 1.5 weeks of online discussion, we notified authors of
the Round 2 decisions on January 18, 2019. Of these papers, 11 were Rejected, 77 received a Reject and Resubmit Outcome,
48 received a Major Revision outcome, 20 received a Minor Revision outcome, and 5 were Accepted. All 20 Minor Revision
papers from the fall submission deadline were accepted by February 18, 2019.

We received 481 submissions in the winter February 15,2019 deadline. 38 of these were resubmissions of papers that re-
ceived a Major Revision decision from the fall deadline. Additionally, the authors of two Major Revision papers explicitly
wrote to withdraw their paper from the USENIX Security review process. We administratively rejected 20 papers for violat-
ing the call for papers, and four were withdrawn by the authors, leaving 457 papers to be considered in the winter Round 1.
We assigned the same reviewers as in the previous round to the resubmitted Major Revision papers, except in cases where
additional conflicts of interest arose or were discovered between the two deadlines, and assigned two reviewers to all other
papers. 211 papers were early rejected on March 21, 2019: 122 Rejected and 89 Reject and Resubmit. We also asked the
reviewers on Major Revision resubmissions to make decisions in Round 1: six papers were Accepted, 24 papers received a
Minor Revision, one paper received a Reject and Resubmit, and seven papers were Rejected. We chose to disallow multiple
Major Revision decisions in order to make sure that paper outcomes were decided in a reasonable time frame for authors.
This left 216 papers in Round 2.

The in-person PC meeting was held on April 29 and 30 at the University of Florida in Gainesville, Florida. We invited all
program committee members to attend the meeting but made attendance optional; 49 program committee members attended.
We were able to discuss 91 papers during the meeting, and all other decisions were made in online discussion. Among the pa-
pers in Round 2, 11 papers were Accepted, 48 received Minor Revisions, 33 received Major Revisions, 108 received a Reject
and Resubmit outcome, and 16 were Rejected. Further, one Minor Revision paper was ultimately rejected by the reviewers;
all the others were accepted by the camera-ready deadline of June 1.

In total, we accepted 113 of the 697 distinct, non-withdrawn submissions that we received this year, for a 16% acceptance rate
overall. The acceptance rate for the resubmitted Major Revision papers was 76%. Both the number of papers accepted and the
number of papers submitted are new records for the symposium, which was exceptionally competitive this year. We congratu-
late the authors on their excellent work and achievements!

It was an honor to be part of the large community effort that brings together the USENIX Security Symposium. The demands
placed on the program committee this year were exceptionally high, both in terms of reviewing load and in calibrating a new
reviewing system. Each member submitted about 22 reviews, for a total of 822 reviews in the fall and 1450 reviews in winter,
or 2272 reviews total, and more than 8600 comments were left in the discussions. It is our sincere hope that the new process
not only assisted in creating the strongest possible program, but also that it helped to improve the quality of reviews and men-
torship provided to the community.

We would especially like to thank our Review Task Force: Kevin Butler, Srdjan Capkun, Rachel Greenstadt, Jon McCune,
and Franzi Roesner. Yoshi Kohno was our steering committee liaison and was a great help. Michael Bailey also provided
valuable feedback from the board. We also thank the many external reviewers who provided additional expertise. We would
like to thank the invited talks committee (Devdatta Akhawe, Alex Gantmann, Giancarlo Pellegrino, Elissa Redmiles), the
Test of Time award committee (Matt Blaze, Dan Boneh, Kevin Fu, Fabian Monrose), the poster session chair Brad Reaves,
and the lightning talks chair Christina Garman. We are extremely grateful to the staff at USENIX who run everything behind
the scenes, particularly Casey Henderson, Jasmine Murcia, and Michele Nelson. Finally, we thank all of the authors of the
703 submitted papers for participating in the 28th USENIX Security Symposium.

Nadia Heninger, University of California San Diego
Patrick Traynor, University of Florida
USENIX Security *19 Program Co-Chairs

USENIX Security ’19:
28th USENIX Security Symposium

August 14-16, 2019
Santa Clara, CA, USA

Wireless Security
A Study of the Feasibility of Co-located App Attacks against BLE and a Large-Scale Analysis of the Current

Application-Layer Security Landscapeccuoiutititiriitieerereereesosscstessssssossosssssssssssasnss 1
Pallavi Sivakumaran and Jorge Blasco, Royal Holloway University of London
The CrossPath Attack: Disrupting the SDN Control Channel via Shared Linksccoiiiiiiiiiieeenns 19

Jiahao Cao, Qi Li, and Renjie Xie, Tsinghua University; Kun Sun, George Mason University; Guofei Gu, Texas A&M
University; Mingwei Xu and Yuan Yang, Tsinghua University

A Billion Open Interfaces for Eve and Mallory: MitM, DoS, and Tracking Attacks on iOS and macOS Through
Apple Wireless Direct Linkouiuiuiiiiiiiiiiiiiiieneereesoseressossssssssssassssssssssssassssas 37
Milan Stute, Technische Universitdt Darmstadt; Sashank Narain, Northeastern University; Alex Mariotto, Alexander
Heinrich, and David Kreitschmann, Technische Universitit Darmstadt; Guevara Noubir, Northeastern University;

Matthias Hollick, Technische Universitit Darmstadt

Hiding in Plain Signal: Physical Signal Overshadowing Attack on LTEcci ittt iiiiiiienrernenas 55
Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil Kim, Song Min Kim, and Yongdae Kim, KAIST
UWB-ED: Distance Enlargement Attack Detection in Ultra-Widebandcciiiiiiiiiiiiiirennnns 73

Mridula Singh, Patrick Leu, AbdelRahman Abdou, and Srdjan Capkun, ETH Zurich

Protecting Users Everywhere
Computer Security and Privacy in the Interactions Between Victim Service Providers and Human Trafficking

S a0 1) 89
Christine Chen, University of Washington; Nicola Dell, Cornell Tech; Franziska Roesner, University of Washington

Clinical Computer Security for Victims of Intimate Partner Violence............coiiiiiiiiiiiiiiiiiiinennn. 105
Sam Havron, Diana Freed, and Rahul Chatterjee, Cornell Tech; Damon McCoy, New York University, Nicola Dell and
Thomas Ristenpart, Cornell Tech

Evaluating the Contextual Integrity of Privacy Regulation: Parents’ IoT Toy Privacy Norms Versus COPPA...... 123
Noah Apthorpe, Sarah Varghese, and Nick Feamster, Princeton University

Secure Multi-User Content Sharing for Augmented Reality Applications.........cooeviiiieerriinensreresnses 141
Kimberly Ruth, Tadayoshi Kohno, and Franziska Roesner, University of Washington

Understanding and Improving Security and Privacy in Multi-User Smart Homes: A Design Exploration and
In-Home USer Study « .« oo vttt ttineeseetosesestocasossossosssessssssssossssssossssssssssnssssosssas 159
Eric Zeng and Franziska Roesner, University of Washington

Hardware Security

PAC it up: Towards Pointer Integrity using ARM Pointer Authenticationciiviiiiiieinrerennnes 177
Hans Liljestrand, Aalto University, Huawei Technologies Oy, Thomas Nyman, Aalto University; Kui Wang, Huawei
Technologies Oy, Tampere University of Technology, Carlos Chinea Perez, Huawei Technologies Oy; Jan-Erik Ekberg,
Huawei Technologies Oy, Aalto University; N. Asokan, Aalto University

Origin-sensitive Control Flow Integritycvviiiiuieiiiiieesrerssesrerosssessosssssssssssssssosnsas 195
Mustakimur Rahman Khandaker, Wenqing Liu, Abu Naser, Zhi Wang, and Jie Yang, Florida State University

(continued on next page)

HardFails: Insights into Software-Exploitable Hardware Bugsccoitiiiiiieirnincenrerncnsserosnsas 213
Ghada Dessouky and David Gens, Technische Universitdt Darmstadt; Patrick Haney and Garrett Persyn, Texas A&M
University; Arun Kanuparthi, Hareesh Khattri, and Jason M. Fung, Intel Corporation; Ahmad-Reza Sadeghi, Technische
Universitdt Darmstadt; Jeyavijayan Rajendran, Texas A&M University

uXOM: Efficient eXecute-Only Memory on ARM Cortex-Mcoitiiiiiiiiiiiiineeneeneeneeneeneennns 231
Donghyun Kwon, Jangseop Shin, and Giyeol Kim, Seoul National University; Byoungyoung Lee, Seoul National
University, Purdue University; Yeongpil Cho, Soongsil University, Yunheung Paek, Seoul National University

A Systematic Evaluation of Transient Execution Attacks and Defenses...............coiiiiiiiiiiiiiiinn.. 249
Claudio Canella, Graz University of Technology, Jo Van Bulck, imec-DistriNet, KU Leuven; Michael Schwarz, Moritz

Lipp, Benjamin von Berg, and Philipp Ortner, Graz University of Technology; Frank Piessens, imec-DistriNet, KU

Leuven; Dmitry Evtyushkin, College of William and Mary, Daniel Gruss, Graz University of Technology

Machine Learning Applications

The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks..................... 267
Nicholas Carlini, Google Brain; Chang Liu, University of California, Berkeley,; Ulfar Erlingsson, Google Brain; Jernej
Kos, National University of Singapore; Dawn Song, University of California, Berkeley

Improving Robustness of ML Classifiers against Realizable Evasion Attacks Using Conserved Features 285
Liang Tong, Washington University in St. Louis; Bo Li, UIUC,; Chen Hajaj, Ariel University; Chaowei Xiao, University of
Michigan; Ning Zhang and Yevgeniy Vorobeychik, Washington University in St. Louis

ALOHA: Aucxiliary Loss Optimization for Hypothesis Augmentation.............cciiiiiiiiiiiieinrerennnes 303
Ethan M. Rudd, Felipe N. Ducau, Cody Wild, Konstantin Berlin, and Richard Harang, Sophos

Why Do Adversarial Attacks Transfer? Explaining Transferability of Evasion and Poisoning Attacks 321
Ambra Demontis, Marco Melis, and Maura Pintor, University of Cagliari, Italy; Matthew Jagielski, Northeastern

University; Battista Biggio, University of Cagliari, Italy, and Pluribus One; Alina Oprea and Cristina Nita-Rotaru,
Northeastern University; Fabio Roli, University of Cagliari, Italy, and Pluribus One

Stack Overflow Considered Helpful! Deep Learning Security Nudges Towards Stronger Cryptography.......... 339
Felix Fischer, Technical University of Munich; Huang Xiao, Bosch Center for Artificial Intelligence; Ching-Yu Kao,
Fraunhofer AISEC; Yannick Stachelscheid, Benjamin Johnson, and Danial Razar, Technical University of Munich; Paul
Fawkesley and Nat Buckley, Projects by IF; Konstantin Bottinger, Fraunhofer AISEC,; Paul Muntean and Jens Grossklags,
Technical University of Munich

Planes, Cars, and Robots

Wireless Attacks on Aircraft Instrument Landing Systemsoiuiiiiiiiiiiiiiieenrerncnseeresnnns 357
Harshad Sathaye, Domien Schepers, Aanjhan Ranganathan, and Guevara Noubir, Northeastern University

Please Pay Inside: Evaluating Bluetooth-based Detection of Gas Pump Skimmerscoviiiiean.. 373
Nishant Bhaskar and Maxwell Bland, University of California San Diego; Kirill Levchenko, University of Illinois at
Urbana-Champaign; Aaron Schulman, University of California San Diego

CANvas: Fast and Inexpensive Automotive Network Mappingc.coiiiitiiiiineirernsrnresesosencnns 389
Sekar Kulandaivel, Tushar Goyal, Arnav Kumar Agrawal, and Vyas Sekar, Carnegie Mellon University

Losing the Car Keys: Wireless PHY-Layer Insecurityin EV Charging.............cooiiiiiiiiiiiiiiiiinnnn. 407
Richard Baker and Ivan Martinovic, University of Oxford

RVFuzzer: Finding Input Validation Bugs in Robotic Vehicles through Control-Guided Testing 425
Taegyu Kim, Purdue University; Chung Hwan Kim and Junghwan Rhee, NEC Laboratories America; Fan Fei, Zhan Tu,
Gregory Walkup, Xiangyu Zhang, Xinyan Deng, and Dongyan Xu, Purdue University

Machine Learning, Adversarial and Otherwise

Seeing is Not Believing: Camouflage Attacks on Image Scaling Algorithms.............coiiiiiiiiiiiirennnn. 443
Qixue Xiao, Department of Computer Science and Technology, Tsinghua University and 360 Security Research Labs;

Yufei Chen, School of Electronic and Information Engineering, Xi’an Jiaotong University and 360 Security Research

Labs; Chao Shen, School of Electronic and Information Engineering, Xi’an Jiaotong University; Yu Chen, Department of
Computer Science and Technology, Tsinghua University and Peng Cheng Laboratory; Kang Li, Department of Computer
Science, University of Georgia

CT-GAN: Malicious Tampering of 3D Medical Imagery using Deep Learningcciviiiiiirerennnn. 461
Yisroel Mirsky and Tom Mahler, Ben-Gurion University; Ilan Shelef, Soroka University Medical Center; Yuval Elovici,
Ben-Gurion University

Misleading Authorship Attribution of Source Code using Adversarial Learning.............coiiiiiiiienn.. 479
Erwin Quiring, Alwin Maier, and Konrad Rieck, TU Braunschweig

Terminal Brain Damage: Exposing the Graceless Degradation in Deep Neural Networks Under Hardware

L 1] LN 1 T 497
Sanghyun Hong, University of Maryland College Park; Pietro Frigo, Vrije Universiteit Amsterdam; Yigitcan Kaya,
University of Maryland College Park; Cristiano Giuffrida, Vrije Universiteit Amsterdam; Tudor Dumitras, University of
Maryland College Park

CSI NN: Reverse Engineering of Neural Network Architectures Through Electromagnetic Side Channel......... 515
Lejla Batina, Radboud University, The Netherlands; Shivam Bhasin and Dirmanto Jap, Nanyang Technological
University, Singapore; Stjepan Picek, Delft University of Technology, The Netherlands

Mobile Security 1

simTPM: User-centric TPM for Mobile Devicesc.ovtuiiiiiiiiiiiiiiiiiiiiiiiiiieiieierseeneencennes 533
Dhiman Chakraborty, CISPA Helmholtz Center for Information Security, Saarland University; Lucjan Hanzlik, CISPA
Helmholtz Center for Information Security, Stanford University; Sven Bugiel, CISPA Helmholtz Center for Information
Security

The Betrayal At Cloud City: An Empirical Analysis Of Cloud-Based Mobile Backends 551
Omar Alrawi, Georgia Institute of Technology; Chaoshun Zuo, Ohio State University; Ruian Duan and Ranjita Pai

Kasturi, Georgia Institute of Technology; Zhiqiang Lin, Ohio State University; Brendan Saltaformaggio, Georgia Institute

of Technology

ENTrustT: Regulating Sensor Access by Cooperating Programs via Delegation Graphs.................... 567
Giuseppe Petracca, Pennsylvania State University, US; Yuqiong Sun, Symantec Research Labs, US; Ahmad-Atamli

Reineh, Alan Turing Institute, UK; Patrick McDaniel, Pennsylvania State University, US; Jens Grossklags, Technical
University of Munich, DE; Trent Jaeger, Pennsylvania State University, US

PolicyLint: Investigating Internal Privacy Policy Contradictions on Google Playccvviiiinn. 585
Benjamin Andow and Samin Yaseer Mahmud, North Carolina State University; Wenyu Wang, University of Illinois at
Urbana-Champaign; Justin Whitaker, William Enck, and Bradley Reaves, North Carolina State University; Kapil Singh,
IBM T.J. Watson Research Center; Tao Xie, University of Illinois at Urbana-Champaign

50 Ways to Leak Your Data: An Exploration of Apps’ Circumvention of the Android Permissions System 603
Joel Reardon, University of Calgary / AppCensus Inc.; Alvaro Feal, IMDEA Networks Institute / Universidad Carlos

11l Madrid; Primal Wijesekera, U.C. Berkeley / ICSI; Amit Elazari Bar On, U.C. Berkeley; Narseo Vallina-Rodriguez,
IMDEA Networks Institute / ICSI / AppCensus Inc.; Serge Egelman, U.C. Berkeley / ICSI | AppCensus Inc.

Side Channels

SpoiLER: Speculative Load Hazards Boost Rowhammer and Cache Attacks............ccoiiiiiiiiiiiiinnnne. 621
Saad Islam and Ahmad Moghimi, Worcester Polytechnic Institute; Ida Bruhns and Moritz Krebbel, University of

Luebeck; Berk Gulmezoglu, Worcester Polytechnic Institute; Thomas Eisenbarth, Worcester Polytechnic Institute and
University of Luebeck,; Berk Sunar, Worcester Polytechnic Institute

(continued on next page)

Robust Website Fingerprinting Through the Cache Occupancy Channeloiiiiiiiiiiian.. 639
Anatoly Shusterman, Ben-Gurion University of the Negev; Lachlan Kang, University of Adelaide; Yarden Haskal and

Yosef Meltser, Ben-Gurion University of the Negev; Prateek Mittal, Princeton University; Yossi Oren, Ben-Gurion
University of the Negev; Yuval Yarom, University of Adelaide and Data61

Identifying Cache-Based Side Channels through Secret-Augmented Abstract Interpretation 657
Shuai Wang, HKUST; Yuyan Bao and Xiao Liu, Penn State University; Pei Wang, Baidu X-Lab; Danfeng Zhang and
Dinghao Wu, Penn State University

ScatTERCAcHE: Thwarting Cache Attacks via Cache Set Randomizationottt 675
Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz, Daniel Gruss, and Stefan Mangard, Graz
University of Technology

Pythia: Remote Oracles for the IMasses . .. cvvvee e ineeeesteeosssesosssssssossssssosssssssssssssssosssas 693
Shin-Yeh Tsai, Purdue University; Mathias Payer, EPFL; Yiying Zhang, Purdue University

Mobile Security 2

HideMyApp: Hiding the Presence of Sensitive Appson Androidccoviiiiiiiiiiiieenrerncnsrenesnses 711
Anh Pham, ABB Corporate Research; Italo Dacosta, EPFL; Eleonora Losiouk, University of Padova; John Stephan,
EPFL; Kévin Huguenin, University of Lausanne; Jean-Pierre Hubaux, EPFL

TESSERACT: Eliminating Experimental Bias in Malware Classification across Space and Time 729
Feargus Pendlebury, Fabio Pierazzi, and Roberto Jordaney, King’s College London & Royal Holloway, University of
London; Johannes Kinder, Bundeswehr University Munich; Lorenzo Cavallaro, King’s College London

Devils in the Guidance: Predicting Logic Vulnerabilities in Payment Syndication Services through Automated
Documentation ANALYSIS. . v o v v v titueeeteteeeseetoeasessesnssssesossssesossssssosnssssssssassssasasss 747
Yi Chen, Institute of Information Engineering, CAS; Luyi Xing, Yue Qin, Xiaojing Liao, and XiaoFeng Wang, Indiana
University Bloomington; Kai Chen and Wei Zou, Institute of Information Engineering, CAS

Understanding iOS-based Crowdturfing Through Hidden UL Analysisccoitiiiiieenrirncnneeresnnes 765
Yeonjoon Lee, Xueqiang Wang, Kwangwuk Lee, Xiaojing Liao, and XiaoFeng Wang, Indiana University; Tongxin Li,
Peking University, Xianghang Mi, Indiana University

Crypto Means Cryptocurrencies

Brte: Bitcoin Lightweight Client Privacy using Trusted Executioncooiiiiiiiiiiiiiiiiiiiieennn, 783
Sinisa Matetic, Karl Wiist, Moritz Schneider, and Kari Kostiainen, ETH Zurich; Ghassan Karame, NEC Labs; Srdjan
Capkun, ETH Zurich

FasTKiITTEN: Practical Smart Contracts on Bitcoin.coiiiiiiiiiiiiiiiiiiniereesocncessssosacesonns 801
Poulami Das, Lisa Eckey, Tommaso Frassetto, David Gens, Kristina Hostakov4, Patrick Jauernig, Sebastian Faust, and
Ahmad-Reza Sadeghi, Technische Universitdt Darmstadt, Germany

StrongChain: Transparent and Collaborative Proof-of-Work Consensusc.cciviiiiiiiiiiiieeneeneennns 819
Pawel Szalachowski, Daniél Reijsbergen, and Ivan Homoliak, Singapore University of Technology and Design (SUTD);
Siwei Sun, Institute of Information Engineering and DCS Center, Chinese Academy of Sciences

Tracing Transactions Across Cryptocurrency Ledgerscuoveitiiiiiiiiiiiteirnencoseesnsnsseseasnsss 837
Haaroon Yousaf, George Kappos, and Sarah Meiklejohn, University College London

Intelligence and Vulnerabilities

Reading the Tea leaves: A Comparative Analysis of Threat Intelligencecoiiiiiiiiiiiiiiiienn.. 851
Vector Guo Li, University of California, San Diego; Matthew Dunn, Northeastern University, Paul Pearce, Georgia Tech;
Damon McCoy, New York University; Geoffrey M. Voelker and Stefan Savage, University of California, San Diego, Kirill
Levchenko, University of lllinois Urbana-Champaign

Towards the Detection of Inconsistencies in Public Security Vulnerability Reports.............cciviiieennnn. 869
Ying Dong, University of Chinese Academy of Sciences and The Pennsylvania State University; Wenbo Guo, Yueqi Chen,
and Xinyu Xing, The Pennsylvania State University and JD Security Research Center; Yuqing Zhang, University of

Chinese Academy of Sciences; Gang Wang, Virginia Tech

Understanding and Securing Device Vulnerabilities through Automated Bug Report Analysis.................. 887
Xuan Feng, Beijing Key Laboratory of IOT Information Security Technology, Institute of Information Engineering, CAS,
China; School of Cyber Security, University of Chinese Academy of Sciences, China; Xiaojing Liao and XiaoFeng Wang,
Department of Computer Science, Indiana University Bloomington, USA; Haining Wang, Department of Electrical

and Computer Engineering, University of Delaware, USA; Qiang Li, School of Computer and Information Technology,
Beijing Jiaotong University, China; Kai Yang, Hongsong Zhu, and Limin Sun, Beijing Key Laboratory of IOT

Information Security Technology, Institute of Information Engineering, CAS, China; School of Cyber Security, University

of Chinese Academy of Sciences, China

AtTACK2VEC: Leveraging Temporal Word Embeddings to Understand the Evolution of Cyberattacks 905
Yun Shen, Symantec Research Labs; Gianluca Stringhini, Boston University

Web Attacks

Leaky Images: Targeted Privacy Attacksinthe Web.........coiiiiiiiiiiiiiiiiiiiiiiieenrernsnsrenesnnes 923
Cristian-Alexandru Staicu and Michael Pradel, TU Darmstadt

All Your Clicks Belong to Me: Investigating Click Interceptiononthe Web............cciiiiiiiiiiiiiennne. 941
Mingxue Zhang and Wei Meng, Chinese University of Hong Kong; Sangho Lee, Microsoft Research; Byoungyoung Lee,
Seoul National University and Purdue University; Xinyu Xing, Pennsylvania State University

What Are You Searching For? A Remote Keylogging Attack on Search Engine Autocomplete 959
John V. Monaco, Naval Postgraduate School

Iframes/Popups Are Dangerous in Mobile WebView: Studying and Mitigating Differential Context Vulnerabilities . .977
GuangLiang Yang, Jeff Huang, and Guofei Gu, Texas A&M University

Small World with High Risks: A Study of Security Threats in the npm Ecosystemccooiiieuieeeiennnes 995
Markus Zimmermann and Cristian-Alexandru Staicu, TU Darmstadt; Cam Tenny, r2¢; Michael Pradel, TU Darmstadt

Crypto Means Cryptographic Attacks

“Johnny, you are fired!” — Spoofing OpenPGP and S/MIME Signatures in Emails...................ooat. 1011
Jens Miiller and Marcus Brinkmann, Ruhr University Bochum; Damian Poddebniak, Miinster University of Applied
Sciences; Hanno Bock, unaffiliated; Sebastian Schinzel, Miinster University of Applied Sciences; Juraj Somorovsky and

Jorg Schwenk, Ruhr University Bochum

Scalable Scanning and Automatic Classification of TLS Padding Oracle Vulnerabilities 1029
Robert Merget and Juraj Somorovsky, Ruhr University Bochum; Nimrod Aviram, Tel Aviv University,; Craig Young,
Tripwire VERT; Janis Fliegenschmidt and Jorg Schwenk, Ruhr University Bochum; Yuval Shavitt, Tel Aviv University

The KNOB is Broken: Exploiting Low Entropy in the Encryption Key Negotiation Of Bluetooth BR/EDR....... 1047
Daniele Antonioli, SUTD; Nils Ole Tippenhauer, CISPA; Kasper B. Rasmussen, University of Oxford
From IP ID to Device ID and KASLR Bypass. .« oo vviiititiiiiieieiereeeseetecsssssessssssesasnssssans 1063

Amit Klein and Benny Pinkas, Bar Ilan University

When the Signal is in the Noise: Exploiting Diffix’s Sticky Noisecoiiiiiiiiiiiiiiiiiiiiiiiiiiineenns 1081
Andrea Gadotti and Florimond Houssiau, Imperial College London; Luc Rocher, Imperial College London and Université
catholique de Louvain; Benjamin Livshits and Yves-Alexandre de Montjoye, Imperial College London

IoT Security

Firm-AFL: High-Throughput Greybox Fuzzing of IoT Firmware via Augmented Process Emulation 1099
Yaowen Zheng, Beijing Key Laboratory of IOT Information Security Technology, Institute of Information Engineering,

CAS, China; School of Cyber Security, University of Chinese Academy of Sciences, China; Ali Davanian, Heng Yin,

and Chengyu Song, University of California, Riverside; Hongsong Zhu and Limin Sun, Beijing Key Laboratory of IOT
Information Security Technology, Institute of Information Engineering, CAS, China; School of Cyber Security, University

of Chinese Academy of Sciences, China

(continued on next page)

Not Everything is Dark and Gloomy: Power Grid Protections Against IoT Demand Attacks................... 1115
Bing Huang, The University of Texas at Austin; Alvaro A. Cardenas, University of California, Santa Cruz; Ross Baldick,
The University of Texas at Austin

Discovering and Understanding the Security Hazards in the Interactions between IoT Devices, Mobile Apps, and
Clouds on Smart Home Platforms.ottt ittt i i it it iitiieeeneeneeneensenaenns 1133
Wei Zhou, National Computer Network Intrusion Protection Center, University of Chinese Academy of Sciences;

Yan Jia, Yao Yao, and Lipeng Zhu, School of Cyber Engineering, Xidian University; National Computer Network

Intrusion Protection Center, University of Chinese Academy of Sciences; Le Guan, Department of Computer Science,
University of Georgia; Yuhang Mao, School of Cyber Engineering, Xidian University, National Computer Network

Intrusion Protection Center, University of Chinese Academy of Sciences; Peng Liu, College of Information Sciences and
Technology, Pennsylvania State University, Yuqing Zhang, National Computer Network Intrusion Protection Center,
University of Chinese Academy of Sciences; School of Cyber Engineering, Xidian University, State Key Laboratory of
Information Security, Institute of Information Engineering, Chinese Academy of Sciences

Looking from the Mirror: Evaluating IoT Device Security through Mobile Companion Apps........cecvveeeees 1151
Xueqiang Wang, Indiana University Bloomington; Yuqiong Sun and Susanta Nanda, Symantec Research Labs; XiaoFeng
Wang, Indiana University Bloomington

All Things Considered: An Analysis of IoT Devices on Home Networksccoiiiiiiiiiiiiiiiiiinnenn, 1169
Deepak Kumar, University of Illinois at Urbana-Champaign; Kelly Shen and Benton Case, Stanford University; Deepali
Garg, Galina Alperovich, Dmitry Kuznetsov, and Rajarshi Gupta, Avast Software s.r.o.; Zakir Durumeric, Stanford
University

OS Security

KepLER: Facilitating Control-flow Hijacking Primitive Evaluation for Linux Kernel Vulnerabilities 1187
Wei Wu, Institute of Information Engineering, Chinese Academy of Sciences; Pennsylvania State University; School of
Cybersecurity, University of Chinese Academy of Sciences; Yueqi Chen and Xinyu Xing, Pennsylvania State University;

Wei Zou, Institute of Information Engineering, Chinese Academy of Sciences; School of Cybersecurity, University of
Chinese Academy of Sciences

PeX: A Permission Check Analysis Framework for Linux Kernelo oo ittt 1205
Tong Zhang, Virginia Tech; Wenbo Shen, Zhejiang University; Dongyoon Lee, Stony Brook University; Changhee Jung,
Purdue University;, Ahmed M. Azab and Ruowen Wang, Samsung Research America

ERIM: Secure, Efficient In-process Isolation with Protection Keys (MPK)ccoviiiiiiiiirnnnnennnns 1221
Anjo Vahldiek-Oberwagner, Eslam Elnikety, Nuno O. Duarte, Michael Sammler, Peter Druschel, and Deepak Garg, Max
Planck Institute for Software Systems, Saarland Informatics Campus

SafeHidden: An Efficient and Secure Information Hiding Technique Using Re-randomization................. 1239
Zhe Wang and Chenggang Wu, State Key Laboratory of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, University of Chinese Academy of Sciences; Yinqian Zhang, The Ohio State University;
Bowen Tang, State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of
Sciences, University of Chinese Academy of Sciences; Pen-Chung Yew, University of Minnesota at Twin-Cities; Mengyao
Xie, Yuanming Lai, and Yan Kang, State Key Laboratory of Computer Architecture, Institute of Computing Technology,
Chinese Academy of Sciences, University of Chinese Academy of Sciences; Yueqiang Cheng, Baidu USA; Zhiping Shi,

The Capital Normal University

Exploiting Unprotected I/0 Operations in AMD’s Secure Encrypted Virtualization.......................... 1257
Mengyuan Li, Yingian Zhang, and Zhiqiang Lin, The Ohio State University; Yan Solihin, University of Central Florida

Phishing and Scams

Detecting and Characterizing Lateral PhishingatScaleo i ittt iiiiiiiiiiiiiiiiiieenn, 1273
Grant Ho, UC Berkeley and Barracuda Networks; Asaf Cidon, Barracuda Networks and Columbia University; Lior

Gavish and Marco Schweighauser, Barracuda Networks; Vern Paxson, UC Berkeley and ICSI; Stefan Savage and

Geoffrey M. Voelker, UC San Diego; David Wagner, UC Berkeley

High Precision Detection of Business Email Compromiseccoiiiiieitiiieenrnresnsesreresassnsnns 1291
Asaf Cidon, Barracuda Networks and Columbia University; Lior Gavish, Itay Bleier, Nadia Korshun, Marco
Schweighauser, and Alexey Tsitkin, Barracuda Networks

Cognitive Triaging of Phishing Attacksuvuitiiiiiiiiiireererosesestocsssssossssssessssssssoss 1309
Amber van der Heijden and Luca Allodi, Eindhoven University of Technology

Users Really Do Answer Telephone SCamscuvuiueerreteeroeerosososessocssssssssssssessssssssoss 1327
Huahong Tu, University of Maryland; Adam Doupé, Arizona State University; Ziming Zhao, Rochester Institute of
Technology; Gail-Joon Ahn, Arizona State University and Samsung Research

Platforms in Everything: Analyzing Ground-Truth Data on the Anatomy and Economics of Bullet-Proof Hosting . .1341
Arman Noroozian, TU Delft; Jan Koenders and Eelco van Veldhuizen, Dutch National High-Tech Crime Unit; Carlos H.
Ganan, TU Delft; Sumayah Alrwais, King Saud University and International Computer Science Institute; Damon McCoy,
New York University; Michel van Eeten, TU Delft

Distributed System Security + Verifying Hardware

Protecting Cloud Virtual Machines from Hypervisor and Host Operating System Exploits.................... 1357
Shih-Wei Li, John S. Koh, and Jason Nieh, Columbia University
WAVE: A Decentralized Authorization Framework with Transitive Delegationccivviieann. 1375

Michael P Andersen, Sam Kumar, Moustafa AbdelBaky, Gabe Fierro, John Kolb, Hyung-Sin Kim, David E. Culler, and
Raluca Ada Popa, University of California, Berkeley

in-toto: Providing farm-to-table guarantees for bits and bytes.........ccviiiiiiiiiiiiiiirrereresenennnss 1393
Santiago Torres-Arias, New York University; Hammad Afzali, New Jersey Institute of Technology; Trishank Karthik
Kuppusamy, Datadog; Reza Curtmola, New Jersey Institute of Technology; Justin Cappos, New York University

IopiNE: Verifying Constant-Time Execution of Hardwarecoiiiiiiiiiiiiiiiiiiiiiiiiieneeneenns 1411
Klaus v. Gleissenthall, Rami Gokhan Kic1, Deian Stefan, and Ranjit Jhala, University of California, San Diego
VRASED: A Verified Hardware/Software Co-Design for Remote Attestationcovviiiiiivnennnns 1429

Ivan De Oliveira Nunes, University of California, Irvine; Karim Eldefrawy, SRI International; Norrathep Rattanavipanon,
University of California, Irvine; Michael Steiner, Intel; Gene Tsudik, University of California, Irvine

Crypto Means Cryptography
Mobile Private Contact Discovery at Scale.ovuiuiuitiiiiiiintieiereseerecsssssesnssssesossssnsans 1447

Daniel Kales and Christian Rechberger, Graz University of Technology; Thomas Schneider, Matthias Senker, and
Christian Weinert, TU Darmstadt

EverParse: Verified Secure Zero-Copy Parsers for Authenticated Message Formatsccvvvvenenn. 1465
Tahina Ramananandro, Antoine Delignat-Lavaud, Cédric Fournet, and Nikhil Swamy, Microsoft Research; Tej Chajed,
MIT; Nadim Kobeissi, Inria Paris; Jonathan Protzenko, Microsoft Research

Blind Bernoulli Trials: A Noninteractive Protocol For Hidden-Weight Coin Flips................ocvviieae. 1483
Emma Connor and Max Schuchard, University of Tennessee
Xonn: XNOR-based Oblivious Deep Neural Network Inferencecooiiiiiiiiiiiiiirinrerecenenenens 1501

M. Sadegh Riazi and Mohammad Samragh, UC San Diego; Hao Chen, Kim Laine, and Kristin Lauter, Microsoft
Research; Farinaz Koushanfar, UC San Diego

JEDI: Many-to-Many End-to-End Encryption and Key Delegation for IoTcoiiiiiiiiien. 1519
Sam Kumar, Yuncong Hu, Michael P Andersen, Raluca Ada Popa, and David E. Culler, University of California, Berkeley

Passwords
Birthday, Name and Bifacial-security: Understanding Passwords of Chinese Web Usersoo... 1537
Ding Wang and Ping Wang, Peking University, Debiao He, Wuhan University; Yuan Tian, University of Virginia

Protecting accounts from credential stuffing with password breach alertingcciiiiiiiiiiinnnns 1555
Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage Kelley, Luca Invernizzi, Borbala Benko,
Tadek Pietraszek, and Sarvar Patel, Google; Dan Boneh, Stanford; Elie Bursztein, Google

(continued on next page)

Probability Model Transforming Encoders Against Encoding Attacks...........coiiiiiiiiiiiiiiiiiinienn, 1573
Haibo Cheng, Zhixiong Zheng, Wenting Li, and Ping Wang, Peking University;, Chao-Hsien Chu, Pennsylvania State
University

Cryptocurrency Scams

The Art of The Scam: Demystifying Honeypots in Ethereum Smart Contractsooiiiiiiiiieenn. 1591
Christof Ferreira Torres, Mathis Steichen, and Radu State, University of Luxembourg

The Anatomy of a Cryptocurrency Pump-and-Dump Scheme oo iiiiiiiiiiiiiiiiiiiiiiineenn, 1609
Jiahua Xu, Ecole polytechnique fédérale de Lausanne (EPFL); Benjamin Livshits, Imperial College London

Inadvertently Making Cyber Criminals Rich: A Comprehensive Study of Cryptojacking Campaigns at
Internet Scaleoouniuiiiiiiiiiii ittt ittt it eiteeteeteeeeeseeneenetsscasessesseaneanennns 1627
Hugo L.J. Bijmans, Tim M. Booij, and Christian Doerr, Delft University of Technology

Web Defenses

Rendered Private: Making GLSL Execution Uniform to Prevent WebGL-based Browser Fingerprinting........ 1645
Shujiang Wu, Song Li, and Yinzhi Cao, Johns Hopkins University; Ningfei Wang, Lehigh University

Site Isolation: Process Separation for Web Sites within the Browser ittt 1661
Charles Reis, Alexander Moshchuk, and Nasko Oskov, Google

Everyone is Different: Client-side Diversification for Defending Against Extension Fingerprinting 1679
Erik Trickel, Arizona State University; Oleksii Starov, Stony Brook University; Alexandros Kapravelos, North Carolina
State University; Nick Nikiforakis, Stony Brook University; Adam Doupé, Arizona State University

Less is More: Quantifying the Security Benefits of Debloating Web Applicationscooiiiiiiea. 1697
Babak Amin Azad, Pierre Laperdrix, and Nick Nikiforakis, Stony Brook University

The Web’s Identity Crisis: Understanding the Effectiveness of Website Identity Indicators.................... 1715
Christopher Thompson, Martin Shelton, Emily Stark, Maximilian Walker, Emily Schechter, and Adrienne Porter Felt,
Google

Software Security
RAzor: A Framework for Post-deployment Software Debloatingcciiiiiiiiiiiiiiinecnrnreennnns 1733

Chenxiong Qian, Hong Hu, Mansour Alharthi, Pak Ho Chung, Taesoo Kim, and Wenke Lee, Georgia Institute of
Technology

Back to the Whiteboard: a Principled Approach for the Assessment and Design of Memory Forensic Techniques. . 1751
Fabio Pagani and Davide Balzarotti, EURECOM

Detecting Missing-Check Bugs via Semantic- and Context-Aware Criticalness and Constraints Inferences 1769
Kangjie Lu, Aditya Pakki, and Qiushi Wu, University of Minnesota

DEEPVSA: Facilitating Value-set Analysis with Deep Learning for Postmortem Program Analysis............. 1787
Wenbo Guo, Dongliang Mu, and Xinyu Xing, The Pennsylvania State University; Min Du and Dawn Song, University of
California, Berkeley

ConFIRM: Evaluating Compatibility and Relevance of Control-flow Integrity Protections for Modern Software .1805
Xiaoyang Xu, Masoud Ghaffarinia, Wenhao Wang, and Kevin W. Hamlen, University of Texas at Dallas,; Zhiqiang Lin,
Ohio State University

Privacy

Point Break: A Study of Bandwidth Denial-of-Service Attacks against Torccoiiiiiiiiiienrnreennnns 1823
Rob Jansen, U.S. Naval Research Laboratory; Tavish Vaidya and Micah Sherr, Georgetown University

No Right to Remain Silent: Isolating Malicious MiXeS. .. .uovtetiereretnreesnssseesosocesossocnsnssssssns 1841
Hemi Leibowitz, Bar-Ilan University, IL; Ania M. Piotrowska and George Danezis, University College London, UK;
Amir Herzberg, University of Connecticut, US

On (The Lack Of) Location Privacy in Crowdsourcing Applications.coiviivtiiiiieesrerososensnss 1859
Spyros Boukoros, TU-Darmstadt; Mathias Humbert, Swiss Data Science Center (ETH Zurich, EPFL); Stefan
Katzenbeisser, TU-Darmstadt, University of Passau; Carmela Troncoso, EPFL

Utility-Optimized Local Differential Privacy Mechanisms for Distribution Estimation 1877
Takao Murakami and Yusuke Kawamoto, AIST

Evaluating Differentially Private Machine Learning in Practice iiiiiiiiiiiiiiiiiiiienn, 1895
Bargav Jayaraman and David Evans, University of Virginia

Fuzzing

FuzziFicAaTiON: Anti-Fuzzing Techniquescooitiiiiiiiiiiiiiiiiireteerncaseerosnssssesosssssssnss 1913
Jinho Jung, Hong Hu, David Solodukhin, and Daniel Pagan, Georgia Institute of Technology; Kyu Hyung Lee, University
of Georgia; Taesoo Kim, Georgia Institute of Technology

AnTIFUzz: Impeding Fuzzing Audits of Binary Executablescciiiiiiiiiiiiiiiiiiiiiiiiiiineenns 1931
Emre Giiler, Cornelius Aschermann, Ali Abbasi, and Thorsten Holz, Ruhr-Universitit Bochum

MOprT: Optimized Mutation Scheduling for FUzZzersoiuitiiiiiiiieernensrerosnssssesosassnsnss 1949
Chenyang Lyu, Zhejiang University; Shouling Ji, Zhejiang University & Alibaba-Zhejiang University Joint Research
Institute of Frontier Technologies; Chao Zhang, BNRist & INSC, Tsinghua University; Yuwei Li, Zhejiang University;
Wei-Han Lee, IBM Research; Yu Song, Zhejiang University; Raheem Beyah, Georgia Institute of Technology

EnFuzz: Ensemble Fuzzing with Seed Synchronization among Diverse Fuzzersccoiiiiiien. 1967
Yuanliang Chen, Yu Jiang, Fuchen Ma, Jie Liang, Mingzhe Wang, and Chijin Zhou, Tsinghua University; Xun Jiao,
Villanova University; Zhuo Su, Tsinghua University

GRIMOIRE: Synthesizing Structure while Fuzzingoiiiiiiiiiiiiiiii ittt iiiiiieiieeneenns 1985
Tim Blazytko, Cornelius Aschermann, Moritz Schlogel, Ali Abbasi, Sergej Schumilo, Simon Wérner, and Thorsten Holz,
Ruhr-Universitdt Bochum

A Study of the Feasibility of Co-located App Attacks against BLE and a
Large-Scale Analysis of the Current Application-Layer Security Landscape

Pallavi Sivakumaran
Information Security Group
Royal Holloway University of London

Email: pallavi.sivakumaran.2012 @rhul.ac.uk

Abstract

Bluetooth Low Energy (BLE) is a fast-growing wireless tech-
nology with a large number of potential use cases, particularly
in the IoT domain. Increasingly, these use cases require the
storage of sensitive user data or critical device controls on
the BLE device, as well as the access of this data by an aug-
mentative mobile application. Uncontrolled access to such
data could violate user privacy, cause a device to malfunction,
or even endanger lives. The BLE standard provides security
mechanisms such as pairing and bonding to protect sensitive
data such that only authenticated devices can access it. In this
paper we show how unauthorized co-located Android appli-
cations can access pairing-protected BLE data, without the
user’s knowledge. We discuss mitigation strategies in terms of
the various stakeholders involved in this ecosystem, and argue
that at present, the only possible option for securing BLE data
is for BLE developers to implement remedial measures in the
form of application-layer security between the BLE device
and the Android application. We introduce BLECryptracer,
a tool for identifying the presence of such application-layer
security, and present the results of a large-scale static anal-
ysis over 18,900+ BLE-enabled Android applications. Our
findings indicate that over 45% of these applications do not
implement measures to protect BLE data, and that cryptog-
raphy is sometimes applied incorrectly in those that do. This
implies that a potentially large number of corresponding BLE
peripheral devices are vulnerable to unauthorized data access.

1 Introduction

Bluetooth is a well-known technology standard for wireless
data transfer, currently deployed in billions of devices world-
wide [37]. A more recent addition to the Bluetooth standard
is Bluetooth Low Energy (BLE), which differs from Classic
Bluetooth in that it incorporates a simplified version of the
Bluetooth stack and targets low-energy, low-cost devices.

Its focus on resource-constrained devices has made BLE
highly suited for IoT applications [18], including personal

Jorge Blasco
Information Security Group
Royal Holloway University of London
Email: jorge.blascoalis @rhul.ac.uk

health/fitness monitoring [22], asset tracking [8], vehicular
management [13], and home automation [27]. Most of these
use cases augment the functionality of the BLE device with
a mobile application. This application may need to read or
write sensitive or critical data on the BLE device (for example,
glucose measurement values stored by a continuous glucose
meter, or a field that controls a door’s locking mechanism
in a smart home security system). To ensure privacy and
security/safety, measures should be taken to protect such data
from being accessed by unauthorized entities.

The Bluetooth specification provides means for restricting
access to BLE data via pairing and bonding, which are mech-
anisms for establishing an authenticated transport between
two communicating devices. However, when multiple appli-
cations reside on a single host, as is the case with mobile
devices, there is potential for a malicious application to abuse
a trusted relationship between the host and the device that
was initiated by an authorized application [31].

In this work, we show how a malicious application could
take advantage of the BLE communication model on Android
to read and write pairing-protected data on a BLE device
without the user’s knowledge. We also show that these unau-
thorized applications may be able to do so while requesting
minimal permissions, thereby making them appear less inva-
sive than even an authorized application.

We discuss various strategies, in terms of the different stake-
holders involved, that can be used to secure BLE data against
such unauthorized access. We argue that in the current land-
scape, it is up to the BLE device/application developers to im-
plement application-layer security to protect the data on their
devices. We perform a large-scale static analysis of 18,929
BLE-enabled Android applications (filtered down from an
original dataset of over 4.6 million applications) to determine
how many of them currently employ such protection mecha-
nisms. While the results vary for BLE reads vs. writes, overall
they show that more than 45% of the tested applications do
not provide cryptography-based application-layer security for
BLE data. This number rises to about 70% for those applica-
tions that are categorized under “Medical”. This information,

USENIX Association

28th USENIX Security Symposium 1

CENTRAL PERIPHERAL
Read Request
Read Response

GATT Client GATT Server

Figure 1: GATT communications between a mobile phone
and a BLE-enabled glucometer.

when combined with the download counts for each applica-
tion, allows us to estimate a lower bound for the number of
BLE devices that may be vulnerable to unauthorized data
access.

The rest of this paper is structured as follows: Section 2
provides an overview of key BLE concepts, particularly with
regard to data access mechanisms and restrictions. We demon-
strate unauthorized BLE data access in Section 3. This section
also discusses stakeholders and possible mitigation strategies.
Section 4 details our marketplace application analysis and
examines the results. Related work is described in Section 5,
and Section 6 provides our concluding remarks.

2 Background

Two devices that communicate using BLE will operate in
an asymmetric configuration, with the more powerful device,
referred to as the central, taking on most of the resource-
intensive work. The resource-constrained device is termed the
peripheral and performs tasks that are designed to consume
fewer resources.

2.1 Data Access on BLE Devices

BLE, unlike Classic Bluetooth, can only handle discrete data
known as attributes. Attributes are stored and accessed ac-
cording to rules specified by the Attribute Protocol (ATT)
and the Generic Attribute Profile (GATT), both of which are
defined in the Bluetooth standard. There are different types of
attributes, of which characteristics are the most relevant for
our analysis, as they hold the actual data of interest. Related
characteristics are grouped into services, which are exposed
to connected devices [11].

When one BLE-enabled device wants to access attributes
on another BLE device, the device that initiates the exchange
takes on the role of GATT client and the other acts as the
GATT server. In this paper, we focus on the scenario where
the BLE peripheral (e.g., a glucose meter), acts as the server,
and a mobile phone acts as the client, as shown in Figure 1.

2.2 BLE Attribute Permissions

Every attribute has associated with it three permissions that
control how it may be accessed: (1) Access permissions define
whether an attribute can be read and/or written. (2) Authen-
tication permissions indicate the level of authentication and
encryption that needs to be applied to the transport between
the two devices before the attribute can be accessed. (3) Autho-
rization permissions specify whether end-user authorization
is required for access.

When a GATT client sends a read or write request for an
attribute to a GATT server, the server will check the request
against the permissions for that attribute, to determine whether
the requested access mechanism is allowed and whether the
client is authenticated and/or authorized, if required. An at-
tribute is only readable or writable if its access permissions
specify it to be so. In the case of authentication permissions,
if the attribute requires an authenticated or encrypted link
before it can be accessed (referred to as a “pairing-protecte”
attribute in this paper), and if such a link is not present when
the access request is made, then the server responds with
an Insufficient Authentication/Encryption message.
At this point, the client can initiate the pairing process to
authenticate and encrypt the transport. If this process com-
pletes successfully, the server will fulfill subsequent requests
made by the client. This procedure for handling authentica-
tion requirements is well-defined in the Bluetooth specifi-
cation. Authorization requirements, on the other hand, are
implementation-specific and largely left up to developers.

Once two devices complete the pairing process, they typi-
cally go through an additional bonding process, during which
long-term keys are established. This prevents the need for go-
ing through the pairing process again if they disconnect and
subsequently reconnect, provided they retain the long-term
keys. Upon re-connection, the link encryption process will be
initiated using the stored keys. Keys normally remain on the
devices unless the devices are reset or manually unpaired by
the user.

3 BLE Co-located Application Attacks

In this section, we show how any application on an Android
device can access pairing-protected attributes from a BLE
peripheral, even when the pairing process was initiated by
a different application. We then explore various mitigation
strategies that are available to different stakeholders in the
BLE ecosystem.

These attacks were also explored by Naveed et al. in 2014,
for Classic Bluetooth [31]. We show that the problem remains
on newer versions of Android, and also that the situation is
worse for BLE, as one of our attacks enables fewer restrictions
for access and requires fewer permissions of the malicious
application than even of the official application.

2 28th USENIX Security Symposium

USENIX Association

3.1 Attack Mechanisms

We describe two attacks: the first shows that pairing-protected
data can be accessed by unauthorized applications, while the
second refines the attack and reduces the number of permis-
sions required by the unauthorized application. We use two
Android applications to describe the attacks: One application
that is expected to be able to connect to the BLE device and
access its data (“Official App”), and a different application
that should not be able to access pairing-protected data from
the device (“AttackApp”). We conducted our experiments on
an Alcatel Pixi 4 mobile phone, running Android 6.0, and
on a Google Pixel XL, running Android 8.1.0. Version 6.0
was the most widely-deployed release [2], while 8.1.0 was
the latest stable release, as of 01 Aug 2018.

3.1.1 Attack 1: System-wide Pairing Credentials

This attack demonstrates that the BLE credentials that are
stored on an Android device are implicitly available to all
applications on the device, rather than just the application that
originally triggered the pairing.

When the Official App connects to the BLE device and
attempts to access a pairing-protected characteristic, the re-
sulting exchange will trigger the Android OS into initiating
the pairing and bonding process (as depicted in the upper
block in Figure 2). The resultant keys are associated with
the link between the Android and BLE devices, rather than
between the BLE device and the Official App (which actually
triggered the pairing). Therefore, once bonding completes,
when the AttackApp scans and connects to the BLE device,
the Android OS completes the connection process and au-
tomatically initiates link encryption with the keys that were
generated during the previous bonding process (lower block
in Figure 2). This enables the AttackApp to have the same
level of access to the pairing-protected data on the device as
the Official App, but without the need for initiating pairing.

A key point to note here is that, not only is the unauthorized
AttackApp able to access potentially sensitive information
from the BLE device, but also the user is likely to be unaware
of the fact that this data access is taking place, as there is no
indication during link re-encryption and subsequent attribute
access.

3.1.2 Attack 2: Reuse of Connection

Our second attack exploits the fact that, on Android, a BLE
peripheral can be used concurrently by multiple applica-
tions [32]. In this attack, the AttackApp does not scan for BLE
devices. It instead searches for connected BLE devices us-
ing the BluetoothManager.getConnectedDevices () API
call, with BluetoothProfile.GATT as the argument. If the
Official App happens to be in communication with the BLE
device at the same time, this call will return a list with a ref-
erence to the connected BLE device. The AttackApp is then

| Apps | |Android OS] BLE

Offitial App]

startLeScan()

<device list> IECE‘

connect()

> Create Connection

Connection Complete
onConnect

readCharacteristic() Read Request: <protectedChar>

Error: Insufficient Authentication

< Pairing, Link Encryption, Bonding >

Read Request: <protectedChar>

onRead (- — — — — - — - - — - -

getValue()

<value>

closel .
0 Disconnect

AttgckApp)

startLeScan()

<device list> @a

connect()

Create Connection

Connection Complete

< Link Encryption >

readCharacteristic()

Read Request: <protectedChar>

onRead = = = = = = = = = = = = =]

getValue()

<value>

Figure 2: Attack 1 - Illustrative message exchange depicting
access of pairing-protected data by unauthorized application.
Note: Dashed lines indicate encrypted traffic.

able to directly connect to the GATT server and read and write
to the characteristics on it (including those that are pairing-
protected), without the need for creating a new connection to

USENIX Association

28th USENIX Security Symposium 3

the peripheral. This again is done surreptitiously, without the
user being aware of the data access. An illustrative message
flow where the AttackApp writes to a protected characteris-
tic on the BLE device (which the Official App subsequently
reads) has been depicted in Figure 3.

An interesting observation from this attack is a subtle but
relevant impact it has on user awareness, due to the different
permissions that need to be requested by the two applications.
Since both applications access data from a GATT server, they
both require BLUETOOTH permissions. In this attack scenario,
because the Official App scans for the BLE device before it
connects to it, it also needs to request the BLUETOOTH_ADMIN
permission. Both BLUETOOTH and BLUETOOTH_ADMIN are
“normal” permissions that are granted automatically by the
Android operating system after installation, without any need
for user interaction. However, due to restrictions imposed
from Android version 6.0 onward, the Official App also needs
to request LOCATION permissions to invoke the BLE scanner
without a filter (i.e., to scan for all nearby devices instead of
a particular device). These permissions are classed as “dan-
gerous” and will prompt the system to display a confirmation
dialog box the first time they are required. Because the Attack-
App merely has to query the Android OS for a list of already
connected devices, it does not require these additional permis-
sions. This makes the AttackApp appear to be less invasive
in the eyes of a user, since it does not request any permission
that involves user privacy. This could play a part in determin-
ing the volume of downloads for a malicious application. For
example, a malicious application that masquerades as a gam-
ing application, and which does not request any dangerous
permissions, may be more likely to be downloaded by end
users as opposed to one that requests location permissions.

3.2 Discussion

In this section we discuss the impact of our findings, com-
pare them with the Classic Bluetooth case, and mention some
attack limitations.

3.2.1 Implications of Attack

In both of our experiments, the AttackApp was able to read
and write pairing-protected data from the BLE device. The
simplest form of attack would then be for a malicious applica-
tion to perform unauthorized reads of personal user data (as
an example) and relay this to a remote server.

We verified the practicability of this attack by testing a
BLE-enabled fitness tracker that implemented the Bluetooth
Heart Rate Service. According to the service specification,
characteristics within this service are only supposed to be
protected by pairing [9]. However, we observed that the pair-
ing employed by the device appeared to be a non-standard
implementation, and also that access to the Heart Rate Mea-
surement characteristic was “locked” and had to be “unlocked”

| Apps | |Android OS] BLE

Offitial App]

startLeScan()

<device list> IECE‘

connect()

> Create Connection

Connection Complete
onConnect

readCharacteristic() Read Request: <protectedChar>

Error: Insufficient Authentication

< Pairing, Link Encryption, Bonding >

Read Request: <protectedChar>

onRead (- — — — — - — - - — - -

getValue()

<value>

<

>

ttackAppJ

betConnectedDevices(

<device list>

connectGatt()
onConnect
Write Request:
writeCharacteristic() <protectedChar, value2>
________________)
. Write Response: success
onWrite (- — — — — — — — — — — — — — — 4
readCharacterlstlc()’ Read Request: <protectedChar>
Read Response: <value2>
onRead = = = = = = = = = — = — = = =]
getValue()
<value2>
|]]

Figure 3: Attack 2 - Illustrative message exchange depicting
the access of pairing-protected data by reusing an existing
connection. Note: Dashed lines indicate encrypted traffic.

by first writing to certain other characteristics on the tracker.
Despite this, we found that by deploying our second attack,
our AttackApp was able to obtain Heart Rate Measurement
readings without the need for performing any “unlocking”.

4 28th USENIX Security Symposium

USENIX Association

This is because the AttackApp connects to the GATT server
by reusing an existing connection that was initiated by the
official application. The unlocking procedure would therefore
already have been performed for that connection by the offi-
cial application. This result shows that artificially restricting
access to data using non-cryptographic means will not be
effective. We notified the device developer of this issue on 01
Nov 2018, but have not yet received a response.

It should be noted that the above attack could be used by a
malicious application to target other sensitive health informa-
tion such as ECG, glucose or blood pressure measurements
from vulnerable BLE devices, to build up a profile on a user’s
health. Further, Smart Home devices and BLE-enabled ve-
hicles may hold information on a user’s habits and lifestyle
(e.g., time at home, alcohol consumption, driving speed), and
could be exploited. It may also be possible for a malicious ap-
plication to overwrite values on the BLE device, such that the
written data either causes unexpected behavior on the device,
or is read back by the legitimate application, thereby giving
the user an incorrect view of the data on the peripheral. For ex-
ample, it may be possible to update the peripheral’s firmware
via GATT writes. If this mechanism is not suitably protected,
then a malicious application could potentially install mali-
cious firmware onto the BLE device, as we demonstrate in
Section 4.6.

3.2.2 Comparison with Classic Bluetooth

In their experiments with Classic Bluetooth, Naveed et al.
found that an unauthorized Android application would not
be able to obtain data from a Classic Bluetooth device if
the authorized application had already established a socket
connection with the device, as only one application can be
in communication with the device at one time. Therefore, a
malicious application would either require some side-channel
information in order to determine the correct moment for data
access, or would need to interfere with the existing connec-
tion, thereby potentially alerting the user [31]. This limits the
attack window for the malicious application. Our experiments
show that this is not the case with BLE communication chan-
nels. With BLE, there are no socket connections and if the
official application has established a connection with the BLE
device, then this connection can be utilized by any application
that is running on the Android device. That is, a malicious ap-
plication does not have to wait for the authorized application
to disconnect before it can access data.

3.2.3 Attack Limitations

The main limitation for the AttackApp in the case of
the first attack is that it requires the BLUETOOTH and
BLUETOOTH_ADMIN permissions in its manifest, and also
needs to explicitly request LOCATION permissions at first run-
time in order to be able to invoke the BLE scanner. This

enables the AttackApp to connect to the BLE device regard-
less of whether or not another application is also connected,
but increases the risk of raising a user’s suspicions.

In the second attack scenario, the obvious limitation for the
AttackApp that requests only the BLUETOOTH permission is
that the application will only be able to access data from the
BLE peripheral when the peripheral is already in a connection
with (another application on) the Android device. That is, data
access will have to be opportunistic. This can be achieved,
for example, by periodically polling for a list of connected
devices.

3.3 Stakeholders, Mitigation Strategies and
Awareness

In this section, we discuss potential mitigating strategies that
different stakeholders within the BLE ecosystem could im-
plement in order to prevent the attacks detailed in Section 3.1.
We consider the Bluetooth Special Interest Group (SIG), An-
droid (i.e., Google), and BLE device/application developers
as stakeholders.

3.3.1 Bluetooth SIG

The Bluetooth SIG is the group that is responsible for defining
and maintaining the Bluetooth standard, which provides de-
tails on pairing, bonding and BLE attribute permissions. The
SIG also defines various BLE services, including some that
handle user health information, e.g., the Heart Rate Service
and the Continuous Glucose Monitoring Service. The Blue-
tooth specifications for these services require only pairing
as a protection mechanism for the characteristics that hold
health-related measurements [9, 10]. This protection is in-
tended to avoid man-in-the-middle attacks and eavesdropping.
However, as shown in Section 3.1, pairing will not prevent
unauthorized Android applications from accessing the sensi-
tive data held in these characteristics.

This issue could be avoided by modifying the Bluetooth
specification and introducing specific security measures for
protecting data at higher layers. However, this would require
changes to all devices within the ecosystem, which may not be
feasible due to the sheer volume of devices and applications
currently available, and which could lead to fragmentation and
reduced interoperability. Despite this, we believe that devel-
opers accessing Bluetooth documentation should at least be
made aware of the risks involved, and have therefore notified
the SIG via their Support Request Form (17 Dec 2018). We
were informed (19 Dec 2018) that the case had been assigned
to the appropriate team for assessment.

3.3.2 Android

Allowing all applications on an Android device to share BLE
communication channels and long-term keys may well be by

USENIX Association

28th USENIX Security Symposium 5

design, particularly since the BLE standard does not provide
explicit mechanisms for selectively allowing or denying ac-
cess to data based on the source application. This model may
work in some situations, for example on a platform where all
applications originate from the same trusted source. However,
the Android ecosystem is such that, many of the applica-
tions on a device are from different and potentially untrusted
sources. In this scenario, providing all applications with ac-
cess to a common BLE transport opens up possibilities for
attack, as we have demonstrated.

One option to eliminate the problem is to modify how
Android handles BLE communication channels. The modifi-
cation would require some form of association between BLE
credentials and the application that triggers the pairing/bond-
ing process. Each data access request would then be checked
against the permissions associated with the requesting ap-
plication. This approach is favoured by Naveed et al., who
propose a re-architected Android framework which will create
a bonding policy when an application triggers pairing with a
Bluetooth device [31]. This strategy has the advantage that
Bluetooth devices will be protected by default from unautho-
rized access to their data. Further, assuming a suitably strong
pairing mechanism is used, a minimum level of security will
also be guaranteed. However, not only will the operating sys-
tem(s) need to be modified, but also a mechanism will be
required for ensuring that all users’ mobile devices are up-
dated. Otherwise, it is fairly likely that this measure will result
in a fragmented ecosystem, with some devices running the
modified operating system with protection mechanisms, and
others running older versions of the OS with no protection.

Regardless of whether or not the above measure is imple-
mented, we believe that developers should be made aware of
the possibility of unauthorized applications accessing their
BLE device data. At present, Android does not mention the
issue in its Developer Guide [3]. In fact, to the best of the
authors’ knowledge, there is only a single document, from
a BLE chipset manufacturer, which explicitly references the
fact that multiple Android applications can simultaneously
use a connection to a BLE device [32]. Apart from this, the
risks of “system-wide pairing” have been mentioned in a
specification issued by the Fast ID Online (FIDO) Alliance,
without specific reference to mobile platforms [20].

We submitted an issue to the Android Security Team on
02 Nov 2018, focusing on the need of clear documentation
so that developers are aware of the need for implementing
additional protection measures if they are handling sensitive
BLE data. The issue was reviewed by the security team and
rated as Moderate severity (16 May 2019), based on Android’s
severity assessment matrix [5].

3.3.3 BLE Device/Application Developers

Despite the BLE stack containing an application layer, it could
be argued that BLE is commonly viewed as a lower-layer tech-

nology for providing wireless communication capabilities, on
top of which higher-layer technologies operate [12, 38]. This
would result in the responsibility of securing user data being
transferred from the Bluetooth SIG or Android to the BLE
application/device developers. At any rate, this is the only
mechanism available at present for protecting data against
access by co-located applications.

That is, rather than relying solely on the pairing provided
by the underlying operating system, developers can imple-
ment end-to-end security from their Android application to
the BLE peripheral firmware. It may be possible to achieve
such behavior via BLE authorization permissions, because
even though their purpose is to specify a requirement for
end user authorization, the behavior of BLE devices when
encountering authorization requirements is implementation-
specific. Most modern BLE chipsets implement authorization
capabilities by intercepting read/write requests to the pro-
tected characteristics, and allowing for developer-specified
validation.

One advantage of this method is that it gives the developer
complete control over the strength of protection that is applied
to BLE device data, as well as over the timings of security
updates. However, leaving the implementation of security to
the developer runs the risk of cryptography being applied
improperly, thereby leaving the data vulnerable [17]. For
existing developments, retrofitting application-layer security
would mean that both an update for the Android application
and a firmware update for the BLE device would be required,
and there is a risk that the BLE firmware update procedure
itself may not be secure [6].

Due to the lack of clear guidelines regarding attribute secu-
rity in both the Android Developer Guide and the Bluetooth
specification, it is also possible that developers implement no
security at all, due to an assumption that protection will be
handled by pairing. In the next section, we test this assertion
of a lack of developer awareness by exploring the current state
of application-layer security deployments via a large-scale
analysis of BLE-enabled Android applications.

4 Marketplace Application Analysis

As evidenced by our experiments, it is fairly straightforward
for any Android application to connect to a BLE device and
read or write pairing-protected data. As discussed in Sec-
tion 3.3, the only strategy available at present is for developers
to implement application-layer security, typically in the form
of cryptographic protection, between the Android application
and the BLE peripheral.

In this section, we identify the proportion of applications
that do not implement such security mechanisms, to demon-
strate a possible lack of awareness surrounding the issue, and
to be able to estimate the number of devices that are poten-
tially vulnerable to the types of attack shown in Section 3.1.

6 28th USENIX Security Symposium

USENIX Association

Table 1: APKs and Downloads per Google Play Category

Category APKSs [packages] Downloads(mn)
Health & Fitness 3012 [1263] 344.95
Lifestyle 1501 [1006] 52.60
Business 1489 [950] 39.62
Tools 1428 [891] 6308.62
Sports 1268 [685] 17.74
Travel & Local 948 [545] 31.83
Productivity 526 [305] 43.05
Entertainment 446 [284] 128.41
Music & Audio 406 [239] 51.48
Education 313 [225] 3.35
Shopping 383 [190] 144.87
Maps & Navigation 348 [181] 33.21
Medical 407 [177] 5.68
Communication 395 [146] 755.89
Finance 259 [126] 96.38
Auto & Vehicles 236 [119] 4.13
Food & Drink 146 [87] 6.23
Photography 114 [80] 45.78
Social 203 [77] 663.43
Other 746 [516] 258.41

2 We make the assumption that all versions of an application
fall under the same category.

b Some APKs within the dataset are no longer available on
Google Play and hence, have no corresponding category.
These have not been included.

To identify the presence of application-layer security, there
are two possible targets for analysis: BLE peripheral firmware
or Android applications. At present, there is no public reposi-
tory of BLE firmware, which means that the firmware would
need to be obtained from the peripherals themselves. This
would necessitate the purchase of a large number of de-
vices and would not be financially viable. Further, reverse-
engineering and analyzing BLE firmware is not straightfor-
ward, as the firmware image is usually a . hex file, which can
typically only be converted to binary or assembly. Android
APKSs, on the other hand, are easier to obtain, and a number
of decompilers exist that allow for conversion of APKs to a
human-readable format.

We therefore target Android applications for our analysis
and perform the following: (1) obtain a substantial dataset of
BLE-enabled Android APKs, (2) determine the BLE method
calls and the cryptography libraries of interest, and (3) define
a mechanism to determine whether BLE reads and writes
make use of cryptographically processed data. We then apply
this mechanism to our dataset and analyze the results.

4.1 APK Dataset

We obtained our dataset from the AndroZoo project [1]. This
is an online repository that has been made available for re-
search purposes and which contains APKs from several differ-
ent application marketplaces. We focus on only those APKs
that were retrieved from the official Google Play store, which
nevertheless resulted in a sizeable dataset of over 4.6 million
APKs. This dataset includes multiple versions for each ap-
plication, as well as applications that are no longer available
on the marketplace. We performed our analysis over the en-
tire dataset, rather than focusing on only those APKs that
are currently available on Google Play. This was in part be-
cause older versions of an application may still be residing
on users’ devices, and in part to be able to identify trends in
application-layer security deployments over time.

As we are only interested in those applications that per-
form BLE attribute access, and because such access always
requires communicating with the GATT server on the BLE
peripheral, the APKs were filtered by the BLUETOOTH permis-
sion declaration and by calls to the connectGatt method,
which is called prior to performing any data reads or writes.
18,929 APKs, comprising 11,067 unique packages', from the
original set of 4,600,000+ APKSs satisfy this criteria, and these
formed our final dataset.

Application Categories

Applications are categorized in Google Play according to their
primary function, such as “Productivity” or “Entertainment”,
and it may be possible to gauge the sensitivity of the BLE data
handled by an application based on the category it falls under.
For example, “Health and Fitness” applications are probably
more likely to hold personal user data than “Entertainment”
applications.

The number of APKs per category has been listed in Table |
for our dataset. Approximately 23% of the APKs (18% of
unique applications) fall under the categories of “Health and
Fitness” and “Medical”, with a cumulative download count
of over 350 million. Note that the disproportionately high
volume of downloads for the category “Tools” is due to the
Google and Google Play applications, which include BLE
capabilities and are installed on most Android devices.

4.2 Identification of BLE Methods and
Crypto-Libraries
We perform our analysis against specific BLE methods

and crypto-libraries. When considering BLE methods, we
focus on those methods that involve data writes and

'An Android application may have many versions, each of which will be
a separate APK file (with a unique SHA256 hash), but all of which will have
the same package name. We use the terms “unique applications” or “unique
packages” to denote the set of APKs that contain only the /atest version of
each application.

USENIX Association

28th USENIX Security Symposium 7

Table 2: BLE Data Access Methods

Access Method Signature? #APKs % of Total Methods®
byte[] getValue () 17896 61.58%

Read Integer getIntValue (int, int) 8051 27.710%
String getStringValue (int) 2313 7.96%
Float getFloatValue (int, int) 800 2.75%
boolean setValue (byte[]) 16198 70.49%

Write boolean setValue (int, int, int) 5542 24.11%
boolean setValue (String) 627 2.73%
boolean setValue (int, int, int, int) 611 2.66%

2 All methods are from the class android.bluetooth.BluetoothGattCharacteristic.
b <9, of Total Methods” refers to the percentage of occurrences of a particular method for a particular data
access type (i.e., read or write), with respect to all methods that enable the same type of data access.

reads. Such methods have been listed in Table 2, and
function as the starting point for our analysis. For data
writes, the BluetoothGattCharacteristic class within the
android.bluetooth package has setValue methods that
set the locally-stored value of a characteristic. This is then
written out to the BLE peripheral. For data reads, the same
class has getValue methods, which return data that is read
from the BLE device. In a few APKs that we analyzed,
BLE data access methods were also called from within other,
vendor-specific libraries. However, we do not include these
in our analysis as they are now obsolete.

For cryptography, Android builds on the Java Cryptography
Architecture [33] and provides a number of APIs, contained
within the java.security and javax.crypto packages, for
integrating security into applications. While it is possible
for developers to implement their own algorithms, Android
recommends against this [4]. We therefore consider only calls
to these two packages as an indication of application-layer
security.

4.3 BLECryptracer

Identification of cryptographically-processed BLE data is in
essence a taint-analysis problem. For instance, a call to an
encryption method will taint the output variable that may later
be written to a BLE device. For the purpose of this paper,
when analyzing data that is read from a BLE peripheral, we
consider the getValue variants in Table 2 as sources and the
cryptography API calls as sinks. For data that is written to
the BLE device, we consider the cryptography API calls as
sources and the setValue methods as sinks.

There are a number of tools available for performing taint-
analysis, such as Flowdroid [7] and Amandroid [40]. However,
running a subset of our dataset of APKs through Amandroid
(selected because of advantages over Flowdroid and other
taint-analysis tools [34]), we found that analysis of a single
APK sometimes utilized over I0GB of RAM and took several

hours to complete. We also found through manual analysis
that many instances of cryptographically-processed data were
not identified by Amandroid, especially when the BLE func-
tions were called from third-party libraries. We therefore
developed a custom Python analysis tool called BLECryp-
tracer, to analyze all calls to BLE setValue and getValue
methods within an APK.

BLECryptracer is developed on top of Androguard [16], an
open-source reverse-engineering tool that decompiles an An-
droid APK and enables analysis of its components. Our tool
traces values to/from BLE data access functions and deter-
mines whether the data has been cryptographically processed.
To achieve this, it employs a technique for tracing register
values which is sometimes referred to as “slicing” and which
has been utilized in several static code analyses [17,24,35].
It also traces fields, as well as messages passed via Intents’
and certain threading functions, e.g., AsyncTask. It returns
TRUE at the first instance of cryptography that it encounters
and FALSE if it is unable to identify any application-layer
security with BLE data.

Our tool analyzes BLE reads and writes separately, as the
direction of tracing is different in the two cases. It performs
three main types of tracing, in the following order:

1. Direct trace - Attempt to identify link between BLE and
cryptography functions via direct register value transfers
and as immediate results of method invocations.

2. Associated entity trace - If the direct trace does not iden-
tify a link between source and sink, analyze abstract/in-
stance methods and other registers used in previously
analyzed function calls.

3. “Lenient” trace - If the above methods fail to return a
positive result, perform a search through all previously
encountered methods (which would have originated from
the BLE data access method), to determine if cryptogra-
phy is used anywhere within them.

2By matching the Ext ra identifier within the calling method.

8 28th USENIX Security Symposium

USENIX Association

Table 3: Accuracy Statistics

Access Tool Confidence | App Set® Detected® TP FP TN FN Precision Recall F-measure
Amandroid N/A 92 49 4 5 10 33 90% 57% 70%
Read ~ High | 92 62 58 4 11 19 %% 15% 83%
BLECryptracer Medium 30 11 4 12 64% 37% 47%
Low 19 12 8 4 4 67% 67% 67%
Amandroid N/A 92 56 49 7 28 88% 64% 74%
Write High | 9 50 46 4 11 31 92% 60% 2%
BLECryptracer Medium 42 22 19 3 8 12 86% 61% 72%
Low 20 10 5 5 7 50% 42% 45%

4 Number of APKs tested. Note that, for confidence levels Medium and Low, we don’t consider the APKs detected at higher

confidence levels.

® The number of APKs that were identified as having cryptographically protected BLE data.

The first trace method will produce results that are most
likely to actually have cryptographically-processed BLE data,
as the coarse-grained analysis performed in the subsequent
methods adds increasing amounts of uncertainty. For this
reason, BLECryptracer assigns “confidence levels” of High,
Medium and Low to its output, which correspond to the three
trace methods above, to indicate how certain it is of the result.
We evaluate these confidence levels against a modified version
of the DroidBench benchmarking suite in Section 4.4.1. Note
that BLECryptracer only looks for application-layer security
in benign applications, and these confidence levels apply only
when deliberate manipulations (i.e., malicious obfuscation
techniques) are not employed to hide the data flow between
source and sink.

Appendix A describes the tracing mechanism in greater
detail, and also outlines how BLECryptracer combats the
effects of obfuscation in benign applications.

4.4 Evaluation

We evaluated BLECryptracer, in terms of both accuracy and
execution times. For comparison purposes, we have included
test results from Amandroid as well.

4.4.1 Accuracy Measures

At present, there is no dataset of real-world APKs with known
use of cryptographically-processed BLE data, i.e., ground
truth. Therefore, in order to test our tool against different
data transfer mechanisms, we re-factored the DroidBench
benchmarking suite [21] for the BLE case.

Each DroidBench test application was cloned twice and
modified so the data flow between the sources and sinks would
be from getValue to a cryptography method invocation, and
from the cryptography method invocation to setValue, to
emulate cryptographically-processed reads and writes, respec-
tively. Some DroidBench test cases were excluded as they

were found to be irrelevant due to differences in the objectives
of DroidBench and our test set, e.g., applications that employ
emulator detection or which leak contextual information in
exceptions. Further, applications where BLE data is written
to or read from files, or which contain data leaks in inactive
code segments were not included (as our aim is to determine
whether or not BLE data is cryptographically-processed). In
total, we created 184 APKs: 92 for reads and 92 for writes.

We executed BLECryptracer against our benchmarking test
set, analyzed the results and obtained performance metrics in
terms of the three different confidence levels. The statistics
differ based on the type of access that is analyzed (i.e., reads
vs. writes) due to differences in the tracing mechanisms. The
same test set was also used against Amandroid for comparison.
Table 3 presents the performance metrics for both tools.

In the case of BLECryptracer results, the metrics are with
respect to the total analyzed APKs at each confidence level.
That is, because lower confidence levels analyze only those
APKs that do not get detected at higher levels, accurate met-
rics can only be derived by considering the set of APKs that
were actually analyzed at each level. For example, when con-
sidering the analysis of BLE reads, while the entire dataset
of 92 APKs is relevant for confidence level High, only the 30
APKs that do not result in a TRUE outcome at level High will
be analyzed for confidence level Medium. This also means
that, when obtaining performance metrics for confidence level
High, all TRUE results obtained at levels Medium and Low
are taken to be FALSE.

The DroidBench test set, and hence our benchmarking suite,
is an imbalanced dataset, containing far more samples with
leaks (77) than without (15). For this reason, metrics such as
accuracy are not suitable for analyzing the performance of
our tool when executed against this test set, as they are more
susceptible to skew [23,26]. For our analysis, we compare the
combined True Positive Rate (TPR) and False Positive Rate
(FPR), and the combined precision-recall instead, in-line with

USENIX Association

28th USENIX Security Symposium 9

taint-analysis evaluations [36].

Table 3 presents the precision and recall (i.e., TPR) for
both BLECryptracer and Amandroid. We further derive FPRs
for both tools. With BLECryptracer, when analyzing reads,
False Positive Rates steadily increase as the confidence level
reduces, as expected, with values of 27% for confidence level
High, 36% for Medium and 57% for Low. When analyzing
writes, the values are 27%, 27% and 63%, respectively. Re-
gardless of the data access mechanism being tested, BLE-
Cryptracer (considering only the results at High confidence,
for a fairer comparison) performs better than Amandroid in
terms of FPR, with 27% vs. 33% for reads and 27% vs. 47%
for writes. Precision values are also better in the case of BLE-
Cryptracer for both reads and writes. In terms of the True
Positive Rate, BLECryptracer performs better than Aman-
droid for reads at 75% vs. 57%, and slightly worse for writes
at 60% vs. 64%. These results show that, overall, BLECryp-
tracer performs better than Amandroid for analyzing the use
of cryptography with BLE data.

It should be noted that three of the four False Positives
obtained by BLECryptracer at the High confidence level were
due to the order in which variables are assigned values (i.e.,
lifecycle events), which is not tested for by BLECryptracer.
Other data transfer mechanisms not tested for are Looper
and Messenger functions, which generate False Negatives.
The remaining False Positive was due to the presence of
method aliasing and was also identified as a False Positive
by Amandroid. In addition, the unexpectedly low TPR (i.e.,
recall) at level Medium for reads is due to the relatively few
cases analyzed at that level when compared to High.

4.4.2 Execution Times

We also compared BLECryptracer and Amandroid in terms of
speed of execution. For this, we ran the two tools against a ran-
dom subset of 2,000 APKs and compared time-to-completion
in both cases. We imposed a maximum run-time of 30 minutes
per APK for both tools, and only compared execution times
for those cases where Amandroid did not time out (approxi-
mately 40% of the tested APKs timed out when analyzed by
Amandroid. In comparison, fewer than 2% of APKs timed
out when analyzed by BLECryptracer).

Figure 4 plots the time taken to analyze BLE writes using
BLECryptracer vs. Amandroid. The figure shows that analysis
times with BLECryptracer were, for the most part, around 3-4
minutes per application. We observed no obvious correlation
between the size of the application’s dex file and the execu-
tion time, for either tool. APKs that took longer to process
with BLECryptracer were predominantly of confidence level
“Medium”, which indicates that the longer analysis times may
simply have been because of having to first go through the
most stringent analysis (at the highest confidence level). For
Amandroid, the execution times vary to a greater extent than
with BLECryptracer, due to the difference in the mechanisms

1,500 |- .

1,000 |- .

500 |- L . 8

BLECryptracer Execution Time (s)

.
o o e
3 . - o tonela I T e W
ol l IELEE O PR g S e S e -

| | | |
0 500 1,000 1,500

Amandroid Execution Time (s)

Figure 4: Comparison of time taken to execute BLECryptracer
vs. Amandroid, when analyzing BLE writes.

employed for performing the analysis.

4.5 Results from Large-Scale APK Analysis

We executed BLECryptracer against our dataset of 18,929
APKs. 192 APKs timed out when analyzing reads and 220
APKs timed out when analyzing writes, when a maximum
runtime of 30 minutes was imposed. These APKs were re-
tested with an increased runtime of 60 minutes. However,
even with the longer analysis time, 44 and 76 APKs timed out
for reads and writes, respectively, and had to be excluded from
further analysis. In addition, approximately 90 APKs could
not be processed via Androguard’s AnalyzeAPK method and
were excluded.

Due to the differences in performance metrics obtained
for the three confidence levels during testing (as mentioned
in Section 4.4), we focus on only those results that either
identify cryptography at confidence level High or those where
no cryptography was identified at all.

4.5.1 Presence of App-Layer Security with BLE Data

Our results show that approximately 95% of BLE-enabled
APKs call the javax.crypto and java.security cryptog-
raphy libraries somewhere within their code. While this is a
large proportion of APKs, the results also indicate that a much
smaller percentage of APKSs use cryptographically processed
data with BLE reads and writes (approximately 25% for both,
identified with High confidence). In fact, about 46% of APKs
that perform BLE reads and 54% of those that perform BLE
writes (corresponding to 2,379 million and 2,075 million cu-
mulative installations, respectively) do not implement security
for the BLE data. Interestingly, of the 16,131 APKSs that called

10 28th USENIX Security Symposium

USENIX Association

100

Reads 5,328 8,511

Writes 3,130 8,838

| | | |
0% 20 % 40 % 60 % 80% 100 %

B High C Medium [Low [1None

Figure 5: Analysis results depicting the presence of
cryptographically-processed data with BLE writes and reads,
with breakdown according to Confidence Level.

both BLE read and write functions, about 36% (i.e., more than
5,700 APKs), with a cumulative download count of 1,005 mil-
lion, do not implement application-layer security for either
type of data access. Figure 5 summarizes the proportion of
APKs that were identified as containing cryptographically
protected BLE data at the three different confidence levels.

4.5.2 Libraries vs. App-Specific Implementations

We found that many BLE-enabled APKs actually use third-
party libraries for incorporating BLE functionality. To get
an idea of exactly how many APKs relied on libraries, we
analyze all methods within an APK that called BLE data
access functions. To do this in an automated way, we compare
the method class name with the application package name. If
the first two components (e.g., com.packagename) of each
match, then we take it to be a method implemented within
the application. If the components do not match, we take it
to be a library method. If the package name uses country-
code second-level domains (e.g., uk.ac.packagename), then
we compare the third components as well.

Of the APKs that called the setvValue method, 63%
used BLE functionality solely through libraries, 32% used
application-specific methods only, while 4% used both. Fewer
than 1% of the APKs could not be analyzed due to very short
method names. Within the APKs that used both application-
specific methods and libraries, around 34% used an external
library to provide Device Firmware Update (DFU) capabili-
ties, thereby enabling the BLE peripheral to be updated via the
mobile application. Of the APKSs that utilized only application-
specific methods to incorporate BLE functionality, 67% did
not implement application-layer security with the BLE data.
This proportion was lower at 48% for applications that relied
on libraries.

In the case of the APKs that called getValue variants,

37% used only application-specific methods, 58% used only
libraries, and 5% used both. As with the setValue case, a
higher proportion of APKs that used only app-specific BLE
implementations were found to not use cryptography (60%),
when compared with those that used only libraries (39%).

Table 4 presents the ten most commonly-encountered
BLE libraries, their functionality, the number of APKs that
use them, and the presence of cryptographically-processed
BLE data within the library itself. The table shows that
the most prevalent third-party packages are libraries that
enable communication with BLE beacons. In fact, a single
such library (Estimote) made up more than 90% of all in-
stances of cryptographically-processed BLE writes and 85%
of cryptographically-processed BLE reads (identified with
High confidence). An analysis of this library suggested that
cryptography is being used to authenticate requests when
modifying settings on the beacon.

Apart from beacon libraries, we identified five libraries
that function as wrappers for the Android BLE API. For
example, Polidea wraps the API so that it adheres to the
reactive programming paradigm. The libraries Randdusing,
Megster and Evothings enable the use of BLE via JavaScript
in Cordova-based applications. Similarly, Chromium enables
websites to access BLE devices via JavaScript calls. None
of these libraries handle cryptographically-processed BLE
data. It is expected that developers using these libraries will
implement their own application-layer security (using either
JavaScript or reactive Java as appropriate).

Of the two remaining libraries, Flic, which uses
cryptographically-processed data, is a library offered by a
BLE device manufacturer. This library allows third-party
developers to integrate their services into the Flic ecosystem,
to allow them to automate certain tasks.

Finally, Nordicsemi is a library provided by a BLE chipset
manufacturer to enable DFU over the BLE interface. With the
newest version of the DFU mechanism, the BLE peripheral
verifies that the firmware has been properly signed. Devices
using the legacy DFU mechanism will not verify the firmware.
However, the mobile application (and by extension, the li-
brary) does not need to handle cryptographically-processed
data in either case.

4.5.3 Cryptographic Correctness

BLECryptracer identified 3,228 unique packages with crypto-
graphically protected BLE data (with either reads or writes),
with High confidence. However, the presence of crypto-
libraries does not in itself indicate a secure system. We there-
fore further analyzed this subset of APKs to identify whether
cryptography had been used correctly in them. The tool Cog-
niCrypt [29] was utilized for this purpose. Although this tool
does not formally verify the cryptographic protocol between
the application and the BLE peripheral, it identifies various
misuses of the Java crypto/security libraries.

USENIX Association

28th USENIX Security Symposium 11

Table 4: Top Ten Third-Party BLE Libraries

Table 5: Number of Packages with Cryptographic Misuse

Library Function #APKs[unique] Crypto Misuse Type? #Unique Packages
Estimote Beacon 3980[2804] Yes ECB (or other bad mode) 10
Nordicsemi® DFU 1238[847] No Non-random key 6

Kontakt Beacon 1108[690] No Non-random IV 10
Chromium Web BLE 402[269] No Bad IV used with Cipher 7
Randdusing Cordova Plugin 268[188] No Bad key used with Cipher 11
Megster Cordova Plugin 317[187] No Incomplete operation (dead code) 4

Flic BLE Accessory 173[164] Yes A Description of misuse based on [17,30].

Polidea BLE Wrapper 138[114] No

Evothings Cordova Plugin 142[84] No This analysis shows that several real-world applications
Jaalee Beacon 102[79] No

4 Significant overlap present between Estimote and Nordic due
to repackaging of the Nordic SDK into Estimote.

Among the 3,228 unique packages, we found that there
was significant overlap between APKs in terms of the BLE
libraries or functions® used. Removing such duplicates re-
sulted in a set of 194 APKs. Of these, 68 were identified by
CogniCrypt as having issues. However, because CogniCrypt
identifies cryptography misuse within the entire APK, the re-
sults were filtered for BLE-specific functions. 24 APKs were
found to have issues within or associated with the methods
that cryptographically processed BLE data (as identified by
BLECryptracer) and often, a single APK exhibited multiple
issues. Table 5 shows the different types of misuse encoun-
tered and the number of unique packages that were identified
as having such misuse. Note that because this analysis was
performed over unique packages, the number of APKs that
misuse crypto-libraries will be higher.

We manually analyzed the 24 APKs that were flagged by
CogniCrypt as having BLE-relevant issues, and examined
the identified instances of bad cipher modes and hardcoded
keys/Initialization Vectors (IVs). With regard to insecure
block cipher modes, we found that explicit use of ECB was
prevalent (9 out of 10 cases), but there was also one case
where Cipher.getInstance ("AES") was used without the
mode being specified, which may default to ECB depending
on the cryptographic provider. When analyzing keys, we ob-
served that several applications directly contained hardcoded
keys as byte arrays or strings. Three applications retrieved
keys from JSON files. In two cases, keys were generated from
the ANDROID_ID, which is a system setting that is readable by
all applications. We also observed one instance where a key
was obtained from a server via HTTP (not HTTPS).

3There are instances where two applications may have unique package
names, but which actually incorporate much the same functionality. This is
often the case when the same developer produces branded variants of an appli-
cation for different clients in a single industry. For example, two applications
could have unique package names com.myapp.appl and com.myapp.app2,
but their functionality may be derived from a common codebase com.myapp.

contain basic mistakes in their use of crypto-libraries and
handling of sensitive data, which means that the BLE data
will not be secure despite the use of cryptography.

4.5.4 Trends over Time

Figure 6 shows the trend of application-layer security over
time for applications that incorporate calls to BLE reads or
writes. The graph depicts the percentage of applications that
do not have cryptographic protection for either type of access.
The overall downward trend suggests that there has been some
improvement in application-layer security between the years
2014 and 2017 (we refrain from making observations about
APKs from 2013 as they were very few in number, and about
APKs from 2018 as the dataset is not yet fully populated for
this year). However, it should be noted that, even in 2017,
which had the smallest percentage of APKs without cryptog-
raphy, these APKs corresponded to 128 million downloads,
which is a significant number.

4.5.5 Application-Layer Security by Category

The percentage of applications that use cryptographically
processed data from each major application category has been
graphed in Figure 7. While it would be reasonable to expect
that most “Medical” applications would implement some level
of application-layer security, the results show that fewer than
30% of applications under this category actually have such
protection mechanisms. However, it is possible that the reason
for this is that the devices implement the standard Bluetooth
SIG adopted profiles, which do not mandate any security
apart from pairing, as mentioned in Section 3.3. In fact, of the
APKs categorized under “Medical” and with no cryptographic
protection for either reads or writes, we found that three of
the top ten (in terms of installations) contained identifiers for
the standard Bluetooth Glucose Service.

Perhaps surprisingly, APKs that are categorized under
“Business”, “Shopping” and “Travel & Local” appear to be
the most likely to incorporate application-layer security, with
around 50% of all such applications being identified as having

12 28th USENIX Security Symposium

USENIX Association

100 |- —
>
=
&
5
2 80 N
2
O
]
=
=
= 60 |- N
o
A
<
7 l l l %

2013 2014 2015 2016 2017 2018
Year

Figure 6: Application-layer security trends over time. Notes:
Graph depicts APKs that perform BLE reads or writes, and
have no cryptographic protection for either. APKs with dates
that are invalid [39] or older than 2012 (when native BLE
support was introduced for Android) have not been included.

cryptographically processed BLE data with High confidence.
However, in over 85% of such occurrences, this was found to
be due to the Estimote beacon library.

4.5.6 Impact Analysis

While 18,929 BLE-enabled applications may seem like a rel-
atively small number of applications when compared with
the initial dataset of 4.6 million+, a single application may
correspond to multiple BLE devices, sometimes even millions
of devices as is the case with fitness trackers [25]. For exam-
ple, even if we consider the slightly restrictive case of unique
applications that do not use cryptography with either reads or
writes, the cumulative install count is still in excess of 1,005
million. This shows that the attack surface is much larger than
may be indicated by the number of APKs.

It is of course a possibility that the data that is read from
a BLE peripheral has no impact on user security or privacy
(e.g., device battery levels). Understanding the data within
APKSs would require a more complex static analysis and is
left as future work.

4.6 Case Study: Firmware Update over BLE

When analyzing our results, we found that one of the APKs
that was identified as not having application-layer security
was designed for use with a fitness tracker from our test device
set. The tracker is a low-cost model that, based on the install
count on Google Play (1,000,000+), appears to be widely
used. An analysis of the APK suggested that the device used
the Nordic BLE chipset, which could be put into the Legacy

100
- B High
[Medium
80 - 1 [Low

40 |-

20

% APKs with Cryptographically Processed Data
3
]
[
1

L O L BB I XRE QO EME S E QM
2 86885585288 22EE¢g2
g2 23868 3% ESEeE 55 EZESRE
Sz 5L aSzs &g SRS TS SEEAS2O
=9 2 %) D < O &g O O E S =
= - S SEE Ly

S a S B85S E £ >3

5 — 3 = mw.g =1 = ©

= 3L 89 Z E KB <e

= =& 27 g

e ET 33 % B g

: £ 8% % 3 3

T & <

Category

Figure 7: Presence of application-layer security in differ-
ent categories of applications, averaged over BLE reads and
writes, and broken down by confidence level. Only unique
packages have been taken into consideration. APKs that do
not currently have a presence on Google Play have been ex-
cluded, as their category cannot be identified.

DFU mode, which does not require the firmware to be signed.
To exploit this, we developed an APK that, in accordance with
the attacks described in Section 3.1, connects to the device,
sends commands to place it in DFU mode, and then writes a
new modified firmware to the device without user intervention.
The updated firmware in this case was a simple, innocuous
modification of the original firmware. However, given that
the device can be configured to receive notifications from
other applications, a malicious firmware could be developed
in such a way that, for example, all notifications (including
second-factor authentication SMS messages or end-to-end
encrypted messages) are routed to the malicious application
that installed the firmware.

This attack was possible because the BLE peripheral did
not verify the firmware (e.g., via digital signatures) nor the
source application (via application-layer security). We have
informed the application developer of the issue (02 Nov 2018),
but have received no response as of the date of submission of
this manuscript (18 May 2019).

While our attack was crafted for a specific device, it does
demonstrate that attacks against these types of devices are rel-
atively easy. An attacker could easily embed several firmware
images within a single mobile application, to target a range
of vulnerable devices.

USENIX Association

28th USENIX Security Symposium 13

4.7 Limitations

In this section, we outline some limitations, either in our script
or due to the inherent nature of our experiments, that may have
impacted our results.

4.7.1 Unhandled Data Transfer Mechanisms

As mentioned in Section 4.4, BLECryptracer does not analyze
data that is written out to file (including shared preferences),
or communicated out to a different application, because it is
not straightforward (and many times, not possible) to deter-
mine how data will be handled once it has been transferred out
of the application under analysis. It is also possible that an ap-
plication obtains the data to be written to a BLE device from,
or forwards the data read from a BLE device to, another entity,
such as a remote server. That is, the Android application could
merely act as a “shuttle” for the data, which means that an
analysis of the APK would not show evidence of usage of
cryptography libraries. However, the transfer of data to/from
a remote server does not in itself indicate cryptographically-
processed data, as plain-text values can also be transmitted in
the same manner. We therefore do not analyze instances of
data transfers to external entities.

BLECryptracer also does not handle data transfers between
a source and sink when only one of them is processed within
an Looper function or when the data is transmitted via mes-
sages. However, when we logged instances of where such
functions were called during a trace, we found that of the
APKs that utilized such data transfer mechanisms, a large
percentage were identified as having cryptographic protection
via other data flows. In fact, of the 8,834 APKs where cryp-
tography was not identified with BLE writes, only 501 APKs
interacted with Looper or Messenger, and an even smaller
percentage of APKs were affected for BLE reads.

4.7.2 Conditional Statements with Backtracing

When backtracing a register, BLECryptracer stops when it
encounters a constant value assignment. However, it is pos-
sible that this value assignment occurs within one branch of
a conditional jump, which means that another possible value
could be contained within another branch further up the in-
struction list. To identify this, the script would have to first
trace forward within the instruction list, identify all possible
conditional jumps, and then trace back from the register of
interest for all branches. This would need to be performed
for every method that is analyzed and could result in a much
longer processing time per APK file, as well as potentially
unnecessary overheads.

5 Related Work

User privacy has received particular attention in the BLE re-
search community because several widely-used BLE devices,

such as fitness trackers and continuous glucose monitors, are
intended to always be on the user’s person, thereby potentially
leaking information about the user’s whereabouts at all times.
Some of the research has focused on the threats to privacy
based on user location tracking [15, 19], while others explored
the possibility of obtaining personal user data from fitness
applications or devices [14,28].

While our research is concerned with data access and user
privacy, we focus more on the impact on privacy and security
due to how the BLE standard has been implemented in mobile
device architectures, as well as how it is applied by applica-
tion developers in general, rather than due to individual BLE
firmware design.

The work that is most closely related to ours is the re-
search by Naveed, et al., which explored the implications of
shared communication channels on Android devices [31]. In
their paper, the authors discussed the issue of Classic Blue-
tooth and NFC channels being shared by multiple applications
on the same device. They then demonstrated unauthorized
data access attacks against (Classic) Bluetooth-enabled med-
ical devices. The authors also performed an analysis of 68
Bluetooth-enabled applications that handled private user data,
and concluded that the majority of them offered no protection
against this attack. Finally, they proposed an operating-system
level control for mitigating the attack.

Our work specifically targets pairing-protected character-
istics on BLE devices, because BLE appears to slowly be
replacing Classic Bluetooth in the personal health and home
security domains. We demonstrate that the BLE data format
and access mechanisms enable even easier attacks than in the
case of Classic Bluetooth. Further, we identify the impact that
the new Android permissions model (introduced in Android
v6) has had on the user experience and on malicious appli-
cations’ capabilities. We also perform a much larger-scale
analysis over 18,900+ Android applications, to determine how
prevalent application-layer security is among BLE-enabled
applications.

6 Conclusions

In this paper, we analyze the risks posed to data on Bluetooth
Low Energy devices from co-located Android applications.
We show the conditions under which an unauthorized An-
droid application would be able to access potentially sensi-
tive, pairing-protected data from a BLE peripheral, once a
co-located authorized application has paired and bonded with
a BLE peripheral, without the user being aware of the access.
We also show that, in some cases, an unauthorized application
may be able to access such protected data with fewer permis-
sions required of it than would be required of an authorized
application. We then discuss mitigation strategies in terms of
the different stakeholders in the BLE ecosystem.

We present BLECryptracer, an analysis tool for determin-
ing the presence of application-layer security with BLE data.

14 28th USENIX Security Symposium

USENIX Association

We evaluate it against the taint-analysis tool Amandroid, and
present the results from executing BLECryptracer against
18,929 BLE-enabled Android APKs. Our results suggest that
over 45% of all applications, and about 70% of “Medical” ap-
plications, do not implement cryptography-based application-
layer security for BLE data. We also found, among the ap-
plications that do use cryptographically processed BLE data,
several instances of cryptography misuse, such as the use of
insecure cipher modes and hard-coded key values. We believe
that, if this situation does not change, then as more and more
sensitive use cases are proposed for BLE, the amount of pri-
vate or critical data that may be vulnerable to unauthorized
access can only increase. We hope that our work increases
awareness of this issue and prompts changes by application
developers and operating system vendors, to lead to improved
protection for BLE data.

7 Availability

The code for our BLECryptracer tool is available at
https://github.com/projectbtle/BLECryptracer

This repository also contains the SHA256 hashes of the APKs
in our dataset, and the source/sink files used for the Aman-
droid analysis. In addition, it contains source code for the
benchmarking applications, as well as a comprehensive break-
down of the results per DroidBench category.

8 Acknowledgements

This research has been partially sponsored by the Engineering
and Physical Sciences Research Council (EPSRC) and the
UK government as part of the Centre for Doctoral Training
in Cyber Security at Royal Holloway, University of London
(EP/P009301/1).

References

[1] ALLiX, K., BISSYANDE, T. F., KLEIN, J., AND
LE TRAON, Y. Androzoo: Collecting millions of An-
droid apps for the research community. In Proceedings
of the 13th International Conference on Mining Soft-
ware Repositories (2016), ACM, pp. 468-471.

[2] ANDROID. Distribution dashboard. [Online]. Avail-
able: https://developer.android.com/about/
dashboards/. [Accessed: 06 Aug 2018].

[3] ANDROID. Bluetooth Low Energy overview, Apr 2018.
[Online]. Available: https://developer.android.
com/guide/topics/connectivity/bluetooth-1le.
[Accessed: 18 July 2018].

[4] ANDROID. Security tips, June 2018. [Online]. Avail-
able: https://developer.android.com/training/
articles/security-tips. [Accessed: 18 July 2018].

[5] ANDROID. Security updates and resources, 2018.
[Online]. Available: https://source.android.
com/security/overview/updates-resources#
severity. [Accessed: 18 May 2019].

[6] ARM LtD. Firmware Over the Air, 2016. [On-
line]. Available: https://docs.mbed.com/docs/
ble-intros/en/master/Advanced/FOTA/. [Ac-
cessed: 21 July 2018].

[71 ARzT, S., RASTHOFER, S., FriTZ, C., BODDEN, E.,
BARTEL, A., KLEIN, J., LE TRAON, Y., OCTEAU, D.,
AND MCDANIEL, P. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis
for Android apps. Acm Sigplan Notices 49, 6 (2014),
259-269.

[8] BISIO, 1., SCIARRONE, A., AND ZAPPATORE, S. A new
asset tracking architecture integrating RFID, Bluetooth
Low Energy tags and ad hoc smartphone applications.
Pervasive and Mobile Computing 31 (2016), 79-93.

[9] BLUETOOTH SPECIAL INTEREST GROUP. Heart Rate
Profile: Bluetooth profile specification v1.0, 07 2011.

[10] BLUETOOTH SPECIAL INTEREST GROUP. Continuous
Glucose Monitoring Profile: Bluetooth profile specifica-
tion v1.0.1, 12 2015.

[11] BLUETOOTH SPECIAL INTEREST GROUP. Bluetooth
core specification v5.0, 12 2016.

[12] BLUETOOTH SPECIAL INTEREST GROUP. Bluetooth
mesh networking / an introduction for developers, 2017.

[13] BRONzI, W., FRANK, R., CASTIGNANI, G., AND EN-
GEL, T. Bluetooth Low Energy performance and robust-
ness analysis for inter-vehicular communications. Ad
Hoc Netw. 37, P1 (Feb 2016), 76-86.

[14] CYR, B., HORN, W., MIAO, D., AND SPECTER, M.
Security analysis of wearable fitness devices (Fitbit).
Massachusetts Institute of Technology (2014).

[15] DAs, A. K., PATHAK, P. H., CHUAH, C.-N., AND MoO-
HAPATRA, P. Uncovering privacy leakage in BLE net-
work traffic of wearable fitness trackers. In Proceedings
of the 17th International Workshop on Mobile Comput-
ing Systems and Applications (2016), ACM, pp. 99-104.

[16] DESNOS, A., ET AL. Androguard: Reverse engineer-
ing, malware and goodware analysis of Android appli-
cations ... and more (ninja !). https://github.com/
androguard/androguard.

USENIX Association

28th USENIX Security Symposium 15

https://github.com/projectbtle/BLECryptracer
https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/guide/topics/connectivity/bluetooth-le
https://developer.android.com/training/articles/security-tips
https://developer.android.com/training/articles/security-tips
https://source.android.com/security/overview/updates-resources#severity
https://source.android.com/security/overview/updates-resources#severity
https://source.android.com/security/overview/updates-resources#severity
https://docs.mbed.com/docs/ble-intros/en/master/Advanced/FOTA/
https://docs.mbed.com/docs/ble-intros/en/master/Advanced/FOTA/
https://github.com/androguard/androguard
https://github.com/androguard/androguard

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

EGELE, M., BRUMLEY, D., FRATANTONIO, Y., AND
KRUEGEL, C. An empirical study of cryptographic mis-
use in Android applications. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communica-
tions security (2013), ACM, pp. 73-84.

ELKHODR, M., SHAHRESTANI, S., AND CHEUNG,
H. Emerging wireless technologies in the Internet of
Things: A comparative study. International Journal of
Wireless & Mobile Networks (IJWMN) 8, 5 (Oct 2016),
67-82.

Fawaz, K., KiM, K.-H., AND SHIN, K. G. Protect-
ing privacy of BLE device users. In USENIX Security
Symposium (2016), pp. 1205-1221.

FIDO ALLIANCE. FIDO Bluetooth Specification
v1.0, 2017. https://fidoalliance.org/specs/
fido-u2f-bt-protocol-1d-20150514.pdf.

FriTZ, C., ARZT, S., AND RASTHOFER, S. Droid-
bench: A micro-benchmark suite to assess the stability
of taint-analysis tools for Android. https://github.
com/secure-software-engineering/DroidBench.

GOMEZ, C., OLLER, J., AND PARADELLS, J. Overview
and evaluation of Bluetooth Low Energy: An emerging

low-power wireless technology. Sensors (Basel, Switzer-
land) 12,9 (2012), 11734-11753.

Guo, X., YIN, Y., DONG, C., YANG, G., AND ZHOU,
G. On the class imbalance problem. In Natural Compu-
tation, 2008. ICNC’08. Fourth International Conference
on (2008), vol. 4, IEEE, pp. 192-201.

HOFFMANN, J., USSATH, M., HOLZ, T., AND SPRE-
ITZENBARTH, M. Slicing Droids: Program slicing
for smali code. In Proceedings of the 28th Annual
ACM Symposium on Applied Computing (2013), ACM,
pp. 1844-1851.

IDC. Worldwide wearables market grows 7.3% in Q3
2017 as smart wearables rise and basic wearables de-
cline, says IDC. [Online]. Available: https://github.
com/secure-software-engineering/DroidBench

[Accessed 16-Feb-2017].

JENI, L. A., CoHN, J. F., AND DE LA TORRE, F. Fac-
ing imbalanced data—recommendations for the use of
performance metrics. In Affective Computing and In-
telligent Interaction (ACII), 2013 Humaine Association
Conference on (2013), IEEE, pp. 245-251.

KARANI, R., DHOTE, S., KHANDURI, N., SRINI-
VASAN, A., SAWANT, R., GORE, G., AND JOSHI, J.
Implementation and design issues for using Bluetooth
Low Energy in passive keyless entry systems. In In-
dia Conference (INDICON), 2016 IEEE Annual (2016),
IEEE, pp. 1-6.

(28]

[29]

(30]

(31]

(32]

(33]

[34]

(35]

(36]

KOROLOVA, A., AND SHARMA, V. Cross-app tracking
via nearby Bluetooth Low Energy devices. In Privacy-
Con 2017 (2017), Federal Trade Commission.

KRUGER, S., NADI, S., REIF, M., ALI, K., MEZINI,
M., BODDEN, E., GOPFERT, F., GONTHER, F., WEIN-
ERT, C., DEMMLER, D., ET AL. CogniCrypt: support-
ing developers in using cryptography. In Proceedings
of the 32nd IEEE/ACM International Conference on
Automated Software Engineering (2017), IEEE Press,
pp. 931-936.

KRUGER, S., SPATH, J., ET AL. CogniCrypt_SAST:
CrySL-to-static analysis compiler. https://github.
com/CROSSINGTUD/CryptoAnalysis/.

NAVEED, M., ZHOU, X., DEMETRIOU, S., WANG, X.,
AND GUNTER, C. A. Inside job: Understanding and
mitigating the threat of external device mis-binding on
Android. In 215t Annual Network and Distributed Sys-
tem Security Symposium, NDSS 2014, San Diego, Cali-
fornia, USA, February 23-26, 2014 (2014).

NORDIC SEMICONDUCTOR. BLE on An-
droid v1.0.1. [Online]. Available: https:
//devzone.nordicsemi.com/attachment/
bdd561££56924e10ea78057091c5¢c642. [Accessed:
05 Feb 2018].

ORACLE. Java Cryptography Architecture (JCA)
Reference Guide. [Online]. Available: https:
//docs.oracle.com/javase/8/docs/technotes/
guides/security/crypto/CryptoSpec.html.
[Accessed: 18 July 2018].

PAUCK, F., BODDEN, E., AND WEHRHEIM, H. Do
Android taint analysis tools keep their promises? In
Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering
(New York, NY, USA, 2018), ESEC/FSE 2018, ACM,
pp- 331-341.

POEPLAU, S., FRATANTONIO, Y., BIANCHI, A.,
KRUEGEL, C., AND VIGNA, G. Execute this! Ana-
lyzing Unsafe and malicious dynamic code loading
in Android applications. In NDSS (2014), vol. 14,
pp- 23-26.

QIu, L., WANG, Y., AND RUBIN, J. Analyzing the an-
alyzers: FlowDroid/IccTA, AmanDroid, and DroidSafe.
In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis (2018),
ACM, pp. 176-186.

16

28th USENIX Security Symposium

USENIX Association

https://fidoalliance.org/specs/fido-u2f-bt-protocol-id-20150514.pdf
https://fidoalliance.org/specs/fido-u2f-bt-protocol-id-20150514.pdf
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
https://github.com/CROSSINGTUD/CryptoAnalysis/
https://github.com/CROSSINGTUD/CryptoAnalysis/
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://devzone.nordicsemi.com/attachment/bdd561ff56924e10ea78057b91c5c642
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/security/crypto/CryptoSpec.html

[37] RYAN, M. Bluetooth: With low energy comes low se-
curity. In 7th USENIX Workshop on Offensive Tech-
nologies, WOOT ’13, Washington, D.C., USA, August
13, 2013 (2013).

[38] SILvA, B. N., KHAN, M., AND HAN, K. Internet of
Things: A comprehensive review of enabling technolo-
gies, architecture, and challenges. IETE Technical Re-
view 35,2 (2018), 205-220.

[39] UNIVERSITE DU LUXEMBOURG. Lists of APKs. [On-
line]. Available: https://androzoo.uni.lu/lists.
[Accessed: 12 Nov 2018].

[40] WEL F.,RoY, S., OU, X.,ET AL. Amandroid: A precise
and general inter-component data flow analysis frame-
work for security vetting of Android apps. In Proceed-
ings of the 2014 ACM SIGSAC Conference on Computer
and Communications Security (2014), ACM, pp. 1329—
1341.

Appendix A: BLECryptracer Logic

We describe here the basic tracing mechanism employed
by BLECryptracer in order to identify the presence of
application-layer security for BLE data.

Backtracing BLE writes

BLE writes use one of the setValue methods in Table 2
to first set the value that is to be written, before calling the
method for performing the actual write. BLECryptracer iden-
tifies all calls to these methods, and then traces the origins of
the data held in the registers that are passed as input to the
methods.

Considering the smali* code in Figure 8 as an example,
setValue is invoked at Line 13 and is passed two registers as
input. As setValue is an instance method, the first input, lo-
cal register v3, holds the BluetoothGattCharacteristic
object that the method is invoked on. The second input, pa-
rameter register p2, holds the data that is to be written to
the BLE device, and is the second argument that is passed
to the method a (Line 1). BLECryptracer identifies p2 as the
register that holds the data of interest, and traces backward
to determine if this data is the result of some cryptographic
processing. To achieve this, the method(s) within the APK
that invoke method a are identified, and the second input to
each such method is traced. If the BLE data had come from a
local register, rather than a parameter register, BLECryptracer
would trace back within method a’s instructions, to deter-
mine the origin of the data. This backtracing is performed
until either a crypto-library is referenced, or a const-<> or

4 Android applications are typically written in Java and converted into
Dalvik bytecode. The smali format can be considered an “intermediate” step
between the high-level Java source and the bytecode.

1 .method private
a (Landroid/bluetooth/BluetoothGatt; [B...)V

2 .locals 10

3

4 .prologue

5 const/4 v9, 0x2

6 const/4 v8, 0x3

7 const/4 v7, 0x1

8 .

9 invoke-virtual {v0, v3},

Landroid/bluetooth/BluetoothGattService; ->
getCharacteristic(Ljava/util/UUID;)
Landroid/bluetooth/BluetoothGattCharacteristic;

11 move-result-object v3

13 invoke-virtual {v3, p2},
Landroid/bluetooth/BluetoothGattCharacteristic;
->setValue ([B)Z

14 invoke-virtual {vl, v3},

Landroid/bluetooth/BluetoothGatt;

->writeCharacteristic(Landroid/bluetooth/

BluetoothGattCharacteristic;)z

Figure 8: Sample smali code for BLE attribute write.

new-array declaration is encountered (which would indicate
that no cryptography is used). Note that calls to any method
within the crypto-libraries mentioned in Section 4.2 are ac-
cepted as evidence of the use of cryptography with BLE data.
The tool stops processing an APK at the first instance where
such a method call is identified.

During execution, the BLECryptracer maintains a list of
registers (set within the context of a method) to be traced,
for each setValue method call within the application code.
This initially contains a single entry, which is the input to
the setValue method. A new register is added to the list if it
appears to have tainted the value of any of the registers already
in the list. This could be due to simple operations such as
aget, aput or move-<> (apart from move-result variants),
or it could be as a result of a comparison, arithmetic or logic
operation (in which case, the register holding the operand
on which the operation is performed is added to the trace
list). Similarly, if a register obtains a value from an instance
field (via sget or iget), then all instances where that field is
assigned a value are analyzed. However, the script does not
analyze the order in which the field is assigned values, as this
would require activity life-cycle awareness.

Where a register is assigned a value that is output from a
method invocation via move-result, if the method is not an
external method, then the instructions within that method are
analysed, beginning with the return value and tracing back-
wards. In some instances, the actual source of a register’s
value is obfuscated due to the use of intermediate formatting
functions. In an attempt to overcome this, BLECryptracer
traces the inputs to called methods as well. Further, if a regis-
ter is used as input to a method, then all other registers that are

USENIX Association

28th USENIX Security Symposium 17

https://androzoo.uni.lu/lists

1 .method public onCharacteristicread(Landroid/bluetooth/
BluetoothGatt;Landroid/bluetooth/
BluetoothGattCharacteristic; I)V

3 invoke-virtual {p2}, Landroid/bluetooth/
BluetoothGattCharacteristic;->getValue () [B

4 move-result-object v0

5 new-instance v2, Ljava/lang/StringBuilder;

6 invoke-direct {v2},
Ljava/lang/StringBuilder;-><init>()V

7 const-string v3, "read value: "

8 invoke-virtual {v2, v3},

Ljava/lang/StringBuilder; ->append (Ljava/lang/
String;)Ljava/lang/StringBuilder;

9 move-result-object v2

10 invoke-static {v0},
Ljava/util/Arrays;->toString([B)Ljava/lang/ String;

1 move-result-object v3

12 invoke-virtual {v2, v3},
Ljava/lang/StringBuilder; ->append (Ljava/lang/
String;)Ljava/lang/StringBuilder;

13 move-result-object v2

Figure 9: Sample smali code for BLE attribute read.

inputs to the method are also added to the trace list. While this
captures some indirect value assignments, it runs the risk of
false positives. For this reason, we have included the concept
of Confidence Levels for the code output.

If, for an APK, the input to the setValue method can be
backtraced to cryptography directly, via only register value
transfers and as immediate results of method invocations, then
a confidence level of “High” is assigned to the result. If a reg-
ister cannot be traced back directly to a cryptographic output,
but if an indirect trace identifies the use of a cryptography
library, then a confidence level of “Medium” is assigned. Fi-
nally, in the event that no cryptography use is identified at
High or Medium confidence levels, the script performs a less
stringent search through all the instructions of the methods
that it previously analyzed. This risks including instances
of cryptography use with functions unrelated to BLE and is
therefore assigned a “Low” confidence level.

Forward-tracing BLE reads

With BLE reads, a getValue variant is invoked and the output,
i.e., the value that is read, is moved to a register. To trace this
value, BLECryptracer identifies all calls to getValue variants,
then traces the output registers and all registers they taint
until either a crypto-library is referenced or the register value
changes. Such value changes can occur due to new-array,
new-instance and const declarations, as well as by being

assigned the output of various operations (such as method
invocations or arithmetic/logic operations).

With forward-tracing, the register holding the BLE data is
considered to taint another if, for example, the source register
is used in a method invocation, or comparison/arithmetic/logic
operation, whose result is assigned to the destination register.
The destination register is then added to the trace list. When
a register is used as input to a method, then along with the
output of that method, the use of the register within the method
is also analyzed.

This method of analysis tends to result in a “tree” of traces.
As an example, considering the smali code in Figure 9, the
byte array output from the BLE read is stored in register
v0 (Line 4). This taints register v3 via a format conversion
function (Lines 10 and 11), which in turn taints v2 via a
java.lang.StringBuilder function (Lines 12 and 13). At
this point, all three registers are tainted and will be traced
until their values change.

The forward-tracing mode also assigns one of three
confidence levels to its output. “High” is assigned when
cryptographically-processed data is identified via the tracing
mechanism above; “Medium” is when the use of cryptogra-
phy is identified by tracing classes that implement interfaces.
“Low” is assigned when a less stringent search through all
encountered methods results in identification of a reference
to a cryptography library (similar to the backtracing case).

Handling obfuscation

APKSs sometimes employ obfuscation techniques to protect
against reverse-engineering, and the question then arises as
to whether these techniques may impact the results of our
analysis. We therefore briefly discuss different obfuscation
techniques and why they do not impact our tool.

One of the most common techniques is identifier renam-
ing, where identifiers within the code are replaced with short,
meaningless names. However, because Androguard operates
on smali (rather than Java) code, BLECryptracer is able to
overcome the challenges posed by this technique. String en-
cryption is another obfuscation mechanism, but it again does
not affect the output of our tool as BLECryptracer does not
search for hard-coded strings. Further, our tool was verified
successfully against three out of four benchmarking applica-
tions that utilized reflection. The most complex obfuscation
techniques are packing and runtime-based obfuscation, but
these are typically employed by malware. Because we are
looking for vulnerable (not malicious) applications, we do not
consider these techniques. Therefore, in general, we believe
our analysis to be unaffected by most benign obfuscation
mechanisms.

18 28th USENIX Security Symposium

USENIX Association

The CrossPath Attack: Disrupting the SDN Control Channel via Shared Links

Jiahao Cao!?, Qi Li>?, Renjie Xie!?, Kun Sun*, Guofei Gu>,
Mingwei Xu', and Yuan Yang!~?

' Department of Computer Science and Technology, Tsinghua University
2Beijing National Research Center for Information Science and Technology, Tsinghua University
3Institute for Network Sciences and Cyberspace, Tsinghua University
*Department of Information Sciences and Technology, George Mason University
SSUCCESS LAB, Texas A&M University

Abstract

Software-Defined Networking (SDN) enables network inno-
vations with a centralized controller controlling the whole
network through the control channel. Because the control
channel delivers all network control traffic, its security and
reliability are of great importance. For the first time in the
literature, we propose the CrossPath attack that disrupts the
SDN control channel by exploiting the shared links in paths
of control traffic and data traffic. In this attack, crafted data
traffic can implicitly disrupt the forwarding of control traffic
in the shared links. As the data traffic does not enter the con-
trol channel, the attack is stealthy and cannot be easily per-
ceived by the controller. In order to identify the target paths
containing the shared links to attack, we develop a novel
technique called adversarial path reconnaissance. Both the-
oretic analysis and experimental results demonstrate its fea-
sibility and efficiency of identifying the target paths. We
systematically study the impacts of the attack on various net-
work applications in a real SDN testbed. Experiments show
the attack significantly degrades the performance of exist-
ing network applications and causes serious network anoma-
lies, e.g., routing blackhole, flow table resetting, and even
network-wide DoS.

1 Introduction

Software-Defined Networking (SDN) becomes increasingly
popular and is being widely deployed in data centers [32],
cloud networks [13], and wide area networks [11]. In SDN,
the control plane and data plane are decoupled. A logically
centralized controller communicates with SDN switches to
exchange control messages, e.g., routing decisions, via the
control channel built upon a southbound protocol, e.g.,
OpenFlow [47]. SDN enables diversified packet processing
and drives network innovation. A large number of network
services and applications [26, 40, 33] benefit from it.
Unfortunately, the SDN control channel between the con-
trol plane and data plane is not well protected and can be

exploited though the confidentiality and integrity of the com-
munication over the channel are protected by the TLS/SSL
protocol. We find that the control channel is under the risk
of the Denial-of-Service (DoS) attack. In particular, a small
portion of traffic may tear down the communication over
the control channel. Existing studies focus on many secu-
rity aspects of SDN, including malicious or buggy applica-
tions [63, 48], attacks on crashing controllers [60, 49, 65], at-
tacks on disrupting switches [22, 51], and information leak-
age in SDN [25, 56, 19, 45] , but the security of the SDN
control channel is still an open problem.

In this paper, we propose a novel attack named CrossPath
Attack, which disrupts the SDN control channel by exploit-
ing the shared links between paths of control traffic and data
traffic. Our attack is stealthy and cannot be easily perceived
by the controller since it does not directly send a large vol-
ume of control traffic to the controller. Instead, it generates
well-crafted data traffic in the shared links to implicitly in-
terfere with the delivery of the control traffic while the data
traffic does not reach the controller. Thereby, real-time con-
trol messages delivered between the SDN controller and the
switches are significantly delayed or dropped. In particular,
since the controller performs centralized control over all net-
work switches via the control channel, an attacker can easily
break down all network functionalities enabled by various
SDN applications running on the controller. The root cause
of the vulnerability is the side effect incurred by shared links
between paths of control traffic and data traffic in SDN. Such
link sharing is a common practice in SDN with in-band con-
trol [21, 65], which can greatly reduce the cost of building
a dedicated control network and simplify network mainte-
nance, especially for large networks. However, it also opens
the door for an attacker to disrupt the control channel by
sending malicious data traffic to the shared links.

It is challenging to construct the attack in real networks.
Unlike traditional IP networks where almost all links deliver
both control traffic (e.g., OSPF or BGP updates [1, 2]) and
data traffic at the same time, only a few number of links for-
ward control traffic in SDN. For instance, an SDN network

USENIX Association

28th USENIX Security Symposium 19

with m switches can have O(m?) links. However, there may
be m links forming a spanning tree connecting m switches
with a controller to deliver the control traffic. Thus, an at-
tacker needs to find a target path that contains the shared
links between control and data traffic to send the attack traf-
fic. However, it is difficult to know since the network topol-
ogy and the routing information are invisible to end users.
Moreover, none of the information can be inferred by scan-
ning tools used in traditional IP networks due to different for-
warding actions in SDN. For example, Traceroute [17] can-
not work well because SDN switches usually do not decrease
the time-to-live (TTL) values in packet headers.

To address the above challenge, we present a probing tech-
nique called adversarial path reconnaissance to find a tar-
get path of data traffic that contains the shared links. The
key observation is that the delays of control messages on the
SDN control channel will become higher if a short-term burst
of data traffic passes through the shared links. Meanwhile,
such delays that indicate the path of the current data traf-
fic has shared links with control traffic can be measured by
a host. The reason one host can measure the delays is that
the first packet of a new flow will be sent to the controller
to query forwarding actions, which incurs extra delays of
control messages other than that of the following packets di-
rectly processed in the data plane. Thus, by crafting timing
packets to measure the latency variation of the control mes-
sages with/without injecting a short-term burst of data traffic,
a path containing the shared links can be correctly identified.
By conducting the above reconnaissances on each possible
path, a target path can finally be found.

We note the probing technique may fail to identify a tar-
get path in rare cases. We study the conditions of successful
probing, and our experiments with 261 real network topolo-
gies [4] demonstrate that these conditions can be easily met
in practice. Moreover, we analyze the expected number of
paths that need to be explored for an attacker to find a tar-
get path. Both theoretical analysis and experimental results
show the high efficiency of our probing technique. For ex-
ample, it only needs to explore less than 50 paths on average
if there are 1,000 paths and only 2% of them contains shared
links. Experimental results in a real SDN testbed show our
reconnaissances can achieve more than 90% accuracy.

In order to ensure the stealthiness of the attack, we lever-
age the low-rate TCP-targeted DoS [41] to generate data traf-
fic consisting of periodic pulses in the shared links, instead
of directly flooding shared links to disrupt the network. The
low-rate TCP targeted DoS incurs repeated TCP retransmis-
sion timeout for TCP connections of the control channel.
Compared with direct link flooding on the shared links, it
significantly reduces the volume of attack traffic. Note the
TCP-targeted DoS cannot effectively disrupt SDN networks
without the knowledge of shared links obtained by our prob-
ing technique. Moreover, our attack is significantly different
from the packet-in flooding attacks [55, 60] that trigger a

huge volume of control traffic with bogus packets to saturate
the SDN control channel. Instead, it leverages low-rate data
traffic to disrupt the control channel and can thus succeed
even in the presence of state-of-the-art SDN defenses, such
as FloodGuard [60], FloodDefender [52], and SPHINX [27].

We systematically study the impacts of the attack on dif-
ferent SDN applications that achieve diversified network
functionalities. We find that almost all SDN applications can
be affected by our attack since our attack targets at disrupt-
ing the core services in SDN controllers that support these
applications. In order to understand the impacts, we conduct
experiments with four typical applications that have been
widely deployed in SDN controllers, i.e., ARP Proxy [5],
Learning Switch [6], Reactive Routing [9], and Load Bal-
ancer [7]. The results show (1) the performance of ARP
Proxy can be significantly degraded, such as 10 times in-
crease in the response delays and 95% reduction in the num-
ber of the ARP replies; (2) Learning Switch cannot success-
fully install forwarding decisions in the data plane and thus
the throughput of the data plane is reduced to O Mbps; (3)
Reactive Routing cannot update routing information in time
and obtain incorrect topology information, which incurs var-
ious routing anomalies, e.g., routing loop, routing blackhole,
routing path eviction, and flow table resetting; and (4) Load
Balancer generates wrong decisions, resulting in link over-
loading.

In summary, our paper makes the following contributions:

e We present the CrossPath attack to significantly disrupt
the SDN control channel by exploiting the shared links
between paths of control traffic and data traffic.

e We develop a probing technique called adversarial path
reconnaissance that can find a target path containing the
shared links with a high accuracy.

e We prove the conditions of successful probing, analyze
the expected number of explored paths to find a target
path, and validate our analysis with experiments.

e We perform a systematical study and conduct exten-
sive experiments on four typical SDN applications to
demonstrate the impacts of the attack on various SDN
network functionalities.

The rest of the paper is organized as follows. Section 2
provides background information about SDN and threat
model. Section 3 presents the CrossPath attack along with
an effective probing technique. Section 4 evaluates the fea-
sibility and effectiveness of the attack both in large-scale
simulations and real SDN testbeds. Section 5 further stud-
ies the impacts of the attack on different SDN applications
by detailed analysis and extensive experiments. Section 6
discusses defense mechanisms that can be immediately de-
ployed in practice to mitigate the attack. Section 7 reviews
related work. Section 8 concludes the paper.

20 28th USENIX Security Symposium

USENIX Association

2 Background and Threat Model

2.1 Background

In this section, we briefly review the SDN architecture and
a typical protocol of SDN, i.e., the OpenFlow protocol [47].
SDN enables network innovations by decoupling the control
and data planes and provide programmability as well as flex-
ibility. The control plane is logically centralized and can be
deployed on commodity servers. The SDN architecture can
be divided into three layers. The control layer and the appli-
cation layer constitute the control plane, which runs as a net-
work operating system, a.k.a. a controller. Various network
applications can be deployed in the application layer to en-
able diversified network functions, such as routing, network
monitoring, anomaly detection, and load balancing. The data
plane layer, which consists of “dumb” SDN switches, per-
forms low-level packet processing and forwarding based on
the decisions generated by the control layer.

The dominant communication protocol between the con-
trol and data planes is OpenFlow, which has been stan-
dardized by the Open Networking Foundation (ONF) [14].
OpenFlow allows a controller to dynamically specify SDN
switches’ forwarding behaviors by installing flow rules.
Each flow rule contains match fields to match against in-
coming packets, a set of instructions that describe how to
process the matched packets, and counters that count the
number and the total bytes of matched packets. OpenFlow
also defines how to handle packets in a switch. When a
switch receives a packet, it processes the packet based on
the rule that matches the packet with the highest priority. If
no rules match the packet, the switch sends the packet to the
SDN controller through the control channel with a packet_in
message. Applications running on the controller analyze the
packet and make decisions. Once the decisions are made,
the packet will be sent back to the switch with a packet_out
message. The corresponding flow rules will be installed into
all switches forwarding the packet with flow_mod messages.
Such a packet processing procedure is called reactive rule
installation, which has been widely used in OpenFlow net-
works [60, 52]. Moreover, to reduce the cost of building a
dedicated control network and operating networks, in partic-
ular in large-scale networks [21, 65], OpenFlow allows the
control and data traffic to share some links in the network,
which is called in-band control.

2.2 Threat Model

In this paper, we consider an SDN network deployed with
the OpenFlow protocol. The network uses a reactive ap-
proach to install flow rules, which is widely adopted in prac-
tice [60, 52], over an in-band control channel [21, 65]. We
assume that an attacker has or compromises at least one host
attached in the network, which can be easily achieved, e.g.,

by renting a virtual machine in an SDN-based cloud network.
The goal of the attacker is to craft data traffic to disrupt the
SDN control channel that delivers control traffic.

An attacker does not need to have prior knowledge on
the network and any privileges of network operation. The
CrossPath attack does not require the attacker to compro-
mise the controllers, applications, and switches, or to con-
struct man-in-the-middle attacks on the control channel to
manipulate the control messages. The control channel can be
protected with TLS/SSL. Furthermore, we assume that con-
trollers, switches, and applications are well protected. For
example, the network applies strict access control policies to
prevent communication between controllers and attackers.

3 The CrossPath Attack

In this section, we present the CrossPath attack on disrupting
the SDN control channel. Particularly, we develop a probing
technique called adversarial path reconnaissance to accu-
rately find a target path containing shared links.

3.1 Overview

The CrossPath attack aims to disrupt the SDN control chan-
nel by exploiting the shared links between paths of control
traffic and data traffic. An attacker interferes with the trans-
mission of control traffic by generating data traffic pass-
ing through the shared links. Thereby, the real-time con-
trol messages delivered in the control channel are delayed or
dropped. As the SDN controller performs centralized control
over all switches via the control channel, an attacker can al-
most break down all network functionalities enabled by SDN
by constructing the attack. To achieve this, an attacker needs
to use a host attached in the network to generate probing traf-
fic so as to identify which path of data traffic (i.e., a target
path) shares links with paths of control traffic. Then, the at-
tacker can send attack traffic to the target path to disrupt the
control channel. In order to decrease the attack rate, the at-
tack utilizes the low-rate TCP-targeted DoS (LDoS) [41] to
generate periodic on-off “square-wave” traffic, which leads
to repeated TCP retransmission timeout for the TCP connec-
tions of the control channel.

Now let us use a simple example to illustrate the attack.
For the ease of explanation, we use data path to denote the
path where the data traffic is delivered and control path to de-
note the path where the control traffic is delivered. As shown
in Figure 1, the network has five switches {sy, s2, 53, $4, 55 }.
Host h; and A3 communicate with each other via the data
path Ay — s» — s3 — s4 — h3, while the control path be-
tween s, and the controller is s — 53 — 55 — ¢. We can ob-
serve that the link between s, and s3 is shared by the control
and data path. Assume host #; compromised by an attacker
sends crafted LDoS traffic to 43. Since the link and corre-
sponding queues of switch ports are also used by the control

USENIX Association

28th USENIX Security Symposium 21

SDN Controller

------- Control Path

Data Path

Link

Figure 1: An example of disrupting the SDN control channel.

paths of s, and sy, the control messages delivered between
the switches and the SDN controller can be significantly de-
layed or dropped, resulting in abnormal network behaviors.
In order to successfully launch the attack, an attacker
should correctly choose a target path that contains shared
links. However, it is challenging to find target paths in SDN.
Different from traditional IP networks that almost each link
delivers data and control traffic at the same time, there are
only a few number of links delivering control traffic in SDN.
For instance, given an SDN network with m switches, there
may be m?/2 links. m links may be used to deliver control
traffic so that the connectivity between the controller and all
SDN switches can be ensured. Thus, only a limited number
of data paths include the links shared with control paths. To
identify such data paths, the attacker needs to know the net-
work topology and routing information. Nevertheless, they
are stored in the SDN controller and are invisible to the at-
tacker. Moreover, existing scanning tools cannot be used in
SDN to infer the network topology and routing information
because SDN has different forwarding behaviors compared
to traditional IP networks. For example, Traceroute [17] can-
not infer the routing path of the packets, as SDN usually does
not decrease the time-to-live (TTL) values in packet headers.

3.2 Adversarial Path Reconnaissance

To address the challenges above, we develop a probing tech-
nique called adversarial path reconnaissance to find target
data paths that have links shared with control paths. The
technique inspired by the key observation that the delay of
a control path is higher if a short-term burst of the data traf-
fic passes through the shared links. Thus, an attacker can
use a host in SDN to identify the key data paths by gener-
ating data traffic and measuring the delay variations of the
control paths. To achieve the goal, our adversarial path re-
connaissance consists of two phases: measuring the delays
of control paths and identifying a target data path.

Measuring Delays of Control Paths. In SDN, packets that
cannot be matched in a switch will experience long forward-
ing paths and high delays, since they will be forwarded to the
controller to request flow rules. We can analyze the delays

of these packets to calculate the delays of control paths that
share links with data paths. Assume there are two hosts A;
and h;, and the data path between them is a sequence of con-
secutive links Py’ =< I, s, Ls; sy, -+ sy n, >. Figure 2a
shows the forwarding path and delay for a packet that is sent
from h; to h;. The packet cannot be matched by flow rules in
s1. We can know the end-to-end delay for the packet is:

w+1 2]
hy k k k -
di,,i - dprop + Z dtranx + Z (dqueue +dpmc) + 61,]a ()
k=1 k=1

where dZ‘;op is the propagation delay at host /;, d*

trans IS the
transmission delay at the k" link, d]q‘ueue is the queuing delay
at the k" switch, and d*

proc 18 the processing delay at the K"
switch. §; j is the delay of the control path, which is caused
by querying controllers for rule installation. The delay pat-
tern of such packet is shown in Figure 2a. However, if we
send the same packet after the rule installation, the path and
delay will become shorter, as shown in Figure 2b. The end-
to-end delay can be expressed as follows:

w+1 [0
dz{,j = d?)i’op + Z dtkrans + Z (d]c;ueue + df)roc)' (2)
k=1 k=1

Here, we change d’gum to d?;ueue because the queuing delay
depends on the current network traffic and is time-varying.
Based on equation (1) and (2), the delay of the control path

1S:
[0)
7k k
8i;j - di»./' - dl’j +]{Z] (dqueue - dqueue) (3)

However, if we send two packets with a short time inter-
val, e.g., sending the same packet immediately once we re-
ceive a response to the last packet, the queuing delay d*

queue
and d](;ueue can be approximately equal. Thus, we have
0~ di —dlf’j. Similarly, we have 8;; ~ d;; — d}.i- We use
0 to denote the sum of §; ; and §;;. We have the following
equation:

S~ (dij+d;;)—(dij+d};).)

Note that, d;;j+d;; is the round-trip-time (RTT) of the
packet that is not matched by rules, and @] ; +d’; ; is the RTT
of the same packet matched by rules. Thus, we can infer
the delay of control paths between two hosts by subtracting
RTTs of these two crafted packets.

Identifying a Target Data Path. An attacker needs to send
two packet streams for each possible data path in order to
find a target data path crossing with some control paths, i.e.,
a data path containing shared links. The first packet stream
is a timing stream, which aims to measure the delay 6 shown
in equation (4). The timing stream must trigger responses
from the destination host in the current data path. Fortu-
nately, many types of packets meet the requirement, such as
ICMP packets, TCP SYN packets, and HTTP request pack-
ets. Moreover, each timing stream must contain a pair of

22 28th USENIX Security Symposium

USENIX Association

SI S22 Se by hi s sp so h

] Ny
The latency caused by

querying the controller

-

(a) A packet matches no rules in sy.

(b) A packet matches
rules in all switches.

Figure 2: Different forwarding paths and delays for packets
sent from /; to h;. ¢ denotes the controller and s; denotes the
i"" switch in the packet path.

packets. The first packet must trigger new rule installation
and the second packet must match the newly installed rules.
This can be achieved by waiting a long enough time before
sending the first timing packet to the destination, and then
immediately sending another same packet after receiving a
response from the first packet. The first packet can guaran-
tee new rule installation, since old rules will be expired due
to timeouts as we mentioned in Section 2. According to the
previous study [44], the timeouts are usually configured as
small values in order to save space of flow table and waiting
for 30 seconds is enough for most cases.

The second packet stream is a festing stream. It contains
a short-term burst of packets sent to the destination host in
the current data path. These packets in the stream can be
typically UDP packets. TCP packets can also be chosen if
we send them with raw sockets [15] to eliminate the auto-
matic rate control in TCP. The testing stream can be used
to test whether the current data path crosses with some con-
trol paths or not in collaboration with the testing stream. An
attacker can first measure the delay & by the timing stream
without transmitting the testing stream to the destination. Af-
ter waiting enough time to ensure that old flow rules expire,
an attacker can measure the delay again (denoted by &) with
the testing stream being transmitted at the same time. By
comparing these two delays, an attacker can obtain:

(i) If &' is significantly higher than &, the short-term burst
of packets affects the delays of some control paths.
Thus, the data path currently being explored crosses
with some control paths.

(ii) If &' is similar to &, no available evidence indicates that
the data path crosses with some control paths.

Thus, we are able to find a target path by testing each path if
it exists.

3.3 Improved Reconnaissance

In order to efficiently and accurately find a target data path,
we apply two methods to improve our reconnaissance.

1 : an ; ; kth

"~
|
|

Time

s

|

‘

Iy
1

F--->
22

—>7
_9

T T
Timeot;t Period

L
[P S—
ﬁ

Timeout Period Timeout Period

(a) Serial Reconnaissance.

ls! - kth ls‘ - k‘h A~
A A 1
1 WA . ,
HE— . Reduce to Two Timeout Periods
tlr lrigie 17
—_— po
Timeout Period me

(b) Parallel Reconnaissance.

Figure 3: Two different reconnaissances of finding a target
data path. Each arrow denotes a timing packet and the height
of it denotes the RTT of a timing packet. A dashed arrow
denotes testing packets are sent at the same time. The red
arrows denote a target path is found when conducting a re-
connaissance on the k" data path.

Improving Accuracy with 7-fest. Although our reconnais-
sance allows an attacker to know whether a data path crosses
with control paths by sending only four packets, it may
achieve low accuracy in practice. Various network noises
can affect the reconnaissance. For example, a burst of be-
nign traffic can also cause high latencies of control paths,
which makes a non-target data path misidentified as a tar-
get data path. We find that t-test [20] can be a straightfor-
ward approach to eliminate the influences of network noise
as much as possible. T-test is a statistical method that com-
pares whether two groups of samples with random noises be-
long to the same distribution. It produces a p value to denote
the likelihood that the two groups of samples belong to the
same distribution. Typically, if p is less than a predetermined
value, i.e., the significance level & [20], the two groups are
considered significantly different. Thus, we can collect two
groups of latencies with or without a testing stream for a
data path, and apply t-test to determine whether a data path
crosses with control paths according to the p value.

Improving Efficiency with Parallelization. Basically, an
attacker can try to test each data path one-by-one, which is
shown in Figure 3a. However, it is time-consuming. An
attacker has to wait for at least a timeout value before con-
ducting next round of testing, as obtaining the latencies of
control paths with testing stream requires that the old rules
have been removed. Suppose that a network has 100 data
paths and the timeouts in flow rules are configured to 10s.
Moreover, we assume 10 repeated reconnaissances are con-
ducted for each path in order to apply t-test. We can cal-
culate that finding a target path needs approximate 10,000s
at the worst case, which is unbearable in practice. Fortu-
nately, different flow rules matching specific packets make
up different data paths in SDN, which means the installation
and expiration of rules in two different paths are indepen-
dent. Thus, the reconnaissance can be parallelized to reduce

USENIX Association

28th USENIX Security Symposium 23

the time. As shown in Figure 3b, an attacker can choose k
pending paths. The latencies of their crossed control paths
can be measured in turn by sending two timing packets for
each data path. After waiting for only one timeout value, an
attacker can measure the latencies again in turn while trans-
mitting corresponding testing streams, since the old rules of
each data path will expire in turn. The parallel reconnais-
sance allows an attacker to explore k data paths within two
timeout values, which significantly improves efficiency. The
maximal k depends on the maximal timeout values of flow
rules and the maximal RTT of timing packets. In order to
find a target data path as fast as possible, k should be subject
to the inequation: 2 -k - RT Tppay < timeoutgy. It ensures that
an attacker can check whether there is a target path among k
data paths within two timeout periods. If the maximal RTT
of the timing packets is 20 ms in the target SDN, the parallel
reconnaissance can dramatically reduce the time used by the
previous example from 10,000s to less than 100s.

Based on the above designs, the algorithm of improved
adversarial path reconnaissance can be easily implemented.
Due to space constraints, for further details, we refer the
reader to see the pseudo-code in Appendix A.

3.4 Theoretical Analysis

To understand the feasibility and efficiency of the adversarial
path reconnaissance in SDN, we perform theoretical analysis
to answer the following two questions:

o If there exists target data paths crossing with control
paths in the network, which conditions the network
must meet so that our reconnaissance can identify a tar-
get data path?

e How many data paths should be explored in order to
find a target data path?

Firstly, we use an example to illustrate the network condi-
tions that must meet for identifying a target data path be-
fore presenting the theory results. Figure 4 shows the tar-
get network where an attacker conducts reconnaissances.
Each switch connects the controller through the shortest
control paths. Switch s, and s3 both have two differ-
ent shortest control paths that can be chosen. We first
consider the case where s, connects the controller via <
lsy 5555 lss—ssgr lsg—c > and s3 connects the controller via <
lsy 5555 Lsy—ssy5 Is; 56> Isg—c >. Obviously, the data path from
hy to hy crosses with the control path of s3. However, an at-
tacker cannot identify it. Measuring the delay of the crossed
control paths is infeasible, since an adversary cannot trigger
rule installation into s3. If we consider another case where s,
connects the controller via < Iy, s, ls; 54, lsg—sc > and s3
connects the controller via < Iy, 5, Ly s, lss—sgs lsg—c >
the target data path from A to A crossing with the control
path of s, can be identified. The main difference between

SDN
Controller

Control Path
Data Path
Link

Figure 4: The target network where an attacker conducts re-
connaissances.

the two cases is whether the target data path crosses with a
control path of a switch belonging to the data path.

We consider a set of all the hosts in the target network
H = {hy, hy, ..., hy}, a set of compromised hosts H =
{hy, hy, ..., izq}, and a set of all the switches in the net-
work § = {s1, 52, ..., sm}. Let p};/ be the data path from
host i to host j, let p!. be the control path of switch i, and let
Sij={s1, $2, ..., 5} be the set of switches belonging to the
data path from host i to host j. Here, H C H and S; ; C S. pl/
and p;. both is a set that contains a sequence of consecutive
links. In fact, we have the following theorem:

Theorem 1. If and only if the target SDN network meets
the condition: 3(pL. ﬂp{i’k #0), where i € Sjy, j€H, ke
H and j # k, then there exists a target data path which can
be identified by the adversarial path reconnaissance.

Proof. We prove the theorem in two steps. We first prove
the sufficient condition, i.e., if the target network meets the
conditions in Theorem 1, then a target data path can be iden-
tified by the adversarial path reconnaissance. According to
the conditions, we can know that a data path pfj’k from a com-
promised host /2; to another host % crosses with a control
path pi. The crossed control paths belong to the switches
Sk along the data path. An attacker can conduct the adver-
sarial path reconnaissance on the data path. Basically, four
timing packets will be sent to the data path. The first timing
packet will trigger rule installation into all switches along
the data path. Only after all switches finished installing rules
according to the messages of the controller, the packet can
reach the destination and a response packet will be sent to
the compromised host. Thus, the RTT of the timing packet
contains total latencies of control paths of all switches in S 4.
The second timing packet will be sent after rule installation.
The total latencies of control paths can be obtained by sub-
tracting the RTTs of these two timing packets. After waiting
at least a timeout value, another two timing packets can be
sent to the data path with testing stream. The total laten-
cies of control paths can be obtained again in a similar way;
however, crossed control path p. will be affected by the test
stream. The reconnaissance will notice that the total laten-
cies will be significantly higher than the previous latencies.

24 28th USENIX Security Symposium

USENIX Association

Thus, a target data path pfi’k is identified.

We next prove the necessary condition, i.e., if a target data
path can be identified by the adversarial path reconnaissance,
then the target network meets the conditions in Theorem 1.
We assume that a target data path p* is identified. Since p?*
is a target data path, it at least crosses with a control path p..
Obviously, the reconnaissance can only be launched by the
compromised hosts. Thus, j € H, k € H, and j # k. We
only need to prove that the crossed control path belongs to a
switch along with the data path pé’k, ie.,i €S Letuscon-
sider the opposing case i ¢ S; ;. Note that the timing packets
in our reconnaissance trigger rule installation into switches
S; i along the data path. Thus, only the latencies of con-
trol paths belonging to the switches in §; ; can be measured.
When i ¢ S, the delay variation of p.. cannot be noticed by
our reconnaissance. Thus, there must be i € S, if a target
data path can be identified. O

Theorem 1 indicates that our reconnaissance can find a tar-
get data path only if the network meets the conditions. For-
tunately, it only requires at least one data path which crosses
with a control path of switches that are in the data path. Such
conditions can be easily met in practice. We will show that
our reconnaissance can find a target data path with various
real network topologies for most cases in Section 4.1.

In order to estimate the average number of explored data
paths for finding a target data path, we introduce a parameter
Y denoting the total number of target data paths which can
be identified in a network. In addition to the notations we
used in Theorem 1, let p be the total number of data paths
between a compromised host in H and a host in H, and let X
be a random variable denoting the number of explored data
paths for finding a target data path. Obviously, if we find a
target data path at the k;;, exploration, then we have already
failed to find a target data path for kK — 1 times. Thus, the
probability of finding a target data path at the k;;, exploration
for the first time is:

k=2 ;
Y pP—Y—J
P(X =k)= —, &)
p_(k_l)j:(] p—J
where 1 <k < p — v+ 1. Here, we define H’Jf:xa =1, when
x >y. The average number of explored data paths can be
calculated as:

p—r+l
EX)= Y k-P(X=k)
k=1

p—7+1 ky k=2 ©)

=L

If we consider the case where there is only one compromised
host in the network and each of the data paths between two
hosts is different, then p = n — 1. n is the number of hosts in

the network. Equation (6) can be simplified as:

n-y ky k=2 y
E(X)= l———F—). 7
(X) k;n—k,go(o ™

Equation (7) indicates the average number of explored
data paths E(X) totally depends on n and y. We will show
that E(x) gets small values with proper parameters and the
theoretical values are consistent with our experimental val-
ues in Section 4.1. In reality, our reconnaissance can quickly
find a target data path by exploring several data paths (see
Figure 6 in Section 4.1).

4 Attack Evaluation

In this section, we perform large-scale simulations to demon-
strate that the CrossPath attack can be launched with various
network topologies. Moreover, we conduct experiments to
evaluate the feasibility and effectiveness of the attack in a
real SDN testbed.

4.1 Large-Scale Simulation Experiments

Simulation Setup. We perform simulations with 261 real
network topologies [4] around the world. As these network
topologies do not contain hosts and routing information, we
generate 100 hosts ! in each topology and apply Dijkstra’s al-
gorithm [28] to generate the shortest data path between two
hosts. Note that shortest path forwarding is commonly used
in the intra-domain routing system. We add another host in
each network topology as the SDN controller. The controller
can connect switches via shortest paths (SP) to minimize de-
lays, a minimum spanning tree (MST) to minimize costs, or
randomly searching available paths (RS). We conduct exper-
iments with different types of connection in turn. Moreover,
for simplicity and without loss of generality, we assume that
the attacker only controls one host in the network and we
attach such a host to each network topology.

We note that the positions of hosts in a network will affect
our experimental results. Thus, we conduct 1,000 experi-
ments for each network topology and randomly changes the
positions of all hosts in each experiment. We show the aver-
age results over 1,000 experiments for each topology.
Average Percentage of Identified Target Paths. Figure 5a
shows the CCDF of the average percentage of identified tar-
get paths with 261 various network topologies. From the
results, we can see all the network topologies have at least
5% identified target paths among total data paths in a net-
work regardless of types of connections. More than 98%
of the network topologies have at least 30% identified target
paths. Moreover, the network tends to have more identified
data paths when the controller connects switches via MST.

n reality, we also conduct our experiments with 50, 500, 1000 hosts,
respectively. The results are similar to those in Figure 5.

USENIX Association

28th USENIX Security Symposium 25

w06 w06
a a)
Q Q !
Co.4 0.4 5
— SP — sp \
02 --- MST = 02f === MST

RS RS
0 0 20 40 60 80 100 0 0 20 40 .60 80 100
Identified Target Paths (%) Affected Switches (%)

(@ (b)

Figure 5: Complementary Cumulative Distribution Function
(CCDF). (a) shows the CCDF of the average percentage of
identified target paths with 261 real topologies; (b) shows
the CCDF of the average percentage of affected switches by
attacking a target path with 261 real topologies.

500 T T T T
— n = 100 theoretical

400 n = 100 experimental |

— n = 500 theoretical
300 --- n = 500 experimental |
o) — n = 1000 theoretical
* 200 --- n = 1000 experimental -

o 20 40 60 8 100
Y

Figure 6: Comparison of theoretical values and experimental
values of E(X) with different n and Y.

The results demonstrate that the conditions in Theorem 1 can
be easily met. An attacker can use our reconnaissance to find
some target data paths to launch the CrossPath attack.
Average Percentage of Affected Switches. As attacking
different target paths will affect the average percentage of
switches in a network topology, we randomly attack a target
path in the 1,000 experiments for a network topology and
calculate the average percentage of affected switches. Fig-
ure 5b shows that more than 20% of the switches can be af-
fected by attacking a target path for 90%, 99% and 99% of
the 261 network topologies with SP, MST and RS connec-
tions, respectively. For some network topologies, attacking a
target path can even affect half of the whole switches. Thus,
it is possible for an attacker to attack multiple target paths
to cause damages for the whole switches and incur network-
wide DoS.

Average Number of Explored Data Paths. Equation (7)
denotes the average number of explored data paths E(X) for
finding a target path totally depends on the number of data
paths ¥ containing shared links and the number of hosts in a
network n. We draw the theoretical values of E(X) in Fig-
ure 6. We can see that E(x) declines quickly when ¥ in-
creases from O to 20. When there are 1,000 hosts and 40 data
paths (2% of the 1,000 total data paths) containing shared
links, E(X) is less than 50. Moreover, E(x) tends to be the
same with the growth of y. The results demonstrate that our
reconnaissance can fast find a target data path and has a good

scalability with a different number of hosts in the network.
The experimental values of E (x) are also plotted in Figure 6.
Each experimental value with different n and 7y is obtained by
conducting 1,000 experiments to get the average number of
explored data paths. The results show that the experimental
values are consistent with the theoretical values.

4.2 Experiments in a Real SDN Testbed

Experiment Setup. Our testbed contains a popular SDN
controller Floodlight [12], five hardware SDN switches
(AS4610-54T [10]), and three physical hosts. The controller
is deployed on a server with a quad-core Intel Xeon CPU
E5504 and 32GB RAM. Each physical host has a quad-core
Intel i3 CPU and 4GB RAM. All hosts run Ubuntu 14.04
server LTS. The network topologies, control paths and data
paths are illustrated in Figure 1. An attacker first compro-
mises host /11 to conduct the algorithm of adversarial path re-
connaissance (see Appendix A for details) for the data paths
of the other hosts. The burst rate of short-term testing pack-
ets is 1 Gbps, which is the maximal rate the host can send.
The attacker then generates LDoS data traffic to disrupt
the control channels of switches s; and s, by attacking the
data path between h; and h3. Basically, there are three pa-
rameters for the LDoS flows: burst length, inter-burst period,
and peak magnitude. The previous study [42] has conducted
comprehensive experiments on how different parameters de-
termine the attack impacts of LDoS flows and how to bet-
ter choose these parameters. As our paper mainly focus on
studying the impacts for the SDN functionalities after the
control channel is attacked by the data traffic, we apply fixed
parameters in our attack. We choose the burst length as 100
ms, inter-burst period as 200 ms, and peak magnitude as the
maximal speed 1 Gbps that the host can send for our all ex-
periments in the paper. These parameters show how an at-
tacker can affect the SDN functionalities to the maximum
extent by generating data traffic to disrupt the control chan-
nel. Moreover, compared to simply flooding the target paths,
which needs to send traffic with 1 Gbps all the time, the rate
of our LDoS flow is only approximate 0.33 Gbps on average.
Accuracy of Reconnaissances. We first collect the delay
variations in delivering control messages. The delay vari-
ation is defined as the absolute difference between the de-
lays of control messages measured with and without testing
stream. We collect 5,000 records both for two data paths
in the network. We wait up to 20 seconds for each timing
packet to get a response in order to obtain possible maximum
delays. Figure 7 shows the distribution of the probability of
the delay variation. The results demonstrate that the target
data path has a significantly different probability distribution
compared with the non-target data path. In particular, most
delay variations with the non-target data path are less than 2
ms, while most delay variations are much larger for the tar-
get data path. These results illustrate that the discrimination

26 28th USENIX Security Symposium

USENIX Association

0.8 T T T
— the target path
06 --- the non-target path
.61 1
\
% 5\ Bo.6f
o4 3 ~+ =10
g 204 2 n=20
0.2+ = n=30
. 0.2]
g - n=140
‘ ‘ ~n=50
0 1 10 100 1000 10000 8.01 0.03 0.05 0.07 0.09
Delay (ms) a

Figure 7: Probability distri- Figure 8: Accuracy of recon-
bution of delay variations. ~ naissances with different pa-

rameters.
10° .
1000 + .
@ — without attack 104 1
2800 . --- with attack —~
= \ 2103l
Se00f i Eto
< i} i i Fe
3400 :: : H l {1 =0
-E I i 10th ..
bR RA R 8 <= 5
2 NULA NN (A DL L S 0 i i
0 0 20 40 60 80 100 10 without attack with attack
Time (s)
Figure 9: Throughput of Figure 10: Delays of control

control packets. packets.

between target data paths and non-target data paths can be
easily identified according to the delay variations.

We then calculate the accuracy of our reconnaissance by
conducting 1,000 repeated experiments with different set-
tings of 1 and «. Here, 1 denotes the number of measured
delays for each data path, which is also the size of each group
in the t-test used to identify a target path. « is the signif-
icance level used in the t-test. As shown in Figure 8, the
accuracy increases with the increase of 1. Moreover, we
can observe that the accuracy increases with the increase of
o when 1 is smaller, e.g., 10 or 20. However, the accu-
racy tends to be stable when 1 becomes large. The reason
is that two different groups will statistically different from
each other and two similar groups will be statistically closer
to each other with more data. It is easier to distinguish the
two types of paths if we have enough data, which is not sig-
nificantly impacted by the setting of ¢. The accuracy always
reaches more than 90% with different settings of & when
is 40 or 50.

Effectiveness of the Attack. To evaluate the impact of the
attack on the control packets, we configure the controller
to generate 1,000 control packets per second? to the switch
s2. Figure 9 shows the throughput of control packets. The
throughput can achieve 1,000 packets per second. However,
it almost drops to 0 under the attack though there are short-
term peaks of throughput. The reason is that our attack trig-
gers TCP of control flows to periodically enter the phase of
retransmission timeout. In this case, no packets will be sent
within the retransmission timeout. Figure 10 shows the delay

>There can be thousands of control packets per second [29]. For sim-
plicity but without loss of generality, we choose a practical value, 1,000.

-

o
=)
o
=)

o

o

o

o
T

Accuracy

N

i

o

r'S
T

Degradation Ratio

o
[N}
o
N

o

o

DC1 DC2 1B UNIV LAB
Background Traffic

DC1 DC2 1B UNIV LAB
Background Traffic

(a) Accuracy of Reconnaissances. (b) Degradation Ratio of Control
Traffic.

Figure 11: Robustness of the attack with different back-
ground traffic.

of control packets. The median value of delays for control
packets under the attack is 687 ms, which is more than about
100 times higher than that in absence of the attack. More-
over, the delays under the attack vary within a large range
from below 10 ms and to more than 10,000 ms. Note that,
most delays without the attack are less than 10 ms. The re-
sults above demonstrate our attack can significantly degrade
the throughput of control packets and incur high delays.
Robustness of the Attack. As background traffic may affect
the reconnaissances and attack effects, we inject different
background traffic into our network with TCPReplay [16]
in turn. Such traffic traces comes from two Data Centers
(DC1 and DC2) [3], an Internet Backbone (IB) [8], a Uni-
versity (UNIV) [18] and our Laboratory (LAB). Moreover,
due to the limited flow table capacity in switches, we ran-
domly choose flows from the trace to ensure that the number
of rules generated by flows do not exceed the table capacity.
Figure 11a shows the accuracy of reconnaissances with
different background traffic. The parameters of reconnais-
sances o and 1 are set to 0.01 and 50, respectively, which
are the best parameters to get the highest accuracy (93% in
Figure 8) without background traffic. When the background
traffic is injected, the accuracy drops to below 90%, ranging
from 85% to 89%. However, such accuracy is still satisfac-
tory for an attacker to conduct reconnaissances. Figure 11b
shows the degradation ratio of control packets. The degrada-
tion ratio is the fraction of the control packets reduced by the
attack over the total control packets without the attack. We
can see that the attack always causes more than 90% degra-
dation ratio with different background traffic. Above results
demonstrate that our attack achieves high robustness.

5 Attack Impacts on Network Functionalities

In this section, we perform a systematical study on the im-
pacts of the attack on various network functionalities. We
first review the common core services enabled in SDN con-
trollers that generate different types of OpenFlow control
messages and are used by various SDN applications. We
then study four typical SDN applications, which use these
common core services, so that we measure the impacts of

USENIX Association

28th USENIX Security Symposium 27

SDN Controller

[ARPPruxy} [Lse‘?vx;r::}l]g } {Load Balancer} { l;z:x:[lllnvge l [2‘;;; }

App Layer

Service Layer

Topology Service sk

[| |
i ! Packet Flow Rul i !
! acke ow Rule A : ¥
| . : Host Link Device | Metrics
! | ELIice S rice ! ’ Tracking H Discovery Discovery | Service
| — — T .
e el it R I (N)
- | | i
T T T
packet_out b, stats_request
flow_mod (LLDP payload) handshake & stats_reply
packet_out packet_in packet_in echo_request
packet_in l (ARP\DHCP payload) (LLDP‘Pay]oad) & ecimireply
[1

| SDN Data Plane |

Figure 12: The core services of SDN controllers.

the attack on SDN functionalities.

5.1 Core Services of SDN

SDN controllers can be abstracted as a two-layer architecture
though different controllers have different implementations.
Applications can be deployed in the top layer to enable dif-
ferent network functionalities, while the low layer provides
different core services that interact with switches and provide
basic functionalities for the top-tier applications. As shown
in Figure 12, there are four major core services:

Packet Service. The service manages packets exchanged be-
tween the control and data planes. It paraphrases packet_in
messages containing data packets received from switches
and dispatch them to applications. Meanwhile, it sends data
packets back to switches via packet _out messages.

Flow Rule Service. The service manages flow rules. It in-
stalls or updates rules in switches via flow_mod messages
according to the results computed by applications.
Topology Service. The service maintains the topology of
end hosts, links, and switches. It discoveries new hosts and
tracks their locations via packet _in messages embedded with
an ARP or DHCP payload. It periodically sends and receives
LLDP packets encapsulated in packet_in or packet_out mes-
sages to maintain link information. Besides, it establishes
the control channel between switches and controllers via sev-
eral handshake messages. The liveness of switches is peri-
odically checked via echo_request and echo_reply messages.
Applications obtain network topologies through the service.
Flow Metrics Service. The subsystem is responsible for col-
lecting flow statistics. It periodically queries the flows on
network devices via stats_request and stats_reply messages,
and then provides various statistics to applications.

We note that almost all applications enabling network
functionalities in SDN is built on at least one of the four
services. Our attack thus can affect various SDN functional-
ities by disrupting the transmission of control messages ex-
changed between these core services and switches. We will
choose four typical applications that are widely deployed in

1

—— ‘without attack ',"'
EZSO -8 with attack 0.8 i
2200 06 e
] 61 ¢
=150 é 4
= 0.4
gor & | "
4 Lo
9, 50 027k — without attack
< 0 --- with attack
50 100 150 200 250 300 10 100 1000 10000
ARP Request Rate (pps) Delay (ms)
(a) ARP Throughput. (b) CDF of ARP Query Delay.

Figure 13: Attack impacts on ARP Proxy.

SDN controllers to show the impacts of the attack on various
network functionalities. The implementations of the four ap-
plications [5, 6, 9, 7] are from Floodlight [12].

5.2 ARP Proxy

SDN enables Address Resolution Protocol (ARP) similar to
IP networks, which finds the association between a destina-
tion IP address and its corresponding hardware (MAC) ad-
dress so that hosts can correctly send and receive IP pack-
ets. In IP networks, layer two switches flood an ARP request
sent from a host to get an ARP reply. If the target IP ad-
dress in the ARP request is not in the local network, a router
acts as an ARP proxy to send back an ARP reply with the
hardware address of its own interface. In SDN, ARP pack-
ets are handled by an ARP proxy application [5] in the SDN
controller. When an ARP request sent by a host arrives at
a switch, it will be sent to the controller via packet_in mes-
sages. The packet service extracts the ARP request packet
from packet_in messages and dispatches the packet to the
ARP proxy application. The application extracts the sender
IP address and the source MAC address to store them into
the ARP table. Meanwhile, it finds an entry that the IP ad-
dress matches the target IP address in the ARP request. A
corresponding ARP reply packet is created and will be sent
back to the ingress switch via packet_out messages. Thus,
the original host obtains an ARP reply.

Our attack can completely disrupt the functionality of
ARP proxy by interfering with the exchange of the messages
between the packet service and switches. Figure 13a shows
the ARP throughput. The ARP reply rate is proportional to
the ARP request rate in absence of the attack. However, un-
der the attack, the ARP reply rate falls below 10 pps when
the ARP request rate exceeds 100 pps. The reason is that the
TCP flows of control traffic frequently enter the retransmis-
sion timeout phase under the attack due to the congestion.
Figure 13b shows the CDF of ARP delays. More than 90%
delays are less than 10 ms without the attack, while more
than 70% delays are higher than 10 ms and more than 50%
delays are higher than 1,000 ms with the attack. Delays un-
der attacks significantly increase. Particularly, some delays
exceed 10,000 ms, which can cause connection failures be-
tween two hosts because hosts cannot get MAC addresses.

28 28th USENIX Security Symposium

USENIX Association

T 1000 T T T T T
—]
0.8 1 @800t
o Qo
5 <
20.6 1 Seo0r
2 2
804 1 5400
3 3 \ ‘
« —+ without attack £ 200 /N, — without attack |
02T = with attack N / N --" with attack
AN /
. . . . 0 FARENE
0 0 50 100 150 200 250 0 5 1015 20 25 30
New Flows (Flows/s) Time (s)

(a) Success Ratio of Rule Installa- (b) Throughput for a Switch with
tion for a Switch. 250 Flows/s.

Figure 14: Attack impacts on Learning Switch.

5.3 Learning Switch

The learning switch application [6] allows SDN switches act
as normal switches in IP networks. The application exam-
ines a packet matching no rules in a switch and looks up
the recorded mapping between the source MAC address and
the port. If the destination MAC address has already been
associated with a port, the packet will be sent to the port
and corresponding rules will be installed to match subse-
quent packets. Otherwise, the packet will be flooded on
all ports. As shown in 12, the application relies on two
services. The packet service sends the packet to the con-
troller via packet_in messages and back to the switch via
packet _out messages, and the flow rule service installs rules
in the switch via flow_mod messages.

Our attack can effectively block installation of forward-
ing decisions generated by the application by disturbing the
messages exchanged between the core services and switches.
Figure 14 shows the impacts of the attack on the functional-
ities of learning switch. Here, we define the success ratio
of rule installation as the number of successfully installed
rules over the number of rule requests within a second. As
shown in Figure 14a, the success ratio of rule installation in
a switch always maintains over 90% with various numbers
of new flows without our attack. However, it drops signifi-
cantly in presence of our attack. When the rate of new flows
reaches 250 flows per-second, the success ratio reduces to
below 20%. Thus, learning switch cannot work correctly. As
shown in Figure 14b, the throughput of a switch is O Mbps
for a long time with attack when there are 250 flows/s.

SDN
Controller

Figure 15: The network topology used in Reactive Routing.

1 — 1000
l"l "

_08] / 2800 ;
S r 2]
go.6f ! o0l H
N P = |
5 / = :
S04t/ 5 i
20 ',, g\400 r i 1
s oal / — without attack | _g — without attack

1/ --- with attack =200 A --- with attack]

0 5 1015 20 25 30 %0 5 10 15 20 25 30
Time (s) Time (s)

(a) Increasing link utilization due (b) Long-term routing blackhole due
to long-term routing rule inconsis- to delayed messages when a host is
tency. migrated.

17:37:46.344 INFO [n.ft. TopologyInstance] Route [id=Routeld [sre=1c:48:cc:3T:abialag:41
dst=9d:54:cc:37:abra0:ag:41], switchPorts=[[id=1c:48:cc:37:abia0:a8:41, port=37],
[id=9d:54:cc:37:ab:ad:a8 41, port=31]]]

17:38:01.62 INFO [n.f1iLikDiscoveryManager|[Iuter-switch Ik removed:[Link
[sre=ad:eTice:3T:abalag: 41 ouPort=38, dsti=0d:54:cc:37:abial:ad: 41, mPort=42, latency=6]
17:38:01.95 INFO [n.f1.TopologyM][Rccmnputmg topology due to;ilink-distu\try—
updates

17:38:01.345 INFO [n.fr. TopologyInstance] Route [id=Routeld [sre=1c:48:cc:37:ab:a0:a8:41
dst=9d:54:cc:37:abra0:a8:41], switchPorts=[[id=1c:48:cc:37:ab:al:a8:41, port=32],
[id=ad:e7:cc:37:abia0:a%:41, port=36], [id=ad:e7:cc:37:ab:a0:a8:41, port=38],
[id=9d:54:cc:37:ab:ad:a8 41, port=42]]]

(c) Eviction of a routing path due to a deactivated link.

20:55:25.510 INFO[n.f.c.i.OFChannelHandler] [[1c:48:cc:37:ab:al:a%:41(0x0) from
192.168.100.1:59413]][Disconnected connection]
20:55:26 218 INFO[n.£c.i. OFChannelHandler|
/192.168.100.1:59414

20:55:27.755 INFO[n.f.c.1.OFChannelHandler] Negotiated down to switch OpenFlow version
of OF_14 for /192.168.100.1:594 14 using lesser hello header algorithm.

20:55:31.698 INFO[n.f.c.i.OF SwitchHandshakeHandler][Clearing flow fablesof

1e:48:cc:37 ab:a0:ad:41 on upcoming transition to MASTER.

from

(d) Cleaning of flow tables due to the reset of a switch.

Figure 16: Attack impacts on Reactive Routing.

5.4 Reactive Routing

The reactive routing [9] application enables flexible and fine-
grained routing decisions for different flows, which is en-
abled in almost all controllers. When a new flow matching
no rules is generated, the first packet of the flow will be sent
to the reactive routing application. The application analyzes
the packet and calculates routing paths for the new flow. Be-
sides depending on the packet service processing data pack-
ets and flow rule service installing rules, the application also
queries the topology service that provides the information of
the locations of hosts, the state of switches and links.

In order to demonstrate the effectiveness of our attack, we
build a network topology with four hosts and three switches,
as shown in Figure 15. The IP addresses of the four hosts A1,
ha, h3 and hy are 10.0.0.1, 10.0.0.2, 10.0.0.3, and 10.0.0.4,
respectively. The hosts /; and &, send packets to the host
h3. The default routing path of packets from /iy to h3 is <
Iny=ssys bsy =555 Lsy—sy5 ls3—ny >. The default routing path of
packets from h to h3 is < lj, sy, Ly s, Lyy—ny >. Also, a
flow with TCP port 1111 from £, to k3 has a different path
due to a QoS requirement. Here, the compromised host /4
sends attack (i.e., LDoS) traffic to A3 in order to exploit the
control path of switch s,.

USENIX Association

28th USENIX Security Symposium 29

Figure 16 shows the impacts of the attack on reactive
routing. As shown in Figure 16a, our attack incurs long-
term routing rule inconsistency, which makes the link uti-
lization reach 100%. The reason is that SDN exists transient
rule inconsistency [36] which can be leveraged by our at-
tack. In the network shown in Figure 15, packets with an
IP destination address 10.0.0.3 and a destination port 1111
loop between s; and s, when the application deletes rule
“10.0.0.3 : 1111, to s3” while rule “10.0.0.3 : 1111, o s1”
remains. The rule inconsistency normally lasts for a very
short period before all the commands of deleting correspond-
ing rules of the flow are issued. However, our attack can de-
lay the commands exchanged between the flow rule service
and s, for tens of seconds. Thus, the packets loop between
s1 and s, for a long period and the link utilization between
the two switches increases with more packets injected.

Figure 16b shows the long-term routing blackhole when
h3 is migrated from s3 to sp. The migration is finished
within five seconds without the attack, as the topology ser-
vice can track the new location via packet_in messages con-
taining the DHCP payload when the host moves to 5. How-
ever, the messages are significantly delayed under our attack,
and thereby the routing between other hosts and A3 cannot
be updated in time, causing more than 10 seconds routing
blackhole. Moreover, by blocking LLDP packets between
the topology service and switches, our attack can deactivate
links in the topology database and thus the corresponding
routing paths will be removed. In the Floodlight controller,
a link will be deactivated if no LLDP packets pass through
the links within 35s. Figure 16c shows the original routing
path from %, to h3 is removed since our attack deactivates
the link from s, to s3. Moreover, our attack can reset the
connections between switches and the controller by delay-
ing control messages. Figure 16d shows the connection of
switch s, is reset and all the flow tables are cleaned.

5.5 Load Balancer

Load balancing has been widely used to improve resource
usage and throughput as well as reduce response delays,
which balances the workload among multiple nodes. SDN
controllers deploy the load balancer [7] application to
achieve the goal. The application in the Floodlight controller
can balance requests of clients in two way, i.e., round robin
and statistics-based scheduling. Round robin scheduling ran-
domly chooses a server from a server pool to serve a new
request each time. The statistics-based scheduling chooses a
server that has the lowest utilization to serve a new request,
where the utilization is calculated according to the real-time
statistics of the switch ports. The load balancer application
relies on the flow metrics service to collect the statistics.

We configure the load balancer application in Floodlight
to enable statistics-based scheduling, as it can provide better
load balancing under different flow distribution of clients. In

-

— Server 1 — Server 1 '
0.8 --- Server 2 0.8 === Server 2 H
S s overloaded
T0.6] 0.6 i
8 S |
= =3 1
2 20— e i
204¢ 204 -
o o
a a
0.2 0.2F !
% 5 10 15 20 % 5 10 15 20
Time(s) Time(s)
(a) Port Utilization of Servers with- (b) Port Utilization of Servers with
out Attack. Attack.

Figure 17: Attack impacts on Load Balancer for misallocat-
ing the workloads across servers.

our experiments, two hosts consist of a server pool and an-
other two hosts send flows to the servers. Figure 17a shows
the utilization of switch ports connecting the two servers
over time without our attack. Initially, two different elephant
flows are sent to the servers, which causes the port utiliza-
tion to increase to 40% and 10%, respectively. At the 7th
second, the rate of the two flows exchanges. The utiliza-
tion of one server reduces from 40% to 10% while another
server increases from 10% to 40%. At the 14th second, a
new elephant flow starts, and the application directs the flow
to server #1 that has the lowest port utilization. The port uti-
lization of server #1 reaches 70%. Unfortunately, the appli-
cation will mistakenly direct the flow to server #2 under our
attack. As shown in Figure 17b, the port utilization of server
#2 reaches 100%. The reason is that our attack can signifi-
cantly delay the stats_request and stats_reply messages ex-
changed between the flow metrics service and switches, and
thus the applications cannot know the port utilization in time.
Actually, the application considers that the port utilization of
server #2 is still 10% when the new flow comes.

6 Defense Schemes

In this section, we discuss possible countermeasures that net-
work administrators can be used to mitigate the attack.
Delivering Control Traffic with High Priority. To defend
against the attack, one way is to ensure forwarding con-
trol traffic with high priority, which thus can protect con-
trol traffic from being congested by malicious data traffic.
According to our analysis, such a defense scheme can be
enforced by carefully configuring Priority Queue (PQ) or
Weighted Round Robin Queue (WRR) in switches. We note
that many commercial SDN switches support at least one
of the two queueing mechanisms (see Appendix C). We im-
plement the defense scheme based on PQ and WRR in our
hardware switches to deliver control traffic with high prior-
ity. The evaluation shows it can effectively protect control
traffic against malicious data traffic. The detailed implemen-
tations and evaluations can be found in Appendix B.
Proactively Reserving Bandwidth for Control Traffic.

30 28th USENIX Security Symposium

USENIX Association

Another way to defend against the attack is to proactively
reserve proprietary bandwidth for control traffic. Such a
defense scheme is suitable for SDN switches that do not
support PQ and WRR mechanisms. We implement the de-
fense scheme with OpenFlow meter table in our hardware
switches. We have demonstrated that control traffic can be
well protected by reserving enough bandwidth. We refer the
reader to Appendix B for details. The main disadvantage of
the defense scheme is that the reserved bandwidth cannot be
used by other traffic even there is massive free bandwidth.
Our future work will focus on how to dynamically reserve
the bandwidth for control traffic to make full use of it.
Disturbing Path Reconnaissances. The necessary condi-
tion to successfully launch the CrossPath attack is to find a
target path containing shared links. Thus, we can prevent
the attack by disturbing path reconnaissances. One way is to
deliberately add random delays when installing flow rules,
which may result in incorrect delay measurements of control
paths when conducting path reconnaissances. Our evaluation
shows that the accuracy of path reconnaissances can drops to
less than 30% by adding random delays ranging from 100
ms to 1,000 ms. However, adding random delays affects the
rule installation of all flows in the network. It is especially
harmful to mice flows that are delay-sensitive [30]. Design-
ing a scheme to effectively disturb path reconnaissances and
reduce the impacts on network flows is worth more future
research.

7 Related Work

In this section, we review related security research in SDN
and legacy networks, respectively.

Reconnaissances in SDN. SDN reconnaissances has been
extensively studied. Shin et al. [54] designed an SDN scan-
ner to determine whether a network is SDN by measuring
response delays of pings. Cui et al. [25] further conducted
experiments in real SDN testbed to demonstrate its feasibil-
ity. Kloti et al. [39] presented a reconnaissance technique to
determine if an SDN has rules for aggregated TCP flows by
timing the TCP setup time. Achleitner et al. [19] designed
SDNMap to reconstruct composition of flow rules by ana-
lyzing probing packets with specific protocols. Liu et al. [45]
developed a Markov model to reveal rule distribution among
switches. John et al. [56] presented a sophisticated inference
attack to learn host communication patterns and ACL entries
even if injected packets do not trigger replies. However, none
of the methods can be applied to find target paths containing
shared links with control paths.

Attacks on SDN and Related Defenses. SE-Floodlight [48]
and SDNShield [63] are developed to provide permission
control for malicious SDN applications. Some studies fo-
cus on the security of controllers, including network poison-
ing [31], identifier binding attacks [35], subverting SDN con-
trollers [49], and exploiting harmful race conditions in SDN

controllers [65]. Other studies focus on data plane security,
including low-rate flow table overflow attacks [22], SDN
teleportation, and detection on abnormal data plane [51].
Our paper focuses on the security of control channel, which
is orthogonal to the existing work. Particularly, we uncover
a new type of attack, which has not been discovered by ex-
isting automatic attack discovery tools [34, 43, 59] in SDN.

The packet_in flooding attack [55, 60] is mostly closest to
ours. It saturates the control channel with a large amount
of packet_in messages. To trigger the control messages, the
attack requires generating massive bogus packets matching
no rules in switches. Different from it, our attack generates
low-rate data traffic to implicitly disrupt control traffic in the
shared links instead of directly generating massive control
traffic. Our attack can bypass the previous defenses [55, 60,
52, 27] against packet_in flooding attacks since they detect
attacks by identifying and throttling malicious control traffic.
LDoS Attacks in Traditional IP Networks. Kuzmanovic
et al. [41] developed low-rate TCP-targeted DoS attacks to
disrupt TCP connections. Zhang et al. [66] demonstrated
the attack has severe impact on the Border Gateway Pro-
tocol (BGP) by conducting real experiments. Schuchard et
al. [50] extended the attack developed by Zhang et al. and
de