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Message from the 
26th USENIX Security Symposium 

Program Co-Chairs

Welcome to the USENIX Security Symposium in Vancouver! The symposium, now in its 26th year, is a premier 
venue for security and privacy research, and gathers together researchers from both industry and academia to 
discuss the latest on improving computer security. The program consists of research papers selected during a peer-
review process, invited talks, and professional and social events. 

This was the biggest year ever for our peer-review submissions process. Like last year, the symposium had two 
chairs. We were supported by an excellent program committee (PC) consisting of 77 members. Of those, 35 were 
remote PC members whereas 42 also attended an in-person PC meeting in Boston that lasted a day and a half. The 
PC members did an incredible amount of work, and we can’t thank them enough for their efforts! 

The double-blind review process this year worked as follows: We received 572 submissions—the most ever for the 
symposium—by the submission deadline of February 16, 2017. Of these, 19 were desk-rejected for various  violations  
of the call for papers. Reviewing proceeded in two rounds. In the first round, every paper was assigned to  
two reviewers, and 199 papers were marked for rejection after the first round (due to unanimously low scores by 
two confident reviewers). We allowed a special appeals process in case of reviewer error; none of the appealed 
 papers were revived after inspection of the authors’ concerns. The remaining papers passed on to a second round, 
and received one or more additional reviews. 

In an online discussion phase, the committee attempted to accept or reject a large number of papers before the 
in-person meeting. This was to ensure that there was sufficient time at the meeting to discuss the most contentious 
 papers. We pre-accepted 49 papers during online discussions and discussed about 80 papers during the  meeting. 
Each paper was allowed up to eight minutes of discussion, with few exceptions. The vast majority were easily 
 decided upon within that time. Unlike last year, we did not unblind the authors during the PC meeting and believe 
the benefits (in terms of discouraging negative or positive bias) outweighed the few situations that arose in which the 
PC members would have benefited from knowing the authorship. The chairs also decided to keep the PC members 
somewhat in the dark about the number of papers being accepted over the course of the meeting in the hope that 
discussions could focus on the merit of individual papers rather than on the need to “fill a program.”

At the meeting, the committee had an extensive discussion about whether more theory-oriented papers are suitably 
in-scope for the symposium. Over the last few years, the symposium has seen an increasing number of papers that 
only very tangentially target computer security problems faced in practice, most notably in the context of papers 
developing or improving cryptographic protocols not yet addressing specific security applications. After extensive 
discussion, the committee decided that the broader community would be better served by encouraging such papers 
to seek other venues. This was not a decision taken lightly, and it resulted in a number of very good papers being 
rejected for reason of fit. 

Ultimately, the committee decided to accept 85 papers, a record number for the symposium. Of these, 38 were con-
ditionally accepted and shepherded to ensure that the camera-ready version of the paper reflected reviewer feedback. 
In the end, this resulted in a 15% acceptance rate, meaning that the conference continues to be exceptionally com-
petitive. We believe the final set of accepted papers represent excellent work, and the authors should be congratu-
lated for their notable achievement!

The conference would not be possible without the help of a huge number of people. The staff at USENIX ensure 
that everything runs smoothly behind the scenes, and Casey Henderson and Michele Nelson specifically helped us 
in innumerable ways. The PC, of course, did a tremendous amount of work, with each member reviewing about 20 
papers, for a total of over 1600 reviews and over 2200 comments across the entire process. We also thank the exter-
nal reviewers who were brought in due to their particular expertise to review a smaller number of papers. We would 
also like to thank for their hard work: the invited talks committee (Michael Bailey, Casey Henderson, David Molnar, 
and Franziska Roesner); the Test-of-Time award committee (Matt Blaze, Dan Boneh, Kevin Fu, and David Wagner); 
the poster-session chair Nick Nikiforakis; and the lightning talks chairs Kevin Butler and Deian Stefan. Finally, we 
thank all of the authors of the 572 submitted papers for participating in the 26th USENIX Security Symposium. 

Engin Kirda, Northeastern University 
Thomas Ristenpart, Cornell Tech 
USENIX Security ’17 Program Co-Chairs
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Abstract

We present the first static approach that systematically
detects potential double-fetch vulnerabilities in the Linux
kernel. Using a pattern-based analysis, we identified 90
double fetches in the Linux kernel. 57 of these occur
in drivers, which previous dynamic approaches were un-
able to detect without access to the corresponding hard-
ware. We manually investigated the 90 occurrences, and
inferred three typical scenarios in which double fetches
occur. We discuss each of them in detail. We further de-
veloped a static analysis, based on the Coccinelle match-
ing engine, that detects double-fetch situations which can
cause kernel vulnerabilities. When applied to the Linux,
FreeBSD, and Android kernels, our approach found six
previously unknown double-fetch bugs, four of them in
drivers, three of which are exploitable double-fetch vul-
nerabilities. All of the identified bugs and vulnerabilities
have been confirmed and patched by maintainers. Our
approach has been adopted by the Coccinelle team and
is currently being integrated into the Linux kernel patch
vetting. Based on our study, we also provide practical so-
lutions for anticipating double-fetch bugs and vulnerabil-
ities. We also provide a solution to automatically patch
detected double-fetch bugs.

1 Introduction

The wide use of multi-core hardware is making concur-
rent programs increasingly pervasive, especially in oper-
ating systems, real-time systems and computing inten-
sive systems. However, concurrent programs are also
notorious for difficult to detect concurrency bugs. Real-
world concurrency bugs can be categorized into three
types: atomicity-violation bugs, order-violation bugs,
and deadlocks [20].

A data race is another common situation in concurrent
programs. It occurs when two threads are accessing one
shared memory location, at least one of the two accesses

is a write, and the relative ordering of the two accesses is
not enforced by any synchronization primitives [30, 15].
Data races usually lead to concurrency bugs because
they can cause atomicity-violations [22, 21, 23] or order-
violations [33, 40]. In addition to occurring between two
threads, data races can also happen across the kernel and
user space. Serna [32] was the first to use the term “dou-
ble fetch” to describe a Windows kernel vulnerability
due to a race condition in which the kernel fetches the
same user space data twice. A double-fetch bug occurs
when the kernel reads and uses the same value that re-
sides in the user space twice (expecting it to be identi-
cal both times), while a concurrently running user thread
can modify the value in the time window between the
two kernel reads. Double-fetch bugs introduce data in-
consistencies in the kernel code, leading to exploitable
vulnerabilities such as buffer overflows [1, 32, 14, 37].

Jurczyk and Coldwind [14] were the first to study dou-
ble fetches systematically. Their dynamic approach de-
tected double fetches by tracing memory accesses and
they discovered a series of double-fetch vulnerabilities in
the Windows kernel. However, their dynamic approach
can achieve only limited coverage. In particular, it can-
not be applied to code that needs corresponding hard-
ware to be executed, so device drivers cannot be analyzed
without access to the device or a simulation of it. Thus,
their analysis cannot cover the entirety of the kernel. In
fact, their approach has not discovered any double-fetch
vulnerability in Linux, FreeBSD or OpenBSD [13]. Be-
sides, Jurczyk and Coldwind have brought attention to
not only on how to find but also on how to exploit double-
fetch vulnerabilities. Instructions on how to exploit dou-
ble fetches have recently become publicly available [11].
Thus, auditing kernels, in particular drivers, for double-
fetch vulnerabilities has become urgent.

Device drivers are critical kernel-level programs that
bridge hardware and software by providing interfaces be-
tween the operating system and the devices attached to
the system. Drivers are a large part of current operat-
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ing systems, e.g., 44% of the Linux 4.5 source files be-
long to drivers. Drivers were found to be particularly
bug-prone kernel components. Chou et al. [7] empiri-
cally showed that the error-rate in device drivers is about
ten times higher than in any other parts of the kernel.
Swift et al. [34] also found that 85% of system crashes
in Windows XP can be blamed on driver errors. Further-
more, Ryzhyk et al. [29] found that 19% of the bugs in
drivers were concurrency bugs, and most of them were
data races or deadlocks.

Because drivers are such a critical point of failure in
kernels, they must be analyzed for security vulnerabili-
ties even when their corresponding hardware is not avail-
able. Indeed, 26% of the Linux kernel source files belong
to hardware architectures other than x86 which cannot be
analyzed with Jurczyk and Coldwind’s x86-based tech-
nique. Thus, dynamic analysis is not a viable, affordable
approach. Therefore, we developed a static pattern-based
approach to identify double fetches in the Linux kernel,
including the complete space of drivers. We identified 90
double fetches which we then investigated and catego-
rized into three typical scenarios in which double fetches
occur. We found that most double fetches are not double-
fetch bugs because although the kernel fetches the same
data twice, it only uses the data from one of the two
fetches. We therefore refined the static pattern-based ap-
proach to detect actual double-fetch bugs and vulnera-
bilities, and analyzed Linux, Android and FreeBSD with
it.

We found that most of the double fetches in Linux 4.5
occur in drivers (57/90) and so do most of the identified
double-fetch bugs (4/5). This means dynamic analysis
methods fail to detect a majority of double fetch bugs,
unless researchers have access to the complete range of
hardware compatible with the kernel they analyze. This
is confirmed by a comparison with Bochspwn, a dynamic
analysis approach, which was unable to find any double-
fetch bug in Linux 3.5.0 [13] where our approach finds
three. In summary, we make the following contributions
in this paper:

(1) First systematic study of double fetches in the
Linux kernel. We present the first (to the best of our
knowledge) study of double fetches in the complete
Linux kernel, including an analysis of how and why a
double fetch occurs. We used pattern matching to auto-
matically identify 90 double-fetch situations in the Linux
kernel, and investigated those candidates by manually
reviewing the kernel source. We categorize the identi-
fied double fetches into three typical scenarios (type se-
lection, size checking, shallow copy) in which double
fetches are prone to occur, and illustrate each scenario
with a detailed double fetch case analysis. Most (57/90)
of the identified double fetches occur in drivers.

(2) A pattern-based double-fetch bug detection ap-
proach. We developed a static pattern-based approach to
detect double-fetch bugs1. The approach has been imple-
mented on the Coccinelle program matching and trans-
formation engine [17] and has been adapted for check-
ing the Linux, FreeBSD, and Android kernels. It is the
first approach able to detect double-fetch vulnerabilities
in the complete kernel including all drivers and all hard-
ware architectures. Our approach has been adopted by
the Coccinelle team and is currently being integrated into
the Linux kernel patch vetting through Coccinelle.

(3) Identification of six double-fetch bugs. In total, we
found six real double-fetch bugs. Four are in the drivers
of Linux 4.5 and three of them are exploitable vulner-
abilities. Moreover, all four driver-related double-fetch
bugs belong to the same size checking scenario. The bugs
have been confirmed by the Linux maintainers and have
been fixed in new versions as a result of our reports. One
double-fetch vulnerability has been found in the Android
6.0.1 kernel, which was already fixed in newer Linux ker-
nels.

(4) Strategies for double-fetch bug prevention. Based
on our study, we propose five solutions to anticipate
double-fetch bugs and we implemented one of the strate-
gies in a tool that automatically patches double-fetch
bugs.

The rest of the paper is organized as follows: Sec-
tion 2 presents relevant background on memory access in
Linux, specifically in Linux drivers, and on how double-
fetch bugs occur. Section 3 introduces our approach to
double fetch detection, including our analysis process,
the categorization of the identified double fetches into
three scenarios, and what we learned from the identi-
fied double-fetch bugs. Section 4 presents the evaluation
of our work, including statistics on the manual analysis
and the results of applying our approach to the Linux,
FreeBSD, and Android kernels. Section 5 discusses the
detected bugs, implications of double-fetch bug preven-
tion, an interpretation of our findings, as well as limi-
tations of our approach. Related work is discussed in
Section 6, followed by conclusions.

2 Background

We provide readers with a reminder of how data is ex-
changed between the Linux kernel and its drivers and the
user space, and of how race conditions and double-fetch
bugs can occur within this framework.

1Our analysis is available at https://github.com/UCL-CREST/
doublefetch
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2.1 Kernel/User Space Protection
In modern computer systems, memory is divided into
kernel space and user space. The kernel space is where
the kernel code executes and where its internal data is
stored, while the user space is where normal user pro-
cesses run. Each user space process resides in its own
address space, and can only address memory within that
space. Those virtual address spaces are mapped onto
physical memory by the kernel in such a way that iso-
lation between separate spaces is guaranteed. The kernel
also has its own independent address space.

Special schemes are provided by the operating sys-
tem to exchange data between kernel and user space.
In Windows, we can use the device input and output
control (IOCTL) method, or a shared memory object
method to exchange data between kernel and user space2

which is very similar to shared memory regions. In
Linux and FreeBSD, functions are provided to safely
transfer data between kernel space and user space which
we call transfer functions. For instance, Linux has
four often used transfer functions, copy_from_user(),
copy_to_user(), get_user(), and put_user(), that
copy single values or an arbitrary amount of data to
and from user space in a safe way. Transfer functions
not only exchange data between kernel and user space
but also provide a protection mechanism against invalid
memory access, such as illegal addresses or page faults.
Therefore, any double fetch in Linux will involve multi-
ple invocations of transfer functions.

2.2 Memory Access in Drivers
Device drivers are kernel components responsible for en-
abling the kernel to communicate with and make use of
hardware devices connected to the system. Drivers have
typical characteristics, such as support for synchronous
and asynchronous operations and the ability to be opened
multiple times [8]. Drivers are critical to security be-
cause faults in them can result in vulnerabilities that
grant control of the whole system. Finally, drivers of-
ten have to copy messages of variable type or variable
length from the user space to the hardware, and, as we
will see later, this often leads to double-fetch situations
that cause vulnerabilities.

In Linux, all devices have a file representation which
can be accessed from user space to interact with the hard-
ware’s driver. The kernel creates a file in the /dev di-
rectory for each driver, with which user space processes
can interact using file input/output system calls. The
driver provides implementations of all file related op-
erations, including read() and write() functions. In
such functions, the driver needs to fetch the data from

2https://support.microsoft.com/en-us/kb/191840
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Figure 1: Principal Double Fetch Race Condition

the user space (in write) or copy data to the user space
(in read). The driver uses the transfer functions to do so,
and again, any double fetch will involve multiple invoca-
tions of transfer functions.

2.3 Double Fetch
A double fetch is a special case of a race condition
that occurs in memory access between the kernel and
user space. The first vulnerability of this type was pre-
sented by Serna [32] in a report on Windows double-
fetch vulnerabilities. Technically, a double fetch takes
place within a kernel function, such as a syscall, which
is invoked by a user application from user mode. As il-
lustrated in Figure 1, the kernel function fetches a value
twice from the same memory location in the user space,
the first time to check and verify it and the second time to
use it (note that the events are on a timeline from left to
right, but the user data is the same object all the time).
Meanwhile, within the time window between the two
kernel fetches, a concurrently running user thread modi-
fies the value. Then, when the kernel function fetches the
value a second time to use, it gets a different value, which
will not only result in a different computation outcome,
but may cause a buffer overflow, a null-pointer crash or
even worse consequences.

To avoid confusion, we use the term double fetch or
double-fetch situation in this paper to represent all the
situations in which the kernel fetches the same user data
more than once, and a so-called double fetch can be fur-
ther divided into the following cases:

Benign double fetch: A benign double fetch is a case
that will not cause harm, owing to additional protection
schemes or because the double-fetched value is not used
twice (details will be discussed in Section 5.3).

Harmful double fetch: A harmful double fetch or
a double-fetch bug is a double fetch that could actually
cause failures in the kernel in specific situations, e.g., a
race condition that could be triggered by a user process.

Double-fetch vulnerability: A double-fetch bug can
also turn into a double-fetch vulnerability once the conse-
quence caused by the race condition is exploitable, such
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140 int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg,
141 unsigned char *stackbuf, int stackbuf_size)
142 {
143 struct compat_cmsghdr __user *ucmsg;
144 struct cmsghdr *kcmsg, *kcmsg_base;
145 compat_size_t ucmlen;
...
149 kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf;
150 ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);
151 while(ucmsg != NULL) {
152 if(get_user(ucmlen, &ucmsg->cmsg_len))
153 return -EFAULT;
...
156 if(CMSG_COMPAT_ALIGN(ucmlen) <
157 CMSG_COMPAT_ALIGN(sizeof(struct compat_cmsghdr)))
158 return -EINVAL;
159 if((...)(((char __user *)ucmsg - (char __user*)...
160 + ucmlen) > kmsg->msg_controllen)
161 return -EINVAL;
...
166 ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);
167 }
168 if(kcmlen == 0)
169 return -EINVAL;
...
183 ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg);
184 while(ucmsg != NULL) {
185 __get_user(ucmlen, &ucmsg->cmsg_len);
186 tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +
187 CMSG_ALIGN(sizeof(struct cmsghdr)));
188 kcmsg->cmsg_len = tmp;
...
193 if(copy_from_user(CMSG_DATA(kcmsg),
194 CMSG_COMPAT_DATA(ucmsg),
195 (ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg)))))
...
212 }

Figure 2: Double-Fetch Vulnerability in Linux 2.6.9

as through a buffer overflow, causing privilege escala-
tion, information leakage or kernel crash.

In this paper, we investigate both harmful double
fetches and benign double fetches. Even though be-
nign double fetches are currently not vulnerable, some
of them can turn into harmful ones when the code is
changed or updated in the future (when the double-
fetched data is reused). Moreover, some benign double
fetches them can cause performance degradation when
one of the fetches is redundant (discussed in Section 5).

Double-fetch vulnerabilities occur not only in the
Windows kernel [14], but also in the Linux kernel. Fig-
ure 2 shows a double-fetch bug in Linux 2.6.9, which
was reported as CVE-2005-2490. In file compat.c,
when the user-controlled content is copied to the ker-
nel by sendmsg(), the same user data is accessed
twice without a sanity check at the second time.
This can cause a kernel buffer overflow and there-
fore could lead to a privilege escalation. The func-
tion cmsghdr_from_user_compat_to_kern() works
in two steps: it first examines the parameters in the first
loop (line 151) and copies the data in the second loop
(line 184). However, only the first fetch (line 152) of
ucmlen is checked (lines 156–161) before use, whereas
after the second fetch (line 185) there are no checks be-

prepare
data clone

syscall

1st fetch
(copy)

1st use
(check)

2nd fetch
(copy)

2nd use
(real use)entryKernel Space

User Space

kernel copy #1 kernel copy #2

malicious
update

user data

time

Figure 3: Double Fetch with Transfer Functions

fore use, which may cause an overflow in the copy oper-
ation (line 195) that can be exploited to execute arbitrary
code by modifying the message.

Plenty of approaches have been proposed for data race
detection at memory access level. Static approaches ana-
lyze the program without running it [35, 28, 12, 6, 10, 19,
38]. However, their major disadvantage is that they gen-
erate a large number of false reports due to lack the full
execution context of the program. Dynamic approaches
execute the program to verify data races [31, 16, 15],
checking whether a race could cause a program failure
in executions. Dynamic approaches usually control the
active thread scheduler to trigger specific interleavings
to increase the probability of a bug manifestation [41].
Nevertheless, the runtime overhead is a severe problem
and testing of driver code requires the support of specific
hardware or a dedicated simulation. Unfortunately, none
of the existing data race detection approaches (whether
static or dynamic) can be applied to double-fetch bug de-
tection directly, for the following reasons:

(1) A double-fetch bug is caused by a race condition
between kernel and user space, which is different from
a common data race because the race condition is sepa-
rated by the kernel and user space. For a data race, the
read and write operations exist in the same address space,
and most of the previous approaches detect data races by
identifying all read and write operations accessing the
same memory location. However, things are different for
a double-fetch bug. The kernel only contains two reads
while the write resides in the user thread. Moreover, the
double-fetch bug exists if there is a possibility that the
kernel fetches and uses the same memory location twice,
as a malicious user process can specifically be designed
to write between the first and second fetch.

(2) The involvement of the kernel makes a double-
fetch bug different from a data race in the way of
accessing data. In Linux, fetching data from user
space to kernel space relies on the specific parameters
passed to transfer functions (e.g., copy_from_user()
and get_user()) rather than dereferencing the user
pointer directly, which means the regular data race de-
tection approaches based on pointer dereference are not
applicable anymore.
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(3) Moreover, a double-fetch bug in Linux is more
complicated than a common data race or a double-fetch
bug in Windows. As shown in Figure 3, a double-fetch
bug in Linux requires a first fetch that copies the data,
usually followed by a first check or use of the copied
data, then a second fetch that copies the same data again,
and a second use of the same data. Although the dou-
ble fetch can be located by matching the patterns of fetch
operations, the use of the fetched data varies a lot. For
example, in addition to being used for validation, the first
fetched value can be possibly copied to somewhere else
for later use, which means the first use (or check) could
be temporally absent. Besides, the fetched value can be
passed as an argument to other functions for further use.
Therefore, in this paper, we define the use in a double
fetch to be a conditional check (read data for compar-
ison), an assignment to other variables, a function call
argument pass, or a computation using the fetched data.
We need to take into consideration these double fetch
characteristics.

For these reasons, identifying double-fetch bugs re-
quires a dedicated analysis and previous approaches are
either not applicable or not effective.

2.4 Coccinelle
Coccinelle [17] is a program matching and transforma-
tion engine with a dedicated language SmPL (Seman-
tic Patch Language) for specifying desired matches and
transformations in C code. Coccinelle was initially tar-
geted for collateral evolution in Linux drivers, but now is
widely used for finding and fixing bugs in systems code.

Coccinelle’s strategy for traversing control-flow
graphs is based on temporal logic CTL (Computational
Tree Logic) [3], and the pattern matching implemented
on Coccinelle is path-sensitive, which achieves better
code coverage. Coccinelle is highly optimized to im-
prove performance when exhaustively traversing all the
execution paths. Besides, Coccinelle is insensitive to
newlines, spaces, comments, etc. Moreover, the pattern-
based analysis is applied directly to the source code,
therefore operations that are defined as macros, such as
get_user() or __get_user(), will not be expanded
during the matching, which facilitates the detection of
double fetches based on the identification of transfer
functions. Therefore, Coccinelle is a suitable tool for us
to carry out our study of double fetches based on pattern
matching.

3 Double Fetches in the Linux Kernel

In this paper, our study of double fetches in the Linux
kernel is divided into two phases. As shown in Figure 4,
in the first phase, we analyze the Linux kernel with the
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Figure 4: Overview of our Two-Phase Coccinelle-Based
Double-Fetch Situation Detection Process

Coccinelle engine using a basic double-fetch pattern that
identifies when a function has multiple invocations of a
transfer function. Then we manually investigate the can-
didate files found by the pattern matching, to categorize
the scenarios in which a double fetch occurs and when
a double-fetch bug or vulnerability is prone to happen
based on the context information that is relevant to the
bug. In the second phase, based on the knowledge gained
from the manual analysis, we developed a more precise
analysis using the Coccinelle engine to systematically
detect double-fetch bugs and vulnerabilities throughout
the kernel, which we also used to additionally analyze
FreeBSD and Android.

3.1 Basic Pattern Matching Analysis

There are situations in which a double fetch is hard to
avoid, and there exist a large number of functions in the
Linux kernel that fetch the same data twice. According
to the definition, a double fetch can occur in the kernel
when the same user data is fetched twice within a short
interval. Therefore we can conclude a basic pattern that
we will use to match all the potential double-fetch sit-
uations. The pattern matches the situation in which a
kernel function is using transfer functions to fetch data
from same user memory region at least twice. In the
case of the Linux kernel, the transfer functions to match
are mainly get_user() and copy_from_user() in all
their variants. The pattern allows the target of the copy
and the size of the copied data to be different, but the
source of copy (the address in user space) must be the
same. As shown in Figure 4, we implemented the basic
pattern matching in the Coccinelle engine.

Our approach examines all source code files of the
Linux kernel and checks whether a kernel function con-
tains two or more invocations of transfer functions that
fetch data from the same user pointer. From the 39,906
Linux source files, 17,532 files belong to drivers (44%),
and 10,398 files belong to non-x86 hardware architec-
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tures (26%) which cannot be analyzed with Jurczyk and
Coldwind’s x86-based technique. We manually analyzed
the matched kernel functions to infer knowledge on the
characteristics of double fetches, i.e., how the user data
is transferred to and used in the kernel, which helped us
to carry out a categorization of double-fetch situations,
as we discuss in Section 3.2. The manual analysis also
helped us refine our pattern matching approach and more
precisely detect actual double-fetch bugs, as explained in
Section 3.3.

During the investigation, we noticed that there are
plenty of cases where the transfer functions fetch data
from different addresses or from the same address but
with different offsets. For example, a kernel function
may fetch the elements of a specific structure separately
instead of copying the whole structure to the kernel. By
adding different offsets to the start address of that struc-
ture, the kernel fetches different elements of the struc-
ture separately, which results in multiple fetches. An-
other common situation is adding a fixed offset to the
source pointer, so as to process a long message sepa-
rately, or just using self-increment (++) to process a mes-
sage automatically in a loop. All these cases are false
positives caused by the basic pattern matching, and 226
cases of our initial reports were identified as false posi-
tives, which have been automatically removed in our re-
fined phase since they are not considered as double-fetch
situations and cannot cause a double-fetch bug because
every single piece of the message is only fetched once.

The first phase of our study concentrates on the un-
derstanding of the contexts in which double fetches are
prone to happen, rather than on exhaustively finding po-
tential double-fetch bugs. Even though the analysis and
characterization is not fully automated, it only resulted
in 90 candidates that needed manual investigation, which
took only a few days to analyze them, making the needed
manual effort of our approach acceptable.

3.2 Double Fetch Categorization

As we manually inspected the double fetch candidates,
we noticed that there are three common scenarios in
which double fetches are prone to happen, which we
categorized as type selection, size checking and shallow
copy. We now discuss these in detail.

Most of the time, copying data from the user space to
the kernel space is straightforward via a single invocation
of a transfer function. However, things get complicated
when the data has a variable type or a variable length,
depending on the data itself. Such data usually starts with
a header, followed by the data’s body. In the following,
we consider such data to be messages, as we empirically
found that variable data was often used by drivers to pass
messages to the hardware from user space.

Header
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unsigned type;

...

}hdr;
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}
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Figure 5: How Message Structure Leads to Double
Fetches

Figure 5 illustrates the scenario: A message copied
from the user space to the kernel (driver) space usually
consists of two parts, the header and the body. The
header contains some meta information about the mes-
sage, such as an indicator of the message type or the
size of the message body. Since messages have differ-
ent types and the message lengths may also vary, the
kernel usually fetches (copies) the header first to decide
which buffer type needs to be created or how much space
needs to be allocated for the complete message. A sec-
ond fetch then copies the complete message into the al-
located buffer of the specified type or size. The sec-
ond fetch not only copies the body, but also copies the
complete message including the header which has been
fetched already. Because the header of the message is
fetched (copied) twice, a double-fetch situation arises.
The double-fetch situation turns into a double-fetch bug
when the size or type information from the second fetch
is used as the user may have changed the size or type
information between the two fetches. If, for example,
the size information is used to control buffer access, the
double-fetch bug turns into a vulnerability.

The double-fetch situations where a message header is
copied twice could easily be avoided by only copying the
message body in the second fetch and then joining the
header with the body. However, copying the complete
message in the second step is more convenient, and there-
fore such a double-fetch situation occurs very often in the
Linux kernel. Moreover, large parts of the Linux kernel
are old, i.e., they have been developed before double-
fetch bugs were known or understood. Therefore, we
will discuss such double-fetch situations in the kernel in
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more detail and also highlight three cases we have found
during the manual analysis.

3.2.1 Type Selection

A common scenario in which double fetches occur is
when the message header is used for type selection. In
other words, the header of the message is fetched first
to recognize the message type and then the whole mes-
sage is fetched and processed dependent on the identi-
fied type. We have observed that it is very common in
the Linux kernel that one single function in a driver is
designed to handle multiple types of messages by using
a switch statement structure, in which each particular
message type is fetched and then processed. The result
of the first fetch (the message type) is used in the switch
statement’s condition and in every case of the switch,
the message is then copied by a second fetch to a local
buffer of a specific type (and then processed).

Figure 6 shows an example of a double-fetch situ-
ation due to type selection in the file cxgb3_main.c,
part of a network driver. The function cxgb_exten-
sion_ioctl() first fetches the type of the message
(a command for the attached hardware) into cmd from
the pointer into user space useraddr at line 2136. It
then decides based on cmd which type the message
has (e.g., CHELSIP_SET_QSET_PARAMS, CHELSIP_-
SET_QSET_NUM or CHELSIO_SETMTUTAB) and copies the
complete message into the corresponding structure (of
type ch_qset_params, ch_reg, ch_mtus, ...). The type
of the message will be fetched a second time as part
of the whole message (lines 2149, 2292, 2355 respec-
tively). As long as the header part of the message is not
used again, the double fetch in this situation does not
cause a double-fetch bug. However, if the header part
(the type/command) of the second fetch would be used
again, problems could occur as a malicious user could
have changed the header between the two fetches. In the
case of cxgb_extension_ioctl(), a manual investi-
gation revealed no use of the type part in the buffers t,
edata, m, ... and the double-fetch situation here does not
cause a double-fetch vulnerability.

We found 11 occurrences of this double-fetch cate-
gory, 9 of them in drivers. None of the 11 occurrences
used the header part of the second fetch and therefore,
they were not causing double-fetch bugs.

3.2.2 Size Checking

Another common scenario occurs when the actual length
of the message can vary. In this scenario, the message
header is used to identify the size of the complete mes-
sage. The message header is copied to the kernel first to
get the message size (first fetch), check it for validity, and

2129 static int cxgb_extension_ioctl(struct net_device *dev,
void __user *useraddr)

2130 {
...
2133 u32 cmd;
...
2136 if (copy_from_user(&cmd, useraddr, sizeof(cmd)))
2137 return -EFAULT;
2138
2139 switch (cmd) {
2140 case CHELSIO_SET_QSET_PARAMS:{
...
2143 struct ch_qset_params t;
...
2149 if (copy_from_user(&t, useraddr, sizeof(t)))
2150 return -EFAULT;
2151 if (t.qset_idx >= SGE_QSETS)
2152 return -EINVAL;
...
2238 break;
2239 }
...
2284 case CHELSIO_SET_QSET_NUM:{
2285 struct ch_reg edata;
...
2292 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2293 return -EFAULT;
2294 if (edata.val < 1 ||
2295 (edata.val > 1 && !(...)))
2296 return -EINVAL;
...
2313 break;
2314 }
...
2345 case CHELSIO_SETMTUTAB:{
2346 struct ch_mtus m;
...
2355 if (copy_from_user(&m, useraddr, sizeof(m)))
2356 return -EFAULT;
2357 if (m.nmtus != NMTUS)
2358 return -EINVAL;
2359 if (m.mtus[0] < 81)
2360 return -EINVAL;
...
2369 break;
2370 }
...
2499 }

Figure 6: A Double-Fetch Situation Belonging to the
Type Selection Category in cxgb3 main.c

allocate a local buffer of the necessary size, then a sec-
ond fetch follows to copy the whole message, which also
includes the header, into the allocated buffer. As long as
only the size of the first fetch is used and not retrieved
from the header of the second fetch, the double fetch in
this situation does not cause a double-fetch vulnerability
or bug. However, if the size is retrieved from the header
of the second fetch and used, the kernel becomes vul-
nerable as a malicious user could have changed the size
element of the header.

One such double-fetch bug (CVE-2016-6480) was
found in file commctrl.c in the Adaptec RAID con-
troller driver of the Linux 4.5. Figure 7 shows the re-
sponsible function ioctl_send_fib() which fetches
data from user space pointed by pointer arg via
copy_from_user() twice in line 81 and line 116. The
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60 static int ioctl_send_fib(struct aac_dev* dev,
void __user *arg)

61 {
62 struct hw_fib * kfib;
...
81 if (copy_from_user((void *)kfib, arg, sizeof(...))) {
82 aac_fib_free(fibptr);
83 return -EFAULT;
84 }
...
90 size = le16_to_cpu(kfib->header.Size) + sizeof(...);
91 if (size < le16_to_cpu(kfib->header.SenderSize))
92 size = le16_to_cpu(kfib->header.SenderSize);
93 if (size > dev->max_fib_size) {
...
101 kfib = pci_alloc_consistent(dev->pdev, size, &daddr);
...
114 }
115
116 if (copy_from_user(kfib, arg, size)) {
117 retval = -EFAULT;
118 goto cleanup;
119 }
120
121 if (kfib->header.Command == cpu_to_le16(...)) {
...
128 } else {
129 retval =

aac_fib_send(le16_to_cpu(kfib->header.Command),...
130 le16_to_cpu(kfib->header.Size) , FsaNormal,
131 1, 1, NULL, NULL);
...
139 }
...
160 }

Figure 7: A Double-Fetch Vulnerability in commctrl.c
(CVE-2016-6480)

first fetched value is used to calculate a buffer size (line
90), to check the validity of the size (line 93), and to al-
locate a buffer of the calculated size (line 101), while the
second copy (line 116) fetches the whole message with
the calculated size. Note that the variable kfib pointing
to the kernel buffer storing the message is reused in line
101. The header of the message is large and various ele-
ments of the header are used after the message has been
fetched the second time (e.g., kfib->header.Command
in line 121 and 129). The function also uses the size el-
ement of the header a second time in line 130, causing a
double-fetch vulnerability as a malicious user could have
changed the Size field of the header between the two
fetches.

We observed 30 occurrences of such size checking
double-fetch situations, 22 of which occur in drivers, and
four of them (all in drivers) are vulnerable.

3.2.3 Shallow Copy

The last special case of double-fetch scenario we identi-
fied is what we call shallow copy issues. A shallow copy
between user and kernel space happens when a buffer
(the first buffer) in the user space is copied to the ker-
nel space, and the buffer contains a pointer to another

55 static int sclp_ctl_ioctl_sccb(void __user *user_area)
56 {
57 struct sclp_ctl_sccb ctl_sccb;
58 struct sccb_header *sccb;
59 int rc;
60
61 if (copy_from_user(&ctl_sccb, user_area,

sizeof(ctl_sccb)))
62 return -EFAULT;
...
65 sccb = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
66 if (!sccb)
67 return -ENOMEM;
68 if (copy_from_user(sccb, u64_to_uptr(ctl_sccb.sccb),

sizeof(*sccb))) {
69 rc = -EFAULT;
70 goto out_free;
71 }
72 if (sccb->length > PAGE_SIZE || sccb->length < 8)
73 return -EINVAL;
74 if (copy_from_user(sccb, u64_to_uptr(ctl_sccb.sccb),

sccb->length)) {
75 rc = -EFAULT;
76 goto out_free;
77 }
...
81 if (copy_to_user(u64_to_uptr(ctl_sccb.sccb), sccb,

sccb->length))
82 rc = -EFAULT;
...
86 }

Figure 8: A Double-Fetch Bug in sclp ctl.c (CVE-
2016-6130)

buffer in user space (the second buffer). A transfer func-
tion only copies the first buffer (a shallow copy) and the
second buffer has to be copied by the second invocation
of a transfer function (to perform a deep copy). Some-
times it is necessary to copy data from user space into
kernel space, act on the data, and copy the data back into
user space. Such data is usually contained in the second
buffer in user space and pointed to by a pointer in the
first buffer in user space containing additional data. The
transfer functions perform shallow copies and therefore
data pointed to in the buffer copied by a transfer func-
tion must be explicitly copied as well, so as to perform
a deep copy. Such deep copies will cause multiple in-
vocations of transfer functions which are not necessarily
double fetches as each transfer function is invoked with
a different buffer to be copied. We observed 31 of such
situations, 19 of them in drivers.

The complexity of performing a deep copy with
transfer functions that only do shallow copies can
cause programmers to introduce bugs, and we found
one such bug in file sclp_ctl.c of the IBM S/390
SCLP console driver, where the bug is caused by a
shallow copy issue (CVE-2016-6130). The function
sclp_ctl_ioctl_sccb in Figure 8 performs a shallow
copy of a data structure from user space pointed to by
user_area into ctl_sccb (line 61). To do a deep copy,
it then has to copy another data structure from user space
pointed to by ctl_sccb.sccb. However, the size of the
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trans_func(dst1, src[i])

...
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...
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...
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...
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Refined Rule-based Pattern Matching
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trans_func(dst1, ptr->len)

...

trans_func(dst2, ptr)

trans_func(dst1, msg.len)

...

trans_func(dst2, &msg)

Figure 9: Refined Coccinelle-Based Double-Fetch Bug
Detection

data structure is variable, causing a size checking sce-
nario. In order to copy the data, it first fetches the header
of the data structure into the newly created kernel space
pointed to by sccb (line 68) to get the data length in
sccb->length which is checked for validity in line 72.
Then, based on sccb->length, it copies the whole con-
tent with a second fetch in line 74. Finally at line 81,
the data is copied back to the user space. While it looks
like both invocations of the transfer functions in lines 74
and 81 use the same length sccb->length, line 81 actu-
ally uses the value as copied in line 74 (the second fetch)
while line 74 uses the value from the first fetch.

Again, this is a double-fetch bug as a user may have
changed the value between the two fetches in lines 68
and 74. However, this double-fetch bug is not causing a
vulnerability because neither can the kernel be crashed
by an invalid size given to a transfer function, nor can
information leakage occur when the kernel copies back
data beyond the size that it received earlier because the
copied buffer is located in its own memory page. An
attempt to trigger the bug will simply end in termination
of the system call with an error code in line 82. The
double-fetch bug has been eliminated in Linux 4.6.

3.3 Refined Double-Fetch Bug Detection

In this section, we present the second phase of our study
which uses a refined double-fetch bug detection approach
that is again based on the Coccinelle matching engine.
While the first phase of our study was to identify and cat-
egorize scenarios in which double fetches occur, the sec-
ond phase exploited the gained knowledge from the first
phase to design an improved analysis targeted at specifi-
cally identifying double-fetch bugs and vulnerabilities.

As shown in Figure 9, in addition to the basic double-
fetch pattern matching rule (Rule 0), which is trig-

gered when two reads fetch data from the same source
location, we added the following five additional rules
to improve precision as well as discover corner cases.
The Coccinelle engine applies these rules one by one
when analyzing the source files. A double-fetch bug
could involve different transfer functions, therefore,
we have to take the four transfer functions that copy
data from user space (get_user(), __get_user(),
copy_from_user(), __copy_from_user()) into con-
sideration. We use trans_func() in Figure 9 to repre-
sent any possible transfer functions in the Linux kernel.

Rule 1: No pointer change. The most critical rule in
detecting double-fetch bugs is keeping the user pointer
unchanged between two fetches. Otherwise, different
data is fetched each time instead of the same data being
double-fetched, and false positives can be caused. As
can be seen from Rule 1 in Figure 9, this change might
include cases of self-increment (++), adding an offset, or
assignment of another value, and the corresponding sub-
traction situations.

Rule 2: Pointer aliasing. Pointer aliasing is com-
mon in double-fetch situations. In some cases, the user
pointer is assigned to another pointer, because the origi-
nal pointer might be changed (e.g., processing long mes-
sages section by section within a loop), while using two
pointers is more convenient, one for checking the data,
and the other for using the data. As can be seen from
Rule 2 in Figure 9, this kind of assignment might appear
at the beginning of a function or in the middle between
the two fetches. Missing aliasing situation could cause
false negatives.

Rule 3: Explicit type conversion. Explicit pointer
type conversion is widely used when the kernel is fetch-
ing data from user space. For instance, in the size check-
ing scenario, a message pointer would be converted to a
header pointer to get the header in the first fetch, then
used again as a message pointer in the second fetch. As
can be seen from Rule 3 in Figure 9, any of the two
source pointers could involve type conversion. Missing
type conversion situations could cause false negatives.
In addition, explicit pointer type conversions are usually
combined with pointer aliasing, causing the same mem-
ory region to be manipulated by two types of pointers.

Rue 4: Combination of element fetch and pointer
fetch. In some cases, a user pointer is used to both
fetch the whole data structure as well as fetching only
a part by dereferencing the pointer to an element of
the data structure. For instance, in the size check-
ing scenario, a user pointer is first used to fetch the
message length by get_user(len, ptr->len), then
to copy the whole message in the second fetch by
copy_from_user(msg, ptr, len), which means the
two fetches are not using exactly the same pointer as
the transfer function arguments, but they cover the same
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value semantically. As we can see from Rule 4 in Fig-
ure 9, this situation may use a user pointer or the address
of the data structure as the argument of the transfer func-
tions. This situation usually appears with explicit pointer
type conversion, and false negatives could be caused if
this situation is missed.

Rule 5: Loop involvement. Since Coccinelle is path-
sensitive, when a loop appears in the code, one transfer
function call in a loop will be reported as two calls, which
could cause false positives. Besides, as can be seen from
Rule 5 in Figure 9, when there are two fetches in a loop,
the second fetch of the last iteration and the first fetch of
the next iteration will be matched as a double fetch. This
case should be removed as false positive because the user
pointer should have been changed when crossing the iter-
ations and these two fetches are getting different values.
Moreover, cases that use an array to copy different values
inside a loop also cause false positives.

4 Evaluation

In this section, we present the evaluation of our study,
which includes two parts: the statistics of the manual
analysis, and the results of the refined approach when
applied to three open source kernels: Linux, Android,
and FreeBSD. We obtained the most up-to-date versions
available at the time of the analysis.

4.1 Statistics and Analysis
In Linux 4.5, there are 52,881 files in total and 39,906 of
them are source files (with a file extension of .c or .h),
which are our analysis targets (other files are ignored).
17,532 source files belong to drivers (44%). After the
basic pattern matching of the source files and the man-
ual inspection to remove false positives, we obtained 90
double-fetch candidate files for further inspection. We
categorized the candidates into the three double-fetch
scenarios Size Checking, Type Selection and Shallow
Copy. They are the most common cases on how a double
fetch occurs while user space data is copied to the kernel
space and how the data is then used in the kernel. We
have discussed these scenarios in detail with real double-
fetch bug examples in the previous section. As shown
in Table 1, of the 90 candidates we found, 30 were re-
lated to the size checking scenario, 11 were related to the
type selection scenario, and 31 were related to the shal-
low copy scenario, accounting for 33%, 12%, and 34%
respectively. 18 candidates did not fit into one of the
three scenarios.

Furthermore, 57 out of the 90 candidates were part of
Linux drivers and among them, 22 were size checking re-
lated, 9 were type selection related and 19 were shallow
copy related.

Table 1: Basic Double Fetch Analysis Results

Category Occurrences In Drivers

Size Checking 30 33% 22 73%
Type Selection 11 12% 9 82%
Shallow Copy 31 34% 19 61%
Other 18 20% 7 39%
Total 90 100% 57 63%

True Bugs 5 6% 4 80%

Table 2: Refined Double-Fetch Bug Detection Results

Kernel
Total
Files

Reported
Files

True
Bugs

Size
Check.

Type
Sel.

Linux 4.5 39,906 53 5 23 6
Android 6.0.1 35,313 48 3 18 6
FreeBSD 32,830 16 0 8 3

Most importantly, we found five previously unknown
double-fetch bugs which include four size checking sce-
narios and one shallow copy scenario which also be-
longs to the size checking scenario. Three of them are
exploitable vulnerabilities. The five bugs have been re-
ported and they all have been confirmed by the develop-
ers and have meanwhile been fixed. From the statistical
result, we can observe the following:

1. 57 out of 90 (63%) of the candidates were driver
related and 22 out of 30 (73%) of the size checking
cases, 9 out of 11 (82%) of the type selection cases
and 19 out of 31 (61%) of the shallow copy cases
occur in drivers.

2. 4 out of 5 (80%) of the double-fetch bugs we found
inside drivers and belong to the size checking cate-
gory.

Overall, this leads to the conclusion that most double
fetches do not cause double-fetch bugs and that double
fetches are more likely to occur in drivers. However, as
soon as a double fetch is due to size checking, developers
have to be careful: Four out of 22 size checking scenarios
in drivers turned out to be double-fetch bugs.

4.2 Analysis of Three Open Source Kernels
Based on the double fetch basic pattern matching and
manual analysis, we refined our double fetch pattern
and developed a new double-fetch bug detection analysis
based on the Coccinelle engine. In order to fully evalu-
ate our approach, we analyzed three popular open source
kernels, namely Linux, Android, and FreeBSD. Results
are shown in Table 2.
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For the Linux kernel, the experiment was conducted
on version 4.5, which was the newest version when the
experiment was conducted. The analysis took about 10
minutes and reported 53 candidate files. An investigation
of the 53 candidates revealed five true double-fetch bugs,
which were also found by the previous manual analysis.
Among the reported files, 23 were size checking related,
and 6 were type selection related.

For Android, even though it uses Linux as its ker-
nel as well, we analyzed version 6.0.1 which is based
on Linux 3.18. There are still differences between the
Android kernel and original Linux kernel: A kernel for
Android is a mainstream Linux kernel, with additional
drivers for the specific Android device, and other ad-
ditional functionality, such as enhanced power manage-
ment or faster graphics support. Our analysis took about
9 minutes and reported 48 candidate files, including
seven files that were not included in the original Linux
kernel reports. Among the reported candidates, three
were true double-fetch bugs, including two that were
shared with the Linux 4.5 report above, and one that was
only reported for Android. Among the results, 18 candi-
dates were size checking related, and six candidates were
type selection related.

For FreeBSD, we needed to change the transfer func-
tions copy_from_user() and __copy_from_user()
to the corresponding ones in FreeBSD, copyin() and
copyin_nofault(). We obtained the source code from
the master branch3. This analysis took about 2 minutes
and only 16 files were reported, but none of them turned
out to be a vulnerable double-fetch bug. Among the re-
ported candidates, eight were size checking related, and
three were type selection related. It is interesting to note
that 5 out of these 16 files were benign double fetches,
which would have been double-fetch bugs but were pre-
vented by additional checking schemes. The develop-
ers of FreeBSD seem to be more aware of double-fetch
bugs and try to actively prevent them. In comparison,
for Linux, only 5 out of the 53 reports were protected by
additional checking schemes.

In this experiment, we only counted the size check-
ing and type selection cases because the refined pattern
matching approach discards shallow copy cases that are
not able to cause a double-fetch bug. Our approach
matches the double fetch pattern that fetches data from
the same memory region, which ignores the first buffer
fetches in the case of a shallow copy and only considers
multiple fetches to the same second buffer. Such shallow
copy cases usually combine with other scenarios such as
size checking and type selection. In Table 2, the size
checking cases of the Linux kernel also includes one case
that occurred in a shallow copy scenario.

3From GitHub as of July 2016 (https://github.com/freebsd/freebsd)

5 Discussion

In this section, we discuss the discovered double-fetch
bugs and vulnerabilities in Linux 4.5 and how double-
fetch bugs can be prevented in the presence of double-
fetch situations. We also interpret our findings and the
limitations of our approach.

5.1 Detected Bugs and Vulnerabilities
Based on our approach, we found six double-fetch bugs
in total. Five of them are previously unknown bugs that
have not been reported before (CVE-2016-5728, -6130, -
6136, -6156, -6480), and the sixth one (CVE-2015-1420)
is a double-fetch bug present in the newest Android (ver-
sion 6.0.1) which is based on an older Linux kernel (ver-
sion 3.18) containing the bug, which has been fixed in
the mainline Linux kernel since Linux 4.1. Three of the
five new bugs are exploitable double-fetch vulnerabili-
ties (CVE-2016-5728, -6136, -6480). Four of the five
are in drivers (CVE-2016-5728, -6130, -6156, -6480).
All bugs have been reported to the Linux kernel main-
tainers who have confirmed them. All of these reported
bugs are fixed as of Linux 4.8. We did not find any new
double-fetch bugs in FreeBSD. Details on the detected
bugs are shown in Table 3.

The presented approach identifies a large number of
double-fetch situations for which only a small number
are double-fetch bugs (or even vulnerabilities). How-
ever, even though the cases we call benign double-fetch
situations are not currently faulty, they could easily turn
into a double-fetch bug or vulnerability when the code is
updated without paying special attention to the double-
fetch situation. We observed an occurrence of such
a situation when investigating the patch history of the
double-fetch bug CVE-2016-5728. A reuse of the sec-
ond fetched value was introduced when the developer
moved functionality from the MIC host driver into the
Virtio Over PCIe (VOP) driver, therefore introducing a
double-fetch bug. A major part of our future work will
be preventing such benign double fetch situations from
turning into harmful ones.

We did not find any false negatives while manually
checking random samples of Linux kernel source code
files.

5.2 Comparison
Only a few systematic studies have been conducted on
double fetches. Bochspwn [14, 13] is the only approach
similar enough to warrant a comparison with. An anal-
ysis of Linux 3.5.0 with Bochspwn did not find any
double-fetch bug, while producing up to 200KB of dou-
ble fetch logs. In the same kernel, our approach identi-
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Table 3: Description of Identified Double Fetch Bugs and Vulnerabilities (*)

IDs File Description

CVE-
2016-
5728*

mic_virtio.c

MIC architecture VOP
(Virtual I/O Over PCIe)
driver
Linux 4.5

Race condition in the vop_ioctl function allows local users to obtain sensitive
information from kernel memory or cause a denial of service (memory cor-
ruption and system crash) by changing a certain header, aka a “double fetch”
vulnerability.
Belongs to the size checking scenario.

CVE-
2016-
6130

sclp_ctl.c

IBM S/390 SCLP console
driver
Linux 4.5

Race condition in the sclp_ctl_ioctl_sccb function allows local users to
obtain sensitive information from kernel memory by changing a certain length
value, aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

CVE-
2016-
6136*

auditsc.c

Linux auditing subsystem
Linux 4.5

Race condition in the audit_log_single_ execve_arg function allows local
users to bypass intended character-set restrictions or disrupt system-call audit-
ing by changing a certain string, aka a “double fetch” vulnerability.

CVE-
2016-
6156

cros_ec_dev.c

Chrome OS Embedded
Controller driver
Linux 4.5

Race condition in the ec_device_ioctl_xcmd function allows local users to
cause a denial of service (out-of-bounds array access) by changing a certain size
value, aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

CVE-
2016-
6480*

commctrl.c

Adaptec RAID controller
driver
Linux 4.5

Race condition in the ioctl_send_fib function allows local users to cause a
denial of service (out-of-bounds access or system crash) by changing a certain
size value, aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

CVE-
2015-
1420*

fhandle.c

File System
Android 6.0.1, (Linux 3.18)

Race condition in the handle_to_path function allows local users to cause a
denial of service (out-of-bounds array access) by changing a certain size value,
aka a “double fetch” vulnerability.
Belongs to the size checking scenario.

fied 3 out of the above discussed 6 double-fetch bugs (the
other 3 bugs we found are in files that were not present
in Linux 3.5.0).

It is likely that Bochspwn could not find these bugs
because they were present in drivers. Indeed, dynamic
approaches cannot support drivers without correspond-
ing hardware or simulations of hardware. Bochspwn re-
ported an instruction coverage of only 28% for the ker-
nel, while our approach statically analyses the complete
source code.

As for efficiency, our approach takes only a few min-
utes to conduct a path-sensitive exploration of the source
code of the whole Linux kernel. In contrast, Bochspwn
introduces a severe runtime overhead. For instance, their
simulator needs 15 hours to boot the Windows kernel.

While it only took a few days to investigate the 90
double-fetch situations, Jurczyk and Coldwind did not
report the time they needed to investigate the 200KB of
double fetch logs generated by their simulator.

5.3 Double-Fetch Bug Prevention
Even though we provide an analysis to detect double-
fetch bugs, developers must still be aware of how they
occur and preemptively prevent double-fetch bugs. Hu-
man mistakes are to be expected in driver development
when dealing with variable messages leading to new
double-fetch situations.
(1) Don’t Copy the Header Twice. Double-fetch situa-
tions can be completely avoided if the second fetch only
copies the message body and not the complete message
which copies the header a second time. For example, the
double-fetch vulnerability in Android 6.0.1 (Linux 3.18)
is resolved in Linux 4.1 by only copying the body in the
second fetch.
(2) Use the Same Value. A double-fetch situation turns
into a bug when there is a use of the “same” data from
both fetch operations because a (malicious) user can
change the data between the two fetches. If develop-
ers only use the data from one of the fetches, problems
are avoided. According to our investigation, most of the
double-fetch situations are benign because they only use
the first fetched value.
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(3) Overwrite Data. There are also situations in which
the data has to be fetched and used twice, for exam-
ple, the complete message is passed to a different func-
tion for processing. One way to resolve the situation
and eliminate the double-fetch bug is to overwrite the
header from the second fetch with the header that has
been fetched first. Even if a malicious user changed
the header between the two fetches, the change would
have no impact. This approach is widely adopted in
FreeBSD code, such as in sys/dev/aac/aac.c and
sys/dev/aacraid/aacraid.c.
(4) Compare Data. Another way to resolve a double-
fetch bug is to compare the data from the first fetch to
the data of the second fetch before using it. If the data is
not the same, the operation must be aborted.
(5) Synchronize Fetches. The last way to prevent a
double-fetch bug is to use synchronization approaches
to guarantee the atomicity of two inseparable operations,
such as locks or critical sections. As long as we guaran-
tee that the fetched value cannot be changed between the
two fetches, then nothing wrong will come out of fetch-
ing multiple times. However, this approach will incur
performance penalties for the kernel, as synchronization
is introduced on a critical section.

Since the Compare Data approach does not need to
modify very much of the source code, most of the identi-
fied double-fetch bugs we found have been patched in
this way by the Linux developers (CVE-2016-5728, -
6130, -6156, -6480). If the overlapped data sections from
the two fetches are not the same, the kernel will now re-
turn an error. One can argue that it would have been
better to avoid the double fetch of the headers with any
of the other first three recommendations. However, com-
paring the data has two advantages: it not only allow de-
tecting attacks by malicious users but also protects from
situation in which the data is changed without malicious
intent (e.g., by some bug in user space code).

We have implemented the Compare Data approach
in Coccinelle as an automatic patch that injects code to
compare the data from the first fetch with the data from
the second fetch at places where a double-fetch bug has
been found. It is able to automatically patch all size
checking double-fetch bugs, which accounts for most of
the identified bugs (5/6).

5.4 Interpretation of Results

Double fetches are a fundamental problem for kernel de-
velopment. Popular operating systems like Windows,
Linux, Android, and FreeBSD all had double-fetch bugs
and vulnerabilities in the past. Double-fetch issues have
a long history, and one bug we identified (CVE-2016-
6480) has existed for over ten years.

Double fetches are prevalent and sometimes inevitable
in kernels. We categorized three typical double fetch
scenarios from the occurrences we detected. 63% of
these double fetches occur in drivers, which implies that
drivers are the hard-hit area. Four out of the five new
bugs belong to size checking scenarios, indicating that
variable length message processing needs vetting for
double-fetch bugs.

In the Linux kernel, double-fetch bugs are more com-
plex than in Windows because transfer functions separate
the fetches from the uses in a double-fetch bug, mak-
ing it harder to separate benign from vulnerable double
fetches. A previous dynamic approach has not found
any double-fetch bug in Linux, where our static approach
found some, demonstrating the power of a simple static
analysis.

Our approach requires manual inspection, however,
the manual inspection does not have to be repeated
for the full kernel as future analyses can be limited to
changed files. Moreover, developing a static analysis that
automatically identifies double-fetch bugs with higher
accuracy would have cost much more time than develop-
ing our current approach, running it on different kernels,
and the manual investigating the results together. Also,
before our analysis and categorization, it was not known
in which situations double-fetch bugs occur in the Linux
kernel—knowledge that was needed in order to design a
more precise static double-fetch bug analysis. With the
refined approach, one would only have had to look at the
53 potential double-fetch bugs, not at all 90 double-fetch
situations. Therefore, the manual analysis part of our ap-
proach is inevitable but highly beneficial.

As for prevention, all of the four size checking bugs
are patched by the Compare Data method, indicating the
double fetches are not avoided completely as the patched
situations still abort the client program by returning an
error. Moreover, even benign double-fetch situations are
not safe because they can turn into harmful ones easily.
One such bug (CVE-2016-5728 ) was introduced from
a benign double-fetch situation by a code update. How-
ever, most of these potential cases are not fixed as they
are currently not vulnerable.

Even if a double fetch is benign, i.e., is not vulnera-
ble, it can be considered a performance issue since one
of the fetches (invocations of the transfer functions) is
redundant.

5.5 Limitations

We focused on analyzing situations in which double
fetches occur in Linux with a pattern-based analysis of
the source code. However, the nature of the analysis
prevents the detection of double fetches that occur on a
lower level, e.g., in preprocessed or compiled code.
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Double-fetch bugs can even occur in macros. In one
such case [24], the macro fetches a pointer twice, the
first time to test for NULL and the second time to use it.
However, due to the potential pointer change between the
two fetches, a null-pointer crash may be caused.

A double-fetch bug can also be introduced through
compiler optimization. It then occurs in the compiled
binary but not in the source code. Wilhelm [37] recently
found such a compiler-generated double-fetch bug in the
Xen Hypervisor, which is because the pointers to shared
memory regions are not labeled as volatile, allowing the
compiler to turn a single memory access into multiple ac-
cesses at the binary level, since it assumes that the mem-
ory will not be changed.

6 Related Work

So far, research conducted on double-fetch analysis has
exclusively focused on dynamic analysis, whereas we
proposed a static analysis approach. In addition to the
already discussed work on Bochspwn [14, 13], there are
also a few related studies as follows.

Wilhelm [37] used a similar approach to Bochspwn
to analyze memory access pattern of para-virtualized de-
vices’ backend components. His analysis identified 39
potential double fetch issues and discovered three novel
security vulnerabilities in security-critical backend com-
ponents. One of the discovered vulnerabilities does not
exist in the source code but is introduced through com-
piler optimization (see the discussion in Section 5.5).
Moreover, another discovered vulnerability in the source
code is usually not exploitable because the compiler opti-
mizes the code in a way that the second fetch is replaced
with a reuse of the value of the first fetch.

Double-fetch race conditions are very similar to Time-
Of-Check to Time-Of-Use (TOCTOU) race conditions
caused by changes occurring between checking a con-
dition and the use of the check’s result (by which the
condition no longer holds). The data inconsistency in
TOCTOU is usually caused by a race condition that re-
sults from improper synchronized concurrent accesses to
a shared object. There are varieties of shared objects in
any computer system, such as files [2], sockets [36] and
memory locations [39], therefore, a TOCTOU can exist
in different layers throughout the system. TOCTOU race
conditions often occur in file systems and numerous ap-
proaches [5, 9, 18, 4, 27] have been proposed to solve
these problems, but there is still no general, secure way
for applications to access file systems in a race-free way.

Watson [36] worked on exploiting wrapper concur-
rency vulnerabilities that come from system call inter-
position. He focused on the wrapper vulnerabilities
that will lead to security issues such as privilege esca-
lation and audit bypass. By identifying resources rel-

evant to access control, audit, or other security func-
tionality that are accessed concurrently across a trust
boundary, he found vulnerabilities from the wrappers and
demonstrated the exploit techniques with examples. He
also categorized the Time-Of-Audit to Time-Of-Use and
Time-Of-Replacement to Time-Of-Use issues in addition
to the Time-Of-Check to Time-Of-Use issue. However,
he focused on the system call interposition security ex-
tensions rather than the kernel as we do. He did not pro-
vide details of how he found these vulnerabilities either.

Yang et al. [39] cataloged concurrency attacks in the
wild by studying 46 different types of exploits and pre-
sented their characteristics. They pointed out that the risk
of concurrency attacks was proportional to the duration
of the vulnerability window. Moreover, they found that
previous TOCTOU detection and prevention techniques
are too specific and cannot detect or prevent general con-
currency attacks.

Coccinelle [17], the program matching and transfor-
mation engine we use in our approach, was initially tar-
geted for collateral evolution in Linux drivers, but now is
widely used for finding and fixing bugs in systems code.
With Coccinelle, Nicolas et al. [26, 25] performed a
study of all the versions of Linux released between 2003
and 2011, ten years after the work of Chou et al. [7], who
gave the first thorough study on faults found in Linux.
Nicolas et al. pointed out that the kind of faults con-
sidered ten years ago were still relevant, and were still
present in both new and existing files. They also found
that the rate of the considered kinds of faults were falling
in the driver directory, which supported Chou et al.

7 Conclusion

This work provides the first (to the best of our knowl-
edge) static analysis of double fetches in the Linux
kernel. It is the first approach able to detect double-
fetch vulnerabilities in the complete kernel including all
drivers and all hardware architectures (which was impos-
sible using dynamic approaches). Based on our pattern-
based static analysis, we categorized three typical sce-
narios in which double fetches are prone to occur. We
also provide recommended solutions, specific to typical
double-fetch scenarios we found in our study, to prevent
double-fetch bugs and vulnerabilities. One solution is
used to automatically patch double-fetch bugs, which is
able to automatically patch all discovered bugs occurring
in the size-checking scenario.

Where a known dynamic analysis of the Linux,
FreeBSD, and OpenBSD kernels found no double-fetch
bug, our static analysis discovered six real double-fetch
bugs, five of which are previously unknown bugs, and
three of which are exploitable double-fetch vulnerabili-
ties. All of the reported bugs have been confirmed and
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fixed by the maintainers. Our approach has been adopted
by the Coccinelle team and is currently being integrated
into the Linux kernel patch vetting.
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Abstract
While a core dump carries a large amount of infor-

mation, it barely serves as informative debugging aids
in locating software faults because it carries information
that indicates only a partial chronology of how program
reached a crash site. Recently, this situation has been
significantly improved. With the emergence of hardware-
assisted processor tracing, software developers and secu-
rity analysts can trace program execution and integrate
them into a core dump. In comparison with an ordinary
core dump, the new post-crash artifact provides software
developers and security analysts with more clues as to a
program crash. To use it for failure diagnosis, however, it
still requires strenuous manual efforts.

In this work, we propose POMP, an automated tool to
facilitate the analysis of post-crash artifacts. More specif-
ically, POMP introduces a new reverse execution mecha-
nism to construct the data flow that a program followed
prior to its crash. By using the data flow, POMP then
performs backward taint analysis and highlights those
program statements that actually contribute to the crash.

To demonstrate its effectiveness in pinpointing program
statements truly pertaining to a program crash, we have
implemented POMP for Linux system on x86-32 platform,
and tested it against various program crashes resulting
from 31 distinct real-world security vulnerabilities. We
show that, POMP can accurately and efficiently pinpoint
program statements that truly pertain to the crashes, mak-
ing failure diagnosis significantly convenient.

1 Introduction

Despite the best efforts of software developers, software
inevitably contains defects. When they are triggered, a
program typically crashes or otherwise terminates ab-
normally. To track down the root cause of a software
crash, software developers and security analysts need to
identify those program statements pertaining to the crash,

analyze these statements and eventually figure out why
a bad value (such as an invalid pointer) was passed to
the crash site. In general, this procedure can be signif-
icantly facilitated (and even automated) if both control
and data flows are given. As such, the research on post-
mortem program analysis primarily focuses on finding
out control and data flows of crashing programs. Of
all techniques on postmortem program analysis, record-
and-replay (e.g., [10, 12, 14]) and core dump analysis
(e.g., [16, 26, 36]) are most common.

Record-and-replay is a technique that typically instru-
ments a program so that one can automatically log non-
deterministic events (i. e., the input to a program as well
as the memory access interleavings of the threads) and
later utilize the log to replay the program deterministically.
In theory, this technique would significantly benefit root
cause diagnosis of crashing programs because develop-
ers and security analysts can fully reconstruct the control
and data flows prior to a crash. In practice, it however is
not widely adopted due to the requirement of program in-
strumentation and the high overhead it introduces during
normal operations.

In comparison with record-and-reply, core dump analy-
sis is a lightweight technique for the diagnosis of program
crashes. It does not require program instrumentation, nor
rely upon the log of program execution. Rather, it facil-
itates program failure diagnosis by using more generic
information, i. e., the core dump that an operating system
automatically captures every time a process has crashed.
However, a core dump provides only a snapshot of the
failure, from which core dump analysis techniques can
infer only partial control and data flows pertaining to pro-
gram crashes. Presumably as such, they have not been
treated as the first choice for software debugging.

Recently, the advance in hardware-assisted processor
tracing significantly ameliorates this situation. With the
emergence of Intel PT [6] – a brand new hardware feature
in Intel CPUs – software developers and security ana-
lysts can trace instructions executed and save them in a
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circular buffer. At the time of a program crash, an oper-
ating system includes the trace into a core dump. Since
this post-crash artifact contains both the state of crashing
memory and the execution history, software developers
not only can inspect the program state at the time of the
crash, but also fully reconstruct the control flow that led to
the crash, making software debugging more informative
and efficient.

While Intel PT augments software developers with the
ability of obtaining more informative clues as to a soft-
ware crash, to use it for the root cause diagnosis of soft-
ware failures, it is still time consuming and requires a
lot of manual efforts. As we will discuss in Section 2,
a post-crash artifact1 typically contains a large amount
of instructions. Even though it carries execution history
that allows one to fully reconstruct the control flow that a
crashing program followed – without an automated tool
to eliminate those instructions not pertaining to the fail-
ure – software developers and security analysts still need
to manually examine each instruction in an artifact and
identify those that actually contribute to the crash.

To address this problem, recent research [22] has pro-
posed a technical approach to identify program statements
that pertain to a software failure. Technically speaking,
it combines static program analysis with a cooperative
and adaptive form of dynamic program analysis that uses
Intel PT. While shown to be effective in facilitating failure
diagnosis, particularly those caused by concurrency bugs,
this technique is less likely to be effective in analyzing
crashes resulting from memory corruption vulnerabilities
(e.g. buffer overflow or use after free). This is due to
the fact that a memory corruption vulnerability allows an
attacker to manipulate the control (or data) flow, whereas
the static program analysis heavily relies upon the as-
sumption that program execution does not violate control
nor data flow integrity. Given that the technique proposed
in [22] needs to track data flow using hardware watch-
points in a collaborative manner, this technique is also less
suitable to the situation where program crashes cannot be
easily collected in a crowd-sourcing manner.

In this work, we design and develop POMP, a new auto-
mated tool that analyzes a post-crash artifact and pinpoints
statements pertaining to the crash. Considering that the
control flow of a program might be hijacked and static
analysis is unreliable, the design of POMP is exclusively
on the basis of the information residing in post-crash arti-
facts. In particular, POMP introduces a reverse execution
mechanism which takes as input a post-crash artifact, an-
alyzes the crashing memory and reversely executes the
instructions residing in the artifact. With the support of
this reverse execution, POMP reconstructs the data flow

1By a post-crash artifact, without further specification, we mean a
core dump including both the snapshot of crashing memory and the
instructions executed prior to the crash.

that a program followed prior to its crash, and then utilizes
backward taint analysis to pinpoint the critical instructions
leading up to the crash.

The reverse execution proposed in this work is novel.
In previous research, the design of reverse execution is
under the assumption of the data integrity in crashing
memory [16, 37] or heavily relies upon the capability of
recording critical objects in memory [7–9, 13]. In this
work, considering a software vulnerability might incur
memory corruption and object recording imposes over-
head on normal operations, we relax this assumption and
the ability of data object recording, and introduce a recur-
sive algorithm. To be specific, the algorithm performs the
restoration of memory footprints by constructing the data
flow prior to the crash. In turn, it also employs recovered
memory footprints to improve data flow construction. If
needed, the algorithm also verifies memory aliases and
ensures data flow construction does not introduce errors
or uncertainty. We detail this algorithm in Section 4.

To the best of our knowledge, POMP is the first work
that can recover the data flow prior to a program crash.
Since POMP relies only upon a post-crash artifact, it is
non-intrusive to normal operations and, more importantly,
generally applicable to any settings even though crash
report collection cannot be performed in a cooperative
manner. Last but not least, it should be noted that the
impact of this work is not just restricted to analyzing
the abnormal program termination caused by memory
corruption vulnerabilities. The technique we proposed is
generally applicable to program crashes caused by other
software bugs, such as dereferencing null pointers. We
will demonstrate this capability in Section 6.

In summary, this paper makes the following contribu-
tions.

• We designed POMP, a new technique that analyzes
post-crash artifacts by reversely executing instruc-
tions residing in the artifact.
• We implemented POMP on 32-bit Linux for facili-

tating software developers (or security analysts) to
pinpoint software defects, particularly memory cor-
ruption vulnerabilities.
• We demonstrated the effectiveness of POMP in fa-

cilitating software debugging by using various post-
crash artifacts attributable to 31 distinct real world
security vulnerabilities.

The rest of this paper is organized as follows. Section 2
defines the problem scope of our research. Section 3
presents the overview of POMP. Section 4 and 5 describe
the design and implementation of POMP in detail. Sec-
tion 6 demonstrates the utility of POMP. Section 7 sum-
marizes the work most relevant to ours followed by some
discussion on POMP in Section 8. Finally, we conclude
this work in Section 9.
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1 void test(void){
2 ...
3 }
4
5 int child(int *a){
6 a[0] = 1; // assigning value to var
7 a[1] = 2; // overflow func
8 return 0;
9 }

10
11 int main(){
12 void (*func)(void);
13 int var;
14 func = &test;
15 child(&var);
16 func(); // crash site
17 }

Table 1: A toy example with a stack overflow defect.

2 Problem Scope

In this section, we define the problem scope of our re-
search. We first describe our threat model. Then, we
discuss why failure diagnosis can be tedious and tough
even though a post-crash artifact carries information that
allows software developers to fully reconstruct the control
flow that a program followed prior to its crash.

2.1 Threat Model

In this work, we focus on diagnosing the crash of a pro-
cess. As a result, we exclude the program crashes that do
not incur the unexpected termination of a running process
(e.g., Java program crashes). Since this work diagnoses a
process crash by analyzing a post-crash artifact, we fur-
ther exclude those process crashes that typically do not
produce an artifact. Up to and including Linux 2.2, the de-
fault action for CPU time limit exceeded, for example, is
to terminate the process without a post-crash artifact [3].

As is mentioned above, a post-crash artifact contains
not only the memory snapshot of a crashing program but
also the instructions that the program followed prior to
its crash2. Recall that the goal of this work is to identify
those program statements (i. e., instructions) that actually
pertain to the crash. Therefore, we assume the instruction
trace logged in an artifact is sufficiently long and the
root cause of a program failure is always enclosed. In
other words, we assume a post-crash artifact carries all
the instructions that actually contribute to the crash. We
believe this is a realistic assumption because a software
defect is typically close to a crash site [19, 27, 39] and

2While Intel PT does not log unconditional jumps and linear code,
a full execution trace can be easily reconstructed from the execution
trace enclosed in a post-crash artifact. By an execution trace in a post-
crash artifact, without further specification, we mean a trace including
conditional branch, unconditional jump and linear code.

an operating system can easily allocate a memory region
to store the execution trace from a defect triggered to an
actual crash. Since security analysts may not have the
access to source code of crashing programs and they can
only pinpoint software defects using execution traces left
behind crashes, it should be noted that we do not assume
the source code of the crashing program is available.

2.2 Challenge

As is mentioned earlier, Intel PT records program execu-
tion in a circular buffer. At the time a software defect is
triggered and incurs a crash, the circular buffer has gener-
ally accumulated a large amount of conditional branches.
After the control flow reconstruction from these branches,
a full execution trace may carry more than a billion in-
structions. Even if zooming in the trace from where a fault
is triggered to where a crash occurs, a software developer
(or security analyst) may confront tens of thousands of
instructions. As such, it is tedious and arduous for a
software developer to plow through an execution trace to
diagnose the root cause of a software failure.

In fact, even though an execution trace is short and con-
cise, it is still challenging for commonly-adopted manual
diagnosis strategies (like backward analysis). Here, we
detail this challenge using a toy example shown in Table 1.
As is shown in the table, the program crashes at line
16 due to an overflow that occurs at line 7. After the
crash, an execution trace is left behind in a post-crash
artifact shown in Figure 1. In addition to the trace, the
artifact captures the state of the crashing memory which
is illustrated as the values shown in column T20.

To diagnose the root cause with backward analysis for
the program crash shown in Figure 1, a software developer
or security analyst typically follows through the execution
trace reversely and examines how the bad value in register
eax was passed to the crash site (i. e., instruction A20
shown in Figure 1). In this procedure, his effort can be
prematurely blocked when his analysis reaches instruction
A19. In that instruction mov overwrote register eax
and an inverse operation against this instruction lacks
information to restore its previous value.

To address this problem, one straightforward solution
is to perform forward analysis when backward analysis
reaches a non-invertible instruction. Take instruction A19
for the example. By following a use-define chain, we can
construct a data flow. Then, we can easily observe that
instruction A15 specifies the definition of register eax,
and that definition can reach instruction A19 without any
other intervening definitions. As a result, we can restore
the value in register eax and thus complete the inverse
operation for instruction A19.

While the backward and forward analysis provides se-
curity analysts with an effective method to construct data
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A1: push ebp
A2: mov ebp, esp
A3: sub esp, 0x14
A4: mov [ebp-0xc], test
A5: lea eax, [ebp-0x10]
A6: push eax ;argument of &var
A7: call child
A8: push ebp
A9: mov ebp, esp
A10: mov eax, [ebp+0x8]
A11: mov [eax], 0x1 ;a[0]=1
A12: mov eax, [ebp+0x8]
A13: add eax, 0x4
A14: mov [eax], 0x2 ;a[1]=2
A15: mov eax, 0x0
A16: pop ebp
A17: ret
A18: add esp, 0x4
A19: mov eax, [ebp-0xc]
A20: call eax ;crash site

Time

T20 T19 T18 T17 T16 T15 T14 T13 T12

Re
gi
st
er

eax 0x0002 0x0002 0x0000 0x0000 0x0000 0x0000 0xff1c 0xff1c 0xff18

ebp 0xff28 0xff28 0xff28 0xff28 0xff28 0xff08 0xff08 0xff08 0xff08

esp 0xff14 0xff14 0xff14 0xff10 0xff0c 0xff08 0xff08 0xff08 0xff08

Me
mo
ry
 A

dd
re
ss

0xff1c 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 0x0002 test test

0xff18 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001 0x0001

0xff14 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000 0x0000

0xff10 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18 0xff18

0xff0c A18 A18 A18 A18 A18 A18 A18 A18 A18

0xff08 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28 0xff28

Execution trace

T1
T2
T3
T4
T5
T6
T7
T8
T9
T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20

Time

Crashing memory Memory footprints reconstructed across time

Figure 1: A post-crash artifact along with the memory footprints recovered by reversely executing the trace enclosed in the artifact.
Note that, for simplicity, all the memory addresses and the value in registers are trimmed and represented with two hex digits. Note
that A18 and test indicate the addresses at which the instruction and function are stored.

flows, this is not sufficient for completing program fail-
ure diagnosis. Again, take for example the execution
trace shown in Figure 1. When backward analysis passes
through instruction A15 and reaches instruction A14,
through forward analysis, a security analyst can quickly
discover that the value in register eax after the execution
of A14 is dependent upon both instruction A12 and A13.
As a result, an instinctive reaction is to retrieve the value
stored in the memory region specified by [ebp+0x8]
shown in instruction A12. However, memory indicated
by [ebp+0x8] and [eax] shown in instruction A14
might be alias of each other. Without an approach to re-
solve memory alias, one cannot determine if the definition
in instruction A14 interrupts the data flow from instruc-
tions A12 and A13. Thus, program failure diagnosis has
to discontinue without an outcome.

3 Overview

In this section, we first describe the objective of this re-
search. Then, we discuss our design principle followed
by the basic idea on how POMP performs postmortem
program analysis.

3.1 Objective
The goal of software failure diagnosis is to identify the
root cause of a failure from the instructions enclosed in
an execution trace. Given a post-crash artifact containing
an execution trace carrying a large amount of instructions
that a program has executed prior to its crash, however,
any instructions in the trace can be potentially attributable

to the crash. As we have shown in the section above, it is
tedious and tough for software developers (or security an-
alysts) to dig through the trace and pinpoint the root cause
of a program crash. Therefore, the objective of this work
is to identify only those instructions that truly contribute
to the crash. In other words, given a post-crash artifact,
our goal is to highlight and present to software developers
(or security analysts) the minimum set of instructions that
contribute to a program crash. Here, our hypothesis is that
the achievement of this goal can significantly reduce the
manual efforts of finding out the root cause of a software
failure.

3.2 Design Principle

To accomplish the aforementioned objective, we de-
sign POMP to perform postmortem analysis on binaries
– though in principle this can be done on a source code
level – in that this design principle can provide software
developers and security analysts with the following bene-
fits. Without having POMP tie to a set of programs written
in a particular programming language, our design prin-
ciple first allows software developers to employ a single
tool to analyze the crashes of programs written in vari-
ous language (e.g., assembly code, C/C++ or JavaScript).
Second, our design choice eliminates the complication
introduced by the translation between source code and
binaries in that a post-crash artifact carries an execution
trace in binaries which can be directly consumed by anal-
ysis at the binary level. Third, with the choice of our
design, POMP can be generally applied to software failure
triage or categorization in which a post-crash artifact is
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the only resource for analysis and the source code of a
crashing program is typically not available [16, 18].

3.3 Technical Approach

As is mentioned earlier in Section 1, it is significantly con-
venient to identify the instructions pertaining to a program
crash if software developers and security analysts can ob-
tain the control and data flows that a program followed
prior to its crash.

We rely on Intel PT to trace the control flow of a pro-
gram and integrate it into the post-crash artifact. PT
is a low-overhead hardware feature in recent Intel pro-
cessors (e.g., Skylake series). It works by capturing in-
formation about software execution on each hardware
thread [6]. The captured information is orgranized in
different types of data packets. Packets about program
flow encodes the transfers of control flow (e.g., targets of
indirect branches and taken/not-taken indications of con-
ditional direct branches). With the control flow transfers
and the program binaries, one is able to fully reconstruct
the trace of executed instructions. Details of our configu-
ration and use with PT are presented in Section 5.

Since a post-crash artifact has already carried the con-
trol flow that a crashing program followed, the main focus
is to reconstruct the data flow from the post-crash artifact
that a crashing program left behind.

To reconstruct the data flow pertaining to a program
failure, POMP introduces a reverse execution mechanism
to restore the memory footprints of a crashing program.
This is due to the fact that the data flow can be easily
derived if machine states prior to a program crash are all
available. In the following, we briefly describe how to
recover memory footprints and build a data flow through
reverse execution, and how to utilize that data flow to
refine instructions that truly pertain to a program crash.

Our reverse execution mechanism is an extension of
the aforementioned forward-and-backward analysis. Not
only does it automate the forward-and-backward analysis,
making the inverse operations for instructions effortless,
but also automatically verifies memory aliases and en-
sures an inverse operation does not introduce errors or
uncertainty.

With this reverse execution mechanism, POMP can eas-
ily restore the machine states prior to the execution of
each instruction. Here, we illustrate this with the example
shown in Figure 1. After reverse execution completes
the inverse operation for instruction A19 through the
aforementioned forward and backward analysis, it can
easily restore the value in register eax and thus the mem-
ory footprint prior to the execution of A19 (see memory
footprint at time T18). With this memory footprint, the
memory footprint prior to instruction A18 can be easily
recovered because arithmetical instructions do not intro-

duce non-invertible effects upon memory (see the memory
footprint at time T17).

Since instruction A17 can be treated as mov eip,
[esp] and then add esp, 0x4, and instruction A16
is equivalent to mov ebp, [esp] and then add
esp, 0x4, reverse execution can further restore mem-
ory footprints prior to their execution by following the
scheme of how it handles mov and arithmetical instruc-
tions above. In Figure 1, we illustrate the memory foot-
prints prior to the execution of both instructions.

Recall that performing an inverse operation for instruc-
tion A15, forward and backward analysis cannot deter-
mine whether the use of [ebp+0x8] specified in instruc-
tion A12 can reach the site prior to the execution of in-
struction A15 because [eax] in A14 and [ebp+0x8]
in A12 might just be different symbolic names that access
data in the same memory location.

To address this issue, one instinctive reaction is to use
the value-set analysis algorithm proposed in [11]. How-
ever, value-set analysis assumes the execution complies
with standard compilation rules. When memory corrup-
tion happens and leads to a crash, these rules are typically
violated and, therefore, value-set analysis is very likely to
be error-prone. In addition, value-set analysis produces
less precise information, not suitable for reverse execu-
tion to verify memory aliases. In this work, we employ
a hypothesis test to verify possible memory aliases. To
be specific, our reverse execution creates two hypotheses,
one assuming two symbolic names are aliases of each
other while the other assuming the opposite. Then, it tests
each of these hypotheses by emulating inverse operations
for instructions.

Let’s continue the example shown in Figure 1. Now,
reverse execution can create two hypotheses, one assum-
ing [eax] and [ebp+0x8] are aliases of each other
while the other assuming the opposite. For the first
hypothesis, after performing the inverse operation for
instruction A15, the information carried by the mem-
ory footprint at T14 would have three constraints, in-
cluding eax = ebp+ 0x8, eax = [ebp+ 0x8] + 0x4 and
[eax] = 0x2. For the second hypothesis, the constraint set
would include eax 6= ebp+0x8, eax = [ebp+0x8]+0x4
and [eax] = 0x2. By looking at the memory footprint at
T14 and examining these two constraint sets, reverse exe-
cution can easily reject the first hypothesis and accept the
second because constraint eax = ebp+ 0x8 for the first
hypothesis does not hold. In this way, reverse execution
can efficiently and accurately recover the memory foot-
print at time T14. After the memory footprint recovery
at T14, reverse execution can further restore earlier mem-
ory footprints using the scheme we discussed above, and
Figure 1 illustrates part of these memory footprints.

With memory footprints recovered, software develop-
ers and security analysts can easily derive the correspond-
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Before After

A19 use: ebp 0xff28

A19 use: [ebp-0xc] 0x0002

A19 use: eax ??

A19 def: eax = [ebp-0xc] 0x0002

A20 use: eax 0x0002

A18 use: esp 0xff10

A18 def: esp = esp+4 0xff14

A19 use: ebp 0xff28

A19 use: [ebp-0xc] 0x0002

A19 use: eax ??

A19 def: eax = [ebp-0xc] 0x0002

A20 use: eax 0x0002

Figure 2: A use-define chain before and after appending new
relations derived from instruction A18. Each node is partitioned
into three cells. From left to right, the cells carry instruction
ID, definition (or use) specification and the value of the variable.
Note that symbol ?? indicates the value of that variable is
unknown.

ing data flow and thus pinpoint instructions that truly
contribute to a crash. In our work, POMP automates this
procedure by using backward taint analysis. To illustrate
this, we continue the aforementioned example and take
the memory footprints shown in Figure 1. As is described
earlier, in this case, the bad value in register eax was
passed through instruction A19 which copies the bad
value from memory [ebp-0xC] to register eax. By
examining the memory footprints restored, POMP can eas-
ily find out that the memory indicated by [ebp-0xC]
shares the same address with that indicated by [eax]
in instruction A14. This implies that the bad value is ac-
tually propagated from instruction A14. As such, POMP
highlights instructions A19 and A14, and deems they
are truly attributable to the crash. We elaborate on the
backward taint analysis in Section 4.

4 Design

Looking closely into the example above, we refine an
algorithm to perform reverse execution and memory foot-
print recovery. In the following, we elaborate on this
algorithm followed by the design detail of our backward
taint analysis.

4.1 Reverse Execution

Here, we describe the algorithm that POMP follows when
performing reverse execution. In particular, our algorithm
follows two steps – use-define chain construction and
memory alias verification. In the following, we elaborate
on them in turn.

4.1.1 Use-Define Chain Construction

In the first step, the algorithm first parses an execution
trace reversely. For each instruction in the trace, it extracts
uses and definitions of corresponding variables based on
the semantics of that instruction and then links them to
a use-define chain previously constructed. For example,
given an initial use-define chain derived from instructions
A20 and A19 shown in Figure 1, POMP extracts the use
and definition from instruction A18 and links them to the
head of the chain (see Figure 2).

As we can observe from the figure, a definition (or
use) includes three elements – instruction ID, use (or def-
inition) specification and the value of the variable. In
addition, we can observe that a use-define relation in-
cludes not only the relations between operands but also
those between operands and those base and index regis-
ters enclosed (see the use and definition for instruction
A19 shown in Figure 2).

Every time appending a use (or definition), our algo-
rithm examines the reachability for the corresponding
variable and attempts to resolve those variables on the
chain. More specifically, it checks each use and defi-
nition on the chain and determines if the value of the
corresponding variable can be resolved. By resolving,
we mean the variable satisfies one of the following con-
ditions – ¬ the definition (or use) of that variable could
reach the end of the chain without any other intervening
definitions;  it could reach its consecutive use in which
the value of the corresponding variable is available; ® a
corresponding resolved definition at the front can reach
the use of that variable; ¯ the value of that variable can
be directly derived from the semantics of that instruction
(e.g., variable eax is equal to 0x00 for instruction mov
eax, 0x00).

To illustrate this, we take the example shown in
Figure 2. After our algorithm concatenates definition
def:esp=esp+4 to the chain, where most variables
have already been resolved, reachability examination in-
dicates this definition can reach the end of the chain.
Thus, the algorithm retrieves the value from the post-
crash artifact and assigns it to esp (see the value in cir-
cle). After this assignment, our algorithm further prop-
agates this updated definition through the chain, and at-
tempts to use the update to resolve variables, the values
of which have not yet been assigned. In this case, none
of the definitions and uses on the chain can benefit from
this propagation. After the completion of this propaga-
tion, our algorithm further appends use use:esp and
repeats this process. Slightly different from the process
for definition def:esp=esp+4, for this use, variable
esp is not resolvable through the aforementioned reach-
ability examination. Therefore, our algorithm derives
the value of esp from the semantics of instruction A18
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A11 def: [eax] 0x0001 A12 use: ebp 0xff08

A11 use: [eax] ??

A11 use: eax ??

A10 def: eax ??

A10 use: eax ??

A10 use: [ebp+0x8] ??

A10 use: ebp 0xff08

A9 def: ebp 0xff08

A9 use: ebp ??

A9 use: esp 0xff08

A12 use: [ebp+0x8] ??

A12 use: eax ??

A12 def: eax ??

A13 use: eax ??

A13 def: eax ??

A14 use: eax ??

A14 use: [eax] ??

A14 def: [eax] 0x2

... ... ...

X

D
at

a 
flo

w

D
ata flow

Figure 3: A use-define chain with one intervening tag conser-
vatively placed. The tag blocks the propagation of some data
flows. Note that 7 represents the block of a data flow.

(i. e., esp=esp-4).
During use-define chain construction, our algorithm

also keeps track of constraints in two ways. In one way,
our algorithm extracts constraints by examining instruc-
tion semantics. Take for example instruction A19 and
dummy instruction sequence cmp eax, ebx; ⇒ ja
target; ⇒ inst_at_target . Our algorithm
extracts equality constraint eax=[ebp-0xc] and in-
equality constraint eax>ebx, respectively. In another
way, our algorithm extracts constraints by examining use-
define relations. In particular, ¬ when the definition of a
variable can reach its consecutive use without intervening
definitions, our algorithm extracts a constraint indicat-
ing the variable in that definition shares the same value
with the variable in the use.  When two consecutive
uses of a variable encounters no definition in between,
our algorithm extracts a constraint indicating variables
in both uses carry the same value. ® With a variable re-
solved, our algorithm extracts a constraint indicating that
variable equals to the resolved value. The reason behind
the maintenance of these constraints is to be able to per-
form memory alias verification discussed in the following
section.

In the process of resolving variables and propagating
definitions (or uses), our algorithm typically encounters a
situation where an instruction attempts to assign a value
to a variable represented by a memory region but the
address of that region cannot be resolved by using the
information on the chain. For example, instruction A14
shown in Figure 1 represents a memory write, the address
of which is indicated by register eax. From the use-define
chain pertaining to this example shown in Figure 3, we
can easily observe the node with A13 def:eax does
not carry any value though its impact can be propagated
to the node with A14 def:[eax] without any other
intervening definitions.

As we can observe from the example shown in Fig-
ure 3, when this situation appears, a definition like A14
def:[eax] may potentially interrupt the reachability
of the definitions and uses of other variables represented
by memory accesses. For example, given that memory
indicated by [ebp+0x08] and [eax]might be an alias
of each other, definition A14 def:[eax] may block
the reachability of A12 use:[ebp+0x08]. As such,
in the step of use-define chain construction, our algorithm
treats those unknown memory writes as an intervening
tag and blocks previous definitions and uses accordingly.
This conservative design principle ensures that our al-
gorithm does not introduce errors to memory footprint
recovery.

The above forward-and-backward analysis is mainly
designed to discover the use-define reltaions. Other tech-
niques, such as static program slicing [34], can also iden-
tify use-define relations. However, our analysis is novel.
To be specific, our analysis discovers the use-define re-
lations and use them to perform the restoration of mem-
ory footprints. In turn, it leverages recovered memory
footprints to further find use-define relations. This inter-
leaving approach leads more use-define relations to being
identified. Additionally, our analysis conservatively deals
with memory aliases and verifies them in an error-free
manner. This is different from previous techniques that
typically leverage less rigorous methods (e.g., value-set
analysis). More details about how we resolve memory
alias are presented in the next section.

4.1.2 Memory Alias Verification

While the aforementioned design principle prevents intro-
ducing errors to memory footprint recovery, this conser-
vative strategy hinders data flow construction and limits
the capability of resolving variables (see the flow block
and non-recoverable variables shown in Figure 3). As a
result, the second step of our algorithm is to minimize the
side effect introduced by the aforementioned strategy.

Since the conservative design above roots in “undecid-
able” memory alias, the way we tackle the problem is to
introduce a hypothesis test mechanism that examines if a
pair of symbolic names points to the same memory loca-
tion. More specifically, given a pair of symbolic names,
this mechanism makes two hypotheses, one assuming
they are alias of each other and the other assuming the
opposite. Based on the hypotheses, our algorithm ad-
justs the use-define chain as well as constraints accord-
ingly. For example, by assuming [eax] is not aliased
to [ebp+0x8], our algorithm extracts inequility con-
straint eax 6=ebp+0x8 and releases the block shown in
Figure 3, making A12 use:[ebp+0x8] further prop-
agated.

During the propagation, our algorithm walks through
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each of the nodes on the chain and examines if the newly
propagated data flow results in conflicts. Typically, there
are two types of conflicts. The most common is incon-
sistence data dependency in which constraints mismatch
the data propagated from above (e.g., the example dis-
cussed in Section 3). In addition to the conflict commonly
observed, another type of conflict is invalid data depen-
dency in which a variable carries an invalid value that is
supposed to make the crashing program terminate earlier
or follow a different execution path. For example, given
a use-define chain established under a certain hypothe-
sis, the walk-through discovers that a register carries an
invalid address and that invalid value should have the
crashing program terminate at a site ahead of its actual
crash site.

It is indisputable that once a constraint conflict is ob-
served, our algorithm can easily reject the corresponding
hypothesis and deem the pair of symbolic names is alias
(or non-alias) of each other. However, if none of these
hypotheses produce constraint conflicts, this implies that
there is a lack of evidence against our hypothesis test.
Once this situation appears, our algorithm holds the cur-
rent hypothesis and performs an additional hypothesis test.
The reason is that a new hypothesis test may help remove
an additional intervening tag conservatively placed at the
first step, and thus provides the holding test with more
informative evidence to reject hypotheses accordingly.

To illustrate this, we take a simple example shown in
Figure 4. After the completion of the first step, we assume
that our algorithm conservatively treats A2 def:[R2]
and A4 def:[R5] as intervening tags which hinder data
flow propagation. Following the procedure discussed
above, we reversely analyze the trace and make a hy-
pothesis, i. e., [R4] and [R5] are not alias. With this
hypothesis, the data flow between the intervening tags
can propagate through, and our algorithm can examine
conflicts accordingly. Assume that the newly propagated
data flow is insufficient for rejecting our hypothesis. Our
algorithm holds the current hypothesis and makes an ad-
ditional hypothesis, i. e., [R1] and [R2] are not alias of
each other. With this new hypothesis, more data flows
pass through and our algorithm obtains more information
that potentially helps reject hypotheses. It should be noted
that if any of the hypotheses fail to reject, our algorithm
preserves the intervening tags conservatively placed at the
first step.

It is not difficult to spot that our hypothesis test can
be easily extended as a recursive procedure which makes
more hypotheses until they can be rejected. However,
a recursive hypothesis test introduces computation com-
plexity exponentially. In the worse case, when performing
execution reversely, the inverse operation of each instruc-
tion may require alias verification and each verification
may require further alias examination. When this situa-

...

A1: mov R0, [R1] ; R1 = addr1

A2: mov [R2], 0x00 ; R2 = ??

...

...

A3: mov R3, [R4] ; R4 =addr2

A4: mov [R5], 0x08 ; R5 = ??

...

(a) The execution trace.

... ... ... ... ... ...

A2 def: [R2]=0x0 0x00

A2 use: [R2] ??

A2 use: R2 ??

A1 def: R0=[R1] ??

A1 use: R0 ??

A1 use: [R1] ??

A1 use: R1 addr1

... ... ...

A3 use: R4 addr2

A3 use: [R4] ??

A3 use: R3 ??

A3 def: R3=[R4] ??

A4 use R5 ??

A4 use: [R5] ??

A4 def: [R5]=0x8 0x08

... ... ...

D
at

a 
flo

w

X

X

D
ata flow

(b) The use-define chain.

Figure 4: A dummy use-define chain and execution trace with
two pairs of memory aliases. Note that R0,R1, · · ·R5 represent
registers in which the values of R2 and R5 are unknown. Note
that 7 represents the block of a data flow.

tion appears, the algorithm above becomes an impractical
solution. As such, this work empirically forces a hypoth-
esis test to follow at most a recurssion depth of two. As
we will show in Section 6, this setting allows us to per-
form reverse execution not only in an efficient but also
relatively effective manner.

4.1.3 Discussion

During the execution of a program, it might invoke a
system call, which traps execution into kernel space. As
we will discuss in Section 6, we do not set Intel PT to trace
execution in kernel space. As a result, intuition suggests
that the loss of execution tracing may introduce problems
to our reverse execution. However, in practice, a majority
of system calls do not incur modification to registers and
memory in user space. Thus, our reverse execution can
simply ignore the inverse operations for those system calls.
For system calls that potentially influence the memory
footprints of a crashing program, our reverse execution
handles them as follows.

In general, a system call can only influence memory
footprints if it manipulates register values stored by the
crashing program or touches the memory region in user
space. As a result, we treat system calls in different
manners. For system calls that may influence a register
holding a value for a crashing program, our algorithm
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simply introduces a definition on the use-define chain.
For example, system call read overwrites register eax
to hold its return value, and our algorithm appends defi-
nition def:eax=? to the use-define chain accordingly.
Regarding the system calls that manipulate the memory
content in user space (e.g., write and recv), our al-
gorithm checks the memory regions influenced by that
call. To be specific, it attempts to identify the starting
address as well as the size of that memory region by using
the instructions executed prior to that call. This is due
to the fact that the starting address and size are typically
indicated by arguments which are handled by those in-
structions prior to the call. Following this procedure, if
our algorithm identifies the size of that memory region, it
appends definitions to the chain accordingly. Otherwise,
our algorithm treats that system call as an intervening tag
which blocks the propagation through that call3. The rea-
son behind this is that a non-deterministic memory region
can potentially overlap with any memory regions in user
space.

4.2 Backward Taint Analysis

Recall that the goal of this work is to pinpoint instruc-
tions truly pertaining to a program crash. In Section 3,
we briefly introduce how backward taint analysis plays
the role in achieving this goal. Here, we describe more
details.

To perform backward taint analysis, POMP first identi-
fies a sink. In general, a program crash results from two
situations – executing an invalid instruction or derefer-
encing an invalid address. For the first situation, POMP
deems the program counter (eip) as a sink because exe-
cuting an invalid instruction indicates eip carries a bad
value. For the second situation, POMP treats a general
register as a sink because it holds a value which points to
an invalid address. Take the example shown in Figure 1.
POMP treats register eax as a sink in that the program
crash results from retrieving an invalid instruction from
the address held by register eax.

With a sink identified, POMP taints the sink and per-
forms taint propagation backward. In the procedure of
this backward propagation, POMP looks up the aforemen-
tioned use-define chain and identifies the definition of the
taint variable. The criteria of this identification is to en-
sure the definition could reach the taint variable without
any other intervening definitions. Continue the exam-
ple above. With sink eax serving as the initial taint
variable, POMP selects A19 def:eax=[ebp-0xc]
on the chain because this definition can reach taint vari-
able eax without intervention.

3Note that an intervening tag placed by a system call blocks only
definitions and uses in which a variable represents a memory access
(e.g., def:[eax] or use:[ebp]).

From the definition identified, POMP parses that def-
inition and passes the taint to new variables. Since any
variables enclosed in a definition could potentially cause
the corruption of the taint variable, the variables which
POMP selects and passes the taint to include all operands,
base and index registers (if available). For example, by
parsing definition A19 def:eax=[ebp-0xc], POMP
identifies variables ebp and [ebp-0xc], and passes the
taint to both of them. It is not difficult to note that such a
taint propagation strategy can guarantee POMP does not
miss the root cause of a program crash though it over-
taints some variables that do not actually contribute to the
crash. In Section 6, we evaluate and discuss the effect of
the over-tainting.

When passing a taint to a variable indicated by a mem-
ory access (e.g., [R0]), it should be noted that POMP may
not be able to identify the address corresponding to the
memory (e.g., unknown R0 for variable [R0]). Once this
situation appears, therefore, POMP halts the taint propaga-
tion for that variable because the taint can be potentially
propagated to any variables with a definition in the form
of def:[Ri] (where Ri is a register).

Similar to the situation seen in reverse execution, when
performing taint propagation backward, POMP may en-
counter a definition on the chain which intervenes the
propagation. For example, given a taint variable [R0]
and a definition def:[R1] with R1 unknown, POMP can-
not determine whether R0 and R1 share the same value
and POMP should pass the taint to variable [R1]. When
this situation appears, POMP follows the idea of the afore-
mentioned hypothesis test and examines if both variables
share the same address. Ideally, we would like to re-
solve the unknown address through a hypothesis test so
that POMP can pass that taint accordingly. However, in
practice, the hypothesis test may fail to reject. When “fail-
to-reject” occurs, therefore, POMP over-taints the variable
in that intervening definition. Again, this can ensure that
POMP does not miss the enclosure of root cause.

5 Implementation

We have implemented a prototype of POMP for Linux 32-
bit system with Linux kernel 4.4 running on an Intel i7-
6700HQ quad-core processor (a 6th-generation Skylake
processor) with 16 GB RAM. Our prototype consists of
two major components – ¬ a sub-system that implements
the aforementioned reverse execution and backward taint
analysis and  a sub-system that traces program execu-
tion with Intel PT. In total, our implementation carries
about 22,000 lines of C code which we will make publicly
available at https://github.com/junxzm1990/pomp.git. In
the following, we present some important implementation
details.

USENIX Association 26th USENIX Security Symposium    25

https://github.com/junxzm1990/pomp.git


Following the design description above, we imple-
mented 65 distinct instruction handlers to perform re-
verse execution and backward taint analysis. Along with
these handlers, we also built core dump and instruction
parsers on the basis of libelf [2] and libdisasm [1],
respectively. Note that for instructions with the same se-
mantics (e.g., je, jne, and jg) we dealt with their inverse
operations in one unique handler. To keep track of con-
straints and perform verification, we reuse the Z3 theorem
prover [5, 17].

To allow Intel PT to log execution in a correct and
reliable manner, we implemented the second sub-system
as follows. We enabled Intel PT to run in the Table of
Physical Addresses (ToPA) mode, which allows us to
store PT packets in multiple discontinuous physical mem-
ory areas. We added to the ToPA an entry that points to
a 16 MB physical memory buffer. In our implementa-
tion, we use this buffer to store packets. To be able to
track if the buffer is fully occupied, we clear the END bit
and set the INT bit. With this setup, Intel PT can signal
a performance-monitoring interrupt at the moment the
buffer is fully occupied. Considering the interrupt may
have a skid, resulting in a potential loss in PT packets,
we further allocated a 2 MB physical memory buffer to
hold those packets that might be potentially discarded. In
the ToPA, we introduced an additional entry to refer this
buffer.

At the hardware level, Intel PT lacks the capability of
distinguishing threads within each process. As a result,
we also intercepted the context switch. With this, our
system is able to examine the threads switched in and
out, and stores PT packets for threads individually. To
be specific, for each thread that software developers and
security analysts are interested in, we allocated a 32MB
circular buffer in its user space. Every time a thread is
switched out, we migrated PT packets stored in the afore-
mentioned physical memory buffers to the corresponding
circular buffer in user space. After migration, we also
reset the corresponding registers and make sure the physi-
cal memory buffers can be used for holding packets for
other threads of interest. Note that our empirical experi-
ment indicates the aforementioned 16 MB buffer cannot
be fully occupied between consecutive context switch,
and POMP does not have the difficulty in holding all the
packets between the switch.

Considering the Intel CPU utilizes Supervisor Mode
Access Prevention (SMAP) to restrict the access from
kernel to user space, our implementation toggles SMAP
between packet migration. In addition, we configured In-
tel PT to exclude packets irrelevant to control flow switch-
ing (e.g., timing information) and paused its tracing when
execution traps into kernel space. In this way, POMP is
able to log an execution trace sufficiently long. Last but
not least, we introduced new resource limit PT_LIMIT

into the Linux kernel. With this, not only can software
developers and security analysts select which processes
to trace but also configure the size of the circular buffer
in a convenient manner.

6 Evaluation

In this section, we demonstrate the utility of POMP using
the crashes resulting from real-world vulnerabilities. To
be more specific, we present the efficiency and effective-
ness of POMP, and discuss those crashes that POMP fails
to handle properly.

6.1 Setup
To demonstrate the utility of POMP, we selected 28 pro-
grams and benchmarked POMP with their crashes result-
ing from 31 real-world PoCs obtained from Offensive
Security Exploit Database Archive [4]. Table 2 shows
these crashing programs and summarizes the correspond-
ing vulnerabilities. As we can observe, the programs se-
lected cover a wide spectrum ranging from sophisticated
software like BinUtils with lines of code over 690K
to lightweight software such as stftp and psutils
with lines of code less than 2K.

Regarding vulnerabilities resulting in the crashes, our
test corpus encloses not only memory corruption vulnera-
bilities (i. e., stack and heap overflow) but also common
software defects like null pointer dereference and invalid
free. The reason behind this selection is to demonstrate
that, beyond memory corruption vulnerabilities, POMP
can be generally applicable to other kinds of software
defects.

Among the 32 PoCs, 11 of them perform code injection
(e.g., nginx-1.4.0), one does return-to-libc attack
(aireplay-ng-1.2b3), and another one exploits via
return-oriented-programming (mcrypt-2.5.8). These
exploits crashed the vulnerable program either because
they did not consider the dynamics in the execution
environments (e.g., ASLR) or they mistakenly polluted
critical data (e.g., pointers) before they took over the
control flow. The remaining 18 PoCs are created
to simply trigger the defects, such as overflowing a
stack buffer with a large amount of random characters
(e.g., BinUtils-2.15) or causing the execution to use
a null pointer (e.g., gdb-7.5.1). Crashes caused by
these PoCs are similar to those occured during random
exercises.

6.2 Experimental Design
For each program crash shown in Table 2, we performed
manual analysis with the goal of finding out the minimum
set of instructions that truly contribute to that program
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Program Vulnerability Diagnose Results
Name Size(LoC) CVE-ID Type Trace

length
Size of
mem (MB)

# of
taint

Ground
truth

Mem addr
unknown

Root
cause

Time

coreutils-8.4 138135 2013-0222 Stack overflow 50 56.61 3 2 1 3 1 sec
coreutils-8.4 138135 2013-0223 Stack overflow 90 59.66 2 2 0 3 1 sec
coreutils-8.4 138135 2013-0221 Stack overflow 92 120.95 3 2 0 3 1 sec
mcrypt-2.5.8 37439 2012-4409 Stack overflow 315 0.59 3 2 3 3 3 sec
BinUtils-2.15 697354 2006-2362 Stack overflow 867 0.37 16 7 0 3 1 sec
unrtf-0.19.3 5039 NA Stack overflow 895 0.34 7 4 10 3 1 min
psutils-p17 1736 NA Stack overflow 3123 0.34 7 3 28 3 4 min
stftp-1.1.0 1559 NA Stack overflow 3651 0.39 29 6 15 3 4 min
nasm-0.98.38 33553 2004-1287 Stack overflow 4064 0.58 3 2 4 3 44 sec
libpng-1.2.5 33681 2004-0597 Stack overflow 6026 0.35 6 2 86 3 5 min
putty-0.66 90165 2016-2563 Stack overflow 7338 0.45 4 2 21 3 30 min
Unalz-0.52 8546 2005-3862 Stack overflow 10905 0.40 14 10 7 3 30 sec
LaTeX2rtf-1.9 14473 2004-2167 Stack overflow 17056 0.37 11 5 122 3 8 min
aireplay-ng-1.2b3 62656 2014-8322 Stack overflow 18569 0.59 2 2 223 7 7 min
corehttp-0.5.3a 914 2007-4060 Stack overflow 25385 0.32 19 6 0 3 52 min
gas-2.12 595504 2005-4807 Stack overflow 25713 4.17 3 2 346 3 40 min
abc2mtex-1.6.1 4052 NA Stack overflow 29521 0.33 12 2 12 3 1 min
LibSMI-0.4.8 80461 2010-2891 Stack overflow 50787 0.33 46 5 730 3 4 sec
gif2png-2.5.2 1331 2009-5018 Stack overflow 70854 0.51 49 4 396 3 46 min
O3read-0.03 932 2004-1288 Stack overflow 78244 0.32 7 2 20 3 15 min
unrar-3.9.3 17575 NA Stack overflow 102200 2.43 33 5 1033 3 6 hour
nullhttp-0.5.0 1849 2002-1496 Heap overflow 141 0.54 3 2 0 3 1 sec
inetutils-1.8 98941 NA Heap overflow 28720 0.40 237 7 111 3 14 min
nginx-1.4.0 100255 2013-2028 Integer overflow 158 0.62 11 4 0 3 1 sec
Python-2.2 416060 2007-4965 Integer overflow 3426 0.89 31 7 117 3 3 min
0verkill-0.16 16361 2006-2971 Integer overflow 10494 4.27 1 NA 0 7 2 sec
openjpeg-2.1.1 169538 2016-7445 Null pointer 67 0.37 10 5 5 3 1 sec
gdb-7.5.1 1651764 NA Null pointer 2009 2.94 23 2 79 3 1sec
podofo-0.9.4 60147 2017-5854 Null pointer 42165 0.65 7 4 80 3 2 min
Python-2.7 906829 NA Use-after-free 551 2.14 6 1 0 3 0.17 sec
poppler-0.8.4 183535 2008-2950 Invalid free 672 1.39 16 4 0 3 13 sec

Table 2: The list of program crashes resulting from various vulnerabilities. CVE-ID specifies the ID of the CVEs. Trace length
indicates the lines of instructions that POMP reversely executed. Size of mem shows the size of memory used by the crashed
program (with code sections excluded). # of taint and Ground truth describe the lines of instructions automatically
pinpointed and manually identified, respectively. Mem addr unknown illustrates the amount of memory locations, the addresses
of which are unresolvable.

crash. We took our manual analysis as ground truth and
compared them with the output of POMP. In this way,
we validated the effectiveness of POMP in facilitating
failure diagnosis. More specifically, we compared the
instructions identified manually with those pinpointed by
POMP. The focuses of this comparison include ¬ examin-
ing whether the root cause of that crash is enclosed in the
instruction set POMP automatically identified,  investi-
gating whether the output of POMP covers the minimum
instruction set that we manually tracked down, and ®
exploring if POMP could significantly prune the execution
trace that software developers (or security analysts) have
to manually examine.

In order to evaluate the efficiency of POMP, we
recorded the time it took when spotting the instructions
that truly pertain to each program crash. For each test
case, we also logged the instructions that POMP reversely
executed in that this allows us to study the relation be-
tween efficiency and the amount of instructions reversely
executed.

Considering pinpointing a root cause does not require
reversely executing the entire trace recorded by Intel PT,
it is worth of noting that, we selected and utilized only a
partial execution trace for evaluation. In this work, our
selection strategy follows an iterative procedure in which
we first introduced instructions of a crashing function
to reverse execution. If this partial trace is insufficient
for spotting a root cause, we traced back functions previ-
ously invoked and then included instructions function-by-
function until that root cause can be covered by POMP.

6.3 Experimental Results

We show our experimental results in Table 2. Except
for test cases 0verkill and aireplay-ng, we ob-
serve, every root cause is included in a set of instructions
that POMP pinpointed. Through a comparison mentioned
above, we also observe each set encloses the correspond-
ing instructions we manually identified (i. e., ground
truth). These observations indicate that POMP is effective
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in locating instructions that truly contribute to program
crashes.

In comparison with instructions that POMP needs to
reversely execute, we observe, the instructions eventu-
ally tainted are significantly less. For example, backward
analysis needs to examine 10,905 instructions in order
to pinpoint the root cause for crashing program Unalz,
whereas POMP highlights only 14 instructions among
which half of them truly pertain to the crash. Given that
backward taint analysis mimics how a software developer
(or security analyst) typically diagnoses the root cause of
a program failure, this observation indicates that POMP
has a great potential to reduce manual efforts in failure
diagnosis.

Except for test case coreutils, an instruction set
produced by POMP generally carries a certain amount
of instructions that do not actually contribute to crashes.
Again, take Unalz for example. POMP over-tainted 7
instructions and included them in the instruction set it
identified. In the usage of POMP, while this implies a
software developer needs to devote additional energies to
those instructions not pertaining to a crash, this does not
mean that POMP is less capable of finding out instructions
truly pertaining to a crash. In fact, compared with hun-
dreds and even thousands of instructions that one had to
manually walk through in failure diagnosis, the additional
effort imposed by over-tainting is minimal and negligible.

Recall that in order to capture a root cause, the design
of POMP taints all variables that possibly contribute to the
propagation of a bad value. As our backward taint analy-
sis increasingly traverses instructions, it is not difficult to
imagine that, an increasing number of variables might be
tainted which causes instructions corresponding to these
variables are treated as those truly pertaining to program
crashes. As such, we generally observe more instructions
over-tainted for those test cases, where POMP needs to
reversely execute more instructions in order to cover the
root causes of their failures.

As we discuss in Section 4, ideally, POMP can employ
a recursive hypothesis test to perform inverse operations
for instructions that carry unknown memory access. Due
to the concern of computation complexity, however, we
limit the recursion in at most two depths. As such, reverse
execution leaves behind a certain amount of unresolvable
memory. In Table 2, we illustrate the amount of memory
the addresses of which remain unresolvable even after a
2-depth hypothesis test has been performed. Surprisingly,
we discover POMP can still effectively spot instructions
pertaining to program crashes even though it fails to re-
cover a certain amount of memory. This implies that our
design reasonably balances the utility of POMP as well as
its computation complexity.

Intuition suggests that the amount of memory unresolv-
able should correlate with the number of instructions that

POMP reversely executes. This is because the effect of
an unresolvable memory might be propagated as more in-
structions are involved in reverse execution. While this is
generally true, an observation from test case corehttp
indicates a substantially long execution trace does not al-
ways necessarily amplify the influence of unknown mem-
ory access. With more instructions reversely executed,
POMP may obtain more evidence to reject the hypotheses
that it fail to determine, making unknown memory access
resolvable. With this in mind, we speculate POMP is not
only effective in facilitating failure diagnosis perhaps also
helpful for executing substantially long traces reversely.
As a future work, we will therefore explore this capability
in different contexts.

In Table 2, we also illustrate the amount of time that
POMP took in the process of reverse execution and back-
ward taint analysis. We can easily observe POMP typically
completes its computation in minutes and the time it took
is generally proportional to the number of instructions
that POMP needs to reversely execute. The reason be-
hind this observation is straightforward. When reverse
execution processes more instructions, it typically encoun-
ters more memory aliases. In verifying memory aliases,
POMP needs to perform hypothesis tests which are slightly
computation-intensive and time-consuming.

With regard to test case aireplay-ng in which
POMP fails to facilitate failure diagnosis, we look closely
to instructions tainted as well as those reversely executed.
Prior to the crash of aireplay-ng, we discover the
program invoked system call sys_read which writes a
data chunk to a certain memory region. Since both the
size of the data chunk and the address of the memory
are specified in registers, which reverse execution fails
to restore, POMP treats sys_read as a “super” interven-
ing tag that blocks the propagation of many definitions,
making the output of POMP less informative to failure
diagnosis.

Different from aireplay-ng, the failure for
0verkill results from an insufficient PT log. As is
specified in Table 2, the vulnerability corresponding to
this case is an integer overflow. To trigger this security
loophole, the PoC used in our experiment aggressively
accumulates an integer variable which makes a PT log
full of arithmetic computation instructions but not the
instruction corresponding to the root cause. As such, we
observe POMP can taint only one instruction pertaining to
the crash. We believe this situation can be easily resolved
if a software developer (or security analyst) can enlarge
the capacity of the PT buffer.

7 Related Work

This research work mainly focuses on locating software
vulnerability from its crash dump. Regarding the tech-
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niques we employed and the problems we addressed, the
lines of works most closely related to our own include
reverse execution and postmortem program analysis. In
this section, we summarize previous studies and discuss
their limitation in turn.

Reverse execution. Reverse execution is a conventional
debugging technique that allows developers to restore the
execution state of a program to a previous point. Pioneer-
ing research [7–9, 13] in this area relies upon restoring
a previous program state from a record, and thus their
focus is to minimize the amount of records that one has
to save and maintain in order to return a program to a
previous state in its execution history. For example, the
work described in [7–9] is mainly based on regenerating
a previous program state. When state regeneration is not
possible, however, it recovers a program state by state
saving.

In addition to state saving, program instrumentation is
broadly used to facilitate the reverse execution of a pro-
gram. For example, Hou et al. designed compiler frame-
work Backstroke [21] to instrument C++ program in
a way that it can store program states for reverse exe-
cution. Similarly, Sauciuc and Necula [30] proposed to
use an SMT solver to navigate an execution trace and
restore data values. Depending on how the solver per-
forms on constraint sets corresponding to multiple test
runs, the technique proposed automatically determines
where to instrument the code to save intermediate values
and facilitate reverse execution.

Given that state saving requires extra memory space
and program instrumentation results in a slower forward
execution, recent research proposes to employ a core
dump to facilitate reverse execution. In [16] and [37],
new reverse execution mechanisms are designed in which
the techniques proposed reversely analyzes code and then
utilizes the information in a core dump to reconstruct the
states of a program prior to its crash. Since the effective-
ness of these techniques highly relies upon the integrity
of a core dump, and exploiting vulnerabilities like buffer
overflow and dangling pointers corrupts memory informa-
tion, they may fail to perform reverse execution correctly
when memory corruption occurs.

Different from the prior research works discussed
above, the reverse execution technique introduced in this
paper follows a completely different design principle, and
thus it provides many advantages. First, it can reinstate a
previous program state without restoring that state from a
record. Second, it does not require any instrumentation
to a program, making it more generally applicable. Third,
it is effective in performing execution backward even
though the crashing memory snapshot carries corrupted
data.

Postmortem program analysis. Over the past decades,

there is a rich collection of literature on using program
analysis techniques along with crash reports to identify
faults in software (e.g., [15, 20, 24, 25, 28, 29, 32, 38]).
These existing techniques are designed to identify some
specific software defects. In adversarial settings, an at-
tacker exploits a variety of software defects and thus they
cannot be used to analyze a program crash caused by a
security defect such as buffer overflow or unsafe dangling
pointer. For example, Manevich et al. [24] proposed
to use static backward analysis to reconstruct execution
traces from a crash point and thus spot software defects,
particularly typestate errors [33]. Similarly, Strom and
Yellin [32] defined a partially path-sensitive backward
dataflow analysis for checking typestate properties, specif-
ically uninitialized variables. While demonstrated to be
effective, these two studies only focus on specific types-
tate problems.

Liblit et al. proposed a backward analysis technique for
crash analysis [23]. To be more specific, they introduce
an efficient algorithm that takes as input a crash point
as well as a static control flow graph, and computes all
the possible execution paths that lead to the crash point.
In addition, they discussed how to narrow down the set
of possible execution paths using a wide variety of post-
crash artifacts, such as stack traces. As is mentioned
earlier, memory information might be corrupted when
attackers exploit a program. The technique described
in [23] highly relies upon the integrity of the informa-
tion resided in memory, and thus fails to analyze program
crash resulting from malicious memory corruption. In this
work, we do not infer program execution paths through
the stack traces recovered from memory potentially cor-
rupted. Rather, our approach identifies the root cause
of software failures by reversely executing program and
reconstructing memory footprints prior to the crash.

Considering the low cost of capturing core dumps, prior
studies also proposed to use core dumps to analyze the
root cause of software failures. Of all the works along this
line, the most typical ones include CrashLocator [35],
!analyze [18] and RETracer [16] which locate soft-
ware defects by analyzing memory information resided
in a core dump. As such, these techniques are not
suitable to analyze crashes resulting from malicious
memory corruption. Different from these techniques,
Kasikci et al. introduced Gist [22], an automated de-
bugging technique that utilizes off-the-shelf hardware to
enhance core dump and then employs a cooperative debug-
ging technique to perform root cause diagnosis. While
Gist demonstrates its effectiveness on locating bugs
from a software crash, it requires the collection of crashes
from multiple parties running the same software and suf-
fering the same bugs. This could significantly limit its
adoption. In our work, we introduce a different technical
approach which can perform analysis at the binary level
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without the participation of other parties.
In recent research, Xu et al. [36] introduced CREDAL,

an automatic tool that employs the source code of a crash-
ing program to enhance core dump analysis and turns a
core dump to an informative aid in tracking down mem-
ory corruption vulnerabilities. While sharing a common
goal as POMP– pinpointing the code statements where a
software defect is likely to reside – CREDAL follows a
completely different technical approach. More specifi-
cally, CREDAL discovers the mismatch in variable values
and deems the code fragments corresponding to the mis-
match as the possible vulnerabilities that lead to the crash.
While it has been shown that CREDAL is able to assist soft-
ware developers (or security analysts) in tracking down
a memory corruption vulnerability, in most cases, it still
requires significant manual efforts for locating a memory
corruption vulnerability in a crash for the reasons that
the mismatch in variable values may be overwritten or
the code fragments corresponding to mismatch may not
include the root cause of the software crash. In this work,
POMP precisely pinpoints the vulnerability by utilizing
the memory footprints recovered from reverse execution.

8 Discussion

In this section, we discuss the limitations of our current
design, insights we learned and possible future directions.

Multiple threads. POMP focuses only on analyzing the
post-crash artifact produced by a crashing thread. There-
fore, we assume the root cause of the crash is enclosed
within the instructions executed by that thread and other
threads do not intervene the execution of that thread prior
to its crash. In practice, this assumption however may
not hold, and the information held in a post-crash artifact
may not be sufficient and even misleading for root cause
diagnosis.

While this multi-thread issue indeed limits the capabil-
ity of a security analyst using POMP to pinpoint the root
cause of a program crash, this does not mean the failure of
POMP nor significantly downgrades the utility of POMP
because of the following. First, a prior study [31] has
already indicated that a large fraction of software crashes
involves only the crashing thread. Thus, we believe POMP
is still beneficial for software failure diagnosis. Second,
the failure of POMP roots in incomplete execution trac-
ing. Therefore, we believe, by simply augmenting our
process tracing with the capability of recording the timing
of execution, POMP can synthesize a complete execution
trace, making POMP working properly. As part of the
future work, we will integrate this extension into the next
version of POMP.

Just-in-Time native code. Intel PT records the addresses
of branching instructions executed. Using these addresses

as index, POMP retrieves instructions from executable and
library files. However, a program may utilize Just-in-
Time (JIT) compilation in which binary code is generated
on the fly. For programs assembled with this JIT func-
tionality (e.g., JavaScript engine), POMP is less likely to
be effective, especially when a post-crash artifact fails to
capture the JIT native code mapped into memory.

To make POMP handle programs in this type, in the fu-
ture, we will augment POMP with the capability of tracing
and logging native code generated at the run time. For ex-
ample, we may monitor the executable memory and dump
JIT native code accordingly. Note that this extension does
not require any re-engineering of reverse execution and
backward taint analysis because the limitation to JIT na-
tive code also results from incomplete execution tracing
(i. e., failing to reconstruct all the instructions executed
prior to a program crash).

9 Conclusion

In this paper, we develop POMP on Linux system to an-
alyze post-crash artifacts. We show that POMP can sig-
nificantly reduce the manual efforts on the diagnosis of
program failures, making software debugging more infor-
mative and efficient. Since the design of POMP is entirely
on the basis of the information resided in a post-crash
artifact, the technique proposed can be generally applied
to diagnose the crashes of programs written in various
programming languages caused by various software de-
fects.

We demonstrated the effectiveness of POMP using the
real-world program crashes pertaining to 31 software vul-
nerabilities. We showed that POMP can reversely recon-
struct the memory footprints of a crashing program and
accurately identify the program statements (i. e., , instruc-
tions) that truly contribute to the crash. Following this
finding, we safely conclude POMP can significantly down-
size the program statements that a software developer (or
security analyst) needs to manually examine.
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Abstract

Existing malware analysis platforms leave detectable fin-
gerprints like uncommon string properties in QEMU,
signatures in Android Java virtual machine, and arti-
facts in Linux kernel profiles. Since these fingerprints
provide the malware a chance to split its behavior de-
pending on whether the analysis system is present or
not, existing analysis systems are not sufficient to ana-
lyze the sophisticated malware. In this paper, we pro-
pose NINJA, a transparent malware analysis framework
on ARM platform with low artifacts. NINJA leverages a
hardware-assisted isolated execution environment Trust-
Zone to transparently trace and debug a target applica-
tion with the help of Performance Monitor Unit and Em-
bedded Trace Macrocell. NINJA does not modify system
software and is OS-agnostic on ARM platform. We im-
plement a prototype of NINJA (i.e., tracing and debug-
ging subsystems), and the experiment results show that
NINJA is efficient and transparent for malware analysis.

1 Introduction

Malware on the mobile platform exhibits an explosive
growth in recent years. To solve the threat of the mali-
cious applications, a variety of tools have been proposed
for malware detection and analysis [18, 22, 37, 44, 45,
52, 55, 56]. However, sophisticated malware, which is
also known as evasive malware, is able to evade the anal-
ysis by collecting the artifacts of the execution environ-
ment or the analysis tool, and refuses to perform any ma-
licious behavior if an analysis system is detected.

As most of the existing mobile malware analysis sys-
tems [18, 45, 52] are based on emulation or virtual-
ization technology, a series of anti-emulation and anti-
virtualization techniques [29, 36, 48] have been devel-
oped to challenge them. These techniques show that
the emulation or virtualization can be easily detected
by footprints like string properties, absence of particu-

lar hardware components, and performance slowdown.
The hardware-assisted virtualization technique [17, 50]
can improve the transparency of the virtualization-based
systems; however, this approach still leaves artifacts on
basic instruction execution semantics that could be easily
detected by malware [39].

To address this challenge, researchers study the mal-
ware on bare-metal devices via modifying the system
software [22, 37, 44, 55] or leveraging OS APIs [15, 56]
to monitor the runtime behavior of malware. Although
bare-metal based approaches eliminate the detection of
the emulator or hypervisor, the artifacts introduced by the
analysis tool itself are still detectable by malware. More-
over, privileged malware can even manipulate the anal-
ysis tool since they run in the same environment. How
to build a transparent mobile malware analysis system is
still a challenging problem.

This transparency problem has been well studied in
the traditional x86 architecture, and similar milestones
have been made from emulation-based analysis sys-
tems [2, 40] to hardware-assisted virtualization analysis
systems [19, 20, 32], and then to bare-metal analysis sys-
tems [30, 31, 41, 54]. However, this problem still chal-
lenges the state-of-the-art malware analysis systems.

We consider that an analysis system consists of an En-
vironment (e.g., operating system, emulator, hypervisor,
or sandbox) and an Analyzer (e.g., instruction analyzer,
API tracer, or application debugger). The Environment
provides the Analyzer with the access to the states of the
target malware, and the Analyzer is responsible for the
further analysis of the states. Consider an analysis sys-
tem that leverages the emulator to record the system call
sequence and sends the sequence to a remote server for
further analysis. In this system, the Environment is the
emulator, which provides access to the system call se-
quence, and both the system call recorder and the remote
server belong to the Analyzer. Evasive malware can de-
tect this analysis system via anti-emulation techniques
and evade the analysis.
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To build a transparent analysis system, we propose
three requirements. Firstly, the Environment must be iso-
lated. Otherwise, the Environment itself can be manip-
ulated by the malware. Secondly, the Environment ex-
ists on an off-the-shelf (OTS) bare-metal platform with-
out modifying the software or hardware (e.g., emulation
and virtualization are not). Although studying the anti-
emulation and anti-virtualization techniques [29, 36, 39,
48] helps us to build a more transparent system by fix-
ing the imperfections of the Environment, we consider
perfect emulation or virtualization is impractical due to
the complexity of the software. Instead, if the Environ-
ment already exists in the OTS bare-metal platform, mal-
ware cannot detect the analysis system by the presence of
the Environment. Finally, the Analyzer should not leave
any detectable footprints (e.g., files, memory, registers,
or code) to the outside of the Environment. An Analyzer
violating this requirement can be detected.

In light of the three requirements, we present NINJA 1,
a transparent malware analysis framework on ARM plat-
form based on hardware features including TrustZone
technology, Performance Monitoring Unit (PMU), and
Embedded Trace Macrocell (ETM). We implement a
prototype of NINJA that embodies a trace subsystem
with different tracing granularities and a debug subsys-
tem with a GDB-like debugging protocol on ARM Juno
development board. Additionally, hardware-based traps
and memory protection are leveraged to keep the use of
system registers transparent to the target application. The
experimental results show that our framework can trans-
parently monitor and analyze the behavior of the mal-
ware samples. Moreover, NINJA introduces reasonable
overhead. We evaluate the performance of the trace sub-
system with several popular benchmarks, and the result
shows that the overheads of the instruction trace and sys-
tem call trace are less than 1% and the Android API trace
introduces 4 to 154 times slowdown.

The main contributions of this work include:

• We present a hardware-assisted analysis framework,
named NINJA, on ARM platform with low artifacts.
It does not rely on emulation, virtualization, or sys-
tem software, and is OS-agnostic. NINJA resides
in a hardware isolation execution environment, and
thus is transparent to the analyzed malware.

• NINJA eliminates its footprints by novel techniques
including hardware traps, memory mapping inter-
ception, and timer adjusting. The evaluation result
demonstrates the effectiveness of the mitigation and
NINJA achieves a high level of transparency. More-
over, we evaluate the instruction-skid problem and
show that it has little influence on our system.

1A NINJA in feudal Japan has invisibility and transparency ability
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Figure 1: The ARMv8 and ARMv7 Architectures.

• We implement debugging and tracing subsystems
with a variety of program analysis functionalities.
NINJA is capable of studying kernel- or hypervisor-
level malware. The tracing subsystem exhibits a low
performance overhead and the instruction and sys-
tem call tracing is immune to timing attacks.

2 Background

2.1 TrustZone and Trusted Firmware

ARM TrustZone technology [12] introduces a hardware-
assisted security concept that divides the execution envi-
ronment into two isolated domains, i.e., secure domain
and non-secure domain. Due to security concerns, the
secure domain could access the resources (e.g., mem-
ory and registers) of the non-secure domain, but not vice
versa. In ARMv8 architecture, the only way to switch
from normal domain to secure domain is to trigger a
secure exception [8], and the exception return instruc-
tion eret is used to switch back to the normal domain
from the secure domain after the exception is handled.

Figure 1 shows the difference between the ARMv8
and the ARMv7 architectures. In the new architecture,
ARM removes the execution modes in ARMv7 and re-
names the Privilege Level (PL) to Exception Level (EL).
The term EL indicates the level where an exception can
be handled and all ELs except EL0 can handle excep-
tions. Any exception occurs in a certain level could only
be handled in the same level or a higher level.

The names of the system registers in 64-bit ARMv8
architecture contain a suffix that indicating the lowest
EL at which the register can be accessed. For example,
the name of the PMEVCNTR EL0 register indicates that the
lowest EL to access this register is EL0. Similarly, the
registers with suffix EL3 can only be accessed in EL3.

ARM Trusted Firmware [7] (ATF) is an official im-
plementation of secure domain provided by ARM, and
it supports an array of hardware platforms and emula-
tors. While entering the secure domain, the ATF saves
the context of the normal domain and dispatches the se-
cure exception to the corresponding exception handler.
After the handler finishes the handling process, the ATF
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restores the context of the normal domain and switches
back with eret instruction. ATF also provides a trusted
boot path by authenticating the firmware image with sev-
eral approaches like signatures and public keys.

2.2 PMU and ETM
The Performance Monitors Unit (PMU) [8] is a fea-
ture widely implemented in both x86 and ARM architec-
tures [42], which leverages a set of performance counter
registers to calculate CPU events. Each architecture
specifies a list of common events by event numbers,
and different CPUs may also maintain additional event
numbers. A Performance Monitor Interrupt (PMI) can
be triggered while a performance counter register over-
flows. Note that the PMU is a non-invasive debug feature
that does not affect the performance of the CPU.

The Embedded Trace Macrocell (ETM) [11] is another
non-invasive debug component in ARM architecture. It
traces instructions and data by monitoring instruction
and data buses with low performance impact. Actually,
ARM expects that ETM has no effect on the functional
performance of the processor. The ETM generates an
element for executed signpost instructions that could be
further used to reconstruct all the executed instructions.
The generated elements are encoded into a trace stream
and sent to a pre-allocated buffer on the chip.

According to Futuremark [23], 21 of the most popu-
lar 50 smartphones and tablets are equipped with ARM
Cortex-A5x or Cortex-A7x series processors, in which
the PMU and ETM components are included.

3 Related Work

3.1 Transparent Malware Analysis on x86
Ether [20] leverages hardware virtualization to build a
malware analysis system and achieves high transparency.
Spider [19] is also based on hardware virtualization, and
it focuses on both applicability and transparency while
using memory page instrument to gain higher efficiency.
Since the hardware virtualization has transparency is-
sues, these systems are naturally not transparent. LO-
PHI [41] leverages additional hardware sensors to moni-
tor the disk operation and periodically poll memory snap-
shots, and it achieves a higher transparency at the cost of
incomplete view of system states.

MalT [54] increases the transparency by involving
System Manage Mode (SMM), a special CPU mode in
x86 architecture. It leverages PMU to monitor the pro-
gram execution and switch into SMM for analysis. Com-
paring with MalT, NINJA improves in the following as-
pects: 1) The PMU registers on MalT are accessible by
privileged malware, which breaks the transparency by

checking the values of these registers. By leveraging
TrustZone technology, NINJA configures needed PMU
registers as secure ones so that even the privileged mal-
ware in the normal domain cannot access them. 2) MalT
is built on SMM. However, SMM is not designed for se-
curity purpose such as transparent debugging (originally
for power management); frequent CPU mode switching
introduces a high performance overhead (12 µs is re-
quired for a SMM switch [54]). NINJA is based on Trust-
Zone, a dedicated security extension on ARM. The do-
main switching only needs 0.34 µs (see Appendix B). 3)
Besides a debugging system, NINJA develops a transpar-
ent tracing system with existing hardware. The instruc-
tion and system call tracing introduce negligible over-
head, which is immune to timing attacks while MalT suf-
fers from external timing attack.

BareCloud [31] and MalGene [30] focus on detect-
ing evasive malware by executing malware in different
environments and comparing their behavior. There are
limitations to this approach. Firstly, it fails to transpar-
ently fetch the malware runtime behavior (e.g., system
calls and modifications to memory/registers) on a bare-
metal environment. Secondly, it assumes that the eva-
sive malware shows the malicious behavior in at least
one of the analysis platforms. However, sophisticated
malware may be able to detect all the analysis platforms
and refuse to exhibit any malicious behavior during the
analysis. Lastly, after these tools identify the evasive
malware from the large-scale malware samples, they still
need a transparent malware analysis tool which is able to
analyze these evasive samples transparently. NINJA pro-
vides a transparent framework to study the evasive mal-
ware and plays a complementary role for these systems.

3.2 Dynamic Analysis Tools on ARM

Emulation-based systems. DroidScope [52] rebuilds
the semantic information of both the Android OS and
the Dalvik virtual machine based on QEMU. Copper-
Droid [45] is a VMI-based analysis tool that automati-
cally reconstructs the behavior of Android malware in-
cluding inter-process communication (IPC) and remote
procedure call interaction. DroidScibe [18] uses Cop-
perDroid [45] to collect behavior profiles of Android
malware, and automatically classifies them into differ-
ent families. Since the emulator leaves footprints, these
systems are natural not transparent.
Hardware virtualization. Xen on ARM [50] mi-
grates the hardware virtualization based hypervisor Xen
to ARM architecture and makes the analysis based
on hardware virtualization feasible on mobile devices.
KVM/ARM [17] uses standard Linux components to im-
prove the performance of the hypervisor. Although the
hardware virtualization based solution is considered to
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be more transparent than the emulation or traditional vir-
tualization based solution, it still leaves some detectable
footprints on CPU semantics while executing specific in-
structions [39].
Bare-metal systems. TaintDroid [22] is a system-wide
information flow tracking tool. It provides variable-level,
message-level, method-level, and file-level taint propa-
gation by modifying the original Android framework.
TaintART [44] extends the idea of TaintDroid on the
most recent Android Java virtual machine Android Run-
time (ART). VetDroid [55] reconstructs the malicious be-
havior of the malware based on permission usage, and
it is applicable to taint analysis. DroidTrace [56] uses
ptrace to monitor the dynamic loading code on both
Java and native code level. BareDroid [34] provides a
quick restore mechanism that makes the bare-metal anal-
ysis of Android applications feasible at scale. Although
these tools attempt to analyze the target on real-world
devices to improve transparency, the modification to the
Android framework leaves some memory footprints or
code signatures, and the ptrace-based approaches can
be detected by simply check the /proc/self/status

file. Moreover, these systems are vulnerable to privileged
malware.

3.3 TrustZone-related Systems
TZ-RKP [13] runs in the secure domain and protects the
rich OS kernel by event-driven monitoring. Sprobes [51]
provides an instrumentation mechanism to introspect the
rich OS from the secure domain, and guarantees the ker-
nel code integrity. SeCReT [28] is a framework that en-
ables a secure communication channel between the nor-
mal domain and the secure domain, and provides a trust
execution environment. Brasser et al. [14] use TrustZone
to analyze and regulate guest devices in a restricted host
spaces via remote memory operation to avoid misusage
of sensors and peripherals. C-FLAT [1] fights against
control-flow hijacking via runtime control-flow verifica-
tion in TrustZone. TrustShadow [25] shields the execu-
tion of an unmodified application from a compromised
operating system by building a lightweight runtime sys-
tem in the ARM TrustZone secure world. The runtime
system forwards the requests of system services to the
commodity operating systems in the normal world and
verifies the returns. Unlike previous systems, NINJA
leverage TrustZone to transparently debug and analyze
the ARM applications and malware.

4 System Architecture

Figure 2 shows the architecture of NINJA. The NINJA
consists of a target executing platform and a remote de-
bugging client. In the target executing platform, Trust-
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Figure 2: Architecture of NINJA.

Zone provides hardware-based isolation between the
normal and secure domains while the rich OS (e.g.,
Linux or Android) runs in the normal domain and NINJA
runs in the secure domain. We setup a customized excep-
tion handler in EL3 to handle asynchronous exceptions
(i.e., interrupts) of our interest. NINJA contains a Trace
Subsystem (TS) and a Debug Subsystem (DS). The TS is
designed to transparently trace the execution of a target
application, which does not need any human interaction
during the tracing. This feature is essential for automatic
large-scale analysis. In contrast, the DS relies on human
analysts. In the remote debugging platform, the analysts
send debug commands via a secure serial port and the DS
then response to the commands. During the execution of
an application, we use secure interrupts to switch into the
secure domain and then resume to the normal domain by
executing the exception return instruction eret.

4.1 Reliable Domain Switch
Normally, the smc instruction is used to trigger a domain
switch by signaling a Secure Monitor Call (SMC) excep-
tion which is handled in EL3. However, as the execution
of the smc instruction may be blocked by privileged mal-
ware, this software-based switch is not reliable.

Another solution is to trigger a secure interrupt which
is considered as an asynchronous exception in EL3.
ARM Generic Interrupt Controller (GIC) [5] partitions
all interrupts into secure group and non-secure group,
and each interrupt is configured to be either secure or
non-secure. Moreover, the GIC Security Extensions en-
sures that the normal domain cannot access the config-
uration of a secure interrupt. Regarding to NINJA, we
configure PMI to be a secure interrupt so that an over-
flow of the PMU registers leads to a switch to the secure
domain. To increase the flexibility, we also use simi-
lar technology mentioned in [43] to configure the Gen-
eral Purpose Input/Output (GPIO) buttons as the source
of secure Non-Maskable Interrupt (NMI) to trigger the
switch. The switch from secure domain to normal do-
main is achieved by executing the exception return in-
struction eret.
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4.2 The Trace Subsystem

The Trace Subsystem (TS) provides the analyst the abil-
ity to trace the execution of the target application in dif-
ferent granularities during automatic analysis including
instruction tracing, system call tracing, and Android API
tracing. We achieve the instruction and system call trac-
ing via hardware component ETM, and the Android API
tracing with help of PMU registers.

By default, we use the GPIO button as the trigger of
secure NMIs. Once the button is pressed, a secure NMI
request is signaled to the GIC, and GIC routes this NMI
to EL3. NINJA toggles the enable status of ETM after
receiving this interrupt and outputs the tracing result if
needed. Additionally, the PMU registers are involved
during the Android API trace. Note that the NMI of
GPIO buttons can be replaced by any system events that
trigger an interrupt (e.g., system calls, network events,
clock events, and etc.), and these events can be used to
indicate the start or end of the trace in different usage
scenarios.

Another advanced feature of ETM is that PMU events
can also be configured as an external input source. In
light of this, we specify different granularities of the trac-
ing. For example, we trace all the system calls by con-
figure the ETM to use the signal of PMU event EXC SVC

as the external input.

4.3 The Debug Subsystem

In contrast to the TS, the Debug Subsystem (DS) is de-
signed for manual analysis. It establishes a secure chan-
nel between the target executing platform and the remote
debugging platform, and provides a user interface for hu-
man analysts to introspect the execution status of the tar-
get application.

To interrupt the execution of the target, we configure
the PMI to be secure and adjust the value of the PMU
counter registers to trigger an overflow at a desired point.
NINJA receives the secure interrupt after a PMU counter
overflows and pauses the execution of the target. A hu-
man analyst then issues debugging commands via the se-
cure serial port and introspects the current status of the
target following our GDB-like debugging protocol. To
ensure the PMI will be triggered again, the DS sets de-
sirable values to the PMU registers before exiting the se-
cure domain.

Moreover, similar to the TS, we specify the granu-
larity of the debugging by monitoring different PMU
events. For example, if we choose the event INST R-

ETIRED which occurs after an instruction is retired, the
execution of the target application is paused after each
instruction is executed. If the event EXC SVC is chosen,
the DS takes control of the system after each system call.

5 Design and Implementation

We implement NINJA on a 64-bit ARMv8 Juno r1 board.
There are two ARM Cortex-A57 cores and four ARM
Cortex-A53 cores on the board, and all of them include
the support for PMU, ETM, and TrustZone. Based on the
ATF and Linaro’s deliverables on Android 5.1.1 for Juno,
we build a customized firmware for the board. Note that
NINJA is compatible with commercial mobile devices
because it relies on existing deployed hardware features.

5.1 Bridge the Semantic Gap
As with the VMI-based [27] and TEE-based [54] sys-
tems, bridging the semantic gap is an essential step for
NINJA to conduct the analysis. In particular, we face two
layers of semantic gaps in our system.

5.1.1 Gap between Normal and Secure Domains

In the DS, NINJA uses PMI to trigger a trap to EL3. How-
ever, the PMU counts the instructions executed in the
CPU disregarding to the current running process. That
means the instruction which triggers the PMI may belong
to another application. Thus, we first need to identify if
the current running process is the target. Since NINJA is
implemented in the secure domain, it cannot understand
the semantic information of the normal domain, and we
have to fill the semantic gap to learn the current running
process in the OS.

In Linux, each process is represented by an instance
of thread info data structure, and the one for the
current running process could be obtained by SP &
∼(THREAD SIZE - 1) , where SP indicates the current
stack pointer and THREAD SIZE represents the size of
the stack. Next, we can fetch the task struct, which
maintains the process information (like pid, name, and
memory layout), from the thread info. Then, the tar-
get process can be identified by the pid or process name.

5.1.2 Gap in Android Java Virtual Machine

Android maintains a Java virtual machine to interpret
Java bytecode, and we need to figure out the current exe-
cuting Java method and bytecode during the Android API
tracing and bytecode stepping. DroidScope [52] fills the
semantic gaps in the Dalvik to understand the current sta-
tus of the VM. However, as a result of Android upgrades,
Dalvik is no longer available in recent Android versions,
and the approach in DroidScope is not applicable for us.

By manually analyzing the source code of
ART, we learn that the bytecode interpreter uses
ExecuteGotoImpl or ExecuteSwitchImpl function
to execute the bytecode. The approaches we used to fill
the semantic gap in these two functions are similar, and
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Figure 3: Semantics in the Function ExecuteGotoImpl.

we use function ExecuteGotoImpl as an example to
explain our approach. In Android, the bytecode of a Java
method is organized as a 16-bit array, and ART passes
the bytecode array to the function ExecuteGotoImpl

together with the current execution status such as the
current thread, caller and callee methods, and the call
frame stack that stores the call stack and parameters.
Then, the function ExecuteGotoImpl interprets the
bytecode in the array following the control flows, and a
local variable dex pc indicates the index of the current
interpreting bytecode in the array. By manual checking
the decompiled result of the function, we find that the
pointer to the bytecode array is stored in register X27

while variable dex pc is kept by register X21, and the
call frame stack is maintained in register X19. Figure 3
shows the semantics in the function ExecuteGotoImpl.
By combining registers X21 and X27, we can locate the
current executing bytecode. Moreover, a single frame
in the call frame stack is represented by an instance of
StackFrame with the variable link pointing to the
previous frame. The variable method indicates the
current executing Java method, which is represented
by an instance of ArtMethod. Next, we fetch the
declaring class of the Java method following the pointer
declaring class . The pointer dex cache in the
declaring class points to an instance of DexCache which
is used to maintain a cache for the DEX file, and the
variable dex file in the DexCache finally points to
the instance of DexFile, which contains all information
of a DEX file. Detail description like the name of the
method can be fetched via the index of the method (i.e.,
dex method index ) in the method array maintained
by the DexFile. Note that both ExecuteGotoImpl

and ExecuteSwitchImpl functions have four different

template implementations in ART, and our approach is
applicable to all of them.

5.2 Secure Interrupts

In GIC, each interrupt is assigned to Group 0 (secure in-
terrupts) or Group 1 (non-secure interrupts) by a group
of 32-bit GICD IGROUPR registers. Each bit in each
GICD IGROUPR register represents the group information
of a single interrupt, and value 0 indicates Group 0 while
value 1 means Group 1. For a given interrupt ID n,
the index of the corresponding GICD IGROUPR register
is given by n / 32, and the corresponding bit in the reg-
ister is n mod 32. Moreover, the GIC maintains a target
process list in GICD ITARGETSR registers for each inter-
rupt. By default, the ATF configures the secure interrupts
to be handled in Cortex-A57 core 0.

As mentioned in Section 4.1, NINJA uses secure PMI
and NMI to trigger a reliable switch. As the secure inter-
rupts are handled in Cortex-A57 core 0, we run the tar-
get application on the same core to reduce the overhead
of the communication between cores. In Juno board,
the interrupt ID for PMI in Cortex-A57 core 0 is 34.
Thus, we clear the bit 2 of the register GICD IGROUPR1

(34 mod 32 = 2,34/32 = 1) to mark the interrupt 34 as
secure. Similarly, we configure the interrupt 195, which
is triggered by pressing a GPIO button, to be secure by
clearing the bit 3 of the register GICD IGROUPR6.

5.3 The Trace Subsystem

5.3.1 Instruction Tracing

NINJA uses ETM embedded in the CPU to trace the exe-
cuted instructions. Figure 4 shows the ETM and related
components in Juno board. The funnels shown in the
figure are used to filter the output of ETM, and each of
them is controlled by a group of CoreSight Trace Funnel
(CSTF) registers [9]. The filtered result is then output
to Embedded Trace FIFO (ETF) which is controlled by
Trace Memory Controller (TMC) registers [10].

In our case, as we only need the trace result from the
core 0 in the Cortex-A57 cluster, we set the EnS0 bit in
CSTF Control Register of funnel 0 and funnel 2, and
clear other slave bits. To enable the ETF, we set the
TraceCaptEn bit of the TMC CTL register.

The ETM is controlled by a group of trace regis-
ters. As the target application is always executed in
non-secure EL0 or non-secure EL1, we make the ETM
only trace these states by setting all EXLEVEL S bits and
clearing all EXLEVEL NS bits of the TRCVICTLR register.
Then, NINJA sets the EN bit of TRCPRGCTLR register to
start the instruction trace. In regard to stop the trace, we
first clear the EN bit of TRCPRGCTLR register to disable
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Figure 4: ETM in Juno Board.

ETM and then set the StopOnFl bit and the FlushMan

bits of FFCR register in the TMC registers to stop the
ETF. To read the trace result, we keep reading from RRD

register until 0xFFFFFFFF is fetched. Note that the trace
result is an encoded trace stream, and we use an open
source analyzer ptm2human [26] to convert the stream to
a readable format.

5.3.2 System Call Tracing

The system call of Linux in ARM platforms is achieved
by supervisor call instruction svc, and an immediate
value following the svc instruction indicates the corre-
sponding system call number. Since the ETM can be
configured to trace the PMU event EXC SVC, which oc-
curs right after the execution of a svc instruction, we
trace the system calls via tracing this event in ETM.

As mentioned in Section 4.2, we can configure the
ETM to trace PMU events during the instruction trace.
The TRCEXTINSELR register is used to trace at most four
external input source, and we configure one of them
to trace the EXC SVC event. In Cortex-A57, the event
number of the EXC SVC event is 0x60, so we set the
SEL0 bits of the TRCEXTINSELR register to be 0x60.
Also, the SELECT bits of the second trace resource se-
lection control register TRCRSCTLR2 (TRCRSCTLR0 and
TRCRSCTLR1 are reserved) is configured to 0 to select
the external input 0 as tracing resource 2. Next, we con-
figure the EVENT0 bit of TRCEVENTCTL0R register to 2 to
select the resource 2 as event 0. Finally, the INSTEN bit
of TRCEVENTCTL1R register is set to 0x1 to enable event
0. Note that the X bit of PMU register PMCR EL0 should
also be set to export the events to ETM. After the config-
uration, the ETM can be used to trace system calls, and
the configuration to start and stop the trace is similar to
the one in Section 5.3.1.

5.3.3 Android API Tracing

Unlike the instruction trace and system call trace, we
cannot use ETM to directly trace the Android APIs
as the existence of the semantic gap. As mentioned
in Section 5.1.2, each Java method is interpreter by
ExecuteGotoImpl or ExecuteSwitchImpl function,

and ART jumps to these functions by a branch instruction
bl. Since a PMU event BR RETIRED is fired after exe-
cution of a branch instruction, we use PMU to trace the
BR RETIRED event and reconstruct the semantic informa-
tion following the approach described in Section 5.1.2 if
these functions are invoked.

There exist six PMU counters for each processor on
Juno board, and we randomly select the last one to be
used for the Android API trace and the DS. Firstly, the
E bit of PMCR EL0 register is set to enable the PMU.
Then, both PMCNTENSET EL0 and PMINTENSET EL1 reg-
isters are set to 0x20 to enable the counter 6 and
the overflow interrupt of the counter 6. Next, we set
PMEVTYPER5 EL0 register to 0x80000021 to make the
counter 6 count the BR RETIRED event in non-secure
EL0. Finally, the counter PMEVCNTR5 EL0 is set to its
maximum value 0xFFFFFFFF. With this configuration,
a secure PMI is routed to EL3 after the execution of
the next branch instruction. In the interrupt handler, the
ELR EL3 register, which is identical to the PC of the nor-
mal domain, is examined to identify whether the execu-
tion of normal domain encounters ExecuteGotoImpl or
ExecuteSwitchImpl function. If true, we fill the se-
mantic gap and fetch the information about the current
executing Java method. By the declaring class of the
method, we differentiate the Android APIs from the de-
veloper defined methods. Before returning to the normal
domain, we reset the performance counter to its maxi-
mum value to make sure the next execution of a branch
instruction leads to an overflow.

5.4 The Debug Subsystem

Debugging is another essential approach to learn the be-
havior of an application. NINJA leverages a secure serial
port to connect the board to an external debugging client.
There exists two serial port (i.e., UART0 and UART1) in
Juno board, and the ATF uses UART0 as the debugging
input/output of both normal domain and secure domain.
To build a secure debugging bridge, NINJA uses UART1
as the debugging channel and marks it as a secure de-
vice by configuring NIC-400 [3]. Alternatively, we can
use a USB cable for this purpose. In the DS, an ana-
lyst pauses the execution of the target application by the
secure NMI or predefined breakpoints and send debug-
ging commands to the board via the secure serial port.
NINJA processes the commands and outputs the response
to the serial port with a user-friendly format. The table in
Appendix A shows the supported debugging commands.
The information about symbols in both bytecode and ma-
chine code are not supported at this moment, and we con-
sider it as our future work.
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5.4.1 Single-instruction Stepping

The ARMv8 architecture provides instruction stepping
support for the debuggers by the SS bit of MDSCR EL1

register. Once this bit is set, the CPU generates a soft-
ware step exception after each instruction is executed,
and the highest EL that this exception can be routed is
EL2. However, this approach has two fundamental draw-
backs: 1) the EL2 is normally prepared for the hard-
ware virtualization systems, which does not satisfy our
transparency requirements. 2) The instruction stepping
changes the value of PSTATE, which is accessible from
EL1. Thus, we cannot use the software step exception for
the instruction stepping. Another approach is to modify
the target application’s code to generate a SMC excep-
tion after each instruction. Nonetheless, the modification
brings the side effect that the self-checking malware may
be aware of it.

The PMU event INST RETIRED is fired after the exe-
cution of each instruction, and we use this event to im-
plement instruction stepping by using similar approach
mentioned in Section 5.3.3. With the configuration,
NINJA pauses the execution of the target after the exe-
cution of each instruction and waits for the debugging
commands.

Moreover, NINJA is capable of stepping Java byte-
code. Recall that the functions ExecuteGotoImpl

and ExecuteSwitchImpl interpret the bytecode in Java
methods. In both functions, a branch instruction is used
to switch to the interpretation code of each Java byte-
code. Thus, we use BR RETIRED event to trace the
branch instructions and firstly ensure the pc of normal
domain is inside the two interpreter functions. Next, we
fill the semantic gap and monitor the value of dex pc. As
the change of dex pc value indicates the change of cur-
rent interpreting bytecode, we pause the system once the
dex pc is changed to achieve Java bytecode stepping.

5.4.2 Breakpoints

In ARMv8 architecture, a breakpoint exception is gen-
erated by either a software breakpoint or a hardware
breakpoint. The execution of brk instruction is consid-
ered as a software breakpoint while the breakpoint con-
trol registers DBGBCR EL1 and breakpoint value registers
DBGBVR EL1 provide support for at most 16 hardware
breakpoints. However, similar to the software step ex-
ception, the breakpoint exception generated in the nor-
mal domain could not be routed to EL3, which breaks the
transparency requirement of NINJA. MalT [54] discusses
another breakpoint implementation that modifies the tar-
get’s code to trigger an interrupt. Due to the transparency
requirement, we avoid this approach to keep our system
transparent against the self-checking malware. Thus, we
implement the breakpoint based on the instruction step-

ping technique discussed above. Once the analyst adds
a breakpoint, NINJA stores its address and enable PMU
to trace the execution of instructions. If the address of
an executing instruction matches the breakpoint, NINJA
pauses the execution and waits for debugging commands.
Otherwise, we return to the normal domain and do not
interrupt the execution of the target.

5.4.3 Memory Read/Write

NINJA supports memory access with both physical and
virtual addresses. The TrustZone technology ensures
that EL3 code can access the physical memory of the
normal domain, so it is straight forward for NINJA to
access memory via physical addresses. Regarding to
memory accesses via virtual addresses, we have to find
the corresponding physical addresses for the virtual ad-
dresses in the normal domain. Instead of manually walk
through the page tables, a series of Address Translation
(AT) instructions help to translate a 64-bit virtual address
to a 48-bit physical address2 considering the translation
stages, ELs and memory attributes. As an example, the
at s12e0r addr instruction performs stage 1 and 2 (if
available) translations as defined for EL0 to the 64-bit
address addr, with permissions as if reading from addr.
The [47:12] bits of the corresponding physical address
are storing in the PA bits of the PAR EL1 register, and
the [11:0] bits of the physical address are identical to the
[11:0] bits of the virtual address addr. After the transla-
tion, NINJA directly manipulates the memory in normal
domain according to the debugging commands.

5.5 Interrupt Instruction Skid
In ARMv8 manual, the interrupts are referred as asyn-
chronous exceptions. Once an interrupt source is trig-
gered, the CPU continues executing the instructions in-
stead of waiting for the interrupt. Figure 5 shows the
interrupt process in Juno board. Assume that an inter-
rupt source is triggered before the MOV instruction is ex-
ecuted. The processor then sends the interrupt request
to the GIC and continues executing the MOV instruction.
The GIC processes the requested interrupt according to
the configuration, and signals the interrupt back to the
processor. Note that it takes GIC some time to finish the
process, so some instructions following the MOV instruc-
tion have been executed when the interrupt arrives the
processor. As shown in Figure 5, the current executing
instruction is the ADD instruction instead of the MOV in-
struction when the interrupt arrives, and the instruction
shadow region between the MOV and ADD instructions is
considered as interrupt instruction skid.

2The ARMv8 architecture does not support more bits in the physical
address at this moment
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...
MOV X1, X0

...

...

...
ADD X1, X0, #1

GIC

interrupt 
triggered

send interrupt
request

signal interrupt
instruction skid

Figure 5: Interrupt Instruction Skid.

MRS X0, PMCR_EL0
MOV X1, #31

AND X0, X1, X1 LSR #10
...

...
MOV X0, #0x41013000

exception 
return

trap

Normal Domain Secure domain

Figure 6: Protect the PMCR EL0 Register via Traps.

The skid problem is a well-known problem [42, 49]
and affects NINJA since the current executing instruction
is not the one that triggers the PMI when the PMI ar-
rives the processor. Thus, the DS may not exactly step
the execution of the processor. Although the skid prob-
lem cannot be completely eliminated, the side-effect of
the skid does not affect our system significantly, and we
provide a detailed analysis and evaluation in Section 7.5.

6 Transparency

As NINJA is not based on the emulator or other sand-
boxes, the anti-analysis techniques mentioned in [29, 36,
48] cannot detect the existence of NINJA. Moreover,
other anti-debugging techniques like anti-ptrace [53] do
not work for NINJA since our analysis does not use
ptrace. Nonetheless, NINJA leaves artifacts such as
changes of the registers and the slow down of the system,
which may be detected by the target application. Next,
we discuss the mitigation of these artifacts.

6.1 Footprints Elimination
Since NINJA works in the secure domain, the hardware
prevents the target application from detecting the code
or memory usage of NINJA. Moreover, as the ATF re-
stores all the general purpose registers while entering the
secure domain and resumes them back while returning
to the normal domain, NINJA does not affect the reg-
isters used by the target application as well. However,
as we use ETM and PMU to achieve the debugging and
tracing functions, the modification to the PMU registers
and the ETM registers leaves a detectable footprint. In
ARMv8, the PMU and ETM registers are accessible via
both system-instruction and memory-mapped interfaces.

6.1.1 System-Instruction Interface

The system-instruction interface makes the system regis-
ters readable via MRS instruction and writable via MSR in-

struction. In NINJA, we ensure that the access to the tar-
get system registers via these instructions to be trapped
to EL3. The TPM bit of the MDCR EL3 register and the
TTA bit of the CPTR EL3 register help to trap the access
to PMU and ETM registers to EL3, respectively; then we
achieve the transparency by providing artificial values to
the normal domain. Figure 6 is an example of manipu-
lating the reading to the PMCR EL0 register and returning
the default value of the register. Before the MRS instruc-
tion is executed, a trap is triggered to switch to the secure
domain. NINJA then analyzes the instruction that triggers
the trap and learns that the return value of PMCR EL0 is
stored to the general-purpose register X0. Thus, we put
the default value 0x41013000 to the general-purpose reg-
ister X0 and resume to the normal domain. Note that the
PC register of the normal domain should also be modified
to skip the MRS instruction. We protect both the registers
that we modified (e.g., PMCR EL0, PMCNTENSET EL0)
and the registers modified by the hardware as a result
of our usage (e.g., PMINTENCLR EL1, PMOVSCLR EL0).

6.1.2 Memory Mapped Interface

Each of the PMU or ETM related components occupies
a distinct physical memory region, and the registers of
the component can be accessed via offsets in the region.
Since these memory regions do not locate in the DRAM
(i.e., main memory), the TrustZone Address Space Con-
troller (TZASC) [12], which partitions the DRAM into
secure regions and non-secure regions, cannot protect
them directly. Note that this hardware memory region
is not initialized by the system firmware by default and
the system software such as applications and OSes can-
not access it because the memory region is not mapped
into the virtual memory. However, advanced malware
might remap this physical memory region via functions
like mmap and ioremap. Thus, to further defend against
these attacks, we intercept the suspicious calls to these
functions and redirect the call to return an artificial mem-
ory region.

The memory size for both the PMU and ETM mem-
ory regions is 64k, and we reserve a 128k memory re-
gion on the DRAM to be the artificial PMU and ETM
memory. The ATF for Juno board uses the DRAM re-
gion 0x880000000 to 0x9ffffffff as the memory of the
rich OS and the region 0xa00000000 to 0x1000000000
of the DRAM is not actually initialized. Thus, we
randomly choose the memory region 0xa00040000 to
0xa00060000 to be the region for artificial memory
mapped registers. While the system is booting, we firstly
duplicate the values in the PMU and ETM memory re-
gions into the artificial regions. As the function calls are
achieved by bl instruction, we intercept the call to the
interested functions by using PMU to trigger a PMI on
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the execution of branch instructions and compare the pc
of the normal domain with the address of these functions.
Next, we manipulate the call to these functions by mod-
ification to the parameters. Take ioremap function as
an example. The first parameter of the function, which
is stored in the register X0, indicates the target physical
address, and we modify the value stored at the register
to the corresponding address in the artificial memory re-
gion. With this approach, the application never reads
the real value of PMU and ETM registers, and cannot
be aware of NINJA.

6.2 Defending Against Timing Attacks

The target application may use the SoC or external timers
to detect the time elapsed in the secure domain since the
DS affects the performance of the processor and com-
municates with a human analyst. Note that the TS using
ETM does not affect the performance of the processor
and thus is immune to the timing attack.

The ARMv8 architecture defines two types of timer
components, i.e., the memory-mapped timers and the
generic timer registers [8]. Other than these timers, the
Juno board is equipped with an additional Real Time
Clock (RTC) component PL031 [6] and two dual-timer
modules SP804 [4] to measure the time. For each one of
these components, we manipulate its value to make the
time elapsed of NINJA invisible.

Each of the memory-mapped timer components is
mapped to a pre-defined memory region, and all these
memory regions are writable in EL3. Thus, we record
the value of the timer or counter while entering NINJA
and restore it before existing NINJA. The RTC and dual-
timer modules are also mapped to a writable memory re-
gion, so we use a similar method to handle them.

The generic timer registers consist of a series of
timer and counter registers, and all of these regis-
ters are writable in EL3 except the physical counter
register CNTPCT EL0 and the virtual counter register
CNTVCT EL0. For the writable registers, we use the
same approach as handling memory-mapped timers to
manipulate them. Although CNTPCT EL0 is not directly
writable, the ARM architecture requires a memory-
mapped counter component to control the generation
of the counter value [8]. In the Juno board, the
generic counter is mapped to a controlling memory frame
0x2a430000-0x2a43ffff, and writing to the memory ad-
dress 0x2a430008 updates the value of CNTPCT EL0.
The CNTVCT EL0 register always holds a value equal
to the value of the physical counter register minus the
value of the virtual offset register CNTVOFF EL2. Thus,
the update to the CNTPCT EL0 register also updates the
CNTVCT EL0 register.

Note that the above mechanism only considers the

time consumption of NINJA, and does not take the time
consumption of the ATF into account. Thus, to make
it more precise, we measure the average time consump-
tion of the ATF during the secure exception handling (see
Appendix B) and minus it while restoring the timer val-
ues. Besides the timers, the malware may also leverage
the PMU to count the CPU cycles. Thus, NINJA checks
the enabled PMU counters and restores their values in a
similar way to the writable timers.

The external timing attack cannot be defended by
modifying the local timer since external timers are in-
volved. As the instruction tracing in NINJA is immune to
the timing attack, we can use the TS to trace the execu-
tion of the target with DS enabled and disabled. By com-
paring the trace result using the approaches described
in BareCloud [31] and MalGene [30], we may identify
the suspicious instructions that launch the attack and de-
fend against the attack by manipulating the control flow
in EL3 to bypass these instructions. However, the ef-
fectiveness of this approach needs to be further studied.
Currently, defending against the external timing attack is
an open research problem [20, 54].

7 Evaluation

To evaluate NINJA, we fist compare it with existing anal-
ysis and debugging tools on ARM. NINJA neither in-
volves any virtual machine or emulator nor uses the de-
tectable Linux tools like ptrace or strace. Moreover,
to further improve the transparency, we do not modify
Android system software or the Linux kernel. The de-
tailed comparison is listed in Table 1. Since NINJA only
relies on the ATF, the table shows that the Trusted Com-
puting Base (TCB) of NINJA is much smaller than exist-
ing systems.

7.1 Output of Tracing Subsystem
To learn the details of the tracing output, we write a sim-
ple Android application that uses Java Native Interface
to read the /proc/self/status file line by line (which
can be further used to identify whether ptrace is en-
abled) and outputs the content to the console. We use
instruction trace of the TS to trace the execution of the
application, and also measure the time usage. The status
file contains 38 lines in total, and it takes about 0.22 ms
to finish executing. After the execution, the ETF contains
9.92 KB encoded trace data, and the datarate is approxi-
mately 44.03 MB/s. Next, we use ptm2human [26] to de-
code the data, and the decoded trace data contains 1341
signpost instructions (80 in our custom native library and
the others in libc.so). By manually introspect the sign-
post instructions in our custom native library, we can re-
build the whole execution control flow. To reduce the
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Table 1: Comparing with Other Tools. The source lines of code (SLOC) of the TCB is calculated by sloccount [47]
based on Android 5.1.1 and Linux kernel 3.18.20.

ATF = ARM Trusted Firmware, AOS = Android OS, LK = Linux Kernel

NINJA TaintDroid [22] TaintART [44] DroidTrace [56] CrowDroid [15] DroidScope [52] CopperDroid [45] NDroid [38]

No VM/emulator X X X X X

No ptrace/strace X X X X X X

No modification to Android X X X X X X

Analyzing native instruction X X X X X X

Trusted computing base ATF AOS + LK AOS + LK LK LK QEMU QEMU QEMU

SLOC of TCB (K) 27 56,355 56,355 12,723 12,723 489 489 489

storage usage of the ETM, we can use real-time con-
tinuous export via either a dedicated trace port capable
of sustaining the bandwidth of the trace or an existing
interface on the SoC (e.g., a USB or other high-speed
port) [11].

7.2 Tracing and Debugging Samples

We pickup two samples ActivityLifecycle1 and
PrivateDataLeak3 from DroidBench [21] project and
use NINJA to analyze them. We choose these two spe-
cific samples since they exhibit representative malicious
behavior like leaking sensitive information via local file,
text message, and network connection.

Analyzing ActivityLifecycle1. To get an overview
of the sample, we first enable the Android API tracing
feature to inspect the APIs that read sensitive informa-
tion (source) and APIs that leak information (sink), and
find a suspicious API call sequence. In the sequence,
the method TelephonyManager.getDeviceId and
method HttpURLConnection.connect are invoked in
turn, which indicates a potential flow that sends IMEI to a
remote server. As we know the network packets are sent
via the system call sys sendto, we attempt to intercept
the system call and analyze the parameters of the system
call. In Android, the system calls are invoked by corre-
sponding functions in libc.so, and we get the address
of the function for the system call sys sendto by disas-
sembling libc.so. Thus, we use NINJA to set a break-
point at the address, and the second parameter of the sys-
tem call, which is stored in register X1, shows that the
sample sends a 181 bytes buffer to a remote server. Then,
we output the memory content of the buffer and find that
it is a HTTP GET request to host www.google.de with
path /search?q=353626078711780. Note that the dig-
its in the path is exactly the IMEI of the device.

Analyzing PrivateDataLeak3. Similar to the previ-
ous analysis, the Android API tracing helps us to find a
suspicious API call sequence consisting of the methods
TelephonyManager.getDeviceId, Context.openF-

ileOutput, and SmsManager.sendTextMessage. As
the Android uses the system calls sys openat to open a
file and sys write to write a file, we set breakpoints at
the address of these calls. Note that the second parame-
ter of sys openat represents the full path of the target
file and the second parameter of sys write points to a
buffer writing to a file. Thus, after the breakpoints are hit,
we see that sample writing IMEI 353626078711780 to
the file /data/data/de.ecspride/files/out.txt.
The API SmsManager.sendTextMessage uses binder
to achieve IPC with the lower-layer SmsService in An-
droid system, and the semantics of the IPC is described
in CopperDroid [45]. By intercepting the system call
sys ioctl and following the semantics, we finally find
the target of the text message “+49” and the content of
the message 353626078711780.

7.3 Transparency Experiments
7.3.1 Accessing System Instruction Interface

To evaluate the protection mechanism of the system in-
struction interface, we write an Android application that
reads the PMCR EL0 and PMCNTENSET EL0 registers via
MRS instruction. The values of these two registers rep-
resent whether a performance counter is enabled. We
first use the application to read the registers with NINJA
disabled, and the result is shown in the upper rectan-
gle of Figure 7a. The last bit of the PMCR EL0 regis-
ter and the value of the PMCNTENSET EL0 register are 0,
which means that all the performance counters are dis-
abled. Then we press a GPIO button to enable the An-
droid API tracing feature of NINJA and read the regis-
ters again. From the console output shown in Figure 7b,
we see that the access to the registers is successfully
trapped into EL3. And the output shows that the real
values of the PMCR EL0 and PMCNTENSET EL0 registers
are 0x41013011 and 0x20, respectively, which indicates
that the counter PMEVCNTR5 EL0 is enabled. However,
the lower rectangle in Figure 7a shows that the value of
the registers fetched by the application keep unchanged.
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(a) Reading PMU Register in an Application. (b) EL3 Output in the Secure Console.

Figure 7: Accessing System Instruction Interface.

This experiment shows that NINJA effectively eliminates
the footprint on the system instruction interface.

7.3.2 Accessing Memory Mapped Interface

In this section, we take ioremap function as an exam-
ple to evaluate whether the interception to the memory-
mapping functions works. As the ioremap function can
be called only in the kernel space, we write a kernel mod-
ule that remaps the memory region of the ETM by the
ioremap function, and print the content of the first 32
bytes in the region. Similar to the approach discussed
above, we first load the kernel module with NINJA dis-
abled, and the output is shown in the upper rectangle in
Figure 8a. Note that the 5th to the 8th bytes are mapped
as the TRCPRGCTLR register and the EN bit, which indi-
cates the status of the ETM, is the last bit of the register.
In the upper rectangle, the EN bit 0 shows that the ETM is
disabled. Next, we enable the instruction tracing feature
of NINJA and reload the kernel module. The lower rect-
angle in Figure 8a shows that the content of the memory
fetched by the module remains the same. However, in the
Figure 8b, the output from EL3 shows that the memory
of the ETM has changed. This experiment shows that we
successfully hide the ETM status change to the normal
domain, and NINJA remains transparent.

7.3.3 Adjusting the Timers

To evaluate whether our mechanism that modifies the
local timers works, we write a simple application that
launches a dummy loop for 1 billion times, and calculate
the execution time of the loop by the return values of the
API call System.currentTimeMillis(). In the first
experiment, we record the execution time with NINJA
disabled, and the average time for 30 runs is 53.16s with
a standard deviation 2.97s. In the second experiment,
we enable the debugging mode of NINJA and pause the
execution during the loop by pressing the GPIO button.
To simulate the manual analysis, we send a command rr

to output all the general purpose registers and then read
them for 60s. Finally, a command c is sent to resume

Table 2: The TS Performance Evaluation Calculating 1
Million Digits of π .

Mean STD # Slowdown

Base: Tracing disabled 2.133 s 0.69 ms

Instruction tracing 2.135 s 2.79 ms ∼ 1x
System call tracing 2.134 s 5.13 ms ∼ 1x
Android API tracing 149.372 s 1287.88 ms ∼70x

the execution of the target. We repeat the second exper-
iment with the timer adjusting feature of NINJA enabled
and disabled for 30 times each, and record the execu-
tion time of the loop. The result shows that the average
execution time with timer adjusting feature disabled is
116.33s with a standard deviation 2.24s, and that with
timer adjusting feature enabled is 54.33s with a standard
deviation 3.77s. As the latter result exhibits similar exe-
cution time with the original system, the malware cannot
use the local timer to detect the presence of the debug-
ging system.

7.4 Performance Evaluation
In this section, we evaluate the performance overhead of
the trace subsystem due to its automation characteristic.
Performance overhead of the debugging subsystem is not
noticed by an analyst in front of the command console,
and the debugging system is designed with human inter-
action.

To learn the performance overhead on the Linux bi-
naries, we build an executable that using an open source
π calculation algorithm provided by the GNU Multiple
Precision Arithmetic Library [46] to calculate 1 million
digits of the π for 30 times with the tracing functions dis-
abled and enabled, and the time consumption is shown
in Table 2. Since we leverage ETM to achieve the in-
struction tracing and system call tracing, the experiment
result shows that the ETM-based solution has negligible
overhead — less than 0.1%. In the Android API tracing,
the overhead is about 70x. This overhead is mainly due
to the frequent domain switch during the execution and
bridging the semantic gap. To reduce the overhead, we
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(a) Reading ETM Memory Region. (b) EL3 Output in the Secure Console.

Figure 8: Memory Mapped Interface.
Table 3: The TS Performance Evaluation with CF-Bench [16].

Native Scores Java Scores Overall Scores
Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown

Base: Tracing disabled 25380 1023 18758 1142 21407 1092

Instruction tracing 25364 908 ∼ 1x 18673 1095 ∼ 1x 21349 1011 ∼ 1x
System call tracing 25360 774 ∼ 1x 18664 1164 ∼ 1x 21342 911 ∼ 1x
Android API tracing 6452 24 ∼ 4x 122 4 ∼ 154x 2654 11 ∼ 8x

can combine ETM instruction trace with data trace, and
leverage the trace result to rebuild the semantic informa-
tion and API usage offline.

To measure the performance overhead on the Android
applications, we use CF-Bench [16] downloaded from
Google Play Store. The CF-Bench focuses on measur-
ing both the Java performance and native performance
in Android system, and we use it to evaluate the over-
head for 30 times. The result in Table 3 shows that the
overheads of instruction tracing and system call tracing
are sufficiently small to ignore. The Android API tracing
brings 4x slowdown on the native score and 154x slow-
down on the Java score, and the overall slowdown is 8x.
Note that we make these benchmarks to be executed only
on Cortex-A57 core 0 by setting their CPU affinity mask
to 0x1 since NINJA only stays in that core.

7.5 Skid Evaluation
In this subsection, we evaluate the influence of the skid
problem to NINJA. Since the instruction tracing, system
call tracing, and memory read/write do not involve PMI,
these functionalities are not affected by the skid prob-
lem. In ART, each bytecode is interpreted as an array of
machine code. Our bytecode stepping mechanism rec-
ognizes the corresponding bytecode once it is executing
any machine code in the array, i.e., the skid problem af-
fects the bytecode stepping if and only if the instruction
shadow covers all the machine code for a bytecode. We
evaluate the listed 218 bytecode opcode [24] on the An-
droid official website, and it shows that the shadow re-
gion cannot cover the machine code for any of them.
Thus, the bytecode stepping does not suffer from the skid
problem. For a similar reason, the skid problem has no
influence on the Android API tracing.

However, the native code stepping and the breakpoint

Table 4: Instructions in the Skid Shadow with Represen-
tative PMU Events.

Event Number Event Description
# of Instructions
Mean STD

0x81-0x8F Exception related events that fir-
ing after taking exceptions

0 0

0x11 CPU cycle event that firing after
each CPU cycle

2.73 2.30

0x08 Instruction retired event that fir-
ing after executing each instruc-
tion

6.03 4.99

are still affected, and both of them use instruction retired
event to overflow the counter. Since the skid problem is
due to the delay between the interrupt request and the in-
terrupt arrival, we first use PMU counter to measure this
delay by CPU cycles. Similar with the instruction step-
ping, we make the PMU counter to count CPU CYCLES

event and initialize the value of the counter to its maxi-
mum value. Then, the counter value after switching into
EL3 is the time delay of the skid in CPU cycles. The
results of 30 experiments show that the delay is about
106.3 CPU cycles with a standard deviation 2.26. As
the frequency of our CPU is 1.15GHz, the delay is about
0.09µs. We also evaluate the number of instructions in
the skid shadow with some representative PMU events.
For each event, we trigger the PMI for 30 times and
calculate the mean and standard deviation of the num-
ber of instructions in the shadow. Table 4 shows the
result with different PMU events. Unlike the work de-
scribed in [42], the exception related events exhibits no
instruction shadow in our platform, and we consider it is
caused by different ARM architectures. It is worth not-
ing that the number of instructions in the skid shadow
of the CPU cycle event is less than the instruction re-
tired event. However, using the CPU cycle event may
lead to multiple PMIs for a single instruction since the
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execution of a single instruction may need multiple CPU
cycles, which introduces more performance overhead but
with more fine-grained instruction-stepping. In practice,
it is a trade off between the performance overhead and
the debugging accuracy, and we can use either one based
on the requirement.

8 Discussion

NINJA leverages existing deployed hardware and is com-
patible with commercial mobile devices. However, the
secure domain on the commercial mobile devices is man-
aged by the Original Equipment Manufacturer (OEM).
Thus, it requires cooperation from the OEMs to imple-
ment NINJA on a commercial mobile device.

The approach we used to fill the semantic gaps re-
lies on the understanding of the kernel data structures
and memory maps, and thus is vulnerable to the privi-
leged malware. Patagonix [33] leverages a database of
whitelisted applications binary pages to learn the seman-
tic information in the memory pages of the target applica-
tion. However, this approach is limited by the knowledge
of the analyzer. Currently, how to transparently bridge
the semantic gap without any assumption to the system
is still an open research problem [27].

The protection mechanism mentioned in Section 6.1
helps to improve transparency when the attackers try
to use PMU or ETM registers, and using shadow reg-
isters [35] can further protect the critical system regis-
ters. However, if an advanced attacker intentionally uses
PMU or ETM to trace CPU events or instructions and
checks whether the trace result matches the expected one,
the mechanism of returning artificial or shadow register
values may not provide accurate result and thus affects
NINJA’s transparency. To address this problem, we need
to fully virtualize the PMU and ETM, and this is left as
our future work.

Though NINJA protects the system-instruction inter-
face access to the registers, the mechanism we used to
protect the memory mapped interface access maybe vul-
nerable to advanced attacks such as directly manipulat-
ing the memory-mapping, disabling MMU to gain phys-
ical memory access, and using DMA to access memory.
Note that these attacks might be difficult to implement in
practice (e.g., disabling MMU might crash the system).
To fully protect the memory-mapped region of ETM and
PMU registers, we would argue that hardware support
from TrustZone is needed. Since the TZASC only pro-
tects the DRAM, we may need additional hardware fea-
tures to extend the idea of TZASC to the whole physical
memory region.

Although the instruction skid of the PMI cannot be
completely eliminated, we can also enable ETM between
two PMIs to learn the instructions in the skid. More-

over, since the instruction skid is caused by the delay
of the PMI, similar hardware component like Local Ad-
vanced Programmable Interrupt Controller [54] on x86
which handles interrupt locally may help to mitigate the
problem by reducing the response time.

9 Conclusions

In this paper, we present NINJA, a transparent malware
analysis framework on ARM platform. It embodies a se-
ries of analysis functionalities like tracing and debugging
via hardware-assisted isolation execution environment
TrustZone and hardware features PMU and ETM. Since
NINJA does not involve emulator or framework modifi-
cation, it is more transparent than existing analysis tools
on ARM. To minimize the artifacts introduced by NINJA,
we adopt register protection mechanism to protect all in-
volving registers based on hardware traps and runtime
function interception. Moreover, as the TrustZone and
the hardware components are widely equipped by OTS
mobile devices, NINJA can be easily transplanted to ex-
isting mobile platforms. Our experiment results show
that performance overheads of the instruction tracing and
system call tracing are less than 1% while the Android
API tracing introduces 4 to 154 times slowdown.
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A Debugging Commands

Command Description

rr Output the value of all general purpose registers X0
to X30, the stack pointer, and the program counter.

rw n v Write 64-bit value v to the register named n and
output the name the register and its new value.

mr a s Output the content of the memory starting from 64-
bit virtual address a with size s. If the virtual ad-
dress does not exist, output Incorrect address.

mw a v Write 8-bit value v to the 64-bit virtual address a
and output the address and the 8-bit value stored in
the address. If the virtual address does not exist,
output Incorrect address.

ba a Add a breakpoint at the 64-bit virtual address a and
output the address. If the virtual address does not
exist, output Incorrect address.

bd a Delete the breakpoint at the 64-bit virtual address
a and output the address. If the virtual address
or breakpoint does not exist, output Incorrect
address.

bc Clear all the breakpoints and output succeed.
n Step to the next instruction and output the instruc-

tion.
nb Step to the next Java bytecode and output the byte-

code.
nm Step to the next Java method and output the call

stack.
c Continue the execution after a breakpoint and out-

put continued.

B Domain Switching Time

We use the PMU counter to count the CPU CYCLES event
and calculate the elapsed time by the delta of the value
and the frequency of the CPU. First we read the PMU
counter twice continuously and calculate the elapsed cy-
cles, and the difference in CPU cycles indicate the time
elapsed between the two continuous PMU read instruc-
tions. Then we insert an SMC instruction between the
two read instructions to trigger a domain switching with
NINJA disabled, and the difference of the CPU cycles
represents the round trip time of the domain switching in
ATF. At last, we measure the CPU cycles with NINJA
enabled, and this time consumption includes the time
consumption of both ATF and our customized exception
handler. To avoid the bias introduced by the CPU fre-
quency scaling, we set the minimum scaling frequency
equal to the maximum one to ensure that the CPU is al-
ways running in the same frequency. The results of 30
experiments are shown in the following table.

ATF Enabled NINJA Enabled Mean STD 95% CI

0.007 µs 0.000 µs [0.007 µs, 0.007 µs]
X 0.202 µs 0.013 µs [0.197 µs, 0.207 µs]
X X 0.342 µs 0.021 µs [0.349 µs, 0.334 µs]
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Abstract

Last-Level Cache (LLC) attacks typically exploit tim-
ing side channels in hardware, and thus rely heavily
on timers for their operation. Many proposed defenses
against such side-channel attacks capitalize on this re-
liance. This paper presents PRIME+ABORT, a new cache
attack which bypasses these defenses by not depending
on timers for its function. Instead of a timing side chan-
nel, PRIME+ABORT leverages the Intel TSX hardware
widely available in both server- and consumer-grade pro-
cessors. This work shows that PRIME+ABORT is not
only invulnerable to important classes of defenses, it
also outperforms state-of-the-art LLC PRIME+PROBE
attacks in both accuracy and efficiency, having a max-
imum detection speed (in events per second) 3× higher
than LLC PRIME+PROBE on Intel’s Skylake architecture
while producing fewer false positives.

1 Introduction

State-of-the-art cache attacks [35, 7, 11, 21, 25, 29, 33,
34, 43] leverage differences in memory access times be-
tween levels of the cache and memory hierarchy to gain
insight into the activities of a victim process. These at-
tacks require the attacker to frequently perform a series
of timed memory operations (or cache management oper-
ations [7]) to learn if a victim process has accessed a crit-
ical address (e.g., a statement in an encryption library).

These attacks are highly dependent on precise and ac-
curate timing, and defenses can exploit this dependence.
In fact, a variety of defenses have been proposed which
undermine these timing-based attacks by restricting ac-
cess to highly precise timers [15, 27, 31, 39].

In this work, we introduce an alternate mechanism for
performing cache attacks, which does not leverage tim-
ing differences (timing side channels) or require timed
operations of any type. Instead, it exploits Intel’s im-
plementation of Hardware Transactional Memory, which

is called TSX [19]. We demonstrate a novel cache
attack based on this mechanism, which we will call
PRIME+ABORT.

The intent of Transactional Memory (and TSX) is to
both provide a simplified interface for synchronization
and to enable optimistic concurrency: processes abort
only when a conflict exists, rather than when a poten-
tial conflict may occur, as with traditional locks [14, 12].
Transactional memory operations require transactional
data to be buffered, in this case in the cache which has
limited space. Thus, the outcome of a transaction de-
pends on the state of the cache, potentially revealing in-
formation to the thread that initiates the transaction. By
exploiting TSX, an attacker can monitor the cache behav-
ior of another process and receive an abort (call-back) if
the victim process accesses a critical address. This work
demonstrates how TSX can be used to trivially detect
writes to a shared block in memory; to detect reads and
writes by a process co-scheduled on the same core; and,
most critically, to detect reads and writes by a process
executing anywhere on the same processor. This latter
attack works across cores, does not assume that the vic-
tim uses or even knows about TSX, and does not require
any form of shared memory.

The advantages of this mechanism over conven-
tional cache attacks are twofold. The first is that
PRIME+ABORT does not leverage any kind of timer;
as mentioned, several major classes of countermeasures
against cache attacks revolve around either restricting ac-
cess or adding noise to timers. PRIME+ABORT effec-
tively bypasses these countermeasures.

The second advantage is in the efficiency of the attack.
The TSX hardware allows for a victim’s action to directly
trigger the attacking process to take action. This means
the TSX attack can bypass the detection phase required
in conventional attacks. Direct coupling from event to
handler allows PRIME+ABORT to provide over 3× the
throughput of comparable state-of-the-art attacks.

The rest of this work is organized as follows. Sec-
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tion 2 presents background and related work; Section 3
introduces our novel attack, PRIME+ABORT; Section 4
describes experimental results, making comparisons with
existing methods; in Section 5, we discuss potential
countermeasures to our attack; Section 7 concludes.

2 Background and Related Work

2.1 Cache attacks
Cache attacks [35, 7, 11, 21, 25, 29, 33, 34, 43]
are a well-known class of side-channel attacks which
seek to gain information about which memory lo-
cations are accessed by some victim program, and
at what times. In an excellent survey, Ge et
al. [4] group such attacks into three broad categories:
PRIME+PROBE, FLUSH+RELOAD, and EVICT+TIME.
Since EVICT+TIME is only capable of monitoring mem-
ory accesses at the program granularity (whether a
given memory location was accessed during execution
or not), in this paper we focus on PRIME+PROBE and
FLUSH+RELOAD, which are much higher resolution and
have received more attention in the literature. Cache at-
tacks have been shown to be effective for successfully
recovering AES [25], ElGamal [29], and RSA [43] keys,
performing keylogging [8], and spying on messages en-
crypted with TLS [23].

Figure 1 outlines all of the attacks which we will con-
sider. At a high level, each attack consists of a pre-attack
portion, in which important architecture- or runtime-
specific information is gathered; and then an active por-
tion which uses that information to monitor memory ac-
cesses of a victim process. The active portion of exist-
ing state-of-the-art attacks itself consists of three phases:
an “initialization” phase, a “waiting” phase, and a “mea-
surement” phase. The initialization phase prepares the
cache in some way; the waiting phase gives the victim
process an opportunity to access the target address; and
then the measurement phase performs a timed operation
to determine whether the cache state has changed in a
way that implies an access to the target address has taken
place.

Specifics of the initialization and measurement phases
vary by cache attack (discussed below). Some cache at-
tack implementations make a tradeoff in the length of the
waiting phase between accuracy and resolution—shorter
waiting phases give more precise information about the
timing of victim memory accesses, but may increase
the relative overhead of the initialization and measure-
ment phases, which may make it more likely that a vic-
tim access could be “missed” by occurring outside of
one of the measured intervals. In our testing, not all
cache attack implementations and targets exhibited ob-
vious experimental tradeoffs for the waiting phase dura-

tion. Nonetheless, fundamentally, all of these existing at-
tacks can only gain temporal information at the waiting-
interval granularity.

2.1.1 PRIME+PROBE

PRIME+PROBE [35, 21, 25, 34, 29] is the oldest and
largest family of cache attacks, and also the most general.
PRIME+PROBE does not rely on shared memory, unlike
most other cache attacks (including FLUSH+RELOAD
and its variants, described below). The original form of
PRIME+PROBE [35, 34] targets the L1 cache, but recent
work [21, 25, 29] extends it to target the L3 cache in In-
tel processors, enabling PRIME+PROBE to work across
cores and without relying on hyperthreading (Simultane-
ous Multithreading [38]). Like all L3 cache attacks, L3
PRIME+PROBE can detect accesses to either instructions
or data; in addition, L3 PRIME+PROBE trivially works
across VMs.

PRIME+PROBE targets a single cache set, detecting
accesses by any other program (or the operating system)
to any address in that cache set. In its active portion’s ini-
tialization phase (called “prime”), the attacker accesses
enough cache lines from the cache set so as to completely
fill the cache set with its own data. Later, in the mea-
surement phase (called “probe”), the attacker reloads the
same data it accessed previously, this time carefully ob-
serving how much time this operation took. If the victim
did not access data in the targeted cache set, this oper-
ation will proceed quickly, finding its data in the cache.
However, if the victim accessed data in the targeted cache
set, the access will evict a portion of the attacker’s primed
data, causing the reload to be slower due to additional
cache misses. Thus, a slow measurement phase implies
the victim accessed data in the targeted cache set during
the waiting phase. Note that this “probe” phase can also
serve as the “prime” phase for the next repetition, if the
monitoring is to continue.

Two different kinds of initial one-time setup are re-
quired for the pre-attack portion of this attack. The first
is to establish a timing threshold above which the mea-
surement phase is considered “slow” (i.e. likely suffering
from extra cache misses). The second is to determine a
set of addresses, called an “eviction set”, which all map
to the same (targeted) cache set (and which reside in dis-
tinct cache lines). Finding an eviction set is much easier
for an attack targeting the L1 cache than for an attack tar-
geting the L3 cache, due to the interaction between cache
addressing and the virtual memory system, and also due
to the “slicing” in Intel L3 caches (discussed further in
Sections 2.2.1 and 2.2.2).
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Figure 1: Comparison of the operation of various cache attacks, including our novel attacks.

2.1.2 FLUSH+RELOAD

The other major class of cache attacks is
FLUSH+RELOAD [7, 11, 43]. FLUSH+RELOAD
targets a specific address, detecting an access by any
other program (or the operating system) to that exact
address (or another address in the same cache line). This
makes FLUSH+RELOAD a much more precise attack
than PRIME+PROBE, which targets an entire cache set
and is thus more prone to noise and false positives.
FLUSH+RELOAD also naturally works across cores
because of shared, inclusive, L3 caches (as explained
in Section 2.2.1). Again, like all L3 cache attacks,
FLUSH+RELOAD can detect accesses to either instruc-
tions or data. Additionally, FLUSH+RELOAD can work
across VMs via the page deduplication exploit [43].

The pre-attack of FLUSH+RELOAD, like that of
PRIME+PROBE, involves determining a timing thresh-
old, but is limited to a single line instead of an entire
“prime” phase. However, FLUSH+RELOAD does not re-
quire determining an eviction set. Instead, it requires
the attacker to identify an exact target address; namely,
an address in the attacker’s virtual address space which
maps to the physical address the attacker wants to mon-
itor. Yarom and Falkner [43] present two ways to do
this, both of which necessarily involve shared memory;
one exploits shared libraries, and the other exploits page

deduplication, which is how FLUSH+RELOAD can work
across VMs. Nonetheless, this step’s reliance on shared
memory is a critical weakness in FLUSH+RELOAD, lim-
iting it to only be able to monitor targets in shared mem-
ory.

In FLUSH+RELOAD’s initialization phase, the attacker
“flushes” the target address out of the cache using Intel’s
CLFLUSH instruction. Later, in the measurement phase,
the attacker “reloads” the target address (by accessing
it), carefully observing the time for the access. If the
access was “fast”, the attacker may conclude that another
program accessed the address, causing it to be reloaded
into the cache.

An improved variant of FLUSH+RELOAD,
FLUSH+FLUSH [7], exploits timing variation in the
CLFLUSH instruction itself; this enables the attack to
combine its measurement and initialization phases,
much like PRIME+PROBE. A different variant,
EVICT+RELOAD [8], performs the initialization phase
by evicting the cacheline with PRIME+PROBE’s “prime”
phase, allowing the attack to work without the CLFLUSH
instruction at all—e.g., when the instruction has been
disabled, as in Google Chrome’s NaCl [6].
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2.1.3 Timer-Free Cache Attacks

All of the attacks so far discussed—PRIME+PROBE,
FLUSH+RELOAD, and variants—are still fundamentally
timing attacks, exploiting timing differences as their un-
derlying attack vector. One recent work which, like
this work, proposes a cache attack without reference to
timers is that of Guanciale et al. [10]. Instead of timing
side channels, Guanciale et al. rely on the undocumented
hardware behavior resulting from disobeying ISA pro-
gramming guidelines, specifically with regards to virtual
address aliasing and self-modifying code. However, they
demonstrate their attacks only on the ARM architecture,
and they themselves suggest that recent Intel x86-64 pro-
cessors contain mechanisms that would render their at-
tacks ineffective. In contrast, our attack exploits weak-
nesses specifically in recent Intel x86-64 processors, so
in that respect our attack can be seen as complementary
to Guanciale et al.’s work. We believe that our work, in
addition to utilizing a novel attack vector (Intel’s hard-
ware transactional memory support), is the first timer-
free cache attack to be demonstrated on commodity Intel
processors.

2.2 Relevant Microarchitecture

2.2.1 Caches

[Basic Background] Caches in modern processors store
data that is frequently or recently used, in order to reduce
access time for that data on subsequent references. Data
is stored in units of “cache lines” (a fixed architecture-
dependent number of bytes). Caches are often orga-
nized hierarchically, with a small but fast “L1” cache, a
medium-sized “L2” cache, and a large but comparatively
slower “L3” cache. At each level of the hierarchy, there
may either be a dedicated cache for each processor core,
or a single cache shared by all processor cores.

Commonly, caches are “set-associative” which allows
any given cacheline to reside in only one of N locations
in the cache, where N is the “associativity” of the cache.
This group of N locations is called a “cache set”. Each
cacheline is assigned to a unique cache set by means of
its “set index”, typically a subset of its address bits. Once
a set is full (the common case) any access to a cacheline
with the given set index (but not currently in the cache)
will cause one of the existing N cachelines with the same
set index to be removed, or “evicted”, from the cache.
[Intel Cache Organization] Recent Intel processors
contain per-core L1 instruction and data caches, per-core
unified L2 caches, and a large L3 cache which is shared
across cores. In this paper we focus on the Skylake ar-
chitecture which was introduced in late 2015; important
Skylake cache parameters are provided in Table 1.

Table 1: Relevant cache parameters in the Intel Skylake
architecture.

L1-Data L1-Inst L2 L3
Size 32 KB 32 KB 256 KB 2-8 MB1

Assoc 8-way 8-way 4-way 16-way
Sharing Per-core Per-core Per-core Shared
Line size 64 B 64 B 64 B 64 B
1 depending on model. This range covers all Skylake processors

(server, desktop, mobile, embedded) currently available as of Jan-
uary 2017 [20].

[Inclusive Caches] Critical to all cross-core cache at-
tacks, the L3 cache is inclusive, meaning that every-
thing in all the per-core caches must also be held in
the L3. This has two important consequences which
are key to enabling both L3-targeting PRIME+PROBE
and FLUSH+RELOAD to work across cores. First, any
data accessed by any core must be brought into not only
the core’s private L1 cache, but also the L3. If an at-
tacker has “primed” a cache set in the L3, this access to
a different address by another core necessarily evicts one
of the attacker’s cachelines, allowing PRIME+PROBE to
detect the access. Second, any cacheline evicted from
the L3 (e.g., in a “flush” step) must also be invalidated
from all cores’ private L1 and L2 caches. Any subse-
quent access to the cacheline by any core must fetch the
data from main memory and bring it to the L3, causing
FLUSH+RELOAD’s subsequent “reload” phase to regis-
ter a cache hit.
[Set Index Bits] The total number of cache sets in each
cache can be calculated as (total number of cache lines)
/ (associativity), where the total number of cache lines is
(cache size) / (line size). Thus, the Skylake L1 caches
have 64 sets each, the L2 caches have 1024 sets each,
and the shared L3 has from 2K to 8K sets, depending on
the processor model.

In a typical cache, the lowest bits of the address (called
the “line offset”) determine the position within the cache
line; the next-lowest bits of the address (called the “set
index”) determine in which cache set the line belongs,
and the remaining higher bits make up the “tag”. In our
setting, the line offset is always 6 bits, while the set index
will vary from 6 bits (L1) to 13 bits (L3) depending on
the number of cache sets in the cache.
[Cache Slices and Selection Hash Functions] However,
in recent Intel architectures (including Skylake), the sit-
uation is more complicated than this for the L3. Specif-
ically, the L3 cache is split into several “slices” which
can be accessed concurrently; the slices are connected
on a ring bus such that each slice has a different latency
depending on the core. In order to balance the load on
these slices, Intel uses a proprietary and undocumented
hash function, which operates on a physical address (ex-

54    26th USENIX Security Symposium USENIX Association



cept the line offset) to select which slice the address ‘be-
longs’ to. The output of this hash effectively serves as
the top N bits of the set index, where 2N is the number
of slices in the system. Therefore, in the case of an 8
MB L3 cache with 8 slices, the set index consists of 10
bits from the physical address and 3 bits calculated using
the hash function. For more details, see [25], [32], [44],
[16], or [22].

This hash function has been reverse-engineered for
many different processors in Intel’s Sandy Bridge [25,
32, 44], Ivy Bridge [16, 22, 32], and Haswell [22, 32]
architectures, but to our knowledge has not been reverse-
engineered for Skylake yet. Not knowing the precise
hash function adds additional difficulty to determining
eviction sets for PRIME+PROBE—that is, finding sets of
addresses which all map to the same L3 cache set. How-
ever, our attack (following the approach of Liu et al. [29])
does not require knowledge of the specific hash function,
making it more general and more broadly applicable.

2.2.2 Virtual Memory
In a modern virtual memory system, each process has a
set of virtual addresses which are mapped by the oper-
ating system and hardware to physical addresses at the
granularity of pages [2]. The lowest bits of an address
(referred to as the page offset) remain constant during
address translation. Pages are typically 4 KB in size, but
recently larger pages, for instance of size 2 MB, have be-
come widely available for use at the option of the pro-
gram [25, 29]. Crucially, an attacker may choose to
use large pages regardless of whether the victim does or
not [29].

Skylake caches are physically-indexed, meaning that
the physical address of a cache line (and not its virtual ad-
dress) determines the cache set which the line is mapped
into. Like the slicing of the L3 cache, physical indexing
adds additional difficulty to the problem of determining
eviction sets for PRIME+PROBE, as it is not immediately
clear which virtual addresses may have the same set in-
dex bits in their corresponding physical addresses. Pages
make this problem more manageable, as the bottom 12
bits (for standard 4 KB pages) of the address remain con-
stant during translation. For the L1 caches, these 12 bits
contain the entire set index (6 bits of line offset + 6 bits of
set index), so it is easy to choose addresses with the same
set index. This makes the problem of determining evic-
tion sets trivial for L1 attacks. However, L3 attacks must
deal with both physical indexing and cache slicing when
determining eviction sets. Using large pages helps, as the
21-bit large-page offset completely includes the set index
bits (meaning they remain constant during translation),
leaving only the problem of the hash function. However,
the hash function is not only an unknown function itself,
but it also incorporates bits from the entire physical ad-

Table 2: Availability of Intel TSX in recent Intel CPUs,
based on data drawn from Intel ARK [20] in January
2017. Since Broadwell, all server CPUs and a majority
of i7/i5 CPUs support TSX.

Series
(Release1) Server2 i7/i5 i3/m/etc3

Kaby Lake
(Jan 2017) 3/3 (100%) 23/32 (72%) 12/24 (50%)

Skylake
(Aug 2015) 23/23 (100%) 27/42 (64%) 4/34 (12%)

Broadwell
(Sep 2014) 77/77 (100%) 11/22 (50%) 2/18 (11%)

Haswell
(Jun 2013) 37/85 (44%) 2/87 (2%) 0/82 (0%)

1 for the earliest available processors in the series
2 Xeon and Pentium-D
3 (i3/m/Pentium/Celeron)

dress, including bits that are still translated even when
using large pages.

2.3 Transactional Memory and TSX

Transactional Memory (TM) has received significant at-
tention from the computer architecture and systems com-
munity over the past two decades [14, 13, 37, 45]. First
proposed by Herlihy and Moss in 1993 as a hardware al-
ternative to locks [14], TM is noteworthy for its simplifi-
cation of synchronization primitives and for its ability to
provide optimistic concurrency.

Unlike traditional locks which require threads to wait
if a conflict is possible, TM allows multiple threads to
proceed in parallel and only abort in the event of a con-
flict [36]. To detect a conflict, TM tracks each thread’s
read and write sets and signals an abort when a conflict is
found. This tracking can be performed either by special
hardware [14, 13, 45] or software [37].

Intel’s TSX instruction set extension for x86 [12, 19]
provides an implementation of hardware TM and is
widely available in recent Intel CPUs (see Table 2).

TSX allows any program to identify an arbitrary sec-
tion of its code as a ‘transaction’ using explicit XBEGIN
and XEND instructions. Any transaction is guaranteed to
either: (1) complete, in which case all memory changes
which happened during the transaction are made visible
atomically to other processes and cores, or (2) abort, in
which case all memory changes which happened during
the transaction, as well as all other changes (e.g. to reg-
isters), are discarded. In the event of an abort, control
is transferred to a fallback routine specified by the user,
and a status code provides the fallback routine with some
information about the cause of the abort.

From a security perspective, the intended uses of
hardware transactional memory (easier synchronization
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Table 3: Causes of transactional aborts in Intel TSX
1. Executing certain instructions, such as CPUID or the explicit

XABORT instruction
2. Executing system calls
3. OS interrupts1

4. Nesting transactions too deeply
5. Access violations and page faults
6. Read-Write or Write-Write memory conflicts with other

threads or processes (including other cores) at the cacheline
granularity—whether those other processes are using TSX or
not

7. A cacheline which has been written during the transaction
(i.e., a cacheline in the transaction’s “write set”) is evicted
from the L1 cache

8. A cacheline which has been read during the transaction (i.e.,
a cacheline in the transaction’s “read set”) is evicted from the
L3 cache

1 This means that any transaction may abort, despite the absence of
memory conflicts, through no fault of the programmer. The pe-
riodic nature of certain interrupts also sets an effective maximum
time limit on any transaction, which has been measured at about
4 ms [41].

or optimistic concurrency) are unimportant, so we will
merely note that we can place arbitrary code inside both
the transaction and the fallback routine, and whenever
the transaction aborts, our fallback routine will imme-
diately be given a callback with a status code. There
are many reasons a TSX transaction may abort; impor-
tant causes are listed in Table 3. Most of these are drawn
from the Intel Software Developer’s Manual [19], but the
specifics of Causes #7 and #8—in particular the asym-
metric behavior of TSX with respect to read sets and
write sets—were suggested by Dice et al. [3]. Our exper-
imental results corroborate their suggestions about these
undocumented implementation details.

While a transaction is in process, an arbitrary amount
of data must be buffered (hidden from the memory sys-
tem) or tracked until the transaction completes or aborts.
In TSX, this is done in the caches—transactionally writ-
ten lines are buffered in the L1 data cache, and transac-
tionally read lines marked in the L1–L3 caches. This
has the important ramification that the cache size and
associativity impose a limit on how much data can be
buffered or tracked. In particular, if cache lines being
buffered or tracked by TSX must be evicted from the
cache, this necessarily causes a transactional abort. In
this way, details about cache activity may be exposed
through the use of transactions.

TSX has been addressed only rarely in a security
context; to the best of our knowledge, there are only
two works on the application of TSX to security to
date [9, 24]. Guan et al. use TSX as part of a defense
against memory disclosure attacks [9]. In their system,
operations involving the plaintext of sensitive data nec-
essarily occur inside TSX transactions. This structurally
ensures that this plaintext will never be accessed by other

processes or written back to main memory (in either case,
a transactional abort will roll back the architectural state
and invalidate the plaintext data).

Jang et al. exploit a timing side channel in TSX itself
in order to break kernel address space layout randomiza-
tion (KASLR) [24]. Specifically, they focus on Abort
Cause #5, access violations and page faults. They note
that such events inside a transaction trigger an abort but
not their normal respective handlers; this means the op-
erating system or kernel are not notified, so the attack is
free to trigger as many access violations and page faults
as it wants without raising suspicions. They then exploit
this property and the aforementioned timing side chan-
nel to determine which kernel pages are mapped and un-
mapped (and also which are executable).

Neither of these works enable new attacks on memory
accesses, nor do they eliminate the need for timers in
attacks.

3 Potential TSX-based Attacks

We present three potential attacks, all of which share
their main goal with cache attacks—to monitor which
cachelines are accessed by other processes and when.
The three attacks we will present leverage Abort Causes
#6, 7, and 8 respectively. Figure 1 outlines all three of
the attacks we will present, as the PRIME+ABORT en-
try in the figure applies to both PRIME+ABORT–L1 and
PRIME+ABORT–L3.

All of the TSX-based attacks which we will propose
have the same critical structural benefit in common. This
benefit, illustrated in Figure 1, is that these attacks have
no need for a “measurement” phase. Rather than having
to conduct some (timed) operation to determine whether
the cache state has been modified by the victim, they sim-
ply receive a hardware callback through TSX immedi-
ately when a victim access takes place. In addition to
the reduced overhead this represents for the attack pro-
cedure, this also means the attacker can be actively wait-
ing almost indefinitely until the moment a victim access
occurs—the attacker does not need to break the attack
into predefined intervals. This results in a higher res-
olution attack, because instead of only coarse-grained
knowledge of when a victim access occurred (i.e. which
predefined interval), the attacker gains precise estimates
of the relative timing of victim accesses.

All of our proposed TSX-based attacks also share a
structural weakness when compared to PRIME+PROBE
and FLUSH+RELOAD. Namely, they are unable
to monitor multiple targets (cache sets in the
case of PRIME+PROBE, addresses in the case of
FLUSH+RELOAD) simultaneously while retaining the
ability to distinguish accesses to one target from ac-
cesses to another. PRIME+PROBE and FLUSH+RELOAD
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are able to do this at the cost of increased overhead;
effectively, a process can monitor multiple targets con-
currently by performing multiple initialization stages,
having a common waiting stage, and then performing
multiple measurement stages, with each measurement
stage revealing the activity for the corresponding target.
In contrast, although our TSX-based attacks could
monitor multiple targets at once, they would be unable
to distinguish events for one target from events for
another without additional outside information. Some
applications of PRIME+PROBE and FLUSH+RELOAD
rely on this ability (e.g. [33]), and adapting them to
rely on PRIME+ABORT instead would not be triv-
ial. However, others, including the attack presented
in Section 4.4, can be straightforwardly adapted to
utilize PRIME+ABORT as a drop-in replacement for
PRIME+PROBE or FLUSH+RELOAD.

We begin by discussing the simplest, but also
least generalizable, of our TSX-based attacks, ul-
timately building to our proposed primary attack,
PRIME+ABORT–L3.

3.1 Naı̈ve TSX-based Attack

Abort Cause #6 enables a potentially powerful, but lim-
ited attack.

From Cause #6, we can get a transaction abort (which
for our purposes is an immediate, fast hardware callback)
whenever there is a read-write or write-write conflict be-
tween our transaction and another process. This leads
to a natural and simple attack implementation, where we
simply open a transaction, access our target address, and
wait for an abort (with the proper abort status code); on
abort, we know the address was accessed by another pro-
cess.

The style of this attack is reminiscent of
FLUSH+RELOAD [43] in several ways. It targets a
single, precise cacheline, rather than an entire cache
set as in PRIME+PROBE and its variants. It does not
require a (comparatively slow) “prime eviction set”
step, providing fast and low-overhead monitoring of
the target cacheline. Also like FLUSH+RELOAD, it
requires the attacker to acquire a specific address to
target, for instance exploiting shared libraries or page
deduplication.

Like the other attacks using TSX, it benefits in per-
formance by not needing the “measurement” phase to
detect a victim access. In addition to the performance
benefit, this attack would also be harder to detect and de-
fend against. It would execute without any kind of timer,
mitigating several important classes of defenses (see Sec-
tion 5). It would also be resistant to most types of cache-
based defenses; in fact, this attack has so little to do with
the cache at all that it could hardly be called a cache at-

tack, except that it happens to expose the same informa-
tion as standard cache attacks such as FLUSH+RELOAD
or PRIME+PROBE do.

However, in addition to only being able to moni-
tor target addresses in shared memory (the key weak-
ness shared by all variants of FLUSH+RELOAD), this
attack has another critical shortcoming. Namely, it can
only detect read-write or write-write conflicts, not read-
read conflicts. This means that one or the other of the
processes—either the attacker or the victim—must be is-
suing a write command in order for the access to be de-
tected, i.e. cause a transactional abort. Therefore, the
address being monitored must not be in read-only mem-
ory. Combining this with the earlier restriction, we find
that this attack, although powerful, can only monitor ad-
dresses in writable shared memory. We find this depen-
dence to render it impractical for most real applications,
and for the rest of the paper we focus on the other two
attacks we will present.

3.2 PRIME+ABORT–L1

The second attack we will present, called
PRIME+ABORT–L1, is based on Abort Cause #7.
Abort Cause #7 provides us with a way to monitor
evictions from the L1 cache in a way that is precise and
presents us with, effectively, an immediate hardware
callback in the form of a transactional abort. This allows
us to build an attack in the PRIME+PROBE family, as the
key component of PRIME+PROBE involves detecting
cacheline evictions. This attack, like all attacks in the
PRIME+PROBE family, does not depend in any way on
shared memory; but unlike other attacks, it will also not
depend on timers.

Like other PRIME+PROBE variants, our attack re-
quires a one-time setup phase where we determine an
eviction set for the cache set we wish to target; but
like early PRIME+PROBE attacks [35, 34], we find this
task trivial because the entire L1 cache index lies within
the page offset (as explained earlier). Unlike other
PRIME+PROBE variants, for PRIME+ABORT this is the
sole component of the setup phase; we do not need to
find a timing threshold, as we do not rely on timing.

The main part of PRIME+ABORT–L1 involves the
same “prime” phase as a typical PRIME+PROBE attack,
except that it opens a TSX transaction first. Once the
“prime” phase is completed, the attack simply waits for
an abort (with the proper abort status code). Upon receiv-
ing an abort, the attacker can conclude that some other
program has accessed an address in the target cache set.
This is similar to the information gleaned by ordinary
PRIME+PROBE.

The reason this works is that, since we will hold an en-
tire cache set in the write set of our transaction, any ac-
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cess to a different cache line in that set by another process
will necessarily evict one of our cachelines and cause our
transaction to abort due to Cause #7. This gives us an
immediate hardware callback, obviating the need for any
“measurement” step as in traditional cache attacks. This
is why we call our method PRIME+ABORT—the abort
replaces the “probe” step of traditional PRIME+PROBE.

3.3 PRIME+ABORT–L3
PRIME+ABORT–L1 is fast and powerful, but because it
targets the (core-private) L1 cache, it can only spy on
threads which share its core; and since it must execute
simultaneously with its victim, this means it and its vic-
tim must be in separate hyperthreads on the same core.
In this section we present PRIME+ABORT–L3, an attack
which overcomes these restrictions by targeting the L3
cache. The development of PRIME+ABORT–L3 from
PRIME+ABORT–L1 mirrors the development of L3-
targeting PRIME+PROBE [29, 21, 25] from L1-targeting
PRIME+PROBE [35, 34], except that we use TSX.
PRIME+ABORT–L3 retains all of the TSX-provided ad-
vantages of PRIME+ABORT–L1, while also (like L3
PRIME+PROBE) working across cores, easily detecting
accesses to either instructions or data, and even working
across virtual machines.

PRIME+ABORT–L3 uses Abort Cause #8 to moni-
tor evictions from the L3 cache. The only meaningful
change this entails to the active portion of the attack is
performing reads rather than writes during the “prime”
phase, in order to hold the primed cachelines in the read
set of the transaction rather than the write set. For the
pre-attack portion, PRIME+ABORT–L3, like other L3
PRIME+PROBE attacks, requires a much more sophis-
ticated setup phase in which it determines eviction sets
for the L3 cache. This is described in detail in the next
section.

3.4 Finding eviction sets
The goal of the pre-attack phase for PRIME+ABORT is to
determine an eviction set for a specified target address.
For PRIME+ABORT–L1, this is straightforward, as de-
scribed in Section 2.2.2. However, for PRIME+ABORT–
L3, we must deal with both physical indexing and cache
slicing in order to find L3 eviction sets. Like [29] and
[21], we use large (2 MB) pages in this process as a con-
venience. With large pages, it becomes trivial to choose
virtual addresses that have the same physical set index
(i.e. agree in bits 6 to N, for some processor-dependent
N, perhaps 15), again as explained in Section 2.2.2. We
will refer to addresses which agree in physical set in-
dex (and in line offset, i.e. bits 0 to 5) as set-aligned ad-
dresses.

Algorithm 1: Dynamically generating a prototype
eviction set for each cache slice, as implemented
in [42]

Input: a set of potentially conflicting cachelines lines, all
set-aligned

Output: a set of prototype eviction sets, one eviction set for each
cache slice; that is, a “prototype group”

group← {};
workingSet← {};
while lines is not empty do

repeat forever :
line← random member of lines;
remove line from lines;
if workingSet evicts line then // Algorithm 2 or 3

c← line;
break;

end
add line to workingSet;

end
foreach member in workingSet do

remove member from workingSet;
if workingSet evicts c then // Algorithm 2 or 3

add member back to lines;
else

add member back to workingSet;
end

end
foreach line in lines do

if workingSet evicts line then // Algorithm 2 or 3

remove line from lines;
end

end
add workingSet to group;
workingSet← {};

end
return group;

We generate eviction sets dynamically using the algo-
rithm from Mastik [42] (inspired by that in [29]), which
is shown as Algorithm 1. However, for the subroutine
where Mastik uses timing methods to evaluate potential
eviction sets (Algorithm 2), we use TSX methods instead
(Algorithm 3).

Algorithm 3, a subroutine of Algorithm 1, demon-
strates how Intel TSX is used to determine whether a can-
didate eviction set can be expected to consistently evict
a given target cacheline. If “priming” the eviction set
(accessing all its lines) inside a transaction followed by
accessing the target cacheline consistently results in an
immediate abort, we can conclude that a transaction can-
not hold both the eviction set and the target cacheline in
its read set at once, which means that together they con-
tain at least (associativity+ 1, or 17 in our case) lines
which map to the same cache slice and cache set.

Conceptually, the algorithm for dynamically generat-
ing an eviction set for any given address has two phases:
first, creating a “prototype group”, and second, special-
izing it to form an eviction set for the desired target ad-
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Algorithm 2: PRIME+PROBE (timing-based)
method for determining whether an eviction set
evicts a given cacheline, as implemented in [42]

Input: a candidate eviction set es and a cacheline line
Output: true if es can be expected to consistently evict line

times← {};
repeat 16 times :

access line;
repeat 20 times :

foreach member in es do
access member;

end
end
timed access to line;
times← times + {elapsed time};

end
if median of times > predetermined threshold then return true;
else return false;

Algorithm 3: PRIME+ABORT (TSX-based) method
for determining whether an eviction set evicts a given
cacheline

Input: a candidate eviction set es and a cacheline line
Output: true if es can be expected to consistently evict line

aborts← 0;
commits← 0;

while aborts < 16 and commits < 16 do
begin transaction;
foreach member in es do

access member;
end
access line;
end transaction;
if transaction committed then increment commits;
else if transaction aborted with appropriate status code then

increment aborts;
end
if aborts >= 16 then return true;
else return false;

dress. The algorithms shown (Algorithms 1, 2, and 3) to-
gether constitute the first phase of this larger algorithm.
In this first phase, we use only set-aligned addresses, not-
ing that all such addresses, after being mapped to an L3
cache slice, necessarily map to the same cache set inside
that slice. This phase creates one eviction set for each
cache slice, targeting the cache set inside that slice with
the given set index. We call these “prototype” eviction
sets, and we call the resulting group of one “prototype”
eviction set per cache slice a “prototype group”.

Once we have a prototype group generated by Algo-
rithm 1, we can obtain an eviction set for any cache set
in any cache slice by simply adjusting the set index of
each address in one of the prototype eviction sets. Not
knowing the specific cache-slice-selection hash function,
it will be necessary to iterate over all prototype eviction
sets (one per slice) in order to find the one which collides

with the target on the same cache slice. If we do not
know the (physical) set index of our target, we can also
iterate through all possible set indices (with each pro-
totype eviction set) to find the appropriate eviction set,
again following the procedure from Liu et al. [29].

4 Results

4.1 Characteristics of the Intel
Skylake Architecture

Our test machine has an Intel Skylake i7-6600U pro-
cessor, which has two physical cores and four virtual
cores. It is widely reported (e.g., in all of [16, 22, 25,
29, 32, 44]) that Intel processors have one cache slice per
physical core, based on experiments conducted on Sandy
Bridge, Ivy Bridge, and Haswell processors. However,
our testing on the Skylake dual-core i7-6600U leads us
to believe that it has four cache slices, contrary to pre-
vious trends which would predict it has only two. We
validate this claim by using Algorithm 1 to produce four
distinct eviction sets for large-page-aligned addresses.
Then we test our four distinct eviction sets on many ad-
ditional large-page-aligned addresses not used in Algo-
rithm 1. We find that each large-page-aligned address
conflicts with exactly one of the four eviction sets (by
Algorithm 3), and further, that the conflicts are spread
relatively evenly over the four sets. This convinces us
that each of our four eviction sets represents set index 0
on a different cache slice, and thus that there are indeed
four cache slices in the i7-6600U.

Having determined the number of cache slices, we can
now calculate the number of low-order bits in an address
that must be fixed to create groups of set-aligned ad-
dresses. For our i7-6600U, this is 16. Henceforth we can
use set-aligned addresses instead of large-page-aligned
addresses, which is an efficiency gain.

4.2 Dynamically Generating Eviction Sets
In the remainder of the Results section we com-
pare PRIME+ABORT–L3 to L3 PRIME+PROBE as im-
plemented in [42]. We begin by comparing the
PRIME+ABORT and PRIME+PROBE versions of Algo-
rithm 1 for dynamically generating prototype eviction
sets.

Table 4 compares the runtimes of the PRIME+ABORT
and PRIME+PROBE versions of Algorithm 1. The
PRIME+ABORT-based method is over 5× faster than the
PRIME+PROBE-based method in the median case, over
15× faster in the best case, and over 40% faster in the
worst case.

Next, we compare the “coverage” of prototype groups
(sets of four prototype eviction sets) derived and tested
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Table 4: Runtimes of PRIME+ABORT- and
PRIME+PROBE-based versions of Algorithm 1
to generate a “prototype group” of eviction sets
(data based on 1000 runs of each version of Al-
gorithm 1)

PRIME+ABORT PRIME+PROBE

Min 4.5 ms 68.3 ms
1Q 10.1 ms 76.6 ms
Median 15.0 ms 79.3 ms
3Q 21.3 ms 82.0 ms
Max 64.7 ms 91.0 ms

with the two methods. We derive 10 prototype groups
with each version of Algorithm 1; then, for each pro-
totype group, we use either timing-based or TSX-based
methods to test 1000 additional set-aligned addresses not
used for Algorithm 1 (a total of 10,000 additional set-
aligned addresses for PRIME+ABORT and 10,000 for
PRIME+PROBE). The testing procedure is akin to a sin-
gle iteration of the outer loop in Algorithm 2 or 3 re-
spectively. Using this procedure, each of the 10,000 set-
aligned addresses is tested 10,000 times against each of
the four prototype eviction sets in the prototype group.
This produces four “detection rates” for each set-aligned
address (one per prototype eviction set). We assume that
the highest of these four detection rates corresponds to
the prototype eviction set from the same cache slice as
the tested address, and we call this detection rate the
“max detection rate” for the set-aligned address. Both
PRIME+ABORT and PRIME+PROBE methods result in
“max detection rates” which are consistently indistin-

guishable from 100%. However, we note that out of
the 100 million trials in total, 13 times we observed the
PRIME+PROBE-based method fail to detect the access
(resulting in a “max detection rate” of 99.99% in 13
cases), whereas with the PRIME+ABORT-based method,
all 100 million trials were detected, for perfect max de-
tection rates of 100.0%. This result is due to the struc-
tural nature of transactional conflicts—it is impossible
for a transaction with a read set of size (1+associativity)
to ever successfully commit; it must always abort.

Since each address maps to exactly one cache slice,
and ideally each eviction set contains lines from only
one cache slice, we expect that any given set-aligned
address conflicts with only one out of the four proto-
type eviction sets in a prototype group. That is, we ex-
pect that out of the four detection rates computed for
each line (one per prototype eviction set), one will be
very high (the “max detection rate”), and the other three
will be very low. Figure 2 shows the “second-highest
detection rate” for each line—that is, the maximum of
the remaining three detection rates for that line, which
is a measure of false positives. For any given detec-
tion rate on the x-axis, the figure shows what percent-
age of the 10,000 set-aligned addresses had a false-
positive detection rate at or above that level. Whenever
the “second-highest detection rate” is greater than zero,
it indicates that the line appeared to be detected by a pro-
totype eviction set meant for an entirely different cache
slice (i.e. a false positive detection). In Figure 2, we
see that with the PRIME+PROBE-based method, around
22% of lines have “second-highest detection rates” over
5%, around 18% of lines have “second-highest detec-
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Figure 2: “Double coverage” of prototype groups generated by PRIME+ABORT- and PRIME+PROBE-based versions
of Algorithm 1. With PRIME+PROBE, some tested cachelines are reliably detected by more than one prototype eviction
set. In contrast, with PRIME+ABORT each tested cacheline is reliably detected by only one prototype eviction set.
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tion rates” over 10%, and around 7.5% of lines even
have “second-highest detection rates” of 100%, mean-
ing that more than one of the “prototype eviction sets”
each detected that line in 100% of the 10,000 trials. In
contrast, with the PRIME+ABORT-based method, none
of the 10,000 lines tested had “second-highest detection
rates” over 1%. PRIME+ABORT produces very few false
positives and cleanly monitors exactly one cache set in
exactly one cache slice.

4.3 Detecting Memory Accesses

Figures 3, 4, and 5 show the success of PRIME+ABORT
and two variants of PRIME+PROBE in detecting the
memory accesses of an artificial victim thread running
on a different physical core from the attacker. The vic-
tim thread repeatedly accesses a single memory loca-
tion for the duration of the experiment—in the “treat-
ment” condition, it accesses the target (monitored) lo-
cation, whereas in the “control” condition, it accesses an
unrelated location. We introduce delays (via busy-wait)
of varying lengths into the victim’s code in order to vary
the frequency at which it accesses the target location (or
unrelated location for control). Figures 3, 4, and 5 plot
the number of events observed by the respective attack-
ers, vs. the actual number of accesses by the victim, in
“control” and “treatment” scenarios. Data were collected
from 100 trials per attacker, each entailing separate runs
of Algorithm 1 and new targets. The y = x line is shown
for reference in all figures; it indicates perfect perfor-
mance for the “treatment” condition, with all events de-
tected but no false positives. Perfect performance in the
“control” condition, naturally, is values as low as possi-
ble in all cases.

We see in Figure 3 that PRIME+ABORT detects a large
fraction of the victim’s accesses at frequencies up to
several hundred thousand accesses per second, scaling
up smoothly and topping out at a maximum detection
speed (on our test machine) of around one million events
per second. PRIME+ABORT exhibits this performance
while also displaying relatively low false positive rates
of around 200 events per second, or one false positive
every 5000 µs. The close correlation between number of
detected events and number of victim accesses indicates
PRIME+ABORT’s low overheads—in fact, we measured
its transactional abort handler as executing in 20-40 ns—
which allow it to be essentially “always listening” for
victim accesses. Also, it demonstrates PRIME+ABORT’s
ability to accurately count the number of victim accesses,
despite only producing a binary output (access or no ac-
cess) in each transaction. Its high speed and low over-
heads allow it to catch each victim access in a separate
transaction.

Figure 4 shows the performance of unmodified

PRIME+PROBE as implemented in Mastik [42]1. We see
false positive rates which are significantly higher than
those observed for PRIME+ABORT—over 2000 events
per second, or one every 500 µs. Like PRIME+ABORT,
this implementation of PRIME+PROBE appears to have a
top speed around one million accesses detected per sec-
ond under our test conditions. But most interestingly, we
observe significant “oversampling” at low frequencies—
PRIME+PROBE reports many more events than actually
occurred. For instance, when the victim thread performs
2600 accesses per second, we expect to observe 2600
events per second, plus around 2000 false positives per
second as before. However, we actually observe over
18,000 events per second in the median case. Likewise,
when the victim thread provides 26,000 accesses per sec-
ond, we observe over 200,000 events per second in the
median case. Analysis shows that for this implementa-
tion of PRIME+PROBE on our hardware, single accesses
can cause long streaks of consecutive observed events,
sometimes as long as hundreds of observed events. We
believe this to be due to the interaction between this
PRIME+PROBE implementation and our hardware’s L3
cache replacement policy. One plausible explanation for
why PRIME+ABORT is not similarly afflicted, is that the
replacement policy may prioritize keeping lines that are
part of active transactions, evicting everything else first.
This would be a sensible policy for Intel to implement, as
it would minimize the number of unwanted/unnecessary
aborts. In our setting, it benefits PRIME+ABORT by en-
suring that a “prime” step inside a transaction cleanly
evicts all other lines.

To combat the oversampling behavior observed in
PRIME+PROBE, we investigate a modified implementa-
tion of PRIME+PROBE which “collapses” streaks of ob-
served events, meaning that a streak of any length is sim-
ply counted as a single observed event. Results with this
modified implementation are shown in Figure 5. We see
that this strategy is effective in combating oversampling,
and also reduces the number of false positives to around
250 per second or one every 4000 µs. However, this im-
plementation of PRIME+PROBE performs more poorly
at high frequencies, having a top speed around 300,000
events per second compared to the one million per sec-
ond of the other two attacks. This effect can be explained
by the fact that as the victim access frequency increases,
streaks of observed events become more and more likely
to “hide” real events (multiple real events occur in the
same streak)—in the limit, we expect to observe an event

1We make one slight modification suggested by the maintainer of
Mastik: every probe step, we actually perform multiple probes, “count-
ing” only the first one. In our case we perform five probes at a time,
still alternating between forwards and backwards probes. All of the
results which we present for the “unmodified” implementation include
this slight modification.
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Figure 3: Access detection rates for PRIME+ABORT in the “control” and “treatment” conditions. Data were collected
over 100 trials, each involving several different victim access speeds. Shaded regions indicate the range of the middle
75% of the data; lines indicate the medians. The y = x line is added for reference and indicates perfect performance
for the “treatment” condition (all events detected but no false positives or oversampling).

Figure 4: Access detection rates for unmodified PRIME+PROBE in the “control” and “treatment” conditions. Data
were collected over 100 trials, each involving several different victim access speeds. Shaded regions indicate the
range of the middle 75% of the data; lines indicate the medians. The y = x line is added for reference and indicates
perfect performance for the “treatment” condition (all events detected but no false positives or oversampling).
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Figure 5: Access detection rates for our modified implementation of PRIME+PROBE which “collapses” streaks. Data
were collected over 100 trials, each involving several different victim access speeds. Shaded regions indicate the range
of the middle 75% of the data; lines indicate the medians. The y = x line is added for reference and indicates perfect
performance for the “treatment” condition (all events detected but no false positives or oversampling).

during every probe, but this approach will observe only
a single streak and indicate a single event occurred.

Observing the two competing implementations of
PRIME+PROBE on our hardware reveals an interesting
tradeoff. The original implementation has good high fre-
quency performance, but suffers from both oversampling
and a high number of false positives. In contrast, the
modified implementation has poor high frequency per-
formance, but does not suffer from oversampling and
exhibits fewer false positives. For the remainder of
this paper we consider the modified implementation of
PRIME+PROBE only, as we expect that its improved
accuracy and fewer false positives will make it more
desirable for most applications. Finally, we note that
PRIME+ABORT combines the desirable characteristics
of both PRIME+PROBE implementations, as it exhibits
the fewest false positives, does not suffer from oversam-
pling, and has good high frequency performance, with a
top speed around one million events per second.

4.4 Attacks on AES
In this section we evaluate the performance of
PRIME+ABORT in an actual attack by replicating the at-
tack on OpenSSL’s T-table implementation of AES, as
conducted by Gruss et al. [7]. As those authors ac-
knowledge, this implementation is no longer enabled
by default due to its susceptibility to these kinds of at-
tacks. However, as with their work, we use it for the
purpose of comparing the speed and accuracy of com-
peting attacks. Gruss et al. compared PRIME+PROBE,
FLUSH+RELOAD, and FLUSH+FLUSH [7]; we have

chosen to compare PRIME+PROBE and PRIME+ABORT,
as these attacks do not rely on shared memory. Follow-
ing their methods, rather than using previously published
results directly, we rerun previous attacks alongside ours
to ensure fairness, including the same hardware setup.

Figures 6 and 7 provide the results of this experiment.
In this chosen-plaintext attack, we listen for accesses to
the first cacheline of the first T-Table (Te0) while run-
ning encryptions. We expect that when the first four bits
of our plaintext match the first four bits of the key, the
algorithm will access this cacheline one extra time over
the course of each encryption compared to when the bits
do not match. This will manifest as causing more events
to be detected by PRIME+ABORT or PRIME+PROBE re-
spectively, allowing the attacker to predict the four key
bits. The attack can then be continued for each byte of
plaintext (monitoring a different cacheline of Te0 in each
case) to reveal the top four bits of each key byte.

In our experiments, we used a key whose first four
bits were arbitrarily chosen to be 1110, and for each
method we performed one million encryptions with each
possible 4-bit plaintext prefix (a total of sixteen mil-
lion encryptions for PRIME+ABORT and sixteen mil-
lion for PRIME+PROBE). As shown in Figures 6 and
7, both methods correctly predict the first four key bits
to be 1110, although the signal is arguably cleaner and
stronger when using PRIME+ABORT.

5 Potential Countermeasures
Many countermeasures against side-channel attacks have
already been proposed; Ge et al. [4] again provide an
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Figure 6: PRIME+ABORT attack against AES. Shown is,
for each condition, the percentage of additional events
that were observed compared to the condition yielding
the fewest events.

excellent survey. Examining various proposed defenses
in the context of PRIME+ABORT reveals that some are
effective against a wide variety of attacks including
PRIME+ABORT, whereas others are impractical or in-
effective against PRIME+ABORT. This leads us to ad-
vocate for the prioritization and further development of
certain approaches over others.

We first examine classes of side-channel counter-
measures that are impractical or ineffective against
PRIME+ABORT and then move toward countermeasures
which are more effective and practical.
Timer-Based Countermeasures: A broad class of
countermeasures ineffective against PRIME+ABORT are
approaches that seek to limit the availability of precise
timers, either by injecting noise into timers to make them
less precise, or by restricting access to timers in general.
There are a wide variety of proposals in this vein, includ-
ing [15], [27], [31], [39], and various approaches which
Ge et al. classify as “Virtual Time” or “Black-Box Miti-
gation”. PRIME+ABORT should be completely immune
to all timing-related countermeasures.
Partitioning Time: Another class of countermeasures
that seems impractical against PRIME+ABORT is the
class Ge et al. refer to as Partitioning Time. These coun-
termeasures propose some form of “time-sliced exclu-
sive access” to shared hardware resources. This would
technically be effective against PRIME+ABORT, because
the attack is entirely dependent on running simultane-
ously with its victim process; any context switch causes a
transactional abort, so the PRIME+ABORT process must
be active in order to glean any information. However,
since PRIME+ABORT targets the LLC and can monitor
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Figure 7: PRIME+PROBE attack against AES. Shown is,
for each condition, the percentage of additional events
that were observed compared to the condition yielding
the fewest events.

across cores, implementing this countermeasure against
PRIME+ABORT would require providing each user pro-
cess time-sliced exclusive access to the LLC. This would
mean that processes from different users could never run
simultaneously, even on different cores, which seems im-
practical.
Disabling TSX: A countermeasure which would os-
tensibly target PRIME+ABORT’s workings in particular
would be to disable TSX entirely, similarly to how hy-
perthreading has been disabled entirely in cloud environ-
ments such as Microsoft Azure [30]. While this is tech-
nically feasible—in fact, due to a hardware bug, Intel al-
ready disabled TSX in many Haswell CPUs through a
microcode update [17]—TSX’s growing prevalence (Ta-
ble 2), as well as its adoption by applications such as
glibc (pthreads) and the JVM [24], indicates its im-
portance and usefulness to the community. System ad-
ministrators are probably unlikely to take such a drastic
step.
Auditing: More practical but still not ideal is the class of
countermeasures Ge et al. refer to as Auditing, which is
based on behavioral analysis of running processes. Hard-
ware performance counters in the target systems can be
used to monitor LLC cache misses or miss rates, and thus
detect when a PRIME+PROBE- or FLUSH+RELOAD-
style attack is being conducted [1, 7, 46] (as any at-
tack from those families will introduce a large number
of cache misses—at least in the victim process). As
a PRIME+PROBE-style attack, PRIME+ABORT would
be just as vulnerable to these countermeasures as other
cache attacks are. However, any behavioral auditing
scheme is necessarily imperfect and subject to misclas-
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sification errors in both directions. Furthermore, any au-
diting proposal targeting PRIME+ABORT which specifi-
cally monitors TSX-related events, such as transactions
opened or transactions aborted, seems less likely to be
effective, as many benign programs which utilize TSX
generate a large number of both transactions and aborts,
just as PRIME+ABORT does. This makes it difficult to
distinguish PRIME+ABORT from benign TSX programs
based on these statistics.
Constant-Time Techniques: The class of countermea-
sures referred to as “Constant-Time Techniques” in-
cludes a variety of approaches, some of which are likely
to be effective against PRIME+ABORT. These coun-
termeasures are generally software techniques to en-
sure important invariants are preserved in program ex-
ecution regardless of (secret) input data, with the aim
of mitigating side channels of various types. Some
“Constant-Time Techniques” merely ensure that critical
functions in a program always execute in constant time
regardless of secret data. This is insufficient to defend
against PRIME+ABORT, as PRIME+ABORT can track
cache accesses without relying on any kind of timing
side-channel. However, other so-called “Constant-Time
Techniques” are actually more powerful than their name
suggests, and ensure that no data access or control-flow
decision made by the program ever depends on any secret
data. This approach is effective against PRIME+ABORT,
as monitoring cache accesses (either for instructions or
data) would not reveal anything about the secret data be-
ing processed by the program.
Randomizing Hardware Operations: Another inter-
esting class of defenses proposes to insert noise into
hardware operations so that side-channel measurements
are more difficult. Although PRIME+ABORT is immune
to such efforts related to timers, other proposals aim
to inject noise into other side-channel vectors, such as
cache accesses. For instance, RPcache [40] proposes
to randomize the mapping between memory address and
cache set, which would render PRIME+ABORT and other
cache attacks much more difficult. Other proposals aim
to, for instance, randomize the cache replacement pol-
icy. Important limitations of this kind of noise injec-
tion (noted by Ge et al.) include that it generally can
only make side-channel attacks more difficult or less effi-
cient (not completely impossible), and that higher levels
of mitigation generally come with higher performance
costs. However, these kinds of schemes seem to be
promising, providing relatively lightweight countermea-
sures against a quite general class of side-channel at-
tacks.
Cache Set Partitioning: Finally, a very promising class
of countermeasures proposes to partition cache sets be-
tween processes, or disallow a single process to use all
of the ways in any given LLC cache set. This would

be a powerful defense against PRIME+ABORT or any
other PRIME+PROBE variant. Some progress has been
made towards implementing these defenses, such as
CATalyst [28], which utilizes Intel’s “Cache Allocation
Technology” [18]; or “cache coloring” schemes such as
STEALTHMEM [26] or that proposed by [5]. One unde-
sirable side effect of this approach is that it would reduce
the maximum size of TSX transactions, hindering legit-
imate users of the hardware transactional memory func-
tionality. However, the technique is still promising as an
effective defense against a wide variety of cache attacks.
For more examples and details of this and other classes of
side-channel countermeasures, we again refer the reader
to Ge et al. [4].

Our work with PRIME+ABORT leads us to recom-
mend the further pursuit of those classes of countermea-
sures which are effective against all kinds of cache at-
tacks including PRIME+ABORT, specifically so-called
“Constant-Time Techniques” (in their strict form), ran-
domizing cache operations, or providing mechanisms for
partitioning cache sets between processes.

6 Disclosure
We disclosed this vulnerability to Intel on January 30,
2017, explaining the basic substance of the vulnerability
and offering more details. We also indicated our intent
to submit our research on the vulnerability to USENIX
Security 2017 in order to ensure Intel was alerted before
it became public. We did not receive a response.

7 Conclusion
PRIME+ABORT leverages Intel TSX primitives to yield
a high-precision, cross-core cache attack which does not
rely on timers, negating several important classes of de-
fenses. We have shown that leveraging TSX improves
the efficiency of algorithms for dynamically generating
eviction sets; that PRIME+ABORT has higher accuracy
and speed on Intel’s Skylake architecture than previous
L3 PRIME+PROBE attacks while producing fewer false
positives; and that PRIME+ABORT can be successfully
employed to recover secret keys from a T-table imple-
mentation of AES. Additionally, we presented new evi-
dence useful for all cache attacks regarding Intel’s Sky-
lake architecture: that it may differ from previous archi-
tectures in number of cache slices, and that it may use
different cache replacement policies for lines involved in
TSX transactions.
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Abstract
The duration of floating-point instructions is a known
timing side channel that has been used to break Same-
Origin Policy (SOP) privacy on Mozilla Firefox and the
Fuzz differentially private database. Several defenses
have been proposed to mitigate these attacks.

We present detailed benchmarking of floating point
performance for various operations based on operand
values. We identify families of values that induce slow
and fast paths beyond the classes (normal, subnormal,
etc.) considered in previous work, and note that different
processors exhibit different timing behavior.

We evaluate the efficacy of the defenses deployed (or
not) in Web browsers to floating point side channel at-
tacks on SVG filters. We find that Google Chrome,
Mozilla Firefox, and Apple’s Safari have insufficiently
addressed the floating-point side channel, and we present
attacks for each that extract pixel data cross-origin on
most platforms.

We evaluate the vector-operation based defensive
mechanism proposed at USENIX Security 2016 by Rane,
Lin and Tiwari and find that it only reduces, not elimi-
nates, the floating-point side channel signal.

Together, these measurements and attacks cause us to
conclude that floating point is simply too variable to use
in a timing security sensitive context.

1 Introduction
The time a modern processor takes to execute a
floating-point instruction can vary with the instruction’s
operands. For example, subnormal floating-point val-
ues consumed or produced by an instruction can induce
an order-of-magnitude execution slowdown. In 2015,
Andrysco et al. [2] exploited the slowdown in subnor-
mal processing to break the privacy guarantees of a dif-
ferentially private database system and to mount pixel-
stealing attacks against Firefox releases 23–27. In a
pixel-stealing attack, a malicious web page learns the
contents of a web page presented to a user’s browser
by a different site, in violation of the browser’s origin-
isolation guarantees.

Andrysco et al. proposed mitigations against floating-
point timing attacks:

∗dkohlbre@cs.ucsd.edu
†hovav@cs.ucsd.edu

• Replace floating-point computations with fixed-
point computations relying on the processor’s inte-
ger ALU.

• Use processor flags to cause subnormal values to be
treated as zero, avoiding slowdowns associated with
subnormal values.

• Shift sensitive floating-point computations to the
GPU or other hardware not known to be vulnerable.

At USENIX Security 2016, Rane, Lin, and Tiwari [15]
proposed additional mitigations:

• Use program analysis to identify floating-point op-
erations whose inputs cannot be subnormal; these
operations will not experience subnormal slow-
downs.

• Run floating-point operations whose inputs might
be subnormal on the the processor’s SIMD unit,
loading the a SIMD lane with a dummy operation
chosen to induce consistent worst-case execution
time.

Rane, Lin, and Tiwari implemented their proposed
mitigations in a research prototype Firefox browser.
Variants of the Andrysco et al. mitigations have been
adopted in the latest versions of Firefox, Safari, and
Chrome.

We evaluate how effective the proposed mitigations
are at preventing pixel stealing. We find that, other than
avoiding the floating point unit altogether, the proposed
mitigations are not effective at preventing pixel steal-
ing — at best, they reduce the rate at which pixels can
be read. Our attacks make use of details of floating point
performance beyond the subnormal slowdowns observed
by Andrysco et al.

Our contributions are as follows:

1. We give a more refined account of how floating-
point instruction timing varies with operand values
than did Andrysco et al. In particular, we show that
operands with a zero exponent or significand induce
small but exploitable speedups in many operations.

2. We evaluate the SIMD defense proposed by Rane,
Lin, and Tiwari, giving strong evidence that proces-
sors execute the two operations sequentially, not in
parallel.
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Format
Name

Size
Bits

Subnormal
Min

Normal
Min

Normal
Max

Half 16 6.0e−8 6.10e−5 6.55e4
Single 32 1.4e−45 1.18e−38 3.40e38
Double 64 4.9e−324 2.23e−308 1.79e308

Figure 1: IEEE-754 Format type ranges (Reproduced
with permission from [2])

3. We revisit browser implementations of SVG filters
two years after the Andrysco et al. attacks. Despite
attempts at remediation, we find that the latest ver-
sions of Chrome, Firefox, and Safari are all vulner-
able to pixel-stealing attacks.

4. We show that subnormal values induce slowdowns
in CUDA calculations on modern Nvidia GPUs.

Taken together, our findings demonstrate that the float-
ing point units of modern processors are more complex
than previously realized, and that defenses that seek to
take advantage of that unit without creating timing side
channels require careful evaluation.

SignificandExponent

8 231

(�1)sign ⇥ 2exponent�127 ⇥ 1..significand

Figure 2: IEEE-754 single precision float

Ethics and disclosure. We have disclosed the pixel-
stealing attacks we found to Apple, Google, and Mozilla.
Mozilla has already committed to deploying a patch. We
will give Apple and Google adequate time to patch be-
fore publishing our findings.

2 Background
Many floating point instructions are known to ex-
hibit performance differences based on the operands.
Andrysco et al. [2] leveraged these timing differences to
defeat the claimed privacy guarantees of two systems:
Mozilla Firefox (versions 23–27) and the Fuzz differen-
tially private database. Andrysco et al.’s attack on Fire-
fox, and the attacks on browsers we present, use SVG
filter timing to break the Same-Origin Policy, an idea in-
troduced by Stone [16] and Kotcher et al. [13].

2.1 IEEE-754 floating point
For the purposes of this paper we will refer to floating
point, floats, and doubles to mean the IEEE-754 floating
point standard (see Figure 1) unless otherwise specified.

The floating point unit (FPU) accessed via Intel’s sin-
gle scalar Streaming SIMD (Single Instruction, Multiple
Data) Extensions (SSE) instructions adheres to this stan-
dard on all processors we discuss. We omit discussion of
the x87 legacy FPU that is still accessible on a modern
x86_64 processor.

The IEEE-754 floating point standard is the most com-
mon floating point implementation available on com-
modity CPUs. Figure 2 shows the layout of the IEEE-
754 single precision float and the value calculation.
Note that the actual exponent used in the 2exp portion
is exponent − bias where the bias is half the unsigned
maximum value of the exponent’s range. This format al-
lows for the full range of positive and negative exponent
values to be represented easily. If the exponent has any
non 0 bits the value is normal, and the significand has an
implicit leading 1 bit. If the exponent is all 0 bits (i.e.,
exponent− bias = −bias) then the value is subnormal,
and there is no implicit leading 1 bit. As shown in fig-
ure 1 this means that subnormal values are fantastically
small. Subnormal values are valuable because they en-
able gradual underflow for floating point computations.
Gradual underflow guarantees that given any two floats,
a 6= b, there exists a floating point value c 6= 0 that is
the difference a− b = c. The use of this property is
demonstrated by the simple pseudocode “if a 6= b then
x
/
(a−b),” which does not expect to generate an infinity

by dividing by zero. Without subnormals the IEEE-754
standard could not guarantee gradual underflow for nor-
mals and a number of adverse scenarios such as the one
above can occur. As Andrysco et al. [2] observe, subnor-
mal values do not frequently arise, and special hardware
or microcode is used to handle them on most CPUs.

Andrysco et al.’s attacks made use of the substantial
timing differences between operations on subnormal (or
denormal) floating point values and on normal floating
point values. See Figure 8 for a list of non-normal IEEE-
754 value types. In this paper we present additional
benchmarks that demonstrate that (smaller) timing dif-
ferences arise from more than just subnormal operands.
Section 3 describes our benchmarking results.

2.2 SVG floating point timing attacks
Andrysco et al. [2] presented an attack on Firefox SVG
filters that is very similar to the attacks detailed later in
this paper. Thus, we provide an overview of how that
attack works for reference.

Figure 3 shows the workflow of the SVG timing at-
tack.

1. The attacking page creates a large <iframe> of
the victim page inside of a container <div>

2. The container <div> is sized to 1x1 pixel
and can be scrolled to the current target pixel
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Target 
pixel white

Target 
pixel black(1) iframe of target page

(3) Pixel multiplication <div>

(4) SVG Filter

(5)

(6)

     (2)
 Target pixel in red

Filtered rendering

Browser Window

Figure 3: Cross-Origin SVG Filter Pixel Stealing Attack in Firefox, reproduced from [2] with permission

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 6.57 6.57 6.60 6.58 6.59 6.57 6.59 6.58 6.59
1.0 6.59 6.59 6.59 6.57 6.56 130.90 130.85 6.58 6.57

1e10 6.57 6.59 6.58 6.59 6.56 130.90 130.91 6.58 6.58
1e+30 6.59 6.56 6.58 6.59 6.57 130.90 130.91 6.59 6.58
1e-30 6.57 6.59 6.59 6.57 6.59 6.59 6.58 6.58 6.57
1e-41 6.56 130.90 130.89 130.87 6.56 6.57 6.57 130.96 130.90
1e-42 6.59 130.89 130.88 130.90 6.57 6.58 6.57 130.85 130.89
256 6.58 6.58 6.55 6.57 6.58 130.92 130.88 6.57 6.56
257 6.56 6.55 6.59 6.58 6.57 130.89 130.88 6.57 6.58

Figure 4: Multiplication timing for single precision floats on Intel i5-4460

on the <iframe> using the scrollTop and
scrollLeft properties.

3. The target pixel is duplicated into a larger container
<div> using the -moz-element CSS property.
This creates a <div> that is arbitrarily sized and
consists only of copies of the target pixel.

4. The SVG filter that runs in variable time
(feConvolveMatrix) is applied to the the pixel
duplication <div>

5. The rendering time of the filter is measured us-
ing requestAnimationFrame to get a call-
back when the next frame is completed and
performance.now for high resolution timing.

6. The rendering time is compared to the threshold de-
termined during the learning phase and categorized
as white or black.

Since the targeted <iframe> and the attacker page
are on different origins, the attacking page should not
be able to learn any information about the <iframe>’s

content. However, since the rendering time of the SVG
filter is visible to the attacker page, and the rendering
time is dependent on the <iframe> content, the attack-
ing page is able to violate this policy and learn pixel in-
formation.

3 New floating point timing observations
Andryso et al. [2] presented a number of timing varia-
tions in floating point computation based on subnormal
and special value arguments. We expand this category to
note that any value with a zero significand or exponent
exhibits different timing behavior on most Intel CPUs.

Figure 9 shows a summary of our findings for our pri-
mary test platform running an Intel i5-4460 CPU. Unsur-
prisingly, double precision floating point numbers show
more types of, and larger amounts of, variation than sin-
gle precision floats.

Figures 4, 5, 6, and 7 are crosstables showing average
cycle counts for division and multiplication on double
and single precision floats on the Intel i5-4460. We re-
fer to the type of operation (add, subtract, divide, etc) as
the operation, and the specific combination of operands
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Dividend
Divisor

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 6.55 6.50 6.58 6.57 6.54 6.57 6.56 6.58 6.59
1.0 6.58 6.58 6.58 6.57 6.57 152.59 152.57 6.59 6.60

1e10 6.58 6.58 6.58 6.59 6.58 152.57 152.56 6.56 6.58
1e+30 6.57 6.57 6.59 6.57 6.56 152.59 152.51 6.58 6.60
1e-30 6.57 6.57 155.37 6.57 6.58 152.54 152.59 6.57 6.54
1e-41 6.58 149.75 6.57 6.56 152.56 152.57 152.59 149.72 152.55
1e-42 6.59 149.72 6.56 6.56 152.60 152.56 152.49 149.74 152.54
256 6.58 6.60 6.56 6.60 6.55 152.53 152.70 6.58 6.58
257 6.58 6.58 6.57 6.57 6.54 152.59 152.51 6.57 6.55

Figure 5: Division timing for single precision floats on Intel i5-4460

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.59 6.56 6.59 6.58 6.58 6.57 6.58 6.59 6.57
1.0 6.57 6.59 6.55 6.57 6.57 6.56 6.56 6.56 130.89

1e10 6.55 6.55 6.56 6.58 6.56 6.56 6.56 6.57 130.95
1e+200 6.55 6.57 6.56 6.58 6.59 6.53 6.55 6.58 130.92
1e-300 6.51 6.57 6.56 6.59 6.57 6.57 6.55 6.58 6.54
1e-42 6.55 6.57 6.55 6.57 6.55 6.58 6.58 6.58 6.55
256 6.58 6.53 6.56 6.54 6.56 6.56 6.58 6.57 130.94
257 6.59 6.57 6.60 6.56 6.58 6.56 6.57 6.59 130.90

1e-320 6.59 130.90 130.92 130.94 6.59 6.58 130.95 130.91 6.56

Figure 6: Multiplication timing for double precision floats on Intel i5-4460

and operation as the computation. Cells highlighted in
blue indicate computations that averaged 1 cycle higher
than the mode across all computations for that operation.
Cells in orange indicate the same for 1 cycle less than
the mode. Bold face indicates a computation that had a
standard deviation of > 1 cycle (none of the tests on the
Intel i5-4460 had standard deviations above 1 cycle). All
other crosstables in this paper follow this format unless
otherwise noted.

We run each computation (operation and argument
pair) in a tight loop for 40,000,000 iterations, take the to-
tal number of CPU cycles during the execution, remove
loop overheads, and find the average cycles per compu-
tation. This process is repeated for each operation and
argument pair and stored. Finally, we run the entire test-
ing apparatus 10 times and store all the results. Thus, we
execute each computation 400,000,000 times split into
10 distinct samples. This apparatus measures the steady-
state execution time of each computation.

The entirety of our data across multiple generations of
Intel and AMD CPUs, as well as tools and instructions
for generating this data, are available at https://cs
eweb.ucsd.edu/~dkohlbre/floats.

It is important to note that the Andrysco et al. [2] fo-
cused on the performance difference between subnormal
and normal operands, while we observe that there are ad-
ditional classes of values worth examining. The specific
differences on powers-of-two are more difficult to detect
with a naive analysis as they cause a slight speedup when
compared to the massive slowdown of subnormals.

4 Fixed point defenses in Firefox

In version 28 Firefox switched to a new set of SVG fil-
ter implementations that caused the attack presented by
Andrysco et al. [2] to stop functioning. Many of these
implementations no longer used floating point math, in-
stead using their own fixed point arithmetic.

As the feConvolveMatrix implementation now
consists entirely of integer operations, we cannot use
floating point timing side channels to exploit it. We in-
stead examined a number of the other SVG filter imple-
mentations and found that several had not yet been ported
to the new fixed point implementation, such as the light-
ing filters.
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Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.56 6.59 6.58 6.55 6.57 6.58 6.57 6.57 6.59
1.0 6.58 6.58 12.19 12.17 12.22 12.24 6.57 12.24 165.76

1e10 6.58 6.55 12.25 12.20 12.23 12.25 6.57 12.22 165.81
1e+200 6.60 6.60 12.25 12.20 12.22 12.22 6.58 12.24 165.79
1e-300 6.59 6.57 175.22 12.24 12.17 12.22 6.52 12.23 165.83
1e-42 6.60 6.53 12.23 12.22 12.21 12.24 6.58 12.21 165.79
256 6.57 6.55 12.24 12.20 12.20 12.20 6.53 12.22 165.79
257 6.55 6.58 12.24 12.22 12.24 12.23 6.56 12.21 165.80

1e-320 6.56 150.73 165.79 6.59 165.78 165.76 150.66 165.80 165.78

Figure 7: Division timing for double precision floats on Intel i5-4460

Value Exponent Significand

Zero All Zeros Zero
Infinity All Ones Zero
Not-a-Number All Ones Non-zero
Subnormal All Zeros Non-zero

Figure 8: IEEE-754 Special Value Encoding (Repro-
duced with permission from [2])

Operation Default FTZ & DAZ -ffast-math

Single Precision
Add/Sub – – –
Mul S – –
Div S – –
Sqrt M Z –

Double Precision
Add/Sub – – –
Mul S – –
Div M Z Z
Sqrt M Z Z

Figure 9: Observed sources of timing differences under
different settings on an Intel i5-4460. – : no variation, S
: Subnormals are slower, Z : all zero exponent or signifi-
cand values are faster, M : mixture of several effects

4.1 Fixed point implementation

The fixed point implementation used in Firefox SVG fil-
ters is a simple 32-bit format with no Not-a-Number, In-
finity, or other special case handling. Since they make
use of the standard add/subtract/multiply operations for
32-bit integers, we know of no timing side channels
based on operands for this implementation. Integer di-
vision is known to be timing variable based on the up-
per 32-bits of 64-bit operands, but none of the filters

can generate intermediate values requiring the upper 32-
bits. Thus, none of the filters we examined using fixed
point had any instruction data timing based side chan-
nels. Handling the full range of floating point function-
ality in a fixed point and constant time way is expensive
and complex, as seen in [2].

A side effect of a simple implementation is that it can-
not handle more complex operations that could induce
NaNs or infinities and must process them.

4.2 Lighting filter attack
Our Firefox SVG timing attack makes use of the
feSpecularLighting lighting model with an
fePointLight. This particular filter in this
configuration is not ported to fixed point, and
performs a scaling operation over the input al-
pha channel. The surfaceScale property in
feSpecularLighting controls this scaling opera-
tion and can be set to an arbitrary floating point value
when creating the filter. With this tool, we perform the
following attack similar to the one in section 2.2. We
need only to modify step 4 as seen below to enable the
use of the new lighting filter attack.

1. Steps 1-3 are the same as section 2.2.

4.1. Apply an feColorMatrix to the pixel mul-
tiplier <div> that sets the alpha channel based en-
tirely on the input color values. This sets the alpha
channel to 1 for a black pixel input, and 0 for a white
pixel input.

4.2. Apply the timing variable
feSpecularLighting filter with a sub-
normal surfaceScale and an attached
fePointLight as the timing vulnerable fil-
ter.

5. Steps 5 and 6 are the same as section 2.2.
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In this case, we differentiate between n2 multiplica-
tions of subnormal×0 (black) vs subnormal×1 (white)
where n is the width/height of the copied pixel <div>.
Since our measurements show a difference of 7 cycles vs
130 cycles for each multiplication (see Figure 4), we can
easily detect this difference once we scale n enough that
the faster white pixel case takes longer than 16ms (circa
n = 200) in our tests. We need to cross this 16ms thresh-
old as frames take a minimum of 16ms to render (60fps)
on our test systems.

In our tests on an Intel i5-4460 with Firefox 49+ we
were able to consistently obtain > 99% accuracy (on
black and white images) at an average of 17ms per pixel.
This is approximately as fast as an attack using this
method can operate, since Firefox animates at a capped
60fps on all our test systems.

We notified Mozilla of this attack and they are
working on a comprehensive solution. Firefox has
patched the surfaceScale based attack on the
feSpecularLighting filter in Firefox 52 and as-
signed the attack CVE-2017-5407.

5 Safari

At the time of writing this paper, Safari has not im-
plemented any defensive mechanisms that hamper the
SVG timing attack presented in [2]. Thus, with a re-
work of the attack framework, we are able to mod-
ify the attack presented in Andrysco et al against the
feConvolveMatrix filter for Firefox 25 to work
against current Safari.

Webkit (Safari) uses its own SVG filter implementa-
tions not used in other browsers. None of the SVG filters
had GPU support at the time of this paper, but some CSS
transforms could be GPU accelerated.

The Webkit feConvolveMatrix filter is im-
plemented in the obvious way; multiply each ker-
nel sized pixel region against the kernel element-by-
element, sum, and divide the result by the divisor. We
can therefore cause operations with 0×subnormal or
normal×subnormal depending on the target pixel. Since
as we have seen these can a 0×subnormal can be 21×
faster than a subnormal times a normal, we can easily de-
tect the difference between executing over a black pixel
or a white pixel.

We have disclosed the attack to Apple, and discussed
options for entirely disabling cross-origin SVG filtering.
Apple is working to address the issue.

We have removed details on the needed technical mod-
ifications to the attack for Safari as a patch is not yet
available for all users. A full description of the modifica-
tions required for the Safari variant will be released upon
a patch being available.

6 DAZ/FTZ FPU flag defenses in Chrome
Google Chrome implements CSS and SVG filter support
through the Skia 1 graphics library. As of July of 2016,
when executing Skia filters on the CPU, Chrome enables
an FPU control flag based countermeasure to timing at-
tacks. Specifically, Chrome enables the Flush-to-Zero
(FTZ) and Denormals-are-Zero (DAZ) flags.

These flags are two of the many FPU control flags that
can be set. Flags determine options such as when to set
a floating point exception, what rounding options to use,
and how to handle subnormals. The FTZ flag indicates
to the FPU that whenever it would produce a subnormal
as the result of a calculation, it instead produces a zero.
The DAZ flag indicates to the FPU that any subnormal
operand should be treated as if it were zero in the com-
putation. Generally these flags are enabled together as a
performance optimization to avoid any use or generation
of subnormal values. However, these flags break strict
IEEE-754 compatibility and so some compilers do not
enable them without specific optimization flags. In the
case of Chrome, FTZ and DAZ are enabled and disabled
manually in the Skia rendering path.

6.1 Attacking Chrome
We present a cross-origin pixel stealing attack for Google
Chrome using the feConvolveMatrix filter. As in
our previous attacks, we observe the timing differences
between white and black pixels rendered with a spe-
cific convolution matrix. This attack works without any
changes on all major platforms for Chrome that support
GPU acceleration. We have tested it on Windows 10 (In-
tel i7-6700k), Ubuntu Linux 16.10 (Intel i5-4460), OSX
10.11.6 (Intel i7-3667U Macbook Air), and a Chrome-
book Pixel LS ChromeOS 55.0.2883.105 (i7-5500U) on
versions of Chrome from 54-56. The attack is very simi-
lar to the one detailed in section 2.2 and figure 3.

Unlike Firefox, we cannot trivially supply subnormal
value like “1e-41”, as the Skia SVG float parsing code
treats them as 0s. The float parsing in Skia attempts to
avoid introducing subnormal values by disallowing ex-
ponents ≤−37. Thus we use the value 0.0000001e−35
or simply the fully written out form, which is correctly
parsed into a subnormal value. Since the FTZ and DAZ
flags are set only on entering the Skia rendering code, the
parsing is not subject to these flags and we can always
successfully generate subnormals at parse time.

The largest obstacle we bypass is the use of the FTZ
and DAZ control flags. These flags reduce the precision
and representable space of floats, but prevent any perfor-
mance impact caused by subnormals for these filters in
our experiments. As shown in section 3 even with these
flags enabled the div and sqrt operations still have
timing variation. Unfortunately none of the current SVG
filter implementations we examined have tight division
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<div id="pixel" style="width:500px;height:500px;overflow:hidden">
<div id="scroll" style="width:1px; height:1px; overflow:hidden; transform:scale(600.0);

margin:249px auto">
<iframe id="frame" position="absolute" frameborder="0" scrolling="no" src="TARGET_URL"/>
</div>

</div>

Figure 10: HTML and style design for the pixel multiplying structure used in our attacks on Safari and Chrome

Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 6.58 6.59 6.58 6.55 6.59 6.54 6.54 6.56 6.56
1.0 6.55 6.55 12.23 12.19 12.22 12.22 6.56 12.25 6.56

1e10 6.58 6.59 12.22 12.22 12.21 12.21 6.59 12.23 6.59
1e+200 6.57 6.59 12.22 12.20 12.17 12.21 6.58 12.17 6.57
1e-300 6.59 6.57 12.18 12.23 12.24 12.22 6.59 12.24 6.57
1e-42 6.58 6.56 12.21 12.25 12.23 12.18 6.56 12.21 6.58
256 6.57 6.60 12.20 12.22 12.24 12.24 6.57 12.23 6.54
257 6.57 6.58 12.22 12.23 12.25 12.20 6.57 12.23 6.58

1e-320 6.57 6.58 6.60 6.51 6.59 6.57 6.58 6.55 6.58

Figure 11: Division timing for double precision floats on Intel i5-4460+FTZ/DAZ

loops over doubles, or tight square root operations over
floats. Thus, our attack must circumvent the use of the
FTZ and DAZ flags altogether.

Chrome enables the FTZ and DAZ control flags when-
ever a filter is set to run on the CPU, which disallows
our Firefox or Safari attacks from applying directly to
Chrome. However, we found that the FTZ and DAZ flags
are not set when a filter is going to execute on the GPU.
This would normally only be useful for a GPU-based at-
tack but we can force the feConvolveMatrix filter
to abort from GPU acceleration at the last possible mo-
ment and fall back to the CPU implementation by having
a kernel matrix over the maximum supported GPU size
of 36 elements. Chrome does not enable the FTZ and
DAZ flags when it executes this fallback, allowing our
timing attack to use subnormal values.

We force the target <div> to start on the GPU render-
ing path by applying a CSS transform:rotateY()
to it. This is a well known trick for causing future anima-
tions and filters to be performed on the GPU, and it works
consistently. Without this, the feConvolveMatrix
GPU implementation would never fire, as it will not
choose the GPU over the CPU on its own. It is only be-
cause of our ability to force CPU fallback with the FTZ
and DAZ flags disabled that allows our CPU Chrome at-
tack to function.

Note that even if FTZ/DAZ are enabled in all cases
there are still scenerios that show timing variation as seen
in figures 11 and 9. Chrome’s Skia configuration cur-

rently uses single precision floats, and thus only need
avoid sqrt operations as far as we know. However, any
use of double precision floats will additionally require
avoidance of division. We did not observe any currently
vulnerable uses of single precision sqrt, or of double pre-
cision floating point operations in the Skia codebase.

We notified Google of this attack and a fix is in
progress.

6.2 Frame timing on Chrome

An additional obstacle to our Chrome attack was obtain-
ing accurate frame render times. Unlike on Firefox or
Safari, adding a filter to a <div>’s style and then calling
getAnimationFrame is insufficient to be sure that
the time until the callback occurs will accurately repre-
sent the rendering time of the filter. In fact, the frame
that the filter is actually rendered on differs by platform
and is not consistent on Linux. We instead run algorithm
1 to get the approximate rendering time of a given frame.
Since we only care about the relative rendering time be-
tween white and black pixels, the possibly extra time in-
cluded doesn’t matter as long as it is moderately consis-
tent. This technique allowed our attack to operate on all
tested platforms without modification.

7 Revisiting the effectiveness of Escort

Escort [15] proposes defenses against multiple types of
timing side channels, notably a defense using SIMD vec-
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Result: Duration of SVG filter rendering
total_duration = 0ms;
long_frame_seen = False;
while true do

/* Wait for next frame */
requestAnimationFrame;
if duration > 40ms then

/* Long frame probably
containing the SVG
rendering occurred */

long_frame_seen = True;
total_duration += duration;

else
if long_frame_seen then

/* A short frame after a
long frame */

return total_duration;
end

end
total_duration += duration;

end
Algorithm 1: How to measure SVG filter rendering
times in Chrome

tor operations to protect against the floating point attack
presented by Andrysco et al in [2].

Single Instruction, Multiple Data (SIMD) instructions
are an extension to the x86_64 ISA designed to improve
the performance of vector operations. These instructions
allow 1-4 independent computations of the same opera-
tion (divide, add, subtract, etc) to be performed at once
using large registers. By placing the first set of operands
in the top half of the register, and the second set of
operands in the bottom half, multiple computations can
be easily performed with a single opcode. Intel does not
provide significant detail about the execution of these in-
structions and does not provide guarantees about their
performance behavior.

7.1 Escort overview
Escort performs several transforms during compilation
designed to remove timing side channels. First, they
modify ’elementary operations’ (floating point math op-
erations for the purpose of this paper). Second, they per-
form a number of basic block linearizations, array access
changes, and branch removals to transform the control
flow of the program to constant time and minimize side
effects.

We do not evaluate the efficacy of the higher level con-
trol flow transforms and instead evaluate only the ele-
mentary operations.

Escort’s tool is to construct a set of dummy operands
(the escort) that are computed at the same time as the

Operation Default libdrag

Single Precision
Add/Sub – –
Mul S –
Div S Z
Sqrt M Z

Double Precision
Add/Sub – –
Mul S –
Div M Z
Sqrt M Z

Figure 12: Timing differences observed for libdrag vs
default operations on an Intel i5-4460. – : no variation, S
: Subnormals are slower, Z : all zero exponent or signifi-
cand values are faster, M : mixture of several effects

Operation Default libdrag

Single Precision
Add/Sub S S
Mul S –
Div S –
Sqrt S –

Double Precision
Add/Sub S S
Mul S –
Div S –
Sqrt S –

Figure 13: Timing differences observed for libdrag
vs default operations on an AMD Phenom II X2 550. –
: no variation, S : Subnormals are slower, Z : all zero
exponent or significand values are faster, M : mixture of
several effects

secret operands to obscure the running time of the se-
cret operands. Escort places the dummy arguments in
one lane of the SIMD instruction, and the sensitive argu-
ments in another lane. Since the instruction only retires
when the full set of computations are complete, the run-
ning time of the entire operation is hypothesized to be
dependent only on the slowest operation. This is true if
and only if the different lanes are computed in parallel.
To obscure the running time of the sensitive operands,
Escort places two subnormal arguments in the dummy
lane of all modified operations under the assumption that
this will exercise the slowest path through the hardware.

Escort will replace most floating point operations it en-
counters. However, if it can prove (using the Z3 SMT
solver [4]) that the operation will never have subnormal
values as operands it declines to replace the operation.
This means that if a function filters out subnormals be-
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Dividend
Divisor

0.0 1.0 1e10 1e+200 1e-300 1e-42 256 257 1e-320

Cycle count
0.0 186.46 186.48 186.50 186.44 186.42 186.49 186.50 186.48 186.51
1.0 186.45 186.48 195.93 195.94 195.93 195.86 186.48 195.87 186.48

1e10 186.51 186.49 195.92 195.90 195.92 195.87 186.47 195.86 186.46
1e+200 186.50 186.50 195.90 195.94 195.89 195.91 186.46 195.90 186.50
1e-300 186.48 186.44 195.91 195.88 195.93 195.92 186.53 195.95 186.44
1e-42 186.44 186.51 195.92 195.94 195.87 195.89 186.51 195.93 186.47
256 186.49 186.49 195.91 195.91 195.87 195.89 186.45 195.91 186.44
257 186.46 186.47 195.96 195.92 195.92 195.96 186.49 195.98 186.45

1e-320 186.49 186.49 186.43 186.48 186.49 186.49 186.50 186.52 186.46

Figure 14: Division timing for double precision floats on Intel i5-4460+Escort

Dividend
Divisor

0.0 1.0 1.0e-10 1.0e-323 1.0e-43 1.0e100 256 257

Runtime (Seconds)
0.0 10.09 10.08 10.08 10.08 10.08 10.08 10.08 10.10
1.0 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55

1.0e-10 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55
1.0e-323 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08
1.0e-43 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55
1.0e100 10.08 10.08 10.55 10.08 10.55 10.55 10.08 10.55

256 10.08 10.08 10.55 10.08 10.57 10.55 10.08 10.57
257 10.09 10.08 10.55 10.08 10.57 10.55 10.08 10.55

Figure 15: Division timing for double precision floats on Intel i5-4460 macro-test

fore performing computation, the computation will be
done with standard scalar floating point operations and
not vector operations. This results in significant perfor-
mance gains when applicable, as the scalar operations
can be two orders of magnitude faster than the subnormal
vector operations. The replacement operations consist of
hand-coded assembly contained in a library; libdrag.

However, operations that do not receive subnormals
can still exhibit timing differences. As seen in figure 7
and summarized in figure 9 timing differences arise on
value types that can commonly occur (0, powers of 2,
etc). While significantly less obvious than the impact of
subnormals, these still constitute a potential timing side
channel. libdrag can easily fix this, at serious perfor-
mance cost, by enabling the floating point replacements
for all floating point operations with no exceptions.

To determine if Escort closes floating point timing side
channel when enabled, we measured the timing behavior
of Escort’s libdrag floating point operations, as well
as the end-to-end runtime of toy programs compiled un-
der Escort.

7.2 libdrag micro-benchmarks
For the micro-benchmarking of the libdrag functions
we use a simple tool we developed for running timing
tests of library functions based on Intel’s recommenda-
tions for instruction timing. This is the same tool we
used to produce measurements for section 3.

We benchmarked each of libdrag’s functions
against a range of valid numbers on several different
CPUs. We do not present results for Not-a-Number
(NaN) or infinities.

7.2.1 Results on Intel i5-4460

Our results for the Intel i5-4460 CPU roughly correspond
to the variations presented in [15] (which tested on an In-
tel i7-2600) for libdrag. We do not observe any mea-
surable timing variation in any add, multiply, or subtract
operations for single or double precision floating point.
We do observe notable timing differences based on argu-
ment values for single and double precision division and
square-root operations. The cross table results for dou-
ble precision division are shown in figure 14. Figure 12
summarizes the timing variations we observed.

For division, it appears that the numerator has no im-
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pact on the running time of the computation. The de-
nominator shows variation based on if the significand or
exponent is all zero bits. When either portion is zero in
the denominator computations run consistently faster in
both single and double precision floating point. Differ-
ences observed range from 2% to 5% in contrast to the
2500% differences observed in section 3.

Square root shows a similar behavior, where if either
the significand or exponent is all 0 bits the computation
runs consistently faster. This matches the behavior seen
for many operations in scalar computations. (See figure
9)

An interesting outcome of this behavior is that subnor-
mal values cause a speedup under libdrag rather than
the slowdown observed under scalar operations.

We speculate that this is the result of fast paths in the
microcode handling for vector operations. Using perfor-
mance counters we determined that all vector operations
containing a subnormal value execute microcode rather
than hardwired logic on the FPU hardware. As all val-
ues with a zero significand or exponent experienced a
speedup, we believe that the division and square root mi-
crocode handles these portions separately with a shortcut
in the case of zero. Intel did not release any details on the
cause of these timing effects when asked.

7.2.2 AMD Phenom II X2 550

Figure 13 summarizes our results on the AMD Phenom
II X2 550. As with the Intel i5-4460 we observe timing
variation in the AMD Phenom II X2 550. However, the
variation is now confined to addition and subtraction with
subnormal values. By examining the cycle times for each
operation in the default and libdrag case we found
that the total cycle time for an escorted add or subtract is
approximately equal to the sum of the cycle counts for a
subnormal,subnormal operation and the test case. Thus,
we believe that the AMD Phenom II X2 550 is perform-
ing each operation sequentially and with the same hard-
ware or microcode as scalar operations for addition and
subtraction.

7.3 Escort compiled toy programs

For end-to-end tests we wrote toy programs that perform
a specified floating point operation an arbitrary number
of times, and compiled them under Escort and gcc. We
then use the Linux time utility to measure runtimes of
the entire program. We designed the test setup such that
each run of the test program performed the same value
parsing and setup steps regardless of the test values, with
only the values entering the computation differing be-
tween runs. We ran the target computation 160,000,000
times per execution, and ran each test 10 times. We see
the same effects as in our microbenchmarks. Figure 15

shows the crosstable for these results. Note that cells are
colorized if they differ by 2% rather than 1 cycle.

7.4 libdrag modified Firefox
We modified a build of Firefox 25 in consultation
with Rane et al [15] to match the version they tested.
Since multiply no longer shows any timing variation
in libdrag we are restricted to observing a potential
≤ 2% difference in only the divide, which occurs once
per pixel regardless of the kernel. Additionally, since the
denominator is the portion controlled by the attacker and
the secret value is the numerator, we are not able to up-
date the pixel stealing attack for the modified Firefox 25.

The modifications to Firefox 25 were confined to hand
made changes to the feConvolveMatrix implemen-
tation targeted in [2]. We did not test other SVG filters
for vulnerability under the Escort/libdrag modifica-
tions.

Given the observed timing variations in the AMD Phe-
nom II X2 550 in section 7.2.2 we believe that multiple
SVG filters would be timing side channel vulnerable un-
der Escort on that CPU.

7.5 Escort summary
Unfortunately our benchmarks consistently demon-
strated a small but detectable timing difference for
libdrag’s vector operations based on operand values.
For our test Intel CPUs it appears that div and mul
exhibit timing differences under Escort. For our AMD
CPUs we observed variation only for add/sub. Addi-
tionally, these differences are no more than 5% as com-
pared to the 500% or more differences observed in scalar
operations. We have made Rane, Lin and Tiwari aware
of these findings.

The ’escort’ mechanism can only serve as an effective
defense if vector operations are computed in parallel. In
all CPUs we tested the most likely explanation for the
observed timing difference is that vector operations are
executed serially when in microcode. As mentioned in
section 7.2.1 we know that any vector operation includ-
ing a subnormal argument is executed in microcode, and
all evidence supports the microcode executing vector op-
erations serially. Thus, absent substantial architectural
changes, we do not believe that the ’escort’ vector mech-
anism can close all floating point data timing channels.

8 GPU floating point performanace
In this section we discuss the results of GPU floating
point benchmarks, and the use of GPU acceleration in
SVG filters for Google Chrome.

8.1 Browser GPU support
All major browsers make use of GPU hardware accel-
eration to improve performance for various applications.
However, only two currently make use of GPUs for SVG
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Dividend
Divisor

0.0 1.0 1e10 1e+30 1e-30 1e-41 1e-42 256 257

Cycle count
0.0 5.17 5.85 5.85 5.85 5.85 5.89 5.89 5.85 5.85
1.0 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59

1e10 6.19 2.59 2.59 2.59 5.96 8.64 8.64 2.59 2.59
1e+30 6.19 2.59 2.59 2.59 5.96 8.64 8.64 2.59 2.59
1e-30 6.19 2.59 7.82 6.51 2.59 8.40 8.40 2.59 2.59
1e-41 6.19 10.21 8.92 8.92 8.13 8.41 8.41 10.23 10.23
1e-42 6.19 10.21 8.92 8.92 8.13 8.41 8.41 10.23 10.23
256 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59
257 6.19 2.59 2.59 2.59 2.59 8.64 8.64 2.59 2.59

Figure 16: Division timing for single precision floats on Nvidia GeForce GT 430

and CSS transforms; Safari and Chrome. Currently, Sa-
fari only supports a subset of CSS transformations on the
GPU, and none of the SVG transforms. Chrome supports
a subset of the CSS and SVG filters on the GPU. Firefox
intends to port filters to the GPU, but there is currently
no support.

8.2 Performance

We performed a series of CUDA benchmarks on an
Nvidia GeForce GT 430 to determine the impact of sub-
normal values on computation time. The results for divi-
sion are shown in figure 16. All other results (add, sub,
mul) were constant time regardless of the inputs..

As figure 16 shows, subnormals induce significant
slowdowns on divsion operations for single precision
floats. Unfortunately, no SVG filters implemented in
Chrome on the GPU perform tight division loops. Thus,
extracting timing differences from the occational divi-
sion they do perform is extremely difficult.

If a filter were found to perform tight division loops, or
a GPU that has timing variation on non-division opera-
tions were found, the same attacks as in previous sections
could be ported to the GPU accelerated filters.

We believe that even without a specific attack, the
demonstration of timing variation based on operand val-
ues in GPUs should invalidate “move to the GPU” as a
defensive strategy.

9 Related work
Felten and Schneider were the first to mount timing side-
channel attacks against browsers. They observed that re-
sources already present in the browser’s cache are loaded
faster than ones that must be requested from a server,
and that this can be used by malicious JavaScript to learn
what pages a user has visited [6]. Felten and Schneider’s
history sniffing attack was later refined by Zalewski [18].
Because many sites load resources specific to a user’s ap-

proximate geographic location, cache timing can reveal
the user’s location, as shown by Jia et al. [10].

JavaScript can also ask the browser to make a cross-
origin request and then learn (via callback) how long the
response took to arrive and be processed. Timing chan-
nels can be introduced by the code that runs on the server
to generate the response; by the time it takes the response
to be transmitted over the network, which will depend on
how many bytes it contains; or by the browser code that
attempts to parse the response. These cross-site timing
attacks were introduced by Bortz, Boneh, and Nandy [3],
who showed they could be used to learn the number of
items in a user’s shopping cart. Evans [5] and, later, Gel-
ernter and Herzberg [7], showed they could be used to
confirm the presence of a specific string in a user’s search
history or webmail mailbox. Van Goethem, Joosen, and
Nikiforakis [17] observed that callbacks introduced to
support HTML5 features allow attackers to time individ-
ual stages in the browser’s response-processing pipeline,
thereby learning response size more reliably than with
previous approaches.

The interaction of new browser features — TypedAr-
rays, which translate JavaScript variable references to
memory accesses more predictably, and nanosecond-
resolution clocks — allow attackers to learn whether spe-
cific lines have been evicted from the processor’s last-
level cache. Yossi Oren first showed that such mi-
croarchitectural timing channels can be mounted from
JavaScript [14], and used them to learn gross system ac-
tivity. Recently, Gras et al. [8] extended Oren’s tech-
niques to learn where pages are mapped in the browser’s
virtual memory, defeating address-space layout random-
ization. In response, browsers rounded down the clocks
provided to JavaScript to 5 µs granularity. Kohlbren-
ner and Shacham [12] proposed a browser architecture
that degrades the clocks available to JavaScript in a more
principled way, drawing on ideas from the “fuzzy time”
mitigation [9] in the VAX VMM Security Kernel [11].
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Browsers allow Web pages to apply SVG filters to
elements including cross-origin iframes. If filter pro-
cessing time varies with the underlying pixel values,
those pixel values will leak. Paul Stone [16] and, in-
dependently, Kotcher et al. [13], showed that such pixel-
stealing attacks are feasible; the filters they exploited had
pixel-dependent branches. Andrysco et al. [2] showed
that pixel-stealing was feasible even when the filter exe-
cuted the same instruction trace regardless of pixel val-
ues, provided those instructions exhibit data-dependent
timing behavior, as floating-point instructions do. Rane,
Lin, and Tiwari [15] proposed program transformation
that allow the processor floating-point unit to be used
while eliminating data-dependent instruction timing, in
the hope of defeating Andrysco et al.’s attacks.

10 Conclusions and future work
We have extensively benchmarked floating point perfor-
mance on a range of CPUs under scalar operations, FTZ/-
DAZ FPU flags, -ffast-math compiler options, and
Rane, Lin, and Tiwari’s Escort. We identified operand-
dependent timing differences on all tested platforms and
in all configurations; many of the timing differences we
identified were overlooked in previous work.

In the case of Escort, our data strongly suggests that
processors execute SIMD operations on subnormal val-
ues sequentially, not in parallel. If this is true, a redesign
of the vector processing unit would be required to make
Escort effective at closing all floating-point timing chan-
nels.

We have revisited browser implementations of SVG
filters, and found (and responsibly disclosed) exploitable
timing variations in the latest versions of Chrome, Fire-
fox, and Safari.

Finally, we have shown that modern GPUs exhibit
slowdowns in processing subnormal values, meaning
that the problem extends beyond x86 processors. We
are currently evaluating whether these slowdowns al-
low pixel stealing using SVG filters implemented on the
GPU.

We have uncovered enough variation in timing across
Intel and AMD microarchitectural revisions that we be-
lieve that comprehensive measurement on many differ-
ent processor families — in particular, ARM — will be
valuable. For the specific processors we studied, we be-
lieve we are in a position to identify specific flags, spe-
cific operations, and specific operand sizes that run in
constant time. Perhaps the best one can hope for is an
architecture-aware library that could ensure no timing
variable floating point operations occur while preserving
as much of the IEEE-754 standard as possible.

Tools, proof-of-concept attacks, and additional bench-
mark data are available at https://cseweb.ucsd.e
du/~dkohlbre/floats.

We close with broader lessons from our work.

For software developers: We believe that floating
point operations as implemented by CPUs today are sim-
ply too unpredictable to be used in a timing-security sen-
sitive context. Only defensive measures that completely
remove either SSE floating point operations (fixed-point
implementations) or remove the sensitive nature of the
computation are completely effective. Software that op-
erates on sensitive, non-integer values should use fixed-
point math, for example by including Andrysco et al.’s
libfixedtimefixedpoint, which Almeida et al.
recently proved runs in constant time [1].

For browser vendors: Some browser vendors have
expended substantial effort in redesigning their SVG fil-
ter code in the wake of the Andrysco et al. attacks. Even
so, we were able to find (different) exploitable floating-
point timing differences in Chrome, Firefox, and Safari.
We believe that the attack surface is simply too large; as
new filters and features are added additional timing chan-
nels will inevitably open. We recommend that browser
vendors disallow cross-origin SVG filters and other com-
putation over cross-origin pixel data in the absence of
Cross-Origin Resource Sharing (CORS) authorization.

It is important that browser vendors also consider
patching individual timing side channels in SVG filters
as they are found. Even with a origin policy that blocks
the cross-origin pixel stealing, any timing side channel
allows an attacking page to run a history sniffing at-
tack. Thus, a comprehensive approach to SVG filters as a
threat to user privacy combines disallowing cross-origin
SVG filters and removes timing channels with constant
time coding techniques.

For processor vendors: Processor vendors have re-
sisted calls to document which of their instructions run
in constant time regardless of operands, even for opera-
tions as basic as integer multiplication. It is possible that
floating point instructions are unusual not because they
exhibit timing variation but because their operands have
meaningful algebraic structure, allowing intelligent ex-
ploration of the search space for timing variations; even
so, we identified timing variations that Andrysco et al.
overlooked. How much code that is conjectured to be
constant-time is in fact unsafe? Processor vendors should
document possible timing variations in at least those in-
structions commonly used in crypto software.
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Abstract

Side-channel attacks are a serious threat to security-
critical software. To mitigate remote timing and cache-
timing attacks, many ubiquitous cryptography software
libraries feature constant-time implementations of cryp-
tographic primitives. In this work, we disclose a vulner-
ability in OpenSSL 1.0.1u that recovers ECDSA private
keys for the standardized elliptic curve P-256 despite the
library featuring both constant-time curve operations and
modular inversion with microarchitecture attack mitiga-
tions. Exploiting this defect, we target the errant mod-
ular inversion code path with a cache-timing and im-
proved performance degradation attack, recovering the
inversion state sequence. We propose a new approach
of extracting a variable number of nonce bits from these
sequences, and improve upon the best theoretical result
to recover private keys in a lattice attack with as few as
50 signatures and corresponding traces. As far as we are
aware, this is the first timing attack against OpenSSL EC-
DSA that does not target scalar multiplication, the first
side-channel attack on cryptosystems leveraging P-256
constant-time scalar multiplication and furthermore, we
extend our attack to TLS and SSH protocols, both linked
to OpenSSL for P-256 ECDSA signing.

Keywords: applied cryptography; elliptic curve cryp-
tography; digital signatures; side-channel analysis; tim-
ing attacks; cache-timing attacks; performance degrada-
tion; ECDSA; modular inversion; binary extended Eu-
clidean algorithm; lattice attacks; constant-time soft-
ware; OpenSSL; NIST P-256; CVE-2016-7056

1 Introduction

Being a widely-deployed open-source cryptographic li-
brary, OpenSSL is a popular target for different cryptan-
alytic attacks, including side-channel attacks that target
cryptosystem implementation weaknesses that can leak

critical algorithm state. As a software library, Open-
SSL provides not only TLS functionality but also cryp-
tographic functionality for applications such as SSH,
IPSec, and VPNs.

Due to its ubiquitous usage, OpenSSL contains ar-
guably one of the most popular software implemen-
tations of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA). OpenSSL’s scalar multiplication algo-
rithm was shown vulnerable to cache-timing attacks in
2009 [6], and attacks continue on the same code path to
this date [2, 4, 10, 27]. Recognizing and responding to
the threat cache-timing attacks pose to cryptosystem im-
plementations, OpenSSL mainlined constant-time scalar
multiplication for several popular standardized curves al-
ready in 2011 [16].

In this work, we disclose a software defect in the
OpenSSL (1.0.1 branch) ECDSA implementation that al-
lows us to design and implement a side-channel cache-
timing attack to recover private keys. Different from
previous work, our attack focuses on the modular inver-
sion operation instead of the typical scalar multiplication,
thus allowing us to target the standardized elliptic curve
P-256, circumventing its constant-time scalar multiplica-
tion implementation. The root cause of the defect is fail-
ure to set a flag in ECDSA signing nonces that indicates
only constant-time code paths should be followed.

We leverage the state-of-the-art FLUSH+RE-
LOAD [28] technique to perform our cache-timing
attack. We adapt the technique to OpenSSL’s implemen-
tation of ECDSA and the Binary Extended Euclidean
Algorithm (BEEA). Our spy program probes relevant
memory addresses to create a timing signal trace, then
the signal is processed and converted into a sequence of
right-shift and subtraction (LS) operations correspond-
ing to the BEEA execution state from which we extract
bits of information to create a lattice problem. The
solution to the lattice problem yields the ECDSA secret
key.

We discover that observing as few as 5 operations
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from the LS sequence allows us to use every single cap-
tured trace for our attack. This significantly reduces both
the required amount of signatures and side-channel data
compared to previous work [8], and maintains a good
signature to lattice dimension ratio.

We build upon the performance degradation technique
of Allan et al. [2] to efficiently find the memory addresses
with the highest impact to the cache during the degrading
attack. This new approach allows us to accurately find
the best candidate memory addresses to slow the mod-
ular inversion by an average factor of 18, giving a high
resolution trace and allowing us to extract the needed bits
of information from all of the traces.

Unlike previous works targeting the wNAF scalar
multiplication code path (for curves such as BitCoin’s
secp256k1) or performing theoretical side-channel anal-
ysis of the BEEA, we are the first to demonstrate a practi-
cal cache-timing attack against the BEEA modular inver-
sion, and furthermore OpenSSL’s ECDSA signing im-
plementation with constant-time P-256 scalar multipli-
cation.

Our contributions in this work include the following:

• We identify a bug in OpenSSL that allows a
cache-timing attack on ECDSA signatures, despite
constant-time P-256 scalar multiplication. (Sec-
tion 3)

• We describe a new quantitative approach that ac-
curately identifies the most accessed victim mem-
ory addresses w.r.t. data caching, then we use them
for an improved performance degradation attack in
combination with the FLUSH+RELOAD technique.
(Section 4.3)

• We describe how to combine the FLUSH+RELOAD
technique with the improved performance degrada-
tion attack to recover side-channel traces and algo-
rithm state from the BEEA execution. (Section 4)

• We present an alternate approach to recovering
nonce bits from the LS sequences, focused on min-
imizing required side-channel information. Using
this approach, we recover bits of information from
every trace, allowing us to use every signature query
to construct and solve a lattice problem, revealing
the secret key with as few as 50 signatures and cor-
responding traces. (Section 4.4)

• We perform a key-recovery cache-timing attack on
the TLS and SSH protocols utilizing OpenSSL for
ECDSA functionality. (Section 5)

2 Background

2.1 Elliptic Curve Cryptography
ECC. Developed in the mid 1980’s, elliptic curves were
introduced to cryptography by Miller [20] and Koblitz

[17] independently. Elliptic Curve Cryptography (ECC)
became popular mainly for two important reasons: no
sub-exponential time algorithm to solve the elliptic curve
discrete logarithm problem is known for well-chosen pa-
rameters and it operates in the group of points on an el-
liptic curve, compared to the classic multiplicative group
of a finite field, thus allowing the use of smaller param-
eters to achieve the same security levels—consequently
smaller keys and signatures.

Although there are more general forms of elliptic
curves, for the purposes of this paper we restrict to short
Weierstrass curves over prime fields. With prime p > 3,
all of the x,y ∈ GF(p) solutions to the equation

E : y2 = x3 +ax+b

along with an identity element form an abelian group.
Due to their performance characteristics, the parameters
of interest are the NIST standard curves that set a = −3
and p a Mersenne-like prime.
ECDSA. Throughout this paper, we use the following
notation for the Elliptic Curve Digital Signature Algo-
rithm (ECDSA).
Parameters: A generator G∈E of an elliptic curve group
of prime order n and an approved hash function h (e.g.
SHA-1, SHA-256, SHA-512).
Private-Public key pairs: The private key α is an integer
uniformly chosen from {1 . .n−1} and the corresponding
public key D = [α]G where [i]G denotes scalar-by-point
multiplication using additive group notation. Calculat-
ing the private key given the public key requires solving
the elliptic curve discrete logarithm problem and for cor-
rectly chosen parameters, this is an intractable problem.
Signing: A given party, Alice, wants to send a signed
message m to Bob. Using her private-public key pair
(αA,DA), Alice performs the following steps:

1. Select uniformly at random a secret nonce k such
that 0 < k < n.

2. Compute r = ([k]G)x mod n.
3. Compute s = k−1(h(m)+αAr) mod n.
4. Alice sends (m,r,s) to Bob.

Verifying: Bob wants to be sure the message he re-
ceived comes from Alice—a valid ECDSA signature
gives strong evidence of authenticity. Bob performs the
following steps to verify the signature:

1. Reject the signature if it does not satisfy 0 < r < n
and 0 < s < n.

2. Compute w = s−1 mod n and h(m).
3. Compute u1 = h(m)w mod n and u2 = rw mod n.
4. Compute (x,y) = [u1]G+[u2]DA.
5. Accept the signature if and only if x = r mod n

holds.
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2.2 Side-Channel Attacks

Thanks to the adoption of ECC and the increasing use of
digital signatures, ECDSA has become a popular algo-
rithm choice for digital signatures. ECDSA’s popularity
makes it a good target for side-channel attacks.

At a high level, an established methodology for EC-
DSA is to query multiple signatures, then partially re-
cover nonces ki from the side-channel, leading to a bound
on the value αti − ui that is shorter than the interval
{1 . .n−1} for some known integers ti and ui. This leads
to a version of the Hidden Number Problem (HNP) [5]:
recover α given many (ti,ui) pairs. The HNP instances
are then reduced to Closest Vector Problem (CVP) in-
stances, solved with lattice methods.

Over the past decade, several authors have described
practical side-channel attacks on ECDSA that exploit
partial nonce disclosure by different microprocessor fea-
tures to recover long-term private keys.

Brumley and Hakala [6] describe the first practical
side-channel attack against OpenSSL’s ECDSA imple-
mentation. They use the EVICT+RELOAD strategy and
an L1 data cache-timing attack to recover the LSBs of
ECDSA nonces from the library’s wNAF (a popular low-
weight signed-digit representation) scalar multiplication
implementation in OpenSSL 0.9.8k. After collecting
2,600 signatures (8K with noise) from the dgst com-
mand line tool and using the Howgrave-Graham and
Smart [15] lattice attack, the authors recover a 160-bit
ECDSA private key from standardized curve secp160r1.

Brumley and Tuveri [7] attack ECDSA with binary
curves in OpenSSL 0.9.8o. Mounting a remote timing at-
tack, the authors show the library’s Montgomery Ladder
scalar multiplication implementation leaks timing infor-
mation on the MSBs of the nonce used and after collect-
ing that information over 8,000 TLS handshakes a 162-
bit NIST B-163 private key can be recovered with lattice
methods.

Benger et al. [4] target OpenSSL’s wNAF implemen-
tation and 256-bit private keys for the standardized GLV
curve [11] secp256k1 used in the BitCoin protocol. Us-
ing as few as 200 ECDSA signatures and the FLUSH+
RELOAD technique [28], the authors find some LSBs of
the nonces and extend the lattice technique of [21, 22] to
use a varying amount of leaked bits rather than limiting
to a fixed number.

van de Pol et al. [27] attack OpenSSL’s 1.0.1e wNAF
implementation for the curve secp256k1. Leveraging the
structure of the modulus n, the authors use more infor-
mation leaked in consecutive sequences of bits anywhere
in the top half of the nonces, allowing them to recover
the secret key after observing as few as 25 ECDSA sig-
natures.

Allan et al. [2] improve on previous results by using

a performance-degradation attack to amplify the side-
channel. This amplification allows them to additionally
observe the sign bit of digits in the wNAF representa-
tion used in OpenSSL 1.0.2a and to recover secp256k1
private keys after observing only 6 signatures.

Fan et al. [10] increase the information extracted from
each signature by analyzing the wNAF implementation
in OpenSSL. Using the curve secp256k1 as a target, they
perform a successful attack after observing as few as 4
signatures.

Our work differs from previous ECDSA side-channel
attacks in two important ways. (1) We focus on NIST
standard curve P-256, featured in ubiquitous security
standards such as TLS and SSH. Later in Section 2.5,
we explain the reason previous works were unable to tar-
get this extremely relevant curve. (2) We do not target
the scalar-by-point multiplication operation (i.e. the bot-
tleneck of the signing algorithm), but instead Step 3 of
the signing algorithm, the modular inversion operation.

2.3 The FLUSH+RELOAD Attack
The FLUSH+RELOAD technique is a cache-based side-
channel attack technique targeting the Last-Level Cache
(LLC) and used during our attack. FLUSH+RELOAD is
a high resolution, high accuracy and high signal-to-noise
ratio technique that positively identifies accesses to spe-
cific memory lines. It relies on cache sharing between
processes, typically achieved through the use of shared
libraries or page de-duplication.

Input: Memory Address addr.
Result: True if the victim accessed the address.

begin
flush(addr)
Wait for the victim.
time← current time()

tmp← read(addr)
readTime← current time() - time
return readTime < threshold

Figure 1: FLUSH+RELOAD Attack

A round of attack, depicted in Figure 1, consists of
three phases: (1) The attacker evicts the target memory
line from the cache. (2) The attacker waits some time
so the victim has an opportunity to access the memory
line. (3) The attacker measures the time it takes to reload
the memory line. The latency measured in the last step
tells whether or not the memory line was accessed by the
victim during the second step of the attack, i.e. identifies
cache-hits and cache-misses.

The FLUSH+RELOAD attack technique tries to
achieve the best resolution possible while keeping the
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error rate low. Typically, an attacker encounters multi-
ple challenges due to several processor optimizations and
different architectures. See [2, 24, 28] for discussions of
these challenges.

2.4 Binary Extended Euclidean Algorithm
The modular inversion operation is one of the most ba-
sic and essential operations required in public key cryp-
tography. Its correct implementation and constant-time
execution has been a recurrent topic of research [1, 3, 8].

A well known algorithm used for modular inversion
is the Euclidean Extended Algorithm and in practice
is often substituted by a variant called the Binary Ex-
tended Euclidean Algorithm (BEEA) [18, Chap. 14.4.3].
This variant replaces costly division operations by simple
right-shift operations, thus, achieving performance ben-
efits over the regular version of the algorithm. BEEA is
particularly efficient for very long integers—e.g. RSA,
DSA, and ECDSA operands.

Input: Integers k and p such that gcd(k, p) = 1.
Output: k−1 mod p.
v← p, u← k, X ← 1, Y ← 0
while u 6= 0 do

while even(u) do
u← u/2 /* u loop */

if odd(X) then X ← X + p
X ← X/2

while even(v) do
v← v/2 /* v loop */

if odd(Y ) then Y ← Y + p
Y ← Y/2

if u≥ v then
u← u− v
X ← X−Y

else
v← v−u
Y ← Y −X

return Y mod p

Figure 2: Binary Extended Euclidean Algorithm.

Figure 2 shows the BEEA. Note that in each iteration
only one u or v while-loop is executed, but not both. Ad-
ditionally, in the very first iteration only the u while-loop
can be executed since v is a copy of p which is a large
prime integer n for ECDSA.

In 2007, independent research done by Aciiçmez et al.
[1], Aravamuthan and Thumparthy [3] demonstrated
side-channel attacks against the BEEA. Aravamuthan
and Thumparthy [3] attacked BEEA using Power Anal-
ysis attacks, whereas Aciiçmez et al. [1] attacked BEEA

through Simple Branch Prediction Analysis (SBPA),
demonstrating the fragility of this algorithm against side-
channel attacks.

Both previous works reach the conclusion that in order
to reveal the value of the nonce k, it is necessary to iden-
tify four critical input-dependent branches leaking infor-
mation, namely:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number and order of subtractions u := u− v.
4. Number and order of subtractions v := v−u.

Moreover, both works present a BEEA reconstruction
algorithm that allows them to fully recover the nonce
k—and therefore the secret signing key—given a per-
fect side-channel trace that distinguish the four critical
branches.

Aravamuthan and Thumparthy [3] argue that a coun-
termeasure to secure BEEA against side-channel attacks
is to render u and v subtraction branches indistinguish-
able, thus the attack is computationally expensive to
carry out. As a response, Cabrera Aldaya et al. [8]
demonstrated a Simple Power Analysis (SPA) attack
against a custom implementation of the BEEA. The au-
thors’ main contribution consists of demonstrating it is
possible to partially determine the order of subtractions
on branches u and v only by knowing the number of
right-shift operations performed in every while-loop it-
eration. Under a perfect SPA trace, the authors use an
algebraic algorithm to determine a short execution se-
quence of u and v subtraction branches.

They manage to recover various bits of information
for several ECDSA key sizes. The authors are able to
recover information only from some but not all of their
SPA traces by using their algorithm and the partial infor-
mation about right-shift and subtraction operations. Fi-
nally, using a lattice attack they recover the secret signing
key.

As can be seen from the previous works, depending on
the identifiable branches in the trace and quality of the
trace it is possible to recover full or partial information
about the nonce k. Unfortunately, the information leaked
by most of the real world side-channels does not allow
us to differentiate between subtraction branches u and v,
therefore limiting the leaked information to three input-
dependent branches:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number of subtractions.

2.5 OpenSSL History
OpenSSL has a rich and storied history as a prime se-
curity attack target [19], a distinction ascribed to the li-
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brary’s ubiquitous real world application. One of the
main contributions of our work is identifying a new
OpenSSL vulnerability described later in Section 3. To
understand the nature of this vulnerability and facili-
tate root cause analysis, in this section we give a brief
overview of side-channel defenses in the OpenSSL li-
brary, along with some context and insight into what
prompted these code changes. Table 1 summarizes the
discussion.
0.9.7. Side-channel considerations started to induce code
changes in OpenSSL starting with the 0.9.7 branch. The
RSA cache-timing attack by Percival [23] recovered se-
cret exponent bits used as lookup table indices in slid-
ing window exponentiation using an EVICT+RELOAD
strategy on HyperThreading architectures. His work
prompted introduction of the BN FLG CONSTTIME flag,
with the intention of allowing special security treatment
of BIGNUMs having said flag set. At the time—and ar-
guably still—the most important use case of the flag is
modular exponentiation. Introduced alongside the flag,
the BN mod exp mont consttime function is a fixed-
window modular exponentiation algorithm featuring data
cache-timing countermeasures. Recent research brings
the security of this solution into question [29].
0.9.8. The work by Aciiçmez et al. [1] targeting BEEA
prompted the introduction of the BN mod inverse no -

branch function, an implementation with more favor-
able side-channel properties than that of BEEA. The
implementation computes modular inversions in a way
that resembles the classical extended Euclidean algo-
rithm, calculating quotients and remainders in each step
by calling BN div updated to respect the BN FLG CON-

STTIME flag. Tracking callers to BN mod inverse, the
commit1 enables the BN FLG CONSTTIME across several
cryptosystems where the modular inversion inputs were
deemed security critical, notably the published attack tar-
geting RSA.
1.0.1. Based on the work by Käsper [16], the 1.0.1
branch introduced constant-time scalar multiplication
implementations for several popular elliptic curves. This
code change was arguably motivated by the data cache-
timing attack of Brumley and Hakala [6] against Open-
SSL that recovered digits of many ECDSA nonces dur-
ing scalar multiplication on HyperThreading architec-
tures using the EVICT+RELOAD strategy. This informa-
tion was then used to construct a lattice problem and cal-
culate ECDSA private keys. The commit2 included sev-
eral new EC METHOD implementations, of which arguably
EC GFp nistp256 method has the most real world ap-
plication to date. This new scalar multiplication imple-

1https://github.com/openssl/openssl/commit/

bd31fb21454609b125ade1ad569ebcc2a2b9b73c
2https://github.com/openssl/openssl/commit/

3e00b4c9db42818c621f609e70569c7d9ae85717

Table 1: OpenSSL side-channel defenses across ver-
sions. Although BN mod exp mont consttime was in-
troduced in the 0.9.7 branch, here we are referring to its
use for modular inversion via FLT.

OpenSSL version 0.9.6 0.9.7 0.9.8 1.0.0 1.0.1 1.0.2
BN mod inverse X X X X X X
BN FLG CONSTTIME — X X X X X
BN mod inverse no branch — — X X X X
ec nistp 64 gcc 128 — — — — X X
BN mod exp mont consttime — — — — — X
EC GFp nistz256 method — — — — — X

mentation uses fixed-window combing combined with
secure table lookups via software multiplexing (mask-
ing), and is enabled with the ec nistp 64 gcc 128 op-
tion at build time. For example, Debian 8.0 “Jessie” (cur-
rent LTS, not EOL) and 7.0 “Wheezy” (previous LTS,
not EOL) and Ubuntu 14.04 “Trusty” (previous LTS, not
EOL) enable said option when possible for their Open-
SSL 1.0.1 package builds. From the side-channel attack
perspective, we note that this change is the reason aca-
demic research (see Section 2.2) shifted to the secp256k1
curve—NIST P-256 no longer takes the generic wNAF
scalar multiplication code path like secp256k1.
1.0.2. Motivated by performance and the potential to
utilize Intel AVX extensions, a contribution by Gueron
and Krasnov [14] included fast and secure curve P-
256 operations with their custom EC GFp nistz256 -

method. Here we focus on a cherry picked commit3

that affected the ECDSA sign code path for all elliptic
curves. While speed motivated the contribution, Möller
observes4: “It seems that the BN MONT CTX-related code
(used in crypto/ecdsa for constant-time signing) is en-
tirely independent of the remainder of the patch, and
should be considered separately.” Gueron confirms:
“The optimization made for the computation of the mod-
ular inverse in the ECDSA sign, is using const-time mod-
exp. Indeed, this is independent of the rest of the patch,
and it can be used independently (for other usages of
the library). We included this addition in the patch for
the particular usage in ECDSA.” Hence following this
code change, ECDSA signing for all curves now com-
pute modular inversion via BN mod exp mont const-

time and Fermat’s Little Theorem (FLT).

3 A New Vulnerability

From Table 1, starting with 1.0.1 the reasonable expec-
tation is that cryptosystems utilizing P-256 resist timing
attacks, whether they be remote, data cache, instruction

3https://github.com/openssl/openssl/commit/

8aed2a7548362e88e84a7feb795a3a97e8395008
4https://rt.openssl.org/Ticket/Display.html?id=

3149&user=guest&pass=guest
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cache, or branch predictor timings. We focus here on
the combination of ECDSA and P-256 within the library.
The reason this is a reasonable expectation is that ec -

nistp 64 gcc 128 provides constant-time scalar multi-
plication to protect secret scalar nonces, and BN mod in-

verse no branch provides microarchitecture attack de-
fenses when inverting these nonces. For ECDSA, these
are the two most critical locations where the secret nonce
is an operand—to produce r and s, respectively.

The vulnerability we now disclose stems from the
changes introduced in the 0.9.8 branch. The BN mod -

inverse function was modified to first check the BN -

FLG CONSTTIME flag of the BIGNUM operands—if set,
the function then early exits to BN mod inverse no -

branch to protect the security-sensitive inputs. If the
flag is not set, i.e. inputs are not secret, the control flow
continues to the stock BEEA implementation.

Paired with this code change, the next task was
to identify callers to BN mod inverse within the li-
brary, and enable the BN FLG CONSTTIME flag for
BIGNUMs in cryptosystem implementations that are
security-sensitive. Our analysis suggests this was done
by searching the code base for uses of the BN FLG EXP -

CONSTTIME flag that was replaced with BN FLG CONST-

TIME as part of the changeset, given the evolution of
constant-time as concept within OpenSSL and no longer
limited to modular exponentiation. As a result, the code
changes permeated RSA, DSA, and Diffie-Hellman im-
plementations, but not ECC-based cryptosystems such as
ECDH and ECDSA.

This leaves a gap for 1.0.1 with respect to EC-
DSA. While ec nistp 64 gcc 128 provides constant-
time scalar multiplication to compute the r component
of P-256 ECDSA signatures, the s component will com-
pute modular inverses of security-critical nonces with
the stock BN mod inverse function, not taking the BN -

mod inverse no branch code path. In the end, the root
cause is that the ECDSA signing implementation does
not set the BN FLG CONSTTIME flag for nonces. Scalar
multiplication with ec nistp 64 gcc 128 is oblivious
to this flag and always treats single scalar inputs as
security-sensitive, yet BN mod inverse requires said
flag to take the new secure code path.

Figure 3 illustrates this vulnerability running in Open-
SSL 1.0.1u. The caller function ecdsa sign setup

contains the bulk of the ECDSA signing cryptosystem—
generating a nonce, computing the scalar multiple, in-
verting the nonce, computing r, and so on. When control
flow reaches callee BN mod inverse, inputs a and n are
the nonce and generator order, respectively. Stepping by
instruction, it shows that the call to BN mod inverse -

no branch never takes place, since the BN FLG CONST-

TIME flag is not set for either of these operands. Failing
this security critical branch, the control flow continues to

+--bn_gcd.c--------------------------------------------------------------------+

|226 BIGNUM *BN_mod_inverse(BIGNUM *in, |

|227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx) |

|228 { |

B+ |229 BIGNUM *A, *B, *X, *Y, *M, *D, *T, *R = NULL; |

|230 BIGNUM *ret = NULL; |

|231 int sign; |

|232 |

|233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0) |

>|234 || (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) { |

|235 return BN_mod_inverse_no_branch(in, a, n, ctx); |

|236 } |

+------------------------------------------------------------------------------+

|0x7ffff77da1c7 <BN_mod_inverse+56> mov -0x90(%rbp),%rax |

|0x7ffff77da1ce <BN_mod_inverse+63> mov 0x14(%rax),%eax |

|0x7ffff77da1d1 <BN_mod_inverse+66> and $0x4,%eax |

|0x7ffff77da1d4 <BN_mod_inverse+69> test %eax,%eax |

|0x7ffff77da1d6 <BN_mod_inverse+71> jne 0x7ffff77da1e9 <BN_mod_inverse+90> |

|0x7ffff77da1d8 <BN_mod_inverse+73> mov -0x98(%rbp),%rax |

|0x7ffff77da1df <BN_mod_inverse+80> mov 0x14(%rax),%eax |

|0x7ffff77da1e2 <BN_mod_inverse+83> and $0x4,%eax |

|0x7ffff77da1e5 <BN_mod_inverse+86> test %eax,%eax |

>|0x7ffff77da1e7 <BN_mod_inverse+88> je 0x7ffff77da212 <BN_mod_inverse+131> |

+------------------------------------------------------------------------------+

native process 3399 In: BN_mod_inverse L234 PC: 0x7ffff77da1e7

(gdb) run dgst -sha256 -sign prime256v1.pem -out lsb-release.sig /etc/lsb-release

Starting program: /usr/local/ssl/bin/openssl dgst -sha256 -sign prime256v1.pem ...

Breakpoint 1, BN_mod_inverse (...) at bn_gcd.c:229

(gdb) backtrace

#0 BN_mod_inverse (...) at bn_gcd.c:229

#1 0x00007ffff782aed9 in ecdsa_sign_setup (...) at ecs_ossl.c:182

#2 0x00007ffff782bc35 in ECDSA_sign_setup (...) at ecs_sign.c:105

#3 0x00007ffff782b29a in ecdsa_do_sign (...) at ecs_ossl.c:269

#4 0x00007ffff782bafd in ECDSA_do_sign_ex (...) at ecs_sign.c:74

#5 0x00007ffff782bb97 in ECDSA_sign_ex (...) at ecs_sign.c:89

#6 0x00007ffff782bb44 in ECDSA_sign (...) at ecs_sign.c:80 ...

(gdb) stepi

(gdb) macro expand BN_get_flags(a, BN_FLG_CONSTTIME)

expands to: ((a)->flags&(0x04))

(gdb) print BN_get_flags(a, BN_FLG_CONSTTIME)

$1 = 0

(gdb) print BN_get_flags(n, BN_FLG_CONSTTIME)

$2 = 0

Figure 3: Modular inversion within OpenSSL 1.0.1u
(built with ec nistp 64 gcc 128 enabled) for P-256
ECDSA signing. Operands a and n are the nonce and
generator order, respectively. The early exit to BN mod -

inverse no branch never takes place, since the caller
ecdsa sign setup fails to set the BN FLG CONSTTIME

flag on the operands. Control flow continues to the stock,
classical BEEA implementation.

the stock, classical BEEA implementation.

3.1 Forks
OpenSSL is not the only software library affected by this
vulnerability. Following HeartBleed, OpenBSD forked
OpenSSL to LibreSSL in July 2014, and Google forked
OpenSSL to BoringSSL in June 2014. We now discuss
this vulnerability within the context of these two forks.
LibreSSL. An 04 Nov 2016 commit5 cherry picked the
EC GFp nistz256 method for LibreSSL. Interestingly,
LibreSSL is the library most severely affected by this
vulnerability. The reason is they did not cherry pick
the BN mod exp mont consttime ECDSA nonce in-
version. That is, as of this writing (fixed during dis-
closure) the current LibreSSL master branch can fea-
ture constant-time P-256 scalar multiplication with ei-
ther EC GFp nistz256 method or EC GFp nistp256 -

method callees depending on compile-time options and
minor code changes, but inverts all ECDSA nonces with

5https://github.com/libressl-portable/openbsd/

commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
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the BN mod inverse callee that fails the same security
critical branch as OpenSSL, due to the caller ecdsa -

sign setup not setting the BN FLG CONSTTIME flag for
ECDSA signing nonces. We confirmed the vulnerability
using a LibreSSL build with debug symbols, checking
the inversion code path with a debugger.
BoringSSL. An 03 Nov 2015 commit6 picked up
the EC GFp nistz256 method implementation for Bor-
ingSSL. That commit also included the BN mod exp -

mont consttime ECDSA nonce inversion callee, which
OpenSSL cherry picked. The parent tree7 is slightly
older on the same day. Said tree features constant-
time P-256 scalar multiplication with callee EC GFp -

nistp256 method, but inverts ECDSA signing nonces
with callee BN mod inverse that fails the same security
critical branch, again due to the BN FLG CONSTTIME flag
not being set by the caller—i.e. it follows essentially the
same code path as OpenSSL. We verified the vulnerabil-
ity affects said tree using a debugger.

4 Exploiting the Vulnerability

Exploiting the vulnerability and performing our cache-
timing attack is a long and complex process, therefore
the analysis details are decomposed in several subsec-
tions. Section 4.1 discusses the hardware and software
setup used during our experimentation phase. Section 4.2
analyzes and describes the sources of leakage in Open-
SSL and the exploitation techniques. Section 4.3 and
Section 4.4 describe in detail our improvements on the
performance degradation technique and key recovery, re-
spectively. Figure 4 gives an overview of the attack sce-
nario followed during our experiments.

4.1 Attack Setup

Our attack setup consists of an Intel Core i5-2400 Sandy
Bridge 3.10GHz (32 nm) with 8GB of memory running
64-bit Ubuntu 16.04 LTS “Xenial”. Each CPU core has
an 8-way 32KB L1 data cache, an 8-way 32KB L1 in-
struction cache, an 8-way 256KB L2 unified cache, and
all the cores share a 12-way 6MB unified LLC (all with
64B cache lines). It does not feature HyperThreading.

We built OpenSSL 1.0.1u with debugging symbols
on the executable. Debugging symbols facilitate map-
ping source code to memory addresses, serving a dou-
ble purpose to us: (1) Improving our degrading attack
(see Section 4.3); (2) Probing the sequence of opera-
tions accurately. Note that debugging symbols are not

6https://boringssl.googlesource.com/boringssl/+/

18954938684e269ccd59152027d2244040e2b819%5E%21/
7https://boringssl.googlesource.com/boringssl/+/

27a0d086f7bbf7076270dbeee5e65552eb2eab3a

Figure 4: Simplified attack scenario depicting a victim,
a spy and two performance degradation processes each
running on a different core. OpenSSL is a shared library
and all the processes have a shared LLC.

loaded during run time, thus not affecting victim’s per-
formance. Attackers can map source code to memory
addresses by using reverse engineering techniques [9] if
debugging symbols are not available. We set enable-
ec nistp 64 gcc 128 and shared as configuration op-
tions at build time to ensure faster execution, constant-
time scalar multiplication and compile OpenSSL as a
shared object.

4.2 Source of Leakage

As seen in the Figure 3 backtrace, when performing an
ECDSA digital signature, OpenSSL calls ecdsa sign -

setup to prepare the required parameters and compute
most of the actual signature. The random nonce k is cre-
ated and to avoid possible timing attacks [7] an equiva-
lent fixed bit-length nonce is computed. The length of
the equivalent nonce k̂ is fixed to one bit more than that
of the group’s prime order n, thus the equivalent nonce
satisfies k̂ = k+ γ ·n where γ ∈ {1,2}.

Additionally, ecdsa sign setup computes the sig-
nature’s r using a scalar multiplication function pointer
wrapper (i.e. for P-256, traversing the constant-time code
path instead of generic wNAF) followed by the modular
inverse k−1, needed for the s component of the signa-
ture. To compute the inversion, it calls BN mod inverse,
where the BN FLG CONSTTIME flag is checked but due
to the vulnerability discussed in Section 3 the condition
fails, therefore proceeding to compute k−1 using the clas-
sical BEEA.

Note that before executing the BEEA, the equivalent
nonce k̂ is unpadded through a modular reduction oper-
ation, resulting in the original nonce k and voiding the
fixed bit-length countermeasure applied shortly before
by ecdsa sign setup.

The goal of our attack is to accurately trace and re-
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cover side-channel information leaked from the BEEA
execution, allowing us to construct the sequence of right-
shift and subtraction operations. To that end, we identify
the routines used in the BN mod inverse method leak-
ing side-channel information.

The BN mod inverse method operates with very
large integers, therefore it uses several specific routines
to perform basic operations with BIGNUMs. Addition
operations call the routine BN uadd, which is a wrapper
for bn add words—assembly code performing the ac-
tual addition. Two different routines are called to per-
form right-shift operations. The BN rshift1 routine
performs a single right-shift by one bit position, used on
X and Y in their respective loops. The BN rshift rou-
tine receives the number of bit positions to shift right as
an argument, used on u and v at the end of their respec-
tive loops. OpenSSL keeps a counter for the shift count,
and the loop conditions test u and v bit values at this off-
set. This is an optimization allowing u and v to be right-
shifted all at once in a single call instead of iteratively.
Additionally, subtraction is achieved through the use of
the BN usub routine, which is a pure C implementation.

Similar in spirit to previous works [4, 24, 27] that
instead target other functionality within OpenSSL, we
use the FLUSH+RELOAD technique to attack OpenSSL’s
BEEA implementation. As mentioned before in Sec-
tion 2.4, unfortunately the side-channel and the algo-
rithm implementation do not allow us to efficiently
probe and distinguish the four critical input-dependent
branches, therefore we are limited to knowing only the
execution of addition, right-shift and subtraction opera-
tions.

After identifying the input-dependent branches in
OpenSSL’s implementation of the BEEA, using the FLU-
SH+RELOAD technique we place probes in code routines
BN rshift1 and BN usub. These two routines provide
the best resolution and combination of probes, allowing
us to identify the critical input-dependent branches.

The modular inversion is an extremely fast operation
and only a small fraction of the entire digital signa-
ture. It is challenging to get good resolution and enough
granularity with the FLUSH+RELOAD technique due to
the speed of the technique itself, therefore, we apply a
variation of the performance degradation attack to slow
down the modular inversion operation by a factor of ~18.
(See Section 4.3.)

Maximizing performance degradation by identifying
the best candidate memory lines gives us the granularity
required for the attack. Combining the FLUSH+RELOAD
technique with a performance degradation attack allows
us to determine the number of right-shift operations exe-
cuted between subtraction calls by the BEEA. From the
trace, we reconstruct the sequence of right-shift and sub-
traction operations (LS sequence) executed by the BEEA.
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Figure 5: Raw traces for the beginning of two BEEA ex-
ecutions. The L probe tracks right-shift latencies and the
S probe tracks subtraction. Latency is in CPU clock cy-
cles. For visualization, focus on the amplitude valleys,
i.e. low latency. Top: LS sequence starting SLLLL cor-
responds to j = 5, `i = 4, ai = 1. Bottom: LS sequence
starting LSLLSLS corresponds to j = 7, `i = 5, ai = 10.
See Section 4.4 for notation.

As Figure 4 illustrates, our attack scenario exploits
three CPU cores by running a malicious process in every
core and the victim process in the fourth core. The at-
tack consists of a spy process probing the right-shift and
subtraction operations running in parallel with the vic-
tim application. Additionally, two degrading processes
slow down victim’s execution, allowing us to capture the
LS sequence almost perfectly. Unfortunately there is not
always a reliable indicator in the signal for transitions
from one right-shift operation to the next, therefore we
estimate the number of adjacent right-shift operations by
taking into account the latency and the horizontal dis-
tance between subtractions. Figure 5 contains sample
raw traces captured in our test environment.

Our spy process accurately captures all the subtrac-
tion operations but duplicates some right-shift opera-
tions, therefore we focus on the first part of the sequence
to recover a variable amount of bits of information from
every trace. (See Section 4.4.)

4.3 Improving Performance Degradation
Performance degradation attacks amplify side-channel
signals, improving the quality and the amount of in-
formation leaked. Our performance degradation attack
improves upon the work of Allan et al. [2]. In their
work, the authors first need to identify “hot” memory
addresses, i.e. memory addresses frequently accessed.
They suggest two approaches to find suitable memory
lines to degrade. The first approach is to read and under-
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stand the victim code in order to identify frequently ac-
cessed code sections such as tight loops. This approach
requires understanding the code, a task that might not al-
ways be possible, takes time and it is prone to errors [26],
therefore the authors propose another option.

The second and novel approach they propose is to au-
tomate code analysis by collecting code coverage infor-
mation using the gcov tool. The code coverage tool out-
puts accessed code lines and then using this information
it is possible for an attacker to locate the memory lines
corresponding to the code lines. Some caveats of this
approach are that source lines can be replicated due to
compiler optimizations, thus the gcov tool might misre-
port the number of memory accesses. Moreover, code
lines containing function calls can be twice as effective
compared to the gcov output. In addition to the caveats
mentioned previously, we note that the gcov profiling
tool adds instrumentation to the code. The instrumenta-
tion skews the performance of the program, therefore this
approach is suboptimal since it requires building the tar-
get code twice, one with instrumentation to identify code
lines and other only with debugging symbols to measure
the real performance.

Once the “hot” memory addresses are identified, the
next step is to evict them from the cache in a tight loop,
thus increasing the execution time of the process access-
ing those addresses. This technique allows to stealthily
degrade a process without alerting the victim, since the
increased execution time is not noticeable by a typical
user. Performance degradation attacks have been used
previously in conjunction with other side-channel attacks
(see e.g. [24]).

We note that it can be difficult and time consuming
to identify the “hot” memory addresses to degrade that
result in the best information leak. To that end, we fol-
low a similar but faster and more quantitative approach,
potentially more accurate since it leverages additional
metrics. Similar to [2] we test the efficiency of the at-
tack for several candidate memory lines. We compare
cache-misses between a regular modular inversion and
a degraded modular inversion execution, resulting in a
list of the “hottest” memory lines, building the code only
once with debugging symbols and using hardware regis-
ter counters.

The perf command in Linux offers access to per-
formance counters—CPU hardware registers counting
hardware events (e.g. CPU cycles, instructions executed,
cache-misses and branch mispredictions). We execute
calls to OpenSSL’s modular inverse operation, counting
the number of cache-misses during a regular execution of
the operation. Next, we degrade—by flushing in a loop
from the cache—one memory line at a time from the
caller BN mod inverse and callees BN rshift1, BN -

rshift, BN uadd, bn add words, BN usub.

The perf command output gives us the real count
of cache-misses during the regular execution of BN -

mod inverse, then under degradation of each candidate
memory line. This effectively identifies the “hottest” ad-
dresses during a modular inverse operation with respect
to both the cache and the actual malicious processes we
will use during the attack.

Table 2 summarizes the results over 1,000 iterations of
a regular modular inversion execution versus the degra-
dation of different candidate memory lines identified us-
ing our technique. The table shows cache-miss rates
ranging from ~35% (BN rshift and BN usub) to ~172%
(BN rshift1) for one degrading address. Degrading the
overall 6 “hottest” addresses accessed by the BN mod -

inverse function results in an impressive cache-miss
rate of ~1,146%.

Interestingly, the last column of Table 2 reveals the
real impact of cache-misses in the execution time of
the modular inversion operation. Despite the impres-
sive cache-miss rates, the clock cycle slow down is more
modest with a maximum slow down of ~18. These re-
sults suggest that in order to get a quality trace, the goal is
to achieve an increased rate of cache-misses rather than a
CPU clock cycle slow down because whereas the cache-
misses suggest a CPU clock cycle slow down, it is not
the case for the opposite direction.

The effectiveness of the attack varies for each use case
and for each routine called. Some of the routines iter-
ate over internal loops several times (e.g. BN rshift1)
whereas in some other routines, iteration over internal
loops happens few times (e.g. BN usub) or none at all.
Take for example previous “hot” addresses from Ta-
ble 2—degrading the most used address from each rou-
tine does not necessarily give the best result. Overall
“hottest” addresses in Table 2 shows the result of choos-
ing the best strategy for our use case, where the addresses
degraded in every routine varies from multiple addresses
per routine to no addresses at all.

For our use case, we observe the best results with 6
degrading addresses across two degrading processes ex-
ecuting in different CPU cores. Additional addresses do
not provide any additional slow down, instead they im-
pact negatively the FLUSH+RELOAD technique.

4.4 Improving Key Recovery

Arguably the most significant contribution of [8] is they
show the LS sequence is sufficient to extract a certain
number of LSBs from nonces, even when it is not known
whether branch u or v gets taken. They give an algebraic
method to recover these LSBs, and utilize these partial
nonce bits in a lattice attack, using the formalization in
[21, 22]. The disadvantage of that approach is that it fixes
the number of known LSBs (denoted `) per equation [8,
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Table 2: perf cache-misses and CPU clock cycle statis-
tics over 1,000 iterations for relevant routines called by
the BN mod inverse method.

Cache Clock CM CC
Target misses (CM) cycles (CC) CMBL CCBL
Baseline (BL) 13 211,324 1.0 1.0
BN rshift1 2,396 947,925 172.6 4.4
BN usub 489 364,399 35.2 1.7
BN mod inverse 956 540,357 68.9 2.5
BN uadd 855 485,088 61.6 2.2
bn add words 1,124 558,839 81.0 2.6
BN rshift 514 367,929 37.0 1.7
Previous “hot” 10,280 2,576,360 740.5 12.1
Overall “hottest” 15,910 3,817,748 1,146.2 18.0

Sec. 5]: “when a set of signatures are collected such that,
for each of them, [`] bits of the nonce are known, a set
of equations . . . can be obtained and the problem of find-
ing the private key can be reduced to an instance of the
[HNP].” Fixing ` impacts their results in two important
ways. First, since their lattice utilizes a fixed `, they fo-
cus on the ability to algebraically recover only a fixed
number of bits from the LS sequence. From [8, Tbl. 1],
our target implementation is similar to their “Standard-
M0” target, and they focus on ` ∈ {8,12,16,20}. For
example, to extract ` = 8 LSBs they need to query on
average 4 signatures, discarding all remaining signatures
that do not satisfy `≥ 8. Second, this directly influences
the number of signatures needed in the lattice phase.
From [8, Tbl. 2-3], for 256-bit n and ` = 8, they re-
quire 168 signatures. This is because they are discard-
ing three out of four signatures on average where ` < 8,
then go on to construct a d + 1-dimension lattice where
d = 168/4 = 42 from the signatures that meet the ` ≥ 8
restriction. The metric of interest from the attacker per-
spective is the number of required signatures.

In this section, we improve with respect to both
points—extracting a varying number of bits from every
nonce, subsequently allowing our lattice problem to uti-
lize every signature queried, resulting in a significantly
reduced number of required signatures.
Extracting nonce bits. Rather than focusing on the aver-
age number of required signatures as a function of a num-
ber of target LSBs, our approach is to examine the aver-
age number of bits extracted as a function of LS sequence
length. We empirically measured this quantity by gener-
ating βi uniformly at random from {1 . .n−1} for P-256
n, running the BEEA on βi and n to obtain the ground
truth LS sequence, and taking the first j operations from
this sequence. We then grouped the βi by these length- j
subsequence values, and finally determined the maximal
shared LSBs value of each group. Intuitively, this maps
any length- j subsequence to a known LSBs value. For
example, a sequence beginning LLS has j = 3, ` = 3,

a = 4 interpreted as a length-3 subsequence that leaks 3
LSBs with a value of 4.

We performed 226 trials (i.e. 1 ≤ i ≤ 226) for each
length 1 ≤ j ≤ 16 independently and Figure 6 contains
the results (see Table 6 in the appendix for the raw data).
Naturally as the length of the sequence grows, we are
able to extract more bits. But at the same time, in real-
ity for practical side-channels longer sequences are more
likely to contain trace errors (i.e. incorrectly inferred
LS sequences), ultimately leading to nonsensical lattice
problems for key recovery. So we are looking for the
right balance between these two factors. Figure 6 allows
us to draw several conclusions, including but not limited
to: (1) Sequences of length 5 or more allow us to ex-
tract a minimum of 3 nonce bits per signature; (2) Sim-
ilarly length 7 or more for a minimum of 4 nonce bits;
(3) The average number of bits extracted grows rapidly
at first, then the growth slows as the sequence length in-
creases. This observation pairs nicely with the nature
of side-channels: attempting to target longer sequences
(risking trace errors) only marginally increases the aver-
age number of bits extracted. From the lattice perspec-
tive, ` ≥ 3 is a practical requirement [21, Sec. 4.2] so
in that respect sequences of length 5 is the minimum to
guarantee that every signature can be used as an equation
for the lattice problem.

To summarize, the data used to produce Figure 6 al-
lows us to essentially build a dictionary that maps LS
sequences of a given length to an (`i,ai) pair, which we
now define and utilize.
Recovering private keys. We follow the formalization
of [21, 22] with the use of per-equation `i due to [4,
Sec. 4]. Extracted from our side-channel, we are left with
equations ki = 2`ibi +ai where `i and ai are known, and
since 0 < ki < n it follows that 0 ≤ bi ≤ n/2`i . Denote
bxcn modular reduction of x to the interval {0 . .n− 1}
and |x|n to the interval {−(n−1)/2 . .(n−1)/2}. Define
the following (attacker-known) values.

ti = bri/(2`isi)cn
ûi = b(ai−hi/si)/2`icn

It now follows that 0≤ bαti− ûicn < n/2`i . Setting

ui = ûi +n/2`i+1, we obtain

vi = |αti−ui|n ≤ n/2`i+1,

i.e. integers λi exist such that |αti− ui−λin| ≤ n/2`i+1

holds. The ui approximate αti since they are closer than
a uniformly random value from {1 . .n− 1}, leading to
an instance of the HNP [5]: recover α given many (ti,ui)
pairs.

Consider the rational d + 1-dimension lattice gener-
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Figure 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. Error bars are one standard deviation on each side.
See Table 6 in the appendix for the raw data.

ated by the rows of the following matrix.

B =



2`1+1n 0 . . . . . . 0

0 2`2+1n
. . .

...
...

...
. . . . . . 0

...
0 . . . 0 2`d+1n 0

2`1+1t1 . . . . . . 2`d+1td 1


Setting

~x = (λ1, . . . ,λd ,α)

~y = (2`1+1v1, . . . ,2`d+1vd ,α)

~u = (2`1+1u1, . . . ,2`d+1ud ,0)

establishes the relationship~xB−~u =~y. Solving the CVP
with inputs B and ~u yields ~x and hence α . We use the
embedding strategy [13, Sec. 3.4] to heuristically reduce
CVP approximations to Shortest Vector Problem (SVP)
approximations. Consider the rational d + 2-dimension
lattice generated by the rows of the following matrix.

B̂ =

[
B 0
~u n

]
There is a reasonable chance that lattice-reduced B̂ will
contain the short lattice basis vector (~x,−1)B̂ = (~y,−n),

revealing α . To extend the search space, we use the ran-
domization technique inspired by Gama et al. [12, Sec.
5], shuffling the order of ti and ui and multiplying by a
random sparse unimodular matrix between lattice reduc-
tions.
Empirical results. Table 3 contains our empirical re-
sults for various lattice parameters targeting P-256. As
part of our experiments, we were able to successfully
reproduce and verify the ` ∈ {8,12}, lgn ≈ 256 lattice
results of Cabrera Aldaya et al. [8] in our environment
for comparison. While the goal is to minimize the num-
ber of required signatures, this should be weighed with
observed HNP success probability, affecting search dura-
tion. From Figure 6 we focus on LS subsequence lengths
j ∈ {5,7} that yield `i nonce LSBs from ranges {3 . .5}
and {4 . .7}, respectively. Again this is in contrast to [8]
that fixes ` and discards signatures—this is the reason
their signature count is much higher than the d+2 lattice
dimension in their case, but equal in ours.

A relevant metric affecting success probability is the
total number of known nonce bits for each HNP instance.
Naturally as this sum approaches lgn one expects correct
solutions to start emerging. On the other hand, increas-
ing this sum demands querying more signatures, at the
same time increasing d and lattice methods become less
precise. For a given HNP instance, denote l =∑

d
i=1 `i, i.e.

the total number of known nonce bits over all the equa-
tions for the particular HNP instance. Table 3 denotes µl
the mean value of l over all successful HNP instances—
intuitively tracking how many known nonce bits needed
in total to reasonably expect success.

We ran 200 independent trials for each set of param-
eters on a computing cluster with Intel Xeon X5650
nodes. We allowed each trial to execute at most four
hours, and we say successful trials are those HNP in-
stances recovering the private key within this allotted
time. Our lattice implementation uses Sage software
with BKZ [25] reduction, block size 30.

To summarize, utilizing every signature in our HNP
instances leads to a significant improvement over previ-
ous work with respect to both the number of required
signatures and amount of side-channel data required.

5 Attacking Applications

OpenSSL is a shared library and therefore any vulnera-
bility present in it can potentially be exploited from any
application linked against it. This is the case for the
present work and to demonstrate the feasibility of our
attack in a concrete real-life scenario, we focus on two
applications implementing two ubiquitous security pro-
tocols: TLS within stunnel and SSH within OpenSSH.

OpenSSL provides ECDSA functionality for both ap-
plications and therefore we mount our attack against
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Table 3: P-256 ECDSA lattice attack improvements for
BEEA leakage. Empirical values are over 200 trials (4hr
max trial duration). Lattice dimension is d + 2. The
number of leaked LSBs per nonce is `. LS subsequence
length is j. The average total number of leaked nonce
bits per successful HNP instance is µl . CPU time is the
median.

Signa- Success CPU
Source tures d ` j µl Rate (%) Minutes
Prev. [8] 168 42 8 — 336.0 100.0 0.7
Prev. [8] 312 24 12 — 288.0 100.0 0.6
This work 50 50 {4 . .7} 7 249.7 14.0 79.5
This work 55 55 {4 . .7} 7 268.8 98.0 1.7
This work 60 60 {4 . .7} 7 293.4 100.0 0.7
This work 70 70 {3 . .5} 5 258.2 5.0 130.8
This work 80 80 {3 . .5} 5 286.1 94.5 13.2
This work 90 90 {3 . .5} 5 321.2 100.0 4.0

OpenSSL’s ECDSA running within them. More pre-
cisely, this section describes the tools and the setup fol-
lowed to successfully exploit the vulnerability within
these applications. In addition, we explain the relevant
messages collected for each application, later used for
private key recovery together with the trace data and the
signatures.

5.1 TLS

Stunnel8 is a popular portable open source software ap-
plication that forwards network connections from one
port to another and provides a TLS wrapper. Network ap-
plications that do not natively support TLS communica-
tion benefit from the use of stunnel. More precisely, stun-
nel can be used to provide a TLS connection between a
public port exposing a TLS-enabled network service and
a localhost port providing a non-TLS network service. It
links against OpenSSL to provide TLS functionality.

For our experiments, we used stunnel 5.39 compiled
from stock source and linked against OpenSSL 1.0.1u.
We generated a P-256 ECDSA certificate for the stunnel
service and chose the ECDHE-ECDSA-AES128-SHA TLS
1.2 cipher suite.

In order to collect digital signature and digest tuples,
we wrote a custom TLS client that connects to the stun-
nel service. Our TLS client initiates TLS connections,
collects the protocol messages and continues the hand-
shake until it receives the ServerHelloDone message,
then it drops the connection. The protocol messages
contain relevant information for the attack. The Clien-
tHello and ServeHello messages contain each a 32-
byte random field, in practice these bytes represent a
4-byte UNIX timestamp concatenated with a 28-byte
nonce. The Certificate message contains the P-256

8https://www.stunnel.org

ECDSA certificate generated for the stunnel service. The
ServerKeyExchange message contains ECDH key ex-
change parameters including the curve type (named -

curve), the curve name (secp256r1) and the Signa-

tureHashAlgorithm. Finally, the digital signature it-
self is sent as part of the ServerKeyExchange message.
The ECDSA signature is over the concatenated string

ClientHello.random + ServerHello.random +

ServerKeyExchange.params

and the hash function is SHA-512, proposed by the client
in the ClientHello message and accepted by the server
in the SignatureHashAlgorithm field (explicit values
0x06, 0x03). Our TLS client saves the hash of the con-
catenated string and the DER-encoded ECDSA signature
sent by the server.

In order to achieve synchronization between the spy
and the victim processes, our spy process is launched
prior to the TLS handshakes, therefore it collects the
trace for each ECDSA signature performed during the
handshakes, then it stops when the ServerHelloDone

message is received. The process is repeated as needed
to build up a set of distinct trace, digital signature, and
digest tuples. Section 5.3 contains accuracy results for
several LS subsequence patterns for an stunnel victim.

5.2 SSH
OpenSSH9 is a widely used open source software suite to
provide secure communication over an insecure channel.
OpenSSH is a set of tools implementing the SSH net-
work protocol and it is typically linked against OpenSSL
to perform several cryptographic operations, including
digital signatures (excluding ed25519 signatures) and
key exchange.

For our experiments, we used OpenSSH 7.4p1 com-
piled from stock source and linked against OpenSSL
1.0.1u. The ECDSA key pair used by the server and tar-
geted by our attack is the default P-256 key pair gener-
ated during installation of OpenSSH.

Following a similar approach to Section 5.1, we wrote
a custom SSH client that connects to the OpenSSH server
to collect digital signatures and digest tuples. At the
same time, our spy process running on the server side
collects the timing signals leaked by the server during
the handshake.

Relevant to this work, the OpenSSH server was con-
figured with the ecdsa-sha2-nistp256 host key al-
gorithm and the default P-256 key pair. After the ini-
tial ClientVersion and ServerVersionmessages, the
protocol defines the Diffie-Hellman key exchange pa-
rameters, the signature algorithm and the hash function

9http://www.openssh.com/
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Client Server

PROTOCOL_VERSION

----->

PROTOCOL_VERSION

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

<-----

SSH_MSG_KEXINIT

[Nonce, KEX_alg,

publicKey_alg]

SSH_MSG_KEX_ECDH_INIT

[Q_C]

----->

SSH_MSG_KEX_ECDH_REPLY

[K_S, Q_S, Signature]

SSH_MSG_NEWKEYS

<-----

Application Data <----> Application Data

Figure 7: ECC SSH handshake flow with correspond-
ing parameters from all the messages to construct the di-
gest. Our spy process collects timing traces in parallel to
the server’s ECDSA sign operation, said digital signature
being included in a SSH MSG KEX ECDH REPLY field and
collected by our client.

identifiers in the SSH MSG KEXINIT message. To provide
host authentication by the client and the server, a 16-byte
random nonce is included in the SSH MSG KEXINIT mes-
sage. The SSH MSG KEX ECDH REPLY10 message con-
tains the server’s public host key K S (used to create and
verify the signature), server’s ECDH ephemeral public
key Q S (used to compute the shared secret K in combi-
nation with the client’s ECDH ephemeral public key Q C)
and the signature itself. The ECDSA signature is over the
hash of the concatenated string

ClientVersion + ServerVersion +

Client.SSH_MSG_KEXINIT +

Server.SSH_MSG_KEXINIT +

K_S + Q_C + Q_S + K

Our SSH client was configured to use
ecdh-sha2-nistp256 and ecdsa-sha2-nistp256 as
key exchange and public key algorithms, respectively.

Similar to the previous case, our SSH client saves the
hash of the concatenated string and the raw bytes of the
ECDSA signature sent by the server. To synchronize the
spy and victim processes, our spy process is launched
prior to the SSH handshakes and it stops when the SSH -

MSG NEWKEYS message is received, therefore it collects

10https://tools.ietf.org/html/rfc5656

Table 4: Accuracy for length j = 5 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern `i ai Accuracy (%) Accuracy (%)
LLLLL 5 0 77.9 73.3
SLLLL 4 1 99.8 98.0
LSLLL 4 2 99.3 98.9
SLSLL 3 3 98.9 97.2
LLSLL 4 4 98.0 96.7
SLLSL 3 5 95.8 95.5
LSLSL 3 6 85.5 97.2
SLSLS 3 7 99.2 97.8
LLLSL 4 8 93.3 92.5
SLLLS 4 9 94.4 94.6
LSLLS 4 10 81.1 93.5
LLSLS 4 12 96.4 96.7
LLLLS 5 16 89.8 85.0

the trace for each ECDSA signature performed during
the handshakes. All the protocol messages starting from
SSH MSG NEWKEYS and any client responses are not re-
quired by our attack, therefore the client drops the con-
nection and repeats the process as needed to build up a
set of distinct trace, digital signature, and digest tuples.
Section 5.3 contains accuracy results for several LS sub-
sequence patterns for an SSH server victim.

5.3 Attack Results

Procurement accuracy. Table 4 and Table 5 show the
empirical accuracy results for patterns of length j = 5
and j = 7, respectively. These patterns represent the
beginning of the LS sequence in the context of Open-
SSL ECDSA executing in real world applications (TLS
via stunnel, SSH via OpenSSH). From our empirical
results we note three trends: (1) Similar to previous
works [4, 24, 27], the accuracy of the subsequence de-
creases as ` increases due to the deviation in the right-
shift operation width. (2) The accuracy also decreases for
subsequences containing several contiguous right-shift
operations, e.g. first and last rows, due to the variable
width of right-shift operations within a single trace. (3)
SSH traces are slightly noisier than TLS traces; we spec-
ulate this is due to the computation of the ECDH shared
secret prior to the ECDSA signature itself. Using our
improved degradation technique (Section 4.3) we can re-
cover a with very high probability, despite the speed of
the modular inversion operation and the imperfect traces.
Key recovery. We close with a few data points
for our end-to-end attack, here focusing on TLS. In
this context, end-to-end means all steps from the at-
tacker perspective—i.e. launching the degrade processes,
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Table 5: Accuracy for length j = 7 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern `i ai Accuracy (%) Accuracy (%)
LLLLLLL 7 0 43.8 30.1
SLLLLSL 5 1 93.4 93.1
LSLLLLS 6 2 82.6 88.0
SLSLLSL 4 3 94.8 93.4
LLSLLLL 6 4 92.9 86.4
SLLSLSL 4 5 95.2 94.1
LSLSLLS 5 6 79.2 92.3
SLSLSLL 4 7 98.8 96.6
LLLSLLL 6 8 84.8 80.5
SLLLSLL 5 9 80.0 81.1
LSLLSLS 5 10 80.8 90.9
SLSLLLS 5 11 91.7 85.4
LLSLSLL 5 12 94.3 94.5
SLLSLLS 5 13 90.9 90.6
LSLSLSL 4 14 83.5 95.1
SLSLSLS 4 15 97.8 97.1
LLLLSLL 6 16 87.7 83.8
SLLLLLL 6 17 92.0 92.4
LSLLLSL 5 18 81.8 90.7
LLSLLSL 5 20 94.3 94.7
LSLSLLL 5 22 80.0 91.5
LLLSLSL 5 24 94.4 91.1
SLLLSLS 5 25 94.3 94.3
LSLLSLL 5 26 74.7 86.1
SLSLLLL 5 27 92.9 89.7
LLSLSLS 5 28 94.6 93.6
SLLSLLL 5 29 85.4 84.8
LLLLLSL 6 32 65.7 61.1
LSLLLLL 6 34 91.5 91.5
LLSLLLS 6 36 93.0 89.3
LLLSLLS 6 40 89.0 88.5
LLLLSLS 6 48 87.2 82.7
SLLLLLS 6 49 86.8 85.5
LLLLLLS 7 64 25.6 33.0

launching the spy process, and launching our custom
TLS client. Finally, repeating these steps to gather mul-
tiple trace and signature pairs, then running the lattice
attack for key recovery. That is, no steps in the attack
chain are abstracted away.

The experiments for Table 3 assume perfect traces.
However, as seen in Table 4 and Table 5, while we ob-
serve quite high accuracy, in our environment we are un-
able to realize absolutely perfect traces. Trace errors will
occur, and lattice methods have no recourse to compen-
sate for them. We resort to oversampling and randomized
brute force search to achieve key recovery in practice.

For the j = 5 case, we procured 150 signatures with

(potentially imperfect) trace data. Consulting Table 3,
we took 400 random subsets of size 80 from this set
and ran lattice attack instances on a computing cluster.
The first instance to succeed in recovering the private
key did so in roughly 8 minutes. Checking the ground
truth afterwards, 142 of these original 150 traces were
correct, i.e. ~0.18% of all possible subsets are error-free.
This successful attack is consistent with the probability
1− (1−0.0018)400 ≈ 51.4%.

Similarly for the j = 7 case, we procured 150 signa-
tures with (potentially imperfect) trace data. Consulting
Table 3, we took 400 random subsets of size 55 from this
set and ran lattice attack instances on a computing clus-
ter. The first instance to succeed in recovering the private
key did so in under a minute. Checking the ground truth
afterwards, 137 of these original 150 traces were correct,
i.e. ~0.19% of all possible subsets are error-free. This
successful attack is also consistent with the probability
1− (1−0.0019)400 ≈ 53.3%.

It is worth noting that with this naı̈ve strategy, it
is always possible to trade signatures for more offline
search effort. Moreover, it is possible to traverse the
search space by weighting trace data subsets according
to known pattern accuracy, e.g. explore patterns with ac-
curacy ≥ 95% sooner.

6 Conclusion

In this work, we disclose a new vulnerability in widely-
deployed software libraries that causes ECDSA nonce
inversions to be computed with the BEEA instead of a
code path with microarchitecture attack mitigations. We
design and demonstrate a practical cache-timing attack
against this insecure code path, leveraging our new per-
formance degradation metric. Combined with our im-
proved nonce bits recovery approach and lattice parame-
terization, this enable us to recover P-256 ECDSA pri-
vate keys from OpenSSL despite constant-time scalar
multiplication. As far as we are aware, this is the first
cache-timing attack targeting nonce inversion in Open-
SSL, and furthermore the first side-channel attack against
cryptosystems leveraging its constant-time P-256 scalar
multiplication methods. Our contributions traverse both
practice and theory, recovering keys with as few as 50
signatures and corresponding traces.

Stepping back from the concrete side-channel attack
we realized here, our improved nonce bit recovery ap-
proach coupled with tuned lattice parameters demon-
strates that even small leaks of BEEA execution can have
disastrous consequences. Observing as few as the first 5
operations in the LS sequence allows every signature to
be used as an equation for the lattice problem. Moreover,
our work highlights the fact that constant-time consider-
ations are ultimately about the software stack, and not
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necessarily a single component in isolation.
The rapid development of cache-timing attacks paired

with the need for fast solutions and mitigations led to
the inclusion of the BN FLG CONSTTIME flag in Open-
SSL. Over the years, the flag proved to be useful when
introducing new constant-time implementations, but un-
fortunately its usage is now beyond OpenSSL’s original
design. As new cache-timing attacks emerged, the us-
age of the flag increased throughout the library. At the
same time the programming error probability increased,
and many of those errors permeated to forks such as
LibreSSL and BoringSSL. The recent exploitation sur-
rounding the flag’s usage, this work included, highlights
it as a prime example of why failing securely is a fun-
damental concept in security by design. For example,
P-256 takes the constant-time scalar multiplication code
path by default, oblivious to the flag, while in stark con-
trast modular inversion relies critically on this flag being
set to follow the code path with microarchitecture attack
mitigations.

Following responsible disclosure procedures, we re-
ported the issue to the developers of the affected products
after our findings. We lifted the embargo in December
2016. Despite OpenSSL’s 1.0.1 branch being a standard
package shipped with popular Linux distributions such
as Ubuntu (12.04 LTS and 14.04 LTS), Debian (7.0 and
8.0), and SUSE, it reached EOL in January 2017. Back-
porting security fixes to EOL packages is a necessary and
challenging task, and to contribute we provide a patch to
mitigate our attack. OpenSSL assigned CVE-2016-7056
based on our work. See the appendix for the patch.

Acknowledgments
We thank Tampere Center for Scientific Computing
(TCSC) for generously granting us access to computing
cluster resources.

Supported in part by Academy of Finland grant
303814.

This research was supported in part by COST Action
IC1306.

The first author was supported in part by the Pekka
Ahonen Fund through the Industrial Research Fund of
Tampere University of Technology.

References
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A Mitigation

Below is the fix for CVE-2016-7056 in uuencode format.

begin-base64 664 fix_CVE-2016-7056.patch
RnJvbSAyNDliY2YzMTQwNWUxNjIyZDA1ZWY2MGRjNWU3M2M1NGVmYTY0ZjNj
IE1vbiBTZXAgMTcgMDA6MDA6MDAgMjAwMQpGcm9tOiA9P1VURi04P3E/Q2Vz
YXI9MjBQZXJlaWRhPTIwR2FyYz1DMz1BRGE/PSA8Y2VzYXIucGVyZWlkYWdh
cmNpYUB0dXQuZmk+CkRhdGU6IEZyaSwgMTYgRGVjIDIwMTYgMTI6MDI6MTkg
KzAyMDAKU3ViamVjdDogW1BBVENIXSBFQ0RTQSB2dWxuZXJhYmxlIHRvIGNh
Y2hlLXRpbWluZyBhdHRhY2suIEJOX21vZF9pbnZlcnNlIGZhaWxzCiB0byB0
YWtlIGNvbnN0YW50LXRpbWUgcGF0aCwgdGh1cyBsZWFraW5nIG5vbmNlJ3Mg
aW5mb3JtYXRpb24uCgotLS0KIGNyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIHwg
MiArKwogMSBmaWxlIGNoYW5nZWQsIDIgaW5zZXJ0aW9ucygrKQoKZGlmZiAt
LWdpdCBhL2NyeXB0by9lY2RzYS9lY3Nfb3NzbC5jIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKaW5kZXggNGM1ZmE2Yi4uNzJlN2MwNSAxMDA2NDQKLS0t
IGEvY3J5cHRvL2VjZHNhL2Vjc19vc3NsLmMKKysrIGIvY3J5cHRvL2VjZHNh
L2Vjc19vc3NsLmMKQEAgLTE0Nyw2ICsxNDcsOCBAQCBzdGF0aWMgaW50IGVj
ZHNhX3NpZ25fc2V0dXAoRUNfS0VZICplY2tleSwgQk5fQ1RYICpjdHhfaW4s
IEJJR05VTSAqKmtpbnZwLAogICAgICAgICAgICAgaWYgKCFCTl9hZGQoaywg
aywgb3JkZXIpKQogICAgICAgICAgICAgICAgIGdvdG8gZXJyOwogCisgICAg
ICAgIEJOX3NldF9mbGFncyhrLCBCTl9GTEdfQ09OU1RUSU1FKTsKKwogICAg
ICAgICAvKiBjb21wdXRlIHIgdGhlIHgtY29vcmRpbmF0ZSBvZiBnZW5lcmF0
b3IgKiBrICovCiAgICAgICAgIGlmICghRUNfUE9JTlRfbXVsKGdyb3VwLCB0
bXBfcG9pbnQsIGssIE5VTEwsIE5VTEwsIGN0eCkpIHsKICAgICAgICAgICAg
IEVDRFNBZXJyKEVDRFNBX0ZfRUNEU0FfU0lHTl9TRVRVUCwgRVJSX1JfRUNf
TElCKTsKLS0gCjIuNy40Cgo=
====

B Supplementary Empirical Data

Table 6 contains the raw data used to produce Figure 6.

Table 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. See Figure 6 for an illustration.

j Mean St. Dev. Min Max
1 1.00 0.00 1 1
2 1.50 0.50 1 2
3 2.25 0.43 2 3
4 2.87 0.60 2 4
5 3.56 0.61 3 5
6 4.22 0.70 3 6
7 4.89 0.73 4 7
8 5.43 0.93 4 8
9 5.88 1.15 4 9

10 6.23 1.40 4 10
11 6.52 1.64 4 11
12 6.73 1.87 4 12
13 6.91 2.07 4 13
14 7.04 2.24 4 14
15 7.15 2.40 4 15
16 7.23 2.53 4 16
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Abstract
Function type signatures are important for binary analy-
sis, but they are not available in COTS binaries. In this
paper, we present a new system called EKLAVYA which
trains a recurrent neural network to recover function type
signatures from disassembled binary code. EKLAVYA
assumes no knowledge of the target instruction set se-
mantics to make such inference. More importantly,
EKLAVYA results are “explicable”: we find by analyz-
ing its model that it auto-learns relationships between in-
structions, compiler conventions, stack frame setup in-
structions, use-before-write patterns, and operations rel-
evant to identifying types directly from binaries. In
our evaluation on Linux binaries compiled with clang
and gcc, for two different architectures (x86 and x64),
EKLAVYA exhibits accuracy of around 84% and 81% for
function argument count and type recovery tasks respec-
tively. EKLAVYA generalizes well across the compilers
tested on two different instruction sets with various opti-
mization levels, without any specialized prior knowledge
of the instruction set, compiler or optimization level.

1 Introduction

Binary analysis of executable code is a classical problem
in computer security. Source code is often unavailable
for COTS binaries. As the compiler does not preserve a
lot of language-level information, such as types, in the
process of compilation, reverse engineering is needed
to recover the semantic information about the original
source code from binaries. Recovering semantics of ma-
chine code is important for applications such as code
hardening [54, 34, 53, 26, 52], bug-finding [39, 47, 10],
clone detection [18, 38], patching/repair [17, 16, 41] and
analysis [12, 22, 21]. Binary analysis tasks can vary
from reliable disassembly of instructions to recovery of
control-flow, data structures or full functional semantics.
∗Lead authors are alphabetically ordered.

The higher the level of semantics desired, the more spe-
cialized the analysis, requiring more expert knowledge.

Commercial binary analysis tools widely used in the
industry rely on domain-specific knowledge of compiler
conventions and specialized analysis techniques for bi-
nary analysis. Identifying idioms common in binary code
and designing analysis procedures, both principled and
heuristic-based, have been an area that is reliant on hu-
man expertise, often engaging years of specialized bi-
nary analysts. Analysis engines need to be continuously
updated as compilers evolve or newer architectures are
targeted. In this work, we investigate an alternative line
of research, which asks whether we can train machines
to learn features from binary code directly, without spec-
ifying compiler idioms and instruction semantics explic-
itly. Specifically, we investigate the problem of recov-
ering function types / signatures from binary code — a
problem with wide applications to control-flow harden-
ing [54, 34, 53] and data-dependency analysis [31, 40]
on binaries — using techniques from deep learning.

The problem of function type recovery has two sub-
problems: recovering the number of arguments a func-
tion takes / produces and their types. In this work, we
are interested in recovering argument counts and C-style
primitive data types .1 Our starting point is a list of func-
tions (bodies), disassembled from machine code, which
can be obtained using standard commercial tools or us-
ing machine learning techniques [7, 43]. Our goal is to
perform type recovery without explicitly encoding any
semantics specific to the instruction set being analyzed
or the conventions of the compiler used to produce the
binary. We restrict our study to Linux x86 and x64 ap-
plications in this work, though the techniques presented
extend naturally to other OS platforms.

Approach. We use a recurrent neural network (RNN)
architecture to learn function types from disassembled

1int, float, char, pointers, enum, union, struct
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binary code of functions. The goal is to ascertain if
neural networks can effectively learn such types with-
out prior knowledge of the compiler or the instruction
set (beyond that implied by disassembly). Admittedly,
the process of designing such a system has been experi-
mental or ad-hoc (in our experience), fraught with trial-
and-error, requiring sifting through the choice of archi-
tectures and their parameters. For instance, we consid-
ered designs wherein disassembled code was directly fed
as text input, as one-hot encoded inputs, and with vari-
ous training epoch sizes and network depth. In several
cases, the results were unimpressive. In others, while the
results were positive, we had little insight into what the
model learnt from inputs.

Our guiding principle in selecting a final architecture
is its explicability: to find evidence whether the learning
network could learn something “explainable” or “compa-
rable” to conventions we know which experts and other
analysis tools use. To gather evidence on the correct-
ness of a learning network’s outputs, we employ tech-
niques to measure its explicability using analogical rea-
soning, dimensionality reduction (t-SNE visualization
plots), and saliency maps. Using these techniques, we
select network architectures that exhibit consistent evi-
dence of learning meaningful artifacts. Our resulting sys-
tem called EKLAVYA automatically learns several pat-
terns arising in binary analysis in general, and function
type recovery specifically. At the same time, its construc-
tional design is modular, such that its instruction set spe-
cific dependencies are separated from its type recovery
tasks. EKLAVYA is the first neural network based sys-
tems that targets function signature recovery tasks, and
our methodology for explaining its learnt outcomes is
more generally useful for debugging and designing such
systems for binary analysis tasks.

Results. We have tested EKLAVYA on a testing set con-
sisting of a large number of Linux x86 and x64 bina-
ries, compiled at various optimization levels. EKLAVYA
demonstrates several promising results. First, EKLAVYA
achieves high accuracy of around 84% for count recov-
ery and has accuracy around 81% for type recovery. Sec-
ond, EKLAVYA generalizes in a compiler-agnostic man-
ner over code generated from clang and gcc, and
works for the x86 and x64 binaries, with a modest re-
duction of accuracy with increase in optimization levels.
In comparison to previous methods which use knowl-
edge of instruction sets and compiler conventions in their
analysis, EKLAVYA has comparable accuracy. Third,
EKLAVYA’s learnt model is largely “explicable”. We
show through several analytical techniques which input
features the model emphasizes in its decisions. These
features match many patterns that are familiar to human
analysts and used in existing tools as rules, such as iden-

tifying calling conventions, caller- and callee- save regis-
ters, stack-based arguments, “use- before-write” instruc-
tions, function stack allocation idioms, and many more.
All these are derived automatically without any explicit
knowledge of the instruction semantics or compiler used.

EKLAVYA’s architecture bears resemblance to other
neural network architectures that have been successful
in natural language processing (NLP) problems such
as machine translation, automatic summarization, and
sentence-generation. Specifically, we find the use of
word-embedding of instructions has been particularly
useful in our problem, which is used in NLP problems
too. We hypothesize a deeper similarity between (prob-
lems arising in) natural language and the language of ma-
chine instructions, and consider it worthy of future work.

Contributions. We present EKLAVYA, a novel RNN-
based engine that recovers functions types from x86/x64
machine code of a given function. We find in our exper-
imental evaluation that EKLAVYA is compiler-agnostic
and the same architecture can be used to train for dif-
ferent instruction sets (x86 and x64) without any spec-
ification of its semantics. On our x86 and x64 datasets,
EKLAVYA exhibits comparable accuracy with traditional
heuristics-based methods. Finally, we demonstrate that
EKLAVYA’s learning methods are explicable. Our analy-
sis exhibits consistent evidence of identifying instruction
patterns that are relevant to the task of analyzing func-
tion argument counts and types, lending confidence that
it does not overfit to its training datasets or learn un-
explained decision criteria. To our knowledge, ours is
the first use of techniques such as t-SNE plots, saliency
maps, and analogical reasoning to explain neural net-
work models for binary analysis tasks.

2 Problem Overview

Function type recovery involves identifying the number
and primitive types of the arguments of a function from
its binary code. This is often a sub-step in construct-
ing control-flow graphs and inter-procedural data depen-
dency analysis, which is widely used in binary analysis
and hardening tools.

Traditional solutions for function type recovery use
such conventions as heuristics for function type recov-
ery, which encode the semantics of all instructions, ABI
conventions, compiler idioms, and so on. These are spec-
ified apriori in the analysis procedure by human analysts.
Consider the example of a function in x64 binary code
shown in Figure 1. The example illustrates several con-
ventions that the compiler used to generate the code, such
as:
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Figure 1: Example assembly code with several idioms
and conventions. (a) refers to the push/pop instruc-
tions for register save-restore; (b) refers to the instruc-
tion using rsp as a special stack pointer register; (c)
refers to arithmetic instructions to allocate stack space;
(d) refers to instructions passing the arguments using
specific registers; (e) refers to the subsequent use of
integer-typed data in arithmetic operations.

(a) the use of push/pop instructions for register save-
restore;

(b) the knowledge of rsp as a special stack pointer reg-
ister which allocates space for the local frame be-
fore accessing arguments;

(c) the use of arithmetic instructions to allocate stack
space;

(d) the calling convention (use of specific register,
stacks offset for argument passing); and

(e) subsequent use of integer-typed data in arithmetic
operations only.

Such conventions or rules are often needed for tradi-
tional analysis to be able to locate arguments. Looking
one step deeper, the semantics of instructions have to be
specified in such analysis explicitly. For instance, recog-
nizing that a particular byte represents a push instruc-
tion and that it can operate on any register argument. As
compilers evolve, or existing analyses are retargeted to
binaries from newer instructions sets, analysis tools need
to be constantly updated with new rules or target back-
ends. An ideal solution will minimize the use of spe-
cialized knowledge or rules in solving the problem. For
instance, we desire a mechanism that could be trained to
work on any instruction set, and handle a large variety of
standard compilers and optimization supported therein.

In this work, we address the problem of function type
recovery using a stacked neural network architecture. We
aim to develop a system that automatically learns the
rules to identify function types directly from binary code,
with minimal supervision. Meanwhile, we design tech-
niques to ensure that the learnt model produces explica-

ble results that match our domain knowledge.
Problem Definition. We assume to have the following
knowledge of a binary: (a) the boundaries of a function,
(b) the boundary of instructions in a function, and (c) the
instruction representing a function dispatch (e.g. direct
calls). All of these steps are readily available from dis-
assemblers, and step (a) has been shown to be learnable
directly from binaries using a neural network architec-
ture similar to ours [43]. Step (b) on architectures with
fixed-length instructions (e.g. ARM) requires knowing
only the instruction length. For variable-length architec-
tures (e.g. x64/x86), it requires the knowledge of instruc-
tion encoding sufficient to recover instruction sizes (but
nothing about their semantics). Step (c) is a minimal-
istic but simplifying assumption we have made; in con-
cept, identifying which byte-sequences represent call
instruction may be automatically learnable as well.

The input to our final model M is a target function
for which we are recovering the type signature, and set
of functions that call into it. Functions are represented
in disassembled form, such that each function is a se-
quence of instructions, and each instruction is a sequence
of bytes. The bytes do not carry any semantic meaning
with them explicitly. We define this clearly before giving
our precise problem definition.

Let Ta and Ta[i] respectively denote the disassembled
code and the ith bytes of a target function a. Then, the kth

instruction of function a can be defined as:

Ia[k] :=< Ta[m],Ta[m+1], ...,Ta[m+ l]>

where m is the index to the start byte of instruction Ia[k]
and l is the number of bytes in Ia[k]. The disassembled
form of function a consisting of p instructions is defined
as:

Ta :=< Ia[1], Ia[2], ..., Ia[p]>

With the knowledge of a call instruction, we deter-
mine the set of functions that call the target function a. If
a function b has a direct call to function a, we take all2

the instructions in b preceding the call instruction. We
call this a caller snippet Cb,a[ j], defined as:

Cb,a[ j] :=< Ib[0], Ib[1]...Ib[ j−1]>

where Ib[ j] is a direct call to a. If Ib[ j] is not a direct
call to a, Cb,a[ j] := /0. We collect all caller snippets
calling a, and thus the input Da is defined as:

Da := Ta∪
( ⋃

b∈Sa

( ⋃
0≤ j≤|Tb|

Ca,b[ j]
))

where Sa is the set of functions that call a.

2In our implementation, we limit the number of instructions to 500
for large functions.
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Figure 2: EKLAVYA Architecture. It takes in the binaries
as input and performs a pre-processing step on it. Then
it performs instruction embedding to produce embedded
vectors for train and test dataset. The argument recovery
module trains 4 RNN models M1,M2,M3,M4to recover
the function argument count and types.

With the above definitions, we are now ready to state
our problem definition. Our goal is to learn a model M ,
which is used to decide two properties for a target func-
tion a, from given data Da, stated below:

Definition. (Arguments Counts) The number of argu-
ments passed to function a.

Definition. (Argument Types) For each argument of
function a, the C-style types defined as:

τ ::=int|char|float|void∗|enum|union|struct

Note that the above definition gives the inputs and out-
puts of the model M , which can be queried for a tar-
get function. This is called the test set. For training the
model M , the training set has a similar representation. It
consists of the disassembled functions input Da as well
as labels (the desired outputs) that represent the ground
truth, namely the true number and types of each argu-
ment. For the training set, we extract the ground truth
from the debug symbols generated from source code.

3 Design

EKLAVYA employs neural network to recover argument
counts and types from binaries. The overall architecture
is shown in Figure 2. EKLAVYA has two primary mod-
ules: a) instruction embedding module and an b) argu-
ment recovery module. The instruction embedding mod-
ule learns the semantics of instructions by observing their
use in our dataset of binaries (from one instruction set). It
is possible to have one neural network that does not treat
these as two separate substeps. However, in this case, the

instruction semantics learnt may well be very specialized
to the task of argument recovery. In our design, we train
to extract semantics of the instruction set from binaries
separately, independent to the task of further analysis at
hand. This makes the design modular and allows reusing
the embedding module in multiple binary analysis tasks.
In addition, instead of keeping the semantics as an im-
plicit internal state, explicitly outputting the semantics
allows us to verify the correctness of each step indepen-
dently. This makes the process of designing and debug-
ging the architecture easier, thus motivating our choice
of two modules.

The instruction embedding module takes as input a
stream of instructions, represented as symbols. It out-
puts a vector representation of each instruction in a 256-
dimensional space, hence embedding the instructions in
a vector space. The objective is to map symbol into vec-
tors, such that distances between vectors capture inter-
instruction relationships.

Given the instructions represented as vectors,
EKLAVYA trains a recurrent neural network (RNN) over
the sequence of vectors corresponding to the function
body. This is done in the argument recovery module.
In some cases, EKLAVYA may only have the target
of the function body to analyze, and in others it may
have access to a set of callers to the target function.
For generality, EKLAVYA trains models for four tasks
defined below:

(a) Task1: Counting arguments for each function based
on instructions from the caller;

(b) Task2: Counting arguments for each function based
on instructions from the callee;

(c) Task3: Recovering the type of arguments based on
instructions from the caller;

(d) Task4: Recovering the type of arguments based on
instructions from the callee;

We train one model for each task, over the same out-
puts of the instruction embedding module. For each in-
struction set, we learn a different instruction embedding
and RNN set. For a function to be tested, the user can
use the predictions of any or all of these tasks; our de-
fault is to report the output of Task2 for argument counts
and Task4 for types since this is analyzable from just the
callee’s function body (without knowing callers).

3.1 Instruction Embedding Module

The first key step in EKLAVYA is to uncover the semantic
information of each instruction through learning. Note
that the inputs to our learning algorithm are functions
represented as raw binaries, with known boundaries of
functions and instructions. In this representation, the
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learning algorithm does not have access to any high-
level semantics of an instruction. Intuitively, the goal is
to infer the semantics of instructions from their contex-
tual use in the binary, such as by analyzing which group
appears sequentially together or in certain contexts rela-
tive to other groups. One general approach to extracting
contextual relationships is to employ a technique called
word embedding [8]. Word embedding in EKLAVYA con-
verts each instruction’s raw symbol into a vector. All
instructions are thus represented in a high-dimensional
space (256 dimensions in our case). Intuitively, the dis-
tance between instructions encodes relationships. For
instance, the relative distance between the vectors for
push %edi and pop %edi is similar to distance be-
tween push %esi and pop %esi. We demonstrate
the kinds of relationships this module learns in Section 5
through examples. In summary, the output of this module
is a map from instructions to a 256-dimensional vector.

There are other alternatives to word embedding, which
we have considered. One can employ one-hot encod-
ing analogous to a previous work on identifying func-
tion boundaries [43]. One could represent the ith instruc-
tion by a vector with its ith element as 1 and all other
elements set to 0. For example, if there are 5 differ-
ent instructions, the second instruction is represented as
[0,1,0,0,0]. However, this technique is computationally
inefficient if we expect to learn instruction semantics us-
able for many different binary analysis tasks, since a sep-
arate sub-network will likely be needed to re-learn the
relationship between one-hot-encoded vectors for each
new analysis task.

For word embedding, we use the skip-gram nega-
tive sampling method outlined in the paper that intro-
duces word2vec technique for computing word em-
beddings [27]. The skip-gram is a shallow neural net-
work using the current instruction to predict the instruc-
tions around it. Compared to other approaches like
continuous bag-of-words (CBOW) technique [27], skip-
gram shows better performance on the large-scale dataset
and extracts more semantics for each instruction in our
experience. To train the word embedding model, we
tokenize the hexadecimal value of each instruction and
use them as the training input to the embedding model.
For example, the symbol or token for the instruction
push %ebp is its hexadecimal opcode 0x55. Note
that the hexadecimal opcode is used just as a name much
like ‘john’ or ’apple’ and bears no numerical effects on
the embedding. We train the embedding model for 100
epochs with the learning rate of 0.001.

3.2 Arguments Recovery Module

The function arguments recovery module trains four neu-
ral networks, one for each task related to count and type

inference. To achieve each task outlined, we train a re-
current neural network (RNN). The input for training the
model is the sequence of vectors (each representing an
instruction) produced by word embedding, together with
labels denoting the number of arguments and types (the
ground truth). For argument type recovery, we have sev-
eral design choices. We could learn one RNN for the
first argument, one RNN for the second argument, and so
on. Alternatively, we can have one RNN that predicts the
type tuple for all the arguments of a function. Presently,
we have implemented the first choice, since it alleviates
any dependency on counting the number of arguments.

Recurrent Neural Networks. To design the argu-
ments recovery module, we have considered various ar-
chitectures, like a multilayer perceptron (MLP), a con-
volutional neural network (CNN) and a recurrent neural
network (RNN). We find that an RNN is a suitable choice
because it handles variable-length inputs gracefully, and
has a notion of “memory”. A key difference between
feedforward neural networks like a multi-layer percep-
tron (MLP) and a recurrent neural network (RNN) is that
an RNN incorporates the state of the previous input as
an additional input to the current time. Effectively, this
input represents an internal state that can accumulate the
effects of the past inputs, forming a memory for the net-
work. The recurrent structure of the network allows it to
handle variable-length input sequences naturally.

In order to deal with the exploding and vanishing gra-
dients during training [9], there are few commonly de-
sign options. One could use an LSTM network or use
an RNN model with gated recurrent units (GRUs). We
use GRUs since it has the control of whether to save or
discard previous information and may train faster due to
the fewer parameters. We find that an RNN with 3 layers
using GRUs is sufficient for our problem.

To avoid overfitting, we use the dropout mechanism,
which de-activates the output of a set of randomly cho-
sen RNN cells [48]. This mechanism acts as a stochastic
regularization technique. In our design, we experimented
with various dropout rates between 0.1 to 0.8. We exper-
imentally find the dropout rate of 0.8, corresponding to
randomly dropping 20% of the cell’s output, leads to a
good result. Our models appeared to overfit with higher
dropout rates.

3.3 Data Preprocessing & Implementation
We briefly discuss the remaining details related to prepa-
ration of the inputs to EKLAVYA, and its implementation.

The input for EKLAVYA is the disassembly binary
code of the target function. To obtain this data, the
first step is to identify the function boundaries. Func-
tion boundaries identification with minimal reliance of
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instruction set semantics is an independent problem of
interest. Previous approaches range from traditional ma-
chine learning techniques [7] to neural networks [43]
to applying function interface verification [35]. In this
work, we assume the availability and the correctness of
function boundaries for recovering function arguments.
To implement this step, we downloaded the dataset Linux
packages and compiled them with both clang and gcc
with debugging symbols. The function boundaries, ar-
gument counts and types are obtained by parsing the
DWARF entries from the binary. Our implementation
uses the pyelftools which parses the DWARF infor-
mation [2]; additionally, to extract the argument counts
and types, we implemented a Python module with 179
lines of code. We extract the start and end of func-
tion boundaries using the standard Linux objdump util-
ity [1]. According to Dennis et al. [6], modern disassem-
blers are highly accurate at performing instruction level
recovery for non-obfuscated binaries, especially for bi-
naries generated by gcc and clang. Thus we use this as
the ground truth, ignoring the marginal noise that errors
may create in the dataset. After disassembly, we iden-
tify call sites and the caller snippets. Our total additional
code implementation to perform these steps consists of
1273 lines of Python code.

To train the instruction embedding model and RNNs,
we use Google Tensorflow [4]. Our implementation for
the instruction embedding and RNN learning is a total of
714 lines of Python code.

4 Explicability of Models

Our guiding principle is to create models that exhibit
learning of reasonable decision criteria. To explain what
the models learn, we use a different set of techniques for
the two parts of EKLAVYA: the instruction embedding
model and the learnt RNNs.

4.1 Instruction Embedding

Recall the instruction embedding module learns a map-
ping between instructions of an architecture to a high-
dimensional vector space. Visualizing such large dimen-
sionality vector space is a difficult challenge. To under-
stand these vectors, two common techniques are used —
t-SNE [25] plots and analogical reasoning of vectors.

t-SNE Plots. t-SNE is a way to project high-
dimensional vectors into a lower dimension one while
preserving any neighborhood structures that might ex-
ist in the original vector space. Once projected, these
can be visualized with scatter plots. Methods such as
principal component analysis (PCA) [19] and classical

multidimensional scaling [50] use linear transformations
to project onto the low dimension space. Though pow-
erful, these techniques often miss important non-linear
structure in the data. The primary advantage of t-SNE
is that it captures non-linear relationships in the local
and global structure of the dataset.3 For example, if
word embedding learns that two instructions are sim-
ilar, then they will be nearby in the high-dimensional
space. t-SNE is expected to preserve this structure in
low-dimensional plots, which we can visually analyze to
check if it matches our knowledge of instruction seman-
tics and their similarity. Note that t-SNE does not nec-
essarily exhibit all the neighborhood structures that may
exist in high- dimensional space, but is a best-effort tool
at visualizing relationships.

Analogical Reasoning. Another way to infer relation-
ships between instructions represented as vectors is by
analogical reasoning. To understand the idea intuitively,
we point to how this technique is used in natural lan-
guage processing tasks. In natural language, analogy
question tests the ability to define relationships between
words and the understanding of the vocabulary. An ana-
logical question typically consist of two pairs of word,
e.g., (“man”, “king”) (“woman”, “queen”). To answer
how related the two pairs are, the analogy “man is to
king as woman is to queen” is formed of which the
validity is tested. The vector offset method proposed
by Mikolov et al. [29] frames this using vector arith-
metic. The analogical question can be represented as
I1− I2 ≈ I3− I4 where I1, I2, I3 and I4 are the embed-
ding vectors. Specifically, given the analogical question
(“man”, “king”), (“woman”, ?), we can formulate it as
I3− I1 + I2 ≈ I4. To get the approximated result, we first
compute d = I3 − I1 + I2. I4 is the vector that has the
greatest cosine similarity with d. Applying the idea to
our problem setting, we can find similar analogies be-
tween one pairs of instructions and others. If such analo-
gies match our prior knowledge of certain conventions
or idioms that we expect in binary code, we can confirm
that EKLAVYA is able to infer these similarities in its in-
struction embedding representation.

4.2 RNNs for Argument Recovery

We wish to determine for a given test function to an
RNN, which instructions the RNN considers as impor-
tant towards the prediction. If these instruction intu-
itively correspond to our domain knowledge of instruc-
tions that access arguments, then it increases our confi-
dence in the RNN learning the desired decision criteria.

3A short primer on its design is presented in the Appendix B for the
interested reader.
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One way to analyze such properties is to employ saliency
maps.

Saliency Map. Saliency maps for trained networks
provide a visualization of which parts of an input the net-
work considers important in a prediction. Intuitively, the
important part of an input is one for which a minimal
change results in a different prediction. This is com-
monly obtained by computing the gradient of the net-
work’s output with respect to the input. In our work, we
chose the approach described by Simonyan et al. to ob-
tain the gradient by back-propagation [44]. Specifically,
we calculate the derivative of the output of the penulti-
mate layer with respect to each input instruction (which
is a vector). This results in a Jacobian matrix. Intuitively,
each element in a Jacobian matrix tells us how each di-
mension of the instruction vector will affect the output of
a specific class (a single dimension of the output). In this
case, we just want to know how much effect a particular
dimension has over the entire output, so we sum the par-
tial derivatives for all elements of the output with respect
to the particular input dimension. The result is a 256-
dimension vector which tells us the magnitude of change
each dimension have over the input. In order for us to
visualize our saliency map, we need a scalar representa-
tion of the gradient vector. This scalar should represent
the relative magnitude of change the entire input over the
output. As such, we choose to calculate the L2-norm of
the gradient vector of each instruction in the function. To
keep the value between 0 to 1, we divide each L2-norm
with the largest one (max(L2−norms)) in the function.

5 Evaluation

Our goal is to experimentally analyze the following:

1. The accuracy in identifying function argument
counts and types (Section 5.2); and

2. Whether the trained models learn semantics
that match our domain-specific knowledge (Sec-
tion 5.3).

Our experiments are performed on a server contain-
ing 2, 14-core Intel Xeon 2GHz CPUs with 64GB of
RAM. The neural network and data processing routines
are written in Python, using the Tensorflow platform [4].

5.1 Dataset
We evaluated EKLAVYA with two datasets. The bina-
ries for each dataset is obtained by using two commonly
used compilers: gcc and clang, with different optimiza-
tion levels ranging from O0 to O3 for both x86 and x64.
We obtained the ground truth for the function arguments
by parsing the DWARF debug information [3].

Following the dataset creation procedure used in pre-
vious work [43], our first dataset consists of binaries
from 3 popular Linux packages: binutils, coreutils and
findutils making up 2000 different binaries, resulting
from compiling each program with 4 optimization levels
(O0-O3) using both compilers targeting both instruction
sets. For x86 binaries, there are 1,237,798 distinct in-
structions which make up 274,285 functions. Similarly
for x64, there are 1,402,220 distinct instructions which
make up 274,288 functions. This dataset has several du-
plicate functions, and we do not use it to report our final
results directly. However, an earlier version of the pa-
per reported on this dataset; for full disclosure, we report
results on this dataset in the Appendix.

For our second dataset, we extended the first dataset
with 5 more packages, leading to a total of 8 packages:
binutils, coreutils, findutils, sg3utils, utillinux, inetutils,
diffutils, and usbutils. This dataset contains 5168 differ-
ent binaries, resulting from compiling each program with
4 optimization levels (O0-O3) using both compilers tar-
geting both instruction sets. For x86 binaries, there are
1,598,937 distinct instructions which constitute 370,317
functions while for x64, there are a total of 1,907,694
distinct instructions which make up 370,145 functions.

Sanitization. For our full (second) dataset, we re-
moved functions which are duplicates of other functions
in the dataset. Given that the same piece of code com-
piled with different binaries will result in different off-
sets generated, naively hashing the function body is in-
sufficient to identify duplicates. To work around this,
we chose to remove all direct addresses used by instruc-
tions found in the function. For example, the instruction
‘je 0x98’ are represented as ‘je ’. After the substitu-
tion, we hash the function and remove functions with the
same hashes. Other than duplicates, we removed func-
tions with less than four instructions as these small func-
tions typically do not have any operation on arguments.

After sanitation, for x86 binaries, there are 60,061
unique functions in our second dataset. Similarly for
x64, there are 59,291 functions. All our final results re-
port on this dataset.

We use separate parts of these datasets for training and
testing. We randomly sample 80% binaries of each pack-
age and designate it as the training set; the remaining
20% binaries are used for testing. Note that the training
set contains all binaries of one instruction set, compiled
with multiple optimization levels from both compilers.
EKLAVYA is tasked to generalize from these collectively.
The test results are reported on different categories of op-
timizations within each instruction set, to see the impact
of compiler and optimization on EKLAVYA’s accuracy.
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Imbalanced classes. Our dataset has a different num-
ber of samples for different labels or classes. For in-
stance, the pointer datatype is several hundred times
more frequent than unions; similarly, functions with less
than 3 arguments are much more frequent that those with
9 arguments. We point out that this is a natural distri-
bution of labels in real-world binaries, not an artifact of
our choice. Since training and testing on labels with very
few samples is meaningless, we do not report our test
results on functions with more than 9 arguments for ar-
guments counts recovery, and the “union” and “struct”
datatypes here. The overall ratio of these unreported la-
bels totals less than 0.8% of the entire dataset. The label
distributions of the training dataset are reported in the
rows labeled “data distribution” in Table 1 and Table 2.

5.2 Accuracy

Our first goal is to evaluate the precision, recall, and ac-
curacy of prediction for each of the four tasks mentioned
in Section 3. Precision Pci and recall Rci are used to
measure the performance of EKLAVYA for class i and are
defined as:

Pci =
T Pi

T Pi +FPi
;Rci =

T Pi

T Pi +FNi

where T Pi, FPi and FNi are the true positive predic-
tion, false positive prediction and false negative predic-
tion of class i respectively.

We evaluate the accuracy of EKLAVYA by measuring
the fraction of test inputs with correctly predicted labels
in the test set. Readers can check that accuracy Acc can
alternatively be defined as:

Acc =
n

∑
i=1

Pi×Rci

where n is the number of labels in testing set and Pi
is the fraction of samples belonging to label i in the test
runs. Pi can be seen as an estimate of the occurrence of
label i in the real-world dataset and Rci is the probability
of EKLAVYA labelling a sample as i given that its ground
truth is label i.

Given that our training and testing datasets have im-
balanced classes, it is helpful to understand EKLAVYA’s
accuracy w.r.t to the background distribution of labels in
the dataset. For instance, a naive classifier that always
predicts one particular label i irrespective of the given
test input, will have accuracy pi if the underlying label
occurs pi naturally in the test run. However, such a clas-
sifier will have a precision and recall of zero on labels
other than i. Therefore, we report both the background
data distribution of each label as well as precision and
recall to highlight EKLAVYA’s efficiency as a classifier.

Findings. Table 1 and Table 2 show the final results
over some classes in the test dataset for each task. We
have five key findings from these two tables:

(a) EKLAVYA has accuracy of around 84% for count re-
covery and 81% for type recovery tasks on average,
with higher accuracy of over 90% and 80% respec-
tively for these tasks on unoptimized binaries;

(b) EKLAVYA generalizes well across both compilers,
gcc and clang;

(c) EKLAVYA performs well even on classes that occur
less frequently, which includes samples with labels
occuring as low as 2% times in the training dataset;

(d) In comparison to x86, codename has higher accu-
racy on x64 for count and type recovery; and,

(e) With increase in optimization levels, the accuracy of
EKLAVYA drops on count recovery tasks but stays
the same on type recovery tasks.

First, EKLAVYA has higher accuracy on unoptimized
functions compared with previous work. The reported
accuracy of previous work that uses principled use-def
analysis and liveness analysis to count arguments is 78%
for callers and 83% for callees [51]. It uses domain-
specific heuristics about the calling convention to iden-
tify number of arguments — for example, their work
mentions that if r9 is used by a function then the func-
tion takes 6 arguments or more. However, EKLAVYA
does not need such domain knowledge and obtain higher
accuracy for count recovery. For example, the accuracy
of EKLAVYA on x86 and x64 are 91.13% and 92.03% re-
spectively from callers, while 92.70% and 97.48% sep-
arately from callees. For the task of type recovery, the
accuracy of EKLAVYA, averaged for the first three argu-
ments, on x86 and x64 are 77.20% and 84.55% respec-
tively from callers, and 78.18% and 86.77% correspond-
ingly from callees. A previous work on retargetable com-
pilation recovers types without using machine learning
techniques; however, a direct comparison is not possible
since the reported results therein adopt a different mea-
sure of accuracy called conservativeness rate which can-
not be translated directly to accuracy [14].

Second, EKLAVYA generalizes well over the choice of
two compilers, namely clang and gcc. The accuracy
of count recovery for x86 from callers and callees are
86.22% and 75.49% respectively for gcc binaries, and
85.30% and 80.05% for clang binaries. Similarly, the
accuracy of type recovery (averaged for the first three
arguments) on x86 from callers and callees is 80.92%
and 79.04% respectively for gcc binaries, whereas it is
75.58% and 73.91% respectively for clang binaries.
Though the average accuracy of gcc is slightly higher
than clang, this advantage does not consistently exhibit
across all classes.

106    26th USENIX Security Symposium USENIX Association



Table 1: Evaluation result for argument count recovery from callers and callees for different optimization levels
given different architectures. Columns 3-50 report the evaluation result of EKLAVYA on test dataset with different
instruction set ranging from O0 to O3. “-” denotes that the specific metric cannot be calculated.

Arch Task Opt. Metrics Number of Arguments Accuracy0 1 2 3 4 5 6 7 8 9

x86

Task1

O0
Data Distribution 0.059 0.380 0.288 0.170 0.057 0.023 0.012 0.004 0.004 0.001

0.9113Precision 0.958 0.974 0.920 0.868 0.736 0.773 0.600 0.388 0.231 0.167
Recall 0.979 0.953 0.899 0.913 0.829 0.795 0.496 0.562 0.321 0.200

O1
Data Distribution 0.059 0.374 0.290 0.169 0.059 0.026 0.013 0.003 0.004 0.001

0.8348Precision 0.726 0.925 0.847 0.819 0.648 0.689 0.569 0.474 0.456 0.118
Recall 0.872 0.911 0.836 0.756 0.759 0.703 0.719 0.444 0.758 0.133

O2
Data Distribution 0.056 0.375 0.266 0.187 0.057 0.032 0.015 0.004 0.005 0.001

0.8053Precision 0.692 0.907 0.828 0.758 0.664 0.620 0.606 0.298 0.238 0.250
Recall 0.810 0.912 0.801 0.645 0.782 0.730 0.637 0.262 0.357 0.300

O3
Data Distribution 0.045 0.387 0.275 0.184 0.051 0.029 0.016 0.004 0.005 0.002

0.8391Precision 0.636 0.935 0.862 0.801 0.570 0.734 0.459 0.243 0.231 0.200
Recall 0.760 0.921 0.849 0.724 0.691 0.747 0.637 0.196 0.375 0.167

Task2

O0
Data Distribution 0.068 0.307 0.313 0.171 0.070 0.034 0.018 0.009 0.005 0.002

0.9270Precision 0.935 0.956 0.910 0.957 0.910 0.789 0.708 0.808 0.429 0.500
Recall 0.911 0.975 0.963 0.873 0.856 0.882 0.742 0.568 0.692 0.600

O1
Data Distribution 0.066 0.294 0.320 0.173 0.073 0.034 0.019 0.009 0.005 0.003

0.6934Precision 0.725 0.821 0.667 0.692 0.463 0.412 0.380 0.462 0.182 0.000
Recall 0.697 0.822 0.795 0.574 0.420 0.466 0.284 0.115 0.167 0.000

O2
Data Distribution 0.065 0.283 0.326 0.179 0.068 0.036 0.021 0.011 0.005 0.002

0.6660Precision 0.721 0.761 0.655 0.639 0.418 0.535 0.484 0.667 0.200 0.000
Recall 0.607 0.798 0.792 0.495 0.373 0.434 0.517 0.308 0.286 0.000

O3
Data Distribution 0.051 0.248 0.346 0.188 0.076 0.038 0.023 0.013 0.008 0.003

0.6534Precision 0.600 0.788 0.626 0.717 0.297 0.452 0.250 0.200 0.143 0.000
Recall 0.682 0.822 0.801 0.509 0.321 0.326 0.190 0.071 0.167 0.000

x64

Task1

O0
Data Distribution 0.061 0.385 0.288 0.166 0.056 0.021 0.012 0.004 0.004 0.0

0.9203Precision 0.858 0.957 0.914 0.916 0.818 0.891 0.903 0.761 0.875 0.333
Recall 0.913 0.941 0.936 0.930 0.719 0.853 0.829 0.944 0.667 0.800

O1
Data Distribution 0.057 0.379 0.283 0.174 0.060 0.022 0.013 0.005 0.004 0.001

0.8602Precision 0.734 0.897 0.843 0.884 0.775 0.829 0.882 0.788 0.778 0.500
Recall 0.766 0.899 0.901 0.817 0.677 0.815 0.714 0.839 0.359 0.818

O2
Data Distribution 0.055 0.384 0.260 0.187 0.061 0.027 0.014 0.004 0.006 0.001

0.8380Precision 0.624 0.900 0.816 0.842 0.775 0.741 0.866 0.708 0.667 0.545
Recall 0.686 0.886 0.863 0.822 0.667 0.764 0.785 0.836 0.519 0.600

O3
Data Distribution 0.044 0.382 0.290 0.173 0.054 0.028 0.018 0.004 0.002 0.002

0.8279Precision 0.527 0.908 0.767 0.832 0.654 0.878 0.848 0.613 0.667 0.600
Recall 0.680 0.864 0.867 0.794 0.602 0.761 0.857 0.826 0.444 0.600

Task4

O0
Data Distribution 0.071 0.309 0.312 0.170 0.068 0.032 0.018 0.009 0.005 0.002

0.9748Precision 0.971 0.988 0.986 0.991 0.952 0.962 0.733 0.839 0.714 1.000
Recall 0.981 0.992 0.985 0.980 0.972 0.969 0.873 0.565 0.556 0.500

O1
Data Distribution 0.066 0.297 0.319 0.175 0.070 0.034 0.019 0.010 0.005 0.002

0.7624Precision 0.625 0.811 0.690 0.891 0.780 0.773 0.531 0.576 0.333 -
Recall 0.649 0.833 0.853 0.662 0.697 0.780 0.680 0.487 0.059 0.000

O2
Data Distribution 0.059 0.272 0.336 0.179 0.071 0.037 0.020 0.012 0.006 0.003

0.7749Precision 0.669 0.814 0.733 0.911 0.785 0.761 0.486 0.353 0.333 -
Recall 0.658 0.833 0.882 0.697 0.688 0.761 0.548 0.273 0.167 0.000

O3
Data Distribution 0.048 0.213 0.361 0.190 0.086 0.042 0.029 0.013 0.006 0.004

0.7869Precision 0.636 0.824 0.775 0.912 0.913 0.720 0.400 0.250 0.000 -
Recall 0.875 0.884 0.912 0.722 0.764 0.720 0.429 0.111 0.000 0.000
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Table 2: Evaluation result for argument type recovery from callers and callees for different optimization levels given
different architectures. Columns 4-67 report the evaluation result of EKLAVYA on test dataset with different instruc-
tion sets ranging from O0 to O3. “-” denotes that the specific metric cannot be calculated.

Arch Task Opt. Metrics
Type of Arguments

1st 2nd 3rd
char int float pointer enum char int float pointer enum char int float pointer enum

x86

Task3

O0

Data
Distribution 0.0075 0.1665 0.0008 0.8008 0.0220 0.0097 0.3828 0.0002 0.5740 0.0304 0.0094 0.4225 0.0002 0.5588 0.0078

Precision 0.5939 0.6630 1.0000 0.8954 0.5938 0.3929 0.6673 1.0000 0.8258 0.4141 0.3158 0.6245 - 0.8337 0.1429
Recall 0.6766 0.6469 0.1429 0.9145 0.4546 0.2391 0.7302 0.0556 0.8171 0.2405 0.4615 0.7905 0.0000 0.6954 0.1111

Accuracy 0.8385 0.7547 0.7228

O1

Data
Distribution 0.0065 0.1634 0.0005 0.8101 0.0178 0.0082 0.3663 0.0001 0.5894 0.0336 0.0092 0.4274 0.0002 0.5535 0.0082

Precision 0.5315 0.6138 1.0000 0.9027 0.8202 0.3462 0.7108 1.0000 0.8282 0.6222 0.1613 0.7220 - 0.7890 0.3200
Recall 0.4370 0.5913 0.1539 0.9218 0.7559 0.2368 0.7482 0.1500 0.8303 0.3836 0.3333 0.7262 - 0.7867 0.2667

Accuracy 0.8475 0.7762 0.7537

O2

Data
Distribution 0.0015 0.1664 0.0002 0.8056 0.0260 0.0084 0.3505 0.0000 0.5959 0.0446 0.0072 0.4031 0.0002 0.5768 0.0116

Precision 0.0000 0.6029 - 0.9262 0.7647 0.2500 0.6544 - 0.8193 0.6818 0.1429 0.7859 1.0000 0.7007 0.2222
Recall 0.0000 0.6874 0.0000 0.9126 0.7879 0.0833 0.6642 0.0000 0.8442 0.3214 1.0000 0.6647 1.0000 0.8269 0.1000

Accuracy 0.8606 0.7627 0.7328

O3

Data
Distribution 0.0012 0.1731 0.0002 0.8032 0.0218 0.0069 0.3763 0.0001 0.5633 0.0523 0.0074 0.4165 0.0001 0.5647 0.0101

Precision 0.0000 0.6561 1.0000 0.9331 0.7273 0.0000 0.6582 1.0000 0.8464 0.8462 0.5000 0.7410 - 0.8048 0.4286
Recall 0.0000 0.7210 0.1429 0.9287 0.8000 - 0.6656 0.6667 0.8390 0.9296 1.0000 0.7613 0.0000 0.8079 0.2000

Accuracy 0.8794 0.7878 0.7742

Task4

O0

Data
Distribution 0.0056 0.1944 0.0015 0.7910 0.0052 0.0073 0.3151 0.0003 0.6654 0.0086 0.0102 0.3828 0.0016 0.5931 0.0107

Precision 0.7500 0.7620 0.6000 0.9024 0.0870 0.5882 0.5359 1.0000 0.8856 0.3333 0.1111 0.5516 - 0.8278 0.5000
Recall 0.5000 0.6536 0.3000 0.9400 0.2609 0.7692 0.7165 0.2500 0.7874 0.1111 0.2500 0.6447 0.0000 0.7896 0.0476

Accuracy 0.8582 0.7618 0.7254

O1

Data
Distribution 0.0060 0.2156 0.0012 0.7707 0.0049 0.0075 0.3243 0.0001 0.6587 0.0065 0.0127 0.3976 0.0020 0.5732 0.0127

Precision 0.3333 0.5998 0.5000 0.8909 0.5833 0.0000 0.4776 - 0.8424 0.5833 0.0588 0.5268 0.0000 0.7991 0.4000
Recall 0.1500 0.5977 0.1667 0.9049 0.2258 0.0000 0.5238 0.0000 0.8269 0.2414 0.1667 0.5765 0.0000 0.7743 0.1177

Accuracy 0.8305 0.7435 0.7012

O2

Data
Distribution 0.0041 0.2219 0.0006 0.7682 0.0050 0.0071 0.2995 0.0002 0.6841 0.0081 0.0097 0.3636 0.0000 0.6132 0.0122

Precision 0.0000 0.7396 - 0.9125 0.0000 1.0000 0.4940 - 0.8297 1.0000 0.0000 0.4439 - 0.7633 1.0000
Recall 0.0000 0.7188 0.0000 0.9321 0.0000 0.2500 0.5061 0.0000 0.8343 0.2500 - 0.5901 0.0000 0.6775 0.1539

Accuracy 0.8737 0.7447 0.6269

O3

Data
Distribution 0.0032 0.2050 0.0000 0.7869 0.0047 0.0039 0.2856 0.0000 0.6996 0.0103 0.0086 0.3503 0.0026 0.6221 0.0164

Precision 0.0000 0.6759 1.0000 0.9438 0.0000 0.0000 0.4142 1.0000 0.8864 0.0000 0.0000 0.3858 - 0.8309 0.0000
Recall 0.0000 0.7337 0.5000 0.9394 0.0000 - 0.5690 0.3333 0.8079 - 0.0000 0.6129 0.0000 0.7125 0.0000

Accuracy 0.8974 0.7607 0.6624

x64

Task3

O0

Data
Distribution 0.0077 0.1721 0.0008 0.7935 0.0232 0.0101 0.3907 0.0003 0.5650 0.0307 0.0099 0.4296 0.0002 0.5508 0.0083

Precision 0.9579 0.8404 0.5000 0.9342 0.7829 0.2381 0.7421 0.0000 0.8711 0.5818 0.2222 0.7491 - 0.8362 0.0000
Recall 0.4893 0.7577 0.0500 0.9747 0.7126 0.2778 0.7551 0.0000 0.8974 0.2743 0.2500 0.7254 0.0000 0.8661 0.0000

Accuracy 0.9156 0.8182 0.8028

O1

Data
Distribution 0.0062 0.1608 0.0005 0.8073 0.0235 0.0079 0.3795 0.0003 0.5761 0.0338 0.0081 0.4389 0.0001 0.5438 0.0077

Precision 0.9474 0.8457 - 0.9202 0.5872 0.3846 0.6831 1.0000 0.8578 0.5562 0.2222 0.7447 0.0000 0.8375 0.0000
Recall 0.3000 0.6871 0.0000 0.9771 0.7214 0.1852 0.7340 0.2353 0.8573 0.2973 0.2857 0.7481 0.0000 0.8491 0.0000

Accuracy 0.9038 0.7870 0.7985

O2

Data
Distribution 0.0016 0.1520 0.0001 0.8193 0.0265 0.0077 0.3632 0.0001 0.5797 0.0483 0.0079 0.4417 0.0001 0.5404 0.0090

Precision - 0.8630 1.0000 0.9269 0.7217 0.0000 0.6712 1.0000 0.8783 0.8556 0.0000 0.7741 1.0000 0.8426 0.0000
Recall 0.0000 0.7408 0.1000 0.9745 0.8925 0.0000 0.7004 0.1250 0.8918 0.4477 - 0.7608 0.5000 0.8733 0.0000

Accuracy 0.9121 0.8181 0.8135

O3

Data
Distribution 0.0007 0.1847 0.0001 0.7932 0.0206 0.0079 0.3933 0.0000 0.5461 0.0513 0.0070 0.4200 0.0000 0.5569 0.0142

Precision - 0.8633 - 0.9271 0.8611 0.0000 0.7021 - 0.8739 0.7273 0.0000 0.6885 - 0.8286 0.0000
Recall 0.0000 0.7538 0.0000 0.9755 0.8378 - 0.7003 0.0000 0.8754 0.7742 - 0.7395 0.0000 0.8085 0.0000

Accuracy 0.9155 0.8203 0.7663

Task4

O0

Data
Distribution 0.0057 0.2006 0.0015 0.7843 0.0055 0.0074 0.3223 0.0005 0.6581 0.0083 0.0107 0.3879 0.0013 0.5891 0.0094

Precision 0.6842 0.8987 0.8000 0.9777 0.2000 0.6000 0.7214 1.0000 0.9221 0.1429 0.2500 0.5782 1.0000 0.8880 0.4444
Recall 0.6191 0.9301 0.4000 0.9789 0.0625 0.5455 0.7314 0.1667 0.9260 0.0769 1.0000 0.7398 0.1250 0.8199 0.1333

Accuracy 0.9562 0.8725 0.7742

O1

Data
Distribution 0.0055 0.2033 0.0010 0.7830 0.0058 0.0069 0.3128 0.0005 0.6685 0.0090 0.0116 0.3816 0.0011 0.5938 0.0103

Precision 0.7143 0.7936 0.4000 0.9714 0.1429 0.1818 0.6157 1.0000 0.9071 0.3333 0.2857 0.4703 - 0.8677 0.1667
Recall 0.3125 0.9053 0.2500 0.9444 0.0769 0.2222 0.6801 0.4000 0.8828 0.0909 1.0000 0.7457 0.0000 0.7035 0.0345

Accuracy 0.9240 0.8267 0.6918

O2

Data
Distribution 0.0042 0.2261 0.0002 0.7639 0.0051 0.0056 0.2956 0.0003 0.6897 0.0074 0.0090 0.3667 0.0013 0.6110 0.0110

Precision 0.0000 0.8067 - 0.9726 - 0.0000 0.6014 1.0000 0.9014 - 0.0000 0.5206 - 0.8428 0.0000
Recall 0.0000 0.9311 0.0000 0.9473 0.0000 0.0000 0.6692 0.5000 0.8777 0.0000 - 0.7128 0.0000 0.7569 0.0000

Accuracy 0.9305 0.8240 0.7093

O3

Data
Distribution 0.0030 0.2341 0.0004 0.7576 0.0049 0.0058 0.2917 0.0005 0.6937 0.0083 0.0152 0.3660 0.0000 0.5989 0.0200

Precision - 0.7250 - 0.9894 - - 0.6136 - 0.9172 - - 0.4700 - 0.8553 0.3333
Recall 0.0000 0.9667 - 0.9256 - - 0.6750 - 0.8944 - - 0.6912 0.0000 0.7647 0.0769

Accuracy 0.9256 0.8507 0.6980
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Third, EKLAVYA has high precision and recall on cate-
gories that occur relatively less frequently in our dataset.
For example, the inputs with 4 arguments only count for
around 6% in our training set, whereas the precision and
recall of count recovery from callers are around 67% and
78% separately on x86. Similarly, inputs whose first ar-
gument is “enum” data type only occupy around 2% over
our training set. However, the precision and recall of type
recovery are around 76% and 69% from callers on x86.

Fourth, the accuracy of EKLAVYA on x64 is higher
than x84. As shown in Table 1, the average accuracy
of EKLAVYA for counts recovery task are 1.4% (from
callers) and 9.0% (from callees) higher for x64 binaries
than x86. Type recovery tasks exhibit a similar finding.
Table 2 shows that the accuracy averaged for the task
of recovering types for the first, second, and third argu-
ments. EKLAVYA has an average accuracy 3−9% higher
for a given task on x64 than of the same task on x86
binaries. This is possibly because x86 has fewer regis-
ters, and most argument passing is stack-based in x86.
EKLAVYA likely recognizes registers better than stack
offsets.

Finally, the accuracy of the model with respect to the
optimization levels is dependent on type of task. Opti-
mization levels do not have a significant effect on the ac-
curacy of the predictions in type recovery tasks , whereas
the EKLAVYA performs better on O0 than on O1 - O3
for arguments counts recovery. For example, the accu-
racy of type recovery for the first argument from callers
on O0 - O3 are nearly the same, which is around 85%
on x86. But, the accuracy for count recovery from callers
on x86, for instance, is 91.13%, which drops to 83.48%
when we consider binaries compiled with O1. The accu-
racy for count recovery does not change significantly for
optimization levels O1 to O3.

5.3 Explicability of Models

Our guiding principle in selecting the final architecture
is its explicability. In this section, we present our results
from qualitatively analyzing what EKLAVYA learns. We
find that EKLAVYA automatically learns the semantics
and similarity between instructions or instruction set, the
common compiler conventions or idioms, and instruction
patterns that differentiate the use of different values. This
strengthens our belief that the model learns information
that matches our intuitive understanding.

5.3.1 Instruction Semantics Extraction

In this analysis, we employ t-SNE plots and analogical
reasoning to understand the relations learned by the word
embedding model between instructions.

Figure 3: t-SNE visualization of mov instructions on
x64. Each dot represent one mov instruction. Red dots
are where Figure 4 is.

Figure 4: t-SNE visualization of a cluster of mov
$constant, %register instructions on x64.

Semantic clustering of instructions. t-SNE plots al-
low us to project the points on the 256 dimension space
to that of a two-dimensional image giving us a visualiza-
tion of the clustering. Figure 3 shows one cluster corre-
sponding to mov family of instructions, which EKLAVYA
learns to have similarity. Due to a large amount of in-
structions (over a million), a complete t-SNE plot is dif-
ficult to analyze. Therefore, we randomly sampled 1000
instructions from the complete set of instructions, and
select all instructions belonging to the mov family. This
family consists of 472 distinct instruction vectors which
we project onto a two-dimension space using t-SNE.

Then we “zoom-in” Figure 3 and show two inter-
esting findings. These two findings are shown in Fig-
ure 4 and Figure 5. In Figure 4, we recognize mov
$constant, %register instructions, which indi-
cates that EKLAVYA recognizes the similarity between
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Figure 5: t-SNE visualization of mov
constant(%rip), %register and mov
$constant, %register instructions on x64.

all instructions that assign constant values to regis-
ters, and abstract out the register. Figure 5 shows
that EKLAVYA learns the similar representation for
mov constant(%rip), %register instructions.
These two findings show the local structures that embed-
ding model learned within “mov” family.

Relation between instructions. We use analogical
reasoning techniques to find similarity between sets of
instructions. In this paper, we show two analogies that
our embedding model learned. The first example is
that cosine distance between the instructions in the pair
(push %edi, pop %edi) is nearly the same as the
distance between instructions in the pair (push %esi,
pop %esi). This finding corresponds to the fact that
the use of push-pop sequences on one register is anal-
ogous to the use of push-pop sequences on another
register. In essence, this finding shows that the model
abstracts away the operand register from the use of
push-pop (stack operation) instructions on x86/x64.
As another example, we find that the distance be-
tween the instructions in the pair (sub $0x30,%rsp,
add $0x30,%rsp) and the distance between the pair
(sub $0x20,%rsp, add $0x20,%rsp) is nearly
the same. This analysis exhibits that EKLAVYA recog-
nizes that the integer operand can be abstracted away
from such sequences (as long the same integer value is
used). These instruction pairs are often used to allo-
cate / deallocate the local frame in a function, so we find
that EKLAVYA correctly recognizes their analogical use
across functions. Due to space reasons, we limit the pre-
sented examples to three. In our manual investigation,
we find several such semantic analogies that are auto-
learned.

Table 3: The relative score of importance generated by
saliency map for each instruction from four distinct func-
tions to determine the number of arguments given the
whole function.

Instruction Relative Score Instruction Relative Score
pushl %ebp 0.149496 ...
movl %esp, %ebp 0.265591 subq $0x38, %rsp 0.356728
pushl %ebx 0.179169 movq %r8, %r13 1.000000
subl $0x14, %esp 0.370329 movq %rcx, %r15 0.214237
movl 0xc(%ebp), %eax 1.000000 movq %rdx, %rbx 0.140916
movl 8(%ebp), %ecx 0.509958 movq %rsi, 0x10(%rsp) 0.336599
leal 0x8090227, %edx 0.372616 movq %rdi, 0x28(%rsp) 0.253754

... ...
(a) “print name without quoting” compiled

with clang and O0 on 32-bit (having
2 arguments)

(b) “parse stab struct fields” compiled
with clang and O1 on 64-bit (having

5 arguments)
Instruction Relative Score Instruction Relative Score

... ...
subq $0x80, %rsp 1.000000 subq $0x40, %rsp 0.411254
leaq (%rsp), %rdi 0.683561 movq %rdi, -0x10(%rbp) 0.548005
xorl %eax, %eax 0.161366 movq %rsi, -0x18(%rbp) 1.000000
movl $0x10, %ecx 0.658702 movq %rdx, -0x20(%rbp) 0.725123

... movq %rcx, -0x28(%rbp) 0.923426
movl %ecx, %eax 0.049905 movq -0x10(%rbp), %rcx 0.453617

... movq %rcx, -0x30(%rbp) 0.129167
...

addq %rdx, %rcx 0.093260
...

(c) “EmptyTerminal” compiled
with clang and O1 on 64-bit (having

0 arguments)

(d) “check sorted” compiled
with clang and O0 on 64-bit (having

4 arguments)

5.3.2 Auto-learning Conventions

Next, we analyze which input features are considered
important by EKLAVYA towards making a decision on
a given input. We use the saliency map to score the rela-
tive importance of each instruction in the input function.
Below, we present our qualitative analysis to identify the
conventions and idioms that EKLAVYA auto-learns. For
each case below, we compute saliency maps for 20 ran-
domly chosen functions for which EKLAVYA correctly
predicts signatures, and inspect them manually.

We find that instructions that are marked as high in rel-
ative importance for classification suggest that EKLAVYA
auto-learns several important things. We find consis-
tent evidence that EKLAVYA learns calling conventions
and idioms, such as the argument passing conventions,
“use-before-write” instructions, stack frame allocation
instructions, and setup instructions for stack-based ar-
guments to predict the number of arguments accepted
by the function. EKLAVYA consistently identifies in-
structions that differentiate types (e.g. pointers from
char) as important.

Identification of argument registers. We find that the
RNN model for counting arguments discovers the spe-
cific registers used to pass the arguments. We selected
20 sample functions for which types were correctly pre-
dicted, and we consistently find that the saliency map
marks instructions processing caller-save and callee-
save registers as most important. Consider the func-
tion parse stab struct fields shown in Table 3
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as example, wherein the RNN model considers the in-
struction movq %r8, %r13; movq %rcx, %r15;
movq %rdx, %rbx; movq %rsi, 0x10(%rsp)
and movq %rdi, 0x28(%rsp) as the relatively
most important instructions for determining the num-
ber of arguments, given the whole function body. This
matches our manual analysis which shows that rdi,
rsi, rdx, rcx, r8 are used to pass arguments. We
show 4 different functions taking different number of ar-
guments as parameters in Table 3. In each example, one
can see that the RNN identifies the instructions that first
use the incoming arguments as relatively important com-
pared to other instructions.

Further, EKLAVYA seems to correctly place empha-
sis on the instruction which reads a particular regis-
ter before writing to it. This matches our intuitive
way of finding arguments by identifying “use-before-
write” instructions (with liveness analysis). For exam-
ple, in the function check sorted (Table 3(d)), the
register rcx is used in a number of instructions. The
saliency map marks the most important instruction to be
the correct one that uses the register before write. Fi-
nally, the function EmptyTerminal also shows ev-
idence EKLAVYA is not blindly memorizing register
names (e.g. rcx) universally for all functions. It cor-
rectly de-emphasizes that the instruction movq %ecx,
%eax is not related to argument passing. In this example,
rcx has been clobbered before in the instruction movl
$0x10, %ecx on rcx before reaching the movq in-
struction, and EKLAVYA accurately recognizes that rcx
is not used as an argument here. We have manually ana-
lyzed this finding consistently on 20 random samples we
analyzed.

Argument accesses after local frame creation. In our
analyzed samples, EKLAVYA marks the arithmetic in-
struction that allocates the local stack frame as relatively
important. This is because in the compilers we tested, the
access to arguments begins after the stack frame pointer
has been adjusted to allocate the local frame. EKLAVYA
learns this convention and emphasizes its importance in
locating instructions that access arguments (see Table 3).

We highlight two other findings we have confirmed
manually. First, EKLAVYA correctly identifies arguments
passed on the stack as well. This is evident in 20 func-
tions we sampled from the set of functions that accept
arguments on stack, which is a much more common phe-
nomenon in x86 binaries that have fewer registers. Sec-
ond, the analysis of instructions passing arguments from
the body of the caller is nearly as accurate as that from
that of callees. A similar saliency map based analysis of
the caller’s body identifies the right registers and setup of
stack-based arguments are consistently marked as rela-
tively high in importance. Due to space reasons, we have

Table 4: The relative score of importance generated by
saliency map for each instruction from four distinct func-
tions to determine the type of arguments given the whole
function.

Instruction Relative Score Instruction Relative Score
subl $0xc, %esp 0.297477 ...
movl 0x10(%esp), %edx 0.861646 subq $0x328, %rsp 0.774363
movzbl 0x28(%edx), %eax 1.000000 movq %rcx, %r12 0.881474
movl %eax, %ecx 0.332725 movq %rdx, %r15 0.452816
andl $7, %ecx 0.481093 movq %rsi, %rbx 0.363804
cmpb $1, %cl 0.248921 movq %rdi, %r14 0.442176

... movl (%rbx), %eax 1.000000
...

(a) “bfd set symtab” compiled with
gcc-32-O2 (1st argument - pointer)

(b) “do fprintf” compiled with
clang-64-O1 (2nd argument - pointer)

Instruction Relative Score Instruction Relative Score
pushl %ebx 0.235036 ...
subl $0x10, %esp 0.383451 movl %ecx, %r15d 0.431204
fldl 0x1c(%esp) 1.000000 movq %rdx, %r14 0.399483
movl 0x18(%esp), %ecx 0.511937 movzbl (%rsi), %ebp 1.000000
flds 0x8050a90 0.873672 testb $0x20, 0x20b161(%rip) 0.336855
fxch %st(1) 0.668212 jne 0x2d 0.254520

... movl 0x18(%r14), %eax 0.507721
movq 0x20b15c(%rip), %rcx 0.280275

...
(c) “dtotimespec” compiled with
gcc-32-O3 (2nd argument - float)

(d) “print icmp header” compiled with
clang-64-O1 (2nd argument - pointer)

not shown the salience maps for these examples here.

Operations to type. With a similar analysis of saliency
maps, we find that EKLAVYA learns instruction patterns
to identify types. For instance, as shown in examples
of Table 4, the saliency map highlights the relative im-
portance of instructions. One can see that instructions
that use byte-wide registers (e.g. dl) are given impor-
tance when EKLAVYA predicts the type to be char. This
matches our semantic understanding that the char type
is one byte and will often be used in operands of the cor-
responding bit-width. Similarly, we find that in cases
where EKLAVYA predicts the type to be a pointer,
the instructions marked as important have indirect reg-
ister base addressing with the right registers carrying the
pointer values. Where float is correctly predicted, the
instructions highlighted involve XMM registers or float-
ing point instructions. These findings consistently ex-
hibit in our sampled sets, showing that EKLAVYA mirrors
our intuitive understanding of the semantics.

5.3.3 Network Mispredictions

We provide a few concrete examples of EKLAVYA mis-
predictions. These examples show that principled pro-
gram analysis techniques would likely discern such er-
rors; therefore, EKLAVYA does not mimic a full liveness
tracking function yet. To perform this analysis, we in-
spect a random subset of the mispredictions for each of
the tasks using the saliency map. In some cases, we can
speculate the reasons for mispredictions, though there
are best-effort estimates. Our findings are presented in
the form of 2 case studies below.

As shown in Table 5, the second argument is mis-

USENIX Association 26th USENIX Security Symposium    111



Table 5: x86 multiple type mispredictions for second ar-
guments.

Instruction Relative
Score Insturction Relative

Score
subl $0x1c, %esp 0.719351 pushl %edi 0.545965
movsbl 0x24(%esp), %eax 1.000000 movl %edx, %edi 0.145597
movl %eax, 8(%esp) 0.246975 pushl %esi 0.021946
movl $0xffffffff, 4(%esp) 0.418808 pushl %ebx 0.068469
movl 0x20(%esp), %eax 0.485717 movl %eax, %ebx 0.188693
movl %eax, (%esp) 0.260028 subl $0x20, %esp 0.446094
calll 0xffffff3e 0.801598 movl 0xc(%eax), %eax 0.890956
addl $0x1c, %esp 0.403249 movl $0, 0x1c(%esp) 1.000000
retl 0.383143 leal 0x1c(%esp), %esi 0.805058

cmpb %dl, (%eax) 0.824601
...

(a) “quotearg char” compiled with gcc and O1
(true type is char but predicted as int)

(b) “d exprlist” compiled with gcc and O2
(true type is char but predicted as pointer)

Table 6: x64 mispredictions.

Instruction Relative
Score Instruction Relative

Score
pushq %rbx 0.175079 ...
movq %rdi, %rbx 0.392229 pushq %rbx 0.025531
callq 0x3fc 1.000000 subq $0x100, %rsp 0.163929
testq %rax, %rax 0.325375 movq %rdi, -0xe8(%rbp) 0.314619
je 0x1004 0.579551 movq %rsi, -0xf0(%rbp) 0.235489
popq %rbx 0.164043 movl %edx, %eax 0.308323
retq 0.135274 movq %rcx, -0x100(%rbp) 0.435364
movq %rbx, %rdi 0.365685 movl %r8d, -0xf8(%rbp) 0.821577
callq 0xe6d 0.665486 movq %r9, -0x108(%rbp) 1.000000

movb %al, -0xf4(%rbp) 0.24482
...

(a) “ck fopen” compiled with clang and O1
(true type of first argument is pointer but

predicted as int)

(b) “prompt” compiled with gcc and O0
(number of arguments is 6 but

predicted as 7)

predicted as an integer in the first example, while
in the second case study, the second argument is mis-
predicted as a pointer. From these two examples, it
is easy to see how the model has identified instructions
which provide hints to what the types are. In both cases,
the highlighted instructions suggest possibilities of mul-
tiple types and the mispredictions corresponds to one of
it. The exact reasons for mispredictions are unclear but
this seems to suggest that the model is not robust against
situations where there can be multiple type predictions
for different argument positions. We speculate that this
is due to the design choice of training for each specific
argument position a separate sub-network which poten-
tially requires the network to infer calling conventions
from just type information.

In the same example as above, the first argument is
mispredicted as well. The ground truth states that the
first argument is a pointer, whereas EKLAVYA pre-
dicts an integer. This shows another situation where
the model makes a wrong prediction, namely when the
usage of the argument within the function body provides
insufficient hints for the type usage.

We group all mispredictions we have analyzed into
three categories: insufficient information, high argument
counts and off-by-one errors. A typical example of a mis-
prediction due to lack of information is when the func-
tion takes in more arguments than it actually uses. The
first example in Table 6 shows an example of it.

Typically, for a functions with high argument counts

(greater than 6), the model will highlight the use of %r9
and some subsequent stack uses. However in example 2
of Table 6, it shows how the model focuses on %r9 but
still made the prediction of an argument count of 7. The
lack of training data for such high argument counts may
be a reason for lack of robustness.

Off-by-one errors are those in which the network is
able to identify instructions which indicate the number
of arguments but the prediction is off by one. For exam-
ple, the network may identify the use of %rcx as impor-
tant but make the prediction that there are 5 arguments
instead of 4 arguments. No discernible reason for these
has emerged in our analysis.

6 Related Work

Machine Learning on Binaries. Extensive literature
exists on applying machine learning for other binaries
analysis tasks. Such tasks include malware classifi-
cation [42, 5, 30, 20, 36, 15] and function identifica-
tion [37, 7, 43]. The closest related work to ours is by
Shin et al. [43], which apply RNNs to the task of function
boundary identification. These results have high accu-
racy, and such techniques can be used to create the inputs
for EKLAVYA. At a technical level, our work employs
word-embedding techniques and we perform in-depth
analysis of the model using dimensionality reduction,
analogical reasoning and saliency maps. These analy-
sis techniques have not been used in studying the learnt
models for binary analysis tasks. For function identi-
fication, Bao et al. [7] utilize weighted prefix trees to
improve the efficiency of function identification. Many
other works use traditional machine learning techniques
such as n-grams analysis [42], SVMs [36], and condi-
tional random fields [37] for binary analysis tasks (dif-
ferent from ours).

Word embedding is a commonly used technique in
such tasks, since these tasks require a way to repre-
sent words as vectors. These word embeddings can
generally be categorized into two approaches, count-
based [13, 32] and prediction-based [24, 28]. Neural net-
works are also frequently used for tasks like language
translation [11, 49], parsing [46, 45].

Function Arguments Recovery. In binary analysis,
recovery of function arguments [51, 23, 14] is an im-
portant component used in multiple problems. Some ex-
amples of the tasks include hot patching [33] and fine-
grained control-flow integrity enforcement [51]. To sum-
marize, there are two main approaches used to recover
the function argument: liveness analysis and heuristic
methods based on calling convention and idioms. Veen
et. al. [51] in their work make use of both these methods
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to obtain the function argument counts. Lee et. al. [23]
formulate the usage of different data types in binaries to
do type reconstruction. In addition, ElWazeer et al.[14]
apply liveness analysis to provide a fine-grained recovery
of arguments, variables and their types. A direct compar-
ison to this work is difficult because their work considers
a different type syntax than our work. At a high level,
EKLAVYA provides a comparable level of accuracy, al-
beit on more coarse-grained types.

7 Conclusion

In this paper, we present a neural-network-based system
called EKLAVYA for addressing function arguments re-
covery problem. EKLAVYA is compiler and instruction-
set agnostic system with comparable accuracy. In ad-
dition, we find that EKLAVYA indeed learns the calling
conventions and idioms that match our domain knowl-
edge.
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A Evaluation on the First Dataset

In this section, we will highlight the importance of hav-
ing a good dataset. To do this, we will look at the ac-
curacy evaluation using the dataset consisting of only
coreutils, binutils and findutils. Table 7 depicts the re-
sults of the evaluation. Qualitative analysis of the results
remains largely the same. For example, the high me-
dian and low minimum F1 indicates that EKLAVYA mis-
predicts for some cases of which we have verified that
these mis-predicted classes correspond to classes that are
under-represented in our training set. However, a key
difference we observed is the actual accuracy of the re-
sults. The accuracy of the smaller, unsanitized dataset is
consistently high even in cases where we expect other-
wise. For example, the F1 score for argument counting
task is consistently over 0.90 even across optimization
levels. We speculate that the difference in the accuracy
is due to the presence of similar functions across the bi-
naries. Manual inspection into the dataset confirms that
there is indeed significant shared code amongst the bina-
ries skewing the results. We find that it is not uncommon
for programs within the same package, or even across
packages to share the same static libraries or code. This
problem is especially pronounced in binaries within the
same package as these binaries typically share common
internal routines. Note that this problem exists for bina-
ries between packages too. There have been examples
of functions of binaries from different packages having
different names but is nearly identical in terms of the bi-
nary code. In our paper, we propose a simple method to
remove similar functions but a better way of quantifying
the similarities can be utilized to generate a more robust

dataset. Finally, we hope that this can be built upon into
a high quality, publicly available binary dataset where
future binary learning approaches can be evaluated on.

B Short Primer on t-SNE

To maintain the neighborhood identity, t-SNE first use
the conditional probabilities to represent the euclidean
distance between high-dimension dataset. For instance,
the similarity between two distinct instruction Ii and I j is
represented as the conditional probability pi j. The con-
ditional probability has following definition:

p j|i =
exp(−

∥∥Ii− I j
∥∥2

/(2σ2
i ))

∑k 6=i exp(−‖Ii− Ik‖2 /(2σ2
i ))

pi j =
p j|i + pi| j

2n

where n is the number of data points and σ is the vari-
ance of distribution which is centered at each data point
xi. Here, t-SNE determines the value of σi by binary
search with the given perplexity value.

The perplexity can be considered as the measurement
of valid number of neighbors, which is defined as:

perplexity(pi) = xH(pi)

H(pi) == ∑
j

p j|ilog2 p j|i

The second step is to minimize the difference between
the conditional probability between high-dimensional
dataset and low-dimensional dataset. For the conditional
probability qi j of low-dimensional data point yi and y j,
t-SNE applies similar method:

qi j =
(1+

∥∥yi− y j
∥∥2
)−1

∑k 6=m(1+‖yk− ym‖2)−1

Given the conditional probabilities, we can apply gra-
dient descent method to do the minimization task.
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Table 7: Evaluation result on the first dataset for count recovery and type recovery tasks from callers and callees for
different optimization levels given different architectures.Columns 3-18 report the evaluation result of EKLAVYA on
test dataset with different optimization level ranging from O0 to O3. The median, max, and min F1 are calculated over
the reported labels, whereas the accuracy is calculated over the whole test set.

Arch Task O0 O1 O2 O3
Median

F1
Max
F1

Min
F1 Acc Median

F1
Max
F1

Min
F1 Acc Median

F1
Max
F1

Min
F1 Acc Median

F1
Max
F1

Min
F1 Acc

x86

Task1 0.978 0.994 0.923 0.983 0.960 0.991 0.925 0.972 0.968 0.997 0.938 0.977 0.967 0.998 0.936 0.979
Task2 0.984 0.993 0.952 0.986 0.965 0.988 0.933 0.967 0.970 0.982 0.948 0.973 0.966 0.982 0.942 0.972

Task3
1st 0.915 0.989 - 0.979 0.934 0.990 0.400 0.983 0.950 0.991 - 0.985 0.968 0.993 - 0.988
2nd 0.981 1.000 0.904 0.976 0.980 1.000 0.909 0.976 0.981 1.000 - 0.984 0.984 1.000 - 0.984
3rd 0.962 0.982 - 0.978 0.976 0.993 0.500 0.981 0.988 1.000 0.926 0.985 0.977 1.000 0.667 0.984

Task4
1st 0.983 0.994 0.857 0.989 0.994 1.000 0.945 0.990 0.997 1.000 0.750 0.994 0.972 0.997 0.857 0.994
2nd 0.980 1.000 0.975 0.987 0.989 1.000 0.976 0.988 0.984 0.996 - 0.993 0.985 0.996 - 0.993
3rd 0.986 1.000 0.714 0.991 0.983 0.998 0.727 0.989 0.985 1.000 0.800 0.989 0.986 1.000 0.667 0.989

x64

Task1 0.985 0.996 0.967 0.985 0.975 0.997 0.873 0.971 0.978 0.997 0.934 0.979 0.977 0.999 0.946 0.982
Task2 0.997 0.999 0.975 0.998 0.976 0.988 0.942 0.976 0.980 0.991 0.946 0.979 0.979 0.991 0.950 0.978

Task3
1st 0.934 0.992 0.667 0.984 0.938 0.992 0.400 0.985 0.954 0.993 - 0.987 0.969 0.994 - 0.989
2nd 0.984 1.000 0.975 0.980 0.985 1.000 0.978 0.982 0.985 1.000 - 0.986 0.987 0.990 - 0.990
3rd 0.970 0.991 0.667 0.987 0.988 0.997 0.800 0.991 0.993 1.000 0.988 0.992 0.995 1.000 0.990 0.994

Task4
1st 0.987 0.997 0.667 0.995 0.981 0.995 0.667 0.991 0.970 0.996 0.857 0.993 0.971 0.997 0.857 0.994
2nd 0.991 1.000 0.667 0.989 0.984 0.993 0.667 0.989 0.997 1.000 - 0.996 0.997 1.000 - 0.995
3rd 0.983 0.993 0.857 0.989 0.984 1.000 0.727 0.990 0.985 1.000 0.800 0.991 0.988 1.000 0.800 0.992
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Abstract

Rowhammer is a hardware bug that can be exploited to
implement privilege escalation and remote code execu-
tion attacks. Previous proposals on rowhammer mitiga-
tions either require hardware changes or follow heuristic-
based approaches (based on CPU performance coun-
ters). To date, there exists no instant protection against
rowhammer attacks on legacy systems.

In this paper, we present the design and implemen-
tation of a practical and efficient software-only defense
against rowhammer attacks. Our defense, called CATT,
prevents the attacker from leveraging rowhammer to cor-
rupt kernel memory from user mode. To do so, we ex-
tend the physical memory allocator of the OS to phys-
ically isolate the memory of the kernel and user space.
We implemented CATT on x86 and ARM to mitigate
rowhammer-based kernel exploits. Our extensive evalua-
tion shows that our mitigation (i) can stop available real-
world rowhammer attacks, (ii) imposes virtually no run-
time overhead for common user and kernel benchmarks
as well as commonly used applications, and (iii) does not
affect the stability of the overall system.

1 Introduction

CPU-enforced memory protection is fundamental to
modern computer security: for each memory access re-
quest, the CPU verifies whether this request meets the
memory access policy. However, the infamous rowham-
mer attack [11] undermines this access control model
by exploiting a hardware fault (triggered through soft-
ware) to flip targeted bits in memory. The cause for
this hardware fault is due to the tremendous density in-
crease of memory cells in modern DRAM chips, allow-
ing electrical charge (or the change thereof) of one mem-
ory cell to affect that of an adjacent memory cell. Un-
fortunately, increased refresh rates of DRAM modules –
as suggested by some hardware manufacturers – cannot

eliminate this effect [3]. In fact, the fault appeared as
a surprise to hardware manufacturers, simply because it
does not appear during normal system operation, due to
caches. Rowhammer attacks repetitively read (hammer)
from the same physical memory address in very short
time intervals which eventually leads to a bit flip in a
physically co-located memory cell.

Rowhammer Attack Diversity. Although it might
seem that single bit flips are not per-se dangerous, re-
cent attacks demonstrate that rowhammer can be used to
undermine access control policies and manipulate data
in various ways. In particular, it allows for tampering
with the isolation between user and kernel mode [20].
For this, a malicious user-mode application locates vul-
nerable memory cells and forces the operating system to
fill the physical memory with page-table entries (PTEs),
i.e., entries that define access policies to memory pages.
Manipulating one PTE by means of a bit flip allows the
malicious application to alter memory access policies,
building a custom page table hierarchy, and finally as-
signing kernel permissions to a user-mode memory page.
Rowhammer attacks have made use of specific CPU in-
structions to force DRAM access and avoid cache ef-
fects. However, prohibiting applications from executing
these instructions, as suggested in [20], is ineffective be-
cause recent rowhammer attacks do no longer depend on
special instructions [3]. As such, rowhammer has be-
come a versatile attack technique allowing compromise
of co-located virtual machines [18, 26], and enabling
sophisticated control-flow hijacking attacks [6, 19, 22]
without requiring memory corruption bugs [4, 7, 20].
Lastly, a recent attack, called Drammer [24], demon-
strates that rowhammer is not limited to x86-based sys-
tems but also applies to mobile devices running ARM
processors.

Rowhammer Mitigation. The common belief is that
the rowhammer fault cannot be fixed by means of any
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software update, but requires production and deployment
of redesigned DRAM modules. Hence, existing legacy
systems will remain vulnerable for many years, if not
forever. An initial defense approach performed through
a BIOS update to increase the DRAM refresh rate was
unsuccessful as it only slightly increased the difficulty
to conduct the attack [20]. The only other software-
based mitigation of rowhammer, we are aware of, is a
heuristic-based approach that relies on hardware perfor-
mance counters [3]. However, it induces a worst-case
overhead of 8% and suffers from false positives which
impedes its deployment in practice.

Goals and Contributions. The goal of this paper is to
develop the first practical software-based defense against
rowhammer attacks that can instantly protect existing
vulnerable legacy systems without suffering from any
performance overhead and false positives. From all the
presented rowhammer attacks [4, 7, 17, 18, 20, 24, 26],
those which compromise the kernel memory to achieve
privilege escalation are the most practical attacks and
most challenging to mitigate. Other attacks can be ei-
ther mitigated by disabling certain system features, or are
impractical for real-world attacks: rowhammer attacks
on virtual machines [18, 26] heavily depend on memory
deduplication which is disabled in most production envi-
ronments by default. Further, the browser attacks shown
by Bosman et al. [4] require 15 to 225 minutes. As such,
they are too slow for browser attacks in practice. Hence,
we focus in this paper on practical kernel-based rowham-
mer attacks.

We present the design and implementation of a prac-
tical mitigation scheme, called CATT, that does not aim
to prevent bit flips but rather remove the dangerous ef-
fects (i.e., exploitation) of bit flips. This is achieved by
limiting bit flips to memory pages that are already in the
address space of the malicious application, i.e., memory
pages that are per-se untrusted. For this, we extend the
operating system kernel to enforce a strong physical iso-
lation of user and kernel space.

In detail, our main contributions are:

• We present a practical software-based defense
against rowhammer. In contrast to existing
solutions, our defense requires no hardware
changes [11], does not deploy unreliable heuris-
tics [3], and still allows legacy applications to
execute instructions that are believed to alleviate
rowhammer attacks [20].

• We propose a novel enforcement-based mechanism
for operating system kernels to mitigate rowham-
mer attacks. Our design isolates the user and ker-
nel space in physical memory to ensure that the at-

Figure 1: Organization of a DRAM module.

tacker cannot exploit rowhammer to flip bits in ker-
nel memory.

• We present our prototype implementation for the
Linux kernel version 4.6, and demonstrate its ef-
fectiveness in mitigating all previously presented
rowhammer attacks [7, 20].

• We successfully applied our Linux kernel patch
for CATT to the Android version 4.4 for Google’s
Nexus devices. This allows us to also mitigate
Drammer [24], a recent rowhammer-based privilege
escalation exploit targeting ARM.

• We extensively evaluate the performance, robust-
ness and security of our defense against rowham-
mer attacks to demonstrate the effectiveness and
high practicality of CATT. In particular, our per-
formance measurements indicate no computational
overhead for common user and kernel benchmarks.

For a more comprehensive version of this paper with
other rowhammer defense solutions, options and more
technical details we refer to our full technical report
available online [5].

2 Background

In this section, we provide the basic background knowl-
edge necessary for understanding the remainder of this
paper.

2.1 Dynamic Random Access Memory
(DRAM)

A DRAM module, as shown in Figure 1, is structured
hierarchically. The hardware module is called Dual In-
line Memory Module (DIMM), which is physically con-
nected through a channel to the memory controller. Mod-
ern desktop systems usually feature two channels facil-
itating parallel accesses to memory. The DIMM can be
divided into one or two ranks corresponding to its front-
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and backside. Each rank contains multiple chips which
are comprised of one or multiple banks that contain the
memory cells. Each bank is organized in columns and
rows, as shown in Figure 2.

An individual memory cell consists of a capacitor and
a transistor. To store a bit in a memory cell, the capacitor
is electrically charged. By reading a bit from a memory
cell, the cell is discharged, i.e., read operations are de-
structive. To prevent information loss, read operations
also trigger a process that writes the bit back to the cell.
A read operation always reads out the bits from a whole
row, and the result is first saved in the row buffer before
it is then transferred to the memory controller. The row
buffer is also used to write back the content into the row
of memory cells to restore their content.

It is noteworthy to mention that there exists the map-
ping between physical memory address and the rank-,
bank- and row-index on the hardware module is non-
linear. Consequently, two consecutive physical memory
addresses can be mapped to memory cells that are lo-
cated on different ranks, banks, or rows. For example, on
Intel Ivy Bridge CPUs the 20th bit of the physical address
determines the rank. As such, the consecutive physical
addresses 0x2FFFFF and 0x300000 can be located on
front and back side of the DIMM for this architecture.
The knowledge of the physical memory location on the
DIMM is important for both rowhammer attacks and de-
fenses, since bit flips can only occur on the same bank.
For Intel processors, the exact mapping is not officially
documented, but has been reverse engineered [15, 26].

2.2 Rowhammer Overview and Challenges

As mentioned before, memory access control is an es-
sential building block of modern computer security, e.g.,
to achieve process isolation, isolation of kernel code
and data, and manage read-write-execute permission on
memory pages. Modern systems feature a variety of
mechanisms to isolate memory, e.g., paging [10], virtual-

ization [1, 9], IOMMU [2], and special execution modes
like SGX [10] and SMM [10]. However, these mecha-
nisms enforce their isolation through hardware that me-
diates the physical memory accesses (in most cases the
CPU). Hence, memory assigned to isolated entities can
potentially be co-located in physical memory on the
same bank. Since a rowhammer attack induces bit flips
in co-located memory cells, it provides a subtle way to
launch a remote attack to undermine memory isolation.

Recently, various rowhammer-based attacks have been
presented [4, 7, 17, 18, 20, 24, 26]. Specifically, rowham-
mer was utilized to undermine isolation of operating sys-
tem and hypervisor code, and escape from application
sandboxes leveraged in web browsers. As discussed be-
fore, only the attacks that perform privilege escalation
from user to kernel mode are considered as practical. In
the following, we describe the challenges and workflow
of rowhammer attacks. A more elaborated discussion on
real-world, rowhammer-based exploits will be provided
in Section 9.

The rowhammer fault allows an attacker to influence
the electrical charge of individual memory cells by acti-
vating neighboring memory cells. Kim et al. [11] demon-
strate that repeatedly activating two rows separated by
only one row, called aggressor rows ( 1 and 3 in Fig-
ure 2), lead to a bit flip in the enclosed row 2 , called vic-
tim row.1 To do so, the attacker has to overcome the fol-
lowing challenges: (i) undermine memory caches to di-
rectly perform repetitive reads on physical DRAM mem-
ory, and (ii) gain access to memory co-located to data
critical to memory isolation.

Overcoming challenge (i) is complicated because
modern CPUs feature different levels of memory caches
which mediate read and write access to physical mem-
ory. Caches are important as processors are orders of
magnitude faster than current DRAM hardware, turning
memory accesses into a bottleneck for applications [25].
Usually, caches are transparent to software, but many
systems feature special instructions, e.g., clflush or
movnti for x86 [17, 20], to undermine the cache. Fur-
ther, caches can be undermined by using certain read-
access patterns that force the cache to reload data from
physical memory [3]. Such patterns exist, because CPU
caches are much smaller than physical memory, and sys-
tem engineers have to adopt an eviction strategy to ef-
fectively utilize caches. Through alternating accesses to
addresses which reside in the same cache line, the at-
tacker can force the memory contents to be fetched from
physical memory.

The attacker’s second challenge (ii) is to achieve the
physical memory constellation shown in Figure 2. For
this, the attacker needs access to the aggressor rows in

1This rowhammer approach is called double-sided hammering.
Other rowhammer techniques are discussed in Section 8
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order to activate (hammer) them (rows 1 and 3 in Fig-
ure 2). In addition, the victim row must contain data
which is vulnerable to a bit flip ( 2 in Figure 2). Both
conditions cannot be enforced by the attacker. How-
ever, this memory constellation can be achieved with
high probability using the following approaches. First,
the attacker allocates memory hoping that the aggressor
rows are contained in the allocated memory. If the oper-
ating system maps the attacker’s allocated memory to the
physical memory containing the aggressor rows, the at-
tacker has satisfied the first condition. Since the attacker
has no influence on the mapping between virtual mem-
ory and physical memory, she cannot directly influence
this step, but she can increase her probability by repeat-
edly allocating large amounts of memory. Once control
over the aggressor rows is achieved, the attacker releases
all allocated memory except the parts which contain the
aggressor rows. Next, victim data that should be manip-
ulated has to be placed on the victim row. Again, the at-
tacker cannot influence which data is stored in the phys-
ical memory and needs to resort to a probabilistic ap-
proach. The attacker induces the creation of many copies
of the victim data with the goal that one copy of the vic-
tim data will be placed in the victim row. The attacker
cannot directly verify whether the second step was suc-
cessful, but can simply execute the rowhammer attack
and validate whether the attack was successful. If not,
the second step is repeated until the rowhammer success-
fully executes.

Seaborn et al. [20] successfully implemented this ap-
proach to compromise the kernel from an unprivileged
user process. They gain control over the aggressor rows
and then let the OS create huge amounts of page table en-
tries with the goal of placing one page table entry in the
victim row. By flipping a bit in a page table entry, they
gained control over a subtree of the page tables allowing
them to manipulate memory access control policies.

3 Threat Model and Assumptions

Our threat model is in line with related work [4, 7, 17,
18, 20, 26]:

• We assume that the operating system kernel is not
vulnerable to software attacks. While this is hard to
implement in practice it is a common assumption in
the context of rowhammer attacks.

• The attacker controls a low-privileged user mode
process, and hence, can execute arbitrary code but
has only limited access to other system resources
which are protected by the kernel through manda-
tory and discretionary access control.

• We assume that the system’s RAM is vulnerable to
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Figure 3: CATT constrains bit flips to the process’ secu-
rity domain.

rowhammer attacks. Many commonly used systems
(see Table 1) include vulnerable RAM.

4 Design of CATT

In this section, we present the high-level idea and design
of our practical software-based defense against rowham-
mer attacks. Our defense, called CATT,2 tackles the ma-
licious effect of rowhammer-induced bit flips by instru-
menting the operating system’s memory allocator to con-
strain bit flips to the boundary where the attacker’s mali-
cious code executes. CATT is completely transparent to
applications, and does not require any hardware changes.

Overview. The general idea of CATT is to tolerate bit
flips by confining the attacker to memory that is already
under her control. This is fundamentally different from
all previously proposed defense approaches that aimed
to prevent bit flips (cf. Section 9). In particular, CATT
prevents bit flips from affecting memory belonging to
higher-privileged security domains, e.g., the operating
system kernel or co-located virtual machines. As dis-
cussed in Section 2.2, a rowhammer attack requires the
adversary to bypass the CPU cache. Further, the attacker
must arrange the physical memory layout such that the
targeted data is stored in a row that is physically adjacent
to rows that are under the control of the attacker. Hence,
CATT ensures that memory between these two entities is
physically separated by at least one row.3

To do so, CATT extends the physical memory allo-
cator to partition the physical memory into security do-
mains.

Figure 3 illustrates the concept. Without CATT, the
attacker is able to craft a memory layout, where two ag-

2CAn’t Touch This
3Kim et al. [11] mention that the rowhammer fault does not only

affect memory cells of directly adjacent rows, but also memory cells of
rows that are next to the adjacent row. Although we did not encounter
such cases in our experiments, CATT supports multiple row separation
between adversary and victim data memory. Further detailed discus-
sion can be found in Section 8.
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gressor rows enclose a victim row of a higher-privileged
domain such as row 2 in Figure 2. With CATT in place,
the rows which are controlled by the attacker are grouped
into the security domain A, whereas memory belonging
to higher-privileged entities resides with their own secu-
rity domain (e.g., the security domain B). Both domains
are physically separated by at least one row which will
not be assigned to any security domain.

Security Domains. Privilege escalation attacks are
popular and pose a severe threat to modern systems. In
particular, the isolation of kernel and user-mode is crit-
ical and the most appealing attack target. If a user-
space application gains kernel privileges, the adversary
can typically compromise the entire system. We define
and maintain two security domains: a security domain
for kernel memory allocations, and one security domain
for user-mode memory allocations (see also Figure 3).

Challenges. The physical isolation of data raises the
challenge of how to effectively isolate the memory of
different system entities. To tackle this challenge, we
first require knowledge of the mapping between physi-
cal addresses and memory banks. Since an attacker can
only corrupt data within one bank, but not across banks,
CATT only has to ensure that security domains of differ-
ent system entities are isolated within each bank. How-
ever, as mentioned in Section 2.1, hardware vendors do
not specify the exact mapping between physical address
and banks. Fortunately, Pessl et al. [15] and Xiao et
al. [26] provide a methodology to reverse engineer the
mapping. For CATT, we use this methodology to dis-
cover the physical addresses of rows.

We need to ensure that the physical memory manage-
ment component is aware of the isolation policy. This
is vital as the memory management components have
to ensure that newly allocated memory is adjacent only
to memory belonging to the same security domain. To
tackle this challenge, we instrumented the memory allo-
cator to keep track of the domain association of physi-
cal memory and serve memory requests by selecting free
memory from different pools depending on the security
domain of the requested memory.

5 Implementation

Our software-based defense is based on modifications to
low-level system software components, i.e., the physical
memory allocator of the operating system kernel. In our
proof-of-concept implementation of CATT, we focus on
hardening Linux against rowhammer-based attacks. We
successfully applied the mentioned changes to the x86-
kernel version 4.6 and the Android kernel for Nexus de-

vices in version 4.4. We chose Linux as our target OS for
our proof-of-concept implementations for two reasons:
(1) its source code is freely available, and (2) it is widely
used on workstations and mobile devices. In the follow-
ing we will explain the implementation of CATT’s pol-
icy enforcement mechanism in the Linux kernel which
allows for the partitioning of physical memory into iso-
lated security domains. We note that CATT targets both
x86 and ARM-based systems. Until today, rowham-
mer attacks have only been demonstrated for these two
prominent architectures. However, our concept can be
applied to other architectures, as well.

The basic idea underlying our software-based
rowhammer defense is to physically separate rows that
belong to different security domains. Operating systems
are not per-se aware of the notions of cells and rows,
but rather build memory management based on paging.
Commodity operating systems use paging to map virtual
addresses to physical addresses. The size of a page
varies among architectures. On x86 and ARM, the page
size is typically 4096 bytes (4K). As we described in
Section 2.1, DRAM hardware consists of much smaller
units of memory, i.e., individual memory cells storing
single bits. Eight consecutive memory cells represent a
byte, 4096 consecutive bytes a page frame, two to four
page frames a row. Hence, our implementation of CATT
changes low-level components of the kernel to make the
operating system aware of the concept of memory rows.

In the following, we describe how we map individual
memory pages to domains, keep track of different do-
mains, modify the physical memory allocator, and define
partitioning policies for the system’s DRAM hardware.

5.1 Mapping Page Frames to Domains

To be able to decide whether two pages belong to the
same security domain we need to keep track of the secu-
rity domain for each page frame. Fortunately, the kernel
already maintains meta data about each individual page
frame. More specifically, each individual page frame is
associated with exactly one meta data object (struct
page). The kernel keeps a large array of these objects
in memory. Although these objects describe physical
pages, this array is referred to as virtual memory map, or
vmemmap. The Page Frame Number (PFN) of a physical
page is used as an offset into this array to determine the
corresponding struct page object. To be able to as-
sociate a page frame with a security domain, we extend
the definition of struct page to include a field that
encodes the security domain. Since our prototype imple-
mentation targets rowhammer attacks that aim at violat-
ing the separation of kernel and user-space, we encode
security domain 0 for kernel-space, and 1 for user-space.
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5.2 Tracking Security Domains

The extension of the page frame meta data objects en-
ables us to assign pages to security domains. However,
this assignment is dynamic and changes over time. In
particular, a page frame may be requested, allocated, and
used by one domain, after it has been freed by another
domain. Note that this does not violate our security guar-
antees, but is necessary for the system to manage phys-
ical memory dynamically. Yet, we need to ensure that
page frames being reallocated continue to obey our secu-
rity policy. Therefore, we reset the security domain upon
freeing a page.

Upon memory allocation, CATT needs to correctly set
the security domain of the new page. To do so, we re-
quire information about the requesting domain. For our
case, where we aim at separating kernel and user-space
domains, CATT utilizes the call site information, which
is propagated to the memory allocator by default. Specif-
ically, each allocation request passes a set of flags to the
page allocator. These flags encode whether an allocation
is intended for the kernel or the user-space. We leverage
this information and separate the two domains by setting
the domain field of the respective page frame.

When processes request memory, the kernel initially
only creates a virtual mapping without providing actual
physical page frames for the process. Instead, it only
assigns physical memory on demand, i.e., when the re-
questing process accesses the virtual mapping a page
fault is triggered. Thereafter, the kernel invokes the phys-
ical page allocator to search for usable pages and installs
them under the virtual address the process attempted to
access. We modified the page fault handler, which ini-
tiates the allocation of a new page, to pass information
about the security domain to the page allocator. Next,
the page is allocated according to our policy and sets the
domain field of the page frame’s meta data object to the
security domain of the interrupted process.

5.3 Modifying the Physical Page Allocator

The Linux kernel uses different levels of abstraction
for different memory allocation tasks. The physical
page allocator, called zoned buddy allocator, is the
main low-level facility handling physical page alloca-
tions. It exports its interfaces through functions such as
alloc_pages which can be used by other kernel com-
ponents to request physical pages. In contrast to higher-
level allocators, the buddy allocator only allows for al-
locating sets of memory pages with a cardinality which
can be expressed as a power of two (this is referred to
as the order of the allocation). Hence, the buddy allo-
cator’s smallest level of granularity is a single memory
page. The buddy allocator already partitions the system

RAM into different zones. We modify the implementa-
tion of the physical page allocator in the kernel to in-
clude a dedicated memory zone for the kernel. This en-
ables CATT to separate kernel from user pages accord-
ing to the security domain of the origin of the allocation
request. Hence, any requests for kernel pages will be
served from the dedicated memory zone. We addition-
ally instrument a range of maintenance checks to make
them aware of our partitioning policy before the alloca-
tor returns a physical page. If any of these checks fail,
the page allocator is not allowed to return the page in
question.

5.4 Defining DRAM Partitioning Policies
Separating and isolating different security domains is es-
sential to our proposed mitigation. For this reason, we
incorporate detailed knowledge about the platform and
its DRAM hardware configuration into our policy imple-
mentation. While our policy implementation for a tar-
get system largely depends on its architecture and mem-
ory configuration, this does not represent a fundamen-
tal limitation. Indeed, independent research [15, 26] has
provided the architectural details for the most prevalent
architectures, i.e., it shows that the physical address to
DRAM mapping can be reverse engineered automati-
cally for undocumented architectures. Hence, it is pos-
sible to develop similar policy implementations for ar-
chitectures and memory configurations beyond x86 and
ARM. We build on this prior research and leverage the
physical address to DRAM mapping information to en-
force strict physical isolation. In the following, we de-
scribe our implementation of the partitioning strategy for
isolating kernel and user-space.
Kernel-User Isolation. To achieve physical separation
of user and kernel space we adopt the following strat-
egy: we divide each bank into a top and a bottom part,
with a separating row in-between. Page frames for one
domain are exclusively allocated from the part that was
assigned to that domain. The part belonging to the kernel
domain is determined by the physical location of the ker-
nel image.4 As a result, user and kernel space allocations
may be co-located within one bank, but never within ad-
jacent rows.5 Due to this design memory allocated to
the kernel during early boot is allocated from a mem-
ory region which is part of the kernel’s security domain,
hence, the isolation covers all kernel memory. Different
partitioning policies would be possible in theory: for in-
stance, we could confine the kernel to a certain DRAM

4This is usually at 1MB, although Kernel Address Space Layout
Randomization (KASLR) may slightly modify this address according
to a limited offset.

5The exact location for the split can be chosen at compile time.
Hence, the partitioning is not fixed but can be chosen arbitrarily (e.g.,
20-80, 50-50, 75-25, etc.).
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System Operating System System Model

S1 Ubuntu 14.04.4 LTS Dell OptiPlex 7010
S2 Debian 8.2 Dell OptiPlex 990
S3 Kali Linux 2.0 Lenovo ThinkPad x220

Table 1: Model numbers of the vulnerable systems used
for our evaluation.

bank to avoid co-location of user domains within a sin-
gle bank. However, this would likely result in a severe in-
crease of memory latency, since reads and writes to a spe-
cific memory bank are served by the bank’s row buffer.
The benefit of our partitioning policy stems from the fact
that we distribute memory belonging to the kernel secu-
rity domain over multiple banks thereby not negatively
impacting performance. Additionally, the bank split be-
tween top and bottom could be handled at run time, e.g.,
by dynamically keeping track of the individual bank-split
locations similar to the watermark handling already im-
plemented for different zones in the buddy allocator. In
our current prototype, we only need to calculate the row
index of a page frame for each allocation request. More
specifically, we calculate this index from the physical ad-
dress (PA) in the following way:

Row(PA) :=
PA

PageSize ·PagesPerDIMM ·DIMMs

Here, we calculate the number of pages per DIMM
as PagesPerDIMM := PagesPerRow · BanksPerRank ·
RanksPerDIMM. Because all possible row indices are
present once per bank, this equation determines the row
index of the given physical address.6 We note that this
computation is in line with the available rowhammer ex-
ploits [20] and the reported physical to DRAM mapping
recently reverse engineered [15, 26]. Since the row size
is the same for all Intel architectures prior to Skylake [7],
our implementation for this policy is applicable to a wide
range of system setups, and can be adjusted without in-
troducing major changes to fit other configurations as
well.

6 Security Evaluation

The main goal of our software-based defense is to pro-
tect legacy systems from rowhammer attacks. We tested

6The default values for DDR3 on x86 are 4K for the page size,
2 pages per row, 8 banks per rank, 2 ranks per DIMM and between
1 and 4 DIMMs per machine. For DDR4 the number of banks per rank
was doubled. DDR4 is supported on x86 starting with Intel’s Skylake
and AMD’s Zen architecture.

the effectiveness of CATT on diverse hardware configu-
rations. Among these, we identified three hardware con-
figurations, where we observed many reproducible bit
flips. Table 1 and Table 2 lists the exact configurations of
the three platforms we use for our evaluation. Our effec-
tiveness evaluation of CATT is based on two attack sce-
narios. For the first scenario, we systematically search
for reproducible bit flips based on a tool published by
Gruss et al.7 Our second attack scenario leverages a real-
world rowhammer exploit published by Google’s Project
Zero.8 We compared the outcome of both attacks on
our vulnerable systems before and after applying CATT.
Next, we elaborate on the two attack scenarios and their
mitigation in more detail.

6.1 Rowhammer Testing Tool

We use a slightly modified version of the double-sided
rowhammering tool, which is based on the original test
by Google’s Project Zero [20]. Specifically, we extended
the tool to also report the aggressor physical addresses,
and adjusted the default size of the fraction of physical
memory that is allocated for the test. The tool scans the
allocated memory for memory cells that are vulnerable
to the rowhammer attack. To provide comprehensive re-
sults, the tool needs to scan the entire memory of the sys-
tem. However, investigating the entire memory is hard to
achieve in practice since some parts of memory are al-
ways allocated by other system components. These parts
are therefore not available to the testing tool, i.e., mem-
ory reserved by operating system. To achieve maximum
coverage, the tool allocates a huge fraction of the avail-
able memory areas. However, due to the lazy allocation
of Linux the allocated memory is initially not mapped to
physical memory. Hence, each mapped virtual page is
accessed at least once, to ensure that the kernel assigns
physical pages. Because user space only has access to the
virtual addresses of these mappings, the tool exploits the
/proc/pagemap kernel interface to retrieve the phys-
ical addresses. As a result, most of the systems physical
memory is allocated to the rowhammering tool.

Afterwards, the tool analyzes the memory in order to
identify potential victim and aggressor pages in the phys-
ical memory. As the test uses the double-sided rowham-
mering approach two aggressor pages must be identified
for every potential victim page. Next, all potential victim
pages are challenged for vulnerable bit flips. For this, the
potential victim page is initialized with a fixed bit pat-
tern and “hammered” by accessing and flushing the two
associated aggressor pages. This ensures that all of the

7 https://github.com/IAIK/rowhammerjs/tree/
master/native

8 https://bugs.chromium.org/p/project-zero/
issues/detail?id=283
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CPU RAM

System Version Cores Speed Size Speed Manufacturer Part number

S1 i5-3570 4 3.40GHz 2x2GB 1333 MHz Hynix Hyundai HMT325U6BFR8C-H9
1x4GB 1333 MHz Corsair CMV4GX3M1A1600C11

S2 i7-2600 4 3.4GHz 2x4GB 1333 MHz Samsung M378B5273DH0-CH9
S3 i5-2520M 4 2.5GHz 2x4GB 1333 MHz Samsung M471B5273DH0-CH9

Table 2: Technical specifications of the vulnerable systems used for our evaluation.

Rowhammer Exploit: Success (avg. # of tries)

Vanilla System CATT

S1 3(11) 7(3821)
S2 3(42) 7(3096)
S3 3(53) 7(3768)

Table 3: Results of our security evaluation. We found
that CATT mitigates rowhammer attacks. We executed
the rowhammer test on each system three times and av-
eraged the amount of bit flips.

accesses activate a row in the respective DRAM module.
This process is repeated 106 times.9 Lastly, the potential
victim address can be checked for bit flips by comparing
its memory content with the fixed pattern bit. The test
outputs a list of addresses for which bit flips have been
observed, i.e., a list of victim addresses.

Preliminary Tests for Vulnerable Systems. Using the
rowhammering testing tool we evaluated our target sys-
tems. In particular, we were interested in systems that
yield reproducible bit flips, as only those are relevant for
practical rowhammer attacks. This is because the attack
requires two steps. First, the attacker needs to allocate
chunks of memory, and test each chunk to identify vul-
nerable memory. Second, the attacker needs to exploit
the vulnerable memory. Since the attacker cannot force
the system to allocate page tables at a certain physical
position in RAM, the attacker has to repeatedly spray the
memory with page tables to increase the chances of hit-
ting the desired memory location. Both steps relay on
reproducible bit flips.

Hence, we configured the rowhammering tool to only
report memory addresses where bit flips can be triggered
repeatedly. We successively confirmed that this list in-
deed yields reliable bit flips by individually triggering
the reported addresses and checking for bit flips within
an interval of 10 seconds. Additionally, we tested the bit

9This value is the hardcoded default value. Prior research [11, 12]
reported similar numbers.

flips across reboots through random sampling.
The three systems mentioned in Table 1 and Table 2

are highly susceptible to reproducible bit flips. Executing
the rowhammer test on these three times and rebooting
the system after each test run, we found 133 pages with
exploitable bit flips for S1, 31 pages for S2, and 23 pages
for S3.

To install CATT, we patched the Linux kernel of each
system to use our modified memory allocator. Recall that
CATT does not aim to prevent bit flips but rather con-
strain them to a security domain. Hence, executing the
rowhammer test on CATT-hardened systems still locates
vulnerable pages. However, in the following, we demon-
strate based on a real-world exploit that the vulnerable
pages are not exploitable.

6.2 Real-world Rowhammer Exploit
To further demonstrate the effectiveness of our mitiga-
tion, we tested CATT against a real-world rowhammer
exploit. The goal of the exploit is to escalate the privi-
leges of the attacker to kernel privileges (i.e., gain root
access). To do so, the exploit leverages rowhammer to
manipulate the page tables. Specifically, it aims to ma-
nipulate the access permission bits for kernel memory,
i.e., reconfigure its access permission policy. A second
option is to manipulate page table entries in such a way
that they point to attacker controlled memory thereby al-
lowing the attacker to install new arbitrary memory map-
pings.10

To launch the exploit, two conditions need to be satis-
fied: (1) a page table entry must be present in a vulner-
able row, and (2) the enclosing aggressor pages must be
allocated in attacker-controlled memory.

Since both conditions are not directly controllable by
the attacker, the attack proceeds as follows: the attacker
allocates large memory areas. As a result, the operat-
ing system needs to create large page tables to maintain
the newly allocated memory. This in turn increases the
probability to satisfy the aforementioned conditions, i.e.,
a page table entry will eventually be allocated to a victim

10The details of this attack option are described by Seaborn et
al. [20].
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page. Due to vast allocation of memory, the attacker also
increases her chances that aggressor pages are co-located
to the victim page.

Once the preconditions are satisfied, the attacker
launches the rowhammer attack to induce a bit flip in
victim page. Specifically, the bit flip modifies the page
table entry such that a subtree of the paging hierarchy is
under the attacker’s control. Lastly, the attacker modi-
fies the kernel structure that holds the attacker-controlled
user process privileges to elevate her privileges to the su-
peruser root. Since the exploit is probabilistic, it only
succeeds in five out of hundred runs (5%). Nevertheless,
a single successful run allows the attacker to compromise
the entire system.

Effectiveness of CATT. Our defense mechanism does
not prevent the occurrence of bit flips on a system.
Hence, we have to verify that bit flips cannot affect data
of another security domain. Rowhammer exploits rely
on the fact that such a cross domain bit flip is possible,
i.e., in the case of our exploit it aims to induce a bit flip
in the kernel’s page table entries.

However, since the exploit by itself is probabilistic,
an unsuccessful attempt does not imply the effectiveness
of CATT. As described above, the success rate of the
attack is about 5%. After deploying CATT on our test
systems, we repeatedly executed the exploit to minimize
the probability of the exploit failing due to the random
memory layout rather than due to our protection mech-
anism. We automated the process of continuously exe-
cuting the exploit and ran this test for 48h, on all three
test systems. In this time frame the exploit made on aver-
age 3500 attempts of which on average 175 should have
succeeded. However, with CATT, none of the attempts
was successful. Hence, as expected, CATT effectively
prevents rowhammer-based exploits.

As we have demonstrated, CATT successfully pre-
vents the original attack developed on x86 by physically
isolating pages belonging to the kernel from the user-
space domain. In addition to that, the authors of the
Drammer exploit [24] confirm that CATT prevents their
exploit on ARM. The reason is, that they follow the same
strategy as in the original kernel exploit developed by
Project Zero, i.e., corrupting page table entries in the ker-
nel from neighboring pages in user space. Hence, CATT
effectively prevents rowhammer exploits on ARM-based
mobile platforms as well.

7 Performance Evaluation

One of our main goals is practicability, i.e., inducing neg-
ligible performance overhead. To demonstrate practica-
bility of our defense, we thoroughly evaluated the perfor-

mance and stability impact of CATT on different bench-
mark and testing suites. In particular, we used the SPEC
CPU2006 benchmark suite [8] to measure the impact on
CPU-intensive applications, LMBench3 [14] for measur-
ing the overhead of system operations, and the Phoronix
test suite [16] to measure the overhead for common ap-
plications. We use the Linux Test Project, which aims at
stress testing the Linux kernel, to evaluate the stability
of our test system after deploying CATT. We performed
all of our performance evaluation on system S2 (cf. Ta-
ble 2).

7.1 Run-time Overhead

Table 4 summarizes the results of our performance
benchmarks. In general, the SPEC CPU2006 bench-
marks measure the impact of system modifications on
CPU intensive applications. Since our mitigation mainly
affects the physical memory management, we did not
expect a major impact on these benchmarks. However,
since these benchmarks are widely used and well estab-
lished we included them in our evaluation. In fact, we
observe a minimal performance improvement for CATT
by 0.49% which we attribute to measuring inaccuracy.
Such results have been reported before when executing
a set of benchmarks for the same system with the ex-
act same configuration and settings. Hence, we conclude
that CATT does not incur any performance penalty.

LMBench3 is comprised of a number of micro bench-
marks which target very specific performance parame-
ters, e.g., memory latency. For our evaluation, we fo-
cused on micro benchmarks that are related to mem-
ory performance and excluded networking benchmarks.
Similar to the previous benchmarks, the results fluctuate
on average between −0.4% and 0.11%. Hence, we con-
clude that our mitigation has no measurable impact on
specific memory operations.

Finally, we tested the impact of our modifications on
the Phoronix benchmarks. In particular, we selected a
subset of benchmarks11 that, on one hand, aim to mea-
sure memory performance (IOZone and Stream), and, on
the other hand, test the performance of common server
applications which usually rely on good memory perfor-
mance.

To summarize, our rigorous performance evaluation
with the help of different benchmarking suites did not
yield any measurable overhead. This makes CATT a
highly practical mitigation against rowhammer attacks.

11The Phoronix benchmarking suite features a large number of tests
which cover different aspects of a system. By selecting a subset of the
available tests we do not intend to improve our performance evaluation.
On the contrary, we choose a subset of tests that is likely to yield mea-
surable performance overhead, and excluded tests which are unrelated
to our modification, e.g., GPU or machine learning benchmarks.
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SPEC2006 CATT

perlbench 0.29%
bzip2 0.00%
gcc -0.71%
mcf -1.12%
gobmk 0.00%
hmmer 0.23%
sjeng 0.19%
libquantum -1.63%
h264ref 0.00%
omnetpp -0.28%
astar -0.45%
xalan -0.14%
milc -1.79%
namd -1.82%
dealll 0.00%
soplex 0.00%
povray -0.46%
lbm -1.12%
sphinx3 -0.58%

Mean -0.49%

Phoronix CATT

IOZone 0.05%
Unpack
Kernel

-0.50%

PostMark 0.92%
7-Zip 1.18%
OpenSSL -0.22%
PyBench -0.59%
Apache -0.21%
PHPBench 0.35%
stream 1.96%
ramspeed 0.00%
cachebench 0.05%

Mean 0.27%

LMBench3 CATT

Context
Switching:

2p/0K -2.44%
2p/16K 0.00%
2p/64K 2.00%
8p/16K -1.73%
8p/64K 0.00%
16p/16K -1.33%
16p/64K 0.99%
Mean -0,36%

File &
VM Latency:

0K File Create 0.27%
0K File Delete 0.89%
10K File Create -0.35%
10K File Delete 0.47%
Mmap Latency -1.81%
Mean -0,12%

LMBench3 CATT

Local Bandwidth:
Pipe 0.18%
AF UNIX -0.30%
File Reread -0.38%
Mmap reread 0.00%
Bcopy (libc) 0.08%
Bcopy (hand) 0.34%
Mem read 0.00%
Mem write 0.43%
Mean 0.04%

Memory Latency:
L1 $ 0.00%
L2 $ 0.00%
Main mem -2.09%
Rand mem 1.66%
Mean 0.11%

Table 4: The benchmarking results for SPEC CPU2006, Phoronix, and LMBench3 indicate that CATT induce no
measurable performance overhead. In some cases we observed negative overhead, hence, performance improvements.
However, we attribute such results to measuring inaccuracy.

7.2 Memory Overhead

CATT prevents the operating system from allocating cer-
tain physical memory.

The memory overhead of CATT is constant and de-
pends solely on number of memory rows per bank. Per
bank, CATT omits one row to provide isolation between
the security domains. Hence, the memory overhead is
1/#rows (#rows being rows per bank). While the number
of rows per bank is dependent on the system architecture,
it is commonly in the order of 215 rows per bank, i.e., the
overhead is 2−15 =̂ 0,003%.12

7.3 Robustness

Our mitigation restricts the operating system’s access to
the physical memory. To ensure that this has no effect on
the overall stability, we performed numerous stress tests
with the help of the Linux Test Project (LTP) [13]. These

12 https://lackingrhoticity.blogspot.de/2015/
05/how- physical- addresses- map- to- rows- and-
banks.html

tests are designed to stress the operating system to iden-
tify problems. We first run these tests on a vanilla Debian
8.2 installation to receive a baseline for the evaluation of
CATT. We summarize our results in Table 5, and report
no deviations for our mitigation compared to the base-
line. Further, we also did not encounter any problems
during the execution of the other benchmarks. Thus, we
conclude that CATT does not affect the stability of the
protected system.

8 Discussion

Our prototype implementation targets Linux-based sys-
tems. Linux is open-source allowing us to implement
our defense. Further, all publicly available rowhammer
attacks target this operating system. CATT can be easily
ported to memory allocators deployed in other operating
systems. In this section, we discuss in detail the gener-
ality of our software-based defense against rowhammer.
For a detailed discussion of possible extensions and ad-
ditional policies we refer to our technical report [5].
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Linux Test Project Vanilla CATT

clone 3 3

ftruncate 3 3

prctl 3 3

ptrace 3 3

rename 3 3

sched_prio_max 3 3

sched_prio_min 3 3

mmstress 3 3

shmt 7 7

vhangup 7 7

ioctl 7 7

Table 5: Result for individual stress tests from the Linux
Test Project.

8.1 Applying CATT to Mobile Systems

The rowhammer attack is not limited to x86-based sys-
tems, but has been recently shown to also affect the ARM
platform [24]. The ARM architecture is predominant
in mobile systems, and used in many smartphones and
tablets. As CATT is not dependent on any x86 specific
properties, it can be easily adapted for ARM based sys-
tems. We demonstrate this by applying our extended
physical memory allocator to the Android kernel for
Nexus devices in version 4.4. Since there are no major
deviations in the implementation of the physical page al-
locator of the kernel between Android and stock Linux
kernel, we did not encounter any obstacles during the
port.

8.2 Single-sided Rowhammer Attacks

From our detailed description in Section 4 one can easily
follow that our proposed solution can defeat all known
rowhammer-based privilege escalation attacks in gen-
eral, and single-sided rowhammer attacks [24] in partic-
ular. In contrast to double-sided rowhammer attacks (see
Figure 2), single-sided rowhammer attacks relax the ad-
versary’s capabilities by requiring that the attacker has
control over only one row adjacent to the victim memory
row. As described in more detail in Section 4, CATT iso-
lates different security domains in the physical memory.
In particular, it ensures that different security domains
are separated by at least one buffer row that is never used
by the system. This means that the single-sided rowham-
mer adversary can only flip bits in own memory (that it
already controls), or flip bits in buffer rows.

8.3 Benchmarks Selection

We selected our benchmarks to be comparable to the re-
lated literature. Moreover, we have done evaluations that
go beyond those in the existing work to provide addi-
tional insight. Hereby, we considered different evalua-
tion aspects: We executed SPEC CPU2006 to verify that
our changes to the operating system impose no overhead
of user-mode applications. Further, SPEC CPU2006 is
the most common benchmark in the field of memory-
corruption defenses, hence, our solutions can be com-
pared to the related work. LMBench3 is specifically
designed to evaluate the performance of common sys-
tem operations, and used by the Linux kernel developers
to test whether changes to the kernel affect the perfor-
mance. As such LMBench3 includes many tests. For
our evaluation, we included those benchmarks that per-
form memory operations and are relevant for our de-
fense. Finally, we selected a number of common applica-
tions from the Phoronix test suite as macro benchmarks,
as well as the pts/memory tests which are designed to
measure the RAM and cache performance. For all our
benchmarks, we did not observe any measurable over-
head (see Table 4).

8.4 Vicinity-less Rowhammering

All previous Rowhammer attacks exploit rows which are
physically co-located [4, 7, 20, 24]. However, while Kim
et al. [11] suggested that physical adjacency accounts for
the majority of possible bit flips, they also noted that
this was not always the case. More specifically, they at-
tributed potential aggressor rows with a greater row dis-
tance to the re-mapping of faulty rows: DRAM manu-
facturers typically equip their modules with around 2%
of spare rows, which can be used to physically replace
failing rows by re-mapping them to a spare row [23].
This means, that physically adjacent spare rows can be
assigned to arbitrary row indices, potentially undermin-
ing our isolation policy. For this, an adversary requires a
way of determining pairs of defunct rows, which are re-
mapped to physically adjacent spare rows. We note that
such a methodology can also be used to adjust our policy
implementation, e.g., by disallowing any spare rows to
be assigned to kernel allocations. Hence, re-mapping of
rows does not affect the security guarantees provided by
CATT.

9 Related Work

In this section, we provide an overview of existing
rowhammer attack techniques, their evolution, and pro-
posed defenses. Thereafter, we discuss the shortcomings
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of existing work on mitigating rowhammer attacks and
compare them to our software-based defense.

9.1 Rowhammer Attacks

Kim et al. [11] were the first to conduct experiments and
analyze the effect of bit flipping due to repeated mem-
ory reads. They found that this vulnerability can be
exploited on Intel and AMD-based systems. Their re-
sults show that over 85% of the analyzed DRAM mod-
ules are vulnerable. The authors highlight the impact on
memory isolation, but they do not provide any practi-
cal attack. Seaborn and Dullien [20] published the first
practical rowhammer-based privilege-escalation attacks
using the x86 clflush instruction. In their first at-
tack, they use rowhammer to escape the Native Client
(NaCl) [27] sandbox. NaCl aims to safely execute na-
tive applications by 3rd-party developers in the browser.
Using rowhammer malicious developers can escape the
sandbox, and achieve remote code execution on the tar-
get system. With their second attack, Seaborn and Dul-
lien utilize rowhammer to compromise the kernel from
an unprivileged user-mode application. Combined with
the first attack, the attacker can remotely compromise
the kernel without exploiting any software vulnerabili-
ties. To compromise the kernel, the attacker first fills
the physical memory with page-table entries by allocat-
ing a large amount of memory. Next, the attacker uses
rowhammer to flip a bit in memory. Since the physical
memory is filled with page-table entries, there is a high
probability that an individual page-table entry is mod-
ified by the bit flip in a way that enables the attacker
to access other page-table entries, modify arbitrary (ker-
nel) memory, and eventually completely compromise the
system. Qiao and Seaborn [17] implemented a rowham-
mer attack with the x86 movnti instruction. Since the
memcpy function of libc – which is linked to nearly
all C programs – utilizes the movnti instruction, the at-
tacker can exploit the rowhammer bug with code-reuse
attack techniques [21]. Hence, the attacker is not re-
quired to inject her own code but can reuse existing code
to conduct the attack. Aweke et al. [3] showed how to
execute the rowhammer attack without using any spe-
cial instruction (e.g., clflush and movnti). The au-
thors use a specific memory-access pattern that forces
the CPU to evict certain cache sets in a fast and reliable
way. They also concluded that a higher refresh rate for
the memory would not stop rowhammer attacks. Gruss
et al. [7] demonstrated that rowhammer can be launched
from JavaScript. Specifically, they were able to launch
an attack against the page tables in a recent Firefox ver-
sion. Similar to Seaborn and Dullien’s exploit this attack
is mitigated by CATT. Later, Bosman et al. [4] extended
this work by exploiting the memory deduplication fea-

ture of Windows 10 to create counterfeit JavaScript ob-
jects, and corrupting these objects through rowhammer
to gain arbitrary read/write access within the browser. In
their follow-up work, Razavi et al. [18] applied the same
attack technique to compromise cryptographic (private)
keys of co-located virtual machines. Concurrently, Xiao
et al. [26] presented another cross virtual machine attack
where they use rowhammer to manipulate page-table en-
tries of Xen. Further, they presented a methodology to
automatically reverse engineer the relationship between
physical addresses and rows and banks. Independently,
Pessl et al. [15] also presented a methodology to reverse
engineer this relationship. Based on their findings, they
demonstrated cross-CPU rowhammer attacks, and prac-
tical attacks on DDR4. Van der Veen et al. [24] recently
demonstrated how to adapt the rowhammer exploit to es-
calate privileges in Android on smartphones. Since the
authors use the same exploitation strategy of Seaborn
and Dullien, CATT can successfully prevent this privi-
lege escalation attack. While the authors conclude that
it is challenging to mitigate rowhammer in software, we
present a viable implementation that can mitigate practi-
cal user-land privilege escalation rowhammer attacks.

Note that all these attacks require memory belonging
to a higher-privileged domain (e.g., kernel) to be phys-
ically co-located to memory that is under the attacker’s
control. Since our defense prevents direct co-location,
we mitigate these rowhammer attacks.

9.2 Defenses against Rowhammer

Kim et al. [11] present a number of possible mitigation
strategies. Most of their solutions involve changes to
the hardware, i.e., improved chips, refreshing rows more
frequently, or error-correcting code memory. However,
these solutions are not very practical: the production
of improved chips requires an improved design, and a
new manufacturing process which would be costly, and
hence, is unlikely to be implemented. The idea behind
refreshing the rows more frequently (every 32ms instead
of 64ms) is that the attacker needs to hammer rows many
times to destabilize an adjacent memory cell which even-
tually causes the bit flip. Hence, refreshing (stabilizing)
rows more frequently could prevent attacks because the
attacker would not have enough time to destabilize indi-
vidual memory cells. Nevertheless, Aweke et al. [3] were
able to conduct a rowhammer attack within 32ms. There-
fore, a higher refresh rate alone cannot be considered as
an effective countermeasure against rowhammer. Error-
correcting code (ECC) memory is able to detect and cor-
rect single-bit errors. As observed by Kim et al. [11]
rowhammer can induce multiple bit flips which cannot
be detected by ECC memory. Further, ECC memory has
an additional space overhead of around 12% and is more
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expensive than usual DRAM, therefore it is rarely used.
Kim et al. [11] suggest to use probabilistic adjacent

row activation (PARA) to mitigate rowhammer attacks.
As the name suggests, reading from a row will trigger
an activation of adjacent rows with a low probability.
During the attack, the malicious rows are activated many
times. Hence, with high probability the victim row gets
refreshed (stabilized) during the attack. The main advan-
tage of this approach is its low performance overhead.
However, it requires changes to the memory controller.
Thus, PARA is not suited to protect legacy systems.

To the best of our knowledge Aweke et al. [3] pro-
posed the only other software-based mitigation against
rowhammer. Their mitigation, coined ANVIL, uses per-
formance counters to detect high cache-eviction rates
which serves as an indicator of rowhammer attacks [3].
However, this defense strategy has three disadvantages:
(1) it requires the CPU to feature performance coun-
ters. In contrast, our defense does not rely on any spe-
cial hardware features. (2) ANVIL’s worst-case run-
time overhead for SPEC CPU2006 is 8%, whereas our
worst-case overhead is 0.29% (see Table 4). (3) ANVIL
is a heuristic-based approach. Hence, it naturally suf-
fers from false positives (although the FP rate is below
1% on average). In contrast, we provide a determinis-
tic approach that is guaranteed to stop rowhammer-based
kernel-privilege escalation attacks.

10 Conclusion

Rowhammer is a hardware fault, triggered by software,
allowing the attacker to flip bits in physical memory
and undermine CPU-enforced memory access control.
Recently, researchers have demonstrated the power and
consequences of rowhammer attacks by breaking the iso-
lation between virtual machines, user and kernel mode,
and even enabling traditional memory-corruption attacks
in the browser. In particular, rowhammer attacks that
undermine the separation of user and kernel mode are
highly practical and critical for end-user systems and de-
vices.

Contrary to the common belief that rowhammer re-
quires hardware changes, we show the first defense strat-
egy that is purely based on software. CATT is a practical
mitigation that tolerates rowhammer attacks by dividing
the physical memory into security domains, and limiting
rowhammer-induced bit flips to the attacker-controlled
security domain. To this end, we implemented a mod-
ified memory allocator that strictly separates memory
rows of user and kernel mode. Our detailed evaluation
of CATT demonstrates that our defense mechanism pre-
vents all known rowhammer-based kernel privilege esca-
lation attacks while neither affecting the run-time perfor-
mance nor the stability of the system.
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Abstract
Control-Flow Integrity (CFI), as a means to prevent
control-flow hijacking attacks, enforces that each instruc-
tion transfers control to an address in a set of valid targets.
The security guarantee of CFI thus depends on the defi-
nition of valid targets, which conventionally are defined
as the result of a static analysis. Unfortunately, previous
research has demonstrated that such a definition, and thus
any implementation that enforces it, still allows practical
control-flow attacks.

In this work, we present a path-sensitive variation of
CFI that utilizes runtime path-sensitive point-to analysis
to compute the legitimate control transfer targets. We
have designed and implemented a runtime environment,
PITTYPAT, that enforces path-sensitive CFI efficiently by
combining commodity, low-overhead hardware monitor-
ing and a novel runtime points-to analysis. Our formal
analysis and empirical evaluation demonstrate that, com-
pared to CFI based on static analysis, PITTYPAT ensures
that applications satisfy stronger security guarantees, with
acceptable overhead for security-critical contexts.

1 Introduction

Attacks that compromise the control-flow of a program,
such as return-oriented programming [33], have criti-
cal consequences for the security of a computer system.
Control-Flow Integrity (CFI) [1] has been proposed as a
restriction on the control-flow transfers that a program
should be allowed to take at runtime, with the goals of
both ruling out control-flow hijacking attacks and being
enforced efficiently.

A CFI implementation can be modeled as program
rewriter that (1) before a target program P is executed, de-
termines feasible targets for each indirect control transfer
location in P, typically done by performing an analysis
that computes a sound over-approximation of the set of
all memory cells that may be stored in each code pointer

(i.e., a static points-to analysis [2, 34]). The rewriter then
(2) rewrites P to check at runtime before performing each
indirect control transfer that the target is allowed by the
static analysis performed in step (1).

A significant body of work [1, 21, 41] has introduced
approaches to implement step (2) for a variety of exe-
cution platforms and perform it more efficiently. Unfor-
tunately, the end-to-end security guarantees of such ap-
proaches are founded on the assumption that if an attacker
can only cause a program to execute control branches
determined to be feasible by step (1), then critical appli-
cation security will be preserved. However, recent work
has introduced new attacks that demonstrate that such an
assumption does not hold in practice [5, 12, 32]. The lim-
itations of existing CFI solutions in blocking such attacks
are inherent to any defense that uses static points-to infor-
mation computed per control location in a program. Cur-
rently, if a developer wants to ensure that a program only
chooses valid control targets, they must resort to ensure
that the program satisfies data integrity, a significantly
stronger property whose enforcement typically incurs pro-
hibitively large overhead and/or has deployment issues,
such as requiring the protected program being recompiled
together with all dependent libraries and cannot be ap-
plied to programs that perform particular combinations of
memory operations [17, 22–24].

In this work, we propose a novel, path-sensitive vari-
ation of CFI that is stronger than conventional CFI (i.e.,
CFI that relies on static points-to analysis). A program
satisfies path-sensitive CFI if each control transfer taken
by the program is consistent with the program’s entire
executed control path. Path-sensitive CFI is a stronger
security property than conventional CFI, both in principle
and in practice. However, because it does not place any
requirements on the correctness of data operations, which
happen much more frequently, it can be enforced much
more efficiently than data integrity. To demonstrate this,
we present a runtime environment, named PITTYPAT, that
enforces path-sensitive efficiently using a combination of
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commodity, low-overhead hardware-based monitoring
and a new runtime points-to analysis.

PITTYPAT addressed two key challenges in building an
efficient path-sensitive CFI solution. The first challenge
is how to efficiently collect the path information about a
program’s execution so as to perform the analysis and de-
termine if the program has taken only valid control targets.
Collecting such information is not straightforward for dy-
namic analysis. An approach that maintains information
inside the same process address space of the monitored
program (e.g., [17]) must carefully protect the informa-
tion; otherwise it would be vulnerable to attacks [11]. On
the other hand, an approach that maintains information in
a separate process address space must efficiently replicate
genuine and sufficient data from the monitored program.

The second key challenge is how to use collected infor-
mation to precisely and efficiently compute the points-to
relationship. Niu et al. [26] have proposed leveraging
execution history to dynamically activate control transfer
targets. However, since the activation is still performed
over the statically computed control-flow graph, its accu-
racy can degrade to the same as pure static-analysis-based
approach. We compare PITTYPAT to such approaches in
detail in §6.

PITTYPAT applies two key techniques in addressing
these two challenges. First, PITTYPAT uses an event-
driven kernel module that collects all chosen control-
transfer targets from the Processor Tracing (PT) feature
available on recent Intel processors [31]. PT is a hardware
feature that efficiently records conditional and indirect
branches taken by a program. While PT was originally in-
troduced to enable detailed debugging through complete
tracing, our work demonstrates that it can also be ap-
plied as an effective tool for performing precise, efficient
program analysis for security.

The second technique is an abstract-interpretation-
based incremental points-to analysis. Our analysis embod-
ies two key innovations. First, raw PT trace is highly com-
pressed (see §3 for details). As a result, reconstructing the
control-flow (i.e., source address to destination address)
itself is time consuming and previous work has utilized
multiple threads to reduce the decoding latency [13]. Our
insight to solve this problem is to sync up our analysis
with the execution, so that our analysis only needs to
know what basic blocks being executed, not the control
transfer history. Therefore, we can directly map the PT
trace to basic blocks using the control-flow graph (CFG).
The second optimization is based on the observation that
static points-to analyses collect and solve a system of
constraints over all pairs of pointer variables in the pro-
gram [2, 15]. While this approach has good throughput,
it introduces unacceptable latency for online analysis. At
the same time, to enforce CFI, we only need to know the
points-to information of code pointers. Based on this ob-

servation, our analysis eagerly evaluates control relevant
points-to constraints as they are generated.

We implemented PITTYPAT as an instrumenting com-
piler for the LLVM compiler [20] and a tool for Linux;
the instrumenting compiler is an artifact of the current
version of our prototype: PITTYPAT does not fundamen-
tally rely on the ability to compile and instrument a target
program. To evaluate PITTYPAT, we used it to enforce
path-sensitive CFI for a set of security benchmarks devel-
oped in independent work. The results demonstrate that
PITTYPAT can detect recent attacks on the control flow
of benign benchmarks [5], as well as subversion of con-
trol flow in programs explicitly crafted to contain control
vulnerabilities that are difficult to detect [12, 32]. In com-
mon cases where CFI allows a program to choose from
tens of control transfer targets, PITTYPAT typically deter-
mines that only a single target is valid, based on the pro-
gram’s executed control path. On even compute-intensive
benchmarks, PITTYPAT incurs reasonable performance
overhead: a geometric mean of 12.73% over all SPEC
CPU2006 benchmarks, whereas techniques that enforce
data integrity incur 122.60%.

The rest of this paper is organized as follows. In §2,
we illustrate PITTYPAT by example. In §3, we review
previous work on which PITTYPAT is based. In §4, we
present the security guarantees that PITTYPAT establishes,
and describe the design of PITTYPAT. In §5, we describe
the implementation of PITTYPAT in detail. In §6, we
present an empirical evaluation of PITTYPAT. In §7, we
compare PITTYPAT to related work. In §8, we conclude
our work.

2 Overview

In this section, we present PITTYPAT by introducing a
running example. In §2.1, we present a program dispatch
that contains a control-flow vulnerability. In §2.2, we
use dispatch to illustrate that any defense that enforces
conventional CFI allows effective attacks on control-flow.
In §2.3, we illustrate that path-sensitive CFI enforced by
PITTYPAT does not allow the attack introduced in §2.2. In
§2.4, we illustrate how PITTYPAT enforces path-sensitive
CFI.

2.1 Subverting control flow

Figure 1 contains a C program, named dispatch, that
we will use to illustrate PITTYPAT. dispatch declares a
pointer handler (line L7) to a function that takes an argu-
ment of a struct request (defined at line L1–L4), which
has two fields: auth_user represents a user’s identity, and
args stores the arguments. dispatch contains a loop (line
L10–L23) that continuously accepts requests from users,
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1 struct request {
2 int auth_user;
3 char args[100];
4 };
5

6 void dispatch() {
7 void (*handler)(struct request *) = 0;
8 struct request req;
9

10 while(1) {
11 // parse the next request
12 parse_request(&req);
13 if (req.auth_user == ADMIN) {
14 handler = priv;
15 } else {
16 handler = unpriv;
17 // NOTE. buffer overflow, which can overwrite
18 // the handler variable
19 strip_args(req.args);
20 }
21 // invoke the hanlder
22 handler(&req);
23 }
24 }

Figure 1: A motivating example that illustrates the advan-
tages of control-path validity.

and calls parse_request (line 12) to parse the next re-
quest. If the request is an administrator (line L13), the
function pointer handler will be assigned with priv. Oth-
erwise, handler is assigned to unpriv (line L16), and
dispatch will call strip_args (line L19) to strip the re-
quest’s arguments. At last, dispatch calls handler to
perform relevant behaviors.

However, the procedure strip_args contains a buffer-
overflow vulnerability, which allows an attacker with con-
trol over input to strip_args to potentially subvert the
control flow of a run of dispatch by using well-known
techniques [28]. In particular, the attacker can provide
inputs that overwrite memory outside of the fixed-size
buffer pointed to by req.args in order to overwrite the
address stored in handler to be the address of a function
of their choosing, such as execve.

2.2 Limitations of existing CFI

Protecting dispatch so that it satisfies conventional
control-flow integrity (CFI) [1] does not provide strong
end-to-end security guarantees. An implementation of
CFI attempts to protect a given program P in two steps. In
the first step, the CFI implementation computes possible
targets of each indirect control transfer in P by running
a flow-sensitive points-to analysis1 [2, 15, 34]. Such an
approach, when protecting dispatch, would determine
that when the execution reaches each of the following
control locations L, the variable handler may store the

1Some implementations of CFI [25, 41, 42] use a type-based alias
analysis to compute valid targets, but such approaches are even less
precise.

following addresses p(L):

p(L7) ={0} p(L14) ={priv}
p(L16) ={unpriv} p(L22) ={priv,unpriv}

While flow-sensitive points-to analysis may implement
various algorithms, the key property of each such analy-
sis is that it computes points-to information per control
location. If there is any run of the program that may reach
control location L with a pointer variable p storing a par-
ticular address a, then the result of the points-to analysis
must reflect that p may point to a at L. In the case of
dispatch, any flow-sensitive points-to analysis can only
determine that at line L22, handler may point to either
priv or unpriv.

After computing points-to sets p for program P, the
second step of a CFI implementation rewrites P so that at
each indirect control-transfer instruction in each run, the
rewritten P can only transfer control to a control location
that is a points-to target in the target register according
to p. Various implementations have been proposed for
encoding points-to sets and validating control transfers
efficiently [1, 9, 41].

However, all such schemes are fundamentally limited
by the fact that they can only validate if a transfer target
is allowed by checking its membership in a flow-sensitive
points-to set, computed per control location. dispatch
and the points-to sets p illustrate a case in which any
such scheme must allow an attacker to subvert control
flow. In particular, an attacker can send a request with
the identity of anonymous user. When dispatch accepts
such a request, it will store unpriv in handler, and then
strip the arguments. The attacker can provide arguments
crafted to overwrite handler to store priv, and allow
execution to continue. When dispatch calls the function
stored in handler (line L22), it will attempt to transfer
control to priv, a member of the points-to set for L22.
Thus, dispatch rewritten to enforce CFI must allow the
call. Let the sequence of key control locations visited in
the above attack be denoted p0 = [L7,L16,L22].

Although PathArmor [37] enforces context-sensitive
CFI by inspecting the history of branches taken at run-
time before allowing the monitored execution to perform a
security-sensitive operation, it decides to allow execution
to continue if the path contains a sequence of control trans-
fers that are feasible according to a static, flow-sensitive
points-to analysis computed before the program is run.
As a result, PathArmor is susceptible to a similar attack.

Per-input CFI (denoted π-CFI) [26] avoids some of the
vulnerabilities in CFI inherent to its use of flow-sensitive
points-to sets, such as the vulnerability described above
for dispatch. π-CFI updates the set of valid targets of
control transfers of each instruction dynamically, based
on operations performed during the current program ex-
ecution. For example, π-CFI only allows a program to
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perform an indirect call to a function whose address was
taken during an earlier program operation. In particular, if
dispatch were rewritten to enforce π-CFI, then it would
block the attack described above: in the execution of π-
CFI described, the only instruction that takes the address
of handler (line L14) is never executed, but the indirect
call at L22 uses priv as the target of an indirect call.

However, in order for π-CFI to enforce per-input CFI
efficiently, it updates valid points-to targets dynamically
using simple, approximate heuristics, rather than a precise
program analysis that accurately models the semantics of
instructions executed. For example, if a function f ap-
pears in the static points-to set of a given control location
L and has its address taken at any point in an execution,
then f remains in the points-to set of L for the rest of
the execution, even if f is no longer a valid target as the
result of program operations executed later. In the case of
dispatch, once dispatch takes the address of priv, priv
remains in the points-to set of control location L22 for the
remainder of the execution.

An attacker can thus subvert the control flow of
dispatch rewritten to enforce π-CFI by performing the
following steps. (1) An administrator sends a request,
which causes dispatch to store priv in handler, call it,
and complete an iteration of its loop. (2) The attacker
sends an anonymous request, which causes dispatch to
set unpriv in handler. (3) The attacker provides argu-
ments that, when handled by strip_args, overwrite the
address in handler to be priv, which causes dispatch to
call priv with arguments provided by the attacker.

Because priv will be enabled as a control target as
a result of the operations performed in step (1), priv
will be a valid transfer target at line L22 in step (3).
Thus, the attacker will successfully subvert control flow.
Let the key control locations in the control path along
which the above attack is performed be denoted p1 =
[L7,L14,L22,L16,L22].

2.3 Path-sensitive CFI
In this paper, we introduce a path-sensitive version of
CFI that addresses the limitations of conventional CFI
illustrated in §2.2. A program satisfies path-sensitive
CFI if at each indirect control transfer, the program only
transfers control to an instruction address that is in the
points-to set of the target register according to a points-to
analysis of the whole executed control path.
dispatch rewritten to satisfy path-sensitive CFI would

successfully detect the attacks given in §2.2 on existing
CFI. One collection of valid points-to sets for handler
for each control location in subpath p0 (§2.2) are the
following:

(L7,{0}),(16,{unpriv}),(L22,{unpriv})
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Figure 2: The architecture of PITTYPAT. P denotes a
target program. The analyzer and driver modules of
PITTYPAT are described in §2.4.

When execution reaches L22, priv is not in the points-to
set of handler, and the program halts.

Furthermore, dispatch rewritten to satisfy path-
sensitive CFI would block the attack given in §2.2 on
π-CFI. One collection of valid points-to sets for handler
for each control location in subpath p1 are the following:

(L7,{0}) (L14,{priv}) (L22,{priv})
(L16,{unpriv}) (L22,{unpriv})

When execution reaches L22 in the second iteration of
the loop in dispatch, priv is not in the points-to set of
handler, and the program determines that the control-
flow has been subverted.

2.4 Enforcing path-sensitive CFI efficiently
The points-to sets for control paths considered in §2.3
illustrate that if a program can be rewritten to satisfy path-
sensitive CFI, it can potentially satisfy a strong security
guarantee. However, ensuring that a program satisfies
path-sensitive CFI is non-trivial, because the program
must be extended to dynamically compute the results
of sophisticated semantic constraints [2] over the exact
control path that it has executed.

A key contribution of our work is the design of a run-
time environment, PITTYPAT, that enforces path-sensitive
CFI efficiently. PITTYPAT’s architecture is depicted in
Figure 2. For program P, the state and code of PITTYPAT
consist of the following modules, which execute concur-
rently: (1) a user-space process in which P executes, (2)
a user-space analysis module that maintains points-to in-
formation for the control-path executed by P, and (3) a
kernel-space driver that sends control branches taken by
P to the analyzer and validates system calls invoked by P
using the analyzer’s results.

Before a program P is monitored, the analysis mod-
ule is given (1) an intermediate representation of P and
(2) meta data including a map from each instruction ad-
dress in the binary representation of P to the instruction
in the intermediate representation of P. We believe that it
would also be feasible to implement PITTYPAT to protect
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a program given only as a binary, given that the analyzer
module only must perform points-to analysis on the se-
quence of executed instructions, as opposed to inferring
the program’s complete control-flow graph.

As P executes a sequence of binary instructions, the
driver module copies the targets of control branches taken
by P from PT’s storage to a ring buffer shared with the
analyzer. PT’s storage is privileged: it can only be written
by hardware and flushed by privileged code, and cannot
be tampered with by P or any other malicious user-space
process. The analyzer module reads taken branches from
the ring buffer, uses them to reconstruct the sequence
of IR instructions executed by P since the last branch
received, and updates the points-to information in a table
that it maintains for P’s current state by running a points-
to analysis on the reconstructed sequence.

When P invokes a system call, the driver first intercepts
P (➊), while waiting for the analyzer module to determine
in parallel if P has taken a valid sequence of control targets
over the entire execution up to the current invocation (➋
and ➌). The analyzer validates the invocation only if P has
taken a valid sequence, and the driver allows execution of
P to continue only if the invocation is validated (➍).

There are two key challenges we must address to make
PITTYPAT efficient. First, trace information generated
by PT is highly compressed; e.g., for each conditional
branch that a program executes, PT provides only a sin-
gle bit denoting the value of the condition tested in the
branch. Therefore additional post-processing is necessary
to recover transfer targets from such information. The ap-
proach used by the perf tool of Linux is to parse the next
branch instruction, extract the offset information, then
calculate the target by adding the offset (if the branch is
taken) or the length of instruction (if branch is not taken).
However, because parsing x86 instructions is non-trivial,
such an approach is too slow to reconstruct a path online.

Our insight to solve this problem is that, to reconstruct
the executed path, an analysis only needs to know the
basic blocks executed. We have applied this insight by
designing the analysis to maintain the current basic block
executed by the program. The analysis can maintain such
information using the compressed information that PT
provides. E.g., if PT provides only a bit denoting the value
of a condition tested in a branch, then the analysis inspects
the conditional branch at the end of the maintained block,
and from the branch, updates its information about the
current block executed.

The second key challenge in designing PITTYPAT is to
design a points-to analysis that can compute accurate
points-to information while imposing sufficiently low
overhead. Precise points-to analyses solve a system of
constraints over all pairs of pointer variables in the pro-
gram [2, 15]; solving such constraints uses a significant
amount of time that is often acceptable in the context of

Packet Description

TIP.PGE IP at which the tracing begin
TIP.PGD Marks the ending of tracing
TNT Taken/non-taken decisions of conditional branches
TIP Target addresses of indirect branches
FUP The source addresses of asynchronous events

Table 1: Control-relevant trace packets from Intel PT.

an offline static analysis, but would impose unacceptable
overhead if used by PITTYPAT’s online analysis process.
Other analyses bound analysis time to be nearly linear
with increasing number of pointer variables, but gener-
ate results that are often too imprecise to provide strong
security guarantees if used to enforce CFI [34].

To address the limitations of conventional points-to
analysis, we have designed an online points-to analysis
that achieves the precision of precise analysis at high per-
formance. The analysis eagerly evaluates control relevant
points-to constraints as they are generated, while updating
the points-to relations table used for future control trans-
fer validation. The analysis enables PITTYPAT, when
analyzing runs of dispatch that execute paths p0 and p1,
to compute the accurate points-to information given in
§2.3. On practical benchmarks, it allows significantly
smaller sets of control targets to be taken at each control
branch, and detects attacks on control flow not detected
by state-of-the-art defenses. Combined with our efficient
path-reconstruction process, it also enables PITTYPAT to
execute with an average of 12.73% overhead (geometric
mean) on even compute-intensive benchmarks, such as
SPEC CPU2006 (see §6).

3 Background

3.1 Intel Processor Trace

Intel PT is a commodity, low-overhead hardware designed
for debugging by collecting complete execution traces of
monitored programs. PT captures information about pro-
gram execution on each hardware thread using dedicated
hardware facilities so that after execution completes, the
captured trace data can be reconstructed to represent the
exact program flow.

The captured control flow information from PT is pre-
sented in encoded data packets. The control relevant
packet types are shown in Table 1. PT records the begin-
ning and the end of tracing through TIP.PGE and TIP.PGD
packets, respectively. Because the recorded control flow
needs to be highly compressed in order to achieve the
efficiency, PT employs several techniques to achieve this
goal. In particular, PT only records the taken/non-taken
decision of each conditional branches through TNT, along
with the target of each indirect branches through TIP. A
direct branch does not trigger a PT packet because the
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control target of a direct branch is fixed.
Besides the limited packet types necessary for recov-

ering complete execution traces, PT also adopts compact
packet format to reduce the data throughput aggressively.
For instance, TNT packets use one bit to indicate the di-
rection of each conditional branches. TIP packets, on the
other hand, contain compressed target address if the upper
address bytes match the previous address logged. Thus
on average, PT tracing incurs less than 5% overhead [13].

When configured appropriately, PT monitors a single
program as well as its descendants based on CR3 filter-
ing, and outputs all collected packets to physical memory
allocated by its kernel driver. In the current implemen-
tation of PITTYPAT, a ring buffer is allocated so that it
can be reused throughout execution. The details of its
implementation are described in §5.1.

3.2 Conventional CFI

A control analysis, given program P, computes a sound
over-approximation of the instruction pointers that may
be stored in each pointer when P executes each instruc-
tion. An abstract domain D [8] consists of a set of abstract
states, a concretization relation from abstract states to the
program states that they represent, and for each program
instruction i, an abstract transformer τD[i] : D → D that
describes how each abstract state is updated by a program.
Each abstract domain defines a transition relation ρD of
steps valid according to D. In particular, for each instruc-
tion i, domain element D, and all states σ and σ ′, if σ

represented by D and σ ′ is represented by τD[i](D), then
(σ ,i,σ ′) ∈ ρD. A control-analysis domain D is an ab-
stract domain extended with a relation from each abstract
domain element and instruction pointer to code pointers
in states represented by D.

A valid flow-sensitive description in D of a program
P is a map from each program point in P to an element
in D that is consistent with the semantics of program
instructions. There is always a most-precise valid flow-
sensitive description in D, denoted µ[D].

Definition 1 For control domain D, program P satisfies
(conventional) CFI modulo D if, in each run of P, at each
indirect branch point L, P transfers control to a control
target in µ[D](L).

We provide a complete formal definition of conventional
CFI in §C.1.

An analysis that computes such a description is a con-
trol analysis. Control analyses conventionally are imple-
mented as points-to analyses, such as Andersen’s analy-
sis [2] or Steensgard’s analysis [34].

4 Design

A program P satisfies path-sensitive CFI under control
domain D if each step of P is valid according to D (as
described in §3.2).

Definition 2 For control domain D, program P satisfies
path-sensitive CFI modulo D if, in each run of P consist-
ing of states σ0, . . . ,σn, for each 0 ≤ j < n where σ j steps
to σ j+1 on instruction i, (σ j,i,σ j+1) ∈ ρD.

A formal definition of path-sensitive CFI, along with
results establishing that path-sensitive CFI is strictly
stronger than conventional CFI, are given in §C.2.

PITTYPAT enforces path-sensitive CFI by maintaining
a shadow execution/analysis that only examines control
relevant data, while running concurrently with the mon-
itored process. Using the complete traces reconstructed
from Intel PT, only control-relevant data are computed
and maintained as points-to relations throughout the exe-
cution, using an online points-to analysis. Analyzing only
control-relevant data satisfies the need to validate control-
transfer targets but significantly optimizes the analysis,
because only parts of the program will be examined in the
shadow execution/analysis. Such an analysis, along with
the low overhead incurred by commodity hardware, allow
PITTYPAT to achieve path-sensitive CFI with practical
runtime overhead.

The architecture of PITTYPAT is depicted in §2.4, Fig-
ure 2. PITTYPAT consists of two modules. The first
module executes a given program P in a designated mon-
itor process and collects the targets of control transfers
taken by P. We describe the operation of this module in
§4.1 and give the details of its implementation in §5.1.
The second module receives control-branch targets taken
by P from the first module, reconstructs the control path
executed by P from the received targets, and performs a
points-to analysis along the reconstructed control path of
P. We describe the operation of the analysis module in
§4.2 and describe details of its implementation in §5.2.

4.1 Sharing taken branches efficiently
PITTYPAT uses the PT extension for Intel processors [31]
to collect the control branches taken by P. A naive im-
plementation of PITTYPAT would receive from the moni-
toring module the complete target address of each branch
taken by P in encoded packets and decode the traces of-
fline for analysis. PITTYPAT, given only Boolean flags
from PT, decodes complete branch targets on the fly.

To do so, PITTYPAT maintains a copy of the current
control location of P. For example, in Figure 1, when
dispatch steps through the path [L10,L16,L22], the rele-
vant PT trace contains only two TNT packets and one TIP
packet. A TNT packet is a two-bit stream: 10. The first
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bit, 1, represents the conditional branch at L10 is taken
(i.e., the execution enters into the loop). The second bit, 0,
indicates the conditional branch at L13 is not taken, and
the executed location is now in the else branch. The TIP
packet contains the address of function unpriv, which
shows an indirect jump to unpriv.

PITTYPAT uses the Linux perf infrastructure to extract
the execution trace of P. In particular, PITTYPAT uses the
perf kernel driver to (1) allocate a ring buffer shared by
the hardware and itself and (2) mark the process in which
the target program executes (and any descendant process
and thread) as traced so as to enable tracing when context
switching into a descendant and disable tracing when
context switching out of a descendant. The driver then
transfers the recorded PT packets, together with thread ID
and process ID, to the analyzer module through the shared
buffer. This sharing mechanism has proved to be efficient
on all performance benchmarks on which we evaluated
PITTYPAT, typically incurring less than 5% overhead.

PITTYPAT intercepts the execution of a program at
security-sensitive system calls in the kernel and does not
allow the program to proceed until the analyzer validates
all control branches taken by the program. The list of inter-
cepted system calls can be easily configured; the current
implementation checks write, mmap, mprotect, mremap,
sendmsg, sendto, execve, remap_file_pages, sendmmsg,
and execveat. The above system calls are intercepted be-
cause they can either disable DEP/W⊕X, directly execute
an unintended command, write to files on the local host,
or send traffic over a network.

4.2 Online points-to analysis

The analyzer module executes in a process distinct from
the process in which the monitored process executes. Be-
fore monitoring a run of the program, the analyzer is given
the monitored program’s LLVM IR and meta information
about mapping between IR and binary code. At runtime,
the analyzer receives the next control-transfer target taken
by the protected program from the monitor module, and
either chooses to raise an alarm signaling that the con-
trol transfer taken would violate path-sensitive CFI, or
updates its state and allows the original program to take
its next step of execution.

The updated states contain two components: (1) the
callstack of instructions being executed (i.e., the pc’s) and
(2) points-to relations over models of memory cells that
are control relevant only. The online points-to analysis
addresses the limitations of conventional points-to anal-
yses. In particular, it reasons precisely about the calling
context of the monitored program by maintaining a stack
of register frames. It avoids maintaining constraints over
pairs of pointer variables by eagerly evaluating the sets of
cells and instruction addresses that may be stored in each

register and cell. It updates this information efficiently in
response to program actions by performing updates on a
single register frame and removing register frames when
variables leave scope on return from a function call.

In general, a program may store function pointers in
arbitrarily, dynamically allocated data structures before
eventually loading the pointer and using it as the target
of an indirect control transfer. If the analyzer were to
maintain precise information about the points-to relation
of all heap cells, then it would maintain a large amount
of information never used and incur a significant cost to
performance. We have significantly optimized PITTYPAT
by performing aggressive analyses of a given program P
offline, before monitoring the execution of P on a given
input. PITTYPAT runs an analyzer developed in previous
work on code-pointer integrity (CPI) [17] to collect a
sound over-approximation of the instructions in a program
that may affect a code pointer used as the target of a
control transfer. At runtime, the analyzer only analyzes
instructions that are control relevant as determined by its
offline phase.

A program may contain many functions that perform
no operations on data structures that indirectly contain
code pointers, and do not call any functions that perform
such operations. We optimized PITTYPAT by applying
an offline analysis based on a sound approximation of
the program’s call graph to identify all such functions.
At runtime, PITTYPAT only analyzes functions that may
indirectly perform relevant operations.

To illustrate the analyzer’s workflow, consider the exe-
cution path [L10,L12,L16,19,L22] in Figure 1 as an exam-
ple. Initially, the analyzer knows that the current instruc-
tion being executed is L10, and the points-to table is empty.
The analyzer then receives a taken TNT packet, and so it
updates the pc to L12, which calls a non-sensitive function
parse_request. However instead of tracing instructions
in parse_request, the analyzer waits until receiving a
TIP packet signaling the return from parse_request be-
fore continue its analysis. Next, it updates the pc to L16
after receiving a non-taken TNT packet, which indicates
that the else branch is taken. Here, the analyzer updates
the points-to table to allow handler to point to unpriv
when it handles L16. Because the program also calls a
non-sensitive function at L19, the analyzer waits again
and updates the pc to L22 only after receiving another
TIP packet. Finally, at L22, the analyzer waits for a TIP
packet at the indirect call, and checks whether the target
address collected by the monitor module is consistent
with the value pointed by handler in the points-to table.
In this case, if the address in the received TIP packet is
not unpriv, the analyzer throws an alarm.

We have described the analyzer as validating taken con-
trol branches and eagerly throwing alarms when it detects
an incorrect branch in order to simplify its description.
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The actual implementation of the analyzer only provides
such an alarm in response to a request from PITTYPAT’s
kernel module when a monitored process attempts to in-
voke a system call, as described in §5.1.

5 Implementation

5.1 Monitor module

PITTYPAT controls the Intel PT extension and collects an
execution trace from a monitored program by adapting
the Linux v4.4 perf infrastructure. Because perf was
originally designed to aid debugging, the original version
provided with Linux 4.4 only supports decoding and pro-
cessing traces offline. In the original implementation, the
perf kernel module continuously outputs packets of PT
trace information to the file system in user space as a log
file to be consumed later by a userspace program. Such
a mechanism obviously cannot be used directly within
PITTYPAT, which must share branch information at a
speed that allows it to be run as an online monitor.

We modified the kernel module of perf, which be-
gins and ends collection of control targets taken after
setting a target process to trace, allocates a ring buffer
in which it shares control branches taken with the ana-
lyzer, and monitors the amount of space remaining in
the shared buffer. The module also notifies the analyzer
when taken branches are available in its buffer, along with
how many chosen control targets are available. The no-
tification mechanism reuses the pseudo-file interface of
the perf kernel module. The analyzer creates one thread
to wait (i.e., poll) on this file handler for new trace data.
Once woken up by the kernel, it fetches branches from
the shared ring buffer with minimal latency.

System calls are intercepted by a modified version of
the system-call mechanism provided by the Linux ker-
nel. When the monitored process is created, it—along
with each of its sub-processes and threads created later—
is flagged with a true value in a PT_CPV field of its
task_struct in kernel space. When the kernel receives a
request for a system call, the kernel checks if the request-
ing process is flagged. If so, the kernel inspects the value
in register rax to determine if it belongs to the configured
list of marked system calls as described in §4.1. The
interception mechanism is implemented as a semaphore,
which blocks the system call from executing further code
in kernel space until the analyzer validates all branches
taken by the monitored process and signals the kernel.

The driver module and modifications to the kernel con-
sist of approximately 400 lines of C code.

5.2 Analyzer module

PITTYPAT’s analyzer module is implemented as two core
components. The first component consists of a LLVM
compiler pass, implemented in 500 lines, that inserts an
instruction at the beginning of each basic block before the
IR is translated to binary instructions. Such instructions
are used to generate a map from binary basic blocks to
LLVM IR basic blocks. Thus when PITTYPAT receives
a TNT packet for certain conditional branch, it knows the
corresponding IR basic block that is the target of the
control transfer. The inserted instructions are removed
when generating binary instructions; therefore no extra
overhead is introduced to the running program.

The second component, implemented in 5,800 lines
C++ code, performs a path-sensitive points-to analysis
over the control path taken by the monitored process, and
raises an error if the monitored process ever attempts to
transfer control to a branch not allowed by path-sensitive
CFI. Although the analysis inspects only low-level code,
it directly addresses several challenges in analyzing code
compiled from high-level languages. First, to analyze
exception-handling by a C++ program, which unwinds
stack frames without explicit calls to return instructions,
the analyzer simply consumes the received TNT packets
generated when the program compares the exception type
and updates the pc to the relevant exception handler.

To analyze a dynamic dispatch performed by a C++
program, the analyzer uses its points-to analysis to deter-
mine the set of possible objects that contain the vtable at
each dynamic-dispatch callsite. The analyzer validates
the dispatch if the requested control target stored in a
given TIP packet is one of the members of the object from
which the call target is loaded. At each call to setjmp, the
analyzer stores all possible setjmp buffer cells that may
be used as arguments to setjmp, along with the instruction
pointer at which setjmp is called, in the top stack frame.
At each call to longjmp, the analyzer inspects the target
T of the indirect call and unwinds its stack until it finds a
frame in which setjmp was called at T, with the argument
buffer of longjmp may have been the buffer passed as an
argument to setjmp.

6 Evaluation

We performed an empirical evaluation to answer the fol-
lowing experimental questions. (1) Are benign applica-
tions transformed to satisfy path-sensitive CFI less sus-
ceptible to an attack that subverts their control security?
(2) Do applications that are explicitly written to perform
malicious actions that satisfy weaker versions of CFI fail
to satisfy path-sensitive CFI? (3) Can PITTYPAT enforce
path-sensitive CFI efficiently?

To answer these questions, we used PITTYPAT to en-
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force path-sensitive CFI on a set of benchmark programs
and workloads, including both standard benign applica-
tions and applications written explicitly to conceal ma-
licious behavior from conventional CFI frameworks. In
summary, our results indicate that path-sensitive CFI pro-
vides a stronger security guarantee than state-of-the-art
CFI mechanisms, and that PITTYPAT can enforce path-
sensitive CFI while incurring overhead that is acceptable
in security-critical contexts.

6.1 Methodology
We collected a set of benchmarks, each described in detail
in §6.2. We compiled each benchmark with LLVM 3.6.0,
and ran them on a set of standard workloads. During
each run of the benchmark, we measured the time used by
the program to process the workload. If a program con-
tained a known vulnerability that subverted conventional
CFI, then we ran the program on inputs that triggered
such a vulnerability as well, and observed if PITTYPAT
determined that control-flow was subverted along the exe-
cution. Over a separate run, at each control branch taken
by the program, we measured the size of the points-to set
of the register that stored the target of the control transfer.

We then built each benchmark to run under a state-of-
the-art CFI framework implemented in previous work,
π-CFI [26]. While π-CFI validates control targets per
control location, it instruments a subject program so that
control edges of the program are disabled by default, and
are only enabled as the program executes particular trig-
gering actions (e.g., a function can only be called after its
address is taken). It thus allows sets of transfer targets that
are no larger than those allowed by conventional imple-
mentations of CFI, and are often significantly smaller [26].
For each benchmark program and workload, we observed
whether π-CFI determined that the control-flow integrity
of the program was subverted while executing the work-
load and measured the runtime of the program while ex-
ecuted under π-CFI. We compared PITTYPAT to π-CFI
because it is the framework most similar to PITTYPAT
in concept: it validates control-transfer targets based not
only on the results of a static points-to analysis, but col-
lecting information about the program’s dynamic trace.

6.2 Benchmarks
To evaluate the ability of PITTYPAT to protect long-
running, benign applications, and to evaluate the over-
head that it incurs at runtime, we evaluated it on the
SPEC CPU2006 benchmark suite, which consists of 162

C/C++ benchmarks. We ran each benchmark three times
2We don’t include 447.dealII, 471.omnetpp, and

483.xalancbmk because their LLVM IR cannot be completely
mapped to the binary code.

over its provided reference workload. For each run, we
measured the runtime overhead imposed by PITTYPAT
and the number of control targets allowed at each indirect
control transfer, including both indirect calls and returns.
We also evaluated PITTYPAT on the NGINX server—a
common performance macro benchmark, configured to
run with multiple processes.

To evaluate PITTYPAT’s ability to enforce end-to-end
control security, we evaluated it on a set of programs ex-
plicitly crafted to contain control vulnerabilities, both as
analysis benchmarks and in order to mount attacks on crit-
ical applications. In particular, we evaluated PITTYPAT
on programs in the RIPE benchmark suite [39], each
of which contains various vulnerabilities that can be
exploited to subvert correct control flow (e.g. Return-
Oriented Programming (ROP) or Jump-oriented Program-
ming (JOP)). We compiled 264 of its benchmarks in our
x64 Linux test environment and evaluated PITTYPAT on
each. We also evaluated PITTYPAT on a program that im-
plements a proof-of-concept COOP attack [32], a novel
class of attacks on the control-flow of programs written in
object-oriented languages that has been used to success-
fully mount attacks on the Internet Explorer and Firefox
browsers. We determined if PITTYPAT could block the
attack that the program attempted to perform.

6.3 Results

6.3.1 Protecting benign applications

Figure 3 contains plots of the control-transfer targets al-
lowed by π-CFI and PITTYPAT over runs of example
benchmarks selected from §6.2. In the plots, each point
on the x-axis corresponds to an indirect control transfer in
the run. The corresponding value on the y-axis contains
the number of control targets allowed for the transfer.

Previous work on CFI typically reports the average
indirect-target reduction (AIR) of a CFI implementation;
we computed the AIR of PITTYPAT. However, the re-
sulting data does not clearly illustrate the difference be-
tween PITTYPAT and alternative approaches, because all
achieve a reduction in branch targets greater than 99%
out of all branch targets in the program. This is consistent
with issues with AIR as a metric established in previous
work [4]. Figure 3, instead, provides the absolute mag-
nitudes of points-to sets at each indirect control transfer
over an execution.

Figure 3a contains a Cumulative Distribution Graph
(CDF) of all points-to sets at forward (i.e., jumps and
calls) indirect control transfers of size no greater than
40 when running 403.gcc under π-CFI and PITTYPAT.
We used a CDF over a portion of the points-to sets in or-
der to display the difference between the two approaches
in the presence of a small number of large points-to sets,
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(a) Partial CDF of allowed targets on forward edges taken by 403.gcc.
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(c) π-CFI and PITTYPAT points-to sets for forward edges taken by
444.namd.
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(d) π-CFI points-to sets for backward edges taken by 444.namd.

Figure 3: Control-transfer targets allowed by π-CFI and PITTYPAT over 403.gcc and 444.namd.

explained below. Figure 3a shows that PITTYPAT can con-
sistently maintain significantly smaller points-to sets for
forward edges than that of π-CFI, leading to a stronger
security guarantee. Figure 3a indicates that when pro-
tecting practical programs, an approach such as π-CFI
that validates per location allows a significant number of
transfer targets at each indirect callsite, even using dy-
namic information. In comparison, PITTYPAT uses the
entire history of branches taken to determine that at the
vast majority of callsites, only a single address is a valid
target. The difference in the number of allowed targets
can be explained by the different heuristics adopted in π-
CFI, which monotonically accumulates allowed points-to
targets without any disabling schemes once targets are
taken, and the precise, context-sensitive points-to analysis
implemented in PITTYPAT. Similar difference between
π-CFI and PITTYPAT can also be found in all other C
benchmarks from SPEC CPU2006.

For the remaining 4% of transfers not included in Fig-

ure 3a, both π-CFI and PITTYPAT allowed up to 218
transfer targets; for each callsite, PITTYPAT allowed no
more targets than π-CFI. The targets at such callsites
are loaded from vectors and arrays of function pointers,
which PITTYPAT’s current points-to analysis does not
reason about precisely. It is possible that future work on
a points-to analysis specifically designed for reasoning
precisely about such data structures over a single path
of execution—a context not introduced by any previous
work on program analysis for security—could produce
significantly smaller points-to sets.

A similar difference between π-CFI and PITTYPAT is
demonstrated by the number of transfer targets allowed
for other benchmarks. In particular, Figure 3c contains
similar data for the 444.namd benchmark. 444.namd, a
C++ program, contains many calls to functions loaded
from vtables, a source of imprecision for implementations
of CFI that can be exploited by attackers [32]. PITTYPAT
allows a single transfer target for all forward edges as
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a result of its online points-to analysis. The difference
between π-CFI and PITTYPAT are also found for other
C++ benchmarks, such as 450.soplex, 453.povray and
473.astar.

π-CFI and PITTYPAT consistently allow dramatically
different numbers of transfer targets for return instruc-
tions. While monitoring 403.gcc, π-CFI allows, for some
return instructions, over 1,400 return targets (Figure 3b).
While monitoring 444.namd, π-CFI allows, for some re-
turn instructions, more than 46 transfer targets (Figure 3d).
Because PITTYPAT maintains a stack of points-to infor-
mation during its analysis, it will always allow only a
single transfer target for each return instruction, over all
programs and workloads. PITTYPAT thus significantly
improves defense against ROP attacks, which are still one
of the most popular attacks software.

6.3.2 Mitigating malicious applications

To determine if PITTYPAT can detect common attacks
on control, we used it to monitor selected RIPE bench-
marks [39]. For each of the 264 benchmarks that ran in
our experimental setup, PITTYPAT was able to success-
fully detect attacks on the benchmark’s control security.

We constructed a proof-of-concept program vulnera-
ble to a COOP [32] attack that corrupts virtual-function
pointers to perform a sequence of method calls not pos-
sible by a well-defined run of the program. In Figure 4,
the program defines two derived classes of SchoolMember
(line L1–L4), Student (line L5–L10) and Teacher (line
L11–L16). Both Student and Teacher define their own
implementation of the virtual function registration()
(lines L7–9 and L13–15, respectively). set_buf() (line
L17–L21) allocates a buffer buf on the stack of size 4 (line
L18), but does not bound the amount of data that it reads
into buf (line L20). The main function (line L22–L37)
constructs instances of Student and Teacher (lines L23
and L24, respectively), and stores them in SchoolMember
pointers (lines L26 and 27 respectively). main then calls
the registration() method of each instance (lines L29–
L31), reads input from a user by calling set_buf() (line
L33), and calls Student::registration() a second time
(line L35). A malicious user can subvert control flow of
the program by exploiting the buffer overflow vulnerabil-
ity in set_buf to overwrite the vptr of Student to that of
Teacher and run Teacher::registration() at line L35.

Previous work introducing COOP attacks [32] estab-
lished such an attack cannot be detected by CFI. π-CFI
was not able to detect an attack on the above program be-
cause it allows a dynamic method as a call target once its
address is taken. However, PITTYPAT detected the attack
because its analyzer module accurately models the effect
of each load of a function pointer used to implement the
dynamic calls over the program’s well-defined runs.

1 class SchoolMember {
2 public:
3 virtual void registration(void){}
4 };
5 class Student : public SchoolMember{
6 public:
7 void registration(void){
8 cout << "I am a Student\n";
9 }

10 };
11 class Teacher : public SchoolMember{
12 public:
13 void registration(void){
14 cout << "This is sensitive!\n";
15 }
16 };
17 void set_buf(void){
18 char buf[4];
19 //change vptr to that of Teacher’s sensitive func
20 gets(buf);
21 }
22 int main(int argc, char *argv[]){
23 Student st;
24 Teacher te;
25 SchoolMember *member_1, *member_2;
26 member_1 = &te;
27 member_2 = &st;
28 //Teacher calling its virtual functions
29 member_1->registration();
30 //Student calling its virtual functions
31 member_2->registration();
32 //buffer overflow to overwrite the vptr
33 set_buf();
34 //Student calling its virtual functions again
35 member_2->registration();
36 return 0;
37 }

Figure 4: A program vulnerable to a COOP attack.

6.3.3 Enforcing path-sensitive CFI efficiently

Table 2 contains measurements of our experiments that
evaluate performance of PITTYPAT when monitoring
benchmarks from SPEC CPU2006 and NGINX server,
along with the performance results replicated from the
paper that presented π-CFI [26]. A key feature observable
from Table 2 is that PITTYPAT induces overhead that is
consistently larger than, but often comparable to, the over-
head induced by π-CFI. The results show that PITTYPAT
incurs a geometric mean of 12.73% overhead across the
16 SPEC CPU2006 benchmarks, along with a 11.9% in-
creased response time for NGINX server over one million
requests with concurrency level of 50. Overhead of shar-
ing branch targets taken is consistently less than 5%. The
remaining overhead, incurred by the analysis module, is
proportional to the number of memory operations (e.g.,
loads, stores, and copies) performed on memory cells that
transitively point to a target of an indirect call, as well
as the number of child processes/threads spawned during
execution of multi-process/-threading benchmarks.

Another key observation from Table 2 is that PITTYPAT
induces much smaller overhead than CETS [23] and Soft-
Bound [22], which can only be applied to a small selec-
tion of the SPEC CPU2006 benchmarks. CETS provides

USENIX Association 26th USENIX Security Symposium    141



Program Features Payload Features π-CFI Features PITTYPAT Features CETS+SB Features
Name KLoC Exp Tm (sec) Alarm Overhd (%) Alarm Overhd (%) Alarm Overhd (%)

400.perlbench 128 No 332 No 8.7% No 47.3% Yes –
401.bzip2 6 No 317 No 1.3% No 17.7% No 91.4%
403.gcc 383 No 179 No 6.2% No 34.1% Yes –
429.mcf 2 No 211 No 4.3% No 32.2% Yes –
433.milc 10 No 514 No 1.9% No 1.8% Yes –
444.namd 4 No 556 No -0.3% No 28.8% Yes –
445.gobmk 158 No 328 No 11.4% No 4.0% Yes –
450.soplex 28 No 167 No -1.1% No 27.5% Yes –
453.povray 79 No 100 No 11.9% No 16.0% Yes –
456.hmmer 21 No 258 No 0.2% No 20.2% Yes –
458.sjeng 11 No 359 No 8.5% No 6.7% No 80.1%
462.libquantum 3 No 234 No -1.5% No 14.1% Yes –
464.h264ref 36 No 339 No 8.0% No 11.8% No 251.7%
470.lbm 1 No 429 No 1.4% No 0.7% Yes –
473.astar 4 No 289 No 2.2% No 22.5% Yes –
482.sphinx3 13 No 338 No 1.7% No 16.0% Yes –
Geo. Mean 15 – 285 – 3.30% – 12.73% – 122.60%
nginx-1.10.2 122 No 25.41 No 2.7% No 11.9% Yes –

Table 2: “Name” contains the name of the benchmark. “KLoC” contains the number of lines of code in the benchmark.
Under “Payload Features,” “Exp” shows if the benchmark contains an exploit and “Tm (sec)” contains the amount of
time used by the program, when given the payload. Under “π-CFI Featues”, “PITTYPAT Features,” and “CETS+SB
Features,” “Alarm” contains a flag denoting if a given framework determined that the payload was an attack and aborted;
“Overhd (%)” contains the time taken by the framework, expressed as the ratio over the baseline time.

temporal memory safety and SoftBound provides spa-
tial memory safety; both enforce full data integrity for
C benchmarks, which entails control security. However,
both approaches induce significant overhead, and cannot
be applied to programs that perform particular combi-
nations of memory-unsafe operation [17]. Our results
thus indicate a continuous tradeoff between security and
performance among exisiting CFI solution, PITTYPAT,
and data protection. PITTYPAT offers control security
that is close to ideal, i.e. what would result from data
integrity, but with a small percentage of the overhead of
data-integrity protection.

7 Related Work

The original work on CFI [1] defined control-flow in-
tegrity in terms of the results of a static, flow-sensitive
points-to analysis. A significant body of work has adapted
the original definition for complex language features and
developed sophisticated implementations that enforce it.
While CFI is conventionally enforced by validating the
target of a control transfer before the transfer, control-
flow locking [3] validates the target after the transfer to
enable more efficient use of system caches. Compact
Control Flow Integrity and Randomization (CCFIR) [41]
optimizes the performance of validating a transfer target
by randomizing the layout of allowable transfer targets
at each jump. Opaque CFI (O-CFI) [21] ensures that
an attacker who can inspect the rewritten code cannot
learn additional information about the targets of control
jumps that are admitted as valid by the rewritten code.

All of the above approaches enforce security defined by
the results of a flow-sensitive points-to analysis; previous
work has produced attacks [5, 12, 32] that are allowed by
any approach that relies on such information. PITTYPAT
is distinct from all of the above approaches because it
computes and uses the results of a points-to analysis com-
puted for the exact control path executed. As a result, it
successfully detects known attacks, such as COOP [32]
(see §6.3.2).

Previous work has explored the tradeoffs of implement-
ing CFI at distinct points in a program’s lifecycle. CF
restrictor [30] performs CFI analysis and instrumenta-
tion completely at the source level in an instrumenting
compiler, and further work developed CFI integrated into
production compilers [36]. BinCFI [42] implements CFI
without access to the program source, but only access
to a stripped binary. Modular CFI [25] implements CFI
for programs constructed from separate compilation units.
Unlike each of the above approaches, PITTYPAT consists
of a background process that performs an online analysis
of the program path executed.

Recent work on control-flow bending has established
limitations on the security of any framework that enforces
only conventional CFI [5], and proposes that future work
explore CFI frameworks that validate branch targets us-
ing an auxiliary structure, such as a shadow stack. The
conclusions of work on control-flow bending are strongly
consistent with the motivation of PITTYPAT: the key con-
tribution of PITTYPAT is that it enforces path-sensitive
CFI, provably stronger than conventional CFI, and does so
not only by maintaining a shadow stack of points-to infor-
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mation, but by validating the targets of indirect branches
using path-sensitive points-to analysis. Per-input CFI (π-
CFI) [26] only enables control transfers to targets that
are enabled depending on previous operations taken by a
program in a given run; §6 contains a detailed comparison
of π-CFI to PITTYPAT.

Several implementations of CFI use hardware features
that efficiently record control targets chosen by a program.
CFIMon [40] collects the transfer targets chosen by the
program from the processor’s branch tracing store, and
validates the chosen target against the results of a flow-
sensitive points-to analysis. Previous work has also pro-
posed customized architectures with extended instruction
sets that directly implement primitive operations required
in order to enforce CFI [9]. Such approaches are thus
distinct from our approach for the same reason as all ap-
proaches that use the results of a flow-sensitive analysis.
kBouncer [29] interposes when a program attempts to ex-
ecute a system call and inspects the Last Branch Record
(LBR) provided on Intel processors to detect patterns of
transfer targets that indicate an ROP attack. ROPecker [7]
similarly interposes at key security events and inspects the
LBR, but combines information from inspecting the his-
tory of chosen branches with a forward analysis. PathAr-
mor [37] interposes key system calls, collects the last
transfer targets collected in the LBR, and determines if
there is a feasible path through the program’s control-flow
graph that reaches each transfer target. Further work [6]
introduced counterattacks against such defenses that ex-
ploit the fact that each of the defenses only inspects the
LBR to analyze a bounded number of transfer targets
chosen immediately before a system call.

The above approaches are similar to PITTYPAT in that
they inspect the results of hardware features that collect
some subset of the control targets taken by a program at
runtime. However, they are all distinct from PITTYPAT
because PITTYPAT uses hardware features to maintain ac-
curate points-to information by inspecting all branch tar-
gets chosen by a program over its execution. Recent work
has proposed approaches that leverage Intel PT. Most such
approaches use PT to debug programs [16, 35], whereas
PITTYPAT uses PT to protect their control security. Some
approaches [13, 14, 19] use PT to enforce that an appli-
cation satisfies CFI as defined by a static flow-sensitive
analysis; PITTYPAT uses PT to ensure that a program
satisfies a stronger, path-sensitive variation of CFI.

Points-to analysis is a classic problem in static pro-
gram analysis, with different approaches that achieve dis-
tinct tradeoffs in either higher precision [2] or scalabil-
ity [34]. Points-to analyses are characterized on multiple
dimensions, including flow-sensitivity [2, 34] and context-
sensitivity [10, 18, 27, 38, 43]. However, a key property
of all such analyses is that they are performed statically,
and thus compute information either per program point

or per group of stack configurations [15]. PITTYPAT
uses a points-to analysis to compute points-to informa-
tion based on the exact program path executed. As a
result, PITTYPAT does not merge points-to information
over multiple paths that reach a given control location
or stack configuration, which heavily influenced the de-
sign of the novel points-to analysis that it uses. Recent
work [17] has introduced Code-Pointer Integrity (CPI),
which protects the integrity of all addresses that indirectly
affect the value of a function pointer used as the target of
an indirect branch. A key finding of the original work on
CPI is that CPI is relatively expensive to enforce for pro-
grams that contain a large number of code pointers, such
as binaries compiled from programs in object-oriented
languages. As a result, CPI was proposed along with
code-pointer separation (CPS), in which the values of
code pointers are protected, but pointers to cells con-
taining code pointers are left unprotected. Subsequent
work on counterfeit object-oriented programming [32]
demonstrated that CPS is insufficiently strong to block
code-reuse attacks on object-oriented programs.

PITTYPAT, along with all approaches for enforcing
various versions of CFI, differs fundamentally from CPI
in that it does not attempt to protect any segment of
a program’s data at runtime. Instead, PITTYPAT vali-
dates candidate targets of indirect control transfers based
only on the history of control branches taken. CPI and
PITTYPAT have complementary strengths and should be
applied in complementary security settings. In particular,
CPI often incurs slightly lower overhead, but can only
be applied in scenarios in which the source code of the
entire program to be protected is available to be analyzed
and instrumented. Such conditions are not satisfied in
cases in which a program relies on large, untrusted third-
party or shared libraries. PITTYPAT can potentially incur
larger performance overhead than CPI. However, because
it performs an points-to analysis that can be easily run on
sequences of low-level instructions, it can be applied to
protect program modules that are only available as bina-
ries. It also need not instrument any code of a protected
application. Our current implementation of PITTYPAT
uses an analysis proposed in the work on CPI only to
optimize the points-to analysis performed at runtime to
validate branch targets.

8 Conclusion

We introduced a path-sensitive variation of CFI and an
efficient runtime enforcement system, PITTYPAT. Our
formal analysis and empirical evaluation demonstrate
that, PITTYPAT provides strictly stronger security guaran-
tees than conventional CFI, while incurring an acceptable
amount of runtime overhead.
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instrs := ops REGS, REGS, REGS | alloc REGS (1)
| ld REGS,REGS | store REGS,REGS (2)
| br REGS,REGS | call REGS | return (3)

Figure 5: A space of instructions, Instrs, in a target lan-
guage. Instrs is defined over registers Regs and data oper-
ations Ops.

Appendix

A Language definition

In this section, we define the syntax (§A.1) and semantics (§A.2)
of programs in PITTYPAT’s target language.

A.1 Syntax
Figure 5 contains the syntax of a space of program instructions,
Instrs. An instruction may compute the value of an operation
in ops over values stored in registers and store the result in a
register, may allocate a fresh memory cell (Eqn. 1), may load a
value stored in the address in one operand register into a target
register, may store a value in an operand register at the address
stored in a target register (Eqn. 2), may test if the value in a
register is non-zero and if so transfer control to an instruction
at the address stored in an operand register, may perform an
indirect call to a target address stored in an operand, or may
return from a call (Eqn. 3). Although all operations are assumed
to be binary, when convenient we will depict operations as using
fewer registers (e.g., a copy instruction copy r0,r1 in §4.2).

A program is a map from instruction addresses to instructions.
That is, for space of instruction addresses IAddrs containing a
designated initial address ι ∈ IAddrs, the language of programs
is Lang = IAddrs→ Instrs.

Instrs does not contain instructions similar to those in an
architecture with a complex instruction-set, which may, e.g., per-
form operations directly on memory. The design of PITTYPAT

directly generalizes to analyze programs that use such an instruc-
tion set. In particular, the actual implementation of PITTYPAT

monitors programs compiled for x86.

A.2 Semantics
Each program P ∈ Lang defines a language of sequences of
program states, called runs, that are generated by executing a
sequence of instructions in P from an initial state. In particular,
each program P defines two languages of runs. The first is
the language of well-defined runs, in which each step from the
current state is defined by the semantics of the next instruction
in P. The second is the language of feasible runs contain some
state q from which P executes an instruction that is not defined at
q (e.g., dereferencing an invalid address). When the successive
state of q is not defined and the program takes a step of execution,
the program may potentially perform an operation that subverts
security.
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A state is a stack of assignments from registers to values and a
memory, which maps each memory cell to a value. Let Words be
a space of data words and let Cells be a space of memory cells. A
value is an instruction address (§A.1), a data word, or a memory
cell; i.e., Values = IAddrs∪Words∪Cells. Let the space of
registers be denoted Regs. A register frame is the address of the
current instruction and a map from each register to a value; i.e.,
the space of register frames, for RegMaps= Regs→ Values, is
denoted

Frames= IAddrs×RegMaps

For each register frame f ∈ Frames, the instruction address of
f is denoted as ip[ f ].

A cell memory is a map from each memory cell to a value;
i.e., the space of cell memories is Mems= Cells→ Values. A
state is a pair of a non-empty stack of register frames and a cell
memory; i.e., the space of states is denoted

States= Frames+×Mems

For each state q, the instruction address of the top frame of q
is denoted ip[q]. For each sequence of states r ∈ States∗, the
sequence of corresponding instruction pointers of each state in
r is denoted IPs(r) ∈ IAddrs∗. The states consisting of a single
stack frame whose instruction pointer is ι are the initial states,
denoted States0 ⊆ States.

A transition relation relates each pre-state and instruction to
their resulting post-states. I.e., the space of transition relations
is TransRels = (States× Instrs)×States. The semantics of
Lang is defined by the well-defined transition relation of Lang,
denoted ρ[WellDef] ∈ TransRels. Each step of execution that
is safe is a step in ρ[WellDef]. The definition of ρ[WellDef] is
standard, and we omit a complete definition.

For each transition relation ρ ∈ TransRels, the runs of ρ in
P are the sequences of states r in which each state in r steps to
the successive state in r under ρ in P; the language of all such
runs is denoted Runs[ρ,P]. The runs of P under ρ[WellDef] are
the well-defined runs of P, denoted

Runs[WellDef,P] = Runs[ρ[WellDef],P]

The feasible transition relation of Lang is ρ[WellDef] ex-
tended to relate each pre-state and instruction undefined in
ρ[WellDef] to each post-state. The feasible transition relation
thus includes safe steps of execution that a program may take,
along with unsafe steps taken when the program executes an
instruction from a state in which the instruction is not defined
(i.e., loading from an address that does not point to allocated
memory). The feasible transition relation of Lang is denoted

ρ[Feasible] = ρ[WellDef]∪
((States× Instrs)\Dom(ρ[WellDef]))×States

where Dom(ρ[WellDef]) denotes the domain of ρ[WellDef].
The runs of P under ρ[Feasible] are the feasible runs of P,

denoted Runs[Feasible,P] = Runs[ρ[Feasible],P].

B Formal definition of points-to analysis

A control analysis takes a program P and computes a sound over-
approximation of the instruction pointers that may be stored in

each register when P executes a given instruction over a well-
defined run. A control-analysis domain is an abstract domain [8]
consisting of a set of abstract states, a concretization relation
from abstract states to the program states that they represent,
and an abstract transformer that describes how each abstract
state is updated by a program.

Definition 3 A control-analysis domain is a triple (A,γ,τ),
with: (1) An abstract domain A. (2)A concretization rela-
tion γ ⊆ A × States. There must be initial and empty ele-
ments Init,Empty ∈ A such that (a) {Init}×States0 ⊆ γ and
(b) {Empty} × States∩ γ = /0. (3) An abstract transformer
τ : A× Instrs× IAddrs→ A, where for each abstract state a ∈ A,
each state q ∈ States such that (a,q) ∈ γ , and each instruction
i∈ Instrs and state q′ ∈ States such that (q,i,q′)∈ ρ[WellDef],
it holds that (τ(a,i, ip[q′]),q′) ∈ γ .

For each control domain D, we refer to the abstract states, con-
cretization relation, and abstract transformer of D as A[D], γ[D],
and τ[D], respectively. The space of control-analysis domains is
denoted Doms.

The initial and empty elements in A[D] are denoted Init[D]
and None[D]. The binary relation ⊑D⊆ A[D]×A[D] is defined
as follows. For all abstract states a0,a1 ∈ A[D], if for each
concrete state q ∈ States such that (a0,q) ∈ γ[D] it holds that
(a1,q) ∈ γ[D], then a0 ⊑D a1.

C Formal definitions of control security

C.1 Conventional CFI
For each control domain D and program P, a valid description
of P in D over-approximates the control targets stored bound to
registers and memory when control reaches each of instruction
address of P. In particular, a valid description δ maps each
instruction address to an abstract state of D that such that (1)
δ maps ι to Init[D] and (2) δ is consistent with the abstract
transformers of each instruction over D.

Definition 4 For each control domain D ∈Doms and program
P ∈ Lang, let δ : IAddrs→ A[D] be such that (1) δ (ι) = Init[D];
(2) for all instruction addresses a0,a1 ∈ IAddrs and instruction
i ∈ Instrs, it holds that τ[D](δ (a0),i,a1)⊑D δ (a1). Then δ is
a valid description of P in D.

For each control domain D ∈ Doms and program P ∈
Lang, the space of valid descriptions of P in D is denoted
ValidDescs[D,P].

For each control domain D ∈Doms and program P ∈ Lang
the most precise description of P in D, denoted µ[D,P] ∈
ValidDescs[D,P], is the valid description of P in D such that
for all valid descriptions δ ′ ∈ ValidDescs[D,P] and each in-
struction address a ∈ IAddrs, µ[D,P](a)⊑D δ ′(a). Under well-
understood conditions [8], D has a most-precise description for
each program P that can be computed efficiently [2, 34].

Example 1 For program dispatch (§2.1) and any control do-
main D that maps each instruction pointer to a set of instruction
addresses, the most precise description of dispatch restricted
to function pointers is given in §2.2.
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Each program P and domain D define a transition relation in
which at each step from each instruction address a, the program
only transfers control to an instruction address that is feasible in
the most precise description of P under D at a.

Definition 5 For each program P ∈ Lang and control do-
main D ∈ Doms, let ρ ∈ TransRels be such that for all in-
struction addresses a,a′ ∈ Addrs, each instruction i ∈ Instrs
with τ[D](µ[D,P](a),i,a′) ̸= None[D] and all states q,q′ ∈
States with (µ[D,P](a),q) and (µ[D,P](a′),q′), it holds that
((q,i),q′) ∈ ρ . Then ρ is the flow-sensitive transition relation
of D and P.

For each domain D and program P, the flow-sensitive transition
relation of D and P is denoted FS[D,P].

For each control domain D and program P, the most precise
flow-sensitive description of P in D (Appendix D) defines an
instance of generalized control security that is equivalent to
CFI [1].

Definition 6 For all programs P,P′ ∈ Lang and each control-
analysis domain D ∈ Doms, if P′ satisfies generalized control
security under FS[D,P] (Appendix D, Defn. 5) with respect to
P, then P′ satisfies CFI modulo D with respect to P.

Defn. 6 is equivalent to “ideal” CFI as defined in previous work
to establish fundamental limitations on CFI [5].

C.2 Path-sensitive CFI
The problem of enforcing CFI is typically expressed as instru-
menting a given program P to form a new program P′ that
allows each indirect control transfer in each of its executions
only if the target of the transfer is valid according to a flow-
sensitive description of the control-flow graph of P. To present
our definition of path-sensitive CFI, we will introduce a general
definition of control security parameterized on a given transition
relation ρ . P′ satisfies generalized control security under ρ with
respect to P if (1) P′ preserves each well-defined run of P and
(2) each feasible run of P′ has instruction addresses identical to
the instruction addresses of some run of P under ρ .

Definition 7 For each transition relation ρ ∈ TransRels, let
programs P,P′ ∈ Lang be such that (1) Runs[WellDef,P] ⊆
Runs[WellDef,P′]; (2) for each run r′ ∈ Runs[Feasible,P′],
there is some run r ∈ Runs[ρ,P] such that IPs(r) = IPs(r′).
Then P′ satisfies generalized control security under ρ with re-
spect to P.

We now define path-sensitive CFI, an instance of generalized
control security that is strictly stronger than CFI. Each control
domain D defines a transition relation over program states that
are described by abstract states of D connected by the abstract
transformer of D.

Definition 8 For each control domain D ∈ Doms (§3.2,
Defn. 3), let ρ[D] ∈ TransRels, be such that for each abstract
state a ∈ A[D], each state q ∈ States such that (a,q) ∈ γ[D],
and each instruction i ∈ Instrs and state q′ ∈ States such that
(τ[D](a,i, ip[q′]),q′)∈ γ[D], it holds that (q,i,q′)∈ ρ[D]. Then
ρ[D] is the transition relation modulo D.

For all programs P and P′ and each control domain D, P′

satisfies path-sensitive CFI modulo D with respect to P if each
step of each run of P′ corresponds to a step of P over states with
the same description under D.

Definition 9 For all programs P,P′ ∈ Lang and each control
domain D ∈ Doms, if P′ satisfies control security under ρ[D]
(Defn. 8) with respect to P, then P′ satisfies path-sensitive CFI
modulo D with respect to P.

Path-sensitive CFI is conceptually similar to, but stronger
than, context-sensitive CFI [37], which places a condition on
only bounded suffixes of a program’s control path before the
program attempts to execute a critical security event, such as a
system call.

Path-sensitive CFI is as strong as CFI.

Lemma 1 For each control domain D and all programs P,P′ ∈
Lang such that P′ satisfies path-sensitive CFI modulo D with
respect to P, P′ satisfies CFI modulo D with respect to P.

Lemma 1 follows immediately from the fact that any control-
transfer target that is along a given control path must be a valid
target in a meet-over-all-paths solution.

Path-sensitive CFI is in fact strictly stronger than CFI.

Lemma 2 For some control domain D and programs P,P′ ∈
Lang, P′ satisfies CFI with respect to P modulo D but P′ does
not satisfy path-sensitive CFI with modulo D respect to P.

Lemma 2 is immediately proven using any domain D that is
sufficiently accurate between two control states and a program
P that generates state with either control configuration at a
particular program point.

D Formal definition of online analysis

The behavior of the analyzer module is determined by a
fixed control-analysis domain D (§3.2, Defn. 3). We refer to
PITTYPAT instantiated to use control domain D for points-to
analysis as PITTYPAT[D].

As the analyzer module executes, it maintains a control-
domain abstract state d ∈ A[D]. In each step of execution, the
analyzer module receives from the monitor process the next
control-transfer target taken by the monitored program P, and
either chooses to raise an alarm that transferring control to the
target would cause P to break path-sensitive CFI modulo D, or
updates its state and allows P to take its next step of execution.

In each step of execution, the analyzer module receives the
next control target a ∈ IAddrs taken by the monitored program,
and either raises an alarm or updates its maintained control
description d as a result. If a is not a feasible target from d over
the next sequence of non-branch instructions, then the analyzer
module throws an alarm signaling that control flow has been
subverted, and aborts.

Theorem 1 For D ∈Doms and P ∈ Lang, the program P′ sim-
ulated by running P in PITTYPAT[D] satisfies path-sensitive
CFI modulo D with respect to P (Defn. 9).
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We have given the design of an analyzer module that uses an
arbitrary control domain generically; i.e., the analyzer can use
any control-analysis domain that satisfies the definition given in
§3.2, Defn. 3. However, we have found that the performance of
the analyzer module can be improved significantly by using a
control domain that takes advantage of the particular context of
online path-sensitive analysis by maintaining points-to informa-
tion about exactly the variables that are live in each live stack
frame in the program state. We now define in detail the control
domain used by our analysis, OnlinePtsTo= (A,γ,τ).

Each element in the space A is either None[A], which repre-
sents no states, or a tuple consisting of (1) a stack in which each
entry is a map from each register r to a set of memory cells and
instruction pointer that r may store and (2) a map from each cell
to the cells and instruction pointers that it may store. I.e., for

Addrs= IAddrs∪Cells
RegPtsMaps= Regs→ P(Addrs)
FramePtsTo= IAddrs×RegPtsMaps

CellPtsTo= Cells→ P(Addrs)

with P(Addrs) the powerset of addresses, the abstract states are
A = FramePtsTo+×CellPtsTo. The stack containing a single
frame that maps each register to the empty set of addresses,
paired with an empty memory map, is the initial element of A.

Example 2 §2.3 contains examples of elements of A. In order
to simplify the presentation, in §2.3, only bindings to the function
pointer handler are shown, because these bindings are the only
ones that need to be inspected to determine the security of a
given run of dispatch.

Concretization relation γ ⊆ A × States relates each stack
and memory of points-to information to each concrete state
with a similarly structured stack and heap. For each n ∈ N, let
a0, . . . ,an ∈ IAddrs, R0, . . . ,Rn ∈ RegMaps, and R′

0, . . . ,R
′
n ∈

RegPtsMaps be such that for each i ≤ n and each register r ∈
Regs, if Ri(r) ∈ Addrs, then Ri(r) ∈ R′

i(r). Let m ∈Mems and
m′ ∈ CellPtsTo be such that for each cell c ∈ Cells, m(c) ∈
m′(c). Then:

(([(i0,R′
0), . . . ,(in,R′

n)],m
′),

([(i0,R0), . . . ,(in,Rn)],m)) ∈ γ

The abstract transformer τ : A× Instrs× IAddrs→ A is de-
fined as follows. For each set of memory cells C ⊆ Cells, let
fresh(C) ∈ Cells \C be a fresh memory cell not in C. For all
register frames f0, . . . , fn ∈ FramePtsTo, each register map m∈
RegPtsTo, each cell points-to map c ∈ CellPtsTo, all registers
r0,r1,r2 ∈ Regs, and all instruction addresses a,a′ ∈ IAddrs, a
store instruction store r0, r1 updates the cell map so that each
cell bound to r1 points to each cell points to each cell bound to
r0. I.e., for c0, . . . ,cn ∈ R(r1),

τ(((a,R) :: F,m),store r0, r1,a′) =
((a′,R) :: F,m[c0 7→ R(r0), . . . ,cn 7→ R(r0)])

A branch instruction requires that the target instruction address
is in the points-to set of the target register of the branch. I.e., if
a′ ∈ R(r0), then

τ(((a,R) :: F,m),br r0,a′) = ((a′,R) :: F,m)

Otherwise, τ maps the abstract state to None[A]. A call instruc-
tion increments the instruction pointer in the top frame and
pushes onto the stack a frame with an empty register map. I.e.,
if a′ ∈ R(r),

τ(((a,R) :: F,m),call r0,a′) =
((a′, /0) :: (a+1,R) :: F,m)

Otherwise, τ maps the abstract state to None[A]. A return
instruction pops the top register frame from the stack. I.e.,
τ(((a,R) :: F,m),return,a′) = (F,m) A data operation updates
only the instruction address:

τ(((a,R) :: F,m),op r0,r1,r2,a′) = ((a′,R) :: F,m)

An allocation alloc r0 updates the register map in the top frame
of the stack so that r0 points to a fresh memory cell. I.e.,

τ(((a,R) :: F,m),alloc r0,a′) =
((a′,R[r0 7→ fresh(Rng(m))]) :: F,m)

where (a,R) :: F denotes (a,R) prepended to F and Rng(m)
denotes the range of m. A copy instruction copy r0, r1 updates
the register map so that each cell that may be stored in r0 may
be stored in r1. I.e.,

τ(((a,R) :: F,m),copy r0, r1,a′) =
((a′,R[r1 7→ R(r0)]) :: F,m)

A load instruction load r0, r1 updates the register map in the
top frame so that each cell that may be pointed to by a cell bound
to r0 is bound to r1:

τ(((a,R) :: F,m),ld r0, r1,a′) =
((a′,R[r1 7→

⋃
c∈R(r0)

m(c)]) :: F,m)

The abstract transformers for other instructions, such as data
operations that perform pointer arithmetic, are defined similarly,
and we do not give explicit definitions here in order to simplify
the presentation.

Example 3 Consider descriptions of states of dispatch and its
instruction call handler (§2.1). For abstract state

A0 = ([(L22, [handler 7→ {priv}])], /0)

τ(A0,call handler,priv) consists of a fresh stack frame for
priv pushed onto the stack [(L22,handler 7→ priv)]. For ab-
stract state

A1 = ([(L22, [handler 7→ {unpriv}]), /0)

τ(A1,call handler,priv) is None[A].

We have given an online points-to analysis for a simple lan-
guage with only calls and returns. Practical languages typically
support additional interprocedural control instructions that, e.g.,
resolve calls targets through dynamic dispatch or unwind the
callstack. Our complete implementation handles each such in-
struction using an appropriate abstract transformer.

The fact that (D,γ,τ) defines a sound analysis can be proven
using standard techniques from abstract interpretation [8].
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Abstract

Discovering vulnerabilities in operating system (OS) ker-
nels and patching them is crucial for OS security. How-
ever, there is a lack of effective kernel vulnerability de-
tection tools, especially for closed-source OSes such as
Microsoft Windows. In this paper, we present Digtool,
an effective, binary-code-only, kernel vulnerability de-
tection framework. Built atop a virtualization monitor
we designed, Digtool successfully captures various dy-
namic behaviors of kernel execution, such as kernel ob-
ject allocation, kernel memory access, thread scheduling,
and function invoking. With these behaviors, Digtool
has identified 45 zero-day vulnerabilities such as out-
of-bounds access, use-after-free, and time-of-check-to-
time-of-use among both kernel code and device drivers
of recent versions of Microsoft Windows, including Win-
dows 7 and Windows 10.

1 Introduction

Software vulnerabilities have been well studied over
the years, but they still remain a significant threat to
computer security today. For instance, improper use
of parameters or memory data can lead to program
bugs, some of which can become vulnerabilities, such
as time-of-check-to-time-of-use (TOCTTOU), use-after-
free (UAF), and out-of-bounds (OOB) vulnerabilities.
These vulnerabilities are often the root cause of suc-
cessful cyberattacks. However, symptoms resulting
from these vulnerabilities tend to be delayed and non-
deterministic, which makes them difficult to discover by
regular testing. Therefore, dedicated vulnerability iden-
tification tools that can systematically find software vul-
nerabilities are urgently needed.

There are usually two aspects in detecting vulnerabil-
ities: path exploration and vulnerability identification.
Combining path exploration with vulnerability identi-
fication tools is an effective way to detect vulnerabil-

ities. Most fuzzing tools, such as AFLFast [12] and
SYMFUZZ [16], only adopt path exploration to probe
code branches. As a typical example of a path explorer,
S2E [17], based on virtualization technology, combines
virtual machine monitoring with symbolic execution to
automatically explore paths. Vulnerability identification
tools are used for recording exceptions (e.g., the abuse
of parameters or illegal memory access) in the paths that
have been probed. While we could have also investigated
path exploration, the main focus of Digtool is vulnerabil-
ity detection.

Depending on the detection targets, vulnerability iden-
tification tools can be classified into two categories: (1)
tools for checking applications in user mode, and (2)
tools for detecting programs in kernel mode. However,
most of the current vulnerability identification tools,
such as DESERVE [29], Boundless [15], and LBC [21],
have been designed for applications in user mode. They
cannot be directly used to detect kernel vulnerabilities.
However, vulnerabilities in OS kernels or third-party
drivers have a far more severe threat than user-level vul-
nerabilities. Thus, there is still a need for effective detec-
tion of kernel vulnerabilities.

Several Linux kernel vulnerability identification
tools, such as Kmemcheck [32], Kmemleak [6], and
KEDR [35], have been developed. They can effectively
capture kernel vulnerabilities. However, since they rely
on the implementation details and the source code of the
OS, it is difficult to port these tools to other OSes, espe-
cially to a closed-source OS such as Windows.

In Windows OS, a notable tool for checking kernel
vulnerabilities is Driver Verifier [28], which is used to
detect illegal function calls or actions that might corrupt
the system. While Driver Verifier is able to detect many
potential bugs, it is an integrated system, but not a ded-
icated tool for detecting kernel vulnerabilities. For in-
stance, it cannot be used to identify certain vulnerabili-
ties, such as TOCTTOU vulnerabilities.
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Vulnerability identification tools based on virtualiza-
tion are much more portable to support different OSes,
including closed-source ones. However, the current vul-
nerability identification tools based on virtualization,
such as VirtualVAE [18] and PHUKO [38], are dedi-
cated to detecting a single, specific type of vulnerabili-
ties. Moreover, they have not been evaluated in detecting
zero-day kernel vulnerabilities. It is worth noting that the
virtualization-based tool Xenpwn [41] makes use of Lib-
vmi [34] to discover vulnerabilities in para-virtualized
devices of Xen (not for the Windows OS). It traces guest
physical addresses through extended page tables (EPTs).
However, it is not appropriate for monitoring guest vir-
tual addresses.

For closed-source OSes such as Windows, it is even
more difficult to build a vulnerability identification tool.
We are neither able to insert detection code at compile-
time to detect program errors like those tools for Linux,
nor able to rewrite or modify the OS source code like
Driver Verifier. Under these constraints, we adopt virtu-
alization to hide the internal details of the Windows OS,
and carry out the detection at a lower level, i.e., at the hy-
pervisor. Therefore, a novel vulnerability identification
framework named Digtool is proposed, which captures
dynamic behavior characteristics to discover kernel vul-
nerabilities in the Windows OS by using virtualization
technology.

Contributions. In short, we make the following contri-
butions in this paper:

• A virtualization-based vulnerability identification
framework, Digtool, is proposed to detect different
types of kernel-level vulnerabilities in the Windows
OS. It does not need to crash the OS, and thus it can
capture multiple vulnerabilities and provide the ex-
act context of kernel execution. It is designed to be
independent of kernel source code, which enlarges
its applicable scope. In addition, it does not depend
on any current virtualization platform (e.g., Xen) or
emulator (e.g., bochs).

• Based on the framework, virtualization-based de-
tection algorithms are designed to discover four
types of vulnerabilities, including UNPROBE (no
probe, i.e., no checking on the user pointer to the
input buffer), TOCTTOU, UAF, and OOB. These
algorithms can effectively detect kernel vulnerabil-
ities by accurately capturing their dynamic charac-
teristics.

• With Digtool, we found 45 zero-day kernel vulner-
abilities from both Windows kernel code and third-
party device driver code. These vulnerabilities had
never been published before. We have made respon-
sible disclosure and have helped the corresponding

vendors fix the vulnerabilities. The root cause of
some of the vulnerabilities is also analyzed in this
paper.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the background. In Section 3, we
provide the overall design of the framework. In Section
4, we detail the implementation of Digtool, and, in Sec-
tion 5, evaluate its effectiveness and efficiency. In Sec-
tion 6, we discuss its limitations and directions for future
research. In Section 7, we review the related work, and
in Section 8 we conclude.

2 Background

UNPROBE, TOCTTOU, UAF, and OOB vulnerabilities
have widely appeared in various programs including OS
kernels. They can lead to denial-of-service attacks, lo-
cal privilege escalation, and even remote code execution,
which directly affect the stability and security of the vic-
tim program.

No checking of a user pointer to an input buffer could
lead to a vulnerability that is denoted UNPROBE in this
paper. Many kernel modules omit the checking for user
pointers (especially when the user pointers are nested in
a complex structure). According to the historical data
of common vulnerabilities and exposures (CVEs), there
have been many UNPROBE vulnerabilities in the Win-
dows kernels, and there are also many such vulnerabili-
ties in third-party drivers (e.g., the vulnerabilities in the
experiment described herein). An UNPROBE vulnera-
bility could result in an invalid memory reference, an ar-
bitrary memory read, or even an arbitrary memory over-
write. Therefore, detection of UNPROBE is necessary.
While fuzzing based on path exploration can help solve
some problems, it is difficult to test all pointer arguments
nested in complicated structures.

A TOCTTOU vulnerability stems from fetching a
value from user memory more than once. Usually, a
brittle system-call handler fetches a parameter for the
first time to check it and for the second time to use it.
Thus, an attacker has a chance to tamper with the pa-
rameter in the user space between the two steps. Con-
sequently, the system-call handler will fetch and use the
compromised parameter, which will lead to a TOCTTOU
vulnerability. Similar to UNPROBE above, TOCTTOU
could also result in an invalid memory reference, an ar-
bitrary memory read, or an arbitrary memory overwrite.
It is difficult to detect this type of vulnerability through
fuzzing based only on path exploration. Bochspwn [24]
was developed to identify many TOCTTOU vulnerabil-
ities in the Windows kernel. However, its application is
extremely restricted by the disappointing performance of
the bochs emulator [25]. In addition, the bochs emulator
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Figure 1: Digtool architecture.

cannot simulate all actual operations and functionalities
of a real-world machine (e.g., inability to emulate certain
real, hardware-specific kernel modules, such as modern
video card drivers). As a result, Bochspwn cannot cover
all of the kernel modules.

A UAF vulnerability stems from reuse of freed mem-
ory. An OOB vulnerability results from accessing mem-
ory that is beyond the bounds of allocated heaps or mem-
ory objects. In many cases, these vulnerabilities could
lead to local privilege escalation. For the Linux OS, tools
such as AddressSanitizer [36] have been released to de-
tect these vulnerabilities. For the closed-source Windows
OS, it is difficult for a third party to build such detection
tools. Driver Verifier [28] proposed by Microsoft can be
used to discover these types of vulnerabilities. However,
it is much more likely to miss a vulnerability in some
scenarios (e.g., the UAF detection scenario described in
Section 4.3.1).

Digtool adopts virtualization technology to detect the
above four types of vulnerabilities in Windows kernels
and device drivers with better detection results. As a
framework, it could also be used to detect some other
types of vulnerabilities, such as double-free and infor-
mation leakage, by expanding its detection algorithms.

3 Overview

The overall architecture of Digtool is illustrated in Figure
1. The subsystems and logic modules of the Digtool are
distributed across user space, kernel space, and the hy-
pervisor. The thin arrows in the figure indicate that there
are direct invoking relationships or direct channels for
passing messages between modules. The thick arrows il-
luminate that two modules act on each other indirectly
via some event-triggering mechanisms.

One of the most important tasks for the hypervisor is to
monitor virtual memory access. This is the basis for in-
terface detection and memory detection. However, the
memory monitor methods in current vulnerability iden-

tification tools are unsuitable for our scenario. Without
source code, we cannot monitor memory access through
patching source code like Driver Verifier [28], or through
configuring compile-time instrumentation like Address-
Sanitizer [36]. Patching the system exception handler to
intercept memory references by using page access rights
is an alternative, but it will introduce significant, internal
modifications in the kernel that may impact the stabil-
ity of the OS and be the least portable. Binary rewrit-
ing could help to solve part of the problem. However,
tools such as Pin [27] and DynamoRIO [13] work well
in user mode, but it is difficult for these tools to work in
kernel mode. Drk [5] tried to port the DynamoRIO to
the kernel space for Linux, but it has not been updated
for years, and there are few special tools for the Win-
dows kernel. As an alternative, QEMU [11] or the recent
extension PEMU [42] could be used to implement ker-
nel program instrumentation for the Windows OS, but it
is complicated and has a heavier effect on performance
even without monitoring memory access.

Therefore, there is a clear need to develop an effi-
cient alternative mechanism for tracing memory access
outside a guest OS. As most programs run in virtual ad-
dress space, we should focus more on the virtual address
than on the physical address. Thus, the method of us-
ing EPT to trace physical addresses, like Xenpwn [41],
cannot be directly used in our scenario, especially for the
Windows OS, whose memory mapping between virtual
and physical addresses is nonlinear. In view of the poor
performance of Bochspwn [24], we did not adopt a full-
stack emulator. In order to build a practical framework
that focuses on the virtual address space, a shadow page
table (SPT) based on hardware virtualization technology
is employed to monitor virtual memory access, which is
very different from Xenpwn and Bochspwn in both de-
sign and implementation.

In kernel space, the major work includes setting the
monitored memory area, communicating with the hyper-
visor, and intercepting specified kernel functions. The
monitored memory area depends on the type of vulner-
ability to be detected. It will be changed along with the
occurrence of some kernel events (e.g., allocating or re-
leasing memory). Hence, it is necessary to trace these
events in kernel space. For communication, the service
interfaces are exported by Digtool. Kernel code invokes
these interfaces to request services from the hypervisor.
In addition, some kernel functions of the OS should be
hooked to trace some particular events. All of these tasks
that should be reserved in kernel space make up the mid-
dleware.

The loader, fuzzer, and log analyzer are placed in user
space to simplify the code and make the entire system
more stable. The loader activates the hypervisor and
loads the fuzzer that is used to probe program paths.
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Thus, the behavior characteristics in the probed paths can
be recorded for the log analyzer.

Unlike emulator-based tools (e.g., Bochspwn [24]),
Digtool is able to run in a physical machine with this
architecture design. It is widely applicable to almost all
main kernels and third-party drivers.

3.1 Hypervisor Components

Digtool does not rely on any current hypervisor such as
Xen or KVM, and we implemented our own hypervi-
sor that contains three important components, including
VMM infrastructure (VMM, i.e., virtual machine moni-
tor, which is equivalent to a hypervisor), interface detec-
tion, and memory detection.

To begin with, VMM infrastructure checks the hard-
ware environment and the OS version to ensure compat-
ibility. It then initializes the hypervisor and loads the
original OS into a VM. The initialization of the hyper-
visor mainly consists of the following tasks: (1) build-
ing SPTs to monitor virtual memory access in the guest
OS, (2) initializing modules for tracing thread schedul-
ing, and (3) establishing communication between the OS
kernel and the hypervisor. As such, the interface detec-
tion and memory detection components can monitor and
handle some special events.
Interface detection monitors the parameters passed

from user-mode programs during the system-call execu-
tion. It traces the use and the check of these parameters to
discover potential vulnerabilities. The SPTs are needed
to monitor the user memory space during the system-call
execution. As system calls are always invoked in kernel
mode, we do not need to monitor user memory when the
processor runs in user mode. Otherwise, many VMEXIT

events will be triggered, which will bring a substantial
decrease in performance. In order to focus on vulnera-
bilities in a limited scope of system calls, interface de-
tection is able to configure the detection scope of sys-
tem calls through correlative service interfaces. Thus, it
can obtain the potential vulnerabilities in specified sys-
tem calls.
Memory detection monitors the use of kernel mem-

ory in the guest OS to detect illegal memory access. The
SPTs are used to monitor the kernel memory. To detect
some specified types of vulnerabilities in different detec-
tion targets (e.g., the multi-user Win32 driver: Win32k),
memory detection is able to set monitored memory area
and configure detection targets. It also dynamically cali-
brates the monitored memory area when capturing events
of memory allocation or deallocation. All of these are
implemented through corresponding service interfaces.
Thus, it will obtain the exact characteristics of potential
vulnerabilities during the memory access process.

3.2 Kernel-Space Components

The middleware locates in the kernel space of the guest
OS. It is used to connect the subsystems in the hyper-
visor and the programs in the user space. For example,
before loading the fuzzer, we can set the detection scope
of system calls through the configuration file. Then, the
middleware transfers the configuration information and
the fuzzer process information from the loader to the hy-
pervisor. Thus, the hypervisor can detect vulnerabilities
in the environment of the fuzzer process.

For interface detection, the middleware records all be-
havior events in log files through a work thread. The
recorded data include system call number, event type,
event time, instruction address, and accessed memory
of the event. Thus, the log analyzer can detect poten-
tial UNPROBE and TOCTTOU vulnerabilities from the
log files. Note that only the system calls in the detec-
tion scope are recorded, which is meaningful when the
system calls are invoked frequently. The number of fre-
quent system calls could be limited to reduce the perfor-
mance cost and alleviate the stress on the log analyzer.
We can then obtain more effective data with less perfor-
mance overhead.

For memory detection, the middleware helps dynam-
ically calibrate the monitored memory by hooking some
specified memory functions. In order to obtain more rel-
evant data and reduce performance cost, it also limits
the areas of monitored memory and the scope of kernel
code (e.g., the code segment of Win32k) through invok-
ing the service interfaces. If a potential vulnerability is
found, the middleware records it and interrupts the guest
OS through single-step mode or a software interruption.
Thus, the guest OS is able to be connected with a debug
tool such as Windbg, and the exact context is obtained to
analyze the vulnerability.

3.3 User-Space Components

There are three modules in the user space: loader, fuzzer,
and log analyzer. The loader is used for loading the tar-
get process, after which Digtool provides a process en-
vironment for detecting vulnerabilities. The loader can
also limit the detection scope of system calls and set the
virtual addresses of the boundary for ProbeAccess events
(which will be described in Section 4.2) through the con-
figuration file.

The fuzzer is responsible for discovering code
branches. It is loaded by the loader. In Digtool, the
fuzzer needs to invoke the system calls in the detection
scope, and discovers as many branches as possible in the
code of a system call by adjusting the corresponding pa-
rameters. A higher path-coverage rate can certainly help
achieve a more comprehensive test. However, as this
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paper mainly focuses on the vulnerability identification
tool, not path exploration, we will not go into much de-
tail regarding the fuzzer or the path coverage.

The log analyzer is designed to discover potential
vulnerabilities from log files. It extracts valuable in-
formation from the large amount of recorded data ac-
cording to the characteristics of vulnerabilities. The log
analyzer’s vulnerability detection algorithm needs to be
changed depending on the types of vulnerabilities (e.g.,
UNPROBE or TOCTTOU) to be detected, since we use
different policy to detect them.

4 Implementation

In this section, we provide the implementation details
of how we implement Digtool, especially its hypervisor
components, including VMM infrastructure, interface
detection, and memory detection. The implementation
of other components, such as the middleware, loader,
fuzzer, and log analyzer, is also described in this section.

4.1 VMM Infrastructure
The main task of VMM infrastructure is to initialize
the hypervisor and provide some basic facilities. After
initializing the hypervisor, it loads the original OS into
a VM. Then, the hypervisor is able to monitor the OS
through the facilities.

The initialization process runs as follows. In the be-
ginning, Digtool is loaded into the OS kernel space as a
driver that checks whether processors support hardware
virtualization through CPUID instruction. If they support
it, VMM infrastructure builds some facilities for the hy-
pervisor. Then, it starts the hypervisor for every proces-
sor by initializing some data structures (e.g., VMCS) and
registers (e.g., CR4). Finally, it sets the state of guest
CPUs according to the state of the original OS. Thus, the
original OS becomes a guest OS running in a VM.

The Intel developer’s manual [23] can be referenced
to obtain the implementation details of hardware virtual-
ization. This paper mainly focuses on the modules that
help to identify vulnerabilities. These modules include
the virtual page monitor, thread scheduling monitor,
CPU emulator, communication between kernel and hy-
pervisor, and the events monitor. Among these, the CPU
emulator and events monitor are associated with partic-
ular types of vulnerabilities, so these two parts will be
described in corresponding subsections.

4.1.1 Virtual Page Monitor

Digtool adopts SPTs to monitor virtual memory ac-
cess. To reduce performance cost, SPTs are only

employed for the monitored threads (i.e., the fuzzer
threads). For non-monitored threads, the original page
tables in the guest OS are used. When thread scheduling
occurs, the virtual page monitor needs to judge whether
the new thread that will get control is a monitored thread.
Only when it is a monitored thread, will a SPT be built
for it. Thus, performance is optimized.

Figure 2 shows the workflow of the virtual page mon-
itor for a monitored thread. Digtool adopts a sparse
BitMap that traces virtual pages in a process space. Each
bit in the BitMap represents a virtual page. If a bit is set
to 1, the corresponding page needs to be monitored, and
the P flag in its page table entry (PTE) of the SPT should
be clear [note that the SPT is constructed according to the
guest page table (GPT)]. Thus, access to the monitored
virtual page will trigger a #PF (i.e., page fault) exception
that will be captured by the hypervisor.

When the #PF exception is captured, the page-fault
handler in the hypervisor will search for the BitMap.
If the bit for the page that causes the #PF exception is
0, the page is not monitored. The SPT will be updated
through GPT. Then, the instruction that causes the ex-
ception will re-execute successfully. If the bit is 1, it is a
monitored page. Then, the Handle module will be used
to handle this exception. It will (1) record the exception,
or (2) inject a private interrupt (0x1c interrupt, which has
not been used) into the guest OS. The recording process
for the exception is described in the following (i.e., the
part of shared memory described in Section 4.1.3). The
private interrupt handler stores some information (e.g.,
the memory address that is accessed, and the instruction
that causes the #PF) about the #PF exception, and then
it connects to a debug tool by triggering another excep-
tion, such as software interruption, in the guest OS. After
that, Digtool “single steps” the instructions in the guest
OS by setting a MTF (monitor trap flag, which can be
used in new version of processors) or TF (trap flag, which
is used in old versions of processors) in the hypervisor.
Meanwhile, the SPT is updated through GPT to make the
instruction that causes the exception re-execute success-
fully. Because of MTF or TF, a VMEXIT will be triggered
after executing one instruction in the guest OS, and then
the hypervisor will get control again. Thus, the handler
of MTF or TF in the hypervisor has a chance to clear the P
flag, and the page will be monitored once again. Finally,
it disables the MTF or TF to cancel the single-stepping
operation.

We have noticed that, in most cases, we need to mon-
itor a memory region rather than an entire memory page.
A memory region covers only one part of a memory
page or contains several pages. All of the memory pages
owned by a monitored memory region should be traced.
When a #PF exception is triggered, its handler needs to
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Figure 2: Workflow of virtual page monitor.

further recognize whether the address causing the #PF

exception is in the monitored memory region.

4.1.2 Thread Scheduling Monitor

As discussed above, Digtool only focuses on the mon-
itored threads. It needs to trace thread scheduling to en-
able detection for monitored threads and disable detec-
tion for non-monitored threads. Thus, it achieves better
performance with more effective data. The method of the
thread scheduling monitor is shown below.

In the Windows OS, the KPRCB structure contains the
running thread information for its corresponding proces-
sor. The KPRCB is referenced by the KPCR structure
whose address can be obtained through the FS regis-
ter (for x64 architecture, the GS register). The running
thread of the current processor can be obtained through
the following relationship:
FS-> KPCR-> KPRCB->CurrentThread.
With respect to how to acquire KPRCB, the methods

described in ARGOS [43] could be leveraged to uncover
this data structure, though currently we use manual re-
verse engineering and internal Windows kernel knowl-
edge to get it. Note that there are also other data struc-
ture agnostics approaches to detect kernel threads, such
as using kernel stack pointer (e.g., [20]). After obtain-
ing the KPRCB structure, the CurrentThread member
in the KPRCB is monitored. Any write operation to the
CurrentThread means a new thread will become the
running state, and this will be captured by the hypervi-
sor. If the new thread is a monitored thread, the virtual
page monitor will be activated to detect vulnerabilities.

4.1.3 Communication Between Kernel and Hyper-
visor

The communication between kernel and hypervisor in-
cludes two main aspects. One is that the kernel compo-
nent makes a request to the hypervisor, and the hyper-
visor provides service. The other is that the hypervisor

Hypervisor Components
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Figure 3: Communication between kernel and hypervi-
sor via shared memory.

sends messages to the kernel component, and the kernel
component handles the messages. The former is mainly
implemented by the service interfaces, and the latter is
carried out through the shared memory.

Digtool exports some service interfaces for the kernel-
space components. They can be directly invoked by
kernel code. The service interfaces are implemented
through a VMCALL instruction, which will trigger a
VMEXIT to trap into the hypervisor. Thus, the service
routines in the hypervisor can handle the requests.

The shared memory is applied to exchange data be-
tween the hypervisor and kernel code. The hypervisor
writes the captured behavior information to the shared
memory and notifies the kernel space components. Then,
the kernel space components read and deal with the data
in the shared memory. The workflow of the shared mem-
ory is shown in Figure 3.

The main data flow is represented by the thick arrows
in the figure. When the hypervisor captures some behav-
ior characteristics, it records them into shared memory.
The middleware in the kernel space uses a work thread
to read the data in the shared memory. It also records
characteristic information into log files.

The following stream of instructions is shown by the
thin arrows in Figure 3: (1) When the target module
(which is being detected) triggers an event monitored by
the hypervisor, a VMEXIT will be captured by the hyper-
visor. (2) The hypervisor records the event information
into shared memory. If the shared memory is full, it will
inject a piece of code into the guest OS. The code will
notify the work thread to handle the data in shared mem-
ory (i.e., read them from shared memory and write them
into log files). If the shared memory is not full, it will
jump back to the target module (the arrow represented
by 2’). (3) After notifying the work thread, the injected
code will return to the target module and re-execute the
instruction that causes the VMEXIT.
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Figure 4: Example of recorded events during a system call.

4.2 Detecting Vulnerabilities at System
Call Interface

Interface detection traces the execution process of sys-
tem calls and monitors their parameters passed from
user-mode programs. It then decides whether the check
or the use of these parameters will create potential haz-
ards.
Interface detection monitors the entire execution pro-

cess of system calls from the point of entering into kernel
mode to the point of returning to user mode. During this
process, it monitors how the kernel code handles the user
memory. Then, it records the behavior characteristics to
analyze potential vulnerabilities. Interface detection is
implemented by defining and intercepting different be-
havior events during the execution of system calls. These
behavior events and their interception methods make up
the events monitor.

Ten types of behavior events are defined in the event
monitor: Syscall, Trap2b, Trap2e, RetUser, MemAc-
cess, ProbeAccess, ProbeRead, ProbeWrite, GetPebTeb,
and AllocVirtualMemory events. Particular combina-
tions of these events can help locate potential vulnera-
bilities in the large amount of log data (e.g., two contin-
uous MemAccess events suggest a potential TOCTTOU
vulnerability). The behavior events recorded in the exe-
cution of a system call are shown in Figure 4. The boxes
denote recorded events. The values (e.g., n and n+ 1)
above the boxes are the event time (which only records
order but not the actual intervals). The Mi and M j under
the boxes represent the user memory addresses accessed
by the event.

In the Windows OS, fast system call, interruption of
0x2b, and interruption of 0x2e are the three entry points
that allow user-mode code to invoke kernel functions.
The fast system call adopts the sysenter/syscall in-
struction to go into kernel mode. The interruption of
0x2b is used to return from a user-mode callout to the
kernel-mode caller of a callback function. The inter-
ruption of 0x2e is responsible for entering into kernel
mode in older Windows OSes. In Digtool, the three en-
try points are traced by intercepting corresponding en-
tries in the interrupt descriptor table (IDT) or MSR reg-
ister. They are defined as three types of behavior events,
which are marked as Syscall event, Trap2b event, and
Trap2e event, respectively.

The return point is obtained by another way. When
the control flow returns to the user mode, the processor
will prefetch the user-mode instructions. Thus, Digtool
obtains the point of returning to user mode by monitor-
ing the user-mode pages access. This behavior event is
marked as RetUser event.

After obtaining the two key points (i.e., the Syscall/-
Trap2b/Trap2e event and RetUser event), interface de-
tection will record the instructions that manipulate user
memory between the two points. To achieve this, one
important function is to monitor access to the user mem-
ory through SPTs. This behavior event is marked as
a MemAccess event. It is noticed that, the user-mode
pages are monitored only if the processor runs in kernel
mode, and this will significantly reduce the performance
cost.

To improve the efficiency of discovering and ana-
lyzing vulnerabilities, interface detection also defines
and intercepts some other behavior events, including
ProbeAccess, ProbeRead, ProbeWrite, GetPebTeb, and
AllocVirtualMemory. Among the five events, the first
three are used to record whether the user memory ad-
dress has been checked by the kernel code, while the last
two events suggest that the user memory address is legal;
that is, there is no need to check it again and thus false
positives can be reduced. These events are intercepted
by hooking corresponding kernel functions, except for
the ProbeAccess event.

GetPebTeb and AllocVirtualMemory events are used
to reduce false positives. In order to improve the de-
tection accuracy, we should focus on the user memory
that is passed as parameters from the user-mode program,
rather than on the memory that has been checked or that
will be deliberately accessed by kernel code. For ex-
ample, kernel code sometimes accesses a user memory
region returned by a PsGetProcessPeb function or al-
located by a NtAllocateVirtualMemory function dur-
ing a system call. In these cases, the user memory is
not a parameter passed from a user-mode program, and
it has less of a chance of causing a vulnerability. Dig-
tool defines GetPebTeb and AllocVirtualMemory events,
respectively, to handle these cases. These events inform
the log analyzer that the access to user memory is legal
and that no bug exists.

In addition to invoking the ProbeForRead (i.e.,
ProbeRead event) or ProbeForWrite (i.e., Probe-
Write event) function, kernel code can also adopt
direct comparison to check the legitimacy of the user
memory address; for example, “cmp esi, dword

ptr [nt!MmUserProbeAddress (83fa271c)]”
where the esi register stores the user memory
address to be checked, and the exported variable
nt!MmUserProbeAddress stores the boundary of the
user memory space. This kind of behavior event is
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marked as a ProbeAccess event. We cannot intercept it
by hooking a kernel function as this event is not handled
by any kernel function. Moreover, there is no access
to user memory space. Hence, we cannot intercept it
through monitoring a MemAccess event either. For this
particular type of event, the CPU emulator is proposed.

The CPU emulator is placed in the hypervisor to help
obtain behavior characteristics that are difficult to obtain
through regular methods. The CPU emulator is imple-
mented by interpreting and executing a piece of code of
the guest OS. Its workflow is shown in Figure 5. The DR
registers are used to monitor the target memory. For the
ProbeAccess event, the target memory stores the bound-
ary that is used for checking the user-mode address. Usu-
ally, the exported variable, nt!MmUserProbeAddress,
is one of the target memory. Kernel code can reference
this variable directly or restore its value into another vari-
able, such as win32k!W32UserProbeAddress. All of
these variables are target memory. The address of tar-
get memory can be set by the configuration file of the
loader, and then the hypervisor obtains the target mem-
ory through the middleware and monitor the memory ac-
cess through DR registers. When the guest OS accesses
target memory, the debug exception handler (DR han-
dler) in the hypervisor will capture it. The handler up-
dates the processor state of the CPU emulator (i.e., Vir-
tual CPU) through that of the VM (i.e., Guest CPU).
Thus, the CPU emulator is activated to interpret and ex-
ecute the code of the guest OS around the instruction that
causes the debug exception. Since the debug exception
is a trap event, the start address for the CPU emulator is
the instruction directly before the guest EIP register.

As the ProbeAccess event adopts direct comparison to
check pointer parameters for a system call, the CPU em-
ulator should focus on cmp instructions when it interprets
and executes the code of the guest OS. The user-mode
virtual address (UVA) for a pointer passed from a user-
mode program is obtained by analyzing cmp instructions.
Then, the ProbeAccess event is recorded in log files via
shared memory.

There may be more than one UVA to be checked in a
system call. The device driver may restore the value from
target memory to a register and then check the UVAs by
comparing them to the register separately. The maximum
number of UVAs (represented by the letter N in Figure 5)
could be set through the configuration file. After finish-
ing N cmp instructions or a fixed number of instructions,
the hypervisor will stop interpreting and executing, and
return to the guest OS to continue executing the follow-
ing instructions.

Memory#DR

Guest CPU

DR Handler

UVA-1
EAX 

EBX 

…… 

EIP 

…… 

Update

Emulator

EAX

EBX

……

EIP

……

Virtual CPU

N 

UVA-2

UVA-N

…… 

cmp

Figure 5: Workflow of CPU emulator.

4.2.1 Detecting UNPROBE Vulnerabilities

For the Windows kernel and device drivers, user mem-
ory (pointed by a user pointer) can be accessed under
the protection of structured exception handling (SEH) at
any time. It is safe to de-reference a user pointer if it
points into the user space. Otherwise, it will bring on a
serious vulnerability that is called UNPROBE in this pa-
per. Theoretically, before using a pointer passed from a
user-mode program, a system-call handler should check
it to ensure that it points into the user-mode space. As a
consequence, it will cause a ProbeAccess, ProbeRead, or
ProbeWrite event before a MemAccess event under nor-
mal circumstances. If there is no such type of checking
event before a MemAccess event, there may be an UN-
PROBE vulnerability in the kernel code.

To detect an UNPROBE vulnerability, we focus on
whether there is a checking event before a MemAccess
event, and whether the virtual addresses in the two events
are the same. As discussed above, the ProbeRead and
ProbeWrite events are directly obtained by hooking the
checking functions in the kernel. The difficulty lies in
the ProbeAccess event. In the Windows kernel, there is
much code that checks parameters via direct comparison.
Only intercepting ProbeRead and ProbeWrite events will
result in a large number of false positives. A signifi-
cant number of false positives will create more workload
and make it more complicated to perform reverse analy-
sis. Hence, monitoring a ProbeAccess event through the
CPU emulator is of significant importance. We therefore
propose the use of CPU emulator to detect UNPROBE
vulnerabilities.

Take Figure 4 as an example, at the event time of
“n + 3”, the kernel code triggers a MemAccess event
by accessing user memory. If there is no ProbeAc-
cess/ProbeRead/ProbeWrite event to check the user ad-
dress beforehand, or no AllocVirtualMemory/GetPebTeb
event to imply the legitimacy of the address, an UN-
PROBE vulnerability may exist in the kernel code. In
contrast, if there is a ProbeAccess/ProbeRead/Probe-
Write event or GetPebTeb/AllocVirtualMemory event to
suggest that the user address is legal, and the event is trig-
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gered in the same system call as the MemAccess event,
the code is safe.

To detect an UNPROBE vulnerability, the fuzzer in-
vokes the test system calls and tries to discover as many
branches as possible by adjusting their parameters. Fur-
thermore, the log analyzer looks for MemAccess events
in which the user addresses have not been verified by a
ProbeAccess/ProbeRead/ProbeWrite or GetPebTeb/Al-
locVirtualMemory event during a system-call execution.

4.2.2 Detecting TOCTTOU Vulnerabilities

There are two key factors in a TOCTTOU vulnerability.
One is that the parameter passed from a user-mode pro-
gram should be a pointer. The other is that the system-
call handler fetches the parameter from user memory
more than once. Thus, the user-mode code has a chance
to change the parameter referenced by the pointer.

Take Figure 4 again for instance, if a piece of ker-
nel code accesses the same user memory at the time of
“n + 2” and “n + 3,” there may be a TOCTTOU vul-
nerability in the kernel code. To discover this type of
vulnerability, the key point is to look for the user mem-
ory that has been accessed more than once in the log
files. The event time could help to improve the accu-
racy. If there are two MemAccess events that fetch from
the same user memory, we can judge whether they are
triggered in the same system call by comparing the two
events’ times with the Syscall/Trap2b/Trap2e event time
and the RetUser event time. Only when they are in the
same system-call execution, may a TOCTTOU vulnera-
bility exist.

The fuzzer needs to invoke the test system calls, and it
should discover as many branches as possible by adjust-
ing parameters. At the same time, interface detection
records the dynamic characteristics via the middleware.
Then, the log analyzer is used to look for the user mem-
ory addresses that have been accessed more than once
during a system-call execution.

4.3 Detecting Vulnerabilities via Memory
Footprints

Memory-footprint-based detection is used to detect il-
legal use of kernel memory by tracing the behavior of
memory allocation, release, and access. In this paper, we
will focus on two aspects of illegal memory use: access-
ing beyond the bounds of allocated heaps and referenc-
ing to freed memory. These can lead to OOB and UAF
vulnerabilities.

To capture the dynamic characteristics of vulnerabili-
ties, we need to monitor the allocated, unallocated, and
freed memory. Accessing allocated memory is allowed,
but using unallocated or freed memory is illegal. Digtool

monitors the kernel memory through the virtual page
monitor. Illegal memory access will be captured by its
page-fault handler in the hypervisor. Then, it records the
memory access error or submits it to a kernel debug tool
like Windbg [8]. Thus, the exact context of kernel exe-
cution can be provided for the vulnerability detection.

In order to obtain more relevant data and reduce per-
formance overhead, the monitored memory pages can be
restricted. The middleware helps to limit the scope of
monitored pages, and passes the scope to the memory
detection by invoking our exported service interfaces of
Digtool. For instance, when detecting UAF vulnerabil-
ities, we are only concerned with freed memory, so we
need to limit the scope to freed pages. Furthermore, to
put more emphasis on the kernel code under test, Digtool
can also specify target modules to define a scope of ker-
nel code. Only the instructions in the target modules that
cause illegal memory access are recorded. Thus, we can
concentrate on the target code tested by the fuzzer.

For tracing the allocated and freed mem-
ory, Digtool hooks memory functions such as
ExAllocatePoolWithTag and ExFreePoolWithTag.
These functions are used to allocate or free kernel
memory in the guest OS. Thus, we can determine which
memory region is allocated and which is freed. As
the size of freed memory cannot be directly obtained
through the arguments of the free functions, Digtool
records the memory address and the memory size via the
parameters of allocation functions. Thus, when a free
function is called, the memory size can be obtained by
searching for the record.

Memory allocations before Digtool is loaded cannot
be captured. Therefore, Digtool should be loaded as
early as possible to achieve more precise detection. It
is feasible to load Digtool during boot time by setting
the registry. Thus, there are only a few modules loaded
before Digtool and the unmonitored memory allocations
are few, which largely limits the attack surfaces. To
summarize, the memory allocations before loading Dig-
tool have a negligible impact on precision. Built atop
virtualization technology, our memory-footprint-based
approach can be applied to various kernels and device
drivers without any compile-time requirements.

4.3.1 Detecting UAF Vulnerabilities

UAF results from reusing the freed memory. To detect
it, memory detection needs to trace the freed memory
pages until they are allocated again. Any access to the
freed memory will be marked as a UAF vulnerability.

In order to trace freed memory, memory
functions such as ExAllocatePoolWithTag,

ExFreePoolWithTag, RtlAllocateHeap, and
RtlFreeHeap (as discussed above, hooking mem-
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ory allocation functions is done to record the size
of freed memory) need to be hooked. Note that
the Windows OS implements some wrapper func-
tions for these. For instance, both ExAllocatePool

and ExAllocatePoolEx are the wrapper func-
tions for ExAllocatePoolWithTag. To avoid
multiple monitoring and repetitive records, Digtool
only hooks underlying memory functions such as
ExAllocatePoolWithTag rather than wrapper func-
tions. Inappropriate use of lookaside lists will also cause
UAF vulnerabilities. Digtool hooks the corresponding
functions, including InterlockedPushEntrySList

and InterlockedPopEntrySList, to monitor the
freed memory blocks in the lookaside lists.

Any instruction operating on the freed memory (or
blocks) is regarded as the “use” instruction of a UAF vul-
nerability. It is obtained through the virtual page moni-
tor. The “free” instruction of a UAF vulnerability is ob-
tained by recording the free function when it is invoked,
and its call-stack information is recorded through a back-
trace of the stack to facilitate analysis.

A UAF vulnerability may be missed in some scenar-
ios. Considering such situations, there is a memory block
A referenced by pointer P. After freeing block A, another
program allocates a memory block B that covers the en-
tire memory of block A. Then, the first program tries
to manipulate block A through the pointer P. Obviously,
there is a UAF vulnerability in the first program. How-
ever, as the memory region of block A is allocated again,
it is difficult to detect the vulnerability. This is the rea-
son that Driver Verifier may miss a UAF vulnerability.
In order to solve this problem, Digtool delays the release
of the freed memory to extend the detection time win-
dow. The freed memory will be released until it reaches
a certain size.

4.3.2 Detecting OOB Vulnerabilities

An OOB vulnerability can be caused by accessing mem-
ory that is beyond the bounds of allocated heaps. To de-
tect it, the monitored memory space should be limited to
the unallocated memory areas. Any access to the unallo-
cated memory areas will prompt an OOB vulnerability.

Digtool calibrates the unallocated memory areas
through the help of the middleware. In general, except
for the memory areas occupied by kernel modules and
stacks, the rest of the memory pools are defined as ini-
tial unallocated memory areas. As the kernel memory
state keeps changing, memory functions that allocate or
free memory need to be hooked. Thus, it can adjust the
unallocated memory areas dynamically. During the de-
tection process, Digtool needs to search the records of al-
located or unallocated memory areas. An AVL tree (i.e.,
a self-balancing binary search tree) is employed to im-

prove the performance of the memory search. It adds a
node when a memory area is allocated, and deletes the
node if the memory is freed. Thus, when a monitored
page (not a memory area) is accessed (note that the mon-
itoring granularity of memory virtualization is a page,
but the size of a memory area may be less than a page;
the monitored pages are recorded via the BitMap, while
the monitored memory areas are stored in the AVL tree.),
Digtool searches the AVL tree for the accessed memory
area. If no related node is found, an OOB vulnerability
may exist.

Note that, as unallocated memory contains freed mem-
ory in the detection, an “OOB” may be caused by ac-
cessing a freed memory area. Some reverse-engineering
effort is needed to further distinguish between OOB and
UAF vulnerabilities.

An OOB vulnerability may be missed in some scenar-
ios. Considering such situations, two memory blocks A
and B are allocated and they are adjacent. A brittle pro-
gram tries to access block A with a pointer and an offset,
but the offset is so large that the accessed address locates
in block B. This is an obvious OOB vulnerability. How-
ever, block B is also in the AVL tree, so it is difficult to
detect this error. To solve this problem, Digtool will al-
locate an extra memory area with M bytes when a hooked
memory allocation function is invoked. As a result, the
total size of block A is sizeof(A)+M, and the start ad-
dress of block B will be backward for M bytes. However,
the size of block A recorded in the AVL tree is still de-
fined as sizeof(A) bytes. As a consequence, the extra
memory area with M bytes is not in the AVL tree. Thus,
instead of block B, the brittle program will access the ex-
tra memory area, and an OOB vulnerability will be then
captured by Digtool.

5 Evaluation

5.1 Effectiveness

We checked the detection capability of Digtool by testing
the programs of different products, including the Win-
dows OS and some anti-virus software (all of the prod-
ucts were the latest version at the time of the experi-
ments). The experimental environments included Win-
dows 7 and Windows 10. (Digtool can support Windows
XP/Vista/7/8/10, etc.) We chose some zero-day vulner-
abilities that had been responded to and fixed by the re-
sponsible vendors as examples to illustrate the experi-
mental results. All of the vulnerabilities discussed below
were first discovered by Digtool (all have been reported
to the corresponding vendors, among which Microsoft,
Avast, and Dr. Web have confirmed and fixed their vul-
nerabilities).
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Table 1: List of UNPROBE vulnerabilities.
Software products Unsafe system calls
Avast Free Antivirus

11.2.2262
NtAllocateVirtualMemory

NtCreateSection
Dr. Web 11.0 NONE

AhnLab 8.0

NtQueryValueKey
NtCreateKey

NtDeleteValueKey
NtLoadKey
NtOpenKey

NtSetValueKey
NtUnloadKey

Norman Security Suite
11.0.0

NtCreateMutant
NtCreateEvent
NtCreateFile

NtCreateSemaphore

Spyware Detector
2.0.0.3

NtCreateFile
NtCreateKey
NtDeleteFile

NtDeleteValueKey
NtOpenFile
NtOpenKey

NtOpenSection
NtSetInformationFile

NtSetValueKey
NtWriteVirtualMemory

5.1.1 Detecting Vulnerabilities via Interface

We chose five anti-virus software products as test tar-
gets since they intercept many system calls that could
be invoked by user-mode applications. The test was
mainly carried out on Avast for its strength of complex-
ity. The other four anti-virus software products included
Dr. Web, Ahnlab, Norman, and Spyware Detector. We
used some zero-day vulnerabilities discovered through
Digtool to verify its ability to detect UNPROBE and
TOCTTOU vulnerabilities. The middleware recorded the
behavior characteristics into log files to help locate vul-
nerabilities.

Detecting UNPROBE. Taking a vulnerability in Avast
11.2.2262 as an example, through the log analyzer, the
following data were obtained from the Digtool’s log file
for Avast 11.2.2262:

NtAllocateVirtualMemory:
Eip: 89993f3d , Address: 0023f304 , rw: R
Eip: 84082ed9 , Address: 0023f304 , PROBE!
KiFastSystemCallRet

aswSP.sys, the Avast driver program, used the in-
struction at the address 0x89993f3d to fetch the
value from the user address (i.e., 0x23f304) with-
out checking. The subsequent checking instruc-
tion at the address 0x84082ed9 belonged to the
NtAllocateVirtualMemory function. Therefore, there
was a typical UNPROBE vulnerability in aswSP.sys.

Using Digtool, 23 similar vulnerabilities were found
in the five anti-virus software programs tested. The re-
sults are shown in Table 1. For security reasons, we only
give the system calls for which vulnerabilities exist.

When the log analyzer points out a potential UN-
PROBE vulnerability, and the tested driver only uses the

ProbeForRead and ProbeForWrite functions to check
a user pointer (this is a common scenario in third-party
drivers), no human effort is needed for further confirma-
tion as the detection is precise due to the facts that the
start address and length information of the input buffer
can be obtained through the corresponding kernel func-
tion. If the driver uses direct comparison to check a user
pointer, Digtool may produce false positives or false neg-
atives. This results from a lack of accurate address ranges
in the ProbeAccess event as we cannot obtain the “size”
of the input buffer. We must assume the length for the
input user-mode buffer. If the assumed length is larger
then the real one, false negatives may be produced. Oth-
erwise, false positives may be generated.

In the case of ProbeAccess, Digtool only helps point
out a potential vulnerability. Human effort is still
needed to obtain the exact length of the input user-mode
buffer through reverse analysis so that we can determine
whether the instruction (given by the log analyzer) could
really cause an UNPROBE vulnerability.

Detecting TOCTTOU. Taking a vulnerability in Dr.
Web 11.0 as an example, through the log analyzer

the following dynamic characteristics were distilled from
Digtool’s log file for Dr. Web 11.0:
NtCreateSection:
Count:3 ==============
Eip: 83 f0907f Address :3b963c Sequence :398 rw: R
Eip: 89370 d54 Address :3b963c Sequence :399 rw: R
Eip: 89370 d7b Address :3b963c Sequence :401 rw: R
KiFastSystemCallRet

The user address 0x3b963c was accessed by the ker-
nel instructions more than once, so there may be a TOCT-
TOU vulnerability. dwprot.sys, the Dr. Web driver
program, used the instruction at the address 0x89370d54
to fetch the value from the user address (i.e., 0x3b963c),
and then it invoked the ProbeForRead function to check
it. At the address 0x89370d7b, the dwprot.sys fetched
the value again to use it. Therefore, there was a typical
TOCTTOU vulnerability in dwprot.sys.

With the help of Digtool, 18 kernel-level TOCTTOU
vulnerabilities were found in the five anti-virus software
programs tested. The results are shown in Table 2. For
security reasons, we only give the system calls for which
vulnerabilities exist.

Digtool may produce false positives that originate
from the fact that it detects TOCTTOU vulnerabilities
through double-fetch. Further manual analysis is needed
to confirm that double-fetch is a TOCTTOU vulnerabil-
ity.

5.1.2 Detecting Vulnerabilities via Memory Foot-
prints

We chose 32-bit Windows 10 as a test target. Some zero-
day vulnerabilities discovered by Digtool were selected
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Table 2: List of TOCTTOU vulnerabilities.
Software products Unsafe system calls

Avast Free Antivirus
11.2.2262

NtUserOpenDesktop
NtQueryObject

NtUserBuildNameList
NtOpenSection
NtCreateEvent

NtCreateEventPair
NtCreateIoCompletion

NtCreateMutant
NtCreateSection

NtCreateSemaphore
NtCreateTimer
NtOpenEvent

NtOpenEventPair
NtOpenIoCompletion

NtOpenMutant
NtOpenSemaphore

NtOpenTimer
Dr. Web 11.0 NtCreateSection
AhnLab 8.0 NONE

Norman Security Suite
11.0.0 NONE

Spyware Detector
2.0.0.3 NONE

to verify its effectiveness in detecting UAF and OOB vul-
nerabilities. Instead of logging, the middleware was set
to interrupt the guest OS and connect to Windbg when a
program error was captured. Thus, an exact context can
be provided for analysis.

Detecting UAF. The following content is
shown by Windbg when the UAF vulnerability
(MS16-123/CVE-2016-7211 [3]) is captured in
win32kfull.sys; this vulnerability was first discov-
ered through Digtool:

Single step exception - code 80000004
win32k!_ScrollDC +0x21:
96b50f3e 83ff01 cmp edi ,1

The “Single-step exception” is triggered by Digtool.
As it is a trap event, the instruction that triggers the ex-
ception has already been finished, and the guest OS is
interrupted at the address of the next instruction to be ex-
ecuted. The instruction just before 0x96b50f3e is the
exact instruction that tries to access a freed memory area
and causes the UAF vulnerability. We can obtain it by
Windbg as follows and its address is 0x96b50f3b. The
esi register (at the address of 0x96b50f3b) stores the
address of the freed heap:

96b50f3b 8b7e68 mov edi ,dword ptr [esi+68h]
96b50f3e 83ff01 cmp edi ,1// win32k!_ScrollDC +0x21

Detecting OOB. Vulnerabilities includ-
ing MS16-090/CVE-2016-3252 [2],
MS16-034/CVE-2016-0096 [1], and
MS16-151/CVE-2016-7260 [4] were first discov-
ered by Digtool. Taking MS16-090/CVE-2016-3252

as an example to illustrate the detection result, the
following content was shown when the vulnerability was
captured in win32kbase:

Single step exception - code 80000004
win32kbase!RGNMEMOBJ :: bFastFill +0x385:
93e34bf9 895304 mov dword ptr [ebx+4],edx

This is similar to the content of the above UAF, and
0x93e34bf9 is the address of the next instruction to be
executed. The instruction just before 0x93e34bf9 is the
exact instruction that tries to access an unallocated mem-
ory area and causes the OOB vulnerability.

Note that there is no false positive in the UAF/OOB
detection, and no human effort is needed for locating or
confirming the vulnerability. Whenever an exception is
captured, it is always a vulnerability.

5.2 Efficiency
Owing to the fact that Bochspwn [24], which is based on
the bochs emulator [25], only detects TOCTTOU vulner-
abilities among the four types of vulnerabilities by now,
we tested Digtool’s performance cost in detecting TOCT-
TOU vulnerabilities, and compared its performance with
that of the bochs emulator in the same environment (i.e.,
the same hardware platform, OS version, parameters of
system calls, and arguments of the test program). We
chose ten common system calls that are the most widely
used and hooked by anti-virus software to test the ef-
ficiency. In order to obtain a more comprehensive re-
sult, we also chose a frequently used program, WinRAR
5.40 [7], for an efficiency test. The performance cost is
shown in Figure 6 (the result may be affected by some
factors, such as the parameters of system calls and the
WinRAR input file).

The performance cost of Digtool is divided into two
categories: “unrecorded” and “recorded.” “Unrecorded”
means that the system calls are not included in the config-
uration file, and thus no page is monitored and no log is
recorded for them. However, the other modules in inter-
face detection are activated. This class of performance
cost can provide a comprehensive comparison with the
bochs emulator since the bochs emulator records noth-
ing. In addition, it also reflects the state of the entire
system since most of system calls and threads are un-
monitored when detecting TOCTTOU. “Recorded” indi-
cates that the system calls are put into the configuration
file and their behaviors are recorded. It describes the per-
formance cost of the related system calls in the specified
monitored thread, but has nothing to do with the perfor-
mance of the other system calls and threads. “Windows”
denotes the performance of a clean OS without any tools,
and “bochs” represents the performance cost of the OS
running into bochs emulator.

In the case of “unrecorded,” the result of system calls
showed that Digtool is from 2.18 to 5.03 times slower
than “Windows,” but 45.4 to 156.5 times faster than
“bochs.” From the WinRAR result, Digtool is 2.25
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Figure 6: Performance overhead.

times slower than “Windows,” but 428.8 times faster than
“bochs.” In the case of “recorded,” most of the moni-
tored system calls are from 70 to 90 times (which de-
pends on the arguments and system calls) slower than
“Windows,” but still much faster than “bochs.” From the
WinRAR result (all of the system calls in the NT kernel
are recorded), the “recorded” case is 13.45 times slower
than “Windows.” This finding offers another perspective
on the average performance cost of an application un-
der the situation of monitoring all system calls. In this
extreme case, Digtool is still 71.8 times faster than the
bochs emulator. Thus, Digtool achieves an acceptable
level of performance.

5.3 Comparison and Analysis

Next, we illustrate Digtool’s advantages by comparison
with Driver Verifier [28], which is a notable tool for
checking Windows kernels.

Crash resilient. Digtool is able to capture dynamic char-
acteristics of potential vulnerabilities without needing a
“Blue Screen of Death” (BSOD). As the analysis pro-
cess only requires the recorded data containing accessed
memory address, event type, and event time, there is no
need for triggering a BSOD to locate a program error.
The fuzzer only needs to discover as many code branches
as possible, and it does not have to crash the OS. During
this process, Digtool will record all dynamic character-
istics. Without a BSOD, it keeps recording, which will
help find more vulnerabilities.

However, it is inevitable that Driver Verifier will cause
a BSOD to locate and analyze a vulnerability. It does not
stop crashing the OS at the address of the same program
error until the error is fixed. This will make it difficult
to test other vulnerabilities. For example, when we test
Avast with Driver Verifier, the cause of a BSOD is always
the same:

Arg1:f6 , Referencing user handle as KernelMode.
Arg2:0c, Handle value being referenced.

The BSOD results from using a user-mode handle un-
der the KernelMode flag. If the problem is not solved,
Driver Verifier cannot further test Avast.

Interrupting the OS with an exact context. Through
the middleware, Digtool can be set to interrupt the guest
OS when a program error happens. Thus, it can provide
an exact context for the vulnerability by connecting to a
debug tool.

Driver Verifier has to crash the OS to locate and an-
alyze a program error. However, the context has been
changed since the OS is not stopped at the moment the
program error occurs (usually, the OS will keep running
for a moment to trigger the program error). Much more
human effort is needed to locate the error.

Taking MS16-090/CVE-2016-3252 [2] as an exam-
ple, Digtool exactly locates the instruction (just before
0x93e34bf9) that causes the vulnerability:

win32kbase!RGNMEMOBJ :: bFastFill +0x385:
93e34bf9 895304 mov dword ptr[ebx+4],edx

However, from Driver Verifier, the captured context is
as follows:

BAD POOL HEADER (19)
FOLLOWUP_IP:
win32kfull!NSInstrumentation :: PlatformFree +10
a0efaade 5d pop ebp

Driver Verifier only points out a “bad pool” (OOB) er-
ror, but does not provide an exact context for the vulner-
ability. Much more reverse-engineering effort is required
to locate the vulnerability from the above information.

Capturing more vulnerabilities. Digtool can effec-
tively detect UNPROBE and TOCTTOU vulnerabilities.
However, as no similar detection rule is designed, Driver
Verifier cannot be used to detect them. Moreover, Driver
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Verifier may sometimes miss a UAF or OOB vulnera-
bility because the vulnerability may happen to access a
valid memory page, and does not cause a BSOD. Thus,
Driver Verifier cannot find it.

The above UAF vulnerability
(MS16-123/CVE-2016-7211) discovered by Dig-
tool is an example. It accesses a freed memory block
that is almost immediately reallocated again under
normal circumstances. As a consequence, the physical
page of the freed memory block is valid, and it does not
violate the rule of Driver Verifier, no BSOD is caused,
and no bug is found. However, the vulnerability can
be captured by Digtool due to the fact that it delays
the release of freed memory. Thus, Digtool is more
powerful in this regard.

To summarize, Digtool discovers 45 zero-day ker-
nel vulnerabilities, and effectively detects the four types
of program errors: UNPROBE, TOCTTOU, UAF, and
OOB. In terms of efficiency, it achieves significantly bet-
ter performance than Bochspwn. Compared to Driver
Verifier, it can capture multiple vulnerabilitie with an ex-
act execution context. As such, Digtool can be consid-
ered a complement to Driver Verifier.

6 Discussion

Digtool has a number of limitations. First, the perfor-
mance cost could be optimized. Although it is much
faster than an emulator, the performance overhead is still
costly in the monitored threads. The performance cost
mainly comes from the frequent switches between the
hypervisor and guest OS. How to reduce the switches and
the performance cost could be a research topic.

Second, the supported platforms could be extended.
Digtool currently only supports the Windows OS. Via
virtualization technology, the hypervisor runs outside of
the guest OS, which tends to be more portable and has the
potential of supporting other OSes. However, the middle-
ware in the kernel space is platform-specific. The main
work of supporting various platforms (e.g., MacOS) is
adapting the middleware.

Third, there is still room for extension in the detec-
tion algorithms. Currently, Digtool is able to detect UN-
PROBE, TOCTTOU, UAF, and OOB vulnerabilities. As
it can almost monitor any memory page, it could be used
to detect some other types of vulnerabilities, such as race
conditions, by extending the detection algorithms.

7 Related Work

7.1 Static Analysis
Static analysis is to detect potential vulnerabilities from
programming language literature. Unlike other detec-

tion methods, it does not depend on executable binary
files. Wagner et al. [39] proposed an automated detec-
tion method of finding program bugs in C code that can
discover potential buffer overrun vulnerabilities by an-
alyzing source code. Grosso et al. [19] also presented a
method of detecting buffer overflows for C code that does
not need human intervention to define and tune genetic
algorithm weights, and therefore it becomes completely
automated.

Static analysis achieves a high rate of code coverage,
but its precision may be insufficient when dealing with
difficult language constructs and concepts. In addition, it
cannot detect program bugs without source code.

7.2 Source Instrumentation

Source instrumentation is also called compile-time in-
strumentation; it inserts detection code at compile-time
to detect program bugs. CCured [30] is used to detect
unsafe pointers for C programs. It combines instrumen-
tation with static analysis to eliminate redundant checks.
AddressSanitizer [36] creates poisoned redzones around
heaps, stacks, and global objects to detect overflows and
underflows. Compared to other methods, it can detect
errors not only in heaps, but also in stacks and global
variables.

Source instrumentation has higher precision, but its
code coverage may be less comprehensive than static
analysis. In addition, it has the same limitation as static
analysis; that is, it cannot detect program bugs without
source code.

7.3 Binary Instrumentation

Binary instrumentation inserts detection code into exe-
cutable binary files and detects program bugs at runtime.
Purify [22] is an older tool for checking program bugs
based on binary instrumentation that can detect mem-
ory leaks and memory access errors. Valgrind [31] is
a dynamic binary instrumentation framework designed
to build heavyweight binary analysis tools like Mem-
check [37]. Dr. Memory [14] is a memory-checking tool
that operates on applications under both Windows and
Linux environments.

These tools do not rely on source code, and exhibit
an ability to effectively detect program errors. However,
many of them only detect bugs for applications in user
mode and cannot operate on programs in kernel mode,
especially on the Windows kernel. Some Qemu-based
tools support the instrumentation of Windows OS kernel,
but these tools cannot be used to detect vulnerabilities in
a physical machine and their average performance over-
head is quite high.
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7.4 Specialized Memory Allocator

Another class of vulnerability identification tool uses a
specialized memory allocator and does not change the
rest of the executable binary files. It analyzes the legal-
ity of memory access by replacing or patching memory
functions.

Some tools make use of the page-protection mecha-
nism of processors. Each allocated region is placed into
a dedicated page (or a set of pages). One extra page
at the right (or/and the left) is allocated and marked as
inaccessible. A page fault will be reported as an OOB
error when instructions access the inaccessible page.
Duma [9] and GuardMalloc [26] are in this category.

Some other tools add redzones around the allocated
memory. In addition to the redzones, they also popu-
late the newly allocated memory or freed memory with
special “magic” values. If a magic value is read, the pro-
gram may have accessed an out-of-bounds or uninitial-
ized memory. If a magic value in a redzone is overwrit-
ten, it will be detected later, when the redzone is exam-
ined for freed memory. Therefore, there is no immediate
detection of the memory access error. Tools in this cate-
gory include DieHarder [33] and Dmalloc [40].

These tools do not depend on source code either and
are well suited for discovering memory errors, but they
share the limitation encountered in other tools, namely
that many of them cannot operate on the Windows ker-
nel. Moreover, it is difficult for them to check for UN-
PROBE or TOCTTOU vulnerabilities.

7.5 Kernel-Level Analysis Tools

There are only a few vulnerability identification tools
for programs in kernel mode, and most of them are
aimed at Linux. Kmemcheck [32] and Kmemleak [6]
are memory-checking tools for the Linux kernel. Kmem-
check monitors the legality of memory access by tracing
read and write operations. Kmemleak is used to detect
memory leaks by checking allocated memory blocks and
their pointers. Both tools can help discover memory er-
rors in the Linux kernel. However, all of the similar tools
need to expand the source code of Linux or insert detec-
tion code at compile-time, and thus it is difficult to port
them to a closed-source OS like Windows.

Driver Verifier [28] is the major tool for detecting bugs
in the Windows kernel. It can find program bugs that are
difficult to discover during regular testing. These bugs
include illegal function calls, memory corruption, bad
I/O packets, deadlocks, and so on. Driver Verifier is an
integrated system for detecting illegal actions that might
corrupt the OS, but not a dedicated tool for detecting vul-
nerabilities (see Section 5.3 for a discussion of Driver
Verifier’s ability to detect vulnerabilities). As part of the

kernel, in fact, Driver Verifier also relies on the source
code of the OS.

Although the above tools can be applied to detect ker-
nel vulnerabilities, they are too tightly coupled with im-
plementation details and the source code of OSes, so they
cannot work when no source code is available. More-
over, it is difficult to port them to another type of OS.

7.6 Virtualization/Emulator-Based Meth-
ods

Virtualization/emulator-based vulnerability identifica-
tion tools detect potential vulnerabilities by tracing func-
tion calls and monitoring memory access. Through vir-
tualization or emulator technology, they can overcome
most OS differences and easily support various OSes.

Among the more common virtualization-based tools
and methods are the following. VirtualVAE [18] is
a vulnerability analysis environment that is based on
QEMU [11]. In [18], it is claimed that it can detect
bugs for programs in both kernel mode and user mode.
PHUKO [38], based on Xen [10], detects buffer overflow
attack, and it checks return addresses for dangerous func-
tions to determine vulnerabilities. These virtualization-
based methods only focus on a single type of program er-
ror. They are not built as a framework for detecting var-
ious vulnerabilities. Moreover, the implementation de-
tails for some of them are not exhaustive, and the detec-
tion effects have not been illustrated through detection of
vulnerabilities in the real world. Their performance may
be influenced by a full-stack virtualization framework.

Bochspwn [24] is a notable emulator-based vulnera-
bility identification tool. Dozens of TOCTTOU vulner-
abilities have been found in the Windows kernel using
Bochspwn. However, its scope of application is limited
by the bochs emulator.

8 Conclusions

In this paper, a virtualization-based vulnerability iden-
tification framework called Digtool is proposed. It can
detect different types of kernel vulnerabilities including
UNPROBE, TOCTTOU, UAF, and OOB in the Windows
OS. It successfully captures various dynamic behaviors
of kernel execution such as kernel object allocation, ker-
nel memory access, thread scheduling, and function in-
voking. With these behaviors, Digtool has identified 45
zero-day vulnerabilities among both kernel code and de-
vice drivers. It can help effectively improve the security
of kernel code in the Windows OS.
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Abstract
Many kinds of memory safety vulnerabilities have

been endangering software systems for decades.
Amongst other approaches, fuzzing is a promising
technique to unveil various software faults. Recently,
feedback-guided fuzzing demonstrated its power, pro-
ducing a steady stream of security-critical software bugs.
Most fuzzing efforts—especially feedback fuzzing—are
limited to user space components of an operating system
(OS), although bugs in kernel components are more
severe, because they allow an attacker to gain access
to a system with full privileges. Unfortunately, kernel
components are difficult to fuzz as feedback mechanisms
(i.e., guided code coverage) cannot be easily applied.
Additionally, non-determinism due to interrupts, kernel
threads, statefulness, and similar mechanisms poses
problems. Furthermore, if a process fuzzes its own
kernel, a kernel crash highly impacts the performance of
the fuzzer as the OS needs to reboot.

In this paper, we approach the problem of coverage-
guided kernel fuzzing in an OS-independent and
hardware-assisted way: We utilize a hypervisor and In-
tel’s Processor Trace (PT) technology. This allows us
to remain independent of the target OS as we just re-
quire a small user space component that interacts with
the targeted OS. As a result, our approach introduces
almost no performance overhead, even in cases where
the OS crashes, and performs up to 17,000 executions
per second on an off-the-shelf laptop. We developed a
framework called kernel-AFL (kAFL) to assess the secu-
rity of Linux, macOS, and Windows kernel components.
Among many crashes, we uncovered several flaws in the
ext4 driver for Linux, the HFS and APFS file system of
macOS, and the NTFS driver of Windows.

1 Introduction

Several vulnerability classes such as memory corrup-
tions, race-conditional memory accesses, and use-after-

free vulnerabilities, are known threats for programs run-
ning in user mode as well as for the operating system
(OS) core itself. Past experience has shown that attack-
ers typically focus on user mode applications. This is
likely because vulnerabilities in user mode programs are
notoriously easier and more reliable to exploit. How-
ever, with the appearance of different kinds of exploit
defense mechanisms – especially in user mode, it has
become much harder nowadays to exploit known vul-
nerabilities. Due to those advanced defense mechanisms
in user mode, the kernel has become even more appeal-
ing to an attacker since most kernel defense mechanisms
are not widely deployed in practice. This is due to more
complex implementations, which may affect the system
performance. Furthermore, some of them are not part
of the official mainline code base or even require sup-
port for the latest CPU extension (e.g., SMAP / SMEP
on x86-64). Additionally, when compromising the OS,
an attacker typically gains full access to the system re-
sources (except for virtualized systems). Kernel-level
vulnerabilities are usually used for privilege escalation
or to gain persistence for kernel-based rootkits.

For a long time, fuzzing has been a critical compo-
nent in testing and establishing the quality of software.
However, with the development of American Fuzzy Lop
(AFL), smarter fuzzers have gained significant traction
in the industry [1] as well as in research [8, 14, 35, 37].
This trend was further amplified by Google’s OSS Fuzz
project that successfully found—and continues to find—
a significant number of critical bugs in highly security-
relevant software. Finally, DARPA’s Cyber Grand Chal-
lenge showed that fuzzing remains highly relevant for
the state-of-the-art in bug finding. The latest generation
of feedback-driven fuzzers generally uses mechanisms
to learn which inputs are interesting and which are not.
Interesting inputs are used to produce more inputs that
may trigger new execution paths in the target. Inputs that
did not trigger interesting behavior in the program are
discarded. Thus, the fuzzer is able to “learn” the input
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format. This greatly improves efficiency and usability
of fuzzers, especially by reducing the need for an oracle
which generates semi-valid inputs or an extensive corpus
that covers most paths in the target.

Unfortunately, AFL is limited to user space applica-
tions and lacks kernel support. Fuzzing kernels has a
set of additional challenges when compared to userland
(or ring 3) fuzzing: First, crashes and timeouts mandate
the use of virtualization to be able to catch faults and
continue gracefully. Second, kernel-level code has sig-
nificantly more non-determinism than the average ring 3
program—mostly due to interrupts, kernel threads, state-
fulness, and similar mechanisms. This makes fuzzing
kernel code challenging. Furthermore, there is no equiv-
alent to command line arguments or stdin to interact
with kernels or drivers in a generic way except for plain
interrupt or sysenter instructions. In addition, the Win-
dows kernel and many relevant drivers and core compo-
nents (for Windows, macOS and even Linux) are closed
source and cannot be instrumented by common tech-
niques without a significant performance overhead.

Previous approaches to kernel fuzzing were not
portable because they relied on certain drivers or recom-
pilation [10, 34], were very slow due to emulation to
gather feedback [7], or simply were not feedback-driven
at all [11].

In this paper, we introduce a new technique that al-
lows applying feedback fuzzing to arbitrary (even closed
source) x86-64 based kernels, without any custom ring
0 target code or even OS-specific code at all. We
discuss the design and implementation of kernel-AFL
(kAFL), our prototype implementation of the proposed
techniques. The overhead for feedback generation is very
small (less than 5%) due to a new CPU feature: Intel’s
Processor Trace (PT) technology provides control flow
information on running code. We use this information
to construct a feedback mechanism similar to AFL’s in-
strumentation. This allows us to obtain up to 17,000 ex-
ecutions per second on an off-the-shelf laptop (Thinkpad
T460p, i7-6700HQ and 32 GB RAM) for simple target
drivers. Additionally, we describe an efficient way for
dealing with the non-determinisms that occur during ker-
nel fuzzing. Due to the modular design, kAFL is exten-
sible to fuzz any x86/x86-64 OS. We have applied kAFL
to Linux, macOS, and Windows and found multiple pre-
viously unknown bugs in kernel drivers in those OSs.

In summary, our contributions in this paper are:

• OS independence: We show that feedback-driven
fuzzing of closed-source kernel mode components
is possible in an (almost) OS-independent manner
by harnessing the hypervisor (VMM) to produce
coverage. This allows targeting any x86 operating
system kernel or user space component of interest.

• Hardware-assisted feedback: Our fuzzing ap-
proach utilizes Intel’s Processor Trace (PT) tech-
nology, and thus has a very small performance over-
head. Additionally, our PT-decoder is up to 30 times
faster than Intel’s ptxed decoder. Thereby, we ob-
tain complete trace information that we use to guide
our evolutionary fuzzing algorithm to maximize test
coverage.

• Extensible and modular design: Our modular de-
sign separates the fuzzer, the tracing engine, and
the target to fuzz. This allows to support additional
x86 operating systems’ kernel space and user space
components, without the need to develop a system
driver for the target OS.

• kernel-AFL: We incorporated our design con-
cepts and developed a prototype called kernel-AFL
(kAFL) which was able to find several vulnerabili-
ties in kernel components of different operating sys-
tems. To foster research on this topic, we make the
source code of our prototype implementation avail-
able at https://github.com/RUB-SysSec/kAFL.

2 Technical Background

We use the Intel Processor Trace (Intel PT) extension of
IA-32 CPUs to obtain coverage information for ring 0
execution of arbitrary (even closed-source) OS code. To
facilitate efficient and OS-independent fuzzing, we also
make use of Intel’s hardware virtualization features (In-
tel VT-x). Hence, our approach requires a CPU that sup-
ports both Intel VT-x and Intel PT. This section provides a
brief overview of these hardware features and establishes
the technical foundation for the later sections.

2.1 x86-64 Virtual Memory Layouts
Every commonly used x86-64 OS uses a split virtual
memory layout: The kernel is commonly located at the
upper half of each virtual memory space, whereas each
user mode process memory is located in the lower half.
For example, the virtual memory space of Linux is typ-
ically split into kernel space (upper half) and user space
(lower half) each with a size of 247 due to the 48-bit
virtual address limit of current x86-64 CPUs. Hence,
the kernel memory is mapped to any virtual address
space and therefore it is located always at the same
virtual address. If an user mode process executes the
syscall/sysenter instruction for kernel interaction or
causes an exception that has to be handled by the OS, the
OS will keep the current CR3 value and thus does not
switch the virtual memory address space. Instead, the
current virtual memory address space is reused and the
kernel handles the current user mode process related task
within the same address space.
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2.2 Intel VT-x

The kernel fuzzing approach introduced in this paper re-
lies on modern x86-64 hardware virtualization technol-
ogy. Hence, we provide a brief overview of Intel’s hard-
ware virtualization technology, Intel VT-x.

We differentiate between three kinds of CPUs: phys-
ical CPUs, logical CPUs, and virtual CPUs (vCPUs). A
physical CPU is a CPU that is implemented in hardware.
Most modern CPUs support mechanisms to increase
multithreading performance without additional physical
CPU cores on the die (e.g., Intel Hyper-Threading). In
this case, there are multiple logical CPUs on one phys-
ical CPU. These different logical CPUs share the phys-
ical CPU and, thus, only one of them can be active at
a time. However, the execution of the different logical
CPUs is interleaved by the hardware and therefore the
available resources can be utilized more efficiently (e.g.,
one logical CPU uses the arithmetic logic unit while an-
other logical CPU waits for a data fetch) and the oper-
ating system can reduce the scheduling overhead. Each
logical CPU is usually treated like a whole CPU by the
operating system. Finally, it is possible to create multiple
hardware-supported virtual machines (VMs) on a single
logical CPU. In this case, each VM has a set of its own
vCPUs.

The virtualization role model is divided into two com-
ponents: the virtual machine monitor (VMM) and the
VM. The VMM, also named hypervisor or host, is priv-
ileged software that has full control over the physical
CPU and provides virtualized guests with restricted ac-
cess to physical resources. The VM, also termed guest, is
a piece of software that is transparently executed within
the virtualized context provided by the VMM.

To provide full hardware-assisted virtualization sup-
port, Intel VT-x adds two additional execution modes
to the well-known protection ring based standard mode
of execution. The default mode of executions is called
VMX OFF. It does not implement any hardware virtual-
ization support. When using hardware-supported virtual-
ization, the CPU switches into the VMX ON state and dis-
tinguishes between two different execution modes: the
higher-privileged mode of the hypervisor (VMX root or
VMM), and the lower privileged execution mode of the
virtual machine guest (VMX non-root or VM).

When running in guest mode, several privileged ac-
tions or reasons (execution of restricted instructions, ex-
pired VMX-preemption timer, or access to certain em-
ulated devices) in the VM guest will trigger a VM-Exit
event and transfer control to the hypervisor. This way,
it is possible to run arbitrary software that expects priv-
ileged access to the hardware (such as an OS) inside a
VM. At the same time, a higher authority can meditate

and control the operations performed with a small per-
formance overhead.

To create, launch, and control a VM, the VMM has to
use a virtual machine control structure (VMCS) for each
vCPU [28]. The VMCS contains all essential informa-
tion about the current state and how to perform VMX
transitions of the vCPU.

2.3 Intel Processor Trace
With the fifth generation of Intel Core processors (Broad-
well architecture), Intel has introduced a new processor
feature called Intel Processor Trace (Intel PT) to provide
execution and branch tracing information. Unlike other
branch tracing technologies such as Intel Last Branch
Record (LBR), the size of the output buffer is no longer
strictly limited by special registers. Instead, it is only
limited by the size of the main memory. If the output
target is repeatedly and timely emptied, we can create
traces of arbitrary length. The processor’s output format
is packet-oriented and separated into two different types:
general execution information and control flow informa-
tion packets. Intel PT produces various types of con-
trol flow related packet types during runtime. To obtain
control-flow information from the trace data, we require
a decoder. The decoder needs the traced software to in-
terpret the packets that contain the addresses of condi-
tional branches.

Intel specifies five types of control flow affecting in-
structions called Change of Flow Instruction (CoFI). The
execution of different CoFI types results in different se-
quences of flow information packets. The three CoFI
types relevant to our work are:

1. Taken-Not-Taken (TNT): If the processor exe-
cutes any conditional jump, the decision whether
this jump was taken or not is encoded in a TNT
packet.

2. Target IP (TIP): If the processor executes an indi-
rect jump or transfer instruction, the decoder will
not be able to recover the control flow. There-
fore, the processor produces a TIP packet upon the
execution of an instruction of the type indirect
branch, near ret or far transfer. These TIP
packets store the corresponding target instruction
pointer executed by the processor after the transfer
or jump has occurred.

3. Flow Update Packets (FUP): Another case where
the processor must produce a hint packet for the
software decoder are asynchronous events such as
interrupts or traps. These events are recorded as
FUPs and usually followed by a TIP to indicate the
following instruction.
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To limit the amount of trace data generated, Intel PT
provides multiple options for runtime filtering. Depend-
ing on the given processor, it might be possible to con-
figure multiple ranges for instruction-pointer filtering (IP
Filter). In general, these filter ranges only affect virtual
addresses if paging is enabled; this is always the case
in x86-64 long-mode. Therefore, it is possible to limit
trace generation to selected ranges and thus avoid huge
amounts of superfluous trace data. In accordance to the
IP filtering mechanism, it is possible to filter traces by
the current privilege level (CPL) of the protection ring
model (e.g ring 0 or ring 3). This filter allows us to select
only the user mode (CPL > 0) or kernel mode (CPL = 0)
activity. kAFL utilizes this filter option to limit tracing
explicitly to kernel mode execution. In most cases, the
focus of tracing is not the whole OS within all user mode
processes and their kernel interactions. To limit trace
data generation to one specific virtual memory address
space, software can use the CR3 Filter. Intel PT will only
produce trace data if the CR3 value matches the config-
ured filter value. The CR3 register contains the pointer to
the current page table. The value of the CR3 register can
thus be used to filter code executed on behalf of a certain
ring 3 process, even in ring 0 mode.

Intel PT supports various configurable target domains
for output data. kAFL focuses on the Table of Physical
Addresses (ToPA) mechanism that enables us to specify
multiple output regions: Every ToPA table contains mul-
tiple ToPA entries, which in turn contain the physical ad-
dress of the associated memory chunk used to store trace
data. Each ToPA entry contains the physical address, a
size specifier for the referred memory chunk in physical
memory, and multiple type bits. These type bits specify
the CPU’s behavior on access of the ToPA entry and how
to deal with filled output regions.

3 System Overview

We now provide a high-level overview of the design of an
OS-independent and hardware-assisted feedback fuzzer
before presenting the implementation details of our tool
called kAFL in Section 4.

Our system is split into three components: the
fuzzing logic, the VM infrastructure (modified versions
of QEMU and KVM denoted by QEMU-PT and KVM-
PT), and the user mode agent. The fuzzing logic runs
as a ring 3 process on the host OS. This logic is also re-
ferred to as kAFL. The VM infrastructure consists of a
ring 3 component (QEMU-PT) and a ring 0 component
(KVM-PT). This facilitates communication between the
other two components and makes the Intel PT trace data
available to the fuzzing logic. In general, the guest only
communicates with the host via hypercalls. The host can
then read and write guest memory and continues VM ex-

Figure 1: High-level overview of the kAFL architecture.
The setup process ( 1©- 3©) is not shown.

ecution once the request has been handled. A overview
of the architecture can be seen in Figure 1.

We now outline the events and communication that
take place during a fuzz run, as depicted in Figure 2.
When the VM is started, the first part of the user mode
agent (the loader) uses the hypercall HC_SUBMIT_PANIC
to submit the address of the kernel panic handler (or the
BugCheck kernel address in Windows) to QEMU-PT 1©.
QEMU-PT then patches a hypercall calling routine at the
address of the panic handler. This allows us to get noti-
fied and react fast to crashes in the VM (instead of wait-
ing for timeouts / reboots).

Then the loader uses the hypercall HC_GET_PROGRAM to
request the actual user mode agent and starts it 2©. Now
the loader setup is complete and the fuzzer begins its ini-
tialization. The agent triggers a HC_SUBMIT_CR3 hyper-
call that will be handled by KVM-PT. The hypervisor
extracts the CR3 value of the currently running process
and hands it over to QEMU-PT for filtering 3©. Finally,
the agent uses the hypercall HC_SUBMIT_BUFFER to in-
form the host at which address it expects its inputs. The
fuzzer setup is now finished and the main fuzzing loop
starts.

During the main loop, the agent requests a new input
using the HC_GET_INPUT hypercall 4©. The fuzzing logic
produces a new input and sends it to QEMU-PT. Since
QEMU-PT has full access to the guest’s memory space,
it can simply copy the input into the buffer specified by
the agent. Then it performs a VM-Entry to continue ex-
ecuting the VM 5©. At the same time, this VM-Entry
event enables the PT tracing mechanism. The agent now
consumes the input and interacts with the kernel (e.g.,
it interprets the input as a file system image and tries to
mount it 6©). While the kernel is being fuzzed, QEMU-
PT decodes the trace data and updates the bitmap on de-
mand. Once the interaction is finished and the kernel
handed control back to the agent, the agent notifies the
hypervisor via a HC_FINISHED hypercall. The resulting
VM-Exit stops the tracing and QEMU-PT decodes the
remaining trace data 7©. The resulting bitmap is passed
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Figure 2: Overview of the kAFL hypercall interaction.

to the logic for further processing 8©. Afterwards, the
agent can continue to run any untraced clean-up routines
before issuing another HC_GET_INPUT to start the next
loop iteration.

3.1 Fuzzing Logic

The fuzzing logic is the command and controlling com-
ponent of kAFL. It manages the queue of interesting
inputs, creates mutated inputs, and schedules them for
evaluation. In most aspects, it is based on the algo-
rithms used by AFL. Similarly to AFL, we use a bitmap
to store basic block transitions. We gather the AFL
bitmap from the VMs through an interface to QEMU-PT
and decide which inputs triggered interesting behaviour.
The fuzzing logic also coordinates the number of VMs
spawned in parallel. One of the bigger design differences
to AFL is that kAFL makes extensive use of multipro-
cessing and parallelism, where AFL simply spawns mul-
tiple independent fuzzers which synchronize their input
queues sporadically1. In contrast, kAFL executes the de-
terministic stage in parallel, and all threads work on the
most interesting input. A significant amount of time is
spent in tasks that are not CPU-bound (such as guests
that delay execution). Therefore, using many parallel
processes (upto 5-6 per CPU core) drastically improves
performance of the fuzzing process due to a higher CPU
load per core. Lastly, the fuzzing logic communicates
with the user interface to display current statistics in reg-
ular intervals.

1AFL recently added experimental support for distributing the
deterministic stage, see https://github.com/mirrorer/afl/blob/
master/docs/parallel_fuzzing.txt#L60-L66.

3.2 User Mode Agent
We expect a user mode agent to run inside the virtual-
ized target OS. In principle, this component only has to
synchronize and gather new inputs by the fuzzing logic
via the hypercall interface and use it to interact with the
guest’s kernel. Example agents are programs that try to
mount inputs as file system images, pass specific files
such as certificates to kernel parser or even execute a
chain of various syscalls.

In theory, we only need one such component. In prac-
tice, we use two different components: The first program
is the loader component. Its job is to accept an arbitrary
binary via the hypercall interface. This binary represents
the user mode agent and is executed by the loader com-
ponent. Additionally, the loader component will check
if the agent has crashed (which happens often in case of
syscall fuzzing) and restarts it if necessary. This setup
has the advantage that we can pass any binary to the
VM and reuse VM snapshots for different fuzzing com-
ponents.

3.3 Virtualization Infrastructure
The fuzzing logic uses QEMU-PT to interact with KVM-
PT to spawn the target VMs. KVM-PT allows us to trace
individual vCPUs instead of logical CPUs. This com-
ponent configures and enables Intel PT on the respec-
tive logical CPU before the CPU switches to guest ex-
ecution and disables tracing during the VM-Exit tran-
sition. This way, the associated CPU will only pro-
vide trace data of the virtualized kernel itself. QEMU-
PT is used to interact with the KVM-PT interface to
configure and toggle Intel PT from user space and ac-
cess the output buffer to decode the trace data. The
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decoded trace data is directly translated into a stream
of addresses of executed conditional branch instruc-
tions. Moreover, QEMU-PT also filters the stream of
executed addresses—based on previous knowledge of
non-deterministic basic blocks—to prevent false-positive
fuzzing results, and makes those available to the fuzzing
logic as AFL-compatible bitmaps. We use our own cus-
tom Intel PT decoder to cache disassembly results, which
leads to significant performance gains compared to the
off-the-shelf solution provided by Intel.

3.4 Stateful and Non-Deterministic Code

Tracing operating systems results in a significant amount
of non-determinism. The largest source of non-
deterministic basic block transitions are interrupts, which
can occur at any point in time. Additionally, our imple-
mentation does not reset the whole state after each exe-
cution since reloading the VM from a memory snapshot
is costly. Thus we have to deal with the stateful and asyn-
chronous aspects of the kernel. An example for stateful
code might be a simple call to kmalloc(): Depending
on the number of previous allocations, kmalloc() might
simply return a fresh pointer or map a whole range of
pages and update a significant amount of metadata. We
use two techniques to deal with these challenges.

The first one is to filter out interrupts and the transi-
tion caused while handling interrupts. This is possible
using the Intel PT trace data. If an interrupt occurs, the
processor emits a TIP instruction since the transfer is not
visible in the code. To avoid confusion during an inter-
rupt occurring at an indirect control flow instruction, the
TIP packet is marked with FUP (flow update packet) to
indicate an asynchronous event. After identifying such a
signature, the decoder will drop all basic blocks visited
until the corresponding iret instruction is encountered.
To link the interrupts with their corresponding iret, we
track all interrupts on a simple call stack. This mecha-
nism is necessary since the interrupt handler may itself
be interrupted by another interrupt.

The second mechanism is to blacklist any basic block
that occurs non-deterministically. Each time we en-
counter a new bit in the AFL bitmap, we re-run the in-
put several times in a row. Every basic block that does
not show up in all of the trials will be marked as non-
deterministic and filtered from further processing. For
fast access, the results are stored in a bitmap of black-
listed basic block addresses. During the AFL bitmap
translation, any transition hash value—which combines
the current basic block address and the previous ba-
sic block address—involving a blacklisted block will be
skipped.

3.5 Hypercalls

Hypercalls are a feature introduced by virtualization. On
Intel platforms, hypercalls are triggered by the vmcall
instruction. Hypercalls are to VMMs as syscalls are to
kernels. If any ring 3 process or the kernel in the VM ex-
ecutes a vmcall instruction, a VM-Exit event is triggered
and the VMM can decide how to process the hypercall.
We patched KVM-PT to pass through our own set of hy-
percalls to the fuzzing logic if a magic value is passed
in rax and the appropriate hypercall-ID is set in rbx.
Additionally, we also patched KVM-PT to accept hyper-
calls from ring 3. Arguments for specific hypercalls are
passed through rcx. We use this mechanism to define
an interface that user mode agent can use to communi-
cate with the fuzzing logic. One example hypercall is
HC_SUBMIT_BUFFER. Its argument is a guest pointer that
is stored in rcx. Upon executing the vmcall instruction,
a VM-Exit is triggered and QEMU-PT stores the buffer
pointer that was passed. It will later copy the new input
data into this buffer (see step 5© in Figure 2). Finally, the
execution of the VM is continued.

cli
mov rax , KAFL_MAGIC_VALUE
mov rbx , HC_CRASH
mov rcx , 0x0
vmcall

Listing 1: Hypercall crash notifier.

Another use case for this interface is to notify the
fuzzing logic when a crash occurs in the target OS kernel.
In order to do so, we overwrite the kernel crash handler
of the OS with a simple hypercall routine. The injected
code is shown in Listing 1 and displays how the hyper-
call interface is used on the assembly level. The cli in-
struction disables all interrupts to avoid any kind of asyn-
chronous interference during the hypercall routine.

4 Implementation Details

Based on the design outlined in the previous section, we
built a prototype of our approach called kAFL. In the fol-
lowing, we describe several implementation details. The
source code of our reference implementation is available
at https://github.com/RUB-SysSec/kAFL.

4.1 KVM-PT

Intel PT allows us to trace branch transitions without
patching or recompiling the targeted kernel. To the best
of our knowledge, no publicly available driver is able to
trace only guest executions of a single vCPU using In-
tel PT for long periods of time. For instance, Simple-PT
[29] does not support long-term tracing by design. The
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perf-subsystem [5] supports tracing of VM guest oper-
ations and long-term tracing. However, it is designed to
trace logical CPUs, not vCPUs. Even if VMX execution
is traced, the data would be associated with logical CPUs
and not with vCPUs. Hence, the VMX context must be
reassembled, which is a costly task.

To address these shortcomings, we developed KVM-
PT. It allows us to trace vCPUs for an indefinite amount
of time without any scheduling side effects or any loss
of trace data due to overflowing output regions. The ex-
tension provides a fast and reliable trace mechanism for
KVM vCPUs. Moreover, this extension exposes, much
like KVM, an extensive user mode interface to access
this tracing feature from user space. QEMU-PT utilizes
this novel interface to interact with KVM-PT and to ac-
cess the resulting trace data.

4.1.1 vCPU Specific Traces

To enable Intel PT, software that runs within ring
0 (in our case KVM-PT) has to set the corre-
sponding bit of a model specific register (MSR)
(IA32_RTIT_CTL_MSR.TraceEn) [28]. After tracing is
enabled, the logical CPU will trace any executed code if
it satisfies the configured filter options. The modification
has to be done before the CPU switches from the host
context to the VM operation; otherwise the CPU will ex-
ecute guest code and is technically unable to modify any
host MSRs. The inverse procedure is required after the
CPU has left the guest context. However, enabling or dis-
abling Intel PT manually will also yield a trace contain-
ing the manual MSR modification. To prevent the collec-
tion of unwanted trace data within the VMM, we use the
MSR autoload capabilities of Intel VT-x. MSR autoload-
ing can be enabled by modifying the corresponding en-
tries in the VMCS (e.g., VM_ENTRY_CONTROL_MSR
for VM-entries). This forces the CPU to load a list of pre-
configured values for defined MSRs after either a VM-
entry or VM-exit has occurred. By enabling tracing via
MSR autoloading, we only gather Intel PT trace data for
one specific vCPU.

4.1.2 Continuous Tracing

Once we have enabled Intel PT, the CPU will write the
resulting trace data into a memory buffer until it is full.
The physical addresses of this buffer and how to han-
dle full buffers is specified by an array of data structures
called Table of Physical Addresses (ToPA) entries.

The array can contain multiple entries and has to be
terminated by a single END entry 3©. There are two
different ways the CPU can handle an overflow: It can
stop the tracing (while continuing the execution—thus

Figure 3: KVM-PT ToPA configuration.

resulting in incomplete traces) or it can raise an inter-
rupt. This interrupt causes a VM-exit since it is not mask-
able. We catch the interrupt on the host and consume the
trace data. Finally, we reset the buffers and continue with
the VM execution. Unfortunately, this interrupt might be
raised at an unspecified time after the buffer was filled2.
Our configuration of the ToPA entries can be seen in Fig-
ure 3. To avoid losing trace data, we use two different
ToPA entries. The first one is the main buffer 1©. Its
overflow behavior is to trigger the interrupt. Once the
main buffer is filled, a second entry is used until the in-
terrupt is actually delivered. The ToPA specifies another
smaller buffer 2©. Overflowing the second buffer would
lead to the stop of the tracing. To avoid the resulting
data loss, we chose the second buffer to be about four
times larger than the largest overflowing trace we have
ever seen in our tests (4 KB).

In case the second buffer also overflows, the following
trace will contain a packet indicating that some data is
missing. In that case the size of the second buffer can
simply be increased. This way, we manage to obtain pre-
cise traces for any amount of trace data.

4.2 QEMU-PT
To make use of the KVM extension KVM-PT, an user
space counterpart is required. QEMU-PT is an extension
of QEMU and provides full support for KVM-PT’s user
space interface. This interface provides mechanisms to
enable, disable, and configure Intel PT at runtime as well
as a periodic ToPA status check to avoid overruns. KVM-
PT is accessible from user mode via ioctl() commands
and an mmap() interface.

In addition to being a userland interface to KVM-PT,
QEMU-PT includes a component that decodes trace data
into a form more suitable for the fuzzing logic: We de-
code the Intel PT packets and turn them into an AFL-like
bitmap.

4.2.1 PT Decoder

Extensive kernel fuzzing may generate several hundreds
of megabytes of trace data per second. To deal with

2This is due to the current implementation of this interrupt. Intel
specifies the interrupt as not precise, which means it is likely that fur-
ther data will be written to the next buffer or tracing will be terminated
and data will be discarded.
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Figure 4: Overview of the pipeline that converts Intel PT traces to kAFL bitmaps.

such large amounts of incoming data, the decoder must
be implemented with a focus on efficiency. Otherwise,
the decoder may become the major bottleneck during
the fuzzing process. Nevertheless, the decoder must also
be precise, as inaccuracies during the decoding process
would result in further errors. This is due to the nature of
Intel PT decoding since the decoding process is sequen-
tial and is affected by previously decoded packets.

To ease efforts to implement an Intel PT software
decoder, Intel provides its own decoding engine called
libipt [4]. libipt is a general-purpose Intel PT decod-
ing engine. However, it does not fit our purposes very
well because libipt decodes trace data in order to pro-
vide execution data and flow information. Furthermore,
libipt does not cache disassembled instructions and has
performed poorly in our use cases.

Since kAFL only relies on flow information and the
fuzzing process is repeatedly applied to the same code,
it is possible to optimize the decoding process. Our In-
tel PT software decoder acts like a just-in-time decoder,
which means that code sections are only considered if
they are executed according to the decoded trace data.
To optimize further look-ups, all disassembled code sec-
tions are cached. In addition, we simply ignore packets
that are not relevant for our use case.

Since our PT decoder is part of QEMU-PT, trace data
is directly processed if the ToPA base region is filled.
The decoding process is applied in-place since the buffer
is directly accessible from user space via mmap(). Un-
like other Intel PT drivers, we do not need to store large
amounts of trace data in memory or on storage devices
for post-mortem decoding. Eventually, the decoded trace
data is translated to the AFL bitmap format.

4.3 AFL Fuzzing Logic

We give a brief description of the fuzzing parts of AFL
because the logic we use to perform scheduling and mu-
tations closely follows that of AFL. The most important
aspect of AFL is the bitmap used to trace which basic
block transitions where encountered. Each basic block
has a randomly assigned ID, and each transition from ba-
sic block A to another basic block B is assigned an offset
into the bitmap according to the following formula:

(id(A)/2⊕ id(B)) % SIZE_OF_BITMAP

Instead of the compile-time random, kAFL uses the
addresses of the basic blocks. Each time the transition is
observed, the corresponding byte in the bitmap is incre-
mented. After finishing the fuzzing iteration, each entry
of the bitmap is rounded such that only the highest bit re-
mains set. Then the bitmap is compared with the global
static bitmap to see if any new bit was found. If a new bit
was found, it is added to the global bitmap and the input
that triggered the new bit is added to the queue. When
a new interesting input is found, a deterministic stage is
executed that tries to mutate each byte individually.

Once the deterministic stage is finished, the non-
deterministic phase is started. During this non-
deterministic phase, multiple mutations are performed at
random locations. If the deterministic phase finds new
inputs, the non-deterministic phase will be delayed un-
til all deterministic phases of all interesting inputs have
been performed. If an input triggers an entirely new tran-
sition (as opposed to a change in the number of times the
transition was taken), it will be favored and fuzzed with
a higher priority.

5 Evaluation

Based on our implementation, we now describe the
different fuzzing campaigns we performed to evaluate
kAFL. We evaluate kAFL’s fuzzing performance across
different platforms. Section 5.5 provides an overview of
all reported vulnerabilities, crashes, and bugs that were
found during the development process of kAFL. We also
evaluate kAFL’s ability to find a previously known vul-
nerability. Finally, in Section 5.6 the overall fuzzing
performance of kAFL is compared to ProjectTriforce,
the only other OS-independent feedback fuzzer avail-
able. TriforceAFL is based on the emulation backend
of QEMU instead of hardware-assisted virtualization and
Intel PT. The performance overhead of KVM-PT is dis-
cussed in Section 5.7. Additionally, a performance com-
parison of our PT decoder and an Intel implementation
of a software decoder is given in Section 5.8.

If not stated otherwise, the benchmarks were per-
formed on a desktop system with an Intel i7-6700 pro-
cessor and 32GB DDR4 RAM. To avoid distortions due
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to poor I/O performance, all benchmarks are performed
on a RAM disk. Similar to AFL, we consider a crash-
ing input to be unique if it triggered at least one basic
block transition which has not been triggered by any pre-
vious crash (i.e., the bitmap contains at least one new
bit). Note this does not imply that the underlying bugs
are truly unique.

5.1 Fuzzing Windows

We implemented a small Windows 10 specific user mode
agent that mounts any data chunk (fuzzed payload) as
NTFS-partitioned volume (289 lines of C code). We
used the Virtual Hard Disk (VHD) API and various
IOCTLS to mount and unmount volumes programmat-
ically [31, 32]. Unfortunately, mounting volumes is a
slow operation under Windows and we only managed
to achieve a throughput of 20 executions per second.
Nonetheless, kAFL managed to find a crash in the NTFS
driver. The fuzzer ran for 4 days and 14 hours and re-
ported 59 unique crashes, all of which were division by
zero crashes. After manual investigation we suspect that
there is only one unique bug. While it does not allow
code execution, it is still a denial-of-service vulnerability,
as for example, a USB stick with that malicious NTFS
volume plugged into a critical system will crash that sys-
tem with a blue screen. It seems that we only scratched
the surface and NTFS was not thoroughly fuzzed yet.
Hence, we assume that the NTFS driver under Windows
is a valuable target for coverage-based feedback fuzzing.

Furthermore, we implemented a generic system call
(syscall) fuzzing agent that simply passes a block of data
to a syscall by setting all registers and the top stack re-
gion (55 lines of C and 46 lines of assembly code). This
allows to set parameters for a syscall with a fuzzing pay-
load independent of the OS ABI. The same fuzzer can
be used to attack syscalls on different operation sys-
tems such as Linux or macOS. However, we evaluated
it against the Windows kernel given the proprietary na-
ture of this OS. We did not find any bugs in 13 hours
of fuzzing with approx 6.3M executions since many
syscalls cause the userspace agent to terminate: Due
to the coverage-guided feedback, kAFL quickly learned
how to generate payloads to execute valid syscalls, and
this led to the unexpected execution of user mode call-
backs via the kernel within the fuzzing agent. These
crashes require rather expensive restarts of the agent and
therefore we only achieved approx. 134 executions per
second, while normally kAFL achieves a throughput of
1,000 to 4,000 tests per second (see Section 5.2). Ad-
ditionally, the Windows syscall interface has already re-
ceived much attention by the security community.

Figure 5: Fuzzing the ext4 kernel module for 32 hours.

5.2 Fuzzing Linux

We implemented a similar agent for Linux, which
mounts data as ext4 volumes (66 lines of C code). We
started the fuzz campaign with a minimal 64KB ext4 im-
age as initial input. However, we configured the fuzzer
such that it only fuzzes the first two kilobytes during
the deterministic phase. In contrast to Windows, the
Linux mount process is very fast, and we reached 1,000
to 2,000 tests per second on a Thinkpad laptop with a
i7-6700HQ@2.6GHz CPU and 32GB RAM. Due to this
high performance, we obtained significantly better cov-
erage and managed to discover 160 unique crashes and
multiple (confirmed) bugs in the ext4 driver during a
twelve-day fuzzing campaign. Figure 5 shows the first
32 hours of another fuzzing run. The fuzzing process was
still finding new paths and crashes on a fairly regular ba-
sis after 32 hours. An interesting observation is that there
was no new coverage produced between hours 16 and 25,
yet the number of inputs increased due a higher number
of loop iterations. After hour 25, a truly new input was
found that unlocked significant parts of the codebase.

5.3 Fuzzing macOS

Similarly to Windows and Linux, we targeted multiple
file systems for macOS. So far, we found approximately
150 crashes in the HFS driver and manually confirmed
that at least three of them are unique bugs that lead to
a kernel panic. Those bugs can be triggered by unprivi-
leged users and, therefore, could very well be abused for
local denial-of-service attacks. One of these bugs seems
to be a use-after-free vulnerability that leads to full con-
trol of the rip register. Additionally, kAFL found 220
unique crashes in the APFS kernel extension. All 3 HFS
vulnerabilities and multiple APFS flaws have been re-
ported to Apple.
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5.4 Rediscovery of Known Bugs
We evaluated kAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-07583). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-86504.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities
During the evaluation, kAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

• Linux: keyctl Null Pointer Dereference5 (CVE-
2016-86506)

• Linux: ext4 Memory Corruption7

• Linux: ext4 Error Handling8

• Windows: NTFS Div-by-Zero9

• macOS: HFS Div-by-Zero10

• macOS: HFS Assertion Fail10

• macOS: HFS Use-After-Free10

• macOS: APFS Memory Corruption10

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
4https://access.redhat.com/security/cve/cve-2016-8650
5http://seclists.org/fulldisclosure/2016/Nov/76
6https://access.redhat.com/security/cve/cve-2016-8650
7http://seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1
9Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance
We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn11 for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

1 jsmn_parser parser;
2 jsmntok_t tokens [5];
3 jsmn_init (& parser);
4

5 int res=jsmn_parse (&parser , input , size , tokens , 5);
6 if(res >= 2){
7 if(tokens [0]. type == JSMN_STRING){
8 int json_len = tokens [0]. end - tokens [0].

start;
9 int s = tokens [0]. start;

10 if(json_len > 0 && input[s+0] == 'K'){
11 if(json_len > 1 && input[s+1] == 'A'){
12 if(json_len > 2 && input[s+2] == 'F'){
13 if(json_len > 3 && input[s+3] == 'L'){
14 panic(KERN_INFO "KAFL ...\n");
15 }}}}}
16 }

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested TriforceAFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

11http://zserge.com/jsmn.html
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Execs/Sec
(1 Process)

Execs/Sec
(8 Processes)

Time to Crash
(1 Process)

Time to Crash
(8 Processes)

Paths/Min
(1 Process)

Paths/Min
(8 Processes)

TriforceAFL 150 320 -a -a 10.08 -b

Linux (initramfs) 3000 5700 7:50 6:00 15.84 15.62
Debian 8 3000 5700 4:55 6:30 16.20 16.00
Debian 8 (KASan) 4300 5700 9:20 6:00 16.22 15.90
macOS (10.12.4) 5100 8100 7:43 5:10 14.50 15.06
Windows 10 4300 8700 4:14 4:50 11.50 12.02

a Not found during 30-minute experiments.
b This value cannot be obtained since TriforceAFL does not synchronize in such short time frames.

Table 1: kAFL and TriforceAFL fuzzing performance on the JSON sample driver.

Figure 6: Coverage comparison of kAFL (initramfs) and
TriforceAFL. kAFL takes less than 3 minutes to find the
same number of paths as TriforceAFL does in 30 minutes
(each running 1 process).

and explains some of the surprising results. This is due to
the stochastic nature of fuzzing, since each fuzzer finds
vastly different paths, some of which may take signifi-
cantly longer to process, especially crashing paths and
loops. One example for high variance is the fact that on
Debian 8 (initramfs), the multiprocessing configuration
on average needed more time to find the crash than one
process.

TriforceAFL We used the JSON driver to compare
kAFL and TriforceAFL with respect to execution speed
and code coverage. However, the results where biased
heavily in two ways: TriforceAFL did not manage to find
a path that triggers the crash within 30 minutes (usually
it takes approximately 2 hours), making it very hard to
compare the code coverage of kAFL and TriforceAFL.
The number of discovered paths is not a good indica-
tor for the amount of coverage: With increasing running
time, it becomes more difficult to discover new paths.
Secondly, the number of executions per second is also bi-
ased by slower and harder to reach paths and especially
crashing inputs. The coverage reached over time can be
seen in Figure 6. It is obvious from the figure that kAFL
found a significant number of paths that are very hard to

Figure 7: Raw execution performance comparison.

reach for TriforceAFL. kAFL mostly stops finding new
paths around the 10-15 minute mark, because the target
driver simply doesn’t contain any more paths to be un-
covered. Therefore, the coverage value in Table 1 (stated
as Paths/Min) is limited to the first 10 minutes of each
30-minute run.

We also compare raw execution performance instead
of overall fuzzing performance, which is biased because
of the execution of different paths, the sampling process
for the non-determinism-filter, and various synchroniza-
tion mechanisms. Especially on smaller inputs, these
factors disproportionately affect the overall fuzzing per-
formance. To avoid this, we compared the performance
during the first havoc stage. Figure 7 shows the raw ex-
ecution performance of kAFL compared to TriforceAFL
during this havoc phase. kAFL provides up to 54 times
better performance compared to TriforceAFL’s QEMU
CPU emulation. Slightly lower performance boosts are
seen in single-process execution (48 times faster).

syzkaller We did not perform a performance compari-
son against syzkaller [10]. This has two reasons: First of
all, syzkaller is a highly specific syscall fuzzer that en-
codes a significant amount of domain knowledge and is
therefore not applicable to other domains such as filesys-
tem images. On the other hand, syzkaller would most
likely generate a significantly higher code coverage even
without any feedback since it knows how to generate
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Figure 8: Overhead for compiling QEMU-2.6.0 in a
traced VM.

valid syscalls and hence is able to trigger valid paths
without any learning. Therefore, the coverage compar-
ison would be highly misleading unless we implement
the same syscall logic; a task that is out of the scope of
this paper. Additionally, the coverage collection via kcov
is highly specific to Linux and not applicable to closed-
source targets.

5.7 KVM-PT Overhead

Our KVM extension KVM-PT adds overhead to the raw
execution of KVM. Therefore, the performance overhead
was compared with several KVM-PT setups on an i5-
6500@3.2Ghz desktop system with 8GB DDR4 RAM.
This includes KVM-PT in combination with the PT de-
coder, KVM-PT without the PT decoder but processing
frequent ToPA state checks, and KVM-PT without any
ToPA consideration. For this benchmark, a 13MB ker-
nel code range was configured via IP filtering ranges and
traced with one of the aforementioned setups of KVM-
PT. These benchmarks consider only the kernel core, but
neither considers any kernel module. During KVM-PT
execution only supervisor mode was traced.

To generate Intel PT load, QEMU-2.6.0 was com-
piled within a traced VM using the ./configure option
--target-list=x86_64-softmmu. We restricted trac-
ing to the whole kernel address space. This benchmark
was executed on a single vCPU. The resulting compile
time was measured and compared. The following figure
illustrates the relative overhead compared to KVM ex-
ecution without KVM-PT (see Figure 8). We ran three
experiments to determine the overhead of the different
components. In each experiment, we measured three dif-
ferent overheads: wall-clock time, user, and kernel. The
difference in overall time is denoted by the wall-clock
overhead. Additionally, we measured how much more
time is spent in the kernel and how much time is spend
only in user space. Since we only trace the kernel, we
expect the users space overhead to be insignificant. Intel

Figure 9: kAFL and ptxed decoding time on multiple
copies of the same trace (kAFL is up to 30 times faster).

describes a performance penalty of < 5 % compared to
execution without enabled Intel PT [30]. Accordingly,
we expect approximately 5% of kernel overhead. In
the first experiment, the traces were discarded without
further analysis (KVM-PT). In the second experiment
(KVM-PT & ToPA Check), we enabled repeated check-
ing and clearing of the ToPA buffers. In the final ex-
periment (KVM-PT & PT decoder), we tested the whole
pipeline including our own decoder and conversion to an
AFL bitmap.

During our benchmarks, an overhead between 1% –
4% was measured empirically. Since the resulting over-
head is small, we do not expect it to have a major influ-
ence on the overall fuzzing performance.

5.8 Decoder Engine

In contrast to KVM-PT, the decoder has significant in-
fluence on the overall performance of the fuzzing pro-
cess since the decoding process is—other than Intel PT
and hence KVM-PT—not hardware-accelerated. There-
fore, this process is costly and has to be as efficient as
possible. Consequently, the performance of our devel-
oped PT decoder was compared to that of ptxed. This
decoder is Intel’s example implementation of an Intel PT
software decoder and is based on libipt. To compare
both decoder engines, a small Intel PT trace sample was
generated by executing

find / > /dev/null 2> /dev/null

within a Linux VM (Linux debian 4.8.0-1-amd64)
traced by KVM-PT. This performance benchmark was
processed on an i5-6500@3.2Ghz desktop system with
8GB DDR4 RAM. Only code execution in supervisor
mode was traced. The generated sample is 9.4MB in
size and contains over 431,650 TNT packets, each repre-
senting up to 7 branch transitions. The sample also con-
tains over 100,045 TIPs. We sanitized the sample by re-
moving anything but flow information packets (see Sec-
tion 2.3) to avoid any influence of decoding large amount
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of execution information packets, since those are not con-
sidered by our PT decoder. The result is a 5.3MB trace
file. To test the effectiveness of the caching approach of
our PT decoder, we created cases containing 1, 5, 10,
50, and 250 copies of the trace. This is a realistic test
case, since during fuzzing we see the same (or very sim-
ilar) paths repeatedly. Figure 9 illustrates the measured
speedup of our PT decoder compared to ptxed.

The figure also shows that our PT decoder easily out-
performs the Intel decoder implementation, even if the
PT decoder processes data for the very first time. This is
most likely due to the fact that even a single trace already
contains a significant amount of loops. Another possible
factor is the use of Capstone [2] as the instruction decod-
ing backend. As we decode more and more copies of the
same trace, it can be seen that our decoder becomes in-
creasingly faster (only using 56 times as much time to
decode 250 times that amount of data). The caching ap-
proach outperforms Intel’s implementation and is up to
25 to 30 times faster.

6 Related Work

Fuzzers are often classified according to the amount
of interaction with the target program. For black-box
fuzzers, the fuzzer does not use any information about
the target program at all. White-box fuzzers typically use
advanced program analysis techniques to uncover inter-
esting properties of the target. Somewhere in the mid-
dle are so called gray-box fuzzers that will typically use
some kind of feedback from the target (such as cover-
age information) to guide their search, without analyzing
the logic of the target program itself. In this section, we
provide a brief overview of the work performed in the
corresponding areas of fuzzing.

6.1 Black-Box Fuzzers
The oldest class of fuzzers are black-box fuzzers. These
fuzzers typically have no interaction with the target pro-
gram beyond executing it on newly generated inputs. To
increase effectiveness, a number of assumptions are usu-
ally made: Either a large corpus of good coverage inputs
get mutated and recombined repeatedly. Examples for
this class are Radamsa [3] or zzuf [12]. Or, the pro-
grammer needs to specify how to generate new semi-
valid input files that almost look like real files. Exam-
ples including tools like Peach [6] or Sulley [9]. Both
approaches have one very important drawback: It is a
time-consuming task to use these tools.

To improve the performance of black-box fuzzers,
many techniques have been proposed. Holler et al.
[27] introduced learning interesting parts of the input
grammar from old crashing inputs. Others even sought

to infer the whole input grammar from program traces
[13,24,38]. The selection of more interesting inputs was
optimized by Rebert et al. [36]. Similar approaches have
been used to optimize the mutation rate [17, 40].

6.2 White-Box fuzzers
To reduce the burden on the tester, techniques where in-
troduced that apply insights from program analysis to
find more interesting inputs. Tools like SAGE [23],
DART [22], KLEE [15], SmartFuzz [33], or Mayhem
[16] try to enumerate complex paths by using techniques
such as symbolic execution and constraint solving. Tools
like TaintScope [39], BuzzFuzz [21] and Vuzzer [35]
utilize taint tracing and similar dynamic analysis tech-
niques to uncover new paths. These tools are often able
to find very complicated code paths that are hidden be-
hind checksums, magic constants, and other constraints
that are very unlikely to be satisfied by random inputs.
Another approach is to use the same kind of information
to bias the search towards dangerous behavior instead of
new code paths [26].

The downside is that these techniques are often signif-
icantly harder to implement, scale to large programs, and
parallelize. To the best of our knowledge, there are no
such tools for operating system fuzzing.

6.3 Gray-Box Fuzzers
Gray-box fuzzers try to retain the high throughput and
simplicity of black-box fuzzers while gaining some of
the additional coverage provided by the advanced me-
chanics in white-box fuzzing. The prime example for
gray-box fuzzing is AFL, which uses coverage informa-
tion to guide its search. This way, AFL voids spend-
ing additional time on inputs that do not trigger new
behaviors. Similar techniques are used by many other
fuzzers [8, 25].

To further increase the effectiveness of gray-box
fuzzing, many of the tricks already used in black-box
fuzzing can be applied. Böhme et al. [14] showed how to
use the insight gained from modelling gray-box fuzzing
as a walk on a Markov chain to increase the performance
of gray-box fuzzing by up to an order of magnitude.

6.4 Coverage-Guided Kernel Fuzzers
A project called syzkaller was released by Vyukov; it
is the first publicly available gray-box coverage-guided
kernel fuzzer [10]. Nossum and Casanovas demonstrate
that most Linux file system drivers are vulnerable to
feedback-driven fuzzing by using an adapted version of
AFL [34]. This modified AFL version is based on glue
code to the kernel consisting of a driver interface to
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measure feedback during fuzzing file system drivers of
the kernel and expose this data to the user space. This
fuzzer runs inside the targeted OS; a crash terminates the
fuzzing session.

In 2016, Hertz and Newsham released a modified ver-
sion of AFL called TriforceAFL [7]. Their work is based
on a modification of QEMU and utilizes the correspond-
ing emulation backend to measure fuzzing progress by
determining the current instruction pointer after a control
flow altering instruction has been executed. In theory,
their fuzzer is able to fuzz any OS emulated in QEMU. In
practice, the TriforceAFL fuzzer is limited to operating
systems that are able to boot from read-only file systems,
which narrows down the candidates to classic UNIX-like
operating systems such as Linux, FreeBSD, NetBSD, or
OpenBSD. Therefore, TriforceAFL is currently not able
to fuzz closed-source operating systems such as macOS
or Windows.

7 Discussion

Even though our approach is general, fast and mostly in-
dependent of the underlying OS, there are some limita-
tions we want to discuss in this section.

OS-Specific Code. We use a small amount (usually
less than 150 lines) of OS-dependent ring 3 code that per-
forms three tasks. First, it interacts with the OS to trans-
late the inputs from the fuzzing engine to interactions
with the OS (e.g., mount the data as a partition). Second,
it obtains the address of the crash handler of the OS such
that we can detect crashes faster than it would take to
wait for the timeout. Third, it can return the addresses of
certain drivers. These addresses can be used to limit trac-
ing to the activity of said drivers, which improves perfor-
mance when only fuzzing individual drivers.

None of these functions are necessary and only im-
prove performance in some cases. The first use case
can be avoided by using generic syscall fuzzing. In that
case a single standard C program which does not use any
platform-specific API would suffice to trigger sysenter/
syscall instructions. We do not strictly need the address
of the crash handler, since there are numerous other ways
to detect whether the VM crashed. It would also be quite
easy to obtain crash handlers dynamically by introduc-
ing faults and analyzing the obtained traces. Finally, we
can always trace the whole kernel, taking a slight perfor-
mance hit (mostly introduced by the increased amount of
non-determinism). In cases such as syscall fuzzing, we
need to trace the whole kernel, therefore syscall fuzzing
would not be impacted if this ability was missing. In
summary, this is the first approach that can fuzz arbitrary
x86-64 kernels without any customization and a near-
native performance.

Supported CPUs. Due to the usage of Intel PT and
Intel VT-x, our approach is limited to certain Intel CPUs
supporting these extensions. Virtually all modern Intel
CPUs support Intel VT-x. Unfortunately, Intel is rather
vague as to which CPUs exactly support process trace
inside of VMs and various other extensions (such as IP
filtering and multi-entry ToPA). We tested our system
on the following CPU models: Intel Core i5-6500, In-
tel Core i7-6700HQ, and Intel Core i5-6600. We believe
that at the time of writing, most Skylake and Kabylake
CPUs have the necessary hardware support.

Just-In-Time Code. Intel PT does not provide a com-
plete list of executed instruction pointers. Instead, Intel
PT generates as little information as necessary to reduce
the amount of data produced by the processor. Con-
sequently, the Intel PT software decoder does not only
require control flow information to reconstruct the con-
trol flow but also needs the program that was executed
during tracing. If the program is modified during run-
time, as often done by just-in-time (JIT) compilers in
user and kernel mode, the decoder is unable to exactly
restore the runtime control flow. To bypass this limita-
tion, the decoder requires information about all modi-
fications applied to the program instead of an ordinary
memory dump or the executable file. As Deng et al. [18]
have shown, this is possible by making use of EPT viola-
tions when executing written pages. Another, somewhat
more old-fashioned, method to achieve the same is to use
shadow page tables [19]. Once one it is possible to hook
the execution of modified code, self-modifying code can
be dumped. Reimplementing this technique was out of
the scope of this work. It should be noted though that
fuzzing kernel JIT code is a very interesting topic since
kernel JIT components, such as the BPF JIT in Linux,
have often been part of serious vulnerabilities.

Multibyte Compares. Similar to AFL, we are unable
to effectively bypass checks for large magic values in
the inputs. However, we support specifying dictionaries
of interesting constants to improve performance if such
magic values are known in advance (e.g., from RFCs,
source code, or disassembly). Some solutions involving
techniques such as concolic execution (e.g., Driller [37])
or taint tracking (e.g., Vuzzer [35]) have been proposed.
However, none of these techniques can easily be adapted
to closed-source operating system kernels. Therefore it
remains an open research problem how to deal with those
situations on the kernel level.

Ring 3 Fuzzing. We only demonstrated this technique
against kernel-level code. However, the exact same tech-
nique can be used to fuzz closed-source ring 3 code as
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well. Since our approach has a very modest tracing over-
head, we expect that this technique will outperform cur-
rent dynamic binary instrumentation based techniques
for feedback fuzzing of closed-source ring 3 programs
such as winAFL [20].

8 Conclusion

The latest generation of feedback-driven fuzzing meth-
ods has proven to be an effective approach to find vul-
nerabilities in an automated and comprehensive fashion.
Recent work has also demonstrated that such techniques
can be applied to kernel space. While previous feedback-
driven kernel fuzzers were able to find a large amount of
security flaws in certain operating systems, their benefit
was either limited by poor performance due to CPU emu-
lation or a lack of portability due to the need for compile-
time instrumentations.

In this paper, we presented a novel mechanism to uti-
lize the latest CPU features for a feedback-driven kernel
fuzzer. As shown in the evaluation, combining all com-
ponents provides the ability to apply kernel fuzz testing
to any target OS with significantly better performance
than the alternative approaches.
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Abstract
Programming languages such as C and C++ support vari-
adic functions, i.e., functions that accept a variable num-
ber of arguments (e.g., printf). While variadic func-
tions are flexible, they are inherently not type-safe. In
fact, the semantics and parameters of variadic functions
are defined implicitly by their implementation. It is left
to the programmer to ensure that the caller and callee fol-
low this implicit specification, without the help of a static
type checker. An adversary can take advantage of a mis-
match between the argument types used by the caller of a
variadic function and the types expected by the callee to
violate the language semantics and to tamper with mem-
ory. Format string attacks are the most popular example
of such a mismatch.

Indirect function calls can be exploited by an adver-
sary to divert execution through illegal paths. CFI re-
stricts call targets according to the function prototype
which, for variadic functions, does not include all the ac-
tual parameters. However, as shown by our case study,
current CFI implementations are mainly limited to non-
variadic functions and fail to address this potential attack
vector. Defending against such an attack requires a state-
ful dynamic check.

We present HexVASAN, a compiler based sanitizer to
effectively type-check and thus prevent any attack via
variadic functions (when called directly or indirectly).
The key idea is to record metadata at the call site and
verify parameters and their types at the callee whenever
they are used at runtime. Our evaluation shows that Hex-
VASAN is (i) practically deployable as the measured
overhead is negligible (0.45%) and (ii) effective as we
show in several case studies.

1 Introduction

C and C++ are popular languages in systems program-
ming. This is mainly due to their low overhead ab-

stractions and high degree of control left to the devel-
oper. However, these languages guarantee neither type
nor memory safety, and bugs may lead to memory cor-
ruption. Memory corruption attacks allow adversaries to
take control of vulnerable applications or to extract sen-
sitive information.

Modern operating systems and compilers implement
several defense mechanisms to combat memory corrup-
tion attacks. The most prominent defenses are Address
Space Layout Randomization (ASLR) [47], stack ca-
naries [13], and Data Execution Prevention (DEP) [48].
While these defenses raise the bar against exploitation,
sophisticated attacks are still feasible. In fact, even
the combination of these defenses can be circumvented
through information leakage and code-reuse attacks.

Stronger defense mechanisms such as Control Flow
Integrity (CFI) [6], protect applications by restricting
their control flow to a predetermined control-flow graph
(CFG). While CFI allows the adversary to corrupt non-
control data, it will terminate the process whenever the
control-flow deviates from the predetermined CFG. The
strength of any CFI scheme hinges on its ability to stati-
cally create a precise CFG for indirect control-flow edges
(e.g., calls through function pointers in C or virtual calls
in C++). Due to ambiguity and imprecision in the analy-
sis, CFI restricts adversaries to an over-approximation of
the possible targets of individual indirect call sites.

We present a new attack against widely deployed mit-
igations through a frequently used feature in C/C++ that
has so far been overlooked: variadic functions. Variadic
functions (such as printf) accept a varying number of
arguments with varying argument types. To implement
variadic functions, the programmer implicitly encodes
the argument list in the semantics of the function and
has to make sure the caller and callee adhere to this im-
plicit contract. In printf, the expected number of argu-
ments and their types are encoded implicitly in the for-
mat string, the first argument to the function. Another
frequently used scheme iterates through parameters until
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a condition is reached (e.g., a parameter is NULL). List-
ing 1 shows an example of a variadic function. If an ad-
versary can violate the implicit contract between caller
and callee, an attack may be possible.

In the general case, it is impossible to enumerate the
arguments of a variadic function through static analysis
techniques. In fact, their number and types are intrinsic
in how the function is defined. This limitation enables (or
facilitates) two attack vectors against variadic functions.
First, attackers can hijack indirect calls and thereby call
variadic functions over control-flow edges that are never
taken during any legitimate execution of the program.
Variadic functions that are called in this way may inter-
pret the variadic arguments differently than the function
for which these arguments were intended, and thus vio-
late the implicit caller-callee contract. CFI countermea-
sures specifically prevent illegal calls over indirect call
edges. However, even the most precise implementations
of CFI, which verify the type signature of the targets of
indirect calls, are unable to fully stop illegal calls to vari-
adic functions.

A second attack vector involves overwriting a variadic
function’s arguments directly. Such attacks do not vi-
olate the intended control flow of a program and thus
bypass all of the widely deployed defense mechanisms.
Format string attacks are a prime example of such at-
tacks. If an adversary can control the format string
passed to, e.g., printf, she can control how all of the
following parameters are interpreted, and can potentially
leak information from the stack, or read/write to arbitrary
memory locations.

The attack surface exposed by variadic functions is
significant. We analyzed popular software packages,
such as Firefox, Chromium, Apache, CPython, nginx,
OpenSSL, Wireshark, the SPEC CPU2006 benchmarks,
and the FreeBSD base system, and found that variadic
functions are ubiquitous. We also found that many of
the variadic function calls in these packages are indirect.
We therefore conclude that both attack vectors are realis-
tic threats. The underlying problem that enables attacks
on variadic functions is the lack of type checking. Vari-
adic functions generally do not (and cannot) verify that
the number and type of arguments they expect matches
the number and type of arguments passed by the caller.
We present HexVASAN, a compiler-based, dynamic san-
itizer that tackles this problem by enforcing type checks
for variadic functions at run-time. Each argument that is
retrieved in a variadic function is type checked, enforc-
ing a strict contract between caller and callee so that (i) a
maximum of the passed arguments can be retrieved and
(ii) the type of the arguments used at the callee are com-
patible with the types passed by the caller. Our mecha-
nism can be used in two operation modes: as a runtime
monitor to protect programs against attacks and as sani-

tizer to detect type mismatches during program testing.
We have implemented HexVASAN on top of the

LLVM compiler framework, instrumenting the compiled
code to record the types of each argument of a variadic
function at the call site and to check the types when-
ever they are retrieved. Our prototype implementation
is light-weight, resulting in negligible (0.45%) overhead
for SPEC CPU2006. Our approach is general as we show
by recompiling the FreeBSD base system and effective as
shown through several exploit case studies (e.g., a format
string vulnerability in sudo).

We present the following contributions:

• Design and implementation of a variadic function
sanitizer on top of LLVM;

• A case study on large programs to show the preva-
lence of direct and indirect calls to variadic func-
tions;

• Several exploit case studies and CFI bypasses using
variadic functions.

2 Background

Variadic functions are used ubiquitously in C/C++ pro-
grams. Here we introduce details about their use and im-
plementation on current systems, the attack surface they
provide, and how adversaries can abuse them.

#include <stdio.h>
#include <stdarg.h>

int add(int start, ...) {
int next, total = start;
va_list list;
va_start(list, start);
do {

next = va_arg(list, int);
total += next;

} while (next != 0);
va_end(list);
return total;

}

int main(int argc, const char *argv[]) {
printf("%d\n", add(5, 1, 2, 0));
return 0;

}

Listing 1: Example of a variadic function in C. The
function add takes a non-variadic argument start
(to initialize an accumulator variable) and a series
of variadic int arguments that are added until the
terminator value 0 is met. The final value is returned.
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2.1 Variadic functions

Variadic functions (such as the printf function in the C
standard library) are used in C to maximize the flexibil-
ity in the interface of a function, allowing it to accept a
number of arguments unknown at compile-time. These
functions accept a variable number of arguments, which
do not necessarily have fixed types. An example of a
variadic function is shown in Listing 1. The function add
accepts one mandatory argument (start) and a varying
number of additional arguments, which are marked by
the ellipsis (...) in the function definition.

The C standard defines several macros that portable
programs may use to access variadic arguments [33].
stdarg.h, the header that declares these macros, defines
an opaque type, va_list, which stores all information re-
quired to retrieve and iterate through variadic arguments.
In our example, the variable list of type va_list is ini-
tialized using the va_start macro. The va_arg macro
retrieves the next variadic argument from the va_list,
updating va_list to point to the next argument as a side
effect. Note that, although the programmer must specify
the expected type of the variadic argument in the call to
va_arg, the C standard does not require the compiler to
verify that the retrieved variable is indeed of that type.
va_list variables must be released using a call to the
va_end macro so that all of the resources assigned to the
list are deallocated.
printf is an example of a more complex variadic

function which takes a format string as its first argument.
This format string implicitly encodes information about
the number of arguments and their type. Implementa-
tions of printf scan through this format string several
times to identify all format arguments and to recover
the necessary space in the output string for the specified
types and formats. Interestingly, arguments do not have
to be encoded sequentially but format strings allow out-
of-order access to arbitrary arguments. This flexibility is
often abused in format string attacks to access arbitrary
stack locations.

2.2 Variadic functions ABI

The C standard does not define the calling convention
for variadic functions, nor the exact representation of the
va_list structure. This information is instead part of the
ABI of the target platform.

x86-64 ABI. The AMD64 System V ABI [36], which
is implemented by x86-64 GNU/Linux platforms, dic-
tates that the caller of a variadic function must adhere to
the normal calling conventions when passing arguments.
Specifically, the first six non-floating point arguments
and the first eight floating point arguments are passed
through CPU registers. The remaining arguments, if any,

are passed on the stack. If a variadic function accepts five
mandatory arguments and a variable number of variadic
arguments, then all but one of these variadic arguments
will be passed on the stack. The variadic function itself
moves the arguments into a va_list variable using the
va_start macro. The va_list type is defined as follows:

typedef struct {
unsigned int gp_offset;
unsigned int fp_offset;
void *overflow_arg_area;
void *reg_save_area;

} va_list[1];

va_start allocates on the stack a reg_save_area to
store copies of all variadic arguments that were passed
in registers. va_start initializes the overflow_arg_area

field to point to the first variadic argument that was
passed on the stack. The gp_offset and fp_offset fields
are the offsets into the reg_save_area. They represent
the first unused variadic argument that was passed in a
general purpose register or floating point register respec-
tively.

The va_arg macro retrieves the first unused vari-
adic argument from either the reg_save_area or
the overflow_arg_area, and either it increases
the gp_offset/fp_offset field or moves the
overflow_arg_area pointer forward, to point to the
next variadic argument.

Other architectures. Other architectures may imple-
ment variadic functions differently. On 32-bit x86, for
example, all variadic arguments must be passed on the
stack (pushed right to left), following the cdecl calling
convention used on GNU/Linux. The variadic function
itself retrieves the first unused variadic argument directly
from the stack. This simplifies the implementation of
the va_start, va_arg, and va_end macros, but it generally
makes it easier for adversaries to overwrite the variadic
arguments.

2.3 Variadic attack surface
When calling a variadic function, the compiler statically
type checks all non-variadic arguments but does not en-
force any restriction on the type or number of variadic ar-
guments. The programmer must follow the implicit con-
tract between caller and callee that is only present in the
code but never enforced explicitly. Due to this high flex-
ibility, the compiler cannot check arguments statically.
This lack of safety can lead to bugs where an adver-
sary achieves control over the callee by modifying the
arguments, thereby influencing the interpretation of the
passed variadic arguments.

Modifying the argument or arguments that control the
interpretation of variadic arguments allows an adversary
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to change the behavior of the variadic function, causing
the callee to access additional or fewer arguments than
specified and to change the interpretation of their types.

An adversary can influence variadic functions in sev-
eral ways. First, if the programmer forgot to validate the
input, the adversary may directly control the arguments
to the variadic function that controls the interpretation of
arguments. Second, the adversary may use an arbitrary
memory corruption elsewhere in the program to influ-
ence the argument of a variadic function.

Variadic functions can be called statically or dynam-
ically. Direct calls would, in theory, allow some static
checking. Indirect calls (e.g., through a function pointer),
where the target of the variadic function is not known, do
not allow any static checking. Therefore, variadic func-
tions can only be protected through some form of run-
time checker that considers the constraints of the call site
and enforces them at the callee side.

2.4 Format string exploits

Format string exploits are a perfect example of corrupted
variadic functions. An adversary that gains control over
the format string used in printf can abuse the printf
function to leak arbitrary data on the stack or even re-
sort to arbitrary memory corruption (if the pointer to the
target location is on the stack). For example, a format
string vulnerability in the smbclient utility (CVE-2009-
1886) [40] allows an attacker to gain control over the
Samba file system by treating a filename as format string.
Also, in PHP 7.x before 7.0.1, an error handling function
in zend execute API.c allows an attacker to execute arbi-
trary code by using format string specifiers as class name
(CVE-2015-8617) [1].

Information leaks are simple: an adversary changes
the format string to print the desired information that re-
sides somewhere higher up on the stack by employing the
desired format string specifiers. For arbitrary memory
modification, an adversary must have the target address
encoded somewhere on the stack and then reference the
target through the %n modifier, writing the number of al-
ready written bytes to that memory location.

The GNU C standard library (glibc) enforces some
protection against format string attacks by checking if
a format string is in a writable memory area [29]. For
format strings, the glibc printf implementation opens
/proc/self/maps and scans for the memory area of the
format string to verify correct permissions. Moreover, a
check is performed to ensure that all arguments are con-
sumed, so that no out-of-context stack slots can be used
in the format string exploit. These defenses stop some at-
tacks but do not mitigate the underlying problem that an
adversary can gain control over the format string. Note
that this heavyweight check is only used if the format

string argument may point to a writable memory area
at compile time. An attacker may use memory corrup-
tion to redirect the format string pointer to an attacker-
controlled area and fall back to a regular format string
exploit.

3 Threat model

Programs frequently use variadic functions, either in the
program itself or as part of a shared library (e.g., printf
in the C standard library). We assume that the program
contains an arbitrary memory corruption, allowing the
adversary to modify the arguments to a variadic function
and/or the target of an indirect function call, targeting a
variadic function.

Our target system deploys existing defense mecha-
nisms like DEP, ASLR, and a strong implementation of
CFI, protecting the program against code injection and
control-flow hijacking. We assume that the adversary
cannot modify the metadata of our runtime monitor. Pro-
tecting metadata is an orthogonal engineering problem
and can be solved through, e.g., masking (and-ing every
memory access), segmentation (for x86-32), protecting
the memory region [9], or randomizing the location of
sensitive data. Our threat model is a realistic scenario for
current attacks and defenses.

4 HexVASAN design

HexVASAN monitors calls to variadic functions and
checks for type violations. Since the semantics of how
arguments should be interpreted by the function are in-
trinsic in the logic of the function itself, it is, in general,
impossible to determine the number and type of argu-
ments a certain variadic function accepts. For this rea-
son, HexVASAN instruments the code generated by the
compiler so that a check is performed at runtime. This
check ensures that the arguments consumed by the vari-
adic function match those passed by the caller.

The high level idea is the following: HexVASAN
records metadata about the supplied argument types at
the call site and verifies that the extracted arguments
match in the callee. The number of arguments and their
types is always known at the call site and can be encoded
efficiently. In the callee this information can then be used
to verify individual arguments when they are accessed.
To implement such a sanitizer, we must design a meta-
data store, a pass that instruments call sites, a pass that
instruments callers, and a runtime library that manages
the metadata store and performs the run-time type verifi-
cation. Our runtime library aborts the program whenever
a mismatch is detected and generates detailed informa-
tion about the call site and the mismatched arguments.
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Figure 1: Overview of the HexVASAN compilation
pipeline. The HexVASAN instrumentation runs right
after the C/C++ frontend, while its runtime library,
hexvasan.a, is merged into the final executable at link
time.

4.1 Analysis and Instrumentation
We designed HexVASAN as a compiler pass to be run
in the compilation pipeline right after the C/C++ fron-
tend. The instrumentation collects a set of statically
available information about the call sites, encodes it in
the LLVM module, and injects calls to our runtime to
perform checks during program execution.

Figure 1 provides an overview of the compilation
pipeline when HexVASAN is enabled. Source files are
first parsed by the C/C++ frontend which generates the in-
termediate representation on which our instrumentation
runs. The normal compilation then proceeds, generating
instrumented object files. These object files, along with
the HexVASAN runtime library, are then passed to the
linker, which creates the instrumented program binary.

4.2 Runtime support
The HexVASAN runtime augments every va_list in the
original program with the type information generated by
our instrumentation pass, and uses this type information
to perform run-time type checking on any variadic argu-
ment accessed through va_arg. By managing the type in-
formation in a metadata store, and by maintaining a map-
ping between va_lists and their associated type infor-
mation, HexVASAN remains fully compatible with the
platform ABI. This design also supports interfacing be-
tween instrumented programs and non-instrumented li-
braries.

The HexVASAN runtime manages the type informa-
tion in two data structures. The core data structure, called
the variadic list map (VLM), associates va_list struc-

tures with the type information produced by our instru-
mentation, and with a counter to track the index of the
last argument that was read from the list. A second data
structure, the variadic call stack (VCS), allows callers of
variadic functions to store type information of variadic
arguments until the callee initializes the va_list.

Each variadic call site is instrumented with a call to
pre call, that prepares the information about the call
site (a variadic call site descriptor or VCSD), and a
call to post call, that cleans it up. For each vari-
adic function, the va start calls are instrumented with
list init, while va copy, whose purpose is to clone a
va list, is instrumented through list copy. The two
run-time functions will allocate the necessary data struc-
tures to validate individual arguments. Calls to va end
are instrumented through list end to free up the corre-
sponding data structures.

Algorithm 1 summarizes the two phases of our anal-
ysis and instrumentation pass. The first phase identifies
all the calls to variadic functions (both direct and indi-
rect). Note that identifying indirect calls to variadic func-
tions is straight-forward in a compiler framework since,
even if the target function is not statically known, its type
is. Then, all the parameters passed by that specific call

input: a module m
/* Phase 1 */
foreach function f in module m do

foreach variadic call c with n arguments in f do
vcsd.count← n;
foreach argument a of type t do

vcsd.args.push(t);
end
emit call to pre call(vcsd) before c;
emit call to post call() after c;

end
end
/* Phase 2 */
foreach function f in module m do

foreach call c to va start(list) do
emit call to list init(&list) after c;

end
foreach call c to va copy(dst,src) do

emit call to list copy(&dst,&src) after c;
end
foreach call c to va end(list) do

emit call to list free(&list) after c;
end
foreach call c to va arg(list, type) do

emit call to check arg(&list, type) before c;
end

end
Algorithm 1: The instrumentation process.
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site are inspected and recorded, along with their type in
a dedicated VCSD which is stored in read-only global
data. At this point, a call to pre call is injected before
the variadic function call (with the newly created VCSD
as a parameter) and, symmetrically, a call to post call
is inserted after the call site.

The second phase identifies all calls to va start and
va copy, and consequently, the va list variables in the
program. Uses of each va list variable are inspected in
an architecture-specific way. Once all uses are identified,
we inject a call to check arg before dereferencing the
argument (which always resides in memory).

4.3 Challenges and Discussion
When designing a variadic function call sanitizer, several
issues have to be considered. We highlight details about
the key challenges we encountered.

Multiple va lists. Functions are allowed to create
multiple va_lists to access the same variadic arguments,
either through va_start or va_copy operations. Hex-
VASAN handles this by storing a VLM entry for each
individual va_list.

Passing va_lists as function arguments. While un-
common, variadic functions are allowed to pass the
va_lists they create as arguments to non-variadic func-
tions. This allows non-variadic functions to access vari-
adic arguments of functions higher in the call stack. Our
design takes this into account by maintaining a list map
(VLM) and by instrumenting all va_arg operations, re-
gardless of whether or not they are in a variadic function.

Multi-threading support. Multiple threads are sup-
ported by storing our per-thread runtime state in a thread-
local variable as supported on major operating systems.

Metadata format. We use a constant data structure per
variadic call site, the VCSD, to hold the number of ar-
guments and a pointer to an array of integers identifying
their type. The check arg function therefore only per-
forms two memory accesses, the first to load the number
of arguments and the second for the type of the argument
currently being checked.

To uniquely identify the data types with an integer, we
decided to build a hashing function (described in Algo-
rithm 2) using a set of fixed identifiers for primitive data
types and hashing them in different ways depending on
how they are aggregated (pointers, union, or struct).
The last hash acts as a terminator marker for aggre-
gate types, which allows us to, e.g., distinguish between
{struct{ int }, int} and {struct {struct{ int,
int }}}. Note that an (unlikely) hash collision only re-
sults in two different types being accepted as equal. Such
a hashing mechanism has the advantage of being deter-
ministic across compilation units, removing the need for

input : a type t and an initial hash value h
output: the final hash value h
h = hash(h, typeID(t));
switch typeID(t) do

case AggregateType
/* union, struct and pointer */
foreach c in componentTypes(t) do

h = hashType(c, h);
end

case FunctionType
h = hashType(returnType(t), h);
foreach a in argTypes(t) do

h = hashType(a, h);
end

end
endsw
h = hash(h, typeID(t));
return h

Algorithm 2: Algorithm describing the type hashing
function hashType. typeID returns an unique identifier
for each basic type (e.g., 32-bit integer, double), type
of aggregate type (e.g., struct, union...) and functions.
hash is a simple hashing function combining two inte-
gers. componentTypes returns the components of an ag-
gregate type, returnType the return type of a function
prototype and argTypes the type of its arguments.

keeping a global map of type-unique id pairs. Due to
the information loss during the translation from C/C++

to LLVM IR, our type system does not distinguish be-
tween signed and unsigned types. The required meta-
data is static and immutable and we mark it as read-only,
protecting it from modification. However, the VCS still
needs to be protected through other mechanisms.

Handling floating point arguments. In x86-64 ABI,
floating point and non-floating point arguments are han-
dled differently. In case of floating point arguments,
the first eight arguments are passed in the floating point
registers whereas in case of non-floating point the first
six are passed in general-purpose registers. HexVASAN
handles both argument types.

Support for aggregate data types. According to
AMD64 System V ABI, the caller unpacks the fields of
the aggregate data types (structs and unions) if the argu-
ments fit into registers. This makes it hard to distinguish
between composite types and regular types – if unpacked
they are indistinguishable on the callee side from argu-
ments of these types. HexVASAN supports aggregate
data types even if the caller unpacks them.

Attacks preserving number and type of arguments.
Our mechanism prevents attacks that change the num-
ber of arguments or the types of individual arguments.
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Format string attacks that only change one modifier can
therefore be detected through the type mismatch even if
the total number of arguments remains unchanged.

Non-variadic calls to variadic functions. Consider the
following code snippet:

typedef void (*non_variadic)(int, int);

void variadic(int, ...) { /* ... */ }

int main() {
non_variadic function_ptr = variadic;
function_ptr(1, 2);

}

In this case, the function call in main to function_ptr

appears to the compiler as a non-variadic function call,
since the type of the function pointer is not variadic.
Therefore, our pass will not instrument the call site, lead-
ing to potential errors.

To handle such (rare) situations appropriately, we
would have to instrument all non-variadic call sites too,
leading to an unjustified overhead. Moreover, the code
above represents undefined behavior in C [27, 6.3.2.3p8]
and C++ [26, 5.2.10p6], and might not work on certain ar-
chitectures where the calling convention for variadic and
non-variadic function calls are not compatible. The GNU
C compiler emits a warning when a function pointer is
cast to a different type, therefore we require the devel-
oper to correct the code before applying HexVASAN.

Central management of the global state. To allow the
HexVASAN runtime to be linked into the base system li-
braries, such as the C standard library, we made it a static
library. Turning the runtime into a shared library is pos-
sible, but would prohibit its use during the early process
initialization – until the dynamic linker has processed all
of the necessary relocations. Our runtime therefore ei-
ther needs to be added solely to the C standard library
(so that it is initialized early in the startup process) or
the runtime library must carefully use weak symbols to
ensure that each symbol is only defined once if multiple
libraries are compiled with our countermeasure.

C++ exceptions and longjmp. If an exception is raised
while executing a variadic function (or one of its callees),
the variadic function may not get a chance to clean up the
metadata for any va_lists it has initialized, nor may the
caller of this variadic function get the chance to clean up
the type information it has pushed onto the VCS. Other
functions manipulating the thread’s stack directly, such
as longjmp, present similar issues.

C++ exceptions can be handled by modifying the
LLVM C++ frontend (i.e., clang) to inject an object
with a lifetime spanning from immediately before a vari-
adic function call to immediately after. Such an object
would call pre_call in its constructor and post_call in

the destructor, leveraging the exception handling mech-
anism to make HexVASAN exception-safe. Functions
like longjmp can be instrumented to purge the portions
of HexVASAN’s data structures that correspond to the
discarded stack area. We did not observe any such calls
in practice and leave the implementation of handling ex-
ceptions and longjump across variadic functions as future
engineering work.

5 Implementation

We implemented HexVASAN as a sanitizer for the
LLVM compiler framework [31], version 3.9.1. We
have chosen LLVM for its robust features on analyzing
and transforming arbitrary programs as well as extract-
ing reliable type information. The sanitizer can be en-
abled from the C/C++ frontend (clang) by providing the
-fsanitize=vasan parameter at compile-time. No an-
notations or other source code changes are required for
HexVASAN. Our sanitizer does not require visibility of
whole source code (see Section 4.3), but works on indi-
vidual compilation units. Therefore link-time optimiza-
tion (LTO) is not required and thus fits readily into exist-
ing build systems. In addition, HexVASAN also supports
signal handlers.

HexVASAN consists of two components: a static in-
strumentation pass and a runtime library. The static in-
strumentation pass works on LLVM IR, adding the nec-
essary instrumentation code to all variadic functions and
their callees. The support library is statically linked to
the program and, at run-time, checks the number and
type of variadic arguments as they are used by the pro-
gram. In the following we describe the two components
in detail.

Static instrumentation. The implementation of the
static instrumentation pass follows the description in
Section 4. We first iterate through all functions, looking
for CallInst instructions targeting a variadic function
(either directly or indirectly), then we inspect them and
create for each one of them a read-only GlobalVariable
of type vcsd t. As shown in Listing 2, vcsd t is com-
posed by an unsigned integer representing the number
of arguments of the considered call site and a pointer to
an array (another GlobalVariable) with an integer el-
ement for each argument of type t. type t is an inte-
ger uniquely identifying a data type obtained using the
hashType function presented in Algorithm 2. At this
point a call to pre call is injected before the call site,
with the newly create VCSD as a parameter, and a call to
post call is injected after the call site.

During the second phase, we first identify all va_start,
va_copy, and va_end operations in the program. In the IR
code, these operations appear as calls to the LLVM in-
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struct vcsd_t {
unsigned count;
type_t *args;

};

thread_local stack<vcsd_t *> vcs;
thread_local map<va_list *,

pair<vcsd_t *, unsigned>> vlm;

void pre_call(vcsd_t *arguments) {
vcs.push_back(arguments);

}
void post_call() {
vcs.pop_back();

}
void list_init(va_list *list_ptr) {
vlm[list_ptr] = { vcs.top(), 0 };

}

void list_free(va_list *list_ptr) {
vlm.erase(list_ptr);

}

void check_arg(va_list *list_ptr, type_t type) {
pair<vcsd_t *, unsigned> &args = vlm[list_ptr];
unsigned index = args.second++;
assert(index < args.first->count);
assert(args.first->args[index] == type);

}

int add(int start, ...) {
/* ... */
va_start(list, start);
list_init(&list);
do {
check_arg(&list, typeid(int));
total += va_arg(list, int);

} while (next != 0);
va_end(list);
list_free(&list);
/* ... */

}

const vcsd_t main_add_vcsd = {
.count = 3,
.args = {typeid(int), typeid(int), typeid(int)}

};

int main(int argc, const char *argv[]) {
/* ... */
pre_call(&main_add_vcsd);
int result = add(5, 1, 2, 0);
post_call();
printf("%d\n", result);
/* ... */

}

Listing 2: Simplified C++ representation of the
instrumented code for Listing 1.

trinsics llvm.va_start, llvm.va_copy, and va_end. We
instrument the operations with calls to our runtime’s
list_init, list_copy, and list_free functions respec-
tively. We then proceed to identify va_arg operations.
Although the LLVM IR has a dedicated va_arg instruc-
tion, it is not used on any of the platforms we tested.
The va_list is instead accessed directly. Our identifi-
cation of va_arg is therefore platform-specific. On x86-
64, our primary target, we identify va_arg by recogniz-
ing accesses to the gp_offset and fp_offset fields in the
x86-64 version of the va_list structure (see Section 2.2).
The fp_offset field is accessed whenever the program
attempts to retrieve a floating point argument from the
list. The gp_offset field is accessed to retrieve any other
types of variadic arguments. We insert a call to our run-
time’s check_arg function before the instruction that ac-
cesses this field.

Listing 2 shows (in simplified C) how the code in List-
ing 1 would be instrumented by our sanitizer.

Dynamic variadic type checking. The entire runtime
is implemented in plain C code, as this allows it to be
linked into the standard C library without introducing
a dependency to the standard C++ library. The VCS is
implemented as a thread-local stack, and the VLM as
a thread-local hash map. The pre_call and post_call

functions push and pop type information onto and from
the VCS. The list_init function inserts a new entry
into the VLM, using the top element on the stack as the
entry’s type information and initializing the counter for
consumed arguments to 0.

check arg looks up the type information for the
va_list being accessed in the VLM and checks if the
requested argument exists (based on the counter of con-
sumed arguments), and if its type matches the one pro-
vided by the caller. If either of these checks fails, exe-
cution is aborted, and the runtime will generate an error
message such as the one shown in Listing 3. As a con-
sequence, the pointer to the argument is never read or
written, since the pointer to it is never dereferenced.

Error: Type Mismatch
Index is 1
Callee Type : 43 (32-bit Integer)
Caller Type : 15 (Pointer)
Backtrace:
[0] 0x4019ff <__vasan_backtrace+0x1f> at test
[1] 0x401837 <__vasan_check_arg+0x187> at test
[2] 0x8011b3afa <__vfprintf+0x20fa> at libc.so.7
[3] 0x8011b1816 <vfprintf_l+0x86> at libc.so.7
[4] 0x801200e50 <printf+0xc0> at libc.so.7
[5] 0x4024ae <main+0x3e> at test
[6] 0x4012ff <_start+0x17f> at test

Listing 3: Error message reported by HexVASAN
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6 Evaluation

In this section we present a case study on variadic func-
tion based attacks against state-of-the-art CFI implemen-
tations. Next, we evaluate the effectiveness of Hex-
VASAN as an exploit mitigation technique. Then, we
evaluate the overhead introduced by our HexVASAN
prototype implementation on the SPEC CPU2006 in-
teger (CINT2006) benchmarks, on Firefox using stan-
dard JavaScript benchmarks, and on micro-benchmarks.
We also evaluate how widespread the usage of variadic
functions is in SPEC CPU2006 and in Firefox 51.0.1,
Chromium 58.0.3007.0, Apache 2.4.23, CPython 3.7.0,
nginx 1.11.5, OpenSSL 1.1.1, Wireshark 2.2.1, and the
FreeBSD 11.0 base system.

Note that, along with testing the aforementioned soft-
ware, we also developed an internal set of regression
tests. Our regression tests allow us to verify that our
sanitizer correctly catches problematic variadic function
calls, and does not raise false alarms for benign calls.
The test suite explores corner cases, including trying to
access arguments that have not been passed and trying to
access them using a type different from the one used at
the call site.

6.1 Case study: CFI effectiveness

One of the attack scenarios we envision is that an at-
tacker controls the target of an indirect call site. If the
intended target of the call site was a variadic function,
the attacker could illegally call a different variadic func-
tion that expects different variadic arguments than the in-
tended target (yet shares the types for all non-variadic
arguments). If the intended target of the call site was a
non-variadic function, the attacker could call a variadic
function that interprets some of the intended target’s ar-
guments as variadic arguments.

All existing CFI mechanisms allow such attacks to
some extent. The most precise CFI mechanisms, which
rely on function prototypes to classify target sets (e.g.,
LLVM-CFI, piCFI, or VTV) will allow all targets with
the same prototype, possibly restricting to the subset
of functions whose addresses are taken in the program.
This is problematic for variadic functions, as only non-
variadic types are known statically. For example, if
a function of type int (*)(int, ...) is expected to
be called from an indirect call site, then precise CFI
schemes allow calls to all other variadic functions of that
type, even if those other functions expect different types
for the variadic arguments.

A second way to attack variadic functions is to over-
write their arguments directly. This happens, for ex-
ample, in format string attacks, where an attacker can
overwrite the format string to cause misinterpretation

of the variadic arguments. HexVASAN detects both of
these attacks when the callee attempts to retrieve the
variadic arguments using the va_arg macro described
in Section 2.1. Checking and enforcing the correct
types for variadic functions is only possible at runtime
and any sanitizer must resort to run-time checks to do
so. CFI mechanisms must therefore be extended with
a HexVASAN-like mechanism to detect violations. To
show that our tool can complement CFI, we create test
programs containing several variadic functions and one
non-variadic function. The definitions of these functions
are shown below.

int sum_ints(int n, ...);
int avg_longs(int n, ...);
int avg_doubles(int n, ...);
void print_longs(int n, ...);
void print_doubles(int n, ...);
int square(int n);

This program contains one indirect call site from
which only the sum_ints function can be called legally,
and one indirect call site from which only the square

function can be legally called. We also introduce a mem-
ory corruption vulnerability which allows us to override
the target of both indirect calls.

We constructed the program such that sum_ints,
avg_longs, print_longs, and square are all address-taken
functions. The avg_doubles and print_doubles functions
are not address-taken.

Functions avg_longs, avg_doubles, print_longs, and
print_doubles all expect different variadic argument
types than function sum_ints. Functions sum_ints,
avg_longs, avg_doubles, and square do, however, all
have the same non-variadic prototype (int (*)(int)).

We compiled six versions of the test program,
instrumenting them with, respectively, HexVASAN,
LLVM 3.9 Forward-Edge CFI [59], Per-Input CFI [44],
CCFI [35], GCC 6.2’s VTV [59] and Visual C++ Control
Flow Guard [37]. In each version, we first built an attack
involving a variadic function, by overriding the indirect
call sites with a call to each of the variadic functions de-
scribed above. We then also tested overwriting the argu-
ments of the sum_ints function, without overwriting the
indirect call target. Table 1 shows the detection results.

LLVM Forward-Edge CFI allows calls to avg_longs

and avg_doubles from the sum_ints indirect call site be-
cause these functions have the same static type signa-
ture as the intended call target. This implementation of
CFI does not allow calls to variadic functions from non-
variadic call sites, however.

CCFI only detects calls to print_doubles, a function
that is not address-taken and has a different non-variadic
prototype than square, from the square call site. It allows
all of the other illegal calls.
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Actual target

Intended target Prototype A.T.? LLVM-CFI pi-CFI CCFI VTV CFG HexVASAN

Variadic
Same Yes 7 7 7 7 7 X

No 7 X 7 7 7 X

Different Yes X X 7 7 7 X

No X X 7 7 7 X

Non-variadic
Same Yes X X 7 7 7 X

No X X 7 7 7 X

Different Yes X X 7 7 7 X

No X X X 7 7 X

Original Overwritten Arguments 7 7 7 7 7 X

Table 1: Detection coverage for several types of illegal calls to variadic functions. X indicates detection, 7 indicates
non-detection. “A.T.” stands for address taken.

GCC VTV, and Visual C++ CFG allow all of the ille-
gal calls, even if the non-variadic type signature does not
match that of the intended call target.

pi-CFI allows calls to the avg_longs function from the
sum_ints indirect call site. avg_longs is address-taken
and it has the same static type signature as the intended
call target. pi-CFI does not allow illegal calls to non-
address-taken functions or functions with different static
type signatures. pi-CFI also does not allow calls to vari-
adic functions from non-variadic call sites.

All implementations of CFI allow direct overwrites of
variadic arguments, as long as the original control flow
of the program is not violated.

6.2 Exploit Detection
To evaluate the effectiveness of our tool as a real-world
exploit detector, we built a HexVASAN-hardened ver-
sion of sudo 1.8.3. sudo allows authorized users to ex-
ecute shell commands as another user, often one with
a high privilege level on the system. If compromised,
sudo can escalate the privileges of non-authorized users,
making it a popular target for attackers. Versions 1.8.0
through 1.8.3p1 of sudo contained a format string vul-
nerability (CVE-2012-0809) that allowed exactly such a
compromise. This vulnerability could be exploited by
passing a format string as the first argument (argv[0]) of
the sudo program. One such exploit was shown to by-
pass ASLR, DEP, and glibc’s FORTIFY SOURCE pro-
tection [20]. In addition, we were able to verify that GCC
5.4.0 and clang 3.8.0 fail to catch this exploit, even when
annotating the vulnerable function with the format func-
tion attribute [5] and setting the compiler’s format string
checking (-Wformat) to the highest level.

Although it is sudo itself that calls the format string
function (fprintf), HexVASAN can only detect the vio-
lation on the callee side. We therefore had to build hard-
ened versions of not just the sudo binary itself, but also
the C library. We chose to do this on the FreeBSD plat-
form, as its standard C library can be easily built using
LLVM, and HexVASAN therefore readily fits into the
FreeBSD build process. As expected, HexVASAN does
detect any exploit that triggers the vulnerability, produc-
ing the error message shown in Listing 4.

$ ln -s /usr/bin/sudo %x%x%x%x
$ ./%x%x%x%x -D9 -A
--------------------------
Error: Index greater than Argument Count
Index is 1
Backtrace:
[0] 0x4053bf <__vasan_backtrace+0x1f> at sudo
[1] 0x405094 <__vasan_check_index+0xf4> at sudo
[2] 0x8015dce24 <__vfprintf+0x2174> at libc.so
[3] 0x8015dac52 <vfprintf_l+0x212> at libc.so
[4] 0x8015daab3 <vfprintf_l+0x73> at libc.so
[5] 0x40bdaf <sudo_debug+0xdf> at sudo
[6] 0x40ada3 <main+0x6c3> at sudo
[7] 0x40494f <_start+0x17f> at sudo

Listing 4: Exploit detection in sudo.

6.3 Prevalence of variadic functions

To collect variadic function usage in real software,
we extended our instrumentation mechanism to collect
statistics about variadic functions and their calls. As
shown in Table 2, for each program, we collect:
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Call sites Func. Ratio

Program Tot. Ind. % Tot. A.T. Proto Tot. A.T.

Firefox 30225 1664 5.5 421 18 241 1.75 0.07

Chromium 83792 1728 2.1 794 44 396 2.01 0.11

FreeBSD 189908 7508 3.9 1368 197 367 3.73 0.53

Apache 7121 0 0 94 29 41 2.29 0.71

CPython 4183 0 0 382 0 38 10.05 0.00

nginx 1085 0 0 26 0 14 1.86 0.00

OpenSSL 4072 1 0.02 23 0 15 1.53 0.00

Wireshark 37717 0 0 469 1 110 4.26 0.01

perlbench 1460 1 0.07 60 2 18 3.33 0.11

bzip2 85 0 0 3 0 3 1.00 0.00

gcc 3615 55 1.5 125 0 31 4.03 0.00

mcf 29 0 0 3 0 3 1.00 0.00

milc 424 0 0 21 0 8 2.63 0.00

namd 485 0 0 24 2 8 3.00 0.25

gobmk 2911 0 0 35 0 8 4.38 0.00

soplex 6 0 0 2 1 2 1.00 0.50

povray 1042 40 3.8 45 10 16 2.81 0.63

hmmer 671 7 1 9 1 5 1.80 0.20

sjeng 253 0 0 4 0 3 1.33 0.00

libquantum 74 0 0 91 0 7 13.00 0.00

h264ref 432 0 0 85 5 13 6.54 0.38

lbm 11 0 0 3 0 2 1.50 0.00

omnetpp 340 0 0 48 23 19 2.53 1.21

astar 42 0 0 4 1 4 1.00 0.25

sphinx3 731 0 0 20 0 5 4.00 0.00

xalancbmk 19 0 0 4 2 4 1.00 0.50

Table 2: Statistics of Variadic Functions for Different
Benchmarks. The second and third columns are vari-
adic call sites broken into “Tot.” (total) and “Ind.” (indi-
rect); % shows the percentage of variadic call sites. The
fifth and sixth columns are for variadic functions. “A.T.”
stands for address taken. “Proto.” is the number of dis-
tinct variadic function prototypes. “Ratio” indicates the
function-per-prototypes ratio for variadic functions.

Call sites. The number of function calls targeting vari-
adic functions. We report the total number and how
many of them are indirect, since they are of particular
interest for an attack scenario where the adversary can
override a function pointer.

Variadic functions. The number of variadic functions.
We report their total number and how many of them
have their address taken, since CFI mechanism cannot

prevent functions with their address taken from being
reachable from indirect call sites.

Variadic prototypes. The number of distinct variadic
function prototypes in the program.

Functions-per-prototype. The average number of vari-
adic functions sharing the same prototype. This mea-
sures how many targets are available, on average, for
each indirect call sites targeting a specific prototype.
In practice, this the average number of permitted des-
tinations for an indirect call site in the case of a perfect
CFI implementation. We report this value both consid-
ering all the variadic functions and only those whose
address is taken.

Interestingly, each benchmark we analyzed contains
calls to variadic functions and several programs (Fire-
fox, OpenSSL, perlbench, gcc, povray, and hmmer) even
contain indirect calls to variadic functions. In addition to
calling variadic functions, each benchmark also defines
numerous variadic functions (421 for Firefox, 794 for
Chromium, 1368 for FreeBSD, 469 for Wireshark, and
382 for CPython). Variadic functions are therefore preva-
lent and used ubiquitously in software. Adversaries have
plenty of opportunities to modify these calls and to at-
tack the implicit contract between caller and callee. The
compiler is unable to enforce any static safety guaran-
tees when calling these functions, either for the number
of arguments, nor their types. In addition, many of the
benchmarks have variadic functions that are called indi-
rectly, often with their address being taken. Looking at
Firefox, a large piece of software, the numbers are even
more staggering with several thousand indirect call sites
that target variadic functions and 241 different variadic
prototypes.

The prevalence of variadic functions leaves both a
large attack surface for attackers to either redirect vari-
adic calls to alternate locations (even if defense mecha-
nisms like CFI are present) or to modify the arguments so
that callees misinterpret the supplied arguments (similar
to extended format string attacks).

In addition, the compiler has no insight into these
functions and cannot statically check if the programmer
supplied the correct parameters. Our sanitizer identi-
fied three interesting cases in omnetpp, one of the SPEC
CPU2006 benchmarks that implements a discrete event
simulator. The benchmark calls a variadic functions with
a mismatched type, where it expects a char * but re-
ceives a NULL, which has type void *. Listing 5 shows
the offending code.

We also identified a bug in SPEC CPU2006’s
perlbench. This benchmark passes the result of a sub-
traction of two character pointers as an argument to a
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static sEnumBuilder _EtherMessageKind(
"EtherMessageKind",
JAM_SIGNAL, "JAM_SIGNAL",
ETH_FRAME, "ETH_FRAME",
ETH_PAUSE, "ETH_PAUSE",
ETHCTRL_DATA, "ETHCTRL_DATA",
ETHCTRL_REGISTER_DSAP,

"ETHCTRL_REGISTER_DSAP",
ETHCTRL_DEREGISTER_DSAP,

"ETHCTRL_DEREGISTER_DSAP",
ETHCTRL_SENDPAUSE, "ETHCTRL_SENDPAUSE",
0, NULL

);

Listing 5: Variadic violation in omnetpp.

variadic function. At the call site, this argument is a ma-
chine word-sized integer (i.e., 64-bits integer on our test
platform). The callee truncates this argument to a 32-
bit integer by calling va arg(list, int). HexVASAN
reports this (likely unintended) truncation as a violation.

6.4 Firefox
We evaluate the performance of HexVASAN by in-
strumenting Firefox (51.0.1) and using three differ-
ent browser benchmark suites: Octane, JetStream, and
Kraken. Table 3 shows the comparison between the Hex-
VASAN instrumented Firefox and native Firefox. To re-
duce variance between individual runs, we averaged fif-
teen runs for each benchmark (after one warmup run).
For each run we started Firefox, ran the benchmark, and
closed the browser. HexVASAN incurs only 1.08% and
1.01% overhead for Octane and JetStream respectively
and speeds up around 0.01% for Kraken. These num-
bers are indistinguishable from measurement noise. Oc-
tane [4] and JetStream measure the time a test takes to
complete and then assign a score that is inversely pro-
portional to the runtime, whereas Kraken [3] measures

Benchmark Native HexVASAN

Octane
AVERAGE 31241.80 30907.73
STDDEV 2449.82 2442.82
OVERHEAD -1.08%

JetStream
AVERAGE 200.76 198.75
STDDEV 0.66 1.68
OVERHEAD -1.01%

Kraken
AVERAGE [ms] 832.48 832.41
STDDEV [ms] 7.41 12.71
OVERHEAD 0.01%

Table 3: Performance overhead on Firefox benchmarks.
For Octane and JetStream higher is better, while for
Kraken lower is better.

0.9
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1

1.05

1.1

Native HexVASAN

Figure 2: Run-time overhead of HexVASAN in the
SPECint CPU2006 benchmarks, compared to baseline
LLVM 3.9.1 performance.

the speed of test cases gathered from different real-world
applications and libraries.

6.5 SPEC CPU2006

We measured HexVASAN’s run-time overhead by run-
ning the SPEC CPU2006 integer (CINT2006) bench-
marks on an Ubuntu 14.04.5 LTS machine with an Intel
Xeon E5-2660 CPU and 64 GiB of RAM. We ran each
benchmark program on its reference inputs and measured
the average run-time over three runs. Figure 2 shows the
results of these tests. We compiled each benchmark with
a vanilla clang/LLVM 3.9.1 compiler and optimization
level -O3 to establish a baseline. We then compiled the
benchmarks with our modified clang/LLVM 3.9.1 com-
piler to generate the HexVASAN results.

The geometric mean overhead in these benchmarks
was just 0.45%, indistinguishable from measurement
noise. The only individual benchmark result that stands
out is that of libquantum. This benchmark program per-
formed 880M variadic function calls in a run of just 433
seconds.

6.6 Micro-benchmarks

Besides evaluating large benchmarks, we have also
measured HexVASAN’s runtime overhead on a set of
micro-benchmarks. We have written test cases for vari-
adic functions with different number of arguments, in
which we repeatedly invoke the variadic functions. Ta-
ble 4 shows the comparison between the native and
HexVASAN-instrumented micro-benchmarks. Overall,
HexVASAN incurs runtime overheads of 4-6x for vari-
adic function calls due to the additional security checks.
In real-world programs, however, variadic functions are
invoked rarely, so HexVASAN has little impact on the
overall runtime performance.
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# calls Native [µs] HexVASAN [µs]

Variadic function
argument count: 3 1 0 0

100 2 12
1000 20 125

Variadic function
argument count: 12 1 0 0

100 6 22
1000 55 198

Table 4: Performance overhead in micro-benchmarks.

7 Related work

HexVASAN can either be used as an always-on runtime
monitor to mitigate exploits or as a sanitizer to detect
bugs, sharing similarities with the sanitizers that exist
primarily in the LLVM compiler. Similar to HexVASAN,
these sanitizers embed run-time checks into a program
by instrumenting potentially dangerous program instruc-
tions.

AddressSanitizer [54] (ASan), instruments memory
accesses and allocation sites to detect spatial memory
errors, such as out-of-bounds accesses, as well as tem-
poral memory errors, such as use-after-free bugs. Unde-
fined Behavior Sanitizer [52] (UBSan) instruments vari-
ous types of instructions to detect operations whose se-
mantics are not strictly defined by the C and C++ stan-
dards, e.g., increments that cause signed integers to over-
flow, or null-pointer dereferences. Thread Sanitizer [55]
(TSAN) instruments memory accesses and atomic opera-
tions to detect data races, deadlocks, and various misuses
of synchronization primitives. Memory Sanitizer [58]
(MSAN) detects uses of uninitialized memory.

CaVer [32] is a sanitizer targeted at verifying correct-
ness of downcasts in C++. Downcasting converts a base
class pointer to a derived class pointer. This operation
may be unsafe as it cannot be statically determined, in
general, if the pointed-to object is of the derived class
type. TypeSan [25] is a refinement of CaVer that reduces
overhead and improves the sanitizer coverage.

UniSan [34] sanitizes information leaks from the ker-
nel. It ensures that data is initialized before leaving the
kernel, preventing reads of uninitialized memory.

All of these sanitizers are highly effective at finding
specific types of bugs, but, unlike HexVASAN, they do
not address misuses of variadic functions. The aforemen-
tioned sanitizers also differ from HexVASAN in that they
typically incur significant run-time and memory over-
head.

Different control-flow hijacking mitigations offer par-
tial protection against variadic function attacks by
preventing adversaries from calling variadic functions
through control-flow edges that do not appear in legit-

imate executions of the program. Among these miti-
gations, we find Code Pointer Integrity (CPI) [30], a
mitigation that prevents attackers from overwriting code
pointers in the program, and various implementations of
Control-Flow Integrity (CFI), a technique that does not
prevent code pointer overwrites, but rather verifies the in-
tegrity of control-flow transfers in the program [6, 7, 11,
14–16,21,22,28,35,37,38,41–44,46,49–51,59,61–66].

Control-flow hijacking mitigations cannot prevent at-
tackers from overwriting variadic arguments directly.
At best, they can prevent variadic functions from be-
ing called through control-flow edges that do not ap-
pear in legitimate executions of the program. We there-
fore argue that HexVASAN and these mitigations are
orthogonal. Moreover, prior research has shown that
many of the aforementioned implementations fail to fully
prevent control-flow hijacking as they are too impre-
cise [8, 17, 19, 23], too limited in scope [53, 57], vulner-
able to information leakage attacks [18], or vulnerable
to spraying attacks [24, 45]. We further showed in Sec-
tion 6.1 that variadic functions exacerbate CFI’s impre-
cision problems, allowing additional leeway for adver-
saries to attack variadic functions.

Defenses that protect against direct overwrites or mis-
use of variadic arguments have thus far only focused on
format string attacks, which are a subset of the possible
attacks on variadic functions. LibSafe detects potentially
dangerous calls to known format string functions such
as printf and sprintf [60]. A call is considered dan-
gerous if a %n specifier is used to overwrite the frame
pointer or return address, or if the argument list for the
printf function is not contained within a single stack
frame. FormatGuard [12] instruments calls to printf
and checks if the number of arguments passed to printf
matches the number of format specifiers used in the for-
mat string.

Shankar et al. proposed to use static taint analysis to
detect calls to format string functions where the format
string originates from an untrustworthy source [56]. This
approach was later refined by Chen and Wagner [10] and
used to analyze thousands of packages in the Debian 3.1
Linux distribution. TaintCheck [39] also detects untrust-
worthy format strings, but relies on dynamic taint analy-
sis to do so.

FORTIFY SOURCE of glibc provides some lightweight
checks to ensure all the arguments are consumed. How-
ever, it can be bypassed [2] and does not check for type-
mismatch. Hence, none of these aforementioned solu-
tions provide comprehensive protection against variadic
argument overwrites or misuse.
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8 Conclusions

Variadic functions introduce an implicitly defined con-
tract between the caller and callee. When the program-
mer fails to enforce this contract correctly, the violation
leads to runtime crashes or opens up a vulnerability to
an attacker. Current tools, including static type check-
ers and CFI implementations, do not find variadic func-
tion type errors or prevent attackers from exploiting calls
to variadic functions. Unfortunately, variadic functions
are prevalent. Programs such as SPEC CPU2006, Fire-
fox, Apache, CPython, nginx, wireshark and libraries
frequently leverage variadic functions to offer flexibility
and abundantly call these functions.

We have designed a sanitizer, HexVASAN, that ad-
dresses this attack vector. HexVASAN is a light weight
runtime monitor that detects bugs in variadic functions
and prevents the bugs from being exploited. It imposes
negligible overhead (0.45%) on the SPEC CPU2006
benchmarks and is effective at detecting type viola-
tions when calling variadic arguments. Download Hex-
VASAN at https://github.com/HexHive/HexVASAN.
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[23] GÖKTAS, E., ATHANASOPOULOS, E., BOS, H., AND POR-
TOKALIDIS, G. Out of control: Overcoming control-flow in-
tegrity. In IEEE Symposium on Security and Privacy (S&P)
(2014).
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Abstract

Power (along with EM, cache and timing) leaks are of
considerable concern for developers who have to deal
with cryptographic components as part of their overall
software implementation, in particular in the context of
embedded devices. Whilst there exist some compiler
tools to detect timing leaks, similar progress towards
pinpointing power and EM leaks has been hampered by
limits on the amount of information available about the
physical components from which such leaks originate.

We suggest a novel modelling technique capable of
producing high-quality instruction-level power (and/or
EM) models without requiring a detailed hardware de-
scription of a processor nor information about the used
process technology (access to both of which is typically
restricted). We show that our methodology is effective
at capturing differential data-dependent effects as neigh-
bouring instructions in a sequence vary. We also ex-
plore register effects, and verify our models across sev-
eral measurement boards to comment on board effects
and portability. We confirm its versatility by demon-
strating the basic technique on two processors (the ARM
Cortex-M0 and M4), and use the M0 models to develop
ELMO, the first leakage simulator for the ARM Cortex
M0.

1 Introduction

Early evaluation of the leakage properties of security-
critical code is an essential step in the design of secure
technology. A developer in possession of a good quality
explanatory model for (e.g.) the power consumption or
electromagnetic radiation of a particular device can use
this to predict the leakage traces arising from a particu-
lar code sequence and so identify (and address) possible
points of weakness. Whilst the smart-card community
is accustomed to support from side-channel testing fa-
cilities (either in-house or via external evaluation labs),

there is a distinct lack of equivalent dedicated exper-
tise in the fast-growing realm of the Internet-of-Things
(IoT). This new market is rife with small start-ups whose
limited budgets and rapid pace of advancement are in-
compatible with the prices and typical workflow of in-
dependent evaluators. Thus there arises a pressing need
for user-friendly tools which easily integrate with es-
tablished software development practice—typically in C
and/or assembly, depending on the performance require-
ments of a given application—to assist in making that
practice more security-aware.

Whilst there are tools to identify timing leaks such as
ctgrind [16], there are no such easy tools for detecting
power or EM leaks in programs. The reason for this is
easily explained: timing information for instructions is
readily available, however, accurate models for the in-
stantaneous power consumption or EM emanations are
not available.

The challenge of acquiring a good quality power
model is in choosing what to include far more than it
is in choosing between particular statistical techniques.
The power consumption of a device bears a complex
relationship with its various components and processes,
necessitating a trade-off between precisely capturing as
many details as possible and keeping within reasonable
computational and sampling bounds. Transistor (re-
spectively cell) netlists can be used to derive accurate
gate-level models [17, Ch. 3], but for the purposes of
development-stage side-channel testing in software, we
require assembly level models.

Earlier efforts focused on assembly instructions to en-
sure covering vulnerabilities which might be introduced
at compilation time, but (over-) simplified the modelling
aspect by relying on Hamming weight and distance as-
sumptions [7, 26]. A more recent, higher-level proposal
based on C++ code representation also uses simplified
leakage assumptions, although the author does acknowl-
edge the potential for more sophisticated profiling [28].
Among the existing works only Debande et al. [6] em-
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phasise the importance of (and the complexities involved
in) deriving realistic leakage models empirically. They
fit linear models in function of the state bits and state
transitions using the techniques of linear regression.

However, such models are still considerably simpli-
fied relative to what is known about the complex factors
driving device power consumption. For instance, much
earlier efforts to model total energy consumption for the
purposes of optimising code for constrained devices [27]
showed clearly that the power consumed by a particular
instruction varies according to the instructions previous
in the sequence.

Another important aspect of power model construc-
tion, as emphasised by recent contributions in the tem-
plate building literature [5, 11, 20], is portability be-
tween different devices of the same design.

1.1 Our Contributions

We present a strategy for building refined assembly code
instruction-level power trace simulators and show that it
is applicable to two processors relevant to the IoT con-
text: the ARM Cortex M0 and M4. We develop the tool
fully for the M0 and verify its utility for side-channel
early evaluation.

The first part of our contribution is a side-channel
modelling procedure novel for the thoroughness it attains
by incorporating established linear regression model-
selection techniques. We combine a priori knowledge
about the M0 and the M4 with power (respectively EM)
leakage samples obtained in carefully designed exper-
iments, and use ordinary least squares (OLS) estima-
tion and joint F-tests to decide between candidate ex-
planatory variables in pursuit of models which account
well for the exploitable aspects of the side-channel leak-
age whilst avoiding redundant complexity. The effects
that we explore include instruction operands, bit-flips be-
tween consecutive operands, data-dependent interactions
with previous and subsequent instructions in a sequence,
register interactions, and higher-order operand and tran-
sition interactions. We verify portability by testing for
board effects, which show no evidence of varying differ-
entially with the processed data. We also show (via clus-
tering analysis) that a set of 21 key M0 instructions can
be meaningfully reduced to just five similarly-leaking
classes, thereby greatly reducing the complexity of the
modelling task. As well as enhancing the accuracy and
nuance of our predicted traces relative to previous work,
our systematic method of selecting and testing potential
explanatory variables provides valuable insights into the
leakage features of the ARM Cortex devices examined,
which are of independent interest.

The second part of our contribution is a procedure to
extract the data flows of arbitrary code sequences which

can subsequently be mapped to trace predictions via our
carefully refined models. We do this for the M0 by adapt-
ing an open-source instruction set simulator, chosen to
enable us to eventually release a full open-source ver-
sion of our own tool. We then demonstrate the utility of
the simulator for flagging up even unexpected leaks in
cryptographic implementations, by performing leakage
detection tests against simulated and real measurements
associated with an imperfectly-protected code sequence.

The remainder of the paper proceeds as follows: in
Section 2 we review the previous work on leakage mod-
elling, and provide a very brief overview of the key fea-
tures of the ARM Cortex architecture and the Thumb in-
struction set, alongside some information about our tai-
lored acquisition procedure. In Section 3 we outline our
methodology for leakage characterisation and for testing
for significant contributory effects. In Section 4 we ex-
plore the data-dependent leakage characteristics of each
considered instruction taken individually, and empiri-
cally confirm the natural clustering of like instructions.
In Section 5 we build complex models for the M0, al-
lowing for the effects of neighbouring instructions and
higher-order interactions and testing for the possibility
of board and register effects. In Section 6 we explain
how to use the models to simulate power traces, analyse
them, and draw conclusions about leaking instructions.
Closing remarks and open questions follow in Section 7.

2 Background

In this section we aim to provide enough context for
our paper to be reasonably self-contained for a reader
not familiar with the tasks of leakage modelling and
model evaluation (Sect. 2.1), the ARM Cortex-M pro-
cessor family (Sect. 2.2), assembly code instructions
(Sect. 2.3) and/or typical side-channel measurement set-
ups (Sect. 2.4).

2.1 Leakage Modelling Techniques
Modelling power consumption always involves a trade-
off between precision and economy (with respect to time,
memory usage and input data required). The most de-
tailed (‘white box’) efforts take place at the analog or
logic level and aim to characterise the power consumed
by every component in (part of) a circuit. For the pur-
poses of side-channel analysis, simpler, targeted (‘black
box’) models can be estimated from sampled traces for
particular intermediate values. Instruction-level models
of the type we propose represent a (‘grey box’) middle
ground, combining some relatively detailed knowledge
of the implementation with empirical analysis of care-
fully sampled leakage traces. We briefly overview these
three research directions below, followed by a summary
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of some typical approaches to the difficult task of model
quality evaluation.

2.1.1 Model Building Utilising Processor/Imple-
mentation Specific Information

Netlists describing all the transistor connections in a cir-
cuit, along with their parasitic capacitances, can be used
to perform analog simulations of the whole or a part of
the circuit. This process involves solving numerous dif-
ference equations and is highly resource intensive. A
less costly (but also less precise) logic-level alternative
uses cell-level netlists, back-annotated with information
about signal delays and rise and fall times. These are
used to simulate the transitions occurring in the circuit,
which are subsequently mapped to a power trace accord-
ing to knowledge of the capacitive loads of the cell out-
puts. Alternatively, the number of transitions occurring
can be taken as a simplified approximation of the power
consumption, which implicitly amounts to the assump-
tion that all 0→ 1 transitions contribute equally to 1→ 0
transitions (and similarly for 0→ 0 and 1→ 1 transi-
tions). See Chapter 3 of [17] for more details. Note that
even these most exhaustive of strategies, which may be
collectively classed as ‘white box’ modelling due to their
reliance on comprehensive implementation details, fail
to account for influences on the leakage outside the in-
formation provided by the netlist (for instance crosstalk)
and therefore represent simplifications of varying imper-
fection.

2.1.2 Model Building for Intermediate Instructions

For the purposes of side-channel analysis and evaluation,
it suffices to build models only for power consumption
which (potentially) bears a relationship to the processing
of security-sensitive data or operations. These strategies
bypass the requirement for detailed knowledge of the im-
plementation and may be thought of as ‘black box’ mod-
elling. A typical approach has been to focus on (search-
ably small) target intermediate values of interest (for ex-
ample, the output of an S-box). By measuring large num-
bers of leakage traces as the output of the target function
varies in a known way, it is possible to estimate the pa-
rameters of (for example) a multivariate Gaussian distri-
bution associated with each possible value taken by the
intermediate. Traces acquired from an equivalent device
with an unknown key (and therefore unknown interme-
diates) can then be compared against these fitted mod-
els (‘templates’) for the purposes of classification [3, 5].
Linear regression techniques can be used to reduce the
complexity of the leakage characterisation [23, 29]; the
assumption of normality can be avoided, for example
by building models using machine learning classification

techniques [14].

2.1.3 Model Building for Processor Instructions

In order to simulate leakage of arbitrary code sequences
on a given device we opt for (‘grey box’) instruction-
level characterisation. Previous instruction-level (and
higher code-level) simulations for the purposes of side-
channel analysis have settled for Hamming weight or
Hamming distance assumptions [26, 28] or have esti-
mated simple models constrained to be close to such
approximations [7, 6]. However, much earlier work by
Tiwari et al. [27] explores more complex model config-
urations for the purposes of simulating and minimising
the total power cost of software to be run on resource-
constrained devices. The authors find that not only do
instructions have different costs, but that those costs are
influenced by preceding instructions in a circuit. Their
models are thus comprised of instruction-specific aver-
age base costs additively combined with instruction-pair-
specific average circuit state overheads. This methodol-
ogy is not adequate for our purposes, as it essentially av-
erages over all possible data inputs—precisely the source
of variation that most needs to be captured and under-
stood in a side-channel context. Hence, we combine
similar instruction and instruction-interaction terms with
data-state, -transition and -interaction terms, drawing on
modern approaches to linear regression-based profiling
[4, 29] to handle the considerable added complexity.

2.1.4 Evaluating Model Quality

To build a model is to attempt to capture the most impor-
tant features of an underlying reality which is (at least
in the cases where such an exercise is useful and inter-
esting) unknown. For this reason it is generally not pos-
sible to definitively establish the quality of any model
(i.e., the extent to which it matches reality). However,
there do exist methods, depending on the various model-
fitting strategies adopted, for indicating whether the out-
put result is suitable for its desired purpose. An ap-
proach popular in the side-channel evaluation literature
is to estimate the amount of information (in bits) in the
true leakage which is successfully captured by an eval-
uator’s model for that leakage with a metric called the
perceived information (PI) [21, 8]. This retains the usual
shortfalling in that the question of how good the model
is essentially corresponds to the one of how close the PI
is to the true (as always, unknown) mutual information.
However, in [8] the authors show how to combine cross-
correlation and distance sampling to increase confidence
(or highlight problems) in models used for evaluation.

Nevertheless, for our purposes, the established tools
traditionally associated with linear regression model
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building are better suited as they allow disentangling the
contributions of component parts of the model as well as
commenting on overall model quality. The coefficient of
determination, or R2, is a popular goodness-of-fit mea-
sure which can be thought of as the proportion of the to-
tal variation in the sample which is explained by (i.e. can
be predicted by) the model. However, the R2 is notori-
ously difficult to interpret as it always increases with the
number of explanatory variables, hampering attempts to
compare models of different sizes. It can be adjusted by
penalising for the number of variables, but it is normally
recommended to compute the F-statistic (see Sect. 3.1)
to test for the statistically significant improvement of one
model over another. The F-test can also be used to test
overall model significance, which is useful in our case
where the exploitable (i.e. data dependent) variation may
only represent a small fraction of the total variation in the
traces (which includes noise and unrelated processes).
That is, a low R2 need not imply that a model is unfit for
purpose, as long as it represents a statistically significant
data-dependent component of the leakage; conversely, a
high R2 need not indicate a model as more fit for purpose
if the extra variation explained is irrelevant to the data-
dependent side-channel leakage or is a result of over-fit.

However, F-tests offer no reassurance that other im-
portant contributory factors have not been omitted from
the model. In the context of modelling for side-channel
detection, it is established practice to verify the adequacy
of the trace simulations by demonstrating that they reli-
ably reveal the same vulnerabilities as real trace mea-
surements. Previously, this has largely been attempted
by performing DPA attacks [7, 26]; for the purposes of
rigour, we propose to also utilise the leakage detection
framework of [10] (see Sect. 6.3).

2.2 ARM Cortex-M Processor Family

The ARM Cortex-M processor family[19] was first in-
troduced by ARM in 2004 to be used specifically within
small microcontrollers, unlike the Cortex-A and Cortex-
R families which, although introduced at the same time,
are aimed at higher-end applications. Within the fam-
ily there are six variants of processor: the M0, M0+,
M1, M3, M4 and M7, where the M0 provides the low-
est cost, size and power device, the M7 the highest per-
forming device, and the M0+, M3 and M4 processors sit
in-between. The M1 is much the same as the M0 how-
ever it has been designed as a “soft core” to run inside
a Field Programmable Gate Array (FPGA). The M0 and
M3 share the same architecture as the M0+ and M4 re-
spectively, though the M0+ and M4 have additional fea-
tures on top of the basic processor architecture to provide
them with greater performance. The M7 processor is the
most recent (2014) and high performing of the Cortex-M

family.
Whilst the exact CPU architecture of the Cortex-M de-

vices is not publicly available, it can be assumed to re-
semble the basic architecture of ARM cores, as detailed
in [9]. Figure 1 shows a simplified version of the basic ar-
chitectural components: besides the arithmetic-logic unit
(ALU), there exists a hardware multiplier, and a (barrel)
shifter. The register banks feed into the ALU via two
buses, one of which is also connected to some data in/out
registers. There is a third bus that connects the output of
the ALU back into the register banks.

We select the Cortex-M0 and M4 processors (see
Tab. 2 in the Appendix for comparison) to evaluate us-
ing our clustering profiling methodology and go on to
further analyse and produce a leakage emulator for the
Cortex-M0. The reason for the selection of these two
processors is that they represent either ends of the spec-
trum for the older, more widely used, of the Cortex-M
family, allowing us to demonstrate that our methodology
can be applied to a range of processors.

Figure 1: Simplified ARM CPU architecture (redrawn
from [9]) for a 3-stage pipeline architecture.

2.3 Instructions
In this work we focus on profiling a select number (21)
of Thumb instructions that are highly relevant for im-
plementing symmetric cryptography, which run on both
the Cortex-M0 and M4 processors: ldr, ldrb, ldrh,
str, strb, strh, lsls, lsrs, rors, muls, eors, ands,
adds, adds #imm, subs, subs #imm, orrs, cmp, cmp
#imm, movs and movs #imm. Note that adds #imm and
subs #imm use 3-bit immediate values rather than 8-bit
values. All non-memory instructions use the s suffix and
so update the conditional flags and, in the case of the
Cortex-M0, can only use low registers. The implemen-
tation of the muls instruction takes a single cycle to ex-
ecute on both processors. We made this selection to in-
clude core instructions with particular use within (sym-
metric key) cryptographic algorithms, which tend to per-
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form operations on the set of unsigned integers. We also
focus on the instructions which contain the s suffix to
comply with restrictions required for many of the Cortex-
M0 instructions and, where there is the option to use the
non-suffixed instruction with higher registers (as with the
adds, subs and movs instructions), we chose the suf-
fixed version to maintain consistency with the other in-
structions.

Understanding and interpreting the input format of
the instructions is necessary in order to correctly model
them and the interactions between them. From Fig. 1 we
would expect three buses to be used for the ALU instruc-
tions, as well as for shift and multiply instructions where
the barrel shifter and hardware multiplier are present: the
A bus for operand 1, the B bus for operand 2 and the out-
put of the operation on the ALU bus. In our analysis we
do not consider the effects of ALU outputs, as we assume
the output of an instruction to be used as an input to a fol-
lowing instruction; we focus on the two operands of the
operation which we would expect to leak via the A and B
buses. We therefore take these to correspond to operands
1 and 2 respectively. For memory instructions we expect
the data being loaded or stored to leak on bus B, as well
as the data bus. To include this leakage and any interac-
tions it may have with the previous data value that was
on this bus, we set the data to be loaded or stored as the
value of operand 2 for all memory instructions. How we
model these operands based on the register selection of
the instructions is described below.

For the majority of non-memory instructions (i.e.
those other than ldr, ldrb, ldrh, str, strb, strh),
three different registers may be selected for use in the
format “inst rd , rn, rm/#imm”, where rd is the destina-
tion register for the output, rn the register holding the
first operand and rm the register containing the second
operand. However, mov and cmp instructions each have
only two registers: rd , rn and rn, rm respectively.

To simplify our configuration for modelling instruc-
tions, and to ensure enough registers for the analysis of
three instructions (where each register must be fixed be-
forehand), rd was the same as rn for all of these, limit-
ing the number of registers required for each instruction
to 2. This method also allowed us to more easily assess
switching effects in the destination register. We therefore
took operand 1 to be rd/rn and operand 2 to be rm.

Memory instructions have a slightly different con-
figuration as the second operand needs to be a valid
memory address. They typically have the form “inst
rt , [rn,rm/#imm]” where rt is the register to which the
data is to be stored or from which it is to be loaded
(according to the functionality of the instruction), rn is
the memory address and rm/#imm is the offset to this
memory address which can either be in a register rm or
input as an immediate value (#imm). The ldr instruc-

tion analysed was of this form rather than the alternative
form which loads the memory address of a label. For
our analysis we did not consider the leakage of mem-
ory addresses and so the value of the offset was simply
set to 0 for all memory instructions with the memory ad-
dress of rn fixed beforehand. We therefore have one main
operand for memory instructions which is the data in rt
for store instructions and the value in the memory ad-
dress of rn (data[rn]) for load instructions which we set to
operand 2 in both instances. For store instructions, we set
the data in memory which is to be overwritten (data[rn])
and for load instructions the register into which the data
is to be loaded (rt ) to be random data which we model as
operand 1 in both cases. This is to include any potential
leaks that could come from either of these sources, how-
ever we would do expect this to include bit interactions
with operand 1 of the previous instructions as we do not
expect either of these data values to be transmitted on bus
A in Fig. 1.

2.4 Measurement Setups

We work with implementations of the two processors by
ST Microelectronics on STM Discovery Boards, with the
ARM Cortex-M0 being implemented on an STM32F0
(30R8T6) Discovery Board and the ARM Cotex-M4 on
the STM32F4 (07VGT6). These boards both feature
an ST-Link to flash programs to the processor and pro-
vide on-chip debugging capabilities as well as on-board
RC oscillator clock signals (8Mhz and 16Mhz for the
STM32F0 and STM32F4 respectively). Further details
about the devices can be found in datasheets [24] and
[25].

In order to get accurate power measurements for the
Cortex-M0, we modified the STM32F0 board by ex-
tracting the power pins of the processor, and passing the
power supply through a 360Ω resistor over which a dif-
ferential probe was connected. This was to minimise the
potential for board and setup effects. We also verified the
stability of our power supply. To measure the EM emis-
sions on the Cortex-M4 processor we placed a small EM
probe over the output of one of the capacitors leading to
one of the power supply pins of the processor.

We used a Lecroy Waverunner 700 Zi scope at a sam-
pling rate of 500 MS/S for both the power and EM anal-
yses. The sampling rate was selected by observing DPA
outcomes on the Cortex-M0 across different sampling
rates: 500 MS/S was the lowest sampling rate at which
the best DPA outcomes were achieved. The clock speed
of the Cortex-M0 was set to 8Mhz and the Cortex-M4 set
to 16 Mhz. To lower the independent noise, we averaged
over five acquisitions per input for the power measure-
ments for the M0 (as this was found to be the lowest
number that brought the most signal gain) and 10 for the
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EM measurements for the M4 (to further reduce the addi-
tional noise associated with this method of taking traces).
No filtering or further signal processing took place for
the Cortex-M0 power measurements, however a 48Mhz
low-pass filter was used before amplifying the EM signal
for the Cortex-M4.

We note that our measurement of EM uses only one
probe over one of multiple power inputs to the proces-
sor (for the M0 we reduced the number of power inputs
to a single one over which to measure) and that, whilst
we have applied some pre-processing to the (noisier) EM
measurements, we could have attempted more thorough
techniques to enhance the signal. We view, therefore,
our two measurement setups for the different boards to
represent different ends of the spectrum in terms of the
time and effort invested to get improved measurements.
In this way we aim to gain an understanding of how our
profiling methodology adapts to different setup scenarios
as well as for different processors.

3 A Novel Methodology to Characterise a
Modern Microprocessor

In principle all components (i.e. on the lowest level of
gates and interconnects) contribute to the side channel
leakage in the form of power or EM and so could be
modelled as predictor variables. The skill and challenge
in model building is then to select and test (and possi-
bly discard) potential predictors in a systematic manner,
manoeuvring the trade-off between infeasible complex-
ity and oversimplification. We opt for a ‘grey box’ ap-
proach which does not require detailed hardware descrip-
tions but does assume access to assembly code in order to
construct models at the instruction level. We concentrate
on predictor variables that can be derived from assembly
sequences (i.e. input data, register locations), but we also
want to potentially account for board-specific effects.

Linear regression model-fitting techniques have been
used by the research community for some years al-
ready to profile side-channel leakage [23]. We refine the
adopted procedures according to well-established statis-
tical hypothesis testing strategies, in order to better un-
derstand the true functional form of the leakage and to
make informed judgements about candidate explanatory
variables. Specifically, we perform F-tests for the joint
significance of groups of related variables, and include
or exclude them accordingly, thus producing meaning-
ful explanatory models which are not unnecessarily com-
plex.

3.1 Model Building
We fit models of the following form (written in matrix
notation) to the measured leakage of different instruc-

tions via OLS estimation (see, e.g., Chapter 3 of [12]):

y = δ +[O1 |O2 |T1 |T2 ] βββ + εεε (1)

where Oi = [xi[0] |xi[1] | . . . |xi[31] ] is the
matrix of operand bits across bus i = 1,2,
Ti = [xi[0]⊕ zi[0]| . . . |xi[31]⊕ zi[31] ] is the matrix
of bit transitions across bus i = 1,2 (i.e., [b] denotes the
bth-bit, xi denotes the ith operand to a given instruction,
zi denotes the ith operand to the previous instruction, and
‘|’ denotes matrix concatenation). The scalar intercept δ

and the vector of coefficients βββ are the model parameters
to be estimated, and εεε is the vector of error terms (noise),
assumed for inference to have constant, uncorrelated
variance across all observations.1 If the noise can
additionally be assumed to be normally distributed then
the validity of the hypothesis tests holds without need of
recourse to asymptotic properties of the test statistics.

3.2 Selecting Explanatory Variables
The innovations we propose over previous uses of linear
regression for modelling side-channel leakage are with
respect to informed model selection. The task of select-
ing a meaningful subset from a large number of can-
didate explanatory variables is well-recognised as non-
trivial. Techniques such as stepwise regression [15] fully
automate the procedure by iteratively adding and remov-
ing individual terms according to their contribution to
the current configuration of the model. This approach
is sensitive to the order in which terms are introduced
and prone to over-fitting, and has attracted criticism for
greatly understating the uncertainty of the finalised mod-
els as typically reported. Stepwise regression has been
used to achieve so-called ‘generic-emulating’ DPA [30];
it is effective in this context because attack success does
not derive from the actual construction of the produced
models but requires only that the proportion of variance
accounted for is greater under the correct key hypoth-
esis than under the alternatives. However, we require
our models to be meaningful, not just (artificially) close-
fitting. Thus we adopt a more conservative and tradi-
tional approach towards model building by which in-
formed intuition about likely (jointly) contributing fac-
tors precedes formal statistical testing for inclusion or
exclusion.

The criterion for model inclusion is based on the F-
test. Consider two models, A and B, such that A is
‘nested’ within B—that is, it has pA < pB parameters
associated with a subset of model B’s fitted terms (e.g.
y = δ ′+[O2 |T1 |T2 ] βββ

′′′+ εεε ′′′ versus (1) above). We are
interested in the joint significance of the terms omitted

1By mean-centering each trace prior to analysis we remove drift,
which could otherwise introduce auto-correlation.
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from A (in our example case, the bits of the first operand).
The test statistic is computed via the residual sums of
squares (RSS) of each model, along with their respective
numbers of parameters pA, pB and the sample size n as
follows:

F =

(
RSSA−RSSB

pB−pA

)
(

RSSB
n−pB

) (2)

Under the null hypothesis that the terms have no effect,
F has an F-distribution with (pB− pA,n− pB) degrees of
freedom. If then, for a given significance level (usually
α = 5%, as we opt for throughout)2, F is larger than the
‘critical value’ of the FpB−pA,n−pB distribution3 we reject
the null hypothesis and conclude that the tested terms do
have an effect. If F is smaller than the critical value, we
say that there is no evidence to reject the null hypothesis.

In the same way, we can add other terms to model
(1) and test appropriate subsets in order to rigorously ex-
plore which factors influence the form of the leakage and
should therefore be taken into account in the final model.
We are especially concerned with sources of variation
that have a differential impact on the data-dependent
contributions, as these will determine how well we are
able to proportionally approximate the exploitable part of
the leakage (whereas ‘level’ (average) effects will simply
shift the model by an additive constant). In particular, we
test (in Sect. 5) for register, board and adjacent instruc-
tion effects on the operand and bit-flip contributions by
computing F-statistics for the associated sets of interac-
tion terms.

4 Identifying Basic Leakage Characteris-
tics

We first investigate the instruction-dependent form of the
leakage in a simple setting, where differential effects
from other factors do not yet play a role. For this pur-
pose, we perform the same fixed sequence mov-instr-mov
5,000 times for each selected instruction, as the two 32-
bit operands vary. We measure the power consumption
(or EM, in the case of the M4) associated with each se-
quence, and identify as a suitable point the maximum
peak4 in the clock cycle during which the instruction
leaks. We fit the model (1) to the (drift-adjusted) vec-
tor of measurements at this point.

Table 3 in the Appendix confirms the overall signif-
icance of the model for each M0 instruction. This sup-
ports our point selection and the intuition that the leakage

2The significance level should be understood as the probability of
rejecting the null hypothesis when it is in fact true.

3The number large enough to imply inconsistency with the distribu-
tional assumption fixing the probability of error at α .

4This choice is specific to our measurements and is by no means the
only option.

depends in part on the data being operated on. However,
some differences can be observed in the contributing fac-
tors:

• The load instructions depend only on the bits of the
operands (operand 2 or both for ldrh) and not the
bit flips.
• The store instructions depend only on the bits and

the bit transitions of the second operands.
• The operations on immediate values essentially

have no second operand on which to depend.
• For all the other instructions all tested sets of ex-

planatory variables are judged significant at the 5%
level, which the exception of the second operand bit
transitions for the mul.5

4.1 Further observations and indicators
for model quality

Although we caution in the background section that over-
interpreting the ‘raw’ value of resulting R-squareds is
not advisable, their relative values can provide some ev-
idence about the relative quality between (same-type)
models obtained via e.g. different setups and devices.

Hence we now discuss same-type models for the
M4, which we obtained using traces from a deliberately
weaker measurement setup. Table 4, also in the Ap-
pendix, shows the model results for the M4. The model
for the mov instruction is not found to be significant, im-
plying that there is insufficient evidence to conclude that
the EM radiation of mov depends on its data operands
and bus transitions. The models for other instructions
are overall significant, but fewer of the data-dependent
terms are identified as contributing.

• Both operands to the ALU instructions contribute,
except in the case of those involving immediate
values (which, again, essentially have no second
operand).
• Only the second operand to the load and store in-

structions contributes significantly.
• Bus transitions contribute to the instructions on im-

mediate values, and also to cmp.

Whilst we again advise against over-interpreting the R-
squareds (see Section 2.1), a comparison between the
first rows of 3 and 4 indicates that, in the case of the
ALU and shift instructions, model (1) accounts for sub-
stantially less of the variation in the M4 EM traces than
it does of the variation in the M0 power traces. Although
this could be taken as evidence that the instructions in
question leak more in the case of the M0 and less in

5‘Significant at the 5% level’ is a shorthand way of saying that the
null hypothesis of ‘no effect’ is rejected by the F-test when the proba-
bility of a false rejection (Type I error) is fixed at 5%.
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the case of the M4, it is more likely that the M4 model
is weaker because of the weaker setup as discussed in
Sect. 2.4). We take this as further evidence that statisti-
cal measures that we suggest as part of our methodology
are suitable to judge model quality.

4.2 Clustering Analysis to Identify Like In-
structions

We eventually want to allow for possible differences in
the leakage behaviours of instructions depending on ad-
jacent activity in sequences of code (as per [27]). This
will be much easier to achieve if we can reduce the num-
ber of distinct instructions requiring consideration. For
instance, we might expect instructions invoking the same
processor components (as visualised in Fig. 1) to leak
similarly: ALU instructions as one group (i.e. adds,
adds #imm, ands, eors, movs, movs #imm, orrs, subs,
subs #imm, cmp, cmp #imm), shifts as another, albeit
closely-related group (lsls, lsrs, rors), loads (ldr,
ldrb, ldrh) and stores (str, strb, strh) that interact
with the data in/out registers as two more groups, and the
multiply instruction (muls) as a group on its own with a
distinct profile due to its single cycle implementation.

We compare this intuitive grouping with that which is
empirically suggested by the data by performing cluster-
ing analysis (see, e.g., Chapter 14 of [12]) on the per-
instruction data term coefficients βββ obtained by fitting
model (1) for both the M0 and the M4. We use the av-
erage Euclidean distance between instruction models to
form a hierarchy of clusters (represented by the dendro-
grams in Fig. 6). Adjusting the inconsistency threshold6

between 0.7 and 1.2 produces the groupings reported in
Tables 5 and 6. In the case of the M0, these align nicely
with our intuitive grouping: at threshold 0.9 the match
is exact; at a threshold of 1.1 the shifts join the ALU
instructions; at a threshold of 1.2 the instructions form
a single cluster. In the case of the M4, the intuition is
confirmed to a degree: at threshold 0.8, the ALU instruc-
tions are spread out over four groups, and the store oper-
ations over two; but the shift operations cluster together,
as do the loads, and the mul is again identified as dis-
tinct. There is no overlap between the nine groups until
they form a single cluster at threshold 1.0.

A ‘good’ cluster arrangement will achieve high sim-
ilarity within groups and high dissimilarity between
groups. The silhouette value is a useful measure to gauge
this, defined for the ith object as Si =

bi−ai
max(ai,bi)

, where ai

is the average distance from the ith object to the other

6The inconsistency coefficient is defined as the height of the indi-
vidual link minus the mean height of all links at the same hierarchical
level, all divided by the standard deviation of all the heights on that
level (see Matlab’s cluster command: http://uk.mathworks.

com/help/stats/cluster.html).

objects in the same cluster, and bi is the minimum (over
all clusters) average distance from the ith object to the
objects in a different cluster [22]. Fig. 2 plots the M0
cluster silhouettes for a selection of the arrangements in
Tab. 5. The consistency threshold of 0.9 is associated
with the highest median silhouette value (0.56), support-
ing our a priori intuition.
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Figure 2: Silhouette plots for each M0 cluster arrange-
ment (numbers in parentheses report median silhouette
indices).

4.3 Functional Form of the Leakage
We next look more closely at the form of the estimated
leakage models. Fig. 3 plots the mean data-dependent
coefficients associated with the different terms in the
model equations, for each of the five M0 groups sug-
gested by the clustering analysis with a threshold of 0.9.
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Figure 3: Average estimated coefficients on the model
terms for each ‘found’ M0 instruction cluster

The differences between the groups are immediately
clear. We make the following observations for the M0:

• ALU instructions (adds, ands, cmps, eors, movs,
orrs and subs, and their immediate value equiv-
alents where relevant) leak primarily in the transi-
tion between the first operands given to the current
and previous instruction. However, not all the bits
of this transition contribute; most of the explained
leakage is in three bits of the third operand byte and
one in the fourth.
• Shifts (lsls, lsrs, rors) appear to leak in the

first operand (which contains the data being shifted)
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and the transition between that and the first operand
for the preceding instruction. The coefficients are
largest for the third and (to a lesser extent) the fourth
bytes. The transition leakage applies only to a few
bits, while the operand leakage is more spread out
between the bits. There is some evidence of leakage
from the first three bits of the second operand.
• Stores (str, strb, strh) leak primarily in the first

byte of the second operand.
• Loads (ldr, ldrb, ldrh) leak across most bits of

the second operand. This shape is closest to the
typically-made Hamming weight assumption.
• Multiply (muls) leaks mostly in the first two bytes

of the first and second operand. The coefficients
on the first operand are large for just six of the bits
while the second operand coefficients are medium-
sized across all bits of the first two bytes.

In summary, our exploratory analysis of the data-
dependent form of the instruction leakages confirms
many of our a priori intuitions about the architecture
and supports our model building approach as sensible
and meaningful. It also indicates that we can lessen
the burden of the task by reducing the number of dis-
tinct instructions to be modelled to a meaningfully rep-
resentative subset of the initial 21. Reducing unneces-
sary complexity in the instruction set increases the scope
for adding meaningfully explanatory complexity to the
models themselves, which we proceed to do in the next
section for the power consumption of the M0.

5 Building Complex Models for the M0

From this point forward we concentrate on the M0 and
seek to build more complex, sequence-dependent models
for five instructions chosen to represent the groups iden-
tified by the clustering analysis of Sect. 4.2: eors, lsls,
str, ldr and muls. The model coefficients for each of
these are shown in Fig. 7 (see Appendix). As we would
hope, they can be observed (by comparing with Fig. 3)
to match well the mean coefficients for the groups that
they represent, with the possible exception of str, which
has smaller coefficients on the first byte than the average
within its group.

We are confident that these five are adequate for un-
derstanding the leakage behaviour of all 21. Restricting
the analysis in this way enables exhaustive exploration of
the effects of preceding and subsequent operations when
instructions are performed in sequence.7

7Such an approach implicitly makes the further assumption that in-
structions within each identified cluster are affected similarly by the
sequence of which they are a part.

5.1 Exploring Board Effects

To understand if we need to account for variation be-
tween boards we replicate the M0 acquisition described
at the start of Section 4 for a further 7 boards. We find
the leaking point for each acquisition and pool the data.
We then fit model (1) with the addition of a dummy for
(level) board effects and we compare this against a model
with the further addition of board/data interaction dum-
mies, in order to test the joint significance of the latter.

We find a remarkable degree of consistency in the
data-dependent leakage of the different boards. F-tests
for the joint interaction between board and data effects
do not reject the null hypothesis of ‘no effect’ for any of
the instructions This also implies that our setup has min-
imised (or even removed) any measurable impact on the
processor’s power consumption.

5.2 Exploring Register Effects

The ARM Cortex-M0 architecture distinguishes between
low (r0–r7) and high (r8–r15) registers. The latter, which
can only be accessed by the mov instruction, are used for
fast temporary storage. These were observed by inspec-
tion to have different leakage characteristics to the low
registers. However, due to their singular usage we con-
sider them outside of the scope of this particular analysis
and focus only on the low registers. For the purposes of
future extensions to our methodology, we propose mod-
elling high register movs as an additional distinct instruc-
tion.

We test for variation between the eight low registers
by collecting 5,000 traces for each source register (rn)
and destination register (rd) (evenly distributed over the
possible source/destination pairs, making 625 per pair)
as movs are performed on random inputs. We then fit
model (1) with the addition of dummy variables for
source register and for destination register, and compare
this against a model with the further addition of register/-
data interaction dummies, in order to test the significance
of the latter.

We find that the registers do have a jointly significant
effect on the leakage data-dependency (see LHS of Tab. 7
in Appendix A). Considered separately, only the source
register effect remains significant; at the 5% level we do
not reject the null hypothesis that the destination register
has no effect. Moreover, the effect can be isolated (by
testing one ‘source register interaction’ at a time relative
to the model with no source register interactions) to just
half the source registers (r0, r1, r4 and r7).

This analysis suggests that the inclusion of (some)
source register effects would increase the ability of
the model to accurately approximate the data-dependent
leakage. However, such an extension would add consid-
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erable complexity; it is important to examine the prac-
tical significance of the effects as well as the statisti-
cal significance which, in large sample sizes (such as
we deal with here), will eventually be detected even for
very small differences. The figure on the right of Tab. 7
(Appendix A) shows the estimated coefficients on the
data terms as the source register varies. The ‘significant’
effect is at least small enough that it cannot be easily
visualised—a legitimate criteria for assessing practical
significance according to [2], although we have not car-
ried out the formal visual inspection there proposed. We
judge it acceptable, for now, to exclude it from the model
in order to incorporate more important factors such as the
effect of previous and subsequent instructions, which we
consider in Sect. 5.3.

5.3 Allowing For Sequence Dependency

In this section we work towards extending our instruction
level models to control (and test) for the possible effects
of the previous and subsequent instructions in a given
sequence.

To achieve this we acquired 1,000 traces for each of
the possible 125 combinations of three out of the five in-
structions, with random data inputs. We alternated the
sequences within a single acquisition to minimise the
possibility of conflating instruction sequence effects with
drift or acquisition effects, and mean-centered them to
adjust for any overall drift. We compressed the traces to a
single point (the maximum power peak) in each clock cy-
cle, and selected the clock cycle most strongly associated
with the data inputs to the target (middle) instruction. For
the ldr instruction (which is two cycles long) the rele-
vant point was one cycle ahead of that of the muls, lsls
and eors; for str, the relevant point was three clock
cycles ahead, implying that the data leaked during the
subsequent instruction.

Using these relevant points, we then built models for
each target instruction in function of its operands, as in
model (1), with the addition of dummy variables for pre-
vious and subsequent instructions. We further allow for
the data-dependent component to vary via four sets of in-
teraction terms: the product of the instruction dummies
with the Hamming weights of each operand and also with
the corresponding Hamming distances (the sum of bit-
flips). This enables a degree of flexibility in estimating
the form of the data dependency whilst avoiding the in-
troduction of an infeasible number of instruction/data bit
interaction terms into the model equation.

For ease of presentation consider the following groups
of variables which together comprise the full set of ex-
planatory variables:

• Ip: The previous instruction in the sequence, fitted

as a dummy variable (with eors as baseline to pre-
serve linear independence).
• Is: The subsequent instruction in the sequence, fit-

ted similarly to Ip.
• D= [O1 |O2 |T1 |T2 ]: All 128 operand bit and tran-

sition dummies.
• DxIp = [O1xIp |O2xIp |T1xIp |T2xIp ]: The Ham-

ming weights of the two 32-bit operands and their
Hamming distances from the previous two inputs,
interacted with the ‘previous instruction’ dummies
(i.e. the products of the four summarised data terms
with each of the four instruction dummies).
• DxIs = [O1xIs |O2xIs |T1xIs |T2xIs ]: The Ham-

ming weights of the two 32-bit operands and their
Hamming distances from the previous two inputs,
interacted with the ‘subsequent instruction’ dum-
mies, as above.

The extended model, in our matrix notation, is there-
fore:

y = δ +[Ip |Is |D |DxIp |DxIs ] βββ + εεε (3)

For the purposes of building comprehensive
instruction-level models we are especially inter-
ested in confirming (or otherwise) the presence of
sequence-varying data-dependency, which we again
achieve by performing F-tests for the contribution of the
interaction terms. Table 8, in the Appendix, shows that
the full set of interaction terms are jointly significant
(at the 5% level) in all cases, as are the previous and
subsequent instruction interactions considered sepa-
rately. We also divide the interaction terms into four
groups according to the operand or transition with which
they are each associated, in order to test whether the
varying data-dependency arises from all or just a subset
(in which case we could reduce the complexity of the
model). Only for the str model do we fail to find
evidence of significant effects for all four, suggesting
(in that case) the possibility of removing operand 1 and
transition 2 terms without cost to the model.

We thus conclude that the form of the data-dependent
leakage depends significantly on the previous and sub-
sequent instructions within a sequence, and recommend
that they be taken into account (as we have done here)
when seeking to build comprehensive instruction-level
models.

5.4 Exploring Higher-Order Effects

An obvious limitation of model (3) is that it restricts the
relationship between the bits/transitions and the leakage
to be linear. In practice, it is reasonable to suppose (for
example) that bits carried on adjacent wires may produce
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some sort of interaction. Previous analyses fitting lin-
ear regression models to target values [13, 29] have al-
lowed for these and for other higher-order interactions,
increasing the possibility of accounting for even more
exploitable variation in the leakage. However, they have
failed to investigate if such effects are in fact present.

We therefore test for the inclusion of adjacent and non-
adjacent bit interactions in model (3). Table 9, in the Ap-
pendix, shows that we find significant effects precisely
(and only) where we would expect to: in the leakages of
lsls and muls, instructions which explicitly involve the
joint manipulation of bits within the operands. We also
test for adjacent bit flip interactions, which are not found
to contribute significantly towards any of the instruction
leakages. For the purposes of simulation, we therefore
elect to use model (3) in the case of eors, str and ldr,
and model (3) with the addition of input bit interactions
in the case of lsls and muls.

6 Using and Evaluating our Grey Box
Models in a Practical Context

Up until know we have considered short instruction se-
quences. We have shown that our novel approach pro-
duces models which, when evaluated in the context of an
instruction triplet, include statistically relevant and archi-
tecturally justified terms. Furthermore, our methodology
clearly indicates model quality: the models derived from
a dedicated setup for monitoring the power consumption
showed much better statistics then the models derived
from the much less sophisticated EM setup.

However, to make the final argument that our approach
results in models that are useful in the context of arbitrary
instruction sequences, we need to consider code that is
longer and more varied then the triplets that we used for
model building. We also need to define a measure that al-
lows us to judge how good the ‘match’ between model-
simulated and real power traces is. We could consider
randomly generating arbitrary code sequences (of some
predefined length), and defining some distance measure.
However, because we have a very clear application for
these models in mind, we opt for a more decisive and
targeted evaluation strategy. The ultimate test, arguably,
is to utilise our models for the M0 to evaluate the se-
curity different implementation of a cryptographic algo-
rithm (e.g. AES). To conduct such a test, we build an
Emulator for power Leakages for the M0 (short: ELMO,
elaborated on in the next section). In this context we
expect that leakage simulations based our newly con-
structed models enable to detect leaks that relate to the
modelled instructions, but also (maybe more simply) that
our models correlate well to measured traces.

6.1 ELMO

As follows from Sect. 3, our instruction-level models
work with code that has been compiled down to assembly
level, easily obtained via the ARM toolchain. Comput-
ing model predictions requires knowledge of the inputs
to instructions, which entails emulating a given piece of
code in order to extract the data flow. There are a num-
ber of instruction-level emulators available for the ARM,
Thumb and Thumb2 instruction sets due to the popular-
ity of these processors.

We choose an open source (programmed in C) emula-
tor called Thumbulator8. We choose this over more well-
known emulators9 for its simplicity and ease of adaptiv-
ity for our purposes. One disadvantage of this choice is
that it is inevitably less well-tested than its more popular
rivals; it also omits the handful of Thumb-2 instructions
which are available in the ARMv6-M instruction set, al-
though we did not profile any of these. Of course, any of
the other emulators could be equally incorporated within
our methodology.

The Thumbulator takes as input a binary program in
Thumb assembly, and decodes and executes each instruc-
tion sequentially, using a number of inbuilt functions to
handle loads and stores to memory and reads and writes
to registers. It provides the capability to trace the in-
struction and memory flow of a program for the purpose
of debugging. Our data flow adaptation is built around
a linked list data structure: in addition to the instruction
type, the values of the two operands and the associated
bit-flips from the preceding operands are stored in 32-
element binary arrays.

The operand values, and associated bit-flips from the
preceding operations, are then used as input to the model
equations (as derived in Sect. 5; see Eqn. (1)), one for
each profiled instruction group. Summarising, simulat-
ing the power consumption requires deriving, from the
data flow information, the variables corresponding to the
terms in the equations: the previous and subsequent in-
structions, the bits and the bit-flips of each operand, the
Hamming weight and Hamming distances, and the ad-
jacent bit interactions where relevant (i.e. for lsls and
muls). The variables are then weighted by the appro-
priate coefficient vector and summed to give a leakage
value, which is written to a trace file and saved.

8Source code at: https://github.com/dwelch67/

thumbulator.git/
9E.g. QEMU http://wiki.qemu.org/, Armulator https://

sourceforge.net/projects/armulator/
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6.2 Evaluating Model Correlation to Real
Leakages

A simple way to check how well a model corresponds to
real leakage behaviour is to compute the (Pearson) cor-
relation between the model predictions for a particular
instruction (operating on a set of known inputs) and the
measured traces corresponding to a code sequence con-
taining that same instruction (operating on the same in-
puts). This procedure can be used to demonstrate the im-
provement of our derived models over weaker, assumed
models, such as the Hamming weight.

Figure 4 juxtaposes the correlation traces produced by
the Hamming weight prediction of the leakage associ-
ated with the first round output as the M0 performs AES
(top), and by the ELMO prediction corresponding to the
same intermediate being loaded into the register (mid-
dle). It can be clearly seen that the ELMO model gen-
erates larger peaks, and more of them. The bottom of
Figure 4 shows, for comparison, the peaks which are ex-
hibited when the model predictions are correlated with
an equivalent set of ELMO-emulated traces. These in-
dicate the same leakage points as displayed in the mea-
sured traces, with the advantage of enhanced definition
thanks to the lack of (data-independent) noise in the sim-
ulations. It thus emerges that Hamming weight-based
simulations do not give a full picture of the true leakage
of an implementation on an M0, and should not be relied
upon for pre-empting data sensitivities. The same picture
emerges for the other instructions but we do not include
an exhaustive analysis for the sake of brevity. In conclu-
sion, our models represent a marked improvement over
simply using the Hamming weight.

6.3 Evaluating Models via Leakage Detec-
tion

Further to the capability of our models to improve cor-
relation analysis, we now show that they can also be ap-
plied to the task of (automated) leakage detection on as-
sembly implementations. They can thereby be used to
spot ‘subtle’ leaks – that is, leaks that would be difficult
for non-specialist software engineers to understand and
pinpoint.

To aid readability we briefly overview the leakage
detection procedures proposed by Goodwill et al. [10].
These are based on classical statistical hypothesis tests,
and can be categorised as specific or non-specific. Spe-
cific tests divide the traces into two subsets based on
some known intermediate value such as an output bit of
an S-box or the equality (or otherwise) of a round output
byte to a particular value. The non-specific ‘fixed-versus-
random’ test acquires traces associated with a particular
fixed data input and compares them against traces asso-
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Figure 4: Correlation traces for ELMO-predicted inter-
mediate values (top) and Hamming weight model pre-
dictions (middle) in 500 real M0 traces; correlation trace
for ELMO-predicted intermediate values in the equiva-
lent set of ELMO-emulated traces (bottom).

ciated with random inputs. In all cases the Welch’s two-
sample t-test for equality of means is then performed;
results that are larger than a defined threshold, which we
indicate via a dotted line in our figures, are taken as evi-
dence for a leak.

6.3.1 Detecting ‘Subtle’ Leaks

We now choose a code sequence relating to a suppos-
edly protected AES operation. The code sequence im-
plements a standard countermeasure called masking [1].
Masking essentially distributes all intermediate vari-
ables into shares which are statistically independent, but
whose composition (typically by way of exclusive-or) re-
sults in the (unmasked) variables. Consequently, stan-
dard DPA attacks [18] no longer succeed. The ease of
implementation in software and ability to provide some
sort of proof of leakage resilience has made masking a
popular side channel attack countermeasure, on the re-
ceiving end of considerable attention from academia and
industry alike. However, it is also well-known that im-
plementations of masking schemes can produce subtle
unanticipated leakages [17].

We faithfully implemented a masking scheme for AES
(as described in [17]) in Thumb assembly to avoid the
potential introduction of masking flaws by the compiler
(from C to assembly). The code sequence, which we
will analyse and discuss, relates to an operation called
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ShiftRows which takes place as part of the AES round
function. In a masked implementation, this results in a
masked row (i.e. which would typically be stored within
a register) being rotated and then written back into mem-
ory. Table 1 shows the assembly code for ShiftRows. An
experienced and side-channel aware implementer who
has detailed leakage information about the M0 would
now be able to spot a problem with this code: because
the ror instruction also leaks a function of the Hamming
distance to its predecessor, there could be problem if the
prior instruction is protected by the same mask. Clearly
an inexperienced implementer, or somebody who does
not have the necessary profiling information, would not
be able to make this inference.

We now show that ELMO traces (for this same code
sequence) can be used for the purposes of (pre-emptive)
leakage detection. Since we do not expect any specific,
simple leaks to be detectable under masking, we con-
figured a ‘fixed-versus-random’ test to check instead for
arbitrary leaks. Figure 5 shows that the analysis of our
model-simulated traces indicates the presence of leaks
in several instructions (see also Tab. 1 where they are
colour-coded in red). These leaks are precisely due to the
ror leakage properties that we discussed in the previous
paragraph. The figure shows that all real-measurement
leaks can be identified from the simulations, with the
exception of some lingering leakage in the cycles after
the final ldr. We believe this results from the fact that
our models are constructed at instruction level rather than
clock-cycle level—so the leakage arising from a particu-
lar instruction is tied to the cycle in which it is performed.
Whilst this degrades the visual similarity of our simula-
tions, it has the big advantage that we can easily track
back to the ‘offending’ instruction.

In short, our grey box approach to modelling side-
channel leakage proves highly successful at capturing
and replicating potentially vulnerable data-dependency
in arbitrary sequences of assembly code.

Cycle Address Machine Assembly Code
No. Code
1-2 0x08000206 0x684C ldr r4,[r1,#0x4]
3 0x08000208 0x41EC ror r4,r5
4-5 0x0800020A 0x604C str r4,[r1,#0x4]
6-7 0x0800020C 0x688C ldr r4,[r1,#0x8]
8 0x0800020E 0x41F4 ror r4,r6
9-10 0x08000210 0x608C str r4,[r1,#0x8]
11-12 0x08000212 0x68CC ldr r4,[r1,#0xC
13 0x08000214 0x41FC ror r4,r7
14-15 0x08000216 0x60CC str r4,[r1,#0xC]

Table 1: Thumb assembly implementation of ShiftRows
showing (colour-coded in red) leaky instructions as indi-
cated by the model-simulated power consumption.
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Figure 5: Fixed vs random t-tests against the (simu-
lated and real) power consumption of masked ShiftRows.
(Dotted lines indicate the±4.5 threshold for t-test signif-
icance).

7 Conclusion

We have shown how to combine a ‘grey box’ view of
a cryptographic device with well-understood statistical
techniques for model construction and evaluation in or-
der to profile and simulate instruction-level side-channel
leakage traces. Our methodology enables informed and
statistically-testable decisions between candidate predic-
tor variables, as well as empirically-verified clustering of
like instructions. In this way, redundant complexity can
be removed to increase the scope for additional explana-
tory complexity in our models. The procedure is appro-
priate for use with different devices and side-channels,
and is self-equipped with the capability to identify sce-
narios where the measurements in question contain lit-
tle of interest (i.e. minimal data-dependency). In addi-
tion to the valuable insights this methodology provides
into leakage behaviours, which are of immediate interest
to the side channel experts, it has considerable practi-
cal application via the integration of our models into a
side-channel simulator (ELMO). We are thereby able to
produce leakage traces for arbitrary sequences of code
which demonstrably exhibit the same vulnerabilities as
the same code sequences running on a real device. This
capability suggests a variety of highly beneficial possi-
ble uses, such as the automated detection of leakages in
the software development stage and the automated inser-
tion (and testing) of countermeasures, as well as hugely
promising prospects for optimisation with respect to pro-
tection level and energy efficiency.
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9 Availability

Our trace emulator tool (ELMO) can be downloaded
from GitHub: https://github.com/bristol-sca/

ELMO.
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CHES 2002, volume 2523 of LNCS, pages 51–62.
Springer Berlin / Heidelberg, 2003.

[4] O. Choudary and M. Kuhn. Efficient Stochas-
tic Methods: Profiled Attacks Beyond 8 Bits. In
CARDIS 2014, volume 8968 of Lecture Notes in
Computer Science, pages 85–103. Springer, 2014.

[5] O. Choudary and M. Kuhn. Template Attacks on
Different Devices. In COSADE 2014, volume 8622
of LNCS, pages 179–198. Springer Berlin Heidel-
berg, 2014.

[6] N. Debande, M. Berthier, Y. Bocktaels, and T.-H.
Le. Profiled model based power simulator for side
channel evaluation. Cryptology ePrint Archive, Re-
port 2012/703, 2012.

[7] J. den Hartog, J. Verschuren, E. P. de Vink,
J. de Vos, and W. Wiersma. PINPAS: A tool for
power analysis of smartcards. In International Con-
ference on Information Security (SEC2003), vol-
ume 250 of IFIP Conference Proceedings, pages
453–457. Kluwer, 2003.

[8] F. Durvaux, F.-X. Standaert, and N. Veyrat-
Charvillon. How to Certify the Leakage of a Chip?
In P. Q. Nguyen and E. Oswald, editors, Advances
in Cryptology – EUROCRYPT 2014, pages 459–
476, Berlin, Heidelberg, 2014. Springer Berlin Hei-
delberg.

[9] S. Furber. ARM System-on-Chip Architecture. Ad-
dison Wesley, 2000.

[10] G. Goodwill, J. J. B. Jun, and P. Rohatgi. A testing
methodology for side channel resistance validation.
NIST non-invasive attack testing workshop, 2008.

[11] N. Hanley, M. O’Neill, M. Tunstall, and W. P. Mar-
nane. Empirical evaluation of multi-device profil-
ing side-channel attacks. In Workshop on Signal
Processing Systems (SiPS) 2014, pages 226–231.
IEEE, 2014.

[12] T. Hastie, R. Tibshirani, and J. Friedman. The Ele-
ments of Statistical Learning: Data Mining, Infer-
ence, and Prediction (Second Edition). Springer-
Verlag, New York, 2009.

[13] A. Heuser, W. Schindler, and M. Stöttinger. Reveal-
ing side-channel issues of complex circuits by en-
hanced leakage models. In Design, Automation and
Test in Europe (DATE 2012), pages 1179–1184,
2012.

[14] A. Heuser and M. Zohner. Intelligent Machine
Homicide. In W. Schindler and S. Huss, editors,
COSADE 2012, volume 7275 of LNCS, pages 249–
264. Springer Berlin Heidelberg, 2012.

[15] R. R. Hocking. The Analysis and Selection of Vari-
ables in Linear Regression. Biometrics, 32(1):1–49,
1976.

[16] A. Langley. ctgrind: Checking that functions are
constant time with Valgrind. https://github.

com/agl/ctgrind, 2010.

[17] S. Mangard, E. Oswald, and T. Popp. Power Anal-
ysis Attacks: Revealing the Secrets of Smart Cards.
Springer, 2007.

[18] S. Mangard, E. Oswald, and F.-X. Standaert. One
for All – All for One: Unifying Standard DPA
Attacks. IET Information Security, 5(2):100–110,
2011.

[19] T. Martin. The Designer’s Guide to the Cortex-M
Processor Family: A Tutorial Approach. Newnes,
2013.

[20] D. P. Montminy, R. O. Baldwin, M. A. Temple, and
E. D. Laspe. Improving cross-device attacks using
zero-mean unit-variance normalization. J. Crypto-
graphic Engineering, 3(2):99–110, 2013.

[21] M. Renauld, F.-X. Standaert, N. Veyrat-Charvillon,
D. Kamel, and D. Flandre. A Formal Study of
Power Variability Issues and Side-Channel Attacks

212    26th USENIX Security Symposium USENIX Association



for Nanoscale Devices. In K. G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages
109–128. Springer, 2011.

[22] P. J. Rousseeuw. Silhouettes: A graphical aid to
the interpretation and validation of cluster analysis.
Journal of Computational and Applied Mathemat-
ics, 20:53–65, 1987.

[23] W. Schindler, K. Lemke, and C. Paar. A Stochastic
Model for Differential Side Channel Cryptanalysis.
In J. Rao and B. Sunar, editors, CHES 2005, vol-
ume 3659 of LNCS, pages 30–46. Springer Berlin /
Heidelberg, 2005.

[24] ST Microelectronics. Reference manual:
STM32F0x1/STM32F0x2/STM32F0x8 advanced
ARM-based 32-bit MCUs, 7 2015. Rev 8.

[25] ST Microelectronics. STM32F405/415,
STM32F407/417, STM32F427/437 and
STM32F429/439 advanced ARM-based 32-bit
MCUs, 9 2016. Rev 13.

[26] C. Thuillet, P. Andouard, and O. Ly. A smart card
power analysis simulator. In Proceedings of the
12th IEEE International Conference on Computa-
tional Science and Engineering, CSE 2009, pages
847–852. IEEE Computer Society, 2009.

[27] V. Tiwari, S. Malik, A. Wolfe, and M. T.-C. Lee.
Instruction level power analysis and optimization
of software. VLSI Signal Processing, 13(2-3):223–
238, 1996.

[28] N. Veshchikov. SILK: high level of abstraction
leakage simulator for side channel analysis. In
Proceedings of the 4th Program Protection and
Reverse Engineering Workshop, PPREW@ACSAC
2014, pages 3:1–3:11. ACM, 2014.

[29] C. Whitnall and E. Oswald. Profiling DPA: Efficacy
and Efficiency Trade-Offs. In CHES 2013, volume
8086, pages 37–54. Springer, 2013.

[30] C. Whitnall, E. Oswald, and F.-X. Standaert. The
Myth of Generic DPA...and the Magic of Learn-
ing. In J. Benaloh, editor, CT-RSA, volume 8366
of LNCS, pages 183–205. Springer, 2014.

A Supplementary Tables and Figures

Feature Cortex M0 Cortex M4
Architecture Von-Newman Harvard
Word size 32 bit 32 bit
Multiplier Single cycle Single cycle
Instruction set Thumb (complete) Thumb (complete)

Thumb-2 (some) Thumb-2 (complete)
Additional DSP and FPU

Barrel shift instructions No Yes
Total instructions 56 137; Optional 32 for FPU

Table 2: Comparison between Cortex-M0 and Cortex-
M4 microprocessors. Information taken from [24] [25]
[19].
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clustering of the M0 (left) and M4 (right instructions ac-
cording to the fitted leakage models.
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adds adds ands cmp cmp eors ldr ldrb ldrh lsls lsrs

#imm #imm

R-squared 0.276 0.289 0.253 0.227 0.260 0.202 0.147 0.107 0.187 0.296 0.292

F-
st

at
is

tic

Operand 1 19.36 6.09 5.20 15.60 7.32 4.29 0.93 0.82 1.53 32.88 32.70
Operand 2 10.23 -0.00 7.25 4.70 0.00 3.92 22.55 14.59 30.78 7.22 5.18
Transition 1 23.35 29.52 30.40 20.25 24.12 19.35 0.93 1.18 1.40 20.18 18.88
Transition 2 5.20 24.11 9.11 3.76 20.95 10.66 1.22 1.43 0.67 1.92 2.96
Combined 14.51 15.44 12.89 11.19 13.40 9.63 6.55 4.54 8.78 15.98 15.69

movs movs muls orrs rors str strb strh subs subs

#imm #imm

R-squared 0.255 0.455 0.278 0.214 0.315 0.061 0.075 0.067 0.237 0.271

F-
st

at
is

tic

Operand 1 3.18 8.80 32.68 3.17 24.02 1.24 0.72 1.12 13.78 5.38
Operand 2 3.93 -0.00 20.93 3.52 20.28 4.99 7.36 5.18 3.45 0.00
Transition 1 22.83 53.03 2.25 15.44 23.60 1.06 1.29 1.21 24.07 27.96
Transition 2 20.71 63.83 1.05 17.25 1.90 2.46 2.66 3.55 4.68 23.53
Combined 13.04 31.71 14.68 10.34 17.50 2.46 3.10 2.73 11.82 14.16

Table 3: F-tests for significant joint data effects in the power consumption of the M0; tests which fail to reject at the
5% level are shaded grey. Critical values shown in brackets in the row headings. Degrees of freedom for the F-tests
are (128,4871) for the combined test, (32,4871) for the rest.

adds adds ands cmp cmp eors ldr ldrb ldrh lsls lsrs

#imm #imm

R-squared 0.048 0.052 0.049 0.050 0.086 0.051 0.148 0.135 0.124 0.047 0.055

F-
st

at
is

tic

Operand 1 1.58 3.82 1.72 2.16 10.96 3.80 1.13 1.04 1.11 0.76 1.09
Operand 2 3.98 -0.00 3.92 3.49 0.00 2.63 22.97 20.18 18.00 4.59 6.09
Transition 1 1.33 0.63 1.25 0.73 0.81 1.02 0.92 0.90 0.97 0.70 0.51
Transition 2 0.67 4.07 0.73 1.47 2.25 0.87 0.91 0.67 0.87 1.11 1.07
Combined 1.94 2.11 1.97 1.98 3.60 2.06 6.60 5.92 5.41 1.88 2.20

movs movs muls orrs rors str strb strh subs subs

#imm #imm

R-squared 0.029 0.063 0.038 0.038 0.117 0.546 0.814 0.691 0.046 0.068

F-
st

at
is

tic

Operand 1 1.09 0.76 1.30 2.59 15.85 1.13 1.09 1.05 2.62 7.06
Operand 2 1.01 0.00 1.87 1.88 2.00 177.01 649.37 329.94 2.47 0.00
Transition 1 1.13 0.88 1.58 0.77 1.13 0.75 1.01 0.98 0.68 1.57
Transition 2 1.35 8.29 1.16 0.68 1.06 0.87 1.14 0.72 1.32 2.52
Combined 1.15 2.54 1.48 1.51 5.05 45.73 166.32 85.10 1.84 2.80

Table 4: F-tests for significant joint data effects in the EM radiation of the M4; tests which fail to reject at the 5%
level are shaded grey. Critical values shown in brackets in the row headings. Degrees of freedom for the F-tests are
(128,4871) for the combined test, (32,4871) for the rest.
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CT Intuitive group Instructions (in
1 2 3 4 5 descending order of SI)

0.7

2 0 0 0 0 cmp subs

2 0 0 0 0 cmpimm subsimm
2 0 0 0 0 orrs movs

1 0 0 0 0 addsimm
1 0 0 0 0 eors

1 0 0 0 0 ands

1 0 0 0 0 movsimm
1 0 0 0 0 adds

0 2 0 0 0 lsls lsrs

0 1 0 0 0 rors

0 0 2 0 0 strh strb

0 0 1 0 0 str

0 0 0 2 0 ldrh ldr

0 0 0 1 0 ldrb

0 0 0 0 1 muls

0.8

3 0 0 0 0 subimm cmpimm addsimm
3 0 0 0 0 movs eors orrs

2 0 0 0 0 cmp subs

1 0 0 0 0 ands

1 0 0 0 0 movsimm
1 0 0 0 0 adds

0 3 0 0 0 lsls lsrs rors

0 0 3 0 0 strb strh str

0 0 0 3 0 ldr ldrh ldrb

0 0 0 0 1 muls

0.9

11 0 0 0 0 addsimm movsimm subsimm movs

cmpimm ands orrs eors subs

cmp adds

0 3 0 0 0 lsls lsrs rors

0 0 3 0 0 strb strh str

0 0 0 3 0 ldr ldrh ldrb

0 0 0 0 1 muls

1.0

11 0 0 0 0 adds addsimm ands cmp cmpimm
eors movs movsimm orrs subs

subsimm
0 3 0 0 0 lsls lsrs rors

0 0 3 0 0 str strb strh

0 0 0 3 0 ldr ldrb ldrh

0 0 0 0 1 muls

1.1

11 3 0 0 0 adds addsimm ands cmp cmpimm
eors lsls lsrs movs movsimm
orrs rors subs subsimm

0 0 3 0 0 str strb strh

0 0 0 3 0 ldr ldrb ldrh

0 0 0 0 1 muls

1.2 11 3 3 3 1 (all; SI undefined)

Table 5: M0: Found clusters compared with intuitive
grouping (1 = ALU, 2 = shifts, 3 = stores, 4 = loads, 5 =
multiply) as the consistency threshold (CT) increases.

CT Intuitive group Instructions (in
1 2 3 4 5 descending order of SI)

0.7

2 0 0 0 0 cmp cmpimm
2 0 0 0 0 ands orrs

1 0 0 0 0 movsimm
1 0 0 0 0 subs

1 0 0 0 0 eors

1 0 0 0 0 addsimm
1 0 0 0 0 adds

1 0 0 0 0 movs

1 0 0 0 0 subsimm
0 2 0 0 0 rors lsrs

0 1 0 0 0 lsls

0 0 2 0 0 strh str

0 0 1 0 0 strb

0 0 0 2 0 ldrb ldrh

0 0 0 1 0 ldr

0 0 0 0 1 muls

5 0 0 0 0 cmp cmpimm subs movsimm eors

0.8

4 0 0 0 0 orrs ands addsimm adds

1 0 0 0 0 movs

1 0 0 0 0 subsimm

0.9

0 3 0 0 0 lsrs rors lsls

0 0 2 0 0 strh str

0 0 1 0 0 strb

0 0 0 3 0 ldr ldrh ldrb

0 0 0 0 1 muls

1.0 11 3 3 3 1 (all; SI undefined)

Table 6: M4: Found clusters compared with intuitive
grouping (1 = ALU, 2 = shifts, 3 = stores, 4 = loads, 5 =
multiply) as the consistency threshold (CT) increases.

Interaction effect F-stat Degrees of Crit.
freedom value

All registers 1.207 (896, 39025) 1.080
Source registers 1.357 (448, 39025) 1.113
Destination registers 1.034 (448, 39025) 1.113
Source register = 0 1.398 (64, 39409) 1.308
Source register = 1 1.689 (64, 39409) 1.308
Source register = 2 1.300 (64, 39409) 1.308
Source register = 3 1.151 (64, 39409) 1.308
Source register = 4 1.496 (64, 39409) 1.308
Source register = 5 1.025 (64, 39409) 1.308
Source register = 6 1.838 (64, 39409) 1.308
Source register = 7 1.098 (64, 39409) 1.308

Table 7: F-statistics for register interaction effects (tests
which fail to reject at the 5% level are shaded grey).

USENIX Association 26th USENIX Security Symposium    215



eors lsls str ldr muls

R2

Full model 0.936 0.902 0.780 0.953 0.874
Ip only model 0.550 0.579 0.572 0.629 0.524
Is only model 0.372 0.294 0.194 0.316 0.292
D only model 0.014 0.031 0.016 0.012 0.057

F

DxIp, DxIs (32) 18.5 20.8 5.5 6.2 23.7
DxIp (16) 23.4 26.7 3.6 5.9 30.5
DxIs (16) 13.6 14.8 7.4 6.6 16.9
O1xIp, O1xIs (8) 8.9 5.3 0.4 2.6 4.4
O2xIp, O2xIs (8) 33.0 25.4 3.3 8.6 11.6
T1xIp, T1xIs (8) 43.5 25.4 11.9 3.2 15.9
T2xIp, T2xIs (8) 8.9 4.8 0.5 2.1 23.5

Table 8: R-squareds for subsets of the M0 instruction
models, and F-statistics for the marginal contributions of
the interaction terms. df1 is shown in parenthesis; df2 is
24,831 in all cases. Tests which fail to reject at the 5%
level are shaded grey.

Tested interactions eors lsls str ldr muls

Adjacent bits 1.026 3.877 1.075 0.885 13.390
Adjacent bit flips 0.977 0.603 1.089 1.019 1.047
Non-adjacent bits 1.068 1.295 0.930 0.969 1.372

Table 9: F-tests for significant pairwise bit interaction ef-
fects (adjacent and non-adjacent) in the power consump-
tion of the M0; tests which fail to reject at the 5% level
are shaded grey. Degrees of freedom are (62,24769),
(62,24707) and (930,23839) respectively.
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Abstract
Cache-based side-channel attacks are a serious problem
in multi-tenant environments, for example, modern cloud
data centers. We address this problem with Cloak, a
new technique that uses hardware transactional mem-
ory to prevent adversarial observation of cache misses
on sensitive code and data. We show that Cloak pro-
vides strong protection against all known cache-based
side-channel attacks with low performance overhead. We
demonstrate the efficacy of our approach by retrofitting
vulnerable code with Cloak and experimentally confirm-
ing immunity against state-of-the-art attacks. We also
show that by applying Cloak to code running inside In-
tel SGX enclaves we can effectively block information
leakage through cache side channels from enclaves, thus
addressing one of the main weaknesses of SGX.

1 Introduction

Hardware-enforced isolation of virtual machines and
containers is a pillar of modern cloud computing. While
the hardware provides isolation at a logical level, physi-
cal resources such as caches are still shared amongst iso-
lated domains, to support efficient multiplexing of work-
loads. This enables different forms of side-channel at-
tacks across isolation boundaries. Particularly worri-
some are cache-based attacks, which have been shown
to be potent enough to allow for the extraction of sensi-
tive information in realistic scenarios, e.g., between co-
located cloud tenants [56].

In the past 20 years cache attacks have evolved from
theoretical attacks [38] on implementations of crypto-
graphic algorithms [4] to highly practical generic attack
primitives [43,62]. Today, attacks can be performed in an
automated fashion on a wide range of algorithms [24].

Many countermeasures have been proposed to miti-
gate cache side-channel attacks. Most of these coun-
termeasures either try to eliminate resource sharing [12,
18, 42, 52, 58, 68, 69], or they try to mitigate attacks
after detecting them [9, 53, 65]. However, it is diffi-
cult to identify all possible leakage through shared re-

∗Work done during internship at Microsoft Research; affiliated with
Graz University of Technology.

†Work done during internship at Microsoft Research; affiliated with
University of California, Irvine.

sources [34,55] and eliminating sharing always comes at
the cost of efficiency. Similarly, the detection of cache
side-channel attacks is not always sufficient, as recently
demonstrated attacks may, for example, recover the en-
tire secret after a single run of a vulnerable cryptographic
algorithm [17, 43, 62]. Furthermore, attacks on singular
sensitive events are in general difficult to detect, as these
can operate at low attack frequencies [23].

In this paper, we present Cloak, a new efficient defen-
sive approach against cache side-channel attacks that al-
lows resource sharing. At its core, our approach prevents
cache misses on sensitive code and data. This effectively
conceals cache access-patterns from attackers and keeps
the performance impact low. We ensure permanent cache
residency of sensitive code and data using widely avail-
able hardware transactional memory (HTM), which was
originally designed for high-performance concurrency.

HTM allows potentially conflicting threads to execute
transactions optimistically in parallel: for the duration
of a transaction, a thread works on a private memory
snapshot. In the event of conflicting concurrent mem-
ory accesses, the transaction aborts and all correspond-
ing changes are rolled back. Otherwise, changes become
visible atomically when the transaction completes. Typi-
cally, HTM implementations use the CPU caches to keep
track of transactional changes. Thus, current implemen-
tations like Intel TSX require that all accessed memory
remains in the CPU caches for the duration of a transac-
tion. Hence, transactions abort not only on real conflicts
but also whenever transactional memory is evicted pre-
maturely to DRAM. This behavior makes HTM a pow-
erful tool to mitigate cache-based side channels.

The core idea of Cloak is to execute leaky algorithms
in HTM-backed transactions while ensuring that all sen-
sitive data and code reside in transactional memory for
the duration of the execution. If a transaction suc-
ceeds, secret-dependent control flows and data accesses
are guaranteed to stay within the CPU caches. Other-
wise, the corresponding transaction would abort. As we
show and discuss, this simple property can greatly raise
the bar for contemporary cache side-channel attacks or
even prevent them completely. The Cloak approach can
be implemented on top of any HTM that provides the
aforementioned basic properties. Hence, compared to
other approaches [11, 42, 69] that aim to provide isola-
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tion, Cloak does not require any changes to the operating
system (OS) or kernel. In this paper, we focus on Intel
TSX as HTM implementation for Cloak. This choice is
natural, as TSX is available in many recent professional
and consumer Intel CPUs. Moreover, we show that we
can design a highly secure execution environment by us-
ing Cloak inside Intel SGX enclaves. SGX enclaves pro-
vide a secure execution environment that aims to protect
against hardware attackers and attacks from malicious
OSs. However, code inside SGX enclaves is as much vul-
nerable to cache attacks as normal code [7,20,46,57] and,
when running in a malicious OS, is prone to other mem-
ory access-based leakage including page faults [10, 61].
We demonstrate and discuss how Cloak can reliably de-
fend against such side-channel attacks on enclave code.

We provide a detailed evaluation of Intel TSX as avail-
able in recent CPUs and investigate how different im-
plementation specifics in TSX lead to practical chal-
lenges which we then overcome. For a range of proof-
of-concept applications, we show that Cloak’s runtime
overhead is small—between −0.8% and +1.2% for low-
memory tasks and up to +248% for memory-intense
tasks in SGX—while state-of-the-art cache attacks are
effectively mitigated. Finally, we also discuss limitations
of Intel TSX, specifically negative side effects of the ag-
gressive and sparsely documented hardware prefetcher.

The key contributions of this work are:

• We describe Cloak, a universal HTM-based ap-
proach for the effective mitigation of cache attacks.

• We investigate the peculiarities of Intel TSX and
show how Cloak can be implemented securely and
efficiently on top of it.

• We propose variants of Cloak as a countermeasure
against cache attacks in realistic environments.

• We discuss how SGX and TSX in concert can pro-
vide very high security in hostile environments.

Outline. The remainder of this paper is organized
as follows. In Section 2, we provide background on
software-based side-channel attacks and hardware trans-
actional memory. In Section 3, we define the attacker
model. In Section 4, we describe the fundamental idea of
Cloak. In Section 5, we show how Cloak can be instan-
tiated with Intel TSX. In Section 6, we provide an eval-
uation of Cloak on state-of-the-art attacks in local and
cloud environments. In Section 7, we show how Cloak
makes SGX a highly secure execution environment. In
Section 8, we discuss limitations of Intel TSX with re-
spect to Cloak. In Section 9, we discuss related work.
Finally, we provide conclusions in Section 10.

2 Background

We now provide background on cache side-channel at-
tacks and hardware transactional memory.

2.1 Caches

Modern CPUs have a hierarchy of caches that store and
efficiently retrieve frequently used instructions and data,
thereby, often avoiding the latency of main memory ac-
cesses. The first-level cache is the usually the small-
est and fastest cache, limited to several KB. It is typi-
cally a private cache which cannot be accessed by other
cores. The last-level cache (LLC), is typically unified
and shared among all cores. Its size is usually limited
to several MBs. On modern architectures, the LLC is
typically inclusive to the lower-level caches like the L1
caches. That is, a cache line can only be in an L1 cache
if it is in the LLC as well. Each cache is organized in
cache sets and each cache set consists of multiple cache
lines or cache ways. Since more addresses map to the
same cache set than there are ways, the CPU employs
a cache replacement policy to decide which way to re-
place. Whether data is cached or not is visible through
the memory access latency. This is a root cause of the
side channel introduced by caches.

2.2 Cache Side-Channel Attacks

Cache attacks have been studied for two decades with
an initial focus on cryptographic algorithms [4, 38, 51].
More recently, cache attacks have been demonstrated in
realistic cross-core scenarios that can deduce informa-
tion about single memory accesses performed in other
programs (i.e., access-driven attacks). We distinguish be-
tween the following access-driven cache attacks: Evict+
Time, Prime+Probe, Flush+Reload. While most attacks
directly apply one of these techniques, there are many
variations to match specific capabilities of the hardware
and software environment.

In Evict+Time, the victim computation is invoked re-
peatedly by the attacker. In each run, the attacker se-
lectively evicts a cache set and measures the victim’s
execution time. If the eviction of a cache set results in
longer execution time, the attacker learns that the victim
likely accessed it. Evict+Time attacks have been exten-
sively studied on different cache levels and exploited in
various scenarios [51, 60]. Similarly, in Prime+Probe,
the attacker fills a cache set with their own lines. After
waiting for a certain period, the attacker measures if all
their lines are still cached. The attacker learns whether
another process—possibly the victim—accessed the se-
lected cache set in the meantime. While the first Prime+
Probe attacks targeted the L1 cache [51,54], more recent
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attacks have also been demonstrated on the LLC [43,
50, 56]. Flush+Reload [62] is a powerful but also con-
strained technique; it requires attacker and victim to
share memory pages. The attacker selectively flushes
a shared line from the cache and, after some waiting,
checks if it was brought back through the victim’s ex-
ecution. Flush+Reload attacks have been studied exten-
sively in different variations [2, 41, 66]. Apart from the
CPU caches, the shared nature of other system resources
has also been exploited in side-channel attacks. This
includes different parts of the CPU’s branch-prediction
facility [1, 15, 40], the DRAM row buffer [5, 55], the
page-translation caches [21, 28, 36] and other micro-
architectural elements [14].

This paper focuses on mitigating Prime+Probe and
Flush+Reload. However, Cloak conceptually also
thwarts other memory-based side-channel attacks such
as those that exploit the shared nature of the DRAM.

2.3 Hardware Transactional Memory
HTM allows for the efficient implementation of paral-
lel algorithms [27]. It is commonly used to elide ex-
pensive software synchronization mechanisms [16, 63].
Informally, for a CPU thread executing a hardware trans-
action, all other threads appear to be halted; whereas,
from the outside, a transaction appears as an atomic oper-
ation. A transaction fails if the CPU cannot provide this
atomicity due to resource limitations or conflicting con-
current memory accesses. In this case, all transactional
changes need to be rolled back. To be able to detect con-
flicts and revert transactions, the CPU needs to keep track
of transactional memory accesses. Therefore, transac-
tional memory is typically divided into a read set and a
write set. A transaction’s read set contains all read mem-
ory locations. Concurrent read accesses by other threads
to the read set are generally allowed; however, concur-
rent writes are problematic and—depending on the actual
HTM implementation and circumstances—likely lead to
transactional aborts. Further, any concurrent accesses
to the write set necessarily lead to a transactional abort.
Figure 1 visualizes this exemplarily for a simple transac-
tion with one conflicting concurrent thread.

Commercial Implementations. Implementations of
HTM can be found in different commercial CPUs,
among others, in many recent professional and consumer
Intel CPUs. Nakaike et al. [48] investigated four com-
mercial HTM implementations from Intel and other ven-
dors. They found that all processors provide comparable
functionality to begin, end, and abort transactions and
that all implement HTM within the existing CPU cache
hierarchy. The reason for this is that only caches can be
held in a consistent state by the CPU itself. If data is

Thread 1 Thread 2

Begin transaction

Read 0x20

Write 0x40

Read 0x20

Write 0x40
write conflict

undo

End transaction

Figure 1: HTM ensures that no concurrent modifications
influence the transaction, either by preserving the old
value or by aborting and reverting the transaction.

evicted to DRAM, transactions necessarily abort in these
implementations. Nakaike et al. [48] found that all four
implementations detected access conflicts at cache-line
granularity and that failed transactions were reverted by
invalidating the cache lines of the corresponding write
sets. Depending on the implementation, read and write
set can have different sizes, and set sizes range from mul-
tiple KB to multiple MB of HTM space.

Due to HTM usually being implemented within
the CPU cache hierarchy, HTM has been proposed
as a means for optimizing cache maintenance and
for performing security-critical on-chip computations:
Zacharopoulos [64] uses HTM combined with prefetch-
ing to reduce the system energy consumption. Guan et al.
[25] designed a system that uses HTM to keep RSA pri-
vate keys encrypted in memory and only decrypt them
temporarily inside transactions. Jang et al. [36] used
hardware transaction aborts upon page faults to defeat
kernel address-space layout randomization.

3 Attacker Model

We consider multi-tenant environments where tenants do
not trust each other, including local and cloud environ-
ments, where malicious tenants can use shared resources
to extract information about other tenants. For example,
they can influence and measure the state of caches via
the attacks described in Section 2.2. In particular, an at-
tacker can obtain a high-resolution trace of its own mem-
ory access timings, which are influenced by operations of
the victim process. More abstractly, the attacker can ob-
tain a trace where at each time frame the attacker learns
whether the victim has accessed a particular memory lo-
cation. We consider the above attacker in three realistic
environments which give her different capabilities:

Cloud We assume that the processor, the OS and the
hypervisor are trusted in this scenario while other
cloud tenants are not. This enables the attacker to
launch cross-VM Prime+Probe attacks.
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Local This scenario is similar to the Cloud scenario, but
we assume the machine is not hosted in a cloud en-
vironment. Therefore, the tenants share the machine
in a traditional time-sharing fashion and the OS is
trusted to provide isolation between tenants. Fur-
thermore, we assume that there are shared libraries
between the victim and the attacker, since this is a
common optimization performed by OSs. This en-
ables the attacker to launch Flush+Reload attacks,
in addition to Prime+Probe attacks.

SGX In this scenario, the processor is trusted but the ad-
versary has full control over the OS, the hypervisor,
and all other code running on the system, except
the victim’s code. This scenario models an SGX-
enabled environment, where the victim’s code runs
inside an enclave. While the attacker has more con-
trol over the software running on the machine, the
SGX protections prevent sharing of memory pages
between the enclave and untrusted processes, which
renders Flush+Reload attacks ineffective in this set-
ting.

All other side-channels, including power analysis, and
channels based on shared microarchitectural elements
other than caches are outside our scope.

4 Hardware Transactional Memory as a
Side-Channel Countermeasure

The foundation of all cache side-channel attacks are the
timing differences between cache hits and misses, which
an attacker tries to measure. The central idea behind
Cloak is to instrument HTM to prevent any cache misses
on the victim’s sensitive code and data. In Cloak, all
sensitive computation is performed in HTM. Crucially,
in Cloak, all security-critical code and data is determin-
istically preloaded into the caches at the beginning of
a transaction. This way, security-critical memory loca-
tions become part of the read or write set and all sub-
sequent, possibly secret-dependent, accesses are guar-
anteed to be served from the CPU caches. Otherwise,
in case any preloaded code or data is evicted from the
cache, the transaction necessarily aborts and is reverted.
(See Listing 1 for an example that uses the TSX instruc-
tions xbegin and xend to start and end a transaction.)

Given an ideal HTM implementation, Cloak thus pre-
vents that an attacker can obtain a trace that shows
whether the victim has accessed a particular memory lo-
cation. More precisely, in the sense of Cloak, ideal HTM
has the following properties:

R1 Both data and code can be added to a transaction as
transactional memory and thus are included in the
HTM atomicity guarantees.

Listing 1: A vulnerable crypto operation protected by
Cloak instantiated with Intel TSX; the AES encrypt

function makes accesses into lookup_tables that de-
pend on key. Preloading the tables and running the
encryption code within a HTM transaction ensures that
eviction of table entries from LLC will terminate the
code before it may cause a cache miss.
i f ( ( s t a t u s = x b e g i n ( ) ) == XBEGIN STARTED ) {

f o r ( auto p : l o o k u p t a b l e s )
∗ ( v o l a t i l e s i z e t ∗ ) p ;

AES encrypt ( p l a i n t e x t , c i p h e r t e x t , &key ) ;
xend ( ) ;

}

R2 A transaction aborts immediately when any part of
transactional memory leaves the cache hierarchy.

R3 All pending transactional memory accesses are
purged during a transactional abort.

R4 Prefetching decisions outside of transactions are not
influenced by transactional memory accesses.

R1 ensures that all sensitive code and data can be
added to the transactional memory in a deterministic and
leakage-free manner. R2 ensures that any cache line
evictions are detected implicitly by the HTM and the
transaction aborts before any non-cached access is per-
formed. R3 and R4 ensure that there is no leakage after
a transaction has succeeded or aborted.

Unfortunately, commercially available HTM imple-
mentations and specifically Intel TSX do not precisely
provide R1–R4. In the following Section 5 we discuss
how Cloak can be instantiated on commercially available
(and not ideal) HTM, what leakage remains in practice,
and how this can be minimized.

5 Cloak based on Intel TSX

Cloak can be built using an HTM that satisfies R1–R4
established in the previous section. We propose Intel
TSX as an instantiation of HTM for Cloak to mitigate
the cache side channel. In this section, we evaluate
how far Intel TSX meets R1–R4 and devise strategies
to address those cases where it falls short. All experi-
ments we report on in this section were executed on In-
tel Core i7 CPUs of the Skylake generation (i7-6600U,
i7-6700, i7-6700K) with 4MB or 8MB of LLC. The
source code of these experiments will be made available
at http://aka.ms/msr-cloak.
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5.1 Meeting Requirements with Intel TSX
We summarize our findings and then describe the
methodology.

R1 and R2 hold for data. It supports read-only data that
does not exceed the size of the LLC (several MB)
and write data that does not exceed the size of the
L1 cache (several KB);

R1 and R2 hold for code that does not exceed the size
of the LLC;

R3 and R4 hold in the cloud and SGX attacker scenarios
from Section 3, but not in general for local attacker
scenarios.

5.1.1 Requirements 1&2 for Data

Our experiments and previous work [19] find the read set
size to be ultimately constrained by the size of the LLC:
Figure 2 shows the failure rate of a simple TSX transac-
tion depending on the size of the read set. The abort rate
reaches 100% as the read set size approaches the limits
of the LLC (4MB in this case). In a similar experiment,
we observed 100% aborts when the size of data written in
a transaction exceeded the capacity of the L1 data cache
(32 KB per core). This result is also confirmed in In-
tel’s Optimization Reference Manual [30] and in previ-
ous work [19, 44, 64].

Conflicts and Aborts. We always observed aborts
when read or write set cache lines were actively evicted
from the caches by concurrent threads. That is, evictions
of write set cache lines from the L1 cache and read set
cache lines from the LLC are sufficient to cause aborts.
We also confirmed that transactions abort shortly after
cache line evictions: using concurrent clflush instruc-
tions on the read set, we measured abort latencies in the
order of a few hundred cycles (typically with an upper
bound of around 500 cycles). In case varying abort times
should prove to be an issue, the attacker’s ability to mea-
sure them, e.g., via Prime+Probe on the abort handler,
could be thwarted by randomly choosing one out of many
possible abort handlers and rewriting the xbegin instruc-
tion accordingly,1 before starting a transaction.

Tracking of the Read Set. We note that the data struc-
ture that is used to track the read set in the LLC is un-
known. The Intel manual states that “an implementation-
specific second level structure” may be available, which
probabilistically keeps track of the addresses of read-set

1The 16-bit relative offset to a transaction’s abort handler is part of
the xbegin instruction. Hence, for each xbegin instruction, there is a
region of 1 024 cache lines that can contain the abort handler code.
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Figure 2: A TSX transaction over a loop reading an array
of increasing size. The failure rate reveals how much
data can be read in a transaction. Measured on an i7-
6600U with 4 MB LLC.

cache lines that were evicted from the L1 cache. This
structure is possibly an on-chip bloom filter, which tracks
the read-set membership of cache lines in a probabilistic
manner that may give false positives but no false nega-
tives.2 There may exist so far unknown leaks through
this data structure. If this is a concern, all sensitive data
(including read-only data) can be kept in the write set in
L1. However, this limits the working set to the L1 and
also requires all data to be stored in writable memory.

L1 Cache vs. LLC. By adding all data to the write
set, we can make R1 and R2 hold for data with respect
to the L1 cache. This is important in cases where vic-
tim and attacker potentially share the L1 cache through
hyper-threading.3 Shared L1 caches are not a concern in
the cloud setting, where it is usually ensured by the hy-
pervisor that corresponding hyper-threads are not sched-
uled across different tenants. The same can be ensured
by the OS in the local setting. However, in the SGX set-
ting a malicious OS may misuse hyper-threading for an
L1-based attack. To be not constrained to the small L1
in SGX nonetheless, we propose solutions to detect and
prevent such attacks later on in Section 7.2.

We conclude that Intel TSX sufficiently fulfills R1
and R2 for data if the read and write sets are used ap-
propriately.

5.1.2 Requirements 1&2 for Code

We observed that the amount of code that can be exe-
cuted in a transaction seems not to be constrained by the
sizes of the caches. Within a transaction with strictly no
reads and writes we were reliably able to execute more

2In Intel’s Software Development Emulator [29] the read set is
tracked probabilistically using bloom filters.

3Context switches may also allow the attacker to examine the vic-
tim’s L1 cache state “postmortem”. While such attacks may be pos-
sible, they are outside our scope. TSX transactions abort on context
switches.
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Figure 3: A TSX transaction over a nop-sled with in-
creasing length. A second thread waits and then flushes
the first cache line once before the transaction ends. The
failure rate starts at 100% for small transaction sizes. If
the transaction self-evicts the L1 instruction cache line,
e.g., when executing more than 32 KB of instructions,
the transaction succeeds despite of the flush. Measured
on an i7-6600U with 32 KB L1 cache.

than 20 MB of nop instructions or more than 13 MB of
arithmetic instructions (average success rate ˜10%) on a
CPU with 8 MB LLC. This result strongly suggests that
executed code does not become part of the read set and
is in general not explicitly tracked by the CPU.

To still achieve R1 and R2 for code, we attempted to
make code part of the read or write set by accessing it
through load/store operations. This led to mixed results:
even with considerable effort, it does not seem possible
to reliably execute cache lines in the write set without
aborting the transaction.4 In contrast, it is generally pos-
sible to make code part of the read set through explicit
loads. This gives the same benefits and limitations as
using the read set for data.

Code in the L1 Cache. Still, as discussed in the pre-
vious Section 5.1.1, it can be desirable to achieve R1
and R2 for the L1 cache depending on the attack sce-
nario. Fortunately, we discovered undocumented mi-
croarchitectural effects that reliably cause transactional
aborts in case a recently executed cache line is evicted
from the cache hierarchy. Figure 3 shows how the trans-
actional abort rate relates to the amount of code that is
executed inside a transaction. This experiment suggests
that a concurrent (hyper-) thread can cause a transac-
tional abort by evicting a transactional code cache line
currently in the L1 instruction cache. We verified that
this effect exists for direct evictions through the clflush
instruction as well as indirect evictions through cache set
conflicts. However, self-evictions of L1 code cache lines
(that is, when a transactional code cache line is replaced

4In line with our observation, Intel’s documentation [31] states that
“executing self-modifying code transactionally may also cause trans-
actional aborts”.

by another one) do not cause transactional aborts. Hence,
forms of R1 and R2 can also be ensured for code in the
L1 instruction cache without it being part of the write set.

In summary, we can fulfill requirements R1 and R2 by
moving code into the read set or, using undocumented
microarchitectural effects, by limiting the amount of
code to the L1 instruction cache and preloading it via
execution.

5.1.3 Requirements 3&4

As modern processors are highly parallelized, it is diffi-
cult to guarantee that memory fetches outside a transac-
tion are not influenced by memory fetches inside a trans-
action. For precisely timed evictions, the CPU may still
enqueue a fetch in the memory controller, i.e., a race con-
dition. Furthermore, the hardware prefetcher is triggered
if multiple cache misses occur on the same physical page
within a relatively short time. This is known to intro-
duce noise in cache attacks [24,62], but also to introduce
side-channel leakage [6].

In an experiment with shared memory and a cycle-
accurate alignment between attacker and victim, we in-
vestigated the potential leakage of Cloak instantiated
with Intel TSX. To make the observable leakage as strong
as possible, we opted to use Flush+Reload for the at-
tack primitive. We investigated how a delay between
the transaction start and the flush operation and a de-
lay between the flush and the reload operations influ-
ence the probability that an attacker can observe a cache
hit against code or data placed into transactional mem-
ory. The victim in this experiment starts the transaction,
by placing data and code into transactional memory in a
uniform manner (using either reads, writes or execution).
The victim then simulates meaningful program flow, fol-
lowed by an access to one of the sensitive cache lines
and terminating the transaction. The attacker “guesses”
which cache line the victim accessed and probes it. Ide-
ally, the attacker should not be able to distinguish be-
tween correct and wrong guesses.

Figure 4 shows two regions where an attacker could
observe cache hits on a correct guess. The left region
corresponds to the preloading of sensitive code/data at
the beginning of the transaction. As expected, cache hits
in this region were observed to be identical to runs where
the attacker had the wrong guess. On the other hand,
the right region is unique to instances where the attacker
made a correct guess. This region thus corresponds to a
window of around 250 cycles, where an attacker could
potentially obtain side-channel information. We explain
the existence of this window by the fact that Intel did not
design TSX to be a side-channel free primitive, thus R3
and R4 are not guaranteed to hold and a limited amount
of leakage remains. We observed identical high-level re-
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Figure 4: Cache hits observed by a Flush+Reload at-
tacker with the ability to overlap the attack with differ-
ent segments of the victim’s transaction. Cache hits can
be observed both in the region where the victim tries to
prepare its transactional memory, as well as in a small
window around a secret access. The Z axis represents
the success rate of the attacker observing a cache hit.

sults for all forms of preloading (reading, writing, exe-
cuting) and all forms of secret accesses (reading, writing,
executing).

To exploit the leakage we found, the attacker has to
be able to determine whether the CPU reloaded a secret-
dependent memory location. This is only possible if the
attacker shares the memory location with the victim, i.e.,
only in local attacks but not in other scenarios. Further-
more, it is necessary to align execution between attacker
and victim to trigger the eviction in exactly the right cy-
cle range in the transaction. While these properties might
be met in a Flush+Reload attack with fast eviction using
clflush and shared memory, it is rather unlikely that
an attack is possible using Prime+Probe, due to the low
frequency of the attack [22] and the cache replacement
policy. Thus, we conclude that requirements R3 and R4
are likely fulfilled in all scenarios where the attacker can
only perform Prime+Probe, but not Flush+Reload, i.e.,
cloud and SGX scenarios. Furthermore, requirements R3
and R4 are likely to be fulfilled in scenarios where an at-
tacker can perform Flush+Reload, but not align with a
victim on a cycle base nor measure the exact execution
time of a TSX transaction, i.e., the local scenario.

5.2 Memory Preloading

Using right the memory preloading strategy is crucial
for the effectiveness of Cloak when instantiated on top
of TSX. In the following, we describe preloading tech-
niques for various scenarios. The different behavior for
read-only data, writable data, and code, makes it neces-
sary to preload these memory types differently.

5.2.1 Data Preloading

As discussed, exclusively using the write set for preload-
ing has the benefit that sensitive data is guaranteed to
stay within the small L1 cache, which is the most secure
option. To extend the working set beyond L1, sensitive
read-only data can also be kept in the LLC as described
in Section 5.1.1. However, when doing so, special care
has to be taken. For example, naı̈vely preloading a large
(> 32 KB) sequential read set after the write set leads
to assured abortion during preloading, as some write set
cache-lines are inevitably evicted from L1. Reversing
the preloading order, i.e., read set before write set, partly
alleviates this problem, but, depending on the concrete
read set access patterns, one is still likely to suffer from
aborts during execution caused by read/write set conflicts
in the L1 cache. In the worst case, such self-eviction
aborts may leak information.

To prevent such conflicts, in Cloak, we reserve cer-
tain cache sets in L1 entirely for the write set. This is
possible as the L1 cache-set index only depends on the
virtual address, which is known at runtime. For exam-
ple, reserving the L1 cache sets with indexes 0 and 1
gives a conflict-free write set of size 2 · 8 · 64B = 1KB.
For this allocation, it needs to be ensured that the same
64 B cache lines of any 4 KB page are not part of the
read set (see Figure 5 for an illustration). Conversely, the
write set is placed in the same 64 B cache lines in up to
eight different 4 KB pages. (Recall that an L1 cache set
comprises eight ways.) Each reserved L1 cache set thus
blocks 1/64th of the entire virtual memory from being
used in the read set.

While this allocation strategy plays out nicely in
theory, we observed that apparently the CPU’s data
prefetcher [30] often optimistically pulled-in unwanted
cache lines that were conflicting with our write set. This
can be mitigated by ensuring that sequentially accessed
read cache lines are separated by a page boundary from
write cache lines and by adding “safety margins” be-
tween read and write cache lines on the same page.

In general, we observed benefits from performing
preloading similar to recent Prime+Probe attacks [22,
45], where a target address is accessed multiple times
and interleaved with accesses to other addresses. Fur-
ther, we observed that periodic “refreshing” of the write
set, e.g., using the prefetchw instruction, reduced the
chances of write set evictions in longer transactions.

5.2.2 Code Preloading

As described in Section 5.1.2, we preload code into the
read set and optionally into the L1 instruction cache. To
preload it into the read set, we use the same approach as
for data. However, to preload the code into the L1 in-
struction cache we cannot simply execute the function,
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Figure 5: Allocation of read and write sets in memory to
avoid conflicts in the L1 data cache
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Figure 6: Cache lines are augmented with a multi-byte
nop instruction. The nop contains a byte c3 which is the
opcode of retq. By jumping directly to the retq byte,
we preload each cache line into the L1 instruction cache.

as this would have unwanted side effects. Instead, we in-
sert a multi-byte nop instruction into every cache line, as
shown in Figure 6. This nop instruction does not change
the behavior of the code during actual function execution
and only has a negligible effect on execution time. How-
ever, the multi-byte nop instruction allows us to incorpo-
rate a byte c3 which is the opcode of retq. Cloak jumps
to this return instruction, loading the cache line into the
instruction L1 cache but not executing the actual func-
tion. In the preloading phase, we perform a call to each
such retq instruction in order to load the correspond-
ing cache lines into the L1 instruction cache. The retq

instruction immediately returns to the preloading func-
tion. Instead of retq instructions, equivalent jmp reg

instructions can be inserted to avoid touching the stack.

5.2.3 Splitting Transactions

In case a sensitive function has greater capacity require-
ments than those provided by TSX, the function needs
to be split into a series of smaller transactional units.
To prevent leakage, the control flow between these units
and their respective working sets needs to be input-
independent. For example, consider a function f() that
iterates over a fixed-size array, e.g., in order to update
certain elements. By reducing the number of loop itera-
tions in f() and invoking it separately on fixed parts of

the target array, the working set for each individual trans-
action is reduced and chances for transactional aborts de-
crease. Ideally, the splitting would be done in an auto-
mated manner by a compiler. In a context similar to ours
though not directly applicable to Cloak, Shih et al. [59]
report on an extension of the Clang compiler that auto-
matically splits transactions into smaller units with TSX-
compatible working sets. Their approach is discussed in
more detail in Section 9.

5.3 Toolset
We implemented the read-set preloading strategy from
Section 5.2.1 in a small C++ container template library.
The library provides generic read-only and writable ar-
rays, which are allocated in “read” or “write” cache lines
respectively. The programmer is responsible for arrang-
ing data in the specialized containers before invoking a
Cloak-protected function. Further, the programmer de-
cides which containers to preload. Most local variables
and input and output data should reside in the containers.
Further, all sub-function calls should be inlined, because
each call instruction performs an implicit write of a re-
turn address. Avoiding this is important for large read
sets, as even a single unexpected cache line in the write
set can greatly increase the chances for aborts.

We also extended the Microsoft C++ compiler ver-
sion 19.00. For programmer-annotated functions on
Windows, the compiler adds code for starting and end-
ing transactions, ensures that all code cache lines are
preloaded (via read or execution according to Sec-
tion 5.2.2) and, to not pollute the write set, refrains
from unnecessarily spilling registers onto the stack af-
ter preloading. Both library and compiler are used in the
SGX experiments in Section 7.1.

6 Retrofitting Leaky Algorithms

To evaluate Cloak, we apply it to existing weak im-
plementations of different algorithms. We demonstrate
that in all cases, in the local setting (Flush+Reload) as
well as the cloud setting (Prime+Probe), Cloak is a prac-
tical countermeasure to prevent state-of-the-art attacks.
All experiments in this section were performed on a
mostly idle system equipped with a Intel i7-6700K CPU
with 16 GB DDR4 RAM, running a default-configured
Ubuntu Linux 16.10. The applications were run as regu-
lar user programs, not pinned to CPU cores, but sharing
CPU cores with other threads in the system.

6.1 OpenSSL AES T-Tables
As a first application of Cloak, we use the AES T-table
implementation of OpenSSL which is known to be sus-
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Figure 7: Color matrix showing cache hits on an AES
T-table. Darker means more cache hits. Measurement
performed over roughly 2 billion encryptions. Prime+
Probe depicted on the left, Flush+Reload on the right.
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Figure 8: Color matrix showing cache hits on an AES T-
table. The implementation is protected by Cloak. Darker
means more cache hits. Measurement performed over
roughly 3 billion transactions (500 million encryptions)
for Prime+Probe (left) and 4.9 billion transactions (1.5
million encryptions) for Flush+Reload (right). The side-
channel leakage is not visible in both cases.

ceptible to cache attacks [4, 24, 26, 33, 35, 51]. In this
implementation, AES performs 16 lookups to 4 different
T-tables for each of the 10 rounds and combines the val-
ues using xor. The table lookups in the first round of
AES are Tj[xi = pi ⊕ ki] where pi is a plaintext byte, ki a
key byte, and i ≡ j mod 4. A typical attack scenario is
a known-plaintext attack. By learning the cache line of
the lookup index xi an attacker learns the upper 4 bits of
the secret key byte xi ⊕ pi = ki. We wrap the entire AES
computation together with the preloading step into a sin-
gle TSX transaction. The preloading step fetches the 4
T-Tables, i.e., it adds 4 KB of data to the read set.

We performed roughly 2 billion encryptions in an
asynchronous attack and measured the cache hits on
the T-table cache lines using Prime+Probe and Flush+
Reload. Figure 7 is a color matrix showing the number of
cache hits per cache line and plaintext-byte value. When
protecting the T-tables with Cloak (cf. Figure 8), the
leakage from Figure 7 is not present anymore.

We fixed the time for which the fully-asynchronous
known-plaintext attack is run. The amount of time cor-
responds to roughly 2 billion encryptions in the baseline
implementation. For the AES T-Table implementation

protected with Cloak we observed a significant perfor-
mance difference based on whether or not an attack is
running simultaneously. This is due to the TSX transac-
tion failing more often if under attack.

While not under attack the implementation protected
with Cloak started 0.8% more encryptions than the base-
line implementation (i.e., with preloading) and less than
0.1% of the transactions failed. This is not surprising, as
the execution time of the protected algorithm is typically
below 500 cycles. Hence, preemption or interruption of
the transaction is very unlikely. Furthermore, cache evic-
tions are unlikely because of the small read set size and
optimized preloading (cf. Section 5.2.1). Taking the ex-
ecution time into account, the implementation protected
with Cloak was 0.8% faster than the baseline implemen-
tation. This is not unexpected, as Zacharopoulos [64]
already found that TSX can improve performance.

Next, we measured the number of transactions fail-
ing under Prime+Probe and Flush+Reload. We observed
82.7% and 99.97% of the transactions failing for each
attack, respectively. Failing transactions do not consume
the full amount of time that one encryption would take
as they abort earlier in the function execution. Thus,
the protected implementation started over 37% more en-
cryptions as compared to the baseline implementation
when under attack using Prime+Probe and 2.53 times
the encryptions when under attack using Flush+Reload.
However, out of these almost 3 billion transactions only
500 million transactions succeeded in the case of Prime+
Probe. In the case of Flush+Reload only 1.4 million
out of 4.9 billion transactions succeeded. Thus, in total
the performance of our protected implementation under a
Prime+Probe attack is only 23.7% of the performance of
the baseline implementation and only 0.06% in the case
of a Flush+Reload attack.

The slight performance gain of Cloak while not being
actively attacked shows that deploying our countermea-
sure for this use case does not only eliminate cache side-
channel leakage but it can also be beneficial. The lower
performance while being attacked is still sufficient given
that leakage is eliminated, especially as the attacker has
to keep one whole CPU core busy to perform the at-
tack and this uses up a significant amount of hardware
resources whether or not Cloak is deployed.

6.2 Secret-dependent execution paths

Powerful attacks allow to recover cryptographic
keys [62] and generated random numbers by monitoring
execution paths in libraries [67]. In this example,
we model such a scenario by executing one of 16
functions based on a secret value that the attacker tries
to learn—adapted from the AES example. Like in
previous Flush+Reload attacks [62, 67], the attacker
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Figure 9: Color matrix showing cache hits on function
code. Darker means more cache hits. Measurement per-
formed over roughly 100 million function executions for
Prime+Probe (left) and 10 million function executions
for Flush+Reload (right).
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Figure 10: Color matrix showing cache hits on func-
tion code protected using Cloak. Darker means more
cache hits. Measurement performed over roughly 1.5 bil-
lion transactions (77314 function executions) for Prime+
Probe (left) and 2 billion transactions (135211 function
executions) for Flush+Reload (right). Side-channel leak-
age is not visible in both cases.

monitors the function addresses for cache hits and thus
derives which function has been called. Each of the 16
functions runs only a small code snippet consisting of
a loop counting from 0 to 10 000. We wrap the entire
switch-case together with the preloading step into a
single TSX transaction. The preloading step fetches the
16 functions, each spanning two cache lines, i.e., 2 KB
of code are added to the read set.

As in the previous example, Cloak eliminates all leak-
age (cf. Figure 10). While not under attack the victim
program protected with Cloak started 0.7% more func-
tion executions than the baseline implementation. Less
than 0.1% of the transactions failed, leading to an overall
performance penalty of 1.2%. When under attack using
Prime+Probe, 11.8 times as many function executions
were started and with Flush+Reload, 19 times as many.
However, only 0.005% of the transactions succeeded in
the case of Prime+Probe and only 0.0006% in the case
of Flush+Reload. Thus, overall the performance is re-
duced to 0.03% of the baseline performance when under
a Prime+Probe attack and 0.14% when under a Flush+
Reload attack. The functions are 20 times slower than
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Figure 11: Cache traces for the multiply routine (as used
in RSA) over 10000 exponentiations. The secret expo-
nent is depicted as a bit sequence. Measurement per-
formed over 10000 exponentiations. The variant pro-
tected with Cloak does not have visual patterns that cor-
respond to the secret exponent.

the AES encryptions from the previous example. Thus,
the high failure rate is not unexpected, as there is more
time for cache evictions caused by other processes.

It is important to note that the performance under at-
tack is not essential as the attacker simultaneously keeps
one or more CPU cores on full load, accounting for a
significant performance loss with and without Cloak.

6.3 RSA Square-and-Multiply example
We now demonstrate an attack against a square-and-
multiply exponentiation and how Cloak allows to pro-
tect it against cache side-channel attacks. Square-and-
multiply is commonly used in cryptographic implemen-
tations of algorithms such as RSA and is known to
be vulnerable to side-channel attacks [54, 62]. Though
cryptographic libraries move to constant-time exponen-
tiations that are intended to not leak any information
through the cache, we demonstrate our attack and pro-
tection on a very vulnerable schoolbook implementation.
A square-and-multiply algorithm takes 100 000 cycles to
complete. Thus, wrapping the whole algorithm in one
TSX transaction has only a very low chance of success
by itself. Instead we split the loop of the square-and-
multiply algorithm into one small TSX transaction per
exponent bit, i.e., adding the xbegin and xend instruc-
tions and the preloading step to the loop. This way, we
increase the success rate of the TSX transactions signif-
icantly, while still leaking no information on the secret
exponent bits. The preloading step fetches 1 cache line
per function, i.e., 128 B of code are added to the read set.

Figure 11 shows a Flush+Reload cache trace for the
multiply routine as used in RSA. The plot is generated
over 10000 exponentiation traces. Each trace is aligned
by the first cache hit on the multiply routine that was
measured per trace. The traces are then summed to pro-
duce the functions that are plotted. The baseline imple-
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Figure 12: Cache template matrix showing cache hits on
the binary search in gdk keyval from name without
protection (left) and with Cloak (right). Darker means
more cache hits. All measurements were performed with
Flush+Reload. The pattern of the binary search is clearly
visible for the unprotected implementation and not visi-
ble anymore when protected with Cloak.

mentation has a clear peak for each 1 bit in the secret ex-
ponent. The same implementation protected with Cloak
shows no significant changes in the cache hits over the
full execution time.

While not under attack, the performance of the im-
plementation protected with Cloak is only slightly lower
than the performance of the unprotected baseline imple-
mentation. To evaluate the performance in this case we
performed 1 million exponentiations. During these 1
million exponentiations, only 0.5% of the transactions
failed. The total runtime overhead we observed while
not under attack was 1.1%. Unsurprisingly, while un-
der attack we observed a significantly higher overhead
of factor 982. This is because 99.95% of the transac-
tions failed, i.e., the transactions for almost every single
bit failed and had to be repeated.

6.4 GTK keystroke example

We investigated leakage in the GTK framework, which
performs a binary search to translate raw keyboard in-
puts to platform-independent key names and key values.
Gruss et al. [24] demonstrated that this leaks significant
information on single keys typed by a user, in an auto-
mated cache template attack. Their attack on GDK li-
brary version 3.10.8 has partially been resolved on cur-
rent Linux systems with GDK library version 3.18.9. In-
stead of multiple binary searches that leak information
we only identified one binary search that is still per-
formed upon every keystroke.

In order to demonstrate the general applicability of
Cloak, we reproduced the attack by Gruss et al. [24]
on a recent version of the GDK library (3.18.9) which
comes with Ubuntu 16.10. We attack the binary search in
gdk keyval from name which is executed upon every

keystroke in a GTK window. As shown in Figure 12, the
cache template matrix of the unprotected binary search
reveals the search pattern, narrowing down on the darker
area where the letter keys are and thus the search ends.
In case of the implementation protected by Cloak, the
search pattern is disguised. With the keystroke informa-
tion protected by Cloak, we could neither measure a dif-
ference in the perceived latency when typing through a
keyboard, nor measure and overall increase of the system
load or execution time of processes. The reason for this
is that keystroke processing involves hundreds of thou-
sands of CPU cycles spent in drivers and other functions.
Furthermore, keystrokes are rate-limited by the OS and
constrained by the speed of the user typing. Thus, the
overhead we introduce is negligible for the overall la-
tency and performance.

We conclude that Cloak can be used as a practical
countermeasure to prevent cache template attacks on
fine-grained information such as keystrokes.

7 Side-Channel Protection for SGX

Intel SGX provides an isolated execution environment
called enclave. All code and data inside an enclave is
shielded from the rest of the system and is even protected
against hardware attacks by means of strong memory en-
cryption. However, SGX enclaves use the regular cache
hierarchy and are thus vulnerable to cache side-channel
attacks. Further, as enclaves are meant to be run on un-
trusted hosts, they are also susceptible to a range of other
side-channel attacks such as OS-induced page faults [61]
and hardware attacks on the memory bus. In this sec-
tion, we first retrofit a common machine learning algo-
rithm with Cloak and evaluate its performance in SGX.
Afterwards, we explore the special challenges that en-
clave code faces with regard to side channels and design
extended countermeasures on top of Cloak. Specifically,
we augment sensitive enclave code with Cloak and re-
quire that the potentially malicious OS honors a special
service contract while this code is running.

7.1 Secure Decision Tree Classification
To demonstrate Cloak’s applicability to the SGX envi-
ronment and its capability to support larger working sets,
we adapted an existing C++ implementation of a deci-
sion tree classification algorithm [49] using the toolset
described in Section 5.3. The algorithm traverses a de-
cision tree for an input record. Each node of the tree
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contains a predicate which is evaluated on features of the
input record. As a result, observations of unprotected
tree traversal can leak information about the tree and the
input record. In this particular case, several trees in a so-
called decision forest are traversed for each input record.

Our Cloak-enhanced implementation of the algorithm
contains three programmer-annotated functions, which
translates into three independent transactions. The most
complex of these traverses a preloaded tree for a batch of
preloaded input records. The batching of input records is
crucial here for performance, as it amortizes the cost of
preloading a tree. We give a detailed explanation and a
code sample of tree traversal with Cloak in Appendix A.

Evaluation. We compiled our implementation for
SGX enclaves using the extended compiler and a cus-
tom SGX software stack. We used a pre-trained decision
forest for the Covertype data set from the UCI Machine
Learning Repository5. Each tree in the forest consists of
30497—32663 nodes and has a size of 426 KB–457 KB.
Each input record is a vector of 54 floating point val-
ues. We chose the Covertype data set because it pro-
duces large trees and was also used in previous work by
Ohrimenko et al. [49], which also mitigates side channel
leakage for enclave code.

We report on experiments executed on a mostly idle
system equipped with a TSX and SGX-enabled Intel
Core i7-6700 CPU and 16 GB DDR4 RAM running Win-
dows Server 2016 Datacenter. In our container library,
we reserved eight L1 cache sets for writable arrays, re-
sulting in an overall write set size of 4 KB. Figure 13
shows the cycles spent inside the enclave (including en-
tering and leaving the enclave) per input record averaged
over ten runs for differently sized input batches. These
batches were randomly drawn from the data set. The
sizes of the batches ranged from 5 to 260. For batches
larger than 260, we observed capacity aborts with high
probability. Nonetheless, seemingly random capacity
aborts could also be observed frequently even for small
batch sizes. The number of aborts also increased with
higher system load. The cost for restarting transactions
on aborts is included in Figure 13.

As baseline, we ran inside SGX the same algorithm
without special containers and preloading and without
transactions. The baseline was compiled with the un-
modified version of the Microsoft C++ compiler at the
highest optimization level. As can be seen, the number
of cycles per query greatly decreases with the batch size.
Batching is particularly important for Cloak, because
it enables the amortization of cache preloading costs.
Overall, the overhead ranges between +79% (batch size
5) and +248% (batch size 260). The overhead increases

5https://archive.ics.uci.edu/ml
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Figure 13: Average number of cycles per query for deci-
sion forest batch runs of different sizes.

with the batch size, because the baseline also profits from
batching (i.e., “cache warming” effects and amortization
of costs for entering/leaving the enclave), while the pro-
tected version experiences more transactional aborts for
larger batches. We also ran a similar micro-benchmark
outside SGX with more precise timings. Here, the effect
of batching was even clearer: for a batch size of 5, we
observed a very high overhead of +3078%, which grad-
ually decreased to +216% for a batch size of 260.

Even though the experimental setting in Ohri-
menko et al. [49] is not the same as ours (for instance
they used the official Intel SGX SDK, an older version
of the compiler, and their input data was encrypted) and
they provide different guarantees, we believe that their
reported overhead of circa +6200% for a single query to
SGX highlights the potential efficiency of Cloak.

7.2 Service Contracts with the OS

Applying the basic Cloak techniques to sensitive enclave
code reduces the risk of side-channel attacks. However,
enclave code is especially vulnerable as the correspond-
ing attacker model (see Section 3) includes malicious
system software and hardware attacks. In particular, ma-
licious system software, i.e., the OS, can amplify side-
channel attacks by concurrently (A1) interrupting and re-
suming enclave threads [40], (A2) unmapping enclave
pages [61], (A3) taking control of an enclave thread’s
sibling hyper-thread (HT) [11], or (A4) repeatedly reset-
ting an enclave. A3 is of particular concern in Cloak
as TSX provides requirement R2 (see Section 4) only for
the LLC. Hence, code and data in the read set are not pro-
tected against a malicious HT which can perform attacks
over the L1 and L2 caches from outside the enclave. In
the following, we describe how Cloak-protected enclave
code can ensure that the OS is honest and does not mount
attacks A1–A4.
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7.2.1 Checking the Honesty of the OS

While SGX does not provide functionality to directly
check for A1 and A2 or to prevent them, it is simple with
Cloak: our experiments showed in line with Intel’s docu-
mentation [31] that transactions abort with code OTHER
(no bits set in the abort code) in case of interrupts or ex-
ceptions. In case unexpected aborts of this type occur,
the enclave may terminate itself as a countermeasure.

Preventing A3 is more involved and requires several
steps: before executing a transaction, we demand that
(i) both HTs of a CPU core enter the enclave and (ii) re-
main there. To enforce (ii), the two threads write a unique
marker to each thread’s State Save Area (SSA) [32] in-
side the enclave. Whenever a thread leaves an enclave
asynchronously (e.g., because of an interrupt), its regis-
ters are saved in its SSA [32]. Hence, every unexpected
exception or interrupt necessarily overwrites our mark-
ers in the SSAs. By inspecting the markers, we can thus
ensure that neither of the threads was interrupted (and
potentially maliciously migrated to a different core by
the OS). One thread now enters a Cloak transaction and
verifies the two markers, making them part of its read set.
Thus, as we confirmed experimentally, any interruption
of the threads would overwrite an SSA marker in the read
set and cause an immediate transactional abort with code
CONFLICT (bit three set in the abort code).

Unfortunately, for (i), there is no direct way for en-
clave code to tell if two threads are indeed two corre-
sponding HTs. However, after writing the SSA markers,
before starting the SSA transaction, the enclave code can
initially conduct a series of experiments to check that,
with a certain confidence, the two threads indeed share
an L1 cache. One way of doing so is to transmit a se-
cret (derived using the rdrand instruction inside the en-
clave) over a timing-less L1-based TSX covert channel:
for each bit in the secret, the receiver starts a transac-
tion and fills a certain L1 cache set with write-set cache
lines and busy-waits within the transaction for a certain
time; if the current bit is 1, the sender aborts the re-
ceiver’s transaction by touching conflicting cache lines of
the same cache set. Otherwise, it touches non-conflicting
cache lines. After the transmission, both threads com-
pare their versions of the secret. In case bit-errors are
below a certain threshold, the two threads are assumed
to be corresponding HTs. In our experiments, the covert
channel achieved a raw capacity of 1 MB/s at an error
rate of 1.6% between two HTs. For non-HTs, the er-
ror rate was close to 50% in both cases, showing that no
cross-core transmission is possible.6 While a malicious
OS could attempt to eavesdrop on the sender and replay
for the receiver to spoil the check, a range of additional

6Using the read set instead yields a timing-less cross-core covert
channel with a raw capacity of 335 KB/s at an error rate of 0.4%.

countermeasures exists that would mitigate this attack.
For example, the two threads could randomly choose a
different L1 cache set (out of the 64 available) for each
bit to transmit.

To protect against A4, the enclave may use SGX’s
trusted monotonic counters [3] or require an online con-
nection to its owner on restart.

Finally, the enclave may demand a private LLC parti-
tion, which could be provided by the OS via Intel’s re-
cent Cache Allocation Technology (CAT) feature [32] or
“cache coloring” [11,37,58]. A contract violation would
become evident to the enclave through increased num-
bers of aborts with code CONFLICT.

8 Limitations and Future Work

Cache attacks are just one of many types of side-channel
attacks and Cloak naturally does not mitigate all of them.
Especially an adversary able to measure the execution
time of a transaction might still derive secret information.
Beyond this, Cloak instantiated with Intel TSX may be
vulnerable to additional side channels that have not yet
been explored. We identified five potential side channels
that should be investigated in more detail: First, the in-
teraction of the read set and the “second level structure”
(i.e., the bloom filter) is not documented. Second, other
caches, such as translation-lookaside buffers and branch-
prediction tables, may still leak information. Third, the
Intel TSX abort codes may provide side-channel infor-
mation if accessible to an attacker. Fourth, variants of
Prime+Probe that deliberately evict read set cache lines
from L1 to the LLC but not to DRAM could potentially
obtain side-channel information without causing trans-
action aborts. Fifth, the execution time of transactions
including in particular the timings of aborts may leak in-
formation. Finally, it is important to note that Cloak is
limited by the size of the CPU’s caches, since code and
data that have secret-dependent accesses must fit in the
caches. TSX runtime behavior can also be difficult to
predict and control for the programmer.

9 Related Work

Using HTM for Security and Safety. The Mimosa
system [25] uses TSX to protect cryptographic keys in
the Linux kernel against different forms of memory dis-
closure attacks. Mimosa builds upon the existing TRE-
SOR system [47], which ensures that a symmetric master
key is always kept in the CPU’s debug registers. Mi-
mosa extends this protection to an arbitrary number of
(asymmetric) keys. Mimosa always only writes pro-
tected keys to memory within TSX transactions. It en-
sures that these keys are wiped before the correspond-
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ing transaction commits. This way, the protected keys
are never written to RAM. However, Mimosa does not
prevent cache side-channel attacks. Instead, for AES
computations it uses AES-NI, which does not leak in-
formation through the cache. However, a cache attack on
the square-and-multiply routine of RSA in the presence
of Mimosa would still be possible. To detect hardware
faults, the HAFT system [39] inserts redundant instruc-
tions into programs and compares their behavior at run-
time. HAFT uses TSX to efficiently roll-back state in
case a fault was encountered.

Probably closest related to Cloak is the recent T-SGX
approach [59]. It employs TSX to protect SGX enclave
code against the page-fault side channel [61], which can
be exploited by a malicious OS that unmaps an enclave’s
memory pages (cf. Section 7). At its core, T-SGX lever-
ages the property that exceptions within TSX transac-
tions cause transactional aborts and are not delivered to
the OS. T-SGX ensures that virtually all enclave code
is executed in transactions. To minimize transactional
aborts, e.g., due to cache-line evictions, T-SGX’s ex-
tension of the Clang compiler automatically splits en-
clave code into small execution blocks according to a
static over-approximation of L1 usage. At runtime, a
springboard dispatches control flow between execution
blocks, wrapping each into a separate TSX transaction.
Thus, only page faults related to the springboard can be
(directly) observed from the outside. All transactional
aborts are handled by the springboard, which may termi-
nate the enclave when an attack is suspected. For T-SGX,
Shih et al. [59] reported performance overheads of 4%–
108% across a range of algorithms and, due to the strat-
egy of splitting code into small execution blocks, caused
only very low rates of transactional aborts.

The strategy employed by T-SGX cannot be generally
transferred to Cloak, as—for security—one would need
to reload the code and data of a sensitive function when-
ever a new block is executed. Hence, this strategy is not
likely to reduce cache conflicts, which is the main reason
for transactional aborts in Cloak, but rather increase per-
formance overhead. Like T-SGX, the recent Déjà Vu [8]
approach also attempts to detect page-fault side-channel
attacks from within SGX enclaves using TSX: an en-
clave thread emulates an non-interruptible clock through
busy waiting within a TSX transaction and periodically
updating a counter variable. Other enclave threads use
this counter for approximate measuring of their execu-
tion timings along certain control-flow paths. In case
these timings exceed certain thresholds, an attack is as-
sumed. Both T-SGX and Déjà Vu conceptually do not
protect against common cache side-channel attacks.

Prevention of Resource Sharing. One branch of de-
fenses against cache attacks tries to reduce resource shar-

ing in multi-tenant systems. This can either be imple-
mented through hardware modifications [12, 52], or by
dynamically separating resources. Shi et al. [58] and
Kim et al. [37] propose to use cache coloring to isolate
different tenants in cloud environments. Zhang et al. [68]
propose cache cleansing as a technique to remove infor-
mation leakage from time-shared caches. Godfrey et al.
[18] propose temporal isolation through scheduling and
resource isolation through cache coloring. More re-
cently Zhou et al. [69] propose a more dynamic approach
where pages are duplicated when multiple processes ac-
cess them simultaneously. Their approach can make at-
tacks significantly more difficult to mount, but not im-
possible. Liu et al. [42] propose to use Intel CAT to split
the LLC, avoiding the fundamental resource sharing that
is exploited in many attacks. In contrast to Cloak, all
these approaches require changes on the OS level.

Detecting Cache Side-Channel Leakage. Other de-
fenses aim at detecting potential side-channel leakage
and attacks, e.g., by means of static source code analy-
sis [13] or by performing dynamic anomaly detection us-
ing CPU performance counters. Gruss et al. [23] explore
the latter approach and devise a variant of Flush+Reload
that evades it. Chiappetta et al. [9] combine performance
counter-based detection with machine learning to detect
yet unknown attacks. Zhang et al. [65] show how per-
formance counters can be used in cloud environments to
detect cross-VM side-channel attacks. In contrast, Cloak
follows the arguably stronger approach of mitigating at-
tacks before they happen. Many attacks require only a
small number of traces or even work with single mea-
surements [17, 43, 62]. Thus, Cloak can provide protec-
tion where detection mechanisms fail due to the inherent
detection delays or too coarse heuristics. Further, reliable
performance counters are not available in SGX enclaves.

10 Conclusions

We presented Cloak, a new technique that defends
against cache side-channel attacks using hardware trans-
actional memory. Cloak enables the efficient retrofitting
of existing algorithms with strong cache side-channel
protection. We demonstrated the efficacy of our ap-
proach by running state-of-the-art cache side-channel at-
tacks on existing vulnerable implementations of algo-
rithms. Cloak successfully blocked all attacks in every
attack scenario. We investigated the imperfections of In-
tel TSX and discussed the potentially remaining leakage.
Finally, we showed that one of the main limitations of
Intel SGX, the lack of side-channel protections, can be
overcome by using Cloak inside Intel SGX enclaves.
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T. Cache attacks on intel sgx. In European Workshop on System
Security (EuroSec) (2017).

[21] GRUSS, D., MAURICE, C., FOGH, A., LIPP, M., AND MAN-
GARD, S. Prefetch side-channel attacks: Bypassing SMAP and
Kernel ASLR. In ACM Conference on Computer and Communi-
cations Security (CCS) (2016).

[22] GRUSS, D., MAURICE, C., AND MANGARD, S. Rowhammer.js:
A remote software-induced fault attack in JavaScript. In Con-
ference on Detection of Intrusions and Malware & Vulnerability
Assessment (DIMVA) (2016).

[23] GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+Flush: A fast and stealthy cache attack. In Conference on
Detection of Intrusions and Malware & Vulnerability Assessment
(DIMVA) (2016).

[24] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-
plate attacks: Automating attacks on inclusive last-level caches.
In USENIX Security Symposium (2015).

[25] GUAN, L., LIN, J., LUO, B., JING, J., AND WANG, J. Protect-
ing private keys against memory disclosure attacks using hard-
ware transactional memory. In IEEE Symposium on Security and
Privacy (S&P) (2015).

[26] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
Games – bringing access-based cache attacks on AES to practice.
In IEEE Symposium on Security and Privacy (S&P) (2011).

[27] HERLIHY, M., ELIOT, J., AND MOSS, B. Transactional mem-
ory: Architectural support for lock-free data structures. In Inter-
national Symposium on Computer Architecture (ISCA) (1993).

[28] HUND, R., WILLEMS, C., AND HOLZ, T. Practical timing side
channel attacks against kernel space ASLR. In IEEE Symposium
on Security and Privacy (S&P) (2013).

[29] INTEL CORP. Software Development Emulator v. 7.49.
https://software.intel.com/en-us/articles/intel-

software-development-emulator/ (retrieved 19/01/2017).

[30] INTEL CORP. Intel 64 and IA-32 architectures optimization ref-
erence manual, June 2016.

[31] INTEL CORP. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 1: Basic Architecture, September 2016.

[32] INTEL CORP. Intel 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3 (3A, 3B & 3C): System Programming
Guide, September 2016.

[33] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: A
shared cache attack that works across cores and defies VM sand-
boxing – and its application to AES. In IEEE Symposium on
Security and Privacy (S&P) (2015).

[34] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. Cross pro-
cessor cache attacks. In ACM Symposium on Information, Com-
puter and Communications Security (ASIACCS) (2016).

[35] IRAZOQUI, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Wait a minute! a fast, cross-VM attack on AES. In Symposium
on Recent Advances in Intrusion Detection (RAID) (2014).

[36] JANG, Y., LEE, S., AND KIM, T. Breaking kernel address space
layout randomization with intel TSX. In ACM Conference on
Computer and Communications Security (CCS) (2016).

USENIX Association 26th USENIX Security Symposium    231



[37] KIM, T., PEINADO, M., AND MAINAR-RUIZ, G. STEALTH-
MEM: System-level protection against cache-based side channel
attacks in the cloud. In USENIX Security Symposium (2012).

[38] KOCHER, P. C. Timing attacks on implementations of Diffe-
Hellman, RSA, DSS, and other systems. In Advances in
Cryptology—CRYPTO (1996).

[39] KUVAISKII, D., FAQEH, R., BHATOTIA, P., FELBER, P., AND
FETZER, C. HAFT: hardware-assisted fault tolerance. In Euro-
pean Conference on Computer Systems (EuroSys) (2016).

[40] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND
PEINADO, M. Inferring fine-grained control flow inside SGX en-
claves with branch shadowing. arXiv preprint arXiv:1611.06952
(2016).

[41] LIPP, M., GRUSS, D., SPREITZER, R., MAURICE, C., AND
MANGARD, S. ARMageddon: Cache attacks on mobile devices.
In USENIX Security Symposium (2016).

[42] LIU, F., GE, Q., YAROM, Y., MCKEEN, F., ROZAS, C.,
HEISER, G., AND LEE, R. B. Catalyst: Defeating last-level
cache side channel attacks in cloud computing. In Interna-
tional Symposium on High Performance Computer Architecture
(HPCA) (2016).

[43] LIU, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In IEEE Sym-
posium on Security and Privacy (S&P) (2015).

[44] LIU, Y., XIA, Y., GUAN, H., ZANG, B., AND CHEN, H. Con-
current and consistent virtual machine introspection with hard-
ware transactional memory. In International Symposium on High
Performance Computer Architecture (HPCA) (2014).

[45] MAURICE, C., WEBER, M., SCHWARZ, M., GINER, L.,
GRUSS, D., ALBERTO BOANO, C., MANGARD, S., AND
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Listing 2: Decision tree classification before and after
Cloak: the code in black is shared by both versions, the
code before Cloak is in dark gray(lines 1–3), and Cloak-
specific additions are in blue (lines 5–7, 11, 12, 15).

1 using Nodes = nelem_t*;

2 using Queries = Matrix<float>;

3 using LeafIds = uint16_t*;

4
5 using Nodes = ReadArray<nelem t, NCS R>;
6 using Queries = ReadMatrix<float, NCS R>;
7 using LeafIds = WriteArray<uint16 t, NCS W>;
8
9 void tsx protected lookup_leafids(

10 Nodes& nodes , Queries& queries , LeafIds&

leafids) {

11 nodes.preload();

12 queries.preload();

13
14 for (size_t q=0; q < queries.entries ();

q++) {

15 if (!(q % 8)) leafids.preload();

16 size_t idx = 0, left , right;

17 for (;;) {

18 auto &node = nodes[idx];

19 left = node.left;

20 right = node.right_or_leafid;

21 if (left == node) {

22 leafids[q] = right;

23 break;

24 }

25 if (queries.item(q, node.fdim) <=

node.fthresh)

26 idx = left;

27 else

28 idx = right;

29 }

30 }

31 }

A Cloak Code Example

Listing 2 gives an example of the original code for tree
traversal and its Cloak-protected counterpart. In the orig-
inal code, a tree is stored in a Nodes array where each
node contains a feature, fdim, and a threshold, fthres.
Access to a node determines which feature is used to
make a split and its threshold on the value of this feature
indicates whether the traversal continues left or right. For
every record batched in Queries, the code traverses the
tree according to feature values in the record. Once a
leaf is reached its value is written as the output of this
query in LeafIds. The following features of Cloak are
used to protect code and data accesses of the tree traver-
sal. First, it uses Cloak data types to allocate Nodes and
Queries in the read set and LeafIds in the write sets.
This ensures that data is allocated as described in Sec-
tion 5.2.1, oblivious from the programmer. The parame-
ters NCS R and NCS W indicate the number of cache sets to
be used for the read and write sets. Second, the program-
mer indicates to the compiler which function should be
run within a transaction by using tsx protected anno-
tation. The programmer calls preload (lines 11, 12, and
15) on sensitive data structures. The repeated preloading
of the writable array leafids in line 15 refreshes the
write set to prevent premature evictions.
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Abstract

Side-channel attacks recover secret information by an-
alyzing the physical implementation of cryptosystems
based on non-functional computational characteristics,
e.g. time, power, and memory usage. Among all well-
known side channels, cache-based timing channels are
notoriously severe, leading to practical attacks against
certain implementations of theoretically secure crypto al-
gorithms, such as RSA, ElGamal and AES. Such attacks
target the hierarchical design of the modern computer
memory system, where different memory access patterns
of a program can bring observable timing difference.

In this work, we propose a novel technique to help
software developers identify potential vulnerabilities that
can lead to cache-based timing attacks. Our technique
leverages symbolic execution and constraint solving to
detect potential cache differences at each program point.
We adopt a cache model that is general enough to cap-
ture various threat models that are employed in practi-
cal timing attacks. Our modeling and analysis are based
on the formulation of cache access at different program
locations along execution traces. We have implemented
the proposed technique as a practical tool named CacheD
(Cache Difference), and evaluated CacheD towards mul-
tiple real-world cryptosystems. CacheD takes less than
17 CPU hours to analyze 9 widely used cryptographic al-
gorithm implementations with over 120 million instruc-
tions in total. The evaluation results show that our tech-
nique can accurately identify vulnerabilities reported by
previous research. Moreover, we have successfully dis-
covered previously unknown issues in two widely used
cryptosystems, OpenSSL and Botan.

1 Introduction

Side-channel attacks recover secret information by ana-
lyzing the physical implementation of crypto and other
systems based on non-functional computational charac-

teristics. Typical attributes exploited in such attacks in-
clude time [30], power [37], memory consumption [28],
network traffic [16], and electromagnetic [46].

Among all side-channel attacks, cache-based timing
attacks steal confidential information based on the pro-
gram’s runtime cache behaviors. Cache-based timing at-
tacks are perhaps the most practical and important ones,
since those attacks does not require any physical access
to the confidential computation, yet the timing signal
carries enough information to break RSA [3, 45, 59],
AES [8, 11, 42, 53, 27] and ElGamal [63, 34]. Other
than cryptosystems, research has also shown that cache-
based timing channels may leak other confidential infor-
mation [47, 57, 62, 58].

The mitigation mechanisms towards cache-based tim-
ing channels can be categorized into hardware and soft-
ware based solutions. Hardware-based solutions focus
on new cache designs such as partitioned cache [43, 54,
31, 61], randomized/remapping cache [54, 55, 33], and
line-locking cache [54]. But such secure hardware as-
sumes that crucial memory accesses are identified (by
security experts) in the first place. Most software-based
solutions only consider cache-based timing channels due
to secret-dependent control flow [4, 25, 38, 7, 17, 44]
and hence, cannot prevent subtle leakage found in source
code without any secret-dependent control flow (see
§2.2.2). More advanced program analyses [6, 19, 20, 60]
can detect the subtle leakage missed by those solutions,
but they only provide an upper-bound on timing-based
information leakage; it is unclear what/where the vulner-
ability is when those tools report a non-zero upper bound.

We focus on cache-based timing analysis. Cache at-
tacks can be categorized into three models [51], time-
driven, access-driven, and trace-driven attacks, each of
which leverages a different approach to monitor the
cache behavior. Time-driven attacks [8] observe the
overall execution time of the cryptosystems and require
many measure samples. Existing work has demonstrated
the feasibility to launch the cache-based attack locally or
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remotely towards the AES encryption algorithm [8, 42].
In contrast, access-driven attacks [24, 53] and trace-
driven attacks [2] exploit more fine-grained cache behav-
ior and require fewer measurement samples, but they are
based on more sophisticated threat models and require
deep knowledge about the hardware and software system
under attack [53, 39, 45].

Given the complexity of the memory hierarchy in
modern computer systems, it is difficult for developers
to reason about the cache access behavior of a program
or a particular memory access. For example, the Ap-
pendix A shows a large and complicated symbolic for-
mula of a memory access address found in our experi-
ment. It is quite obvious how complicated it is to reason
its cache behavior, let alone take the context into consid-
eration. Developers may be able to come up with better
abstractions and reasoning, but it is easy to miss nuances
and corner cases as demonstrated in our findings (see §7).
Thus it is of great practical value to develop an automated
tool that can help developers reason about the cache be-
havior of a memory access.

In this paper, we propose a general trace-based method
with symbolic execution and constraint solving to de-
tect potential cache variations at each program location.
Our theory and cache modeling are independent of threat
models that are employed in attacks to utilize the poten-
tial vulnerabilities detected. Our modeling and analy-
sis are based on formulations of cache access at differ-
ent program locations along the execution trace. More
specifically, we record the execution trace, and use sym-
bolic execution (with the secret as symbols) to formulate
the cache access variations at each memory access. In
other words, for each memory access in an execution
trace, we check whether it is possible that this mem-
ory access can touch different cache lines given differ-
ent secret inputs. Moreover, our method also provides
two values that will cause such cache access variations at
one memory access using a constraint solver. Once con-
firmed, such cache access variations can be leveraged,
with various threat models, for cache-based side-channel
attacks.

We have implemented the proposed technique as a
practical tool named CacheD (Cache Difference), and
evaluated CacheD towards multiple real-world cryp-
tosystems. The evaluation results show that our tech-
nique can accurately identify vulnerabilities reported by
previous research. Moreover, we have successfully dis-
covered previously unknown issues in two widely used
cryptosystems, OpenSSL (version 0.9.7c and 1.0.2f) and
Botan (version 1.10.13).

We make the following contributions.

• We propose a novel trace-based analysis method
that models the cache variations on every mem-
ory access. Our modeling is conceptually simple

yet general enough to capture most adopted threat
models. While existing research is designed to
infer an “upper-bound” on timing-based informa-
tion leakage, our technique can accurately point out
what/where the vulnerability is, and provide con-
crete examples to trigger the issue. It becomes much
simpler for developers to identify potential timing
channels in their code.
• We have developed a practical tool called CacheD,

which is precise and scalable enough to assist de-
velopers in identifying vulnerable program points
in production cryptosystems.
• We applied CacheD to a set of widely used cryp-

tosystems to search for timing channels in the im-
plementations of well-known cryptographic algo-
rithms. Within 17 CPU hours, CacheD identified
156 vulnerable program points along the analyzed
execution traces of over 120 million instructions.
• By monitoring cache traffic of the test cases using

a hardware simulator, we have confirmed the iden-
tified vulnerabilities as true positives: different se-
crets provided by CacheD lead to observable cache
behavior difference, which further reveals potential
timing channels.

2 Background

2.1 Memory Hierarchy and Set-
Associative Cache

The storage system of modern computers adopts a hi-
erarchical design. In the hierarchy, storage hardware in
higher layers has faster response time but lower capacity
due to hardware cost. When the CPU needs to retrieve
the data, it will access the layers from the top to the bot-
tom. In this way, the CPU can speed up data retrieval
with limited hardware resources, based on the observa-
tion that memory accesses in computer programs are usu-
ally temporarily and spatially coalesced.

The topmost three layers of the hierarchy are proces-
sor registers, caches, and the main memory, the latter two
of which share the same address space. Since caches are
built with costly and fast on-chip devices, their latency
is much lower than that of the main memory. When a
data read misses the cache, the CPU will have to retrieve
the data from the main memory, thus leading to a sig-
nificant delay up to hundreds of CPU cycles. Therefore,
minimizing cache misses is one of the most important
objectives in processor design.

The organization of a cache refers to the policy that
decides how the data are stored and replaced based on
their addresses in the memory space. Modern processors
usually have multiple levels of caches that form a struc-
ture isomorphic to the whole memory hierarchy. In most
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Figure 1: Cache indexing of S-way set-associative caches
with the line size of 2L bytes the capacity of 2C bytes for
a 2N-byte address space.

cases, regardless of the levels on which the caches serve
in the hierarchy, all of them are similarly organized, in a
way called set-associative organization.

The minimal storage unit of set-associative caches is
called a line and the cache is divided into sets consisting
of the same number of lines. For set-associative caches,
the organization is fully decided by three factors, i.e.,
the cache size, the line size, and the set size, where the
set size is usually referred to as the number of ways the
cache is associated in.

For a 2K-way associative cache with the line size of 2L

bytes and a total capacity of 2C bytes, it will be divided
into 2C−K sets. Bytes at each address can reside in any
of lines of one particular set. Given an N-bit memory
address, the cache looks up the data by dissecting the
address into three parts, as shown in Fig. 1. The set index
is used to locate the set in which the data may be stored,
and the tag is used to confirm that the data is currently
present in one of the lines in that set. If the tag matches,
the line offset is used to locate the data inside the cache
line; otherwise, accessing memory at that address leads
to a cache miss, and the processor will have to retrieve
the data from the lower layers of the memory hierarchy.

The low L bits of the address used to access the cache
is irrelevant to timing, since the CPU always retrieve a
whole cache line at a time. Only the high N − L bits
of the address indicate whether the memory access may
hit the cache or not, based on the status of the cache.
For most CPUs, one cache line holds 64 bytes of data,
meaning the value of L is 6. Without losing generality,
we will adopt this configuration in the rest of the paper
unless noted otherwise.

2.2 Cache-Based Timing Channels
The cache is highly optimized, sophisticated, and inher-
ently shared, in modern multicore and manycore archi-
tectures; even a small change in confidential data may
bring drastic and subtle changes to the traffic to the
cache. The consequence is that a dedicated attacker may
reveal confidential data by measuring the latency intro-
duce by the cache.

2.2.1 Leakage due to secret-dependent control flow

The confidential data may affect the traffic to the cache
when there is secret-dependent control flow in the source

code. Such leakage is best illustrated in the square-and-
multiply implementation (shown below) of modular ex-
ponentiation, the core computation of cyphers such as
RSA and ElGamal.

The pseudo-code computes be mod m, where we as-
sume the n-bit secret exponent e is in its binary represen-
tation and e[i] is the i-th bit of e. Note that in this imple-
mentation, the branch condition at line 4 depends on one
bit of e. Moreover, the real implementation of r = r ∗ b
mod m involves memory reads since b and e consist of
multiple words in RSA and ElGamal. Consequently, an
attacker that probes the cache usage of this victim pro-
gram can recover the exponent, and hence, reveals the
private key of RSA [1, 59] and ElGamal [63, 34].

1 r = 1;
2 for i from n−1 to 0 {
3 r = r∗r mod m;
4 if (e[i] == 1) {
5 r = r∗b mod m;
6 }
7 }

Previous work shows that
secret-dependent control flow
can be identified via infor-
mation flow analysis, and
be mitigated by removing
secret-dependent branches or
balancing branches condi-

tioned on confidential data [4, 25, 38, 7, 17]. But these
mechanisms cannot prevent leakages due to memory
traffic as we discuss next. In fact, some tricks of remov-
ing secret-dependent control flow may introduce those
new leakages in a program.

2.2.2 Leakage due to secret-dependent memory
traffic

Cache-based timing attacks also work on implementa-
tions without any secret-dependent control flow, as il-
lustrated in our running example (Fig. 2). This simple
program iteratively accesses a table of size 128 stored in
the memory. Note that the execution of this program fol-
lows the same control flow regardless of the secret since
the loop body is executed exactly 200 times. Neverthe-
less, the memory address accessed at line 9 is key depen-
dent, and hence, may result in memory requests to secret-
dependent cache lines. Hence, a cache-probing attack
(e.g., prime-and-probe attack [42, 53, 11, 63, 34]) may
peek which cache line is accessed, and consequently, in-
fer at least some bits of the secret in this example.

We emphasize that although we use this contrived run-
ning example in this paper for its simplicity, variants of
the vulnerability illustrated in this example are found
and exploited in real-world implementations of crypto
systems, such as the AES implementation in OpenSSL,
exploited in [24, 42, 53], the RSA and ElGamal im-
plementations in Libgcrypt, exploited in [59, 34]. For
example, the sliding-window-based modular exponential
implementation [12] is vulnerable to cache-based tim-
ing attacks. With a parameter L (window size), the
sliding-window implementation splits the secret expo-
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1 void foo(int secret)
2 {
3 int table[128] = {0};
4 int i, t;
5 int index = 0;
6 for (i=0; i<200; i++)
7 {
8 index = (index+secret) % 128;
9 t = table[index];

10 t = table[(index) % 4];
11 }
12 }

Figure 2: CacheD running example.

nent e into a couple of windows, where each window
holds a value (with at most L-bits) that is either a se-
quence of 0’s, or bits that starts with a 1 and ends with
a 1 (hence, an odd number). Given a non-zero win-
dow value, say v, this implementation computes bv via
a table lookup: T [(v− 1)/2], where T is a precom-
puted table such that T [i] = bi∗2+1 mod N. Note com-
puting bv involves no secret-dependent branch, but dif-
ferent cache lines are accessed given different values of
v, hence, leading to practical cache-based timing attacks
(e.g., [34]). CacheD successfully detects such vulnera-
bilities in Libgcrypt (§7.3).

2.3 Threat Model

We consider an attacker who shares the same hardware
platform with the victim, a common scenario in the era
of cloud computing. Hence, the attacker may observe
cache accesses at different program locations along a
program execution trace. That is, we assume an at-
tacker can either directly or indirectly learn the trace
of cache lines being accessed during the execution of
the victim program. This strong threat model captures
most cache-based timing attacks in the literature, such
as an attacker who observes cache accesses by measur-
ing the latency of the victim program (e.g., cache reuse
attacks [43, 11, 10, 24] and evict-and-time attack [42]),
or the latency of the attacker’s program (e.g., prime-and-
probe attacks [42, 53, 11, 63, 34]).

Compared with previously categorized threat models
based on the abstraction of cache hit and miss (namely,
the time-based, trace-based and access-based models
[19, 51]), our more detailed model using the abstraction
of cache lines has a couple of benefits. Firstly, our threat
model is stronger than those based on cache hit/miss,
since in most architectures, a trace of cache lines being
accessed uniquely determines cache hit/miss at any pro-
gram point. Secondly, working on the cache line abstrac-
tion makes the vulnerability analysis more general, since
unlike cache hit/miss, the abstraction is independent of
cache implementation details, such as cache-replacement
policies, cache associativity and so on.

3 Method

3.1 Overview
In modern multicore and manycore architectures, the
cache behavior may bring drastic difference in the la-
tency of memory accesses (§2.1). Based on this observa-
tion, we propose a technique that detects potential timing
channels caused by variant cache behavior. More specif-
ically, we model cache lines being accessed as symbolic
formulas where sensitive program data are treated as free
variables during symbolic execution. In practice, sensi-
tive data are typically the private keys used in cryptosys-
tems and any data derived from those keys. With the help
of constraint solvers, we can logically deduce whether
sensitive data would affect the cache behavior of the pro-
gram and hence, reveal potential timing channels.

Operationally, given a program point where a memory
access occurs, we can model the memory address being
accessed as a symbolic formula F(~k), where ~k, as the
only free variables in F , stands for program secrets. By
substituting all occurrences of~k in F with new free vari-
ables ~k′, we can obtain another formula F(~k′). A satisfi-
able formula F(~k) 6= F(~k′) indicates that at this particu-
lar program point, the address used to access the memory
depends on the values of the secrets.

We further refine the formulation above regarding two
aspects. First, a difference in the memory address does
not imply a difference in the cache line being accessed.
That is, the low L bits (the line offset part in Fig. 1) of
the address are irrelevant to cache behavior. Therefore,
instead of trying to solve F(~k) 6=F(~k′), we construct F as
a bit vector and solve F(~k)� L 6= F(~k′)� L, where�
is the right shift operation on bit vectors. Second, a solu-
tion of the refined formula may not be feasible along the
trace under examination. For better precision, we aug-
ment the formula with the path condition (C) collected
along the already processed trace. The path condition
is the conjunction of all the branch conditions along the
trace before this memory access (assuming an SSA trans-
formation on the trace). The final formula for satisfiabil-
ity checking is then (F(~k)� L 6= F(~k′)� L) ∧ C.

3.2 Example
Consider the running example shown in Fig. 2, in which
the secret is used as the index of a table. By symbolizing
the secret as k, a memory access formula can be build
which presents the first table query (line 9) in the first
iteration of the loop as:1

F(k)≡ 10+4 · k mod 128

1Variable index is accumulated in the loop so further memory ac-
cess formulas are different.
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where 10 is assumed the base address of the table. This
formula can be further refined into a cache line access
formula as

F(k)� L≡ 10+4 · k mod 128� L

where L equals to 6 regarding the cache configuration of
most CPUs on the market (discussed in §2.1).

To find two secrets that result in different cache behav-
iors, we further replace symbol k in formula F(k) with a
fresh symbol, and check the satisfiability of F(k)� 6 6=
F(k′)� 6 using a theory prover; a reasonable solver will
answer yes, meaning the constraint is satisfiable, with a
solution such as

[k = 1,k′ = 30]

Hence, we have successfully identified that different se-
crets (e.g., 1 and 30) can lead to the access of different
cache lines at line 9 of the sample code. Actually, by
feeding different secrets (1 or 30) to this function, mem-
ory access in the above case hits cache line 0 or 1, which
enables attackers to launch cache probing attacks (e.g.,
prime-and-probe attacks [42, 53, 11, 63, 34]) to infer the
value of the secret.

Another obvious secret dependent memory access is
at line 10, which holds the memory access formula (also
for the first iteration of the loop) as:

G(k)≡ 10+4 · (k mod 128) mod 4

According to constraint solving, G(k)� 6 6= G(k′)� 6
is unsatisfiable at this time. That means, memory access
at line 10 always access the same cache line, and hence,
is immune to cache-probing attacks.

3.3 Scope and Limitations
Trace-based Analysis. CacheD is designed to analyze
execution traces of program executables. In general, low-
level analysis (such as analysis towards the execution
trace) is capable of capturing pitfalls or vulnerabilities
that are mostly ignored by analyzing the source code [5].
In addition, since the inputs to CacheD are execution
traces generated from program executables, CacheD is
also capable of identifying vulnerabilities introduced by
compiler optimizations or even commonly used obfusca-
tions without additional efforts. We take execution traces
as the input for CacheD because whole-binary symbolic
execution is mostly considered unscalable, even through
trace-based analysis loses some generality for only ana-
lyzing one or several execution paths. Moreover, since
we only keep symbols derived from the secret, pointers
which do not contain symbols can be updated with con-
crete values acquired from the execution trace.

Main Audiences. The main audiences of our work are
software developers: developers can use CacheD to “de-
bug” their software (through execution traces) and iden-
tify vulnerable program points that may lead to cache-
based timing attacks. Previously, finding such vul-
nerabilities are challenging—if possible at all—towards
industrial-strength cryptosystems.

The trace-based analysis is usually unable to cover
all program points; in other words, to produce execu-
tion traces that can cover the vulnerable code, it might
require deliberate selection of proper program inputs to
trigger the vulnerability. Although this coverage issue
is unavoidable in general, we assume developers them-
selves would be able to construct proper program inputs
and provide critical execution traces to CacheD. There
are also techniques, such as concolic testing [49, 22, 23],
developed in the software testing and verification com-
munity that can be leveraged.

On the other hand, considering the research objective
in this paper (i.e., cryptosystems), most critical proce-
dures (where vulnerabilities could exist) can indeed be
triggered by following the standard routines defined by
the cryptographic libraries. Evaluation details of our
work are presented in §7.

Adoption of Constraint Solver. In practice, searching
for different secret values that lead to different cache
behaviors is very complex and thus difficult for devel-
opers without resort to rigorous tools. For example,
the big and complex formula shown in Appendix A is
almost impossible for developers to deduce a solution.
Symbolic execution is considerably more precise than
traditional data-flow analysis, and when constraint
solver finds a solution for memory accessing formula,
it naturally provides counter examples that lead to the
variant cache accesses, making it easier for developers
to reveal underling issues in their software.

Soundness vs. Precision. CacheD is not sound in
the terminology of program analysis; that is, when
CacheD reports no vulnerability, it does not mean the
program under examination is free of cache-based
side-channel attacks. On the other hand, CacheD is
quite precise with few false positives. According to our
threat model, false positives only occur in scenarios
such as if the symbolic memory model is not precise
enough. Constraint solving will not introduce false
positives as a positive solution is really satisfiable for
the formula, but it might miss positives. In practice, our
evaluation also reports consistent findings that positive
cases studied in the hardware simulator can surely lead
to cache line access variance (details are given in §7.3).
We actually have not encountered any false positives
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Figure 3: The architecture of CacheD.

in our evaluation. As previously discussed, existing
research [19, 20] aims at reasoning the “upper-bound” of
information leakage through abstract interpretation, but
may not be precise enough due to over-approximation.
Moreover, CacheD distinguishes itself by being able to
point out where/what the vulnerability is, and provide
examples that are likely to trigger the issue. Considering
CacheD as a “debugging” or vulnerability detection tool,
it is equally important to adopt its precise and practical
techniques on side-channel detection.

4 Design

We present CacheD, a tool that delivers scalable detec-
tion of cache-based timing channels in real-world cryp-
tosystems. Fig. 3 shows the architecture of CacheD. In
general, given a binary executable with secrets as inputs,
we first get a concrete execution trace by monitoring its
execution (§4.1). The trace is then fed into CacheD to
perform taint analysis; we mark the secret as the taint
seed (§4.2) and propagate the taint information along the
trace to identify instructions related to the usage of the
secret.

CacheD then symbolizes the secret into one or sev-
eral symbols (each symbol represents one word), and
performs symbolic execution along the tainted instruc-
tions on the trace (§4.3). During the symbolic interpre-
tation, CacheD builds symbolic formulas for each mem-
ory access along the trace. Symbolic memory access for-
mulas are further analyzed using a constraint solver to
check whether cache behavior variations exist. As afore-
mentioned, we check the satisfiability of (F(~k)� L 6=
F(~k′) � L) ∧ C; if satisfiable, the solution to ~k and
~k′ represent different secret values that can lead to dif-
ferent cache behavior of this program point. The only
architecture-specific parameter to CacheD is the cache
line size. As discussed in §2.1, we set L to be 6 through-
out this paper since most CPUs on the market sets have
a cache-line size of 64. Next, we elaborate on challenges
and design of each step in the following sections.

4.1 Execution Trace Generation
CacheD takes a concrete program execution trace as its
input. In general, the execution trace can be generated by
employing dynamic instrumentation tools to monitor the
execution of the target program and dump the execution

trace. We assume the instrumentation tools also dump
the context information (including the value of every
register) of every executed instruction as well.

Locating Secrets in the Trace. Besides the dumped ex-
ecution trace and the context information, another input
of CacheD is the locations (e.g., a memory location or a
register) of the secrets in a program. This information
serves as the seed for the taint analysis and symbolic
execution in later stages.

While the secrets (e.g., the private key or a random
number) are usually obvious in the source code, it may
not be straightforward to identify the location of the se-
cret in an execution trace, since variable names are absent
in the assembly code. Treating this as a typical (man-
ual) reverse engineering task, our approach to searching
for the secrets in the assembly is to “correlate” mem-
ory reads with the usage of the key in the source code.
To do so, we identify the critical function in the source
code where the key is initialized and then search for the
function in the assembly code. The search space can be
further reduced by cutting the assembly code into small
regions according to the conditional jumps in the context.
With further reverse engineering effort in small regions,
we can eventually recognize the location of the secret in
the assembly code, as a register, or a sequence of mem-
ory cells in the memory.

Although currently this step is largely manual, it is
likely that it can be automated by a secret-aware com-
piler, which tracks the location of secrets throughout the
compilation; however, we leave this as future work.

4.2 Taint Analysis

CacheD leverages symbolic execution to interpret each
instruction along a trace to reason about memory ac-
cesses that are dependent on secrets. Our tentative tests
show that the symbolic-level interpretation is one perfor-
mance bottleneck of CacheD. However, we notice that
only a subset of instructions in a trace is dependent on
the secrets. Thus, a natural optimization in our context is
to leverage taint analysis to rule out instructions that are
irrelevant to the secret; the remaining instructions are the
focus of the more heavy-weight symbolic execution.

After reading the execution trace, CacheD first parses
the instructions into its internal representations. It then
starts the taint analysis from the first usage of the se-
cret. Following existing taint analyses (e.g., [48, 52]),
we propagate the taint information along the trace fol-
lowing pre-defined tainting rules that we discuss shortly.
After the taint analysis, we keep the instructions whose
operands are tainted.

Taint propagation rules define how tainted information
flows through instructions, memories and CPU flags, as
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well as what operations introduce new taint or remove
existing taint. Well-defined propagation rules should not
miss needed taint propagation, while keeping the set of
tainted memory cells as small as possible to reduce the
overhead of further heavy-weight analysis (i.e., symbolic
execution in our context). Considering the context of
cryptosystems, we now propose our taint propagation
rules as follows.

Taint Propagation for Registers. The propagation rules
for register-level operations are very straightforward. In
general, if a tainted variable flows to an untainted one,
then the latter will be tainted. On the other hand, we
delete the taint label on the information flow destination
if the source is not tainted.

Taint Propagation for Memory-related Opera-
tions. We now define the tainting rules for memory
operations. CacheD tracks the taint information for each
memory cell. More specifically, the taint module of
CacheD keeps a set, where each element is the address
of tainted memory cell. Taint operation inserts new
elements into this list, while untaint operation deletes the
corresponding element. Recall that we dump the context
information for each executed instruction (§4.1). For
each memory access, we compute the address through
the concrete register values recorded in the context
information. Hence, the memory address is always a
concrete value and memory-related taint propagation is
considered accurate.

Memory addressing defined in the x86 instruction set
can be divided into the base address and the memory
offset, each of which is maintained by a register or a
concrete value. Our tainting rule defines that whenever
the registers representing either the base address or the
offset are tainted, we would propagate the taint to the
contents of the accessed memory cells. Our tainting
rules are reasonable and avoid under-tainting, since in
general the secret content can be used as memory point-
ers (representing base addresses) as well as memory
offsets.

Taint Propagation for CPU Flags. In x86 in-
struction set, CPU flags participant in the computation of
many instructions and are also used to select branches.
To precisely track the secret information flow, CacheD
record taint propagations towards CPU flags.

In general, CPU flags could be modified according to
the computation results of certain instructions, for exam-
ple, flag ZF will be set to one if the result of an SUB (sub-
traction) operation is zero. In case any operand of a given
instruction is tainted, we taint all CPU flags that can be
affected by the current computation. In addition, taint la-
bel can also be propagated from CPU flags to registers

or memory cells; we taint registers or memory cells that
hold the computation result of an instruction whenever
tainted CPU flags participant the computation.

4.3 Symbolic Execution

We now introduce how we build the symbolic execution
module of CacheD. As previously mentioned (§4.2),
tainted instructions (i.e., instructions whose operands are
tainted) are kept after taint analysis. These instructions,
together with their associated context information, are
passed to the symbolic execution module; the location
of the secret is another input of symbolic execution. The
symbolic execution engine starts the interpretation at the
beginning of the first tainted instruction (i.e., the first
usage of the secret) and interprets each instruction until
the trace end.

Symbolization of the Secret. In general, secrets
(e.g., private key) can be maintained as a variable (as
shown in Fig. 2), an array, or a compound data structure.
Note that only the content of the secret (e.g., the value
of a private key) is considered as “secret” in our context.

If the secret is maintained as one variable (e.g., one
register or a memory cell on the stack), it is straight-
forward for symbolization. On the other hand, if the
secret is stored in a sequence of memory cells (e.g.,
one array, structure, or class instance), CacheD assigns
the base address (provided by programmers in previous
stage §4.1) to a special symbol. Further memory reads
using this special symbol as the base address is con-
sidered to access the secret content. CacheD generates
a fresh symbol (for simplicity’s sake, we name such
symbol as key symbol) each time when the memory read
has a different offset (since it indicates a different part of
the secret memory region is visited).

Design of the Symbolic Execution Engine. As
aforementioned (§3.1), we collect all the conditions (i.e.,
some formulas evolving CPU flags) of the branches
along the trace and conjunct them into the path condition.
Since the program execution trace can be effectively
viewed as the static single assignment (SSA) format, the
path condition is accumulated along the trace and it must
be always true at any execution point (otherwise the
execution trace is invalid). Our side-channel checking
is performed at every memory access. When encoun-
tering a memory access, CacheD pauses the symbolic
execution engine and sends the memory access formula
as well as the currently-collected path condition to the
solver. Consistent with our taint propagation rules which
captures information flow through memory accesses
(§4.2), for a memory load operation whose addressing
formula containing key symbols (i.e., either the base
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address or the memory offset is computed from secrets),
we would symbolize the memory cell with a fresh key
symbol if it is visited for the first time.

Symbolic Execution Memory Model. Symbolic
execution interprets programs with logical formulas
instead of concrete values so that the semantics captured
are not specific to a single input. However, some
program semantics are difficult to analyze when the
information flow is encoded symbolically, such as
dereferencing a symbolic pointer. In general, when a
symbolically executed program reads from the memory
using an abstract (symbolized) address, the execution
engine needs to decide the content read from the ad-
dress. On the other hand, when the program writes to
the memory using an abstract address, the engine needs
to decide how to update the memory status. The policy
that specifies those aspects is called a memory model.

When designing a symbolic execution engine, the
trade-off between scalability and precision should be
carefully considered. That is, we cannot employ a full-
fledged memory model that features abstract memory
chunks, since our tentative test shows that such mem-
ory model does not scale for the real-world applications.
Instead, our current design develop a memory model that
reasons symbolic pointers with their concrete values on
the trace, which is conceptually the same as other com-
monly used binary analysis platforms (e.g., the trace-
based analysis of BAP [14]).

5 Optimization

While taint analysis is efficient, symbolic execution and
constraint solving are time consuming in general. Here
we discuss several optimizations in CacheD.

Identify Independent Vulnerabilities. To capture
information flow through memory operations in sym-
bolic execution, we create a fresh key symbol for a
memory load of unknown positions whenever the base
or memory offset is computed from key symbols. In
this section, we propose a finer-grained policy, which
reveals “independent” vulnerable program points. The
key motivation is that, by studying the underlying mem-
ory layout, attackers would be able to learn relations
between the newly-created key symbol and the memory
addressing formula (which contains one or several key
symbols). Hence, we assume further vulnerabilities
revealed through the usage of this new key symbol
would mostly leak the same piece (or a subset) of secret
information (we elaborate on this design choice shortly).

We now present an example to motivate this optimiza-
tion. In general, for a memory load operation

load reg, [F(~k)]

where F(~k) is the memory addressing formula through
the secret~k, and reg stores the loaded content from the
memory. There exist three different cases regarding the
solution of our constraint solver:

• To test whether the array index, and hence the
fetched content, may differ in two executions with
different keys, CacheD checks the formula (F(~k) 6=
F(~k′)) ∧ C. If there is no satisfiable solution for this
formula, we interpret this memory access is inde-
pendent of the key. Thus, there is no need to create
a fresh key symbol; we update the memory load out-
put (i.e., reg in the above case) with concrete value
from the trace.
• If there exist satisfiable solutions for (F(~k)� L 6=

F(~k′)� L) ∧ C, it means we find an independent
vulnerable program point. As discussed above, fur-
ther vulnerable program points discovered through
the newly created key symbol (stored in reg) would
likely leak the same piece of secret information as
this vulnerability, thus “depending” on this point.
• The remaining case is that there is no satisfiable so-

lution for (F(~k)� L 6= F(~k′)� L) ∧ C while there
exists solutions for (F(~k) 6= F(~k′)) ∧ C. In other
words, while the current memory access does not
reveal a vulnerability, still, different secrets would
lead to the access of different memory cells, which
constructs an information flow. Hence, we create a
fresh key symbol and use it to update the memory
load output.

In general, we consider independent vulnerabilities
are highly informative to attackers; independent vul-
nerabilities probably indicate the most-likely attack
surface of the victim, because stealing secret through
“dependent” vulnerabilities need additional efforts to
learn the program memory layout. On the other hand,
memory layouts are feasible and likely to be learned
as precomputed data structures are widely deployed in
real-world cryptosystems to speed up the computation.
Overall, “dependent” vulnerabilities reveal an additional
attack surface which are commonly ignored by previous
research.

Early Stop Criterion of Symbolic Execution.
One vulnerable program point (e.g., a table query)
can be executed for one or more times during the
runtime (thus appearing more than once on the execution
trace). On the other hand, a program point can be
considered as “vulnerable” as long as one of its usage is
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confirmed vulnerable. Hence, while in general CacheD
symbolically interpret all the tainted instructions, one
early stop criterion adopted in CacheD is that we have
already identified at least one vulnerable memory access
for any tainted access relating to the same program point.

Domain knowledge of RSA and ElGamal im-
plementation. As previously discussed, our taint
propagation rule would taint the visited memory cells
whenever registers hold the base address or memory
offset are tainted. While this rule reasonably captures
the information flow through memory accesses, we
terminate the taint propagation for one specific case,
given the domain knowledge of cryptosystems being
analyzed.

To speed up processing, the sliding-window based
modular exponentiation algorithm leverages a two-level
“precomputed table” to store the modular exponentiation
values of the base regarding some predefined window-
sized value. Additionally, a precomputed size table is
deployed to store the length of each precomputed mod-
ular exponentiation value. Hence, most of the compu-
tation are substituted into two table lookups towards the
precomputed table and the size table through the window
size key. Appendix B presents the structure of a two-
level precomputed table used in Libgcrypt 1.6.1. Each
element in the first-level array stores a pointer referring
to the second level, and each second level array stores a
big integer (bv for some window-sized value v).

Our study of such tables shows that for non-trivial
decryptions (e.g., decrypt an encrypted message of
one character), the lengths of all the second-level
arrays are equal to N (we observed that N is fixed to
32 for RSA while 64 for ElGamal implementations
evaluated in §7). Hence, elements in the precomputed
size table are identical and the attacker would observe
the same output regardless of the secret input. In other
words, it is reasonable to assume secrets can hardly
be leaked by observing the table query outputs. Given
such observation, CacheD is optimized to terminate
the taint propagation towards the precomputed size table.

Trace Cut. CacheD is designed to analyze any
fragment of program execution trace, with a tradeoff of
performance and coverage. Ideally, we would like to
analyze the entire trace from the program entry point
until the end. With taint analysis (§4.2), the analysis
effectively starts from the beginning of the function
where the key is used for the first time. Besides, for
the RSA and ElGamal decryption, where the secret key
is used for multiple operations, we choose only critical
procedures (i.e., functions implemented the modular
exponentiation operation and their callees) that have
been the target for various timing attacks. Analyzing

Table 1: Cryptosystems analyzed by CacheD.
Algorithm Implementation Versions

RSA
Libgcrypt [32] 1.6.1, 1.7.3
OpenSSL [40] 0.9.7c, 1.0.2f

Botan [35] 1.10.13
ElGamal Libgcrypt [32] 1.6.1, 1.7.3

AES OpenSSL [40] 0.9.7c, 1.0.2f

the same procedure which has been well-studied from
different angles in the literature makes it easier to
compare our experiment results (in terms of re-discover
existing issue and identify unknown issue) with existing
work. On the other hand, there is no issue for CacheD to
analyze other standard computation procedures.

6 Implementation

CacheD is implemented in Scala, with over 4,800 lines
of code. The program execution trace is generated by
Pin [36], a widely-used dynamic binary instrumentation
tool. Pin provides infrastructures to intercept and instru-
ment the execution of a binary. During execution, Pin in-
serts the instrumentation code into the original code and
recompiles the output leveraging a Just-In-Time (JIT)
compiler. We develop a plugin of Pin (162 lines of C++
code) to log the executed instructions as well as the con-
text information during the execution. While our current
implementation (including CacheD and the Pin plugin)
analyzes binaries on the 32-bit Linux platforms (i.e., bi-
naries with the ELF format), we emphasize that the pro-
posed technique is mostly independent with the underly-
ing architecture details, and hence not difficult to port to
other platforms (e.g., Windows or 64-bit Linux).

CacheD leverages the widely-used constraint solver
Z3 [18] for constraint solving (Z3 provides Java API,
which bridges Z3 solver to our Scala code). In addi-
tion, we leverage bit vectors provided by Z3 to represent
the taint label of each general-purpose register as well as
symbols used in symbolic execution. Note that x86 in-
structions can manipulate the subset of each register, and
benefit from bit vectors, arbitrary operations on the sub-
set of each general-purpose register are supported with-
out additional effort. As aforementioned, we track the
taint towards CPU flags; a vector of one bit is created to
represent each CPU flag.

7 Evaluation

We evaluate CacheD on several real-world cryptographic
libraries. The cryptosystems used in our evaluation are
listed in Table 1. In sum, we evaluated CacheD on five
real-world cryptosystems in total, including nine differ-
ent implementations of three cryptographic algorithms,
RSA, AES, and ElGamal.
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Table 2: Evaluation results of different cryptographic algorithm implementations.
Algorithm Implementation Adopt the “Domain Knowledge Vulnerable Program Independent Vulnerable # of Instructions Processing Time

of RSA and Elgamal” Optimization (§6) Points (known/unknown) Points (known/unknown) on the Traces (CPU Seconds)
RSA Libgcrypt 1.6.1 2/20 2/0 26,848,103 11542.3
RSA Libgcrypt 1.7.3 0/0 NA 27,775,053 10788.9

ElGamal Libgcrypt 1.6.1 2/19 2/0 31,077,760 17044.8
ElGamal Libgcrypt 1.7.3 0/0 NA 31,407,882 12463.1

RSA OpenSSL 0.9.7c 5 0/2 0/1 674,797 199.3
RSA OpenSSL 1.0.2f 5 0/2 0/1 473,392 165.6
AES OpenSSL 0.9.7c 5 48/0 48/0 791 43.4
AES OpenSSL 1.0.2f 5 32/0 32/0 2,410 48.5
RSA Botan 1.10.13 0/29 0/2 2,005,124 7527.0
Total 84/72 84/4 120,265,312 59822.9

Experiment setup. All the cryptosystems are C/C++ li-
braries. We write simple programs to invoke the test li-
braries for key generation, encryption as well as decryp-
tion. We generate keys of 128 bits for AES experiments,
and keys of 2048 bits for other experiments. After gener-
ating the keys, for all test cryptographic algorithms, we
first use their encryption routines to encrypt a plain text
“hello world”. The encrypted message is then fed into
the decryption procedures. As previously introduced,
the execution traces of those decryption procedures are
logged for analysis. The programs are compiled into bi-
nary code on 32-bit Ubuntu 12.04, with gcc/g++ com-
piler (version 4.6.3).

7.1 Evaluation Result Overview
Vulnerability Identification. We present the breakdown
of the positives reported by CacheD in Table 2. As shown
in the table, most of the evaluated implementations are
reported to contain vulnerabilities that can lead to cache-
based side-channel attacks. Overall, CacheD reveal 156
(84 known and 72 unknown) vulnerable program points,
among which 88 (84 known and 4 unknown) program
points are independent. Considering the large number of
issues discovered by CacheD, we interpret the evaluation
result as promising.

In general, existing research has pointed out poten-
tial issues that can lead to the cache based side-channel
attacks on the implementation of sliding-window based
modular exponentiation [20], and such implementation
is leveraged by both RSA and ElGamal decryption pro-
cedures. In this research CacheD has successfully con-
firmed such already-reported issues. We present a de-
tailed study of two independent vulnerable program
points found in RSA implementation of Libgcrypt 1.6.1
in §7.3, and also compare our findings of RSA and ElGa-
mal with existing literatures in §7.4.1. Besides, consid-
ering its multiple rounds of table lookup, AES has also
been pointed out as vulnerable in terms of cache-based
side channel attacks by previous work [15]. CacheD re-
ports consistent findings in §7.4.2.

Moreover, CacheD has also successfully identified a
number of vulnerable program points in two widely-used

cryptosystems (Botan and OpenSSL). Those vulnerabil-
ities, to the best of our knowledge, are unknown to ex-
isting research (the “unknown” issues). We elaborate on
these identified issues in §7.5.

We also evaluate CacheD towards the RSA and
ElGamal implementations of Libgcrypt 1.7.3, which are
considered as safe from information leakage since there
is no secret-dependent memory access. CacheD reports
no vulnerable program point in both the ElGamal and
RSA implementations. Indeed, taint analysis of CacheD
identifies zero secret-dependent memory access in both
implementations. Although trace-based analysis is in
general not sufficient to “prove” a cryptosystem as free
of information leakage, considering related research as
less scalable ([19]), CacheD presents a scalable and prac-
tical way to study such industrial strength cryptosystems.

Processing Time. We also report the processing
time of CacheD in Table 2. The experiments use a
machine with a 2.90GHz Intel Xeon(R) E5-2690 CPU
and 128GB memory. Table 2 presents the number of
processed instructions and the processing time for each
experiment. In general, we evaluate CacheD regarding
five industrial-strength cryptosystems, with over 120
million instructions in total. Table 2 shows that all
the experiments can be finished within 5 CPU hours.
We interpret the processing time of CacheD as very
promising, and this evaluation faithfully demonstrates
the high scalability of CacheD in terms of real-world
cryptosystems.

Our evaluation also shows the proposed optimizations
(§5) are effective, which surely improve the overall scal-
ability of CacheD. Indeed tentative implementation of
CacheD (without optimizations) times out after 20 hours
to process the ElGamal Libgcrypt 1.6.1 test case. On the
other hand, we observed that CacheD becomes slower
largely due to the nature of symbolic execution; with
more symbolic variables and formulas carried on, every
further reasoning can take more time. In addition, since
symbolic formulas can grow larger during interpretation
(e.g., variables are manipulated for iterations in a loop),
solver could probably encounter more challenging prob-
lems during further constraint solving. Also, branch con-
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Table 3: Gem5 configurations.
ISA x86

Processor type single core, out-of-order
L1 Cache 4-way, 32KB, 2-cycle latency
L2 Cache 8-way, 1MB, 50-cycle latency

Cache line size 64 Bytes
Cache replacement policy LRU

Table 4: Results of executing test cases under gem5.
Algorithm Implementation Observe the Access of Observe Different Cache

Different Cache Lines Status (hit vs. miss)
RSA Libgcrypt 1.6.1

ElGamal Libgcrypt 1.6.1
RSA OpenSSL 0.9.7c
RSA OpenSSL 1.0.2f
AES OpenSSL 0.9.7c
AES OpenSSL 1.0.2f
RSA Botan 1.10.13

ditions are accumulated along the trace; more constraints
need to be solved, which leads to performance penalties
as well.

7.2 Exploring the Positives

To study whether the positives can lead to real cache dif-
ference during execution, we employ a commonly-used
computer architecture simulator—gem5 [9]—to check
the identified vulnerable program points. As previ-
ously discussed (§5), independent vulnerable program
points (88 in total) are considered as mostly informative;
“dependent” vulnerable program points would mostly
leak the same piece of information as independent ones.
Hence in this step, we focus on the check of indepen-
dent vulnerable program points. While CacheD identi-
fies 8 independent vulnerabilities in the RSA and ElGa-
mal implementations, 80 program points are reported as
vulnerable in two AES implementations. Without losing
generality, we check all the independent vulnerabilities
for RSA and ElGamal, while only checking the first four
vulnerabilities for these two AES implementations.

As aforementioned, for each vulnerable program
point, the constraint solver provides at least one satis-
fiable solution (i.e., a pair of~k and~k′) that leads to the
access to different cache lines. Hence, for each vulnera-
ble program point, we instrument the source code of the
corresponding test program to modify secrets with~k and
~k′; we then compile the source code into two binaries.
We monitor the execution of instrumented binaries
using the full-system simulation mode of gem5, and
intercept cache access from CPU to L1 Data Cache. The
full-system simulation uses Ubuntu 12.04 with kernel
version 3.2.1.2 Table 3 presents the configurations.

2The full-system simulation mode of gem5 only supports 64-bit ker-
nels. Also, we compiled the instrumented source code into 64-bit bi-
naries since the simulated OS threw some TLB translation exceptions
when executing 32-bit binaries.

Results. When executing each vulnerable program
point (i.e., a memory access), we record the visited
cache line as well as the cache status of this cache
line. Table 4 present the results. By comparing cache
traffic of executing binaries with secret ~k or ~k′, we
have confirmed that memory accesses at all vulnerable
program points indeed visited different cache lines. We
have also confirmed that cache statuses are different at
the vulnerable program points for most of the test cases.

There are two test cases (row 5 and 7 in Table 4)
that show identical cache status at the vulnerable pro-
gram points. Note that we only record cache status at the
memory access of these vulnerable points (some exam-
ples are given shortly in Fig. 4c); it is likely that the ac-
cesses to different cache lines actually lead to cache be-
havior variations during further program execution. On
the other hand, given our current conservative observa-
tion, still, most of the test cases reveal noticeable cache
difference. We will present detailed study of the RSA
Libgcrypt 1.6.1 (row 2 in Table 4) in §7.3.

In general, we consider the evaluation results as quite
promising; while previous work (e.g., [19]) performs
overall reasoning of the program information leakage up-
per bound and lack of information on what/where the
vulnerability is, CacheD fills the gap by providing con-
crete examples to trigger cache behavior variations at its
discovered program points.

7.3 Case Study of RSA Vulnerabilities

In this section, we present a case study of two identified
vulnerable program points, with detailed explanation in
terms of the source code patterns as well as hardware
simulation results.

As presented in Table 2, we identified two independent
vulnerable program points in the RSA implementation of
Libgcrypt 1.6.1. Source code shown in Fig. 4a is found in
the sliding-window implementation of the modular expo-
nentiation algorithm; we have confirmed that two iden-
tified independent vulnerable program points represent
table queries at line 13 and 14. Indeed, e is an element
of the secret array (line 5; thus e is secret), and e0 is a
sliding window of e (line 9). e0 is used to access the first
level of the precomputed table (line 13) and precomputed
size table (line 14). Intuitively, different e0 accesses dif-
ferent table entries, which potentially leads to different
cache line and eventually leaks the secret (i.e., e).

When analyzing the execution trace, CacheD success-
fully identified two secret-dependent memory accesses
(line 4-5 in Fig. 4b), and by inquiring the constraint
solver, CacheD finds two pairs of e that can lead to
the access of different cache lines for the first and sec-
ond memory accesses, respectively (the “solutions” in
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1 void gcry mpi powm (gcry mpi t res,
2 gcry mpi t base,
3 gcry mpi t expo, gcry mpi t mod) {
4 ...
5 e = ep[i];
6 count leading zeros (c, e);
7 e = (e << c) << 1;
8 ...
9 e0 = (e >> (BITS PER MPI LIMB − W));

10 count trailing zeros (c0, e0);
11 e0 = (e0 >> c0) >> 1;
12 ...
13 base u = b 2i3[e0 - 1];
14 base u size = b 2i3size[e0 - 1];
15 ...
16 }

(a) Source code.

1 ...
2 mov edx, [esp+0x38]
3 sub edx, 0x1
4 mov ecx, [esp+edx*4+0xb8]
5 mov edx, [esp+edx*4+0xf4]
6 mov esi, [esp+0x24]
7 ...

1 Solution of the first mem access (line 4):
2 e = 0x10000016
3 e’= 0x1000003e
4
5 Solution of the second mem access (line 5):
6 e = 0x400500d
7 e’= 0x1007c

(b) Instructions on the dumped trace and solutions
provided by the solver.

1 0x44156a: 0x7fffffffe440 hit
2 0x441572: 0x7fffffffe3c8 hit
3 0x44156a: 0x7fffffffe438 hit
4 0x441572: 0x7fffffffe3c4 hit
5 0x44156a: 0x7fffffffe3d8 hit
6 0x441572: 0x7fffffffe394 hit
7 0x44156a: 0x7fffffffe408 hit
8 0x441572: 0x7fffffffe3ac hit

1 0x44156a: 0x7fffffffe3f0 hit
2 0x441572: 0x7fffffffe3a0 hit
3 0x44156a: 0x7fffffffe438 hit
4 0x441572: 0x7fffffffe3c4 hit
5 0x44156a: 0x7fffffffe3d8 miss
6 0x441572: 0x7fffffffe394 miss
7 0x44156a: 0x7fffffffe408 miss
8 0x441572: 0x7fffffffe3ac hit

(c) Hardware simulation results for the first mem-
ory access (e is 0x10000016 and e’ is 0x1000003e).

Figure 4: Case study of two independent RSA vulnerable program points in Libgcrypt 1.6.1. The vulnerable program
points and the corresponding memory access instructions on the trace are bold. The tainted variable in source code
and trace are red, and e is secret (line 5 in Fig. 4a). Note that base u size is not tainted regarding the optimization
of RSA precomputed size table (§5).

Fig. 4b). To confirm the findings, we compile four pro-
gram binaries with modified e regarding the solutions.

Fig. 4c shows the simulation outputs using gem5. Due
to the limited space, we only provide the first eight
records for the first vulnerable program point (there are
604 records in total). The first column of each output rep-
resents the program counters; the second column shows
the accessed memory addresses and the last column is
the cache statuses of the accessed cache lines. Note that
program counter 0x44156a and 0x441572 represent the
first and second vulnerable program points, respectively.
Comparing these two results, we can observe that dif-
ferent cache lines are accessed (corresponding memory
addresses are marked as red at line 1-2), which further
leads to timing difference of three cache hit vs. miss
(corresponding cache statuses are marked as red at line
5-7). Simulation results for the second memory access
are omitted due to the limited space. We report to have
similar observations.

Consistent with the existing findings, these two ta-
ble queries are also reported as vulnerable by previous
work [20]. According to our taint policy, the table query
output (base u) would be tainted since e0 is tainted. Our
study also shows that memory access through base u

would reveal another twenty vulnerable program points
(row 2 in Table 2). Moreover, this modular exponentia-
tion function is used by both RSA and ElGamal decryp-
tion procedures; two independent vulnerable program
points found in the ElGamal implementation (row 4 in
Table 2) are also due to these table queries.

7.4 Known Vulnerabilities

We also evaluate CacheD by confirming known side-
channel vulnerabilities.

7.4.1 RSA and ElGamal in Libgcrypt

Function gcry mpi powm (Fig. 4a) found in the
Libgcrypt (1.6.1) sliding-window implementation of the
modular exponentiation algorithm is vulnerable. Note
that such implementation indeed is used by both RSA
and ElGamal decryption procedures. We have already
presented results and a case study in §7.3. Besides those
two independent program points, CacheD finds 19 vul-
nerable program points in the ElGamal implementation
and 20 points in the RSA implementation Table 2.

Consistent with previous work [20], CacheD confirms
two vulnerable program points in the Libgcrypt (1.6.1)
that can lead to cache-based timing attacks. On the other
hand, while previous work [20] only reports potential
timing channels through these two direct usage of se-
crets, CacheD can actually detect further unknown (to
the best of our knowledge) pitfalls (around 20 unknown
points for each). The results show that CacheD can pro-
vide developers with more comprehensive information
regarding side-channel issues.

7.4.2 AES in OpenSSL

We also analyzed the positive results identified in
AES implementations of OpenSSL (version 0.9.7c and
1.0.2f). In general, standard AES decryption undertakes
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a three-step approach for decryption, in which the sec-
ond and third steps consist of (multiple rounds) lookup
table queries through blocks of secrets. Intuitively, such
secret-dependent table queries could reveal considerable
amount of timing-channel vulnerabilities.

Our evaluation has confirmed this intuition. CacheD
successfully identifies 48 vulnerable program points
for OpenSSL (0.9.7c). Indeed all of the identified
program points are lookup table queries through se-
crets, which is consistent with previous research [15].
Analysis of another OpenSSL (1.0.2f) gave similar re-
sults: CacheD identifies 32 vulnerable program points of
secret-dependent lookup table queries (Table 2).

7.5 Unknown Vulnerabilities

CacheD also successfully identifies several potential vul-
nerabilities that have not been reported in public, to the
best of our knowledge.

7.5.1 RSA in OpenSSL

CacheD reported two positive results in each OpenSSL
implementation (version 0.9.7c and version 1.0.2f) of the
RSA decryption procedure. CacheD further identified
one independent vulnerable point for each implementa-
tion. Appendix C presents the source code in which the
independent positive is discovered. Before performing
the modular exponentiation, function BN num bits cal-
culates the length of the secret key by bit. The secret key
information is represented by a BIGNUM structure pointed
by a, with the key value stored in a byte buffer a->d

and the length of the buffer stored in a->top, respec-
tively. Since the key length by bit may not be a mul-
tiple of the key length by byte, the code uses a lookup
table in BN num bits word to determine the exact num-
ber of bits in the last entry of a->d. CacheD points out
that accessing this lookup table will lead to a cache dif-
ference, thus leaking information about the most signif-
icant several bits of the secrete key which are stored in
a->d[a->top - 1]. Results in §7.2 also support our
finding. In addition, CacheD also identified another vul-
nerable program point which is derived from the output
of this table query (row 6-7 in Table 2).

We also find the same implementation that could lead
to timing channels in its most recent releases (released
in late Sep. 2016): version 1.0.2j, version 1.1.0b, and
version 1.0.1u.

7.5.2 RSA Implementation in Botan

Another vulnerability found by CacheD is in the Botan
(1.10.13) implementation of RSA, whose source code is
shown in Appendix D. The Montgomery exponentiator

is an algorithm for modular exponentiation. Similar to
the Libgcrypt (1.6.1) implementation of RSA (Fig. 4a), a
precomputed table is employed to cache some intermedi-
ate results and a sliding window of the secret key is used
to query the table (line 9). The queried output is main-
tained as a BigInt class instance and it is represented as
a symbol of the key according to our taint propagation
rules (§4.3). Later, when the class method sig words

is invoked (line 13), two memory accesses (line 19-20)
through the key symbol are captured by CacheD (note
that reg at line 19 is a private variable of class BigInt).

Our constraint solver has proved that there are multi-
ple satisfiable solutions for both the first and the second
memory access (line 19-20). Moreover, by employing
different secrets provided by the solver, we report to ob-
serve cache behavior variations in the hardware simula-
tor (§7.2). In addition, the memory query output (x at
line 19) is used to access memories later, which results
into 27 “dependent” vulnerable program points (row 10
in Table 2).

Besides the implementations evaluated in this work
(version 1.10.13), we notice that this vulnerability af-
fects several other versions of Botan, including 1.10.12,
1.10.11, and 1.11.33.

8 Related Work

8.1 Timing attacks

One major motivation for controlling timing channels
is the protection of cryptographic keys against side-
channels arising from timing attacks. Since the seminal
paper of Kocher [30], attacks that exploit timing chan-
nels have been demonstrated on RSA [13, 30, 3, 45, 59],
AES [24, 42, 53] and ElGamal [63].

Shared data cache is shown to be a rich source of
timing channels. The potential risk of cache-based tim-
ing channels was first identified by Hu [26]. Around
2005, real cache-based timing attacks are demonstrated
on AES [8, 42], and RSA [45]. Since then, more practi-
cal timing attacks are emerging. Previous work shows
the practicality of various timing attacks utilizing the
shared data: among VMs in multi-tenant cloud [50].
Timing attacks are shown to be a potential risk across
VMs [57, 56, 47], and more evidence is emerging show-
ing practical timing attacks that break crypto systems
[63, 59, 34]. Recent work [41] presents a successful
cache attack where the victim merely has to access a
website owned by the attacker.
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8.2 Mitigation of cache-based timing chan-
nels

Much prior application-level mitigation only handles
timing leakage due to secret-dependent control flows [4,
25, 38, 7, 17, 44]. However, as shown in recent cache-
based timing attacks [24, 42, 53, 59, 34], subtle tim-
ing leakage survives even with the absence of secret-
dependent control flows. Recently, advanced program
analyses are proposed to identify those subtle cache-
based timing channels [6, 19, 20, 60], but they only pro-
vide an upper-bound on timing-based information leak-
age; it is unclear what/where the vulnerability is when
those tools report a non-zero upper bound.

At the system level, Düppel [64] clears L1 and L2
cache before context switching; but it cannot mitigate
the last-level cache-based attack, such as [34]. Stealth-
Mem [21, 29] manages a set of locked cache lines per
core, which are never evicted from the cache. But its
security relies on the assumption that “crucial” data was
identified in the first place. But doing so nontrivial. For
instance, the crucial data in AES is the lookup table,
which only stores public data.

At the hardware level, one direction of mitigating
cache-based timing channels is to either physically or
logically partition the data cache [43, 54, 31, 61]. Line-
locking cache was also implemented in hardware [54].
New hardware designs, such as RPCache [54], New-
Cache [55], and random fill cache [33], inject random
noises to cache delay to confuse attackers. Common to
those hardware-based mitigation mechanisms is the as-
sumption that “crucial” data was identified by the soft-
ware, where CacheD can be helpful.

9 Conclusion

To help developers improve the implementations of soft-
ware that is sensitive to information leakage, we have
developed a tool called CacheD to detect potential tim-
ing channels caused by the differences of cache behav-
ior. With the help of symbolic execution techniques,
CacheD models the memory addresses at each program
point as logical formulas so that constraint solvers can
check whether sensitive program data affects cache be-
havior, thus revealing potential timing channels. CacheD
is scalable enough for analyzing real-world cryptosys-
tems with decent accuracy. We have evaluated a proto-
type of CacheD with a set of widely used cryptographic
algorithm implementations. CacheD is able to detect
a considerable number of side-channel vulnerabilities,
some of which are previously unknown to the public.
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Figure 5: Two-level precomputed table and precomputed
size table used in RSA and ElGamal. Our observation
shows that the length of all the second-level precomputed
tables are equal in non-trivial decryption processes of
RSA and ElGamal. In other words, attackers can hardly
infer k0 by observing query outputs of the precomputed
size table.

C Unknown RSA Vulnerabilities in
OpenSSL

1 int BN num bits(const BIGNUM ∗a) {
2 BN ULONG l;
3 int i;
4
5 bn check top(a);
6
7 if (a−>top == 0) return(0);
8 l=a−>d[a−>top−1];
9 assert(l != 0);

10 i=(a−>top−1)∗BN BITS2;
11 return(i+BN num bits word(l));
12 }
13
14 int BN num bits word(BN ULONG l) {
15 static const char bits[256]={
16 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,
17 5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
18 ...
19 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
20 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
21 };
22 ....
23 return bits[l];
24 }

Figure 6: Unknown RSA vulnerabilities found in
OpenSSL (version 0.9.7c and 1.0.2f). The tainted vari-
able (i.e., secret) l is red and the vulnerable program
point is bold.

D Unknown RSA Vulnerabilities in Botan

1 BigInt Montgomery Exponentiator::execute() const {
2 ...
3 for(size t i = exp nibbles; i > 0; −−i) {
4 ...
5 const u32bit nibble = exp.get substring(
6 window bits∗(i−1), window bits);
7
8 //note that the following code is not a mem access
9 const BigInt& y = g[nibble];

10
11 bigint monty mul(&z[0], z.size(),
12 x.data(), x.size(), x.sig words(),
13 y.data(), y.size(), y.sig words(),
14 ...
15 }
16 }
17
18 size t sig words() const {
19 const word* x = &reg[0];
20 size t sig = reg.size();
21 ...
22 }

Figure 7: Unknown RSA vulnerabilities found in the
Montgomery exponentiator of Botan (version 1.10.13).
Tainted variables are marked as red and the vulnerable
program points are bold. sig is not tainted according to
the optimization of RSA precomputed size table (§5).
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Abstract

Detecting differences between two binary executables
(binary diffing), first derived from patch analysis, have
been widely employed in various software security anal-
ysis tasks, such as software plagiarism detection and
malware lineage inference. Especially when analyzing
malware variants, pervasive code obfuscation techniques
have driven recent work towards determining semantic
similarity in spite of ostensible difference in syntax. Ex-
isting ways rely on either comparing runtime behaviors
or modeling code snippet semantics with symbolic exe-
cution. However, neither approach delivers the expected
precision. In this paper, we propose system call sliced
segment equivalence checking, a hybrid method to iden-
tify fine-grained semantic similarities or differences be-
tween two execution traces. We perform enhanced dy-
namic slicing and symbolic execution to compare the
logic of instructions that impact on the observable behav-
iors. Our approach improves existing semantics-based
binary diffing by 1) inferring whether two executable bi-
naries’ behaviors are conditionally equivalent; 2) detect-
ing the similarities or differences, whose effects spread
across multiple basic blocks. We have developed a pro-
totype, called BinSim, and performed empirical eval-
uations against sophisticated obfuscation combinations
and more than 1,000 recent malware samples, includ-
ing now-infamous crypto ransomware. Our experimental
results show that BinSim can successfully identify fine-
grained relations between obfuscated binaries, and out-
perform existing binary diffing tools in terms of better
resilience and accuracy.

1 Introduction

An inherent challenge for reverse engineering is the
source code of the program under examination is typi-
cally absent. The binary executable becomes the only
available resource to be analyzed. The techniques to de-

tect the difference between two executables (binary diff-
ing) have been applied to a broad range of reverse en-
gineering tasks. For example, the difference between a
pre-batched binary and its updated version reveals the
fixed vulnerability [23, 54], and such information can
be exploited by attackers to quickly generate “1-day”
exploit [9, 50]. The similarity between an intellectual
property protected binary and a suspicious binary indi-
cates a potential case of software plagiarism [41, 73]. A
more appealing application emerges in malware analysis.
According to the latest Panda Security Labs study [53],
many malware samples in circulation are not brand new
but rather evolutions of previously known malware code.
Relentless malware developers typically apply various
obfuscation schemes (e.g., packer, polymorphism, meta-
morphism, and code virtualization) [51, 57] to camou-
flage arresting features, circumvent malware detection,
and impede reverse engineering attempts. Therefore, an
obfuscation-resilient binary diffing method is of great ne-
cessity.

Pervasive code obfuscation schemes have driven bi-
nary diffing methods towards detecting semantic similar-
ity despite syntactical difference (e.g., different instruc-
tion sequences or byte N-grams). Existing semantics-
aware binary diffing can be classified into two cate-
gories. The first one compares runtime execution behav-
iors rather than instruction bytes. Since dynamic analysis
has good resilience against code obfuscation [48], there
has been a notable amount of work to measure the simi-
larities of program behavior features, such as system call
sequences and dependency graphs [6, 12, 14]. However,
the program of interest may not involve unique system
call sequence [73]. Furthermore, dynamic-only methods
neglect subtle differences that do not reflect on the be-
havior change. In that case, two matched system calls
may carry different meanings.

The second category relies on measuring the seman-
tics of two pieces of binary code [54, 41, 37, 25, 43],
which is usually based on basic block semantics mod-
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eling. At a high level, it represents the input-output
relations of a basic block as a set of symbolic for-
mulas, which are later proved by either a constraint
solver [41, 15, 25, 43], random sampling [54] or hash-
ing [37] for equivalence. Although these tools are effec-
tive against moderate obfuscation within a basic block,
such as register swapping, instruction reordering, in-
struction substitution, and junk code insertion [51], they
exhibit a common “block-centric” limitation [13, 37];
that is, it is insufficient to capture the similarities or
differences that go beyond a single basic block bound-
ary. This issue stems from the fact that the effect of
code transformations spreads across basic blocks, such
as return-oriented programming encoding [40, 55], virtu-
alization obfuscation’s decode-dispatch loop [61], covert
computation [59], and different implementation algo-
rithms [56].

In this paper, we propose a hybrid method, BinSim,
to address the limitations of existing binary diffing ap-
proaches. We attempt to identify fine-grained relations
between obfuscated binary code. BinSim leverages a
novel concept and technique called System Call Sliced
Segments and their Equivalence Checking. This new
technique relies on system or API calls1 to slice out cor-
responding code segments and then check their equiv-
alence with symbolic execution and constraint solving.
Starting from the observable behavior, our approach
integrates symbolic execution with dynamic backward
slicing to compare the behavior-related instruction seg-
ments. We find that two matched system calls together
with their arguments may carry different meanings. Our
approach can answer whether two matched API calls
are conditional equivalent [31]. Note that the behavior-
related instruction segments typically bypass the bound-
ary of a basic block so that we are more likely to detect
similarities or differences that spread across basic blocks.

More precisely, we run two executables in tandem un-
der the same input and environment to record their de-
tailed execution data. Then, we rely on an advanced
bioinformatics-inspired approach [34] to perform system
call sequence alignment. After that, we trace back from
the arguments of the matched system calls to determine
instructions that directly (data flow) or indirectly (con-
trol flow) impact on the argument values. However, the
standard dynamic slicing algorithm [80] does not suf-
fice to operate at the obfuscated binaries. Our enhanced
backward slicing considers many tricky issues and deals
with obfuscation schemes that cause undesired slice ex-
plosion. Next, we calculate weakest preconditions (WP)
along the dynamic slice. The resulting WP formulas ac-
cumulated in the two slices are then submitted to a con-
straint solver to verify whether they are equivalent. Now

1The system calls in Windows are named as native API. We also
consider part of Windows API calls as a proxy for system calls.

determining whether two matched system calls are truly
equivalent under current path conditions boils down to a
query of equivalence checking.

We have developed a prototype of BinSim on top of
the BitBlaze [66] binary analysis platform. Experimen-
tal results on a range of advanced obfuscation schemes
are encouraging. Compared with a set of existing bi-
nary diffing tools, BinSim exhibits better resilience and
accuracy. We also evaluate BinSim and existing tools
on more than 1,000 recent malware samples, includ-
ing highly dangerous and destructive crypto-ransomware
(e.g., CryptoWall) [32, 33, 58]. The results show that
BinSim can successfully identify fine-grained relations
between obfuscated malware variants. We believe Bin-
Sim is an appealing method to complement existing mal-
ware defenses.

Scope and Contributions BinSim is mainly designed
for fine-grained individual binary diffing analysis. It is
an ideal fit for security analysts who need further investi-
gation on two suspicious binaries. The previous work on
large-scale coarse-grained malware comparison [6, 28] is
orthogonal and complementary to BinSim. In summary,
the contributions of this paper are as follows.

• BinSim presents a novel concept, System Call
Sliced Segment Equivalence Checking, that relies
on system or API calls to slice out corresponding
code segments and then checks their equivalence
with symbolic execution and constraint solving.

• BinSim can detect the similarities or differences
across multiple basic blocks. Therefore, BinSim
overcomes the “block-centric” limitation (Existing
Method 2) to a great extent. Compared to dynamic-
only approaches (Existing Method 1), BinSim pro-
vides more precise results, such as whether two pro-
grams’ behaviors are conditionally equivalent.

• Performing dynamic slicing on the obfuscated bi-
naries is rather tricky and complicated. The redun-
dant instructions introduced by indirect memory ac-
cess and fake control/data dependency can poison
the slicing output. We improve the standard algo-
rithm to produce more precise result.

• Unlike previous work that evaluates the efficacy
of binary diffing either on different program ver-
sions [7, 25, 49], different compiler optimization
levels [21, 41] or considerably moderate obfusca-
tion [37, 41], we evaluate BinSim rigorously against
sophisticated obfuscation combinations and recent
malware. To the best of our knowledge, this is the
first work to evaluate binary diffing in such scale.
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2 Motivation and Overview

In this section, we first discuss the drawbacks of current
semantics-aware binary diffing approaches. This also in-
spires us to propose our method. We will show C code
for understanding motivating examples even though Bin-
Sim works on binary code. At last, we introduce the ar-
chitecture of BinSim.

2.1 Motivation

Binary diffing methods based on behavior features (e.g.,
system call sequence or dependency graph) are prevalent
in comparing obfuscated programs, in which the accu-
rate static analysis is typically not feasible [48]. How-
ever, such dynamic-only approaches may disregard some
real different semantics, which are usually caused by in-
struction level execution differences. Figure 1 presents
such a counterexample, which lists three similar pro-
grams in the view of source code and their system call
dependencies. Given any input x ≥ 0, the three sys-
tem call sequences (NtCreateFile → NtWriteFile

→ NtClose) together with their arguments are identi-
cal. Besides, these three system calls preserve a data
flow dependency as well: one’s return value is passed to
another’s in-argument (as shown in Figure 1(d)). There-
fore, no matter comparing system call sequences or de-
pendency graphs, these three programs reveal the same
behavior. However, if we take a closer look at line 3
and 4 in Figure 1(b), the two statements are used to cal-
culate the absolute value of x. That means the input
value y for NtWriteFile in Figure 1(a) and Figure 1(b)
differs when x < 0. In another word, these two pro-
grams are only conditionally equivalent. Note that by
random testing, there is only about half chance to find
Figure 1(a) and Figure 1(b) are different. Recently, the
“query-then-infect” pattern has become common in mal-
ware attacks [77], which only target specific systems in-
stead of randomly attacking victim machines. When this
kind of malware happens to reveal the same behavior,
dynamic-only diffing methods may neglect such subtle
conditional equivalence and blindly conclude that they
are equivalent under all conditions.

Another type of semantics-aware binary diffing uti-
lizes symbolic execution to measure the semantics of the
binary code. The core of current approaches is matching
semantically equivalent basic blocks [25, 37, 41, 43, 54].
The property of straight-line instructions with one en-
try and exit point makes a basic block a good fit for
symbolic execution (e.g., no path explosion). In con-
trast, symbolic execution on a larger scope, such as a
function, has two challenges: 1) recognizing function
boundary in stripped binaries [5]; 2) performance bot-
tleneck even on the moderate size of binary code [46].

Such block-centric methods are effective in defeating
instruction obfuscation within a basic block. Figure 2
presents two equivalent basic blocks whose instructions
are syntactically different. Their output symbolic formu-
las are verified as equivalent by a constraint solver (e.g.,
STP [24]). However, there are many cases that the se-
mantic equivalence spread across the boundary of a ba-
sic block. Figure 3 presents such an example, which con-
tains three different implementations to count the number
of bits in an unsigned integer (BitCount). Figure 3(a)
and Figure 3(b) exhibit different loop bodies, while Fig-
ure 3(c) has merely one basic block. Figure 3(c) imple-
ments BitCount with only bitwise operators. For the
main bodies of these three examples, we cannot even find
matched basic blocks, but they are indeed semantically
equivalent. Unfortunately, current block-centric binary
diffing methods fail to match these three cases. The dis-
assembly code of these three BitCount algorithms are
shown in Appendix Figure 11.

Figure 4 shows another counterexample, in which the
semantic difference spreads across basic blocks. When
a basic block produces multiple output variables, exist-
ing block-centric binary diffing approaches try all possi-
ble permutations [54, 41, 25] to find a bijective mapping
between the output variables. In this way, the two basic
block pairs in Figure 4 (BB1 vs. BB1’ and BB2 vs. BB2’)
are matched. Please note that the input variables to BB2
and BB2’ are switched. If we consider the two sequen-
tial executed basic blocks as a whole, they will produce
different outputs. However, the current block-centric ap-
proach does not consider the context information such as
the order of matched variables. Next, we summarize pos-
sible challenges that can defeat the block-centric binary
diffing methods.

1. The lack of context information such as Figure 4.

2. Compiler optimizations such as loop unrolling
and function inline, which eliminate conditional
branches associated.

3. Return-oriented programming (ROP) is originally
designed as an attack to bypass data execution pre-
vention mechanisms [60]. The chain of ROP gad-
gets will result in a set of small basic blocks.
ROP has been used as an effective obfuscation
method [40, 55] to clutter control flow.

4. Covert computation [59] utilizes the side effects
of microprocessors to hide instruction semantics
across a set of basic blocks.

5. The same algorithm but with different implemen-
tations such as Figure 3, Figure 12, and Fig-
ure 13. More examples can be found in Hacker’s
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1: int x, y; // x is an input
2: HANDLE out = CreateFile("a.txt", …); 
3: y = x + x;
4: WriteFile(out, &y, sizeof y, …);
5: CloseHandle(out);

1: int x, y; // x is an input
2: HANDLE out = CreateFile ( "a.txt", … ); 
3: y = x << 1;
4: WriteFile ( out, &y, sizeof y, … );
5: CloseHandle ( out );

1: int x, y, z; // x is an input
2: HANDLE out = CreateFile("a.txt", …);  
3: z = (x >> 31);
4: z = (x ^ z) - z; // z is the absolute value of x 
5  y = 2 * z; 
6: WriteFile(out, &y, sizeof y, …);
7: CloseHandle(out);

(a) (b)

(c)

NtClose

NtCreateFile

NtWriteFile

HANDLE: out
int: y

input

HANDLE: out

(d) System call (Windows native API)
sequence and dependency

Figure 1: Example: system calls are conditional equivalent.

Basic block 1

xor eax, -1
add eax, 1
jmp loc_0022

Output

Symbolic input:
eax = 1

eax = ( 1 ^ -1) + 1

Semantically
equivalent

Basic block 2

not ebx
not ebx
neg ebx
jmp loc_0022

Output

Symbolic input:
ebx = 2 

ebx = (~(~ 2 )) × -1

Figure 2: Semantically equivalent basic blocks with dif-
ferent instructions.

Delight [74], which is a collection of programming
optimization tricks with bitwise operations.

6. Control flow obfuscation schemes, such as opaque
predicates [17] and control flow flattening [71], can
break up one basic block into multiple ones.

7. Virtualization obfuscation decode-dispatch
loop [61, 79] generates a sequence of basic
blocks to interpret one x86 instruction. This
difficulty is further exacerbated by multi-level
virtualization.

BinSim’s hybrid approach can naturally break basic
block boundaries and link related instructions. However,

we have to take extra efforts to address the last two chal-
lenges. We will discuss them in Section 4.

2.2 Methodology
Figure 5 illustrates BinSim’s core method. Given two
programs P and P′, our approach performs dynamic anal-
ysis as well as symbolic execution to compare how the
matched system call arguments are calculated, instead
of their exhibited values. We first run P and P′ in tan-
dem under the same input and environment to collect the
logged traces together with their system call sequences.
Then we do the system call sequences alignment to get
a list of matched system call pairs (step 1). Another
purpose of system call alignment is to fast identify pro-
grams exhibiting very different behaviors. After that,
starting from the matched system calls arguments, we
conduct backward slicing on each logged trace to iden-
tify instructions that affect the argument both directly
(data flow) and indirectly (control flow). We extend the
standard dynamic slicing algorithm to deal with the chal-
lenges when working on obfuscated binaries. Next, we
compute the weakest precondition (WP) along each slice
(step 2). In principle, WP is a symbolic formula that
captures the data flow and control flow that affect the
calculation of the argument. However, cryptographic
functions typically generate complicated symbolic rep-
resentations that could otherwise be hard to solve. To
walk around this obstacle, we identify the possible cryp-
tographic functions from the sliced segments and decom-
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1: void BitCount2(unsigned int n) 
2: {
3:   unsigned int count = 0;
4:   while (n != 0 ) {
5: n = n & (n-1);
6: count++;
7:     }
8:   printf ("%d", count); 
9: }

1: void BitCount3(unsigned int n) 
2: {
3:   n = (n & (0x55555555)) + 

((n >> 1) & (0x55555555));
4:   n = (n & (0x33333333)) + 

((n >> 2) & (0x33333333));
5:   n = (n & (0x0f0f0f0f)) + 

((n >> 4) & (0x0f0f0f0f));
6:   n = (n & (0x00ff00ff)) + 

((n >> 8) & (0x00ff00ff));
7:   n = (n & (0x0000ffff)) + 

((n >> 16) & (0x0000ffff));
8:   printf ("%d", n);  
9: }

(b) (c)

1: void BitCount1(unsigned int n) 
2: {
3:   unsigned int count = 0;
4:   for (count = 0; n; n >>= 1) 
5: count += n & 1 ;
6:   printf ("%d", count); 
7: }

(a)

Figure 3: Semantic equivalence spreads across basic blocks.

(a)

in (i, j)

out (a, b)

in (a, b)

out (c) = (i+1) - (j << 2)

BB1:

BB2:

a = i + 1
b = j << 2

c = a - b

(b)

in (i’, j’)

out (a’, b’)

in (b’, a’)

out (c’) = (j’ << 2) - (i’ + 1)

BB1':

BB2':

a’ = i’ + 1
b’ = j’ << 2

c’ = b’ - a’

Semantically
different

Figure 4: Semantic difference spreads across basic
blocks.

pose them from equivalence checking (step 3). Then we
utilize a constraint solver to verify whether two WP for-
mulas are equivalent (step 4). Following the similar style,
we compare the remaining system call pairs. At last, we
perform an approximate matching on identified crypto-
graphic functions (step 5) and calculate the finial simi-
larity score.

Now we use the examples shown in Section 2.1
to describe how BinSim improves existing semantics-
based binary diffing approaches. Assume we have
got the aligned system call sequences shown in Fig-
ure 1(d). Starting from the address of the argument y
in NtWriteFile, we do backward slicing and compute
WP with respect to y. The results of the three programs
are shown as follows.

ψ1a : x+ x

ψ1b : 2× ((x∧ (x >> 31))− (x >> 31))
ψ1c : x << 1

To verify whether ψ1a = ψ1b, we check the equivalence
of the following formula:

x+ x = 2× ((x∧ (x >> 31))− (x >> 31)) (1)

Similarly, we check whether ψ1a = ψ1c by verifying
the formula:

x+ x = x << 1 (2)

The constraint solver will prove that Formula 2 is al-
ways true but Formula 1 is not. Apparently, we can find
a counterexample (e.g., x = −1) to falsify Formula 1.
Therefore, we have ground truth that the NtWriteFile

in Figure 1(a) and Figure 1(c) are truly matched, while
NtWriteFile in Figure 1(a) and Figure 1(b) are condi-
tionally equivalent (when the input satisfies x≥ 0).

For the three different implementations shown in Fig-
ure 3, BinSim works on the execution traces under the
same input (n). In this way, the loops in Figure 3 have
been unrolled. Starting from the output argument, the
resulting WP captures the semantics of “bits counting”
across basic blocks. Therefore, we are able to verify that
the three algorithms are equivalent when taking the same
unsigned 32-bit integer as input. Similarly, we can verify
that the two code snippets in Figure 4 are not semanti-
cally equivalent.

2.3 Architecture
Figure 6 illustrates the architecture of BinSim, which
comprises two stages: online trace logging and offline
comparison. The online stage, as shown in the left side
of Figure 6, involves two plug-ins built on Temu [66],
a whole-system emulator: generic unpacking and on-
demand trace logging. Temu is also used as a malware
execution sandbox in our evaluation. The recorded traces
are passed to the offline stage of BinSim for comparison
(right part of Figure 6). The offline stage consists of three
components: preprocessing, slicing and WP calculation,
and segment equivalence checker. Next, we will present
each step of BinSim in the following two sections.
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Syscall1 (arg1, arg2) Syscall1' (arg1, arg2)

Syscall2 (arg1) Syscall2' (arg1)
.

.

.

.

.

.

(1)

(1)

(3)

(2) (2)

(4)

(5)

Program P Program P' 

f3 f3’

wp1 wp1’

f3 f3’

Cryptographic 

function

Cryptographic 

function

wp2 wp2’

wp1 wp1’

wp2 wp2’

(3)

Figure 5: System call sliced segment equivalence check-
ing steps: (1) system call alignment; (2) dynamic slicing
and weakest precondition calculation; (3) cryptographic
function detection; (4) equivalence checking; (5) crypto-
graphic function approximate matching.

3 On-demand Trace Logging

BinSim’s online logging stage records the needed infor-
mation for the subsequent steps. The logged trace data
consist of three parts: 1) instruction log contains each ex-
ecuted instruction’s x86 opcode and values of operands;
2) memory log stores memory access addresses, which
facilitate binary code slicing; 3) system calls invoked and
their data flow dependencies. In general, not all of the
trace data are of interest. For example, a common op-
timization adopted by the offline symbolic execution is
“function summary” [10]. For some well-known library
functions that have explicit semantics (e.g., string opera-
tion functions), we can turn off logging when executing
them and generate a symbolic summary correspondingly
in the offline analysis. Another example is many mal-
ware samples exhibit the malicious behavior only after
the real payload is unpacked. Our generic unpacking
plug-in, similar to the hidden code extractor [30], sup-
ports recording the execution trace that comes from real
payload instead of various unpacking routines.

One common attack to system call recording is adding
irrelevant system calls on purpose, which can also poison
the system call sequences alignment. To remove system
call noises, we leverage Temu’s customizable multi-tag
taint tracking feature to track data flow dependencies be-
tween system calls. Kolbitsch et al. [36] have observed
three possible sources of a system call argument: 1) the
output of a previous system call; 2) the initialized data
section (e.g., .bss segment); 3) the immediate argument
of an instruction (e.g., push 0). Except for the imme-
diate argument, we label the system call outputs and the
value read from the initialized data section as different

taint tags. In this way, the irrelevant system calls without
data dependency will be filtered out. The tainted argu-
ments of aligned system call will be taken as the starting
point of our backward slicing.

We also consider the parameter semantics. For ex-
ample, although NtClose takes an integer as input, the
source of the parameter should point to an already
opened device rather than an instruction operand (see
Figure 1). Therefore, the fake dependency such as “xor
eax, eax; NtClose(eax);” will be removed. An-
other challenge is malware could invoke a different set
of system calls to achieve the same effect. Recent work
on “replacement attacks” [44] shows such threat is feasi-
ble. We will discuss possible workaround in Section 6.

4 Offline Analysis

4.1 Preprocessing
When the raw trace data arrive, BinSim first lifts x86 in-
structions to Vine IL. The static single assignment (SSA)
style of Vine IL will facilitate tracking the use-def chain
when performing backward slicing. Besides, Vine IL is
also side effect free. It explicitly represents the setting of
the eflags register bits, which favors us to identify in-
structions with implicit control flow and track ROP code.
For example, the carry flag bit (cf) is frequently used by
ROP to design conditional gadget [60].

Then we align the two collected system call sequences
to locate the matched system call pairs. System call se-
quence alignment has been well studied in the previous
literature [34, 76]. The latest work, MalGene [34], tailors
Smith-Waterman local alignment algorithm [65] to the
unique properties of system call sequence, such as lim-
ited alphabet and sequence branching caused by thread
scheduling. Compared to the generic longest common
subsequences (LCS) algorithm, MalGene delivers more
accurate alignment results. There are two key scores in
Smith-Waterman algorithm: similarity function on the
alphabet and gap penalty scheme. MalGene customizes
these two scores for better system call alignment.

Our system call alignment adopts a similar approach
as MalGene [34] but extends the scope of critical system
calls, whose alignments are more important than oth-
ers. Since MalGene only considers the system call se-
quence deviation of the same binary under different run-
time environments, the critical system calls are subject
to process and thread operations. In contrast, BinSim
focuses on system call sequence comparisons of poly-
morphic or metamorphic malware variants. Our critical
system calls include more key system object operations.
Appendix Table 7 lists some examples of critical system
calls/Windows API we defined. Note that other system
call comparison methods, such as dependency graph iso-
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Binary 1
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Temu
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Similarity 

Score

Trace 
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Syscall  

Alignment
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Calculation

Cryptographic 
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Figure 6: Schematic overview of BinSim. The output for each processing: (1) unpacked code, instruction log, memory
log, and system call sequences; (2) IL traces and initial matched system call pairs; (3) weakest preconditions of system
call sliced segments; (4) identified cryptographic functions.

morphism [14] and tree automata inference [3] are or-
thogonal to our approach.

4.2 Dynamic Slicing Binary Code

After system calls alignment, we will further examine the
aligned system calls to determine whether they are truly
equivalent. To this end, commencing at a tainted system
call’s argument, we perform dynamic slicing to back-
track a chain of instructions with data and control depen-
dencies. The slice criterion is 〈eip, argument〉, while eip
indicates the value of instruction pointer and argument

denotes the argument taken as the beginning of back-
wards slicing. We terminate our backward slicing when
the source of slice criterion is one of the following con-
ditions: the output the previous system call, a constant
value, or the value read from the initialized data sec-
tion. Standard dynamic slicing algorithm [1, 80] relies
on program dependence graph (PDG), which explicitly
represents both data and control dependencies. However,
compared to the source code slicing, dynamic slicing on
the obfuscated binaries is never a textbook problem. The
indirect memory access of binary code will pollute the
conventional data flow tracking. Tracking control depen-
dencies in the obfuscated binary code by following ex-
plicit conditional jump instructions is far from enough.
Furthermore, the decode-dispatch loop of virtualization
obfuscation will also introduce many fake control de-
pendencies. As a result, conventional dynamic slicing
algorithms [1, 80] will cause undesired slice explosion,
which will further complicate weakest precondition cal-
culation. Our solution is to split data dependencies and
control dependencies tracking into three steps: 1) index
and value based slicing that only consider data flow; 2)
tracking control dependencies; 3) remove the fake con-
trol dependencies caused by virtualization obfuscation
code dispatcher.

BinSim shares the similar idea as Coogan et al. [19] in
that we both decouple tracing control flow from data flow
when handling virtualization obfuscation. Coogan et al.’s
approach is implemented through an equational reason-
ing system, while BinSim’s dynamic slicing is built on

an intermediate language (Vine IL). However, BinSim is
different from Coogan et al.’s work in a number of ways,
which we will discuss in Section 7.

4.2.1 Index and Value Based Slicing

We first trace the instructions with data dependencies by
following the “use-def” chain (ud-chain). However, the
conventional ud-chain calculation may result in the pre-
cision loss when dealing with indirect memory access, in
which general registers are used to compute memory ac-
cess index. There are two ways to track the ud-chain of
indirect memory access, namely index based and value
based. The index based slicing, like the conventional ap-
proach, follows the ud-chain related the memory index.
For the example of mov edx [4*eax+4], the instruc-
tions affecting the index eax will be added. Value based
slicing, instead, considers the instructions related to the
value stored in the memory slot. Therefore, the last in-
struction that writes to the memory location [4*eax+4]

will be included. In most cases, the value based slicing
is much more accurate. Figure 7 shows a comparison be-
tween index based slicing and value based slicing on the
same trace. Figure 7(a) presents the C code of the trace.
In Figure 7(b), index based slicing selects the instruc-
tions related to the computation of memory index j =

2*i + 1. In contrast, value based slicing in Figure 7(c)
contains the instructions that is relevant to the computa-
tion of memory value A[j] = a + b, which is exactly
the expected slicing result. However, there is an excep-
tion that we have to adopt index based slicing: when an
indirect memory access is a valid index into a jump table.
Jump tables typically locate at read-only data sections or
code sections, and the jump table contents should not be
modified by other instructions. Therefore, we switch to
track the index ud-chain, like eax rather than the mem-
ory content.

4.2.2 Tracking Control Dependency

Next, we include the instructions that have control de-
pendencies with the instructions in the last step. In ad-
dition to explicit conditional jump instructions (e.g., je
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Index based slicing Value based slicing(a) Source code (b) (c)

j = 2*i + 1;

A[j] = a + b;

print A[j];

mov eax, [ebp-8]

add eax, eax

add eax, 1

mov [ebp-4], eax

mov eax, [ebp-56]

mov edx, [ebp-52]

add edx, eax

mov eax, [ebp-4]

mov [ebp-48+eax*4], edx

mov eax, [ebp-4]

mov eax, [ebp-48+eax*4]

mov edi, eax

call print

mov eax, [ebp-8]

add eax, eax

add eax, 1

mov [ebp-4], eax

mov eax, [ebp-56]

mov edx, [ebp-52]

add edx, eax

mov eax, [ebp-4]

mov [ebp-48+eax*4], edx

mov eax, [ebp-4]

mov eax, [ebp-48+eax*4]

mov edi, eax

call print

Figure 7: Index based vs. Value based slicing.

and jne), obfuscators may hide control flow into indi-
rect jumps by using encoding function to calculate the
real branch [78]. Our solution is to trace how the control
transfer is calculated. We observe that most x86 con-
ditional control transfers depend on certain bit value of
the eflags register (e.g., zf and cf). Even obfusca-
tors try to hide the conditional jumps, they still need to
use arithmetic operations on certain eflags bits (e.g.,
ROP obfuscation [40, 55] and covert computation [59]).
To identify these implicit control transfers, our approach
trace the data flow of eflags bit value; that is, the in-
structions that calculate the bit value of the eflags are
added into the slice. Note that in addition to the explicit
conditional jump instructions, there are quite a number of
instructions that have conditional jump semantics. For
example, cmovne ebx,edx moves the value of edx to
ebx according to zf flag. We also notice a case that
the conditional logic is implemented without eflags:
jecxz jumps if register ecx is zero. Currently BinSim
supports all these special cases, which are summarized
in Appendix Table 8.

4.2.3 Dispatcher Identification

Virtualization obfuscation, a great challenge to binary
code slicing [61, 79], replaces the original binary code
with new type of bytecode, and a specific interpreter is
attached to interpret each bytecode. Due to the ease
of implementing an instruction set emulator [64], cur-
rent tools adopt decode-dispatch loop based interpre-
tation [69, 52, 16]. Besides, the virtualization byte-
code is designed as stack architecture style [62], which
has a simple representation but requires more statements
for a given computation. One instruction is typically
translated to a sequence of bytecode operations on the
stack values through the decode-dispatch loop. As a re-
sult, the collected slice from the above steps will con-
tain a large number of redundant instructions caused by
decode-dispatch loop iterations. We observe that each
decode-dispatch loop iteration has the following com-
mon features.

1. It is a sequence of memory operations, ending with
an indirect jump.

2. It has an input register a as virtual program counter
(VPC) to fetch the next bytecode (e.g., ptr[a]).
For example, VMProtect [69] takes esi as VPC
while Code Virtualizer [52] chooses al register.

3. It ends with an indirect jump which dispatches to a
bytecode handler table. The index into the jump ta-
ble has a data dependency with the value of ptr[a].

Our containment technique is to first identify possible
decode-dispatch loop iterations in the backward slice ac-
cording to the above common features. For each instruc-
tion sequence ending with an indirect jump, we mark
the input registers as a1,a2, ...an and output registers as
b1,b2, ...bn. Then we check whether there is an output
register bi meets the two heuristics:

1. bi is tainted by the data located in ptr[a j].

2. The instruction sequence ends with jmp ptr

[bi*(table stride) + table base].

After that, we will remove the fake control dependencies
caused by virtualization obfuscation code dispatcher. In
our preliminary testing, five virtualization obfuscation
protected instructions produces as many as 3,163 in-
structions, and most of them are related to the decode-
dispatch loop. After our processing, the number of in-
struction is reduced to only 109.

4.3 Handling Cryptographic Functions
Now-infamous crypto ransomware extort large ransom
by encrypting the infected computer’s files with stan-
dard cryptographic functions [33]. One ransomware
archetype typically evolves from generation to genera-
tion to produce a large number of new strains. They
may refine old versions incrementally to better sup-
port new criminal business models. In addition to the
generic detection methods based on monitoring file sys-
tem anomalies [32, 58], it is very interesting to investi-
gate this emerging threat with BinSim, such as identify-
ing ransomware variant relationships and investigate ran-
somware evolution. However, cryptographic functions
have been known to be a barrier to SMT-based security
analysis in general [11, 72] because of the complicated
input-output dependencies. Our backward slicing step
will produce a quite long instruction segment, and the
corresponding equivalence checking will become hard to
solve as well [67].

We observer that cryptographic function execution has
almost no interaction with system calls except the ones
are used for input and output. For example, crypto ran-
somware take the original user’s file as input, and then
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overwrite it with the encrypted version. Inspired by Ca-
ballero et al.’s work [11], we do a “stitched symbolic
execution” to walk around this challenge. Specifically,
we first make a forward pass over the sliced segments
to identify the possible cryptographic functions between
two system calls. We apply the advanced detection
heuristics proposed by Gröbert et al. [27] (e.g., exces-
sive use of bitwise operations, instruction chains, and
mnemonic const values) to quickly match known cryp-
tographic function features. If a known cryptographic
function is detected, we will turn off the weakest pre-
condition calculation and equivalence checking. In Sec-
tion 4.5, we will discuss how to approximately measure
the similarity of detected cryptographic functions.

4.4 Weakest Precondition Calculation
Let’s assume the slice we collected (S) contains a se-
quence of instructions [i1, i2, ..., in]. Our weakest pre-
condition (WP) calculation takes (S) as input, and the
state of the execution to the given API call’s argument
as the postcondition (P). Inductively, we first calculate
wp(in,P) = Pn−1, then wp(in−1,Pn−1) = Pn−2 and un-
til wp(i1,P1) = P0. The weakest precondition, denoted
as wp(S,P) = P0, is a boolean formula over the inputs
that follow the same slice (S) and forces the execution
to reach the given point satisfying P. We adopt a simi-
lar algorithm as Banerjee et al.’s [4] to compute the WP
for every statement in the slice, following both data de-
pendency and control dependency. The resultant WP for-
mula for a program point can be viewed as a conjunction
of predicates accumulated before that point, in the fol-
lowing form:

WP = F1∧F2∧ ...∧Fk.

Opaque predicates [17], a popular control flow obfus-
cation scheme, can lead to a very complicated WP for-
mula by adding infeasible branches. We apply recent
opaque predicate detection method [45] to identify so
called invariant, contextual, and dynamic opaque pred-
icates. We remove the identified opaque predicate to re-
duce the size of the WP formula.

4.5 Segment Equivalence Checking
We identify whether two API calls are semantically
equivalent by checking the equivalence of their argu-
ments’ weakest preconditions. To this end, we perform
validity checking for the following formula.

wp1 ≡ wp2∧arg1 = arg2 (3)

Different from existing block-centric methods, whose
equivalence checking is limited at a single basic block

level, our WP calculation captures the logic of a seg-
ment of instructions that go across the boundaries of ba-
sic blocks. Our method can offer a logical explanation
of whether syntactically different instruction segments
contribute to the same observable behavior. Frequent in-
vocation of constraint solver imposes a significant over-
head. Therefore, we maintain a HashMap structure to
cache the results of the previous comparisons for better
performance.

To quantitatively represent different levels of similar-
ity and facilitate our comparative evaluation, we assign
different scores (0.5∼ 1.0) based on the already aligned
system call sequences. The similarity sore is tuned with
our ground truth dataset (Section 5.2) by two metrics:
precision and recall. The precision is to measure how
well BinSim identifies different malware samples; while
recall indicates how well BinSim recognizes the same
malware samples but with various obfuscation schemes.
An optimal similarity sore should provide high precision
and recall at the same time. We summarize the selection
of similarity score as follows.

1. 1.0: the arguments of two aligned system calls
pass the equivalence checking. Since we have
confidence these system calls should be perfectly
matched, we represent their similarity with the
highest score.

2. 0.7: the sliced segments of two aligned system calls
are corresponding to the same cryptographic algo-
rithm (e.g. AES vs. AES). We assign a slightly
lower score to represent our approximate matching
of cryptographic functions.

3. 0.5: the aligned system call pairs do not satisfy the
above conditions. The score indicates their argu-
ments are either conditionally equivalent or seman-
tically different.

Assume the system call sequences collected from pro-
gram a and b are Ta and Tb, and the number of aligned
system calls is n. We define the similarity calculation as
follows.

Sim(a,b) =
∑

n
i=1 Similarity Score

Avg{|Ta|, |Tb|}
(4)

∑
n
i=1 Similarity Score sums the similarity score of

aligned system call pairs. To balance the different length
of Ta and Tb and be sensitive to system call noises in-
sertion, we use the average number of two system call
sequences as the denominator. The value of Sim(a,b)
ranges from 0.0 to 1.0. The higher Sim(a,b) value indi-
cates two traces are more similar.
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Table 1: Different obfuscation types and their examples.

Type Examples

1 Intra-basic-block Register swapping, junk code,
instructions substitution and reorder

2 Control flow Loop unrolling, opaque predicates,
control flow flatten, function inline

3 ROP Synthetic benchmarks collected
from the reference [79]

4 Different implementations
BitCount (Figure 3)
isPowerOfTwo (Appendix Figure 12)
flp2 (Appendix Figure 13)

5 Covert computation[59] Synthetic benchmarks
6 Single-level virtualization VMProtect [69]

7 Multi-level virtualization Synthetic benchmarks collected
from the reference [79]

5 Experimental Evaluation

We conduct our experiments with several objectives.
First and foremost, we want to evaluate whether BinSim
outperforms existing binary diffing tools in terms of bet-
ter obfuscation resilience and accuracy. To accurately
assess comparison results, we design a controlled dataset
so that we have a ground truth. We also study the effec-
tiveness of BinSim in analyzing a large set of malware
variants with intra-family comparisons. Finally, perfor-
mance data are reported.

5.1 Experiment Setup
Our first testbed consists of Intel Core i7-3770 processor
(Quad Core with 3.40GHz) and 8GB memory, running
Ubuntu 14.04. We integrate FakeNet [63] into Temu to
simulate the real network connections, including DNS,
HTTP, SSL, Email, FTP etc. We carry out the large-scale
comparisons for malware variants in the second testbed,
which is a private cloud containing six instances running
simultaneously. Each instance is equipped with a duo
core, 4GB memory, and 20GB disk space. The OS and
network configurations are similar to the first testbed.
Before running a malware sample, we reset Temu to a
clean snapshot to eliminate the legacy effect caused by
previous execution (e.g., modify registry configuration).
To limit the possible time-related execution deviations,
we utilize Windows Task Scheduler to run each test case
at the same time.

5.2 Ground Truth Dataset
Table 1 lists obfuscation types that we plan to evaluate
and their examples. Intra-basic-block obfuscation meth-
ods (Type 1) have been well handled by semantics-based
binary diffing tools. In Section 2.1, we summarize pos-
sible challenges that can defeat the block-centric binary
diffing methods, and Type 2 ∼ Type 7 are correspond-
ing to such examples. We collect eight malware source
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Figure 8: Similarity scores change from right pairs to
wrong pairs.

code with different functionalities from VX Heavens2.
We investigate the source code to make sure they are dif-
ferent, and each sample can fully exhibit its malicious
behavior in the runtime. Besides, we also collect syn-
thetic benchmarks from the previous work. The purpose
is to evaluate some obfuscation effects that are hard to
automate. Our controlled dataset statistics are shown in
Table 2. The second column of Table 2 lists different
obfuscation schemes and combinations we applied.

In addition to BinSim, we also test other six repre-
sentative binary diffing tools. BinDiff [23] and Darun-
Grim [50] are two popular binary diffing products in in-
dustry. They rely on control flow graph and heuristics to
measure similarities. CoP [41] and iBinHunt [43] repre-
sent “block-centric” approaches. Based on semantically
equivalent basic blocks, iBinHunt compares two execu-
tion traces while CoP identifies longest common subse-
quence with static analysis. System call alignment and
feature set are examples of dynamic-only approaches.
“Feature set” indicates the method proposed by Bayer
et al. [6] in their malware clustering work. They abstract
system call sequence to a set of features (e.g., OS object,
OS operations, and dependencies) and measure the simi-
larities of two feature sets by Jaccard Index. For compar-
ison, we have implemented the approaches of CoP [41],
iBinHunt [43], and feature set [6]. The system call align-
ment is the same to the method adopted by BinSim.

5.3 Comparative Evaluation Results

Naively comparing these seven binary diffing tools with
their similarity scores is not informative3. It is also very
difficult to interpret precision and recall values because
each tool adopts different similarity metrics and thresh-

2http://vxheaven.org/src.php
3We have normalized all the similarity scores from 0.0∼ 1.0.
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Table 2: Controlled dataset statistics. The obfuscation type numbers are defined in Table 1.

Sample Obfuscation type LoC # Online Offline (min)
(Normalized) Preprocess Slicing & WP STP (no/opt)

Malware
BullMoose 6 30 5X 1 2 1/0.5
Clibo 1+6 90 6X 1 2 2/0.8
Branko 1+2+6 270 8X 2 3 3/1
Hunatcha 2 340 8X 2 4 1/1
WormLabs 1 420 8X 2 6 3/2
KeyLogger 2 460 12X 2 6 4/2
Sasser 1+2+6 950 9X 3 8 4/3
Mydoom 1+2 3276 10X 3 10 6/4

Synthetic benchmark
ROP 3 449 6X 1 3 2/1
Different implementations 4 80 6X 1 2 2/0.8
Covert computation 5 134 6X 1 2 3/1
Multi-level virtualization 7 140 10X 4 12 5/3

Table 3: Absolute difference values of similarity scores under different obfuscation schemes and combinations.

Sample Obfuscation type BinDiff DarunGrim iBinHunt CoP Syscall alignment Feature set BinSim
BullMoose 6 0.58 0.56 0.39 0.61 0.08 0.10 0.08
Clibo 1+6 0.57 0.64 0.41 0.62 0.10 0.12 0.10
Branko 1+2+6 0.63 0.62 0.35 0.68 0.10 0.15 0.12
Hunatcha 2 0.40 0.42 0.19 0.30 0.12 0.17 0.12
WormLabs 1 0.10 0.12 0.03 0.03 0.08 0.12 0.05
KeyLogger 2 0.38 0.39 0.12 0.26 0.09 0.15 0.09
Sasser 1+2+6 0.62 0.62 0.42 0.58 0.12 0.18 0.10
Mydoom 1+2 0.42 0.38 0.10 0.38 0.10 0.15 0.05
ROP 3 0.63 0.54 0.49 0.52 0.10 0.10 0.10
Different implementations 4 0.48 0.39 0.48 0.52 0.05 0.10 0.05
Covert computation 5 0.45 0.36 0.44 0.45 0.05 0.10 0.05
Multi-level virtualization 7 0.68 0.71 0.59 0.69 0.15 0.18 0.16
Average
“Right pairs” vs. “Obfuscation pairs” 0.50 0.48 0.34 0.46 0.10 0.15 0.09
“Right pairs” vs. “Wrong pairs” 0.65 0.65 0.66 0.55 0.71 0.63 0.76

old. What matters is that a tool can differentiate right-
pair scores from wrong-pair scores. We first test how
their similar scores change from right pairs to wrong
pairs. For the right pair testing, we compare each sam-
ple in Table 2 with itself (no obfuscation). The average
values are shown in “Right pairs” bar in Figure 8. Then
we compare each sample with the other samples (no ob-
fuscation) and calculate the average values, which are
shown in “Wrong pairs” bar in Figure 84. The compar-
ison results reveal a similar pattern for all these seven
binary diffing tools: a large absolute difference value be-
tween the right pair score and the wrong pair score.

Next, we figure out how the similarity score varies un-
der different obfuscation schemes and combinations. We
first calculate the similarity scores for “Right pairs” (self
comparison) and “Obfuscation pairs” (the clean version
vs. its obfuscated version). Table 3 shows the absolute
difference values between “Right pairs” and “Obfusca-
tion pairs”. Since code obfuscation has to preserve se-

4It does not mean that higher is better on the similarity scores for the
right pairs, and lower is better for the wrong pairs. What is important
is how their similarity values change from right pairs to wrong pairs.

mantics [17], the small and consistent difference values
can indicate that a binary diffing tool is resilient to dif-
ferent obfuscation schemes and combinations. BinDiff,
DarunGrim, iBinHunt and CoP do not achieve a consis-
tent (good) result for all test cases, because their differ-
ence values fluctuate. The heuristics-based comparisons
adopted by BinDiff and DarunGrim can only handle mild
instructions obfuscation within a basic block. Since mul-
tiple obfuscation methods obfuscate the structure of con-
trol flow graph (e.g., ROP and control flow obfuscation),
the effect of BinDiff and DarunGrim are limited. CoP
and iBinHunt use symbolic execution and theorem prov-
ing techniques to match basic blocks, and therefore are
resilient to intra-basic-block obfuscation (Type 1). How-
ever, they are insufficient to defeat the obfuscation that
may break the boundaries of basic blocks (e.g., Type 2∼
Type 7 in Table 1). The last rows of Table 3 shows the av-
erage difference values for the “Right pairs” vs. “Obfus-
cation pairs” and “Right pairs” vs. “Wrong pairs”. The
closer for these two scores, the harder for a tool to set a
threshold or cutoff line to give a meaningful information
on the similarity score.
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Table 4: Comparison of slice sizes (# instructions).

Sample Obfuscation type No-VMP Conventional BinSim
BullMoose 6 98 6,785 165
Clibo 1+6 156 16,860 238
Branko 1+2+6 472 31,154 520
Sasser 1+2+6 1,484 64,276 1,766
fibonacci 7 156 4,142 278

Table 5: Similarity score of four CryptoWall variants.

a vs. b a vs. c a vs. d b vs. c b vs. d c vs. d
0.92 0.83 0.32 0.78 0.33 0.37

Regarding dynamic-only methods (system call align-
ment and feature set), their scores are consistent for most
comparisons. The reason is dynamic-only approaches
are effective to defeat most code obfuscation schemes.
However, we notice a variant of Hunatcha worm ex-
hibits the malicious behavior under the condition of
systime.Month < 12. Without more detailed informa-
tion such as path conditions, both system call alignment
and feature set methods fail to identify such conditional
equivalence. This disadvantage is further manifested by
our large-scale malware comparisons, in which we find
out 11% variants are conditionally equivalent.

5.4 Offline Analysis Evaluation

In this section, we first evaluate BinSim’s dynamic slic-
ing when handling obfuscated binaries. We test BinSim
with VMProtect [69], an advanced commercial obfus-
cator. In addition to virtualization obfuscation, which
can cause slice size explosion, VMProtect also performs
intra-basic-block (Type 1) and control flow obfuscation
(Type 2). As shown in Table 4, we obfuscate the test
cases with multiple obfuscation combinations and multi-
level virtualization (Type 7). “No-VMP” column in-
dicates BinSim’s result without obfuscation. The last
two columns show the slice sizes of conventional dy-
namic slicing and BinSim. BinSim outperforms the con-
ventional approach by reducing slice sizes significantly.
Note that the sliced segment produced by BinSim con-
tains many different instructions with “No-VMP” ver-
sion. Directly comparing the syntax of instructions is
not feasible. Our semantics-based equivalence checking
can show that the new sliced segment is equivalent to the
original instructions.

Next, we evaluate BinSim’s cryptographic function
approximate matching, which allows equivalence check-
ing in the presence of cryptographic functions that could
otherwise be hard to analyze. We collect four Cryp-
toWall variants and apply BinSim to compare them pair
by pair. CryptoWall is a representative ransomware fam-
ily, and it is also continuously evolving. The similar

scores are shown in Table 5. We notice three samples
(a, b, and c) are quite similar, and one sample (Cryp-
toWall.d) has relatively large differences with the oth-
ers. After investigating BinSim’s output, we find out
that CryptoWall.d reveals three distinct behaviors: 1)
“query-then-infect”: it will terminate execution if the in-
fected machine’s UI languages are Russian, Ukrainian
or other former Soviet Union country languages (via
GetSystemDefaultUILanguage). This clearly shows
that the adversaries want to exclude certain areas from
attacking. 2) It uses AES for file encryption while the
other three variants choose RSA. 3) It encrypts files with
a new file name generation algorithm. Our “query-then-
infect” findings coincide with the recent CryptoWall re-
verse engineering report [2].

5.5 Analyzing Wild Malware Variants

We report our experience of applying BinSim and other
six binary diffing tools on 1,050 active malware samples
(uncontrolled dataset)5. The dataset is retrieved from
VirusShare6 and analyzed at February 2017. We lever-
age VirusTotal7 to do an initial clustering by majority
voting. The total 1,050 samples are grouped into 112
families, and more than 80% samples are protected by
different packers or virtualization obfuscation tools. For
each binary diffing tool, we perform intra-family pair-
wise comparison on our private cloud. The distribution
of similarity scores is shown in Table 6. Because Bin-
Diff, DarunGrim, and CoP cannot directly work on the
packed binary, we provide the unpacker binaries prepro-
cessed by BinSim’s generic unpacking.

In most cases, dynamic-only methods and BinSim are
able to find small distances among intra-family sam-
ples. For example, over 86% of the pairs have a sim-
ilarity score of 0.6 or greater. System call alignment
has a better distribution than BinSim during the simi-
larity score range 0.70 ∼ 1.00. We attribute the high
score to the fact that system call alignment cannot detect
conditional equivalence. Actually, we successfully iden-
tify that about 11% of malware samples have so-called
“query-then-infect” behaviors [77], and BinSim is able
to find whether two malware variants are conditionally
equivalent. In these cases, BinSim’s lower scores better
fit the ground truth. Figure 9 shows a conditional equiva-
lent behavior we find in Trojan-Spy.Win32.Zbot vari-
ants. Figure 10 presents a common compiler optimiza-
tion that converts a high-level branch condition into a
purely arithmetic sequence. This optimization can frus-
trate “block-centric” binary diffing methods, and we have

5The initial dataset is much larger, but we only consider the active
samples that we can collect system calls.

6http://virusshare.com/
7https://www.virustotal.com/
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// modify registry key
1: RegOpenKeyEx( );
2: RegSetValueEx( );
3: RegCloseKey ( );

(a) Zbot.a (b) Zbot.b

// modify registry key
1: GetLocalTime(&systime);
2: if ( systime.Day < 20)
3:  {  
4:      RegOpenKeyEx( );
5:      RegSetValueEx( );
6:      RegCloseKey ( );
7:  }  

Figure 9: Conditional equivalent behaviors between
Trojan-Spy.Win32.Zbot variants.

1: neg     reg
2: sbb     reg, reg
3: and     reg, (val1 - val2) 
4: add     reg, val2

(a) Branch logic (b) Equivalent branchless logic

if (reg)  
reg = val1;

else      
reg = val2;

Figure 10: Example: branchless logic code (reg stands
for a register; va1 and val2 are two inputs).

seen such cases repeatedly in our dataset. By contrast,
BinSim’s hybrid approach naturally identifies the im-
plicit control dependency in Figure 10 (b).

5.6 Performance

In Table 2, we also report the performance of BinSim
when analyzing the controlled dataset. The fourth col-
umn lists the runtime overhead imposed by our online
trace logging. On average, it incurs 8X slowdown, with
a peak value 12X when executing KeyLogger. The fifth
to seventh columns present the execution time of each
component in our offline analysis stage. The number
of instructions in the system call slice ranges from 5 to
138 and the average number is 22. The “STP” column
presents average time spent on querying STP when com-
paring two programs. Here we show the time before and
after the optimization of caching equivalence queries. On
average, the HashMap speeds up STP processing time
by a factor of 1.7. Considering that BinSim attempts to
automatically detect obfuscated binary code similarity,
which usually takes exhausting manual efforts from sev-
eral hours to days, this degree of slowdown is acceptable.
Performing the intra-family comparisons on 1,050 mal-
ware samples required approximately 3 CPU days.

6 Discussion

Like other malware dynamic analysis approaches, Bin-
Sim bears with the similar limitations: 1) incomplete
path coverage; 2) environment-sensitive malware [34,
35] which can detect sandbox environment. Therefore,

BinSim only detects the similarities/differences exhibit-
ing during execution. The possible solutions are to ex-
plore more paths by automatic input generation [26, 47]
and analyze malware in a transparent platform (e.g., VM-
Ray Analyzer [70]). Our current generic unpacking is
sufficient for our experiments. However, it can be de-
feated by more advanced packing methods such as mul-
tiple unpacking frames and parallel unpacking [68]. We
plan to extend BinSim to deal with the advanced pack-
ing methods. Recent work proposes “replacement at-
tacks” [44] to mutate system calls and their dependen-
cies. As a result, similar malware variants turn out to
have different behavior-based signatures. We regard this
“replacement attacks” as a potential threat because it can
reduce BinSim’s similarity score. One possible solution
is to design a layered architecture to capture alternative
events that achieve the same high-level functionality.

BinSim’s enhanced slicing algorithm handles the ob-
fuscations that could break the block-centric binary com-
parisons. We have evaluated BinSim against a set of so-
phisticated commercial obfuscation tools and advanced
academic obfuscation methods. However, determined
adversaries may carefully add plenty of redundant de-
pendencies to cause slice size explosion, and the result-
ing weakest preconditions could become too complicated
to be solved. As an extreme case, the dependencies of
a system call argument can be propagated to the entire
program. To achieve this, it requires that future attack-
ers have much deeper understanding about program anal-
ysis (e.g., inter-procedure data/control follow analysis)
and take great engineering efforts. An attacker can also
customize an unknown cryptographic algorithm to evade
our cryptographic function approximate matching. How-
ever, correctly implementing a cryptographic algorithm
is not a trivial task, and most cryptographic functions
are reused from open cryptographic libraries, such as
OpenSSL and Microsoft Cryptography API [75]. There-
fore, BinSim raises the attacking bar significantly com-
pared to existing techniques. On the other side, design-
ing a worst case evaluation metric needs considerable in-
sights into malicious software industry [39]. We leave it
as our future work.

7 Related Work

7.1 Dynamic Slicing and Weakest Precon-
dition Calculation

As dynamic slicing techniques [1, 80] can substantially
reduce the massive program statements under investiga-
tion to a most relevant subset, they have been widely
applied to the domain of program analysis and verifica-
tion. Differential Slicing [29] produces a causal differ-
ence graph that captures the input differences leading to
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Table 6: Similarity score distribution (%) of intra-family comparisons.

Score range BinDiff DarunGrim iBinHunt CoP Syscall alignment Feature set BinSim
0.00–0.10 1 1 1 1 1 1 1
0.10–0.20 3 2 1 3 1 1 1
0.20–0.30 3 4 2 4 1 2 1
0.30–0.40 13 14 3 10 1 3 1
0.40–0.50 18 17 5 18 2 3 2
0.50–0.60 14 16 18 13 3 4 4
0.60–0.70 17 13 17 14 6 16 11
0.70–0.80 13 15 20 16 26 27 24
0.80–0.90 9 10 15 11 21 16 19
0.90–1.00 9 8 18 10 38 27 36

the execution differences. Weakest precondition (WP)
calculation is firstly explored by Dijkstra [20] for formal
program verification. Brumley et al. [8] compare WP to
identify deviations in different binary implementations
for the purpose of error detection and fingerprint genera-
tion. Ansuman et al. [4] calculate WP along the dynamic
slicing to diagnose the root of an observable program er-
ror. BinSim’s dynamic slicing and WP calculation are
inspired by Ansuman et al.’s work. However, we cus-
tomize our dynamic slicing algorithm to operate at the
obfuscated binaries, which is more tricky than working
on source code or benign programs. Another difference
is we perform equivalence checking for WP while they
do implication checking.

The most related backward slicing method to BinSim
is Coogan et al.’s work [19]. We both attempt to identify
the relevant instructions that affect system call arguments
in an obfuscated execution trace, and the idea of value
based slicing and tracking control dependency is similar.
However, BinSim is different from Coogan et al.’s work
in a number of ways. First, Coogan et al.’s approach is
designed only for virtualization obfuscation. To evaluate
the accuracy of backward slicing, they compare the x86
instruction slicing pairs by the syntax of the opcode (e.g.,
mov, add, and lea). It is quite easy to generate a syntac-
tically different trace through instruction-level obfusca-
tion [51]. Furthermore, the commercial virtualization ob-
fuscators [52, 69] have already integrated code mutation
functionality. Therefore, Coogan et al.’s approach has
less resilience to other obfuscation methods. Second, we
utilize taint analysis to identify virtualization bytecode
dispatcher while Coogan et al. apply different heuristics.
Third, Coogan et al. do not handle cryptographic func-
tions. They state that the encryption/decryption routine
could cripple their analysis. Fourth, Coogan et al. eval-
uate their method on only six tiny programs; while Bin-
Sim goes through an extensive evaluation. Last, but not
the least, after the sub-traces or sliced segments are con-
structed, Coogan et al. compare them syntactically while
BinSim uses weakest precondition to compare them se-
mantically.

7.2 Binary Diffing

Hunting binary code difference have been widely ap-
plied in software security. BinDiff [23] and Darun-
Grim [50] compare two functions via the maximal con-
trol flow subgraph isomorphism and match the similar
basic blocks with heuristics. BinSlayer [7] improves
BinDiff by matching bipartite graphs. dicovRE [22] ex-
tracts a set of syntactical features to speed up control
flow subgraph isomorphism. These approaches gear to-
ward fast matching similar binary patches, but they are
brittle to defeat the sophisticated obfuscation methods.
Another line of work captures semantic equivalence be-
tween executables. BinHunt [25] first leverages symbolic
execution and theorem proving to match the basic blocks
with the same semantics. BinJuice [37] extracts the se-
mantic abstraction for basic blocks. Exposé [49] com-
bines function-level syntactic heuristics with semantics
detection. iBinHunt [43] is an inter-procedural path diff-
ing tool and relies on multi-tag taint analysis to reduce
possible basic block matches. Pewny et al. [54] adopt
basic block semantic representation sampling to search
cross-architecture bugs. As we have demonstrated, these
tools suffer from the so called “block-centric” limita-
tion. In contrast, BinSim can find equivalent instruc-
tion sequences across the basic block boundary. Egele
et al. [21] proposed blanket execution to match similar
functions in binaries using dynamic testing. However,
blanket execution requires a precise function scope iden-
tification, which is not always feasible for obfuscated bi-
nary code [42].

7.3 Malware Dynamic Analysis

Malware dynamic analysis techniques are characterized
by analyzing the effects that the program brings to the
operating system. Compared with static analysis, dy-
namic analysis is less vulnerable to various code ob-
fuscation methods [48]. Christodorescu et al. [14] pro-
posed to use data-flow dependencies among system calls
as malware specifications, which are hard to be circum-
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vented by random system calls injection. Since then,
there has been a significant amount of work on dynamic
malware analysis, e.g., malware clustering [6, 28] and
detection [3, 12]. However, dynamic-only approaches
may disregard the conditional equivalence or the sub-
tle differences that do not affect system call arguments.
Therefore, BinSim’s hybrid approach is much more ac-
curate. In addition, dynamic slicing is also actively
employed by various malware analysis tasks. The no-
table examples include an efficient malware behavior-
based detection that executes the extracted slice to match
malicious behavior [36], extracting kernel malware be-
havior [38], generating vaccines for malware immuniza-
tion [76], and identifying malware dormant functional-
ity [18]. However, all these malware analysis tasks adopt
the standard dynamic slicing algorithms [1, 80], which
are not designed for tracking the data and control depen-
dencies in a highly obfuscated binary, e.g., virtualization-
obfuscated malware. As we have demonstrated in Sec-
tion 4.2, performing dynamic slicing on an obfuscated
binary is challenging. Therefore, our method is benefi-
cial and complementary to existing malware defense.

8 Conclusion

We present a hybrid method combining dynamic analysis
and symbolic execution to compare two binary execution
traces for the purpose of detecting their fine-grained re-
lations. We propose a new concept called System Call
Sliced Segments and rely on their Equivalence Checking
to detect fine-grained semantics similarity. By integrat-
ing system call alignment, enhanced dynamic slicing,
symbolic execution, and theorem proving, our method
compares the semantics of instruction segments that im-
pact on the observable behaviors. Compared to existing
semantics-based binary diffing methods, our approach
can capture the similarities, or differences, across ba-
sic blocks and infer whether two programs’ behaviors
are conditionally equivalent. Our comparative evalua-
tion demonstrates BinSim is a compelling complement
to software security analysis tasks.
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[3] BABIĆ, D., REYNAUD, D., AND SONG, D. Malware analysis
with tree automata inference. In Proceedings of the 23rd Int.
Conference on Computer Aided Verification (CAV’11) (2011).

[4] BANERJEE, A., ROYCHOUDHURY, A., HARLIE, J. A., AND
LIANG, Z. Golden implementation driven software debugging.
In Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE’10)
(2010).

[5] BAO, T., BURKET, J., WOO, M., TURNER, R., AND BRUM-
LEY, D. ByteWeight: Learning to recognize functions in binary
code. In Proceedings of the 23rd USENIX Conference on Security
Symposium (2014).

[6] BAYER, U., COMPARETTI, P. M., HLAUSCHEK, C., KRUEGEL,
C., AND KIRDA, E. Scalable, behavior based malware cluster-
ing. In Proceedings of the Network and Distributed System Secu-
rity Symposium (NDSS’09) (2009).

[7] BOURQUIN, M., KING, A., AND ROBBINS, E. BinSlayer: Ac-
curate comparison of binary executables. In Proceedings of the
2nd ACM SIGPLAN Program Protection and Reverse Engineer-
ing Workshop (PPREW ’13) (2013).

[8] BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME, J.,
AND SONG, D. Towards automatic discovery of deviations in
binary implementations with applications to error detection and
fingerprint generation. In Proceedings of the 16th USENIX Secu-
rity Symposium (2007).

[9] BRUMLEY, D., POOSANKAM, P., SONG, D., AND ZHENG,
J. Automatic patch-based exploit generation is possible: Tech-
niques and implications. In Proceedings of the 2008 IEEE Sym-
posimu on Security and Privacy (S&P’08) (2008).

[10] CABALLERO, J., MCCAMANT, S., BARTH, A., AND SONG, D.
Extracting models of security-sensitive operations using string-
enhanced white-box exploration on binaries. Tech. rep., EECS
Department, University of California, Berkeley, March 2009.

[11] CABALLERO, J., POOSANKAM, P., MCCAMANT, S., BABI Ć,
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Appendix

Table 7: Examples: critical system calls/Windows API.

Object Critical system calls/Windows API

File NtCreateFile, NtOpenFile, NtClose

NtQueryDirectoryFile, NtSetInformationFile

Registry NtCreateKey, NtOpenKey, NtSaveKey

Memory NtAllocateVirtualMemory, NtMapViewOfSection

NtWriteVirtualMemory

Process NtCreateProcess, NtOpenProcess , NtTerminateProcess

Thread NtCreateThread, NtResumeThread, NtTerminateThread

Network connect, bind, send, recv, gethostname

Desktop CreateDesktop, SwitchDesktop, SetThreadDesktop

Other LoadLibrary, GetProcAddress, GetModuleHandle

Table 8: Instructions with implicit branch logic.

Instructions Meaning

CMOVcc Conditional move

SETcc Set operand to 1 on condition, or 0 otherwise

CMPXCHG Compare and then swap

REP-prefixed Repeated operations, the upper limit is stored in ecx

JECXZ Jump if ecx register is 0

LOOP Performs a loop operation using ecx as a counter

 mov     eax, [ebp+8]
 mov     edx, eax
 and     edx, 55555555h
 mov     eax, [ebp+8]
 shr     eax, 1
 and     eax, 55555555h
 add     eax, edx
 mov     [ebp+8], eax
 mov     eax, [ebp+8]
 mov     edx, eax
 and     edx, 33333333h
 mov     eax, [ebp+8]
 shr     eax, 2
 and     eax, 33333333h
 add     eax, edx
 mov     [ebp+8], eax
 mov     eax, [ebp+8]
 mov     edx, eax
 and     edx, 0F0F0F0Fh
 mov     eax, [ebp+8]
 shr     eax, 4
 and     eax, 0F0F0F0Fh
 add     eax, edx
 mov     [ebp+8], eax
 mov     eax, [ebp+8]
 mov     edx, eax
 and     edx, 0FF00FFh
 mov     eax, [ebp+8]
 shr     eax, 8
 and     eax, 0FF00FFh
 add     eax, edx
 mov     [ebp+8], eax
 mov     eax, [ebp+8]
 movzx   edx, ax
 mov     eax, [ebp+8]
 shr     eax, 10h
 add     eax, edx
 mov     [ebp+8], eax

 cmp     [ebp+8], 0
 jnz    loc_800004D

 loc_800004D:
 mov     eax, [ebp+8]
 sub     eax, 1
 and     [ebp+8], eax
 add     [ebp-0xC], 1

 printf ( \d ,count)

(b)

 cmp     [ebp+8], 0
 jnz    loc_8000016

 loc_8000016:
 mov     eax, [ebp+8]
 and     eax, 1
 add     [ebp-0xC], eax
 shr     [ebp+8], 1

 printf ( \d ,count)

(a)

(c)

 printf ( \d ,n)

Figure 11: The disassembly code of three BitCount al-

gorithms shown in Figure 3. The grey basic blocks rep-

resent the main loop bodies, which are not matched by

“block-centric” binary diffing tools.

1 int isPowerOfTwo 1 (unsigned int x)
2 {
3 /∗ While x is even and > 1 ∗/
4 while (((x % 2) == 0) && x > 1)
5 x /= 2;
6 return (x == 1);
7 }
8
9 int isPowerOfTwo 2 (unsigned int x)

10 {
11 unsigned int numberOfOneBits = 0;
12 while(x && numberOfOneBits <=1)
13 {
14 /∗ Is the least significant bit a 1? ∗/
15 if ((x & 1) == 1)
16 numberOfOneBits++;
17 /∗ Shift number one bit to the right ∗/
18 x >>= 1;
19 }
20 return (numberOfOneBits == 1);
21 }

Figure 12: Two different isPowerOfTwo algorithms

check if an unsigned integer is a power of 2.

1 unsigned flp2 1 (unsigned x){
2 x=x|(x>>1);
3 x=x|(x>>2);
4 x=x|(x>>4);
5 x=x|(x>>8);
6 x=x|(x>>16);
7 return x−(x>>1);
8 }
9

10 unsigned flp2 2 (unsigned x){
11 unsigned y=0x80000000;
12 while(y>x){
13 y=y>>1;
14 }
15 return y;
16 }
17
18 unsigned flp2 3 (unsigned x){
19 unsigned y;
20 do{
21 y=x;
22 x=x&(x−1);
23 }while(x!=0);
24 return y;
25 }

Figure 13: Three different flp2 algorithms find the

largest number that is power of 2 and less than an given

integer x.
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PLATPAL: Detecting Malicious Documents with Platform Diversity

Meng Xu and Taesoo Kim
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Abstract
Due to the continued exploitation of Adobe Reader, mali-
cious document (maldoc) detection has become a pressing
problem. Although many solutions have been proposed,
recent works have highlighted some common drawbacks,
such as parser-confusion and classifier-evasion attacks.

In response to this, we propose a new perspective for
maldoc detection: platform diversity. In particular, we
identify eight factors in OS design and implementation
that could cause behavioral divergences under attack,
ranging from syscall semantics (more obvious) to heap
object metadata structure (more subtle) and further show
how they can thwart attackers from finding bugs, exploit-
ing bugs, or performing malicious activities.

We further prototype PLATPAL to systematically har-
vest platform diversity. PLATPAL hooks into Adobe
Reader to trace internal PDF processing and also uses
sandboxed execution to capture a maldoc’s impact on the
host system. Execution traces on different platforms are
compared, and maldoc detection is based on the obser-
vation that a benign document behaves the same across
platforms, while a maldoc behaves differently during ex-
ploitation. Evaluations show that PLATPAL raises no false
alarms in benign samples, detects a variety of behavioral
discrepancies in malicious samples, and is a scalable and
practical solution.

1 Introduction

Cyber attackers are turning to document-based malware
as users wise up to malicious email attachments and
web links, as suggested by many anti-virus (AV) ven-
dors [39, 50, 54, 57]. Users are generally warned more on
the danger of executable files by browsers, email agents,
or AV products, while documents such as PDFs are treated
with much less caution and scrutiny because of the im-
pression that they are static files and can do little harm.

However, over time, PDF specifications have changed.
The added scripting capability makes it possible for doc-

uments to work in almost the same way as executables,
including the ability to connect to the Internet, run pro-
cesses, and interact with other files/programs. The growth
of content complexity gives attackers more weapons to
launch powerful attacks and more flexibility to hide mali-
cious payload (e.g., encrypted, hidden as images, fonts or
Flash contents) and evade detection.

A maldoc usually exploits one or more vulnerabili-
ties in its interpreter to launch an attack. Fortunately (or
unfortunately), given the increasing complexity of doc-
ument readers and the wide library/system component
dependencies, attackers are presented with a large attack
surface. New vulnerabilities continue to be found, with
137 published CVEs in 2015 and 227 in 2016 for Adobe
Acrobat Reader (AAR) alone. The popularity of AAR
and its large attack surface make it among the top tar-
gets for attackers [25], next to browsers and OS kernels.
After the introduction of a Chrome-like sandboxing mech-
anism [2], a single exploit can worth as high as $70k in
pwn2own contest [21]. The collected malware samples
have shown that many Adobe components have been ex-
ploited, including element parsers and decoders [37], font
managers [28], and the JavaScript engine [22]. System-
wide dependencies such as graphics libraries [23] are also
on attackers’ radar.

The continued exploitation of AAR along with the
ubiquity of the PDF format makes maldoc detection a
pressing problem, and many solutions have been proposed
in recent years to detect documents bearing malicious
payloads. These techniques can be classified into two
broad categories: static and dynamic analysis.

Static analysis, or signature-based detection [14, 27, 31,
33, 34, 36, 46, 52, 59], parses the document and searches
for indications of malicious content, such as shellcode
or similarity with known malware samples. On the other
hand, dynamic analysis, or execution-based detection [45,
48, 58], runs partial or the whole document and traces
for malicious behaviors, such as vulnerable API calls or
return-oriented programming (ROP).
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However, recent works have highlighted some common
drawbacks of these solutions. Carmony et al. [11] show
that the PDF parsers used in these solutions might have
overly simplified assumptions about the PDF specifica-
tions, leading to an incomplete extraction of malicious
payloads and failed analysis. It has also been demon-
strated that machine-learning-based detection could po-
tentially be evaded in principled and automatic ways [35,
53, 65]. In addition, many solutions focus only on the
JavaScript parts and ignore their synergy with other PDF
components in launching attacks. Therefore, even though
modern AV products support PDF-exploit detection, they
cannot quickly adapt to novel obfuscation techniques even
if the latter constitute only minor modifications of existing
exploits [55]. AV products also exhibit problems provid-
ing protection against zero-day attacks, due to the lack of
attack procedures and runtime traces.

In this paper, we propose PLATPAL, a maldoc detec-
tion scheme that analyzes the behavioral discrepancies
of malicious document files on different platforms (e.g.,
Windows or Macintosh (Mac)). Unlike the static and dy-
namic detection schemes that rely on existing malware
samples to construct heuristics, PLATPAL is based on a
completely different set of insights: 1) a benign document
behaves the same (in a certain level) across platforms,
while 2) a malicious document causes diverged behaviors
when launching exploits on different platforms.

The first assumption can be empirically verified by
opening many benign samples that use a variety of PDF
features across platforms. To support the second assump-
tion, we investigated the factors in OS implementation
that could cause behavioral divergences when under at-
tack and identified eight such factors, ranging from syscall
semantics (more obvious) to heap object metadata struc-
ture (more subtle). We further show how they can be used
to thwart attackers in finding bugs, exploiting bugs, or
performing malicious activities.

PLATPAL is based on these insights. To detect whether
a document has malicious payload, PLATPAL opens it
with the same version of AAR instances, but running on
top of different operating systems. PLATPAL records the
runtime traces of AAR while processing the document
and subsequently compares them across platforms. Con-
sensus in execution traces and outputs indicates the health
of the document, while divergences signal an attack.

Although the process sounds simple and intuitive,
two practical questions need to be addressed to make
PLATPAL work: 1) what “behaviors” could be potentially
different on different platforms? and 2) how can they be
universally traced? PLATPAL traces and compares two
types of behaviors. Internal behaviors include critical
functions executed by AAR in the PDF processing cycle,
such as loading, parsing, rendering, and script execution.
External behaviors include filesystem operations, network

activities, and program launches. This aligns with typical
malware analysis tools such as Cuckoo sandbox [44].

It is worth highlighting that PLATPAL should not be
considered as a competitor to current malware analysis
tools such as Cuckoo [44] as they rely on different assump-
tions. Current tools rely heavily on the availability of a
blacklist (or whitelist) of OS-wide activities are already
available such that a sample’s behaviors can be vetted
against the list. This approach works well for known
malware but might lost its advantage against 0-day PDF
exploits. On the other hand, PLATPAL does not require
the such a list to function and only relies on the fact that
it is difficult for an attacker to craft a malicious PDF that
exploits AAR in exactly the same way in both Windows
and Mac platforms.

PLATPAL is evaluated against 1030 benign samples
that use various features in the PDF specifications and re-
ports no discrepancies in their traces, i.e., no false alarms.
For a collection of 320 maldoc samples exploiting 16 dif-
ferent CVEs, PLATPAL can detect divergences in 209 of
them with an additional 34 samples crashing both AAR
instances. The remainder are undetected for various rea-
sons, such as targeting an old and specific version of AAR
or failure to trigger malicious activities. PLATPAL can
finish a scan of the document in no more than 24 seconds
per platform and requires no manual driving.
Paper contribution. In summary, this paper makes the
following contributions:

• We propose to execute a document across different
platforms and use behavioral discrepancies as an
indicator for maldoc detection.

• We perform in-depth analysis and categorization of
platform diversities and show how they can be used
to detect maldoc attacks.

• We prototype PLATPAL based on these insights.
Evaluations prove that PLATPAL is scalable, does
not raise false alarms, and detects a variety of behav-
ioral discrepancies in malicious samples.

We plan to open source PLATPAL to prompt using
platform diversity for maldoc detection and also launch a
PDF maldoc scanning service for public use.

2 Maldoc Detection: A Survey

Existing maldoc detection methods can be classified
broadly into two categories: 1) dynamic analysis, in which
malicious code is executed and examined in a specially in-
strumented environment; and 2) static analysis, in which
the detection is carried out without code execution. A
summary of existing methods is presented in Table 1.
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Category Focus Detection Technique Parser ? ML ? Pattern ? Evasion / Drawbacks

Static

JavaScript Lexical analysis [27] Yes Yes Yes
Heavy obfuscation,
Code loading

JavaScript Token clustering [59] Yes Yes Yes
JavaScript API reference classification [14] Yes Yes Yes
JavaScript Shellcode and opcode signature [31] No No Yes

Metadata Linearized object path [36] Yes Yes Yes
Mimicry [53],
Reverse mimicry [35]

Metadata Hierarchical structure [33, 52] Yes Yes Yes
Metadata Content meta-features [46] Yes Yes Yes
Both Many above-mentioned heuristics [34] Yes Yes Yes

Dynamic

JavaScript Shellcode and opcode signature [58] Yes No Yes Incompatible JS engine,
Non-script based attacksJavaScript Known attack patterns [45] Yes No Yes

JavaScript Memory access patterns [48] Yes No Yes

JavaScript Common maldoc behaviors [29] No No Yes Zero-day exploits
Document Violation of memory access invariants [62] No No No ROP and JIT-Spraying

Table 1: A taxonomy of malicious PDF document detection techniques. This taxonomy is partially based on a systematic survey
paper [40] with the addition of works after 2013 as well as summaries parser, machine learning, and pattern dependencies and
evasion techniques.

2.1 Static Techniques

One line of static analysis work focuses on JavaScript
content for its importance in exploitation, e.g., a majority
(over 90% according to [58]) of maldocs use JavaScript to
complete an attack. PJScan [27] relies on lexical coding
styles like the number of variable names, parenthesis, and
operators to differentiate benign and malicious JavaScript
code. Vatamanu et al. [59] tokenizes JavaScript code
into variables types, function names, operators, etc. and
constructs clusters of tokens as signatures for benign and
malicious documents. Similarly, Lux0r [14] constructs
two sets of API reference patterns found in benign and
malicious documents, respectively, and uses this to clas-
sify maldocs. MPScan [31] differs from other JavaScript
static analyzers in a way that it hooks AAR and dynam-
ically extracts the JavaScript code. However, given that
code analysis is still statically performed, we consider it
a static analysis technique.

A common drawback of these approaches is that they
can be evaded with heavy obfuscation and dynamic code
loading (except for [31] as it hooks into AAR at runtime).
Static parsers extract JavaScript based on pre-defined
rules on where JavaScript code can be placed/hidden.
However, given the flexibility of PDF specifications, it is
up to an attacker’s creativity to hide the code.

The other line of work focuses on examining PDF file
metadata rather than its actual content. This is partially
inspired by the fact that obfuscation techniques tend to
abuse the flexibility in PDF specifications and hide ma-
licious code by altering the normal PDF structure. PDF
Malware Slayer [36] uses the linearized path to specific
PDF elements (e.g., /JS, /Page, etc) to build maldoc clas-
sifiers. Srndic et al. [52] and Maiorca et al. [33] go one
step further and also use the hierarchical structure for
classification. PDFrate [46] includes another set of fea-

tures such as the number of fonts, the average length of
streams, etc. to improve detection. Maiorca et al. [34]
focuses on both JavaScript and metadata and fuses many
of the above-mentioned heuristics into one procedure to
improve evasion resiliency.

All methods are based on the assumption that the nor-
mal PDF element hierarchy is distorted during obfusca-
tion and new paths are created that could not normally
exist in benign documents. However, this assumption
is challenged by two attacks. Mimicus [53] implements
mimicry attacks and modifies existing maldocs to appear
more like benign ones by adding empty structural and
metadata items to the documents with no actual impact on
rendering. Reverse mimicry [35] attack, on the contrary,
attempts to embed malicious content into a benign PDF
by taking care to modify it as little as possible.

2.2 Dynamic Techniques

All surveyed dynamic analysis techniques focus on em-
bedded JavaScript code only instead of the entire doc-
ument. MDScan [58] executes the extracted JavaScript
code on a customized SpiderMonkey interpreter and the in-
terpreter’s memory space is constantly scanned for known
forms of shellcode or malicious opcode sequences. PDF
Scrutinizer [45] takes a similar approach by hooking the
Rhino interpreter and scans for known malicious code
patterns such as heap spray, shellcode, and vulnerable
method calls. ShellOS [48] is a lightweight OS designed
to run JavaScript code and record its memory access
patterns. During execution, if the memory access se-
quences match a known malicious pattern (e.g., ROP, crit-
ical syscalls or function calls, etc), the script is considered
malicious.

Although these techniques are accurate in detecting
malicious payload, they suffer from a common problem:
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an incompatible scripting environment. AAR’s JavaScript
engine follows not only the ECMA standard [18], but
also the Acrobat PDF standard [1] (e.g., Adobe DOM
elements). Therefore, without emulation, objects like doc,
app, or even this (which are very common in both benign
and malicious documents) will not function correctly. In
addition, malicious payload can be encoded as a font or an
image object in the document [37], which will neither be
extracted nor detected. Certain attacks might also exploit
the memory layout knowledge such as the presence of
ROP gadgets or functions available in AAR and its de-
pendent libraries, which is hard to emulate in an external
analysis environment.

Instead of emulating the JavaScript execution environ-
ment, Liu et al. [29] instruments the PDF document with
context monitoring code and uses AAR’s own runtime
to execute JavaScript code and hence is not affected by
the incompatibility problem. However, the instrumented
code only monitors common and known patterns of mali-
cious behavior such as network accesses, heap-spraying,
and DLL-injection, etc, which are not fully generic and
have to be extended when new anti-detection measures of
malicious code come up. CWXDetector [62] proposes a
W⊕X-like approach to detect illegitimate code injected
by maldocs during execution. But similar to W⊕X, its
effectiveness is compromised in the presence of ROP and
JIT-spraying.

2.3 Summary and Motivations
Surveying the maldoc detection techniques yields several
interesting observations:
Parser reliance. Since a document consists of both
data (e.g., text) and executable (e.g., script) components,
a common pattern is to first extract the executable com-
ponents and further examine them with either static or
dynamic analysis. To this end, a parser that is capable
of parsing PDF documents the same way as AAR does
is generally assumed. As shown in Table 1, all but three
methods use either open-sourced or their home-grown
parsers and assume their capability. However, Carmony et
al. [11] shows that these parsers are typically incomplete
and have oversimplified assumptions in regard to where
JavaScript can be embedded, therefore, parser confusion
attacks can be launched to easily evade their detection.
Machine learning reliance. Machine learning tech-
niques are heavily used in maldoc detection, especially
in static analysis, because of their ability in classifica-
tion/clustering without prior knowledge of the pattern.
As shown in Table 1, seven out of 13 methods use ma-
chine learning to differentiate benign and malicious docu-
ments, while another four methods can also be converted
to use machine learning for heuristics mining. How-
ever, recently proposed adversarial machine learning tech-

niques [20, 42, 65] raise serious doubts about the effec-
tiveness of classifiers based on superficial features in the
presence of adversaries. For example, Xu et al. [65] is ca-
pable of automatically producing evasive maldoc variants
without knowledge about the classifier, in a way similar
to genetic programming.
Structural/behavioral discrepancy. An implicit
assumption in the surveyed methods is that struc-
tural/behavioral discrepancies exist between benign and
malicious documents and such discrepancies can be ob-
served. Since the document must follow a public format
specification, commonalities (structural or behavioral) are
expected in benign documents. If a document deviates
largely from the specification or the common patterns of
benign samples, it is more likely to be a malicious doc-
ument. However, such an assumption is challenged by
the Mimicus [53] and reverse mimicry [35] attacks in a
way that a maldoc can systematically evades detection
if an attacker knows the patterns used to distinguish be-
nign and malicious documents. In addition, deriving the
discrepancy patterns requires known malware samples.
Therefore, all but one methods in Table 1 require known
malware samples either to learn patterns automatically or
to manually define patterns based on heuristics, expec-
tations, or experience. This restricts their capabilities in
detecting zero-day attacks where no prior knowledge can
be obtained.
Full dynamic analysis. It is worth noting that only one
dynamic detection method performs analysis on the en-
tire file; instead, the rest of the methods perform analysis
on the extracted JavaScript code only. This is in con-
trast with traditional sandboxed malware analysis such
as Cuckoo [44] or CWSandbox [63], which executes the
malware and examines its behavior and influence on the
host operating system during runtime. One reason could
be because the maldoc runs on top of AAR, which itself
is a complex software and leaves a large footprint on the
host system. The traces of maldoc execution are hidden
in the large footprint, making analysis much harder.
Motivation. The development of PLATPAL is motivated
by the above-mentioned problems in maldoc detection
research. We design PLATPAL to: 1) share the same view
of the document as the intended interpreter (i.e., AAR
in this paper); 2) use simple heuristics that do not rely
on machine learning; 3) detect zero-day attacks without
prior knowledge; 4) capture the maldoc’s influence on the
host system; and 5) be complementary to the surveyed
techniques to further raise the bar for maldoc attackers.

3 Platform Diversity

This section focuses on understanding why platform di-
versity can be an effective approach in detecting maldoc
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attacks. We first present a motivating example and then
list the identified factors that are important in launching
attacks, but are different on Windows and Mac platforms.
We further show how to use them to thwart attackers and
concretize it with four case studies. We end by discussing
platform-detection techniques that a maldoc can use and
the precautions PLATPAL should take.

3.1 A Motivating Example
In December 2012, researchers published a public proof-
of-concept exploit for AAR [37]. This exploit attacks
a heap overflow vulnerability found in the PDF parser
module when parsing an embedded BMP RLE encoded
image (CVE-2013-2729). By simply opening the maldoc,
the AAR instance on Windows platform (including Win-
dows 7, 8 and 10) is compromised and the attacker can
run arbitrary code with the privileges of the compromised
process. During our experiment, we ran this exploit on
the Windows version of AAR 10.1.4 and reproduced the
attack. However, when we opened the same sample with
the Mac version of AAR 10.1.4, the attack failed and no
malicious activities were observed.

In fact, in the malware history, Windows has drawn
more attraction from attackers than Mac, and the same
applies to maldocs. The Windows platform tends to be
more profitable because of its market share, especially
with enterprise users [38], who heavily use and exchange
PDF documents. Therefore, it is reasonable to expect that
the majority of maldocs target primarily the Windows
platform, as cross-platform exploits are much harder to
develop due to the factors discussed later.

The mindset of maldoc attackers and the discrepancy in
reacting to malicious payload among different platforms
inspire us to use platform diversity as the heuristic for
maldoc detection: a benign document “behaves” the same
when opened on different platforms while a maldoc could
have different “behaviors” when launching exploits on dif-
ferent platforms. In other words, cross-platform support,
the power used to make the PDF format and AAR popular,
can now be used to defend against maldoc attacks.

3.2 Diversified Factors
We identified eight factors related to launching maldoc
attacks but are implemented differently on Windows and
Mac platforms.
Syscall semantics. Both syscall numbers and the register
set used to hold syscall parameters are different between
Windows and Mac platforms. In particular, file, socket,
memory, process, and executable operations all have non-
overlapping syscall semantics. Therefore, crafting shell-
code that executes meaningfully on both platforms is
extremely difficult in practice.

Calling conventions. Besides syscalls, the calling con-
vention (i.e., argument passing registers) for userspace
function differs, too. While Windows platforms use rcx,
rdx, and r8 to hold the first three parameters, Mac plat-
forms use rdi, rsi, and rdx. This makes ROP-like attacks
almost impossible, as the gadgets to construct these at-
tacks are completely different.
Library dependencies. The different sets of libraries
loaded by AAR block two types of exploits: 1) exploits
that depend on the existence of vulnerabilities in the
loaded libraries, e.g., graphics libraries, font manager,
or libc, as they are all implemented differently on Win-
dows and Mac platforms; and 2) exploits that depend on
the existence of certain functions in the loaded libraries,
e.g., LoadLibraryA, or dlopen.
Memory layout. The offset from the attack point (e.g.,
the address of the overflowed buffer or the integer value
controlled by an attacker) to the target point, be it a return
address, GOT/PLT entry, vtable entry, or even control
data, is unlikely to be the same across platforms. In other
words, directing control-flow over to the sprayed code can
often be blocked by the discrepancies in memory layouts
across platforms.
Heap management. Given the wide deployment of
ASLR and DEP, a successful heap buffer overflow usually
leads first to heap metadata corruption and later exploits
the heap management algorithm to obtain access to con-
trol data (e.g., vtable). However, heap management tech-
niques are fundamentally different between Windows and
Mac platforms. Therefore, the tricks to corrupt metadata
structures maintained by segment heap [67] (Windows
allocator) will not work in the magazine malloc [5] (Mac
allocator) case and vice versa.
Executable format. While Windows platforms gener-
ally recognize COM, NE, and PE formats, Mac platforms
recognize only the Mach-O format. Therefore, maldocs
that attempt to load an executable after exploitation will
fail. Although “fat binaries” that can run on multiple CPU
architectures exist, we are not aware of an executable for-
mat (or any wrapper tools) that is capable of running on
multiple platforms.
Filesystem semantics. Windows uses backslashes (\)
as path separators, while Mac uses forward slashes (/). In
addition, Windows has a prefixed drive letter (e.g., C:\)
while Mac has a mount point (e.g., the root /). Therefore,
hard-coded path names, regardless of whether they are in
JavaScript or attacker-controlled shellcode, will break on
at least one platform. Dynamically generated filenames
rely on the fact that certain files exist at a given path,
which is unlikely to hold true across platforms.
Expected programs/services. This is heavily relied
upon by the dropper or phishing type of maldocs, for
example, dropping a malformed MS Office document
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that exploits MS Office bugs, or redirecting the user to
a malicious website that attacks the Internet Explorer
browser. As Mac platforms are not expected to have these
programs, such attacks will fail on Mac platforms.

3.3 Attack Categorization

As shown in Figure 1, a typical maldoc attack consists of
three steps: 1) finding vulnerabilities, 2) exploiting them
to inject attacker-controlled program logic, and 3) prof-
iting by performing malicious activities such as stealing
information, dropping backdoors, C&C, etc. The identi-
fied diversity factors in §3.2 can help detect maldocs at
different stages.

In terms of finding vulnerabilities, exploiting vulner-
abilities on platform-specific components can obviously
be detected by PLATPAL, as the vulnerable components
do not exist on the other platform.

The exploitation techniques can be divided into two
subcategories, based on whether an attack exploits mem-
ory errors (e.g., buffer overflow, integer overflow, etc) to
hijack control-flow or exploits logic bugs (e.g., JavaScript
API design flaws).

Memory-error based control-flow hijacking puts a high
requirement on the memory content during exploitation.
For example, ROP attacks, which are commonly found
in maldoc samples, require specific gadgets and precise
information on where to find them in order to make pow-
erful attacks. However, these gadgets and their addresses
in memory can be easily distorted by the discrepancies in
loaded libraries and memory layouts.

On the other hand, exploiting features that are natu-
rally cross-platform supported, e.g., JavaScript hidden
API attacks or abusing the structure of PDF document to
obfuscate malicious payload, are not subject to the intri-
cacies of runtime memory contents and are more likely to
succeed.

Finally, even if an attacker succeeds in the first two
steps, the attack can be detected while the maldoc is per-
forming malicious activities, such as executing a syscall,
loading a PE-format executable on Mac platforms, or
accessing a file that exists only on Windows platforms.

3.4 Case Studies

We use representative examples to show how platform
diversity can be used to detect maldoc attacks in each step
shown in Figure 1.
Platform-specific bug. One source of platform-specific
bugs comes from system libraries that are used by AAR.
An example is CVE-2015-2426, an integer overflow bug
in the Windows Adobe Type Manager Library. A detailed
study can be found at [28]. In this case, opening the

maldoc sample on Windows platforms will trigger the ex-
ploitation, while nothing will happen when opening it on
Mac platforms. In other words, maldocs that exploit bugs
in dependent libraries will surely fail on other platforms.

Another source of bugs comes from the AAR imple-
mentation itself, and we also found a few cases where
the implementation of the same function can be vulner-
able on one platform but safe on the other. For example,
CVE-2016-4119 is a use-after-free vulnerability in the
zlib deflating algorithm used by AAR to decompress
embedded images [30]. The Mac version of AAR is able
to walk through the document and exit gracefully, while
AAR on Windows crashes during the rendering stage.
A closer look at their execution shows that the decoded
image objects are different on these platforms.
Memory error. Due to the deployment of ASLR and
DEP in modern operating systems, direct shellcode in-
jection cannot succeed. As a result, attackers exploiting
memory errors generally require some form of heap prepa-
ration to obtain read/write accesses to control data, and
the most common target we observed is vtable.

In the case of [37], the maldoc sample exploits CVE-
2013-2729, an integer overflow bug in AAR itself, to
prepare the heap to obtain access to a vtable associated
with an image object. In particular, it starts by allocating
1000 consecutive memory chunks, each of 300 bytes, a
value carefully selected to match the size of the vtable,
and subsequently free one in every 10 chunks to create
a few holes. It then uses a malformed BMP image of
300 bytes to trigger the integer overflow bug and man-
ages to override the heap metadata, which resides in an
attacker-controlled slot (although the attacker does not
know which slot before hand). The malformed BMP im-
age is freed from memory, but what is actually freed is
the attacker-controlled slot, because of the heap metadata
corruption. Later, when the struct containing a vtable
is allocated in the same slot (almost guaranteed because
of heap defragmentation), the attacker gains access and
hijacks control-flow by overriding vtable entries.

However, this carefully constructed attack has two as-
sumptions, which do not hold across platforms: 1) the size
of the vtable on Windows and Mac platforms is different;
and 2) the heap object metadata structures are different.
As a result, overriding the heap metadata on Mac platform
yields no observable behaviors.
Logic bugs. Another common attack vector of AAR
is the logic bugs, especially JavaScript API design flaws.
Unlike attacks that exploit memory errors, JavaScript API
attacks generally require neither heap constructions nor
ROP-style operations. Instead, they can be launched with
as little as 19 lines of JavaScript code, as shown in Fig-
ure 2. Gorenc et al. [22] further extends this technique
to complete remote code execution attacks by abusing
hidden JavaScript APIs.

276    26th USENIX Security Symposium USENIX Association



Vulnerability Discovery Exploitation Malicious Activities Success

Platform-specific bugs

e.g., bugs in system library
CVE-2015-2426

AAR implementation bugs

Memory corruption

e.g., bugs in element parser 
CVE-2013-2729

Logic bugs

e.g., flaws in JavaScript API design
CVE-2014-0521

Steal sensitive information

Load executables

Execute shellcode

Drop other exploits

Other activities

Bug does not exist 
on other platforms

Discrepancies in:
    Memory layout
    Heap management
    Library functions

Syscall semantics

Executable format

Filesystem semantics

Expected programs

Attacks that cannot 
be detected with

 platform diversity

Figure 1: Using platform diversity to detect maldocs throughout the attack cycle. Italic texts near × refers to the factors identified
in §3.2 that can be used to detect such attacks. A dash line means that certain attacks might survive after the detection.

1 var t = {};
2 t.__defineSetter__(’doc’, app.beginPriv);
3 t.__defineSetter__(’user’, app.trustedFunction);
4 t.__defineSetter__(’settings’, function() { throw 1; });
5 t.__proto__ = app;
6 try {
7 DynamicAnnotStore.call(t, null, f);
8 } catch(e) {}
9

10 f();
11 function f() {
12 app.beginPriv();
13 var file = ’/c/notes/passwords.txt’;
14 var secret = util.stringFromStream(
15 util.readFileIntoStream(file, 0)
16 );
17 app.alert(secret);
18 app.endPriv();
19 }

Figure 2: CVE-2014-0521 proof-of-concept exploitation

Besides being simple to construct, these attacks are
generally available on both Windows and Mac platforms
because of the cross-platform support of the JavaScript.
Therefore, the key to detecting these attacks via platform
diversity is to leverage differences system components
such as filesystem semantics, expected installed programs,
etc., and search for execution divergences when they are
performing malicious activities. For example, line 15 will
fail on Mac platforms in the example of Figure 2, as such
a file path does not exist on Mac.

3.5 Platform-aware Exploitation

Given the difficulties of launching maldoc attacks on dif-
ferent platforms with the same payload, what an attacker
can do is to first detect which platform the maldoc is run-
ning on through explicit or implicit channels and then
launch attacks with platform-specific payload.

In particular, the Adobe JavaScript API contains pub-
licly accessible functions and object fields that could
return different values when executed on different plat-
forms. For example, app.platform returns WIN and MAC
on respective platforms. Doc.path returns file path to the

document opened, which can be used to check whether
the document is opened on Windows or Mac by testing
whether the returned path is prefixed with /c/.

Another way to launch platform-aware attacks is to
embed exploits on two platform-specific vulnerabilities,
each targeting one platform. In this way, regardless of on
which platform the maldoc is opened, one exploit will be
triggered and malicious activities can occur.

In fact, although platform-aware maldocs are rare in
our sample collection, PLATPAL must be aware of these
attack methods and exercises precautions to detect them.
In particular, the possibility that an attacker can probe the
platform first before launching the exploit implies that
merely comparing external behaviors (e.g., filesystem op-
erations or network activities) might not be sufficient as
the same external behaviors might be due to the result of
different attacks. Without tracing the internal PDF pro-
cessing, maldocs can easily evade PLATPAL’s detection
using platform-specific exploits, for example, by carrying
multiple ROP payloads and dynamically deciding which
payload to use based on the return value of app.platform,
or even generating ROP payload dynamically using tech-
niques like JIT-ROP [49].

However, we do acknowledge that, given the com-
plexity of the PDF specification, PLATPAL does not enu-
merate all possible platform-probing techniques. There-
fore, PLATPAL could potentially be evaded through im-
plicit channels we have not discovered (e.g., timing side-
channel).

3.6 Platform-agnostic Exploitation
We also identified several techniques that can help “neu-
tralize” the uncertainties caused by platform diversity,
including but not limited to heap feng-shui, heap spray,
and polyglot shellcode.
Heap feng-shui. By making consecutive heap alloca-
tions and de-allocations of carefully selected sizes, an
attacker can systematically manipulate the layout of the
heap and predict the address of the next allocation or
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de-allocation [51]. This increases the chance of obtain-
ing access to critical data such as vtables even without
knowing every detail of the system memory allocator.
Heap spray and NOP sled. By repeatedly allocating
the attack payload and NOP sled in heap [13], an attacker
is alleviated from using precise memory locations for
control-flow hijacking; instead, an attacker only needs to
ensure that control-flow is redirected to the sprayed area.
Ployglot shellcode trampoline. Although not seen in
the wild, it is possible to construct OS-agnostic shellcode
in a similar manner as CPU architecture-agnostic shell-
code [17, 64]. The key idea is to find operations that
are meaningful in one platform and NOP on the other
and use these operations to jump to different code for
platform-specific activities.

Although these operations can succeed on both plat-
forms, attacks using these techniques can still be detected
by platform diversity. This is because these operations
have to be paired with other procedures to complete an
end-to-end attack. For example, heap manipulation can
succeed but the resulting memory layout might not be
suitable for both platforms to land the critical data in
attacker-controlled memory because of the discrepancies
in heap management, while ployglot shellcode trampo-
lines can run without crashing AAR, but the attack can
still be detected by the malicious activities performed.

4 The PLATPAL Approach

This section presents the challenges and their solutions in
designing PLATPAL that harvests platform diversity for
maldoc detection.

4.1 Dual-level Tracing

Although the platform diversity heuristic sounds intuitive,
two natural questions arise: 1) What “behaviors” could
be potentially different across different platforms? and 2)
How can they be universally traced and compared?

To answer the first question, “behaviors” must satisfy
two requirements: 1) they are available and do not change
across platforms and 2) they are the same for benign doc-
uments and could be different for maldocs. To this end,
we identified two sets of “behaviors” that match these
requirements: AAR’s internal PDF processing functions
(internal behaviors) and external impact on the host sys-
tem while executing the document (external behaviors).

For internal behaviors, in AAR, PDF documents pass
through the PDF processing functions in a deterministic
order and trigger pre-defined callbacks sequentially. For
example, a callback is issued when an object is resembled
or rendered. When comparing execution across platforms,
for a benign document, both function execution order and

results are the same because of the cross-platform support
of AAR, while for a maldoc, the execution trace could be
different at many places, depending on how the attack is
carried out.

In terms of external behaviors, because of the cross-
platform nature of PDF specifications, if some legitimate
actions impact the host system in one platform, it is ex-
pected that the same actions will be shown when opening
the document on the other platform. For example, if a
benign document connects to a remote host (e.g., for con-
tent downloading or form submission), the same behavior
is expected on other platforms. However, if the Internet
connection is triggered only upon successful exploitation,
it will not be shown on the failing platform.

The architecture of PLATPAL is described in Figure 3.
PLATPAL traces both internal and external behaviors, and
we argue that tracing both types of behaviors is necessary.
Tracing external behaviors is crucial to catch the behav-
ioral discrepancy after a successful exploitation, i.e., the
malicious activity step in Figure 1. For example, after
a successful JavaScript hidden API attack [22], the at-
tacker might want to execute shellcode, which will fail
on Mac because of discrepancies in syscall semantics.
The internal behaviors, however, all show the same thing:
execution of JavaScript code stops at the same place.

The most compelling reason to have an internal behav-
ior tracer is to defeat platform probing attempts, with-
out which PLATPAL can be easily evaded by launching
platform-aware attacks, as described in §3.5. Another rea-
son to trace internal behaviors is to provide some insights
on which AAR component is exploited or where the at-
tack occurs, which helps the analysis of maldoc samples,
especially for proof-of-concept (PoC) samples that simply
crash AAR without any external activities.

4.2 Internal PDF Processing

PLATPAL’s internal behavior tracer closely follows how
AAR processes PDF documents. PDF processing inside
AAR can be divided into two stages.

In the parsing stage, the underlying document is opened
and the header is scanned to quickly locate the trailer
and cross reference table (XRT). Upon locating the XRT,
basic elements of the PDF document, called COS objects,
are enumerated and parsed. Note that COS objects are
only data with a type label (e.g., integer, string, keyword,
array, dictionary, or stream). One or more COS objects
are then assembled into PDF-specific components such
as text, image, font, form, page, JavaScript code, etc.
according to AAR’s interpretation of PDF specifications.
The hierarchical structure (e.g., which texts appear in a
particular page) of the PDF document is also constructed
along this process. The output, called PD tree, is then
passed to the rendering engine for display.
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Figure 3: PLATPAL architecture. The suspicious file is submitted to two VMs with different platforms. During execution, both
internal and external behaviors are traced and compared. Divergence in any behavior is considered a malicious signal.

The drawing stage starts by performing OpenActions
specified by the document, if any. Almost all maldocs
will register anything that could trigger their malicious
payload in OpenActions for immediate exploitation upon
document open. Subsequent drawing activities depend
on user’s inputs, such as scrolling down to the next page
triggers the rendering of that page. Therefore, in this
stage, PLATPAL not only hooks the functions but also
actively drives the document rendering component by
component. Note that displaying content to screen is
a platform-dependent procedure and hence, will not be
hooked by PLATPAL, but the callbacks (e.g., an object is
rendered) are platform-independent and will be traced.

In addition, for AAR, when the rendering engine per-
forms a JavaScript action or draws a JavaScript-embedded
form, the whole block of JavaScript code is executed.
However, this also enables the platform detection attempts
described in §3.5 and an easy escape of PLATPAL’s de-
tection. To avoid this, PLATPAL is designed to suppress
the automatic block execution of JavaScript code. Instead,
the code is tokenized to a series of statements that are
executed one by one, and the results from each execution
are recorded and subsequently compared. If the state-
ment calls a user-defined function, that function is also
executed step-wise.

Following is a summary of recorded traces at each step:
COS object parsing: PLATPAL outputs the parsing
results of COS objects (both type and content).
PD tree construction: PLATPAL outputs every PD com-
ponent with type and hierarchical position in the PD tree.
Script execution: PLATPAL outputs every executed
statement and the corresponding result.
Other actions: PLATPAL outputs every callback trig-
gered during the execution of this action, such as change
of page views or visited URLs.
Element rendering: PLATPAL outputs every callback
triggered during the rendering of the PDF element.

4.3 External System Impact

As syscalls are the main mechanisms for a program to
interact with the host platform, PLATPAL hooks syscalls
and records both arguments and return values in order
to capture the impact of executing a maldoc on the host
system. However, for PLATPAL, a unique problem arises
when comparing syscalls across platforms, as the syscall
semantics on Windows and Mac are drastically different.

To ease the comparison of external behaviors across
platforms, PLATPAL abstracts the high-level activities
from the raw syscall dumps. In particular, PLATPAL is
interested in three categories of activities:
Filesystem operations: including files opened/created
during the execution of the document, as well as file
deletions, renames, linkings, etc.
Network activities: including domain, IP address, and
port of the remote socket.
External executable launches: including execution of
any programs after opening the document.

Besides behaviors constructed from syscall trace,
PLATPAL additionally monitors whether AAR exits grace-
fully or crashes during the opening of the document. We
(empirically) believe that many typical malware activities
such as stealing information, C&C, dropping backdoors,
etc, can be captured in these high-level behavior abstrac-
tions. This practice also aligns with many automated
malware analysis tools like Cuckoo [44] and CWSand-
box [63], which also automatically generate a summary
that sorts and organizes the behaviors of malware into a
few categories. However, unlike these dynamic malware
analysis tools that infer maliciousness of the sample based
on the sequence or hierarchy of these activities, the only
indication of maliciousness for PLATPAL is that the set
of captured activities differs across platforms. Another
difference is that the summary generated by Cuckoo and
CWSandbox usually requires manual interpretation to
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judge maliciousness, while the summary from PLATPAL
requires no human effort in comparing behaviors across
platforms.

5 Implementation

PLATPAL consists of three components: 1) an internal
behavior tracer in the form of AAR plugin; 2) an external
behavior tracer in the form of syscall tracer; and 3) a sand-
boxed environment for dynamic document examination
based on VMware. We prototype PLATPAL to work on
recent Windows (versions 7, 8 and 10) and Mac (versions
Yosemite, El Capitan, and Sierra) platforms, and is com-
patible with all AAR versions from Adobe Reader X 10.0
to the latest version of Adobe Acrobat DC.

5.1 Internal Behavior Tracer
Given that AAR is closed-source software, it is not vi-
able to hook AAR’s PDF processing functions through
source code instrumentation. Initially, we used dynamic
binary instrumentation tools (i.e., Intel Pin [32] and Dy-
namoRio [7]) to hook the execution of AAR and examine
function calls at runtime. However, such an approach
has two significant drawbacks: 1) These tools introduce a
16-20 times slowdown, which is not tolerable for practical
maldoc detection. For example, executing a two-page
document could take up to five minutes, and sometimes is
even halted by the system; 2) The PDF processing logic
is hidden in over 15000 functions (latest version of AAR)
with no name or symbol information. It is difficult if not
impossible to identify the critical functions as well as to
construct the whole cycle.

To this end, PLATPAL chooses to develop an AAR
plugin as the internal behavior tracer. The AAR plugin
technology [3] is designed to extend AAR with more
functionalities such as database interaction, online col-
laboration, etc. The compiled plugin takes the form of a
loadable DLL on Windows and an app bundle on Mac,
which is loaded by AAR upon initialization and has sig-
nificant control over AAR at runtime. The AAR plugin
provides a few nice features that suit PLATPAL’s needs: 1)
Its cross-platform support abstracts the platform-specific
operations to a higher level; 2) It uses the internal logic
of AAR in PDF processing and summarizes the logic
into 782 functions and callbacks (nicely categorized and
labeled), which enables PLATPAL to both passively mon-
itor the execution of these functions and actively drive
the document, including executing JavaScript code and
rendering elements; 3) It is stable across AAR versions
(only two functions are added since version 10, which are
not used by PLATPAL); 4) Since the AAR plugin is in the
form of a loadable module, it shortens the total document
analysis time to an average of 24 seconds.

In recording behaviors discussed in §4.2, the COS
objects and PD hierarchical information are extracted
using the enumeration methods provided by the
CosDoc, PDDoc, and PDF_Consultant classes. JavaScript
code is first tokenized by a lexer adapted from
SpiderMonkey and executed statement-by-statement with
AFExecuteThisScript method from AcroForm class. The
rest of the PDF-supported actions are launched with the
AVDocPerformAction method. The PDF processing func-
tions exposed to the AAR plugin can be hooked by the
simple JMP-Trampoline hot-patching technique as sum-
marized in [6].

5.2 External Behavior Tracer
As illustrated in §4.3, PLATPAL’s external behavior tracer
records syscall arguments and return values during docu-
ment execution. On Windows, the tracer is implemented
based on NtTrace [41]; on Mac, the tracer is a Dscript
utilizing the DTrace [9] mechanism available on BSD
systems. Both techniques are mature on respective plat-
forms and incur small execution overhead: 15% to 35%
compared to launching AAR without the tracer attached,
which helps to control the total execution time per docu-
ment. Constructing the high-level behaviors is performed
in a similar manner as Cuckoo guest agent [44].

In PLATPAL, syscall tracing starts only after the doc-
ument is opened by AAR. The AAR initialization pro-
cess is not traced (as AAR itself is not a malware) and
PLATPAL is free of the messy filesystem activities (e.g.,
loading libraries, initializing directory structures, etc) dur-
ing the start-up, leaving the execution trace in a very short
and clean state. In fact, a benign document typically has
around 20 entries of filesystem traces and no network ac-
tivities or external program launches. AAR uses a single
thread for loading and parsing the document and spawns
one helper thread during document rendering. Syscalls of
both threads are traced and compared.

To compare file paths, PLATPAL further aggregates and
labels filesystem operation traces into a few categories
that have mappings on both platforms, including AAR
program logic, AAR support file, AAR working caches,
system library/framework dependencies, system fonts,
and temporary files. Files outside these labels will go to
the unknown category and will be compared based on
filenames.

5.3 Automated Execution Sandbox
For PLATPAL, the purpose of having an automated exe-
cution sandbox is twofold: 1) to confine the malicious
activities within a proper boundary and 2) to provide a
clean execution environment for each document exami-
nation that is free from side effects by prior executions.
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The virtual machine (VM) is initialized with a clean-slate
operating system and subsequently provisioned with the
necessary tools and settings, including AAR, the plugin,
and the syscall tracer. The memory and disk snapshot is
taken after the provision, and each subsequent document
execution restores the states from this snapshot. PLATPAL
uses VMware for the management of VMs and snapshots.
Workflow. PLATPAL can be started like
PlatPal <file-to-check>. After that, PLATPAL pop-
ulates a Windows VM and a Mac VM and restores the
memory and disk snapshots. The suspicious document is
then uploaded to these VMs and AAR is started with the
syscall tracer attached. After AAR is done with initial-
ization, the control is transferred to the plugin (internal
tracer), which opens the document for examination. Af-
ter the examination finishes (or AAR crashes), logs from
internal and external tracing are pulled from the respec-
tive VMs and compared on the host. PLATPAL reports
whether discrepancies are detected among these logs.

6 Evaluation

In this section, we validate the fundamental assumption
of PLATPAL: benign documents behave the same when
opened across different platforms, while maldocs behave
differently when doing exploitation on different platforms.
We also evaluate PLATPAL’s performance in terms of total
time taken to finish a complete analysis.
Experiment setup. The experiments were conducted on
a MacBook Pro (2016 model) with Intel Core i7 2.9GHz
CPU and 16GB RAM running macOS Sierra. One VM
is provisioned with Windows 7 Professional SP1 and the
other VM is provisioned with OSX Yosemite 10.10.1.
Each VM is further provisioned with 6 different versions
of AAR instances1 listed in Table 2. Each document
sample is forced to be closed after one minute execution.

6.1 Benign Samples

The benign sample set consists of three parts: 1000 sam-
ples are collected by searching Google with file type PDF
and no keywords. However, a majority of these samples
do not use features that are typically exploited by mal-
docs. For example, only 28 files contain embedded fonts
and 6 files contain JavaScript code. Therefore, we further
collected 30 samples from PDF learning sites2 that use ad-
vanced features in the PDF standard, including embedded
JavaScript (26 samples), AcroForm (17), self-defined font
(6), and 3D objects (2). All of the samples are submitted

1Previous versions of AAR can be obtained from ftp://ftp.
adobe.com/pub/adobe/reader

2The samples are mainly obtained from http://www.
pdfscripting.com and http://www.planetpdf.com/

to VirusTotal and scanned by 48 AV products and none of
them are flagged as malicious by any of the AV engine.

The samples are submitted to PLATPAL for analysis. In
particular, each document is opened by all six versions of
AAR instances on both platforms. This is to empirically
verify that all AAR reader instances do not introduce non-
determinism during the document executions. Pairwise
behavior comparison is conducted per AAR version and
no discrepancy is observed, for any AAR version tested.
More importantly, the experiment results support the first
part of PLATPAL’s assumption: benign documents behave
the same across platforms.

6.2 Maldoc Detection
The maldoc samples are all collected from VirusTotal.
In particular, we collected samples with identified CVE
numbers (i.e., the sample exploits a particular CVE) 3 as
of Dec. 31, 2016. As a prototype, we restrict the scope
by analyzing CVEs published after 2013 and further filter
the samples that are obviously mislabeled (e.g., a 2011
sample exploiting a 2016 CVE) or of wrong types (e.g.,
a zip file or an image file) and obtained a 320-sample
dataset.

The samples are submitted to PLATPAL for analysis.
In addition, we select the AAR versions that are most
popular based on the time when the CVE was published.
In other words, each exploit is a zero-day attack to the
AAR version tested. The per-CVE detection results are
presented in Table 2 and the breakdown in terms of which
behavior factor causes the discrepancy is listed in Table 3.
Interpretation. For any sample submitted to PLATPAL,
only three outcomes are possible:

1) Malicious: At least one behavioral discrepancy is
observed, including the case in which AAR crashes on
both platforms but the internal behavior is different, i.e.,
they crash at different PDF processing stages.

2) Suspicious: AAR crashes on both platforms but no
difference is observed in internal behaviors. Given that a
benign document has no reason to crash AAR, PLATPAL
considers these samples as suspicious.

3) Benign: No behavioral discrepancy can be observed
and AAR exits gracefully on both platforms.
Overall result. Out of 320 samples, PLATPAL detected
209 (65.3%) malicious samples, 34 (10.6%) suspicious
samples, and 77 (24.1%) benign samples.
Suspicious samples. Among the 34 suspicious samples,
we are able to confirm that 16 are PoC samples, including
7 released on Exploit-DB [19], 3 in public blogs, and 6 in-
ferred by their original filenames recorded by VirusTotal.
These samples are likely obtained by fuzzing and upon

3VirusTotal labels a sample with CVE number as long as one of the
hosted AV products flag the sample with the CVE label.
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CVE AAR Num. Result

Version Samples Both crash Divergence

2016-6946 DC.16.45 51 8 40
2016-4204 DC.16.45 78 7 37
2016-4119 DC.10.60 1 0 1
2016-1091 DC.10.60 63 6 31
2016-1077 DC.10.60 1 0 1
2016-1046 DC.10.60 4 0 4
2015-5097 11.0.10 4 0 4
2015-2426 11.0.10 14 6 8
2015-0090 11.0.10 1 0 1
2014-0521 11.0.00 2 0 2
2014-0495 11.0.00 2 0 2
2013-3353 10.1.4 16 4 10
2013-3346 10.1.4 7 0 7
2013-2729 10.1.4 23 3 19
2013-0640 10.1.0 30 0 22
2013-0641 10.1.0 23 0 20

Total 320 34 209

Table 2: PLATPAL maldoc detection results grouped by CVE
number. Both crash means AAR crashes on both platforms
while executing the maldoc sample with no divergence on in-
ternal behaviors; Divergence means at least one behavioral dis-
crepancy (either internal or external) is observed.

execution, will simply crash AAR. We expect it to apply
to the rest of the suspicious samples as well.

Benign samples. We identified several reasons for the
failed detection of these samples.

1) The maldoc targets old and specific AAR versions.
Although a majority of maldoc samples exploit a wide
range of AAR versions, we do find samples that target
old AAR versions only, i.e., 9.X and 8.X, including 8
CVE-2013-0640 samples, 3 CVE-2013-0641 samples,
and 1 CVE-2013-2729 sample. We also found that 13
CVE-2016-4204 samples and 10 CVE-2016-1091 sam-
ples seems to be exploiting AAR version 11.0.X and the
exploits do not work on the AAR DC version used in the
experiment. This is based on manual inspection of the
JavaScript dump from these samples.

In total, they account for 36 out of the 77 samples
classified as benign. This is also shows the drawback of
PLATPAL, being a dynamic analysis approach, it requires
proper setup of the execution environment to entice the
malicious behaviors.

2) The maldoc sample could be mis-classified by AV
vendor on VirusTotal. This could be true for 11 CVE-
2016-4204 and 8 CVE-2016-1091 samples, as out of the
48 AV products hosted on VirusTotal, only one AV vendor
flags them as malicious. In total, this accounts for 19 out
of the 77 samples classified as benign.

3) The maldoc does not perform malicious activity.
Not all malicious activities in the maldoc can be triggered.
In particular, we observed two CVE-2013-3353 samples
attempted to connect to a C&C server in JavaScript but

did nothing afterwards because of the lack of responses,
which results in no divergences in execution trace.

In the end, for the rest of the samples classified as
benign (20 in total), we are unable to confirm a reason
why no behavioral discrepancies are observed. It could
be because of any of the aforementioned reasons (but
we are unable to confirm) and we do not preclude the
possibility that some samples could evade PLATPAL’s
detection. Given the scope and flexibility of PDF speci-
fication, it is possible that PLATPAL needs to hook more
functions (e.g., per glyph to host encoding transforma-
tion performed a font) to capture finer-grained internal
behaviors.
Behavior effectiveness. Table 3 also shows the effec-
tiveness of various behaviors in detecting maldocs.

1) By the first row, it is possible to have only external
behavior divergences, while internal behaviors are the
same (e.g., due to pure JavaScript attacks). By the first
column, it is also possible to have only internal behavior
divergences, while external behaviors are the same (due
to the powerful error-correction capability of AAR).

2) Crash/no crash is the most effective external indica-
tor, as memory-error exploitation is the dominating tech-
nique for maldoc attacks among the samples. JavaScript
execution is the most effective internal indicator, as al-
most all attacks involve JavaScript; even memory error
exploits use it to prepare the heap.
Pinpointing attacks by internal tracer. One supple-
mentary goal of the internal tracer is to provide insights
on which AAR component is exploited or where the attack
occurs given a maldoc sample. To evaluate how this goal
is achieved, we performed a cross-check on where the
internal behavior divergence occurs and the targeted AAR
component of each CVE4. The result is shown in Table 4.

In four out of 7 cases, PLATPAL’s internal tracer finds
divergence during the invocation of the vulnerable compo-
nents. In the CVE-2015-2426 case, since the vulnerable
component is a font library, the divergence is first detected
during the rendering process. In the CVE-2013-3346 case,
the vulnerable component (ToolButton callback) is trig-
gered through JavaScript code and hence, the first diver-
gence occurs in the script engine. In the CVE-2013-2729
case, although the bug is in the parser component, the
divergence is detected when the maldoc is playing heap
feng-shui to arrange heap objects.
Resilience against automated maldoc generation. We
test PLATPAL’s resilience against state-of-the-art maldoc
generation tool, EvadeML [65], which automatically pro-
duce evasive maldoc variants against ML-depended ap-
proaches in Table 1 given a malicious seed file. To do this,
we selected 30 samples out of the 209 malicious samples
which are also detected as malicious by PDFrate [46],

4Only CVEs which full details are publicly disclosed are considered
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Internal Behavior External Behavior Total
No difference Both crash One crash Filesystem Network Executable

No difference 77 34 0 6 3 0 120
COS object parsing 4 8 23 0 0 0 35
PD tree construction 0 0 2 4 2 0 8
JavaScript execution 5 5 47 18 12 4 91
Other actions 0 0 0 2 0 2 4
Element rendering 3 10 35 9 5 0 62

Total 89 57 107 39 22 6 320

Table 3: PLATPAL maldoc detection results grouped by the factor causing divergences. Note that for each sample, only one internal
and one external factor is counted as the cause of divergence. E.g., if a sample crashes on Mac and does not crash on Windows, even
their filesystem activities are different, it is counted in the crash/no crash category. The same rule applies to internal behaviors.

CVE Targeted Divergence Detectscomponent first occurs

2016-4119 Parser Parser Vuln. component
2016-1077 Parser Parser Vuln. component
2016-1046 Script engine Script engine Vuln. component
2015-2426 Library Render Exploit carrier
2014-0521 Script engine Script engine Vuln. component
2013-3346 Render Script engine Exploit carrier
2013-2729 Parser Script engine Exploit carrier

Table 4: Divergence detected by PLATPAL’s internal tracer vs
the actual buggy AAR component.

the default PDF classifier that works with EvadeML5.
We then uses EvadeML to mutate these samples until all
variants are considered benign. Finally, we send these eva-
sive variants to PLATPAL for analysis and all of them are
again marked as malicious, i.e., behavioral discrepancies
are still observed. This experiment empirically verifies
PLATPAL’s resilience on automated maldoc generation
tools. The main reason for the resilience is that EvadeML
mainly focuses on altering the structural feature of the
maldoc while preserves its exploitation logic and also the
internal and external behaviors when launching the attack.

6.3 Performance
In PLATPAL, the total analysis time consists of two parts:
1) time to restore disk and memory snapshots and 2) time
to execute the document sample. The latter can be further
broken down into document parsing, script execution, and
element rendering time. Table 5 shows the time per item
and the overall execution time.

On average, document execution on both VMs can fin-
ish at approximately the same time (23.7 vs 22.1 seconds).
Given that the VMs can run in parallel, a complete anal-
ysis can finish within 25 seconds. A notable difference

5It is worthnoting that PLATPAL cannot be used as the PDF classifier
for EvadeML as EvadeML requires a maliciousness score which has
to be continuous between 0 and 1 while PLATPAL can only produce
discrete scores of either 0 or 1. Therefore, we use PDFrate, the PDF
classifier used in the EvadeML paper [65], for this experiment.

Item Windows Mac

Ave. Std. Ave. Std.

Snapshot restore 9.7 1.1 12.6 1.1
Document parsing 0.5 0.2 0.6 0.2
Script execution 10.5 13.0 5.1 3.3
Element rendering 7.3 8.9 6.2 6.0

Total 23.7 8.5 22.1 6.3

Table 5: Breakdown of PLATPAL’s analysis time per document
(unit: seconds).

is that script execution on the Windows platform takes
significantly longer than on the Mac platform. This is
because almost all maldoc samples target Windows plat-
forms and use JavaScript to launch the attack. The attack
quickly fails on Mac (e.g., wrong address for ROP gad-
gets) and crashes AAR but succeeds on Windows and
therefore takes longer to finish. The same reason also
explains why the standard deviation on script execution
time is larger on the Windows platform.

7 Discussion

7.1 Limitations

User-interaction driven attacks. Although PLATPAL
is capable of simulating simple users’ interactions (e.g.,
scrolling, button clicking, etc), PLATPAL does not attempt
to explore all potential actions (e.g., key press, form fill-
ing, etc) or explore all branches of the JavaScript code.
Similarly, PLATPAL cannot detect attacks that intention-
ally delay their execution (e.g., start exploitation two min-
utes after document open). These are common limitations
for any dynamic analysis tool. However, we believe this
is not a serious problem for maldoc detection, as hiding
malicious activities after complex user interactions limits
its effectiveness in compromising the victim’s system.
Social engineering attacks. PLATPAL is not capable of
detecting maldocs that aim to perform social engineering
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attacks, such as faking password prompt with a JavaScript
window or enticing the user to download a file and execute
it. This is because these maldocs neither exploit bugs in
AAR nor inject malicious payload, (in fact they are legit
documents structural-wise) and hence will have exactly
the same behaviors on both platforms.

Targeted AAR version. If a maldoc targets a specific
version of AAR, its behaviors in PLATPAL will likely be
either crashing both AAR instances (i.e., exploited the bug
but used the wrong payload), or the document is rendered
and closed gracefully because of error correction by AAR.
In the latter case, PLATPAL will not be able to detect a
behavioral discrepancy. This is usually not a problem
for PLATPAL in practice, as PLATPAL will mainly be
used to detect maldocs against the latest version of AAR.
However, PLATPAL can also have a document tested on
many AAR versions and flag it as suspicious as long as a
discrepancy is observed in any single version.

Non-determinism. Another potential problem for
PLATPAL is that non-deterministic factors in document
execution could cause false alerts. Examples include
return value of gettime functions or random number
generators available through JavaScript code. Although
PLATPAL does not suffer from such a problem during the
experiment, a complete solution would require a thorough
examination of the PDF JavaScript specification and iden-
tify all non-determinism. These non-deterministic factors
need to be recorded during the execution of a document
on one platform and replayed on the other platform.

7.2 Deployment

As PLATPAL requires at least two VMs, a large amount of
image and memory needs to be committed to support the
operation of PLATPAL. Our current implementation uses
60GB disk space to host the snapshots for six versions of
AAR and 2GB memory per each running VM.

To this end, we believe that PLATPAL is best suited
for cloud storage providers (e.g., Dropbox, Google Docs,
Facebook, etc.) which can use PLATPAL to periodically
scan for maldocs among existing files or new uploads.
These providers can afford the disk and memory required
to set up VMs with diverse platforms as well as enjoy
economy of scale. Similarly, PLATPAL also fits the model
of online malware scanning services like VirusTotal or
the cloud versions of anti-virus products.

In addition, as a complementary scheme, PLATPAL can
be easily integrated with previous works (Table 1) to im-
prove their detection accuracy. In particular, PLATPAL’s
internal behavior tracer can be used to replace parsers
in these techniques to mitigate the parser-confusion at-
tack [11]. COS object and PD tree information can be fed
to metadata-based techniques [33, 36, 46, 52], while the

JavaScript code dump can be fed to JavaScript-oriented
techniques [14, 27, 31, 45, 48, 58, 59] for analysis.

7.3 Future Works

We believe that PLATPAL is a flexible framework that is
suitable not only for PDF-based maldoc detection but also
for systematically approaching security-through-diversity.
Support more document types. MS Office programs
share many features with AAR products, such as 1) sup-
porting both Windows and Mac platforms; 2) supporting
a plugin architecture which allows efficient hooking of
document processing functions and action driving; 3)
executing documents based on a standard specification
that consists of static components (e.g., text) and pro-
grammable components (e.g., macros). Therefore, we do
not see fundamental difficulties in porting PLATPAL to
support maldoc detection that targets MS Office suites.

As another example, given that websites can also be
viewed as HTML documents with embedded JavaScript,
malicious website detection also fits into PLATPAL’s
framework. Furthermore, given that Chrome and Firefox
browsers and their scripting engines are open-sourced,
PLATPAL is capable of performing finer-grained behavior
tracing and comparison with source code instrumentation.
Explore architecture diversity. Apart from platform
diversity, CPU architecture diversity can also be harvested
for maldoc detection, which we expect to have a similar
effect in stopping maldoc attacks. To verify this, we plan
to extend PLATPAL to support the Android version of
AAR, which has both ARM and x86 variants.

8 Additional Related Work

In addition to the maldoc detection work, being an N-
version system, PLATPAL is also related to the N-version
research. The concept of the N-version system was
initially introduced as a software fault-tolerance tech-
nique [12] and was later applied to enhance system and
software security. For example, Frost [60] instruments a
program with complementary scheduling algorithms to
survive concurrency errors; Crane et al. [16] applies dy-
namic control-flow diversity and noise injection to thwart
cache side-channel attacks; Tightlip [68] and Capizzi et
al. [10] randomize sensitive data in program variants to
mitigate privacy leaks; Mx [24] uses multiple versions of
the same program to survive update bugs; Cocktail [66]
uses multiple web browser implementations to survive
vendor-specific attacks; and Nvariant [15], Replicae [8],
and GHUMVEE [61] run program variants in disjoint
memory layouts to mitigate code reuse attacks. Similarly,
Orchestra [43] synchronizes two program variants which
grow the stack in opposite directions for intrusion detec-
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tion. In particular, Smutz et al. [47] attempts to identify
and prevent detection evasions by constructing diversi-
fied classifiers, ensembling them into a single system,
and comparing their classification outputs with mutual
agreement analysis.

Although PLATPAL is designed for a completely dif-
ferent goal (i.e., maldoc detection), it shares the insights
with N-version systems: an attacker is forced to simulta-
neously compromise all variants with the same input in
order to take down or mislead the whole system.

Another line of related work is introducing diversity
to the execution environment in order to entice and de-
tect malicious behaviors. For example, HoneyClient [56],
caches and resembles potentially malicious objects from
the network stream (e.g., PDF files) and then send it to
multiple emulated environments for analysis. Balzarotti et
al. [4] detects “split personality” in malware, i.e., malware
that shows diverging behaviors in emulated environment
and bare-metal machines, by comparing the runtime be-
haviors across runs. Rozzle [26] uses symbolic execution
to emulate different environment values malware typically
checks and hence, entice environment-specific behaviors
from the malware. to show diverging behaviors.

PLATPAL shares the same belief as these works: di-
versified execution environment leads to diversified be-
haviors, and focuses on harvesting platform diversity for
maldoc detection.

9 Conclusion

Due to the continued exploitation of AAR, maldoc detec-
tion has become a pressing problem. A survey of existing
techniques reveals that they are vulnerable to recent at-
tacks such as parser-confusion and ML-evasion attacks. In
response to this, we propose a new perspective: platform
diversity, and prototype PLATPAL for maldoc detection.
PLATPAL hooks into AAR to trace internal PDF process-
ing and also uses full dynamic analysis to capture a mal-
doc’s external impact on the host system. Both internal
and external traces are compared, and the only heuristic
to detect maldoc is based on the observation that a benign
document behaves the same across platforms, while a
maldoc behaves differently during exploitation, because
of the diversified implementations of syscalls, memory
management, etc. across platforms. Such a heuristic does
not require known maldoc samples to derive patterns that
differentiate maldocs from benign documents, which also
enables PLATPAL to detect zero-day attacks without prior
knowledge of the attack. Evaluations show that PLATPAL
raises no false alarms in benign samples, detects a variety
of behavioral discrepancies in malicious samples, and is
a scalable and practical solution.
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Abstract

It’s an essential step to understand malware’s behaviors

for developing effective solutions. Though a number of

systems have been proposed to analyze Android mal-

ware, they have been limited by incomplete view of in-

spection on a single layer. What’s worse, various new

techniques (e.g., packing, anti-emulator, etc.) employed

by the latest malware samples further make these system-

s ineffective. In this paper, we propose Malton, a nov-

el on-device non-invasive analysis platform for the new

Android runtime (i.e., the ART runtime). As a dynam-

ic analysis tool, Malton runs on real mobile devices and

provides a comprehensive view of malware’s behaviors

by conducting multi-layer monitoring and information

flow tracking, as well as efficient path exploration. We

have carefully evaluated Malton using real-world mal-

ware samples. The experimental results showed that

Malton is more effective than existing tools, with the ca-

pability to analyze sophisticated malware samples and

provide a comprehensive view of malicious behaviors of

these samples.

1 Introduction

To propose effective solutions, it is essential for malware

analysts to fully understand malicious behaviors of An-

droid malware. Though many systems have been pro-

posed, malware authors have quickly adopted advanced

techniques to evade the analysis. For instance, since

the majority of static analysis tools inspect the Dalvik

bytecode [2], malware circumvent them by using vari-

ous obfuscation techniques to raise the bar of code com-

prehension [61], implementing malicious activities in na-

tive libraries to evade the inspection [13, 59, 70, 92], and

leveraging packing techniques to hide malicious pay-

loads [82,85,88]. For example, the percentage of packed

∗The corresponding author.

Android malware has increased from 10% to 25% [36],

and 37.0% of the Android apps execute native code [11].

These sophisticated techniques employed by the latest

malware also make the dynamic analysis systems inef-

fective. First, malicious behaviors usually cross sever-

al system layers (e.g., the Android runtime, the Android

framework, and native libraries, etc.). However, the ma-

jority of dynamic analysis systems [34, 46, 73, 91] lack

of the capability of cross-layer inspection, and thus pro-

vide incomplete view of malicious behaviors. For exam-

ple, CopperDroid [73] monitors malware behaviors main-

ly through the trace of system calls (e.g., sys sendto()
and sys write()). Thus, it is hard to expose the execution

details in the Android framework layer and the runtime

layer, due to the well-known semantic gap challenge.

Second, the anti-debug and anti-emulator techniques em-

ployed by malware [44, 47, 56, 74] as well as the new

Android runtime (i.e., the ART runtime) further limit the

usage of many dynamic analysis systems. For example,

in [14], 98.6% malware samples were successfully ana-

lyzed on the real smartphone, whereas only 76.84% mal-

ware samples were successfully inspected using the em-

ulator. Most of the existing tools either rely on emulators

(e.g., DroidScope [83]) or modify the old Android run-

time (i.e., Dalvik Virtual Machine, or DVM for short) to

monitor malware behaviors (e.g., TaintDroid [38]). Third,

it is a common practice that malware executes differen-

t payloads according to the commands from the remote

command and control (i.e., C&C) servers. However, ex-

isting systems are not effective in capturing the execu-

tion of all malicious payloads, because they are impaired

by the inherent limitation of dynamic analysis (i.e., low

code coverage) and the lack of efficient code path explo-

ration technique.

In this paper, we propose Malton, a novel on-device

non-invasive analysis platform for the ART runtime.

Compared with other systems, Malton employs two im-

portant capabilities, namely, a) multi-layer monitoring

and information flow tracking, and b) efficient path ex-
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ploration, to provide a comprehensive view of malware

behaviors. Moreover, Malton does not need to modify

malware’s bytecode for conducting static instrumenta-

tion. To our best knowledge, Malton is the first system

with such capabilities. Table 7 in Section 6 illustrates the

key differences between Malton and other systems.

Malton inspects Android malware on different layer-

s. It records the invocations of Java methods, includ-

ing sensitive framework APIs and the concerned meth-

ods of the malware, in the framework layer, and captures

stealthy behaviors, such as dynamic code loading and JNI

reflection, in the runtime layer. Moreover, it monitors

library APIs and system calls in the system layer, and

propagates taint tags and explores different code paths

in the instruction layer. However, multi-layer monitor-

ing is not enough to provide a comprehensive view of

malware behaviors, because malicious payloads could be

conditionally executed. We deal with this challenge with

the capability to efficiently explore code paths. First, to

trigger as many malicious payloads as possible, we pro-

pose a multi-path exploration engine based on the con-

colic execution [27] to generate concrete inputs for ex-

ploring different code paths. Second, to conduct efficient

path exploration on mobile devices with limited compu-

tational resources, we propose an offloading mechanism

to move heavy-weight tasks (e.g., solving constraints) to

resourceful desktop computers, and an in-memory opti-

mization mechanism that makes the execution flow re-

turn to the entry point of the interested code region im-

mediately after exiting the code region. Third, in case the

constraint solver fails to find a solution to explore a code

path, we equip Malton with a direction execution engine

to forcibly execute a specified code path. Since Malton

requires the necessary human annotations of the interest-

ed code regions, it is most useful in the human-guided

detailed exploration of Android malware.

We have implemented a prototype of Malton based on

the binary instrumentation framework Valgrind [53]. S-

ince both the app’s code and the framework APIs are

compiled into native code in the ART runtime, we lever-

age the instrumentation mechanism of Valgrind to intro-

spect apps and the Android framework. We evaluated

Malton with real-world malware samples. The experi-

mental results show that Malton can analyze sophisticat-

ed malware samples and provide a comprehensive view

of their malicious behaviors.

In summary, we make the following contributions.

• We propose a novel Android malware analysis system

with the capability to provide a comprehensive view

of malicious behaviors. It has two major capabili-

ties, including multi-layer monitoring and information

flow tracking, and efficient path exploration.

• We implement the system named Malton by solv-

ing several technical challenges (e.g., cross-layer taint

propagation, on-device Java method tracking, execu-

tion path exploration, etc.). To the best of our knowl-

edge, it is the first system having such capabilities.

To engage the whole community, we plan to release

Malton to the community.

• We carefully evaluate Malton with real-world mal-

ware samples. The results demonstrated the effective-

ness of Malton in analyzing sophisticated malware.

The rest of this paper is organized as follows. Sec-

tion 2 introduces background knowledge and describes a

motivating example. Section 3 details the system design

and implementation. Section 4 reports the evaluation re-

sults. Then, we discuss Malton’s limitations and possible

solutions in Section 5. After presenting the related work

in Section 6, we conclude the paper in Section 7.

2 Background

2.1 The ART Runtime

ART is the new runtime introduced in Android version

4.4, and becomes the default runtime from version 5.0.

When an app is being installed, its Dalvik bytecode in

the Dex file is compiled to native code1 by the dex2oat
tool, and a new file in the OAT format is generated includ-

ing both the Dalvik bytecode and native code. The OAT

format is a special ELF format with some extensions.

The OAT file has an oatdata section, which contains

the information of each class that has been compiled into

native code. The native code resides in a special sec-

tion with the offset indicated by the oatexec symbol.

Hence, we can find the information of a Java class in the

oatdata section and its compiled native code through

the oatexec symbol.

When an app is launched, the ART runtime parses the

OAT file and loads the file into memory. For each Java

class object, the ART runtime has a corresponding in-

stance of the C++ class Object to represent it. The first

member of this instance points to an instance of the C++

class Class, which contains the detailed information of

the Java class, including the fields, methods, etc. Each

Java method is represented by an instance of the C++

class ArtMethod, which contains the method’s address,

access permissions, the class to which this method be-

longs, etc. The C++ class ArtField is used to represent

a class field, including the class to which this field be-

longs, the index of this field in its class, access rights, etc.

We can leverage the C++ Object, Class, ArtMethod
and ArtField to find the detailed information of the Ja-

va class, methods and fields of the Java class.

1Native code denotes the native instructions that could directly run

with a particular processor.
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Listing 1: A motivating example

1 public static native void readContact();
2 public static native void parseMSG(String msg);
3 private void readIMSI(){
4 TelephonyManager telephonyManager =
5 (TelephonyManager) getSystemService(
6 Context.TELEPHONY_SERVICE);
7 String imsi = telephonyManager.getSubscriberId();
8 // Send back data through SMTP protocol
9 smtpReply(imis);

10 }
11 private void procCMD(int cmd, String msg){
12 if(cmd == 1) {
13 readSMS(); // Read SMS content
14 } else if(cmd == 2) {
15 readContact(); // Read Contact content
16 } else if(cmd == 3) {
17 readIMSI(); // Read device IMSI information
18 } else if(cmd == 4) {
19 rebootDevice(); // Reboot the device
20 } else if(cmd == 5) {
21 parseMSG(msg); // Parse msg in native code
22 } else { // The command is unrconginized.
23 reply("Unknown command!");
24 }
25 }
26 public boolean equals(String s1, String s2) {
27 if(s1.count != s2.count)
28 return false;
29 if(s1.hashCode() != s2.hashCode())
30 return false;
31 for(int i = 0; i < count; ++i)
32 if (s1.charAt(i) != s2.charAt(i))
33 return false;
34 return true;
35 }
36 public void onReceiver(Context context, Intent intent){
37 String body = smsMessage.getMessageBody();
38 // Get the telephone of the sender
39 String sender = smsMessage.getOriginatingAddress();
40 // Check if the SMS is sent form the controller
41 if(equals(sender, "6223**60")) {
42 procCMD(Interger.parseInt(body), body);
43 }
44 ...
45 }

The Android framework is compiled into an OAT

file named “system@framework@boot.oat”. This file is

loaded to the fixed memory range for all apps running on

the device without ASLR enabled [69].

2.2 Motivating Example

We use the example in Listing 1 to illustrate the usage of

Malton. In this example, the method onReceiver() is an

SMS listener and it is invoked when an SMS arrives. In

this method, the telephone number of the sender is first

acquired (Line 39) for checking whether the SMS is sent

from the controller (Tel: 6223**60). Only the SMS from

the controller will be processed by the method procCMD()
(Line 42). There are 5 types of commands, each of which

leads to a special malicious behavior (i.e., Line 13, 15,

17, 19 and 21). Reading contact and parsing SMS are

implemented in the JNI methods readContact() (Line 1)

and parseMSG() (Line 2), respectively.

Existing malware analysis tools could not construct a

complete view of the malicious behaviors. For example,

when cmd equals 3 (Line 16), IMSI is obtained by in-

voking the framework API getSubscriberId() (Line 7), and

then leaked through SMTP protocol (Line 9). Although

existing tools (e.g., CopperDroid [73]) can find that the

malware reads IMSI and leaks the information by sys-

tem call sys sendto(), they cannot locate the method used

to get IMSI and how the IMSI is leaked in detail, be-

cause sys sendto() can be called by many functions (e.g.,

JavaMail APIs, Java Socket methods and C/C++ Socket

methods) from both the framework layer and the native

layer. Malton can solve this problem because it performs

multi-layer monitoring.

When cmd equals 5, the content of SMS, which is

obtained from the framework layer (Line 37), will be

parsed in the JNI method parseMSG() (Line 2) by native

code. Although taint analysis could identify this infor-

mation flow, existing static instrumentation based tools

(e.g., TaintART [71] and ARTist [21]) cannot track the in-

formation flow in the native code. Malton can tackle this

issue since it offers cross-layer taint analysis.

Moreover, as shown in the method procCMD()
(Line 11), the malware performs different activities ac-

cording to the parameter cmd. Due to the low code cov-

erage of dynamic analysis, how to efficiently explore all

the malicious behaviors with the corresponding inputs is

challenging. Malton approaches this challenge by con-

ducting concolic execution with in-memory optimization

and direct execution. Furthermore, we propose a new of-

floading mechanism to avoid overloading the mobile de-

vices with limited computational resources. Since some

constraints may not be solved (e.g., the hash functions at

Line 29), we develop a direct execution engine to cover

specified branches forcibly.

3 Design and Implementation

In this section, we first illustrate the design of our ap-

proach, and then detail the implementation of Malton.

Framework API invocations

System call invocations

Runtime function invocations

Logs

Malton

Multi-layer
Monitoring

Information-
Flow

Tracking

Path
Exploration

Comprehensive 
Behaviors

Taint propagations

Cross-layer execution paths

Cross-layer data flows

Implementation features

Library function invocations

Figure 1: The scenario of Malton.

3.1 Overview
Malton helps security analysts obtain a complete view

of malware samples under examination. To achieve this

goal, Malton supports three major functionalities. First,

due to the multi-layer nature of Android system, Malton

can capture malware behaviors at different layers. For

instance, malware may conduct malicious activities by
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invoking native code from Java methods, and such be-

haviors involve method invocations and data transmis-

sion at multiple layers. The challenging issue is how to

effectively bridge the semantic gap when monitoring the

ARM instructions.

Second, malware could leak private information by

passing the data across multiple layers back and forth.

Note that many framework APIs are JNI methods (e.g.,

String.concat(), String.toCharArray(), etc.), whose real

implementations are in native code. Malton can detect

such privacy leakage because it supports cross-layer in-

formation flow tracking (Section 3.5).

Third, since malware may conduct diverse malicious

activities according to different commands and contexts,

Malton can trigger these activities by exploring the paths

automatically (Section 3.6). It is non-trivial to achieve

this goal because dynamic analysis systems usually have

limited code coverage.

Figure 1 illustrates a use scenario of Malton. Malton

runs in real Android devices and conducts multi-layer

monitoring, information flow tracking, and path explor-

ing. After running a malware sample, Malton generates

logs containing the information of method invocations

and taint propagations at different layers and the result

of concolic executions. Based on the logs, we can recon-

struct the execution paths and the information flows for

characterizing malware behaviors.

Though Malton performs the analysis in multiple lay-

ers as shown in Figure 2, the implementation of Malton

in each layer is not independent. Instead, different layers

share the information with each other. For example, the

taint propagation module in the instruction layer needs

the information about the Java methods that are parsed

and processed in the framework layer.

Malton is built upon Valgrind [53] (V3.11.0) with

around 25k lines of C/C++ codes calculated by CLOC [1].

Next, we will detail the implementation at each layer.

3.2 Android Framework Layer

To monitor the invocations of privacy-concerned Java

methods of the Android framework and the app itself,

Malton instruments the native code of the framework and

the app. Since the Dalvik code has been compiled into

native instructions, we leverage Valgrind for the instru-

mentation. The challenge here is how to recover and un-

derstand the semantic information of Java methods from

the ARM instructions, including the method name, pa-

rameters, call stacks, etc. For instance, if a malware sam-

ple uses the Android framework API to retrieve user con-

tacts, Malton should capture this behavior from the ARM

instructions and recover the context of the API invoca-

tion. To address this challenge, we propose an efficient

way to bridge the semantic gaps between the low level

M
alton

Android Application (APK)

Smartphone

Android Framework Layer

Oat file parser Java object parserJava method tracker

Android Runtime (ART) Layer

JNI invocation

Dynamic native code loading Dynamic Java code loading 

JNI reflection

System Layer

Network operation monitor

Process operation monitor

File operation monitor

Memory operation monitor

Instruction Layer In-memory concolic execution

Taint propagation

Java reflection

Direct execution

Figure 2: The overview of Malton.

native instructions and upper layer Java methods.

Java Method Tracker To track the Java method invoca-

tions, we need to identify the entry point and exit points

of each Java method from the ARM instructions dynam-

ically. Note that the ARM instructions resulted from the

Dalvik bytecode are further translated into multiple IR

blocks by Malton. An IR block is a collection of IR state-

ments with one entry point and multiple exit points. One

exit point of an IR block could be either the condition-

al exit statement (i.e., Ist Exit) or the next statement

(i.e., Ist Next). We leverage the APIs from Valgrind

to add instrumentation at the beginning, before any IR

instruction, after any IR instruction, or at the end of the

selected IR block. The instrumentation statements will

invoke our helper functions.

To obtain the entry point of a Java method, we use

the method information in the OAT file. Specifically, the

OAT file contains the information of each compiled Java

method (ArtMethod), including the method name, off-

set of the ARM instructions, access flags, etc. Malton

parses the OAT files of both the Android framework and

the app itself to retrieve such information, and keeps it

in a hash table. When the native code is translated into

the IR blocks, Malton looks up the beginning address of

each IR block in the hash table to decide whether it is the

entry of a Java method. If so, Malton inserts the helper

function (i.e., callTrack()) at the beginning of the block to

record the method invocation and parse arguments when

it is executed.

To identify the exit point of a Java method, Malton

leverages the method calling convention of the ARM ar-

chitecture2. Specifically, the return address of a method

is stored in the link register (i.e., the lr register) when the

method is invoked. Hence, in callTrack(), Malton pushes

2Comments in file /art/compiler/dex/quick/arm/arm lir.h
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ClassObject
(of java.lang.String)
object_.klass_
object_.monitor_
.....
name_("java.lang.String")

.....

StringObject
object_.klass_
object_.monitor_
count_
hash_code_
value_: 
"6534900622308366"

Instance of Java class 
java.lang.String

Class object representing type
java.lang.String

Register r0

Figure 3: The example of parsing the Java object of the

result of TelephonyManager.getDeviceId()

the value of lr into the method call stack since lr could

be changed during the execution of the method. Malton

also inserts the helper function (i.e., retTrack()) before

each exit point (i.e., Ist Exit and Ist Next) of the

IR block. In retTrack(), Malton compares the jump target

of the IR block with the method’s return address stored

at the top of the method call stack. If they are equal, an

exit point of the method is found, and this return address

is popped from the method call stack.

Malton parses the arguments and the return val-

ue of the method after the entry point and the

exits point of the method are identified, respective-

ly. According to the method calling convention,

the register r0 points to the ArtMethod object of

current method, and registers r1 − r3 contain the

first three arguments. Other arguments beyond the

first three words are pushed into the stack by the

caller. For example, when the framework method

sendMessageAtTime(Message msg, long uptimeMillis)
of class android/os/Handler is invoked, r0 points

to the ArtMethod instance of the method

sendMessageAtTime(), r1 stores the this object and

r2 represents the argument msg. For the argument

uptimeMillis, the high 32 bits are stored in the register

r3 and the low 32 bits are pushed into the stack. When

the method returns, the return value is stored in the

register r0 if the return value is 32 bits, and in registers

r0 and r1 if the return value is 64 bits.

Java Object Parser After getting the method arguments

and the return value, we need to further parse the value

if it is not the primitive data. There are two major data

types [42] in Java, including primitive data types and ref-

erence/object data types (objects). For the primitive type-

s, which include byte, char, short, int, long, float, double

and boolean, we can directly get the value from registers

and the stack. For the object, the value that we obtain

from the register or the stack is a pointer that points to a

data structure containing the detailed information of this

object. Following this pointer, we get the class informa-

tion of this object, and then parse the memory of this

object to determine the concrete value.

Figure 3 illustrates the process of parsing the Java ob-

ject of the result of TelephonyManager.getDeviceId(). Ac-

cording to its method shorty, we know that the return val-

ue of this API is a Java object represented by an Object
instance, of which the memory address is stored in the

register r0. Then, we can decide that the concrete type

of this object is java.lang.String. By parsing the results

according to the memory layout of String object, which

is represented by the StringObject data structure, we can

obtain the concrete string “6534900622308366”. Current-

ly, Malton can parse the Java objects related to String and

Array. To handle new objects, users just need to imple-

ment the corresponding parsers for Malton.

3.3 Android Runtime Layer
To capture stealthy behaviors that cannot be monitored

by the Java method tracker in the Android framework

layer, Malton further instruments the ART runtime (i.e.,

libart.so). For example, the packed malware may use

the internal functions of the ART runtime to load and

execute the decrypted bytecode directly from the memo-

ry [85,88]. Malicious payloads could also be implement-

ed in native code, and then invoke the privacy-concerned

Java methods from native code through the JNI reflection

mechanism. While the invoked Java method could be

tracked by the Java method tracker in the Android frame-

work layer, Malton tracks the JNI reflection to provide

a comprehensive view of malicious behaviors, such as,

the context when privacy-concerned Java methods are in-

voked from the native code. This is one advantage of

Malton over other tools.

Table 1: Runtime behaviors related functions.

Behavior Functions
Native code loading JavaVMExt::LoadNativeLibrary()

Java code loading

DexFile::DexFile()
DexFile::OpenMemory()
ClassLinker::DefineClass()

JNI invocation
artFindNativeMethod()
ArtMehod::invoke()

JNI reflection

InvokeWithVarArgs()
InvokeWithJValues()
InvokeVirtualOrInterfaceWithJValues()
InvokeVirtualOrInterfaceWithVarArgs()

Java reflection InvokeMethod()

Table 1 enumerates the runtime behaviors and the cor-

responding functions in the ART runtime that Malton in-

struments. Native code loading means that malicious

code could be implemented in native code and loaded in-

to memory, where Java code loading refers to loading the

Dalvik bytecode. Note that Android packers usually ex-

ploit these APIs to directly load the decrypted bytecode

from memory. JNI invocation refers to all the function

calls from Java methods to native methods. This includes
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the JNI calls in the app and the Android framework. JNI

reflection, on the other hand, refers to calling Java meth-

ods from native code. For instance, malicious payload-

s implemented in native code could invoke framework

APIs using JNI reflection. Java reflection is commonly

used by malware to modify the runtime behavior for e-

vading the static analysis [61]. For example, framework

APIs could be invoked by decrypting the method names

and class names at runtime using Java reflection.

3.4 System Layer

Malton tracks system calls and system library functions

at the system layer. To track system calls, Malton reg-

isters callback handlers before and after the system cal-

l invocation through Valgrind APIs. For system library

functions, Malton wraps them using the function wrapper

mechanism of Valgrind. In the current prototype, Malton

focuses on four types of behaviors at the system lever.

• Network operations. Since malware usually receives

the control commands and sends private data through

network, Malton inspects these behaviors by wrapping

network related system calls, such as, sys connect(),
sys sendto(), recvfrom(), etc.

• File operations. As malware often accesses sensitive

information in files and/or dynamically loads mali-

cious payloads from the file system, Malton records

file operations to identify such behaviors.

• Memory operations. Since packed malware usually

dynamically modifies its own codes through memory

operations, like sys mmap(), sys protect(), etc., Malton

monitors such memory operations.

• Process operations. As malware often needs to fork

new process, or exits when the emulator or the debug

environment is detected, Malton captures such behav-

iors by monitoring system calls relevant to the process

operations, including sys execve(), sys exit(), etc.

Moreover, Malton may need to modify the arguments

and/or the return values of system calls to explore code

paths. For example, the C&C server may have been shut

down when malware samples are being analyzed. In

this case, Malton replaces the results of the system call

sys connect() to success, or replaces the address of C&C

with a bogus one controlled by the analyst to trigger ma-

licious payloads. We will discuss the techniques used to

explore code paths in Section 3.6.

3.5 Instruction Layer: Taint Propagation

At the instruction layer, Malton performs two major

tasks, namely, taint propagation and path exploration.

Note that accomplishing these tasks needs the semantic

Table 2: The taint propagation related IR Statements.

IR Statement Representation
Ist WrTmp Assign a value (i.e., IR Expression) to a temporary.
Ist LoadG Load a value to a temporary with guard.
Ist CAS Do an atomic compare-and-swap operation.
Ist LLSC Do an either load-linked or store-conditional operation.
Ist Put Write a value to a guest register.

Ist PutI
Write a value to a guest register at a non-fixed
offset in the guest state.

Ist Store Write a value to memory.
Ist StoreG Write a value to memory with guard.
Ist Dirty Call a C function.

information in the upper layers, such as the method invo-

cations for identifying the information flow, etc.

To propagate taint tags across different layers, Malton

works at the instruction layer because the codes of all

upper layers become ARM instructions during execution.

Since these ARM instructions will be translated into IR s-

tatements [53], Malton performs taint propagation on IR

statements with byte precision by inserting helper func-

tions before selected IR statements.

Table 3: Taint propagation related IR expressions.

IR Expression Representation
Iex Const A constant-valued expression.
Iex RdTmp The value held by a VEX temporary.
Iex ITE A ternary if-then-else operation.
Iex Get Get the value held by a guest register at a fixed offset.
Iex GetI Get the value held by a guest register at a non-fixed offset.
Iex Unop A unary operation.
Iex Binop A binary operation.
Iex Triop A ternary operation.
Iex Qop A quaternary operation.
Iex Load Load the value stored in memory.
Iex CCall A call to a pure (no side-effects) helper C function.

For Malton, there are 9 types IR statements related to

the taint propagation, which are listed in Table 2. For

the Ist WrTmp statement, since the source value may be

the result of an IR expression, we also need to parse the

logic of the IR expression for taint propagation. The IR

expressions that can affect the taint propagation are sum-

marized in Table 3. During the execution of the target ap-

p, Malton parses the IR statements and expressions in the

helper functions, and propagates the taint tags according

to the logic of the IR statements and expressions.

Malton supports taint sources/sinks in different layers

(i.e., the framework layer and the system layer). For ex-

ample, Malton can take the arguments and results of both

Java methods and C/C++ methods as the taint sources,

and check the taint tags of the arguments and the result-

s of sink methods. By default, at the framework layer,

11 types of information are specified as taint sources,

including device information (i.e., IMSI, IMEI, SN and

phone number), location information (i.e., GPS location,

network location and last seen location) and personal

information (i.e., SMS, MMS, contacts and call logs).

Malton also checks the taint tags of the arguments and

results when each framework method is invoked. In the

system layer, Malton takes system calls sys write() and
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sys sendto() as taint sinks by default, because the sensi-

tive information is usually stored to files or leaked out of

the device through these system calls. As malware can

receive commands from network, Malton takes system

call sys recvfrom() as the taint source by default. Note that

Malton can be easily extended to support other method-

s as taint sources and sinks in both the framework layer

and the system layer.

3.6 Instruction Layer: Path Exploration
Advanced malware samples usually execute malicious

payloads according to the commands received from the

C&C server or the special context (e.g., date, locations,

etc.). To trigger as many malicious behaviors as possi-

ble for analysis, Malton employs the efficient path ex-

ploration technique, which consists of taint analysis, in-

memory concolic execution with an offloading mecha-

nism, and direct execution engine. Specifically, tain-

t analysis helps the analyst identify the code paths de-

pending on the inputs, such as network commands, and

the concolic execution module can generate the required

inputs to explore the interested code paths. When the

inputs cannot be generated, we rely on the direct exe-

cution engine to forcibly execute certain code paths. S-

ince concolic execution [27] is a well-known technique

in the community, we will not introduce it in the fol-

lowing. Instead, we detail the offloading mechanism and

the in-memory optimization used in the concolic execu-

tion module, and explain how the direct execution engine

works.

Concolic Execution: Offloading Mechanism It is non-

trivial to apply concolic execution in analyzing Android

malware on real devices, because concolic execution re-

quires considerable computational resources, resulting in

unacceptable overhead on the mobile devices. To allevi-

ate this limitation, Malton utilizes an offloading mech-

anism that moves the task of solving constraints to the

resourceful desktop computers, and then sends back the

satisfying results to the mobile devices as inputs. Our

approach is motivated by the fact that the time consump-

tion for solving constraints occupies the overall runtime

of concolic execution. For example, the percentage of

time used to solve constraints is nearly 41% of the KLEE

system, even after optimizations [25].

More precisely, when the malware sample is running

in our system, Malton redirects all the constraints to

the logcat messages [4], which could be retrieved by

the desktop computer using the ADB (Android Debug

Bridge) tool. Then, the constraint solver, which is im-

plemented based on Z3 [33], generates the satisfying in-

puts and feeds the inputs back to Malton through a file.

Since we may have multiple code paths that need to be

explored, this process could be repeated several times un-

til the constraint solver pushes an empty input file to the

device for notifying Malton to finish path exploring.

Concolic Execution: In-memory Optimization To

speed up the analysis, especially when there are multiple

execution paths, each of which depends on the special in-

put, we propose in-memory optimization to restrict con-

colic execution within the interested code region speci-

fied by the analyst without repeatably running from the

beginning of the program. By default, the analyst is re-

quired to specify the arguments or variables as the input

of the concolic execution, which will be represented as

symbolic values during concolic execution. For exam-

ple, the analyst can select the SMS content acquired from

the method getMessageBody() (Line 37 in Listing 1) as the

input. Moreover, the analyst can select the IR statement

that lets the input have concrete values as the entry point

of the code region, and choose the exit statement (i.e.,

Ist Exit) or the next statement (i.e., Ist Next) of the

subroutine as the exit point of the code region.

Malton runs the malware sample until the exit point of

the interested code region for collecting constraints and

generating new inputs for different code paths through

an SMT solver. Then, it forces the execution to return

to the entry point of the code region through modifying

the program counter and feeds the inputs by writing the

new inputs directly into the corresponding locations (i.e.,

memories or registers). Moreover, Malton needs to re-

cover the execution context and the memory state at the

entry point of the code region.

To recover the execution context, Malton conduct-

s instrumentation at the beginning of the code region,

and inserts a helper function to save the execution con-

text (i.e., register states at the first iteration). Af-

ter that, the saved register states will be recovered in

the later iterations. As Valgrind uses the structure

VexGuestArchState to represent the register states,

we save and recover the register states by reading and

writing the VexGuestArchState data in the memory.

To recover the memory states, Malton replaces the

system’s memory allocation/free functions with our cus-

tomized implementations to monitor all the memory al-

location/free operations. Malton can also free the allo-

cated memory or re-allocate the freed memory. Besides,

Malton inserts a helper function before each memory

store (i.e., Ist Store and Ist StoreG) statement to

track the memory modifications, so that all the modified

memory could be restored.

Alternatively, the analyst can choose the target code

region according to the method call graph, or first use

static analysis tool to identify code paths and then select

a portion of the path as the interested code region.

Direct Execution The concolic execution may not be

able to explore all the code paths of the interested code

region, because the constraint solver may not find satis-
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fying inputs for complex constraints, such as float-point

operations and encryption routines. For the condition-

al branches with unresolved constraints, Malton has the

capability to directly execute certain code paths.

The direct execution engine of Malton is implement-

ed through two techniques: a) modifying the arguments

and the results of methods, including library functions,

system calls and Java methods; b) setting the guard value

of the conditional exit statement (i.e., Ist Exit). The

guard value is the expression used in the Ist Exit state-

ment to determine whether the branch should be taken.

It’s straightforward to modify arguments and the re-

turn values of library functions and system calls by lever-

aging Valgrind APIs. However, it’s challenging to deal

with the Java methods because there is no interface in

Valgrind to wrap Java methods. Fortunately, we have ob-

tained the entry point and exit points of the compiled Java

method in the framework layer (Section 3.2). Hence, we

could wrap the Java method by adding instrumentation at

its entry point and exit points. For example, to change the

source telephone number of a received SMS to explore

certain code path (Line 41 in Listing 1), Malton can wrap

the framework API SmsMessage.getOriginatingAddress()
and modify its return value to a desired number at the

exit points.

To set the guard value of the Ist Exit statement, we

insert a helper function before each Ist Exit statement

and specify the guard value to the result of the helper

function. In an IR block, the program can only con-

ventionally jump out of the IR block at the location of

the Ist Exit statement (e.g., an if-branch in the pro-

gram). The Ist Exit statement is defined with the for-

mat “if(t) goto <dst>” in Valgrind, where t and

dst represent the guard value and destination address,

respectively. By returning “1” or “0” in the helper func-

tion, we can let t satisfy or dissatisfy the condition for

exploring different code paths.

Table 4: Comparison of the capability of capturing the

sensitive behaviors of malware samples.

Behavior CopperDroid DroidBox Malton
Personal Info 435 (85.0%) 135 (26.4%) 511 (99.8%)

Network access 351 (68.5%) 211 (41.2%) 445 (86.9%)

File access 438 (85.5%) 509 (99.4%) 512 (100%)

Phone call 52 (10.1%) 1 (0.2%) 59 (11.5%)

Send SMS 26 (5.1%) 15 (2.9%) 28 (5.5%)

Java code loading NA 509 (99.4%) 512 (100%)

Anti-debugging 4 (0.8%) NA 4 (0.8%)

Native code loading NA NA 160 (31.2%)

4 Evaluation

We evaluate Malton using real-world Android malware

samples to answer the following questions.

Q1: Can Malton capture more sensitive operations than

other systems?

Q2: Can Malton analyze sophisticated malware samples

(e.g., packed malware) to provide a comprehensive view

of malicious behaviors?

Q3: Is the path exploration mechanism effective and ef-

ficient?

4.1 Sensitive Behavior Monitoring

To answer Q1, we compare Malton’s capability of cap-

turing sensitive behaviors with CopperDroid [73] and

DroidBox [34]. These two systems are implemented

by instrumenting Android emulator and modifying the

Android system, respectively. Since CopperDroid’s web-

site3 has just queued all our uploaded malware sam-

ples, we cannot obtain the corresponding analysis re-

sults. Therefore, we downloaded the analysis reports

of 1,362 malware samples that have been analyzed by

CopperDroid. According to their md5s, we collected 512

samples, and run them using Malton and DroidBox, re-

spectively. The comparison results are listed in Table 4.

The first column shows the type of sensitive behaviors,

and the following columns list the numbers and percent-

ages of malware samples that have been detected by each

system due to the corresponding sensitive behaviors . We

can see that for all the sensitive behaviors Malton detect-

ed more samples than the other two systems.

We further manually analyze the malware samples

to understand why Malton detects more sensitive be-

haviors in those samples than the other two systems.

First, Malton monitors malware’s behaviors in multi-

ple layers, and thus it can capture more behaviors than

the systems focusing on one layer. For instance, the

malware sample4 retrieves the serial number and op-

erator information of the SIM card through the frame-

work APIs TelephonyManager.getSimSerialNumber() and

TelephonyManager.getSimOperator(), respectively. How-

ever, CopperDroid does not support reconstructing such

behaviors from system calls and DroidBox does not mon-

itor these framework APIs. Second, Malton runs on re-

al devices, and hence it could circumvent many anti-

emulator techniques. For instance, the malware sample5

detects the existence of emulator based on the value of

android id and Build.DEVICE. If the obtained value in-

dicates that it is running in an emulator, the malicious

behaviors will not be triggered.

Note that these samples were analyzed by CopperDroid

before 2015 and it is likely that their C&C servers were

active at that time. However, not all C&C servers

3http://copperdroid.isg.rhul.ac.uk/copperdroid/reports.php
4md5: 021cf5824c4a25ca7030c6e75eb6f9c8
5md5: a0000a85a2e8e458660c094ebedc0c6e
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Figure 4: Malton can help the analyst construct the complete flow of information leakage in the XXshenqi malware. The ellipses

refer to function invocations, where the grey ellipses represent taint sources and the ellipses with bold lines denote taint sinks. The

rectangles indicate data and red italics strings highlight the tainted information.

were still active when Malton inspects the same samples.

Hence, in the worst case, Malton’s results may be penal-

ized since the malware cannot receive commands.

Summary Compared with existing tools running in the

emulator and monitoring malware behaviors in a sin-

gle layer, Malton can capture more sensitive behaviors

thanks to its on-device and cross-layer inspection.

4.2 Malware Analysis
To answer Q2, we evaluate Malton with sophisticat-

ed malware samples by constructing the complete flow

of information leakage across different layers, detecting

stealthy behaviors with Java/JNI reflection, dissecting the

behaviors of packed Android malware, and identifying

the malicious behaviors of hidden code.

4.2.1 Identify Cross-Layer Information Leakage
This experiment uses the sample in the XXShenqi [3]

malware family, which is an SMS phishing malware with

package name com.example.xxshenqi. When the mal-

ware is launched, it reads the contact information and

creates a phishing SMS message that will be sent to all

the contacts collected. In this inspection, we focused on

the behavior of creating and sending the phishing SMS

message to the retrieved contacts by letting the contact-

s be the taint source and the methods for sending SMS

messages be the taint sink. The detailed flow is illustrat-

ed in Figure 4.

To retrieve the information of each contact, the mal-

ware first obtains the column index and the value of the

field id in step 1 and step 2 in Figure 46, respective-

ly. Then, a new instance of the class CursorWrapper

6The number in each ellipse denotes the step index.

is created based on id and uri (com.android.contact),
and this contact’s phone number is acquired through this

instance. After that, blank characters and the national

number (“+86”) are removed from the retrieved phone

number in steps 8 and 9. In the method String.replace()7,

StringFactory.newStringFromString() and String.setCharAt()
are invoked to create a new string according to the

current string and set the specified character(s) of the

new string, respectively. These two methods are JNI

functions and implemented in the system layer. For

String.setCharAt(), Malton can further determine the taint-

ed portion of the string at the byte granularity. By con-

trast, TaintDroid does not support this functionality be-

cause for JNI methods it lets the taint tag of the whole

return value be the union of the function arguments’ taint

tags. After that, a phishing SMS message is constructed

according to the display name of a retrieved contact and

the phishing URL through steps 10-13. Finally, the phish-

ing SMS is sent to the contact in step 14 and a message

“send Message to Jeremy 1” is printed in step 15.

Summary By conducting the cross-layer taint propaga-

tion, Malton can help the analyst construct the complete

flow of information leakage.

4.2.2 Detect Stealthy Malicious Behaviors

Some malware adopts Java/JNI reflection to hide their

malicious behaviors. We use the sample in the photo38

malware family to evaluate Malton’s capability of detect-

ing such stealthy behaviors. Figure 5 demonstrates the i-

dentified stealthy behaviors, which are completed in two

different threads. The number in the ellipse and rectan-

gle is the step index, and we use different colours (i.e.,

7in /libcore/libart/src/main/java/java/lang/String.java
8md5:8bd9f5970afec4b8e8a978f70d5e87ab
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Figure 5: Malton can detect stealthy behaviors through the Java/JNI reflection of the photo3 malware. The ellipses refer to

function invocations in the framework layer, where the grey ellipses represent taint sources and the ellipses with bold lines denote

taint sinks. The round corner rectangles stand for function invocations at the runtime layer. Other rectangles indicate data and red

italics strings highlight the tainted information.

blue and red) for the numbers to distinguish two threads.

The execution paths are denoted by both the solid lines

and dashed lines, and the solid lines further indicate how

the information is leaked. We describe the identified ma-

licious behaviors as follows.

• The device ID is returned by the method

TelephonyManager.getDeviceId() in step 1 and step 2.

• A new thread is created to send the collected

information to the malware author. In step 3,

a memory area is allocated by the system cal-

l sys mmap(), and the thread method run() is invoked

by the runtime through the JNI reflection function

InvokeVirualOrInterfaceWithJValues() in step 4. Nex-

t, the class android/telephony/SmsManager is defined

and initialized in step 5 and step 6. In step 7,

the SmsManager object is obtained through the static

method SmsManager.getDefault().

• The malware sends SMS messages through Java

reflection. Specifically, in step 8, the malware obtain-

s the object of the android.telephony.SmsManager
class through the Java reflection method

Class.forName(). Then, it retrieves the method

object of sendTextMessage() using the Java reflection

method Class.getMethod() in step 9. Finally, it calls

the Java method sendTextMessage() in step 10. This

invocation goes to the method InvokeMethod() in the

ART runtime layer in step 11.

Summary Malton can identify malware’s stealthy be-

haviors through Java/JNI reflection in different layers.

4.2.3 Dissect Packed Android Malware’s Behaviors

Since Malton stores the collected information into log

files, we can dissect the behaviors of packed Android

malware by analyzing the log files. As an example, Fig-

ure 6 shows partial log file of analyzing the packed mal-

ware sample9, and Figure 7 illustrates the identified mali-

cious behaviors of this sample. Such behaviors can be di-

vided into two parts. One is related to the original packed

malware (Lines 1-21), and the other one is relevant to the

hidden payloads of the malware (Lines 22-30).

Once the malware is started, the class

com.netease.nis.wrapper.MyApplication is loaded for

preparing the real payload (Line 2). Then, the Android

framework API Application.attach() is invoked (Line 4)

to set the property of the app context. After that, the

malware calls the Java method System.loadLibrary() to

load its native component libnesec.so at Line 7.

Malton empowers us to observe that the ART runtime

invokes the function FindClass() (Line 8) and the

function LoadNativeLibrary() (Line 9) to locate the

class com.netease.nis.wrapper.MyJni and load the library

libnesec.so, respectively.

After initialization, the malware calls the JNI method

MyJni.load() to release and load the hidden Dalvik byte-

code into memory. More precisely, the package name

is first obtained through JNI reflection (Line 11 and

12). Then, the hidden bytecode is written into the file

“.cache/classes.dex” under the app’s directory (Line 13

and 14). After that, a new DexFile object is initialized

based on the newly created Dex file through the runtime

function DexFile::OpenMemory() (Line 16).

We also find that the packed malware reg-

isters an Intent receiver to handle the Intent

com.zjdroid.invoke at Line 19 and 21. Note

that ZjDroid [9] is a dynamic unpacking tool based

on the Xposed framework and is started by the Intent

com.zjdroid.invoke. By registering the Intent

receiver, the malware can detect the existence of ZjDroid.

Finally, the app loads and initializes the class

v.v.v.MainActivity in Line 23 to 26, and the hidden mali-

cious payloads are executed at Line 29. To hide itself, the

9md5: 03b2deeb3a30285b1cf5253d883e5967
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01 Instrumentation.newApplication()
02       ClassLoader.loadClass("com.netease.nis.wrapper.MyApplication")
03 Application.init()
04 Application.attach() // Internal framework API
05       ContextWrapper.attathBaseContext() // Set the base context for this ContextWrapper.
06        ...; // Malicious behaviors 1
07       System.loadLibrary("nesec") // Load native library libnesec.so
08              FindClass( "com/netease/nis/wrapper/MyJni") // Find and define Class = "com/netease/nis/wrapper/MyJni"          
09              LoadNativeLibrary("/data/app/com.vnuhqwdqdqd.trarenren5-1/lib/arm/libnesec.so")  //  Load library libnesec.so
10       MyJni.load() // Invoke the JNI method MyJni.load()
11              InvokeVirtualOrInterfaceWithVarArgs()  // JNI reflection invocation. args: Method=Context.getPackageName()  
12              Context.getPackageName() // res: "com.vnuhqwdqdqd.trarenren5"
13              sys_open("data/data/com.vnuhqwdqdqd.trarenren5/.cache/classes.dex")  //  res: fd = 24
14              sys_write(fd = 24);            sys_close(fd = 24) // Write protected dex content to classes.dex
15              /* Open and initialize DexFile arg location="/data/user/0/com.vnuhqwdqdqd.trarenren5/.cache/classes.dex"  */
16             OpenMemory( ) // res: DexFileObj@0x06d541c8 The DexFile object is used to represented the dex file in Android runtime
17 Instrumentation.callApplicationOnCreate()          // arg: Application@0x12e05498
18 Application.onCreate() // Called when the application is starting, before the activity is created
19       IntentFilter.<init>("com.zjdroid.invoke") // Create an IntentFilter@0x12e4d848,
20        /* Register an Intent receiver dynamically */
21       ContextWrapper.registerReceiver() // arg:  IntentFilter@0x12e4d848   
22 Instrumentation.newActivity() // Initialize the new activity arg: Activity="v.v.v.MainActivity", res: Activity@0x12c79f08 
23       ClassLoader.loadClass("v.v.v.MainActivity") // Load Class="v.v.v.MainActivity", res: Class@0x13110808
24             DefineClass() // args: DexFileObj=0x06d541c8  Class="Lv/v/v/MainActivity;"
25       Class.newInstance()
26             Activity.init()
27 Instrumentation.callActivityOnCreate() // Create and display an activity
28             Activity.performCreate() // Create activity "v.v.v.MainActivity"
29                 ...; // Malicious behaviors 2
30             Activity.finish() // Close the activity for hiding
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Figure 6: The major information collected by Malton on function level. The names of Android runtime functions and system calls

are in black italics. We omit the information of method arguments due to the space limitation).

malware also calls the framework method Activity.finish()
to destroy its activity (Line 30).

Summary Malton can analyze sophisticated packed mal-

ware samples, and help the analyst identify the behaviors

of both the malware and its hidden code.

Behavior of Class com.netease.nis.wrapper.MyApplication

Create new dex file classes.dex

Load dex file classes.dex and 
initialize new DexFile object

Get package name through JNI 
reflection invocation

Behavior of Class v.v.v.MainActivity

Get IMEI of the device

Create a new thread

Leak the IMEI by the new thread 
through network

Get IMEI of the device

Write the IMEI information into disk 
through the interfaces of class 
android.app.SharedPreferences.

Malicious behavior 1

Load native component 
libnesec.so

Call JNI method 
MyJni.load()

Malicious behavior 2

Anti dynamic analysis
Register receiver for Intent 

com.zjdroid.invoke

Figure 7: Malton can reconstruct the behaviors of the

packed malware and its hidden code.

4.3 Path Exploration
To answer Q3, we first employ Malton to analyze the

SMS handler of the packed malware com.nai.ke. From

the logs, we find that its SMS handler handleReceiver()

processes each incoming SMS by obtaining its address

and content through methods getOriginatingAddress() and

getMessageBody(), respectively. If the SMS is not from

the controller (i.e., Tel: 1851130**14), it calls the method

abortBroadcast() to abort the current broadcast.

Effectiveness To explore all the malicious payload-

s controlled by the received SMS message, we speci-

fy the code region between the return of the function

getMessageBody() and the return of handleReceiver() to

perform in-memory concolic execution. We set the re-

sult of getMessageBody() (i.e., SMS content) as the input

of the concolic execution. To circumvent the checking

of the phone number of the received SMS message, we

trigger the malware to execute the satisfied code path by

changing the result of getOriginatingAddress() to the num-

ber of the controller.

However, we find that the constraint resolver cannot

always find the satisfying input due to the comparison of

two strings’ hash values. Therefore, we use the direct

execution engine to force the malware to execute the s-

elected code path. Eventually, we identify 14 different

code paths (or behaviors) that depend on the content of

the received SMS. The generated inputs and their cor-

responding behaviors are listed in Table 5. This result

demonstrated the effectiveness of Malton to explore dif-

ferent code paths.

Efficiency Thanks to the in-memory optimization, when

exploring code paths in the interested code region,

Malton just needs one SMS and then iteratively executes

the specified code region for 14 times without the need

of restarting the app for 14 times. To evaluate the ef-
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Table 5: The commands and the related behaviors explored by Malton (The 3rd column lists the number of IR blocks to be

executed for exploring the code paths with/without in-memory optimization).

Command Detected behavior Number of executed blocks

“cq”
Read information SMS contents, contacts, device model and system version,

then send to 292019159c@fcvh77f.com with password “aAaccvv11” through SMTP protocol.
32k/20443k

“qf” Send SMS to all contacts with no SMS content. 7k/20537k

“df” Send SMS to specified number, and both the number and content are specified by the command SMS. 5k/22970k

“zy”
Set unconditional call forwarding through making call to “**21*targetNum%23”,

and the targetNum is read from the command SMS.
8k/22848k

“by”
Set call forwarding when the phone is busy through making call to “%23%23targetNum%23”,

and the targetNum is read from the control SMS.
15k/20639k

“ld”,“fd”,“dh”,“cz”,

“fx”,“sx”,“dc”, “bc”
Modify the its configuration file zzxx.xml. 5k-18k/20403k-20452k

Others Tell the controller the command format is error by replying an SMS. 15k/20443k

ficiency of the in-memory optimization, we record the

number of IR blocks to be executed for exploring each

code path with/without in-memory optimization, and list

them in Table 5 (the last column). The result shows that

the in-memory optimization can avoid executing a large

number of IR blocks. For example, when exploring the

paths decided by the command “df”, Malton only need-

s to execute 5k IR blocks with in-memory optimization.

Otherwise, it has to execute 22,970k IR blocks.

Table 6: The number of IR blocks to be executed for path

exploration with and without in-memory optimization.

Malware With
Optimization

Without
Optimization

0710e f 0ee60e1ac f d2817988672b f 01b 203k 26237k

0ced776e0 f 18dd f 02785704a72 f 97aac 203k 26010k

0e69a f 88dcbb469e30 f 16609b10c926c 4k 16826k

336602990b176c f 381d288b79680e4 f 6 13k 1908k

8e1c7909aed92eea89 f 6a14e0 f 41503d 7k 69968k

We also use five other malware samples, which have

the SMS handler, to further evaluate the efficiency of

the path exploration module. The average number of IR

blocks to be executed with and without in-memory opti-

mization are listed in Table 6. The in-memory optimiza-

tion can obviously reduce the number of IR blocks to be

executed.

Summary The path exploration module of Malton can

explore code paths of malicious payloads effectively and

efficiently. The concolic execution engine generates the

satisfying inputs to execute certain code paths, and the

direct execution engine forcibly executes selected code

paths when the constraint resolver fails.

4.4 Performance Overhead

To understand the overhead introduced by Malton, we

run the benchmark tool CF-Bench [8] 30 times on

a Nexus 5 smartphone running Android 6.0 under

four different environments, including Android without

Valgrind, Android with Valgrind, and Malton with and
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Figure 8: Performance measured by CF-Bench.

without the taint propagation. To compare with the dy-

namic analysis tools based on the Qemu emulator, we

also execute CF-Bench in Qemu, which runs on a Ubuntu

14.04 desktop equipped with Core(TM) i7 CPU and 32G

memory.

The results are shown in Figure 8. There are three

types of scores. The Java score denotes the performance

of Java operations, and the native score indicates the per-

formance of naive code operation. The overall scores

are calculated based on the Java and the native score. A

higher score means a better performance.

Figure 8 illustrates that Malton introduces around 16x

and 36x slowdown to the Java operations without and

with taint propagation. However, when the app runs with

only Valgrind, there is also 11x slowdown. It mean-

s that Malton brings 1.5x-3.2x additional slowdown to

Valgrind. Similarly, for the native operations, Malton in-

troduces 1.7x-2.3x additional slowdown when running

Valgrind is taken as the baseline. Overall, Malton in-

troduces around 25x slowdown (with taint propagation).

Since the Qemu [57] emulator incurs around 15x over-

all slowdown, and the Qemu-based tools (e.g., the taint

tracker of DroidScope [83]) may incur 11x-34x additional

slowdown, Malton could be more efficient than the exist-

ing tools based on Qemu.

Summary As a dynamic analysis tool, Malton has a rea-

sonable performance and could be more efficient than the

existing tools based on the Qemu emulator.
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5 Discussion

In this section, we discuss the limitations of Malton and

potential solutions to be investigated in future work.

First, Malton is based on the Valgrind framework.

Similar to the anti-emulator techniques, malware sam-

ples may detect the existence of Malton and then stop

executing malicious payloads or confuse the Java method

tracker of Malton. For example, the malware could check

the app starting command or the time used to finish some

operations. To address this challenge, we could leverage

Malton’s path exploration mechanism to explore and trig-

ger conditionally executed payloads. Nevertheless, it’s

an arm race between the analysis tool and anti-analysis

techniques.

Second, though the in-memory optimization signifi-

cantly reduces the code required to be executed, it is

semi-automated because the analysts have to specify the

entry point and the exit point of the interested code re-

gion. How to fully automate this process is an interest-

ing research direction that we will pursue. Moreover, the

direct execution needs analysts to specify the branches

to be executed directly. Our current prototype ignores all

possible crashes because the directly executed code path

may access invalid memory. Advanced malware may ex-

ploit this weakness to evade Malton. In future work, we

will borrow some ideas from the X-Force [55] system to

recover the execution from crashes automatically.

Third, the code coverage is a concern for all dynam-

ic analysis platforms, including ours. We leverage the

monkey tool to generate events, and use the path ex-

ploration module to explore code paths. Even using the

simple monkey tool, Malton has demonstrated better re-

sults than existing tools in Section 4.1. In future work,

we will equip Malton with UI automation frameworks

(e.g., [41]) to generate more directive events. Moreover,

as Malton only defines the default sensitive APIs, users

can add more sensitive APIs to Malton.

Last but not least, though Malton uses taint analysis to

track sensitive information propagation, it cannot track

implicit information flow and propagate taint tags over

indirect flows.We will enhance it by leveraging the ideas

in [45]. For example, we can track the indirect flows

like Binder IPC/RPC by hooking the related framework

methods and runtime functions. Moreover, since the ma-

jor purpose of Malton is to provide a comprehensive view

of the target apps instead of finding unknown malware,

it requires users to specify the malicious patterns for em-

ploying Malton to identify potential malware.

6 Related Work

Android malware analysis techniques can be generally

divided into static analysis, dynamic analysis, and the

hybrid of static and dynamic analysis. Since Malton is a

dynamic analysis system, this section introduces the re-

lated dynamic and hybrid approaches. Interested readers

please refer to [18,51,58,63,72,80] for more information

on static analysis of Android apps.

6.1 Dynamic or Hybrid Analysis

According to the implementation techniques, the exist-

ing (dynamic or hybrid) Android malware analysis tools

can be roughly divided into five types: tailoring Android

system [34, 39, 71, 89], customizing Android emulator

(e.g., Qemu) [73, 83], modifying (repackaging) app im-

plementation [37], employing system tracking tools [84],

or leveraging an app sandbox [20, 24].

We compare Malton with popular (dynamic or hybrid)

Android malware analysis tools, and enumerate the ma-

jor differences in Table 7. Please note that , , and in-

dicate that the tool can capture malware behaviors in the

framework layer, the runtime layer and the native layer,

respectively. Besides, the shadow sector means partial

support. For example, of TaintART suggests that it can

monitor partial framework behaviors.

TaintDroid [39] conducts dynamic taint analysis to de-

tect information leakage by modifying DVM. It does not

capture the behaviors in native layer because it trust-

s the native libraries loaded from firmware and does

not consider third-party native libraries. While on-

ly a small percent of apps used native libraries when

TaintDroid was designed, recent studies showed that na-

tive libraries have been heavily used by apps and mal-

ware [19, 59]. At the runtime layer, although TaintDroid

can track taint propagation in DVM, it neither monitor the

runtime behaviors nor support ART. Though many stud-

ies [34, 62, 65, 68, 77, 89, 90] enhanced TaintDroid from

different aspects, they cannot achieve the same capability

as Malton. For example, AppsPlayground [62] combines

TaintDroid and fuzzing to conduct multi-path taint anal-

ysis. Mobile-Sandbox [68] uses TaintDroid to monitor

framework behaviors and employs ltrace [5] to capture

native behaviors.

To avoid modifying Android system (including the

framework, native libraries, Linux kernel etc.), a number

of studies [10, 12, 22, 23, 31, 32, 43, 60, 61, 67, 78, 81, 87]

propose inserting the logics of monitoring behaviors or

security policies into the Dalvik bytecode of the malware

under inspection and then repacking it into a new APK.

Those studies have three common drawbacks. First, they

can only monitor the framework layer behaviors by ma-

nipulating Dalvik bytecode. Second, those approaches

are invasive that can be detected by malware. Third,

malware may use packing techniques to prevent such ap-

proaches from repacking it [85, 88].

Based on QEMU, DroidScope [83] reconstructs the
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Table 7: Comparison of Malton with the popular existing Android malware analysis tools.

Tool On device Non-invasive
Support

ART
Cross-layer
Monitoring

Multi-path
analysis

In-memory
mechanism

Offload
mechanism

Direct
execution

Without
modifying OS

Type

TaintDroid [39] � � × × × × × × Dynamic

TaintART [71] � × � × × × × × Dynamic

ARTist [21] � × � × × × × × Dynamic

DroidBox [34] � � × × × × × × Dynamic

VetDroid [89] � � × × × × × × Dynamic

DroidScope [83] × � × × × × × � Dynamic

CopperDroid [73] × � � × × × × � Dynamic

Dagger [84] � � � × × × × � Dynamic

ARTDroid [30] � � � × × × × � Dynamic

Boxify [20] � � � × × × × � Dynamic

CRePE [29] � � × × × × × × Dynamic

DroidTrace [91] � � � × × × × � Dynamic

DroidTrack [64] � � × × × × × × Dynamic

MADAM [35] � � � × × × × × Dynamic

HARVESTER [61] � � � � × × � � Hybrid

AppAudit [79] × × × × × × × × Hybrid

GroddDroid [10] � × � � × × � � Hybrid

ProfileDroid [76] � � � × × × × � Hybrid

Malton � � � � � � � � Dynamic

OS-level and Java-level semantics, and exports APIs for

building specific analysis tools, such as dynamic infor-

mation tracer. Hence, there is a semantic gap between

the VMI observations and the reconstructed Android spe-

cific behaviors. Since it monitors the Java-level behav-

iors by tracing the execution of Dalvik instructions, it

cannot monitor the Java methods that are compiled into

native code and running on ART (i.e, partial support of

framework layer). Moreover, DroidScope does not mon-

itor JNI and therefore it cannot capture the complete be-

haviors at runtime layer. CopperDroid [73] is also built

on top of Qemu and records system call invocations by

instrumenting Qemu. Since it performs binder analy-

sis to reconstruct the high-level Android-specific behav-

iors, only a limited number of behaviors can be mon-

itored. Moreover, it cannot identify the invocations of

framework methods. ANDRUBIS [50] and MARVIN [49]

(which is built on top of ANDRUBIS) monitor the behav-

iors at the framework layer by instrumenting DVM and

log system calls through VMI.

Monitoring system calls [17, 35, 46, 48, 54, 68, 75, 76,

84, 91] is widely used in Android malware analysis be-

cause considerable APIs in upper layers eventually in-

voke systems calls. For instance, Dagger [84] collect-

s system calls through strace [6], recodes binder trans-

actions via sysfs [7], and accesses process details from

/proc file system. One common drawback of system-

call-based techniques is the semantic gap between sys-

tem calls with the behaviors of upper layers, even though

several studies [54, 84, 91] try to reconstruct high-level

semantics from system calls. Besides tracing system

calls, MADAM [35] and ProfileDroid [76] monitor the in-

teractions between user and smartphone. However, they

cannot capture the behaviors in the runtime layer.

Both TaintART [71] and ARTist [21] are new frame-

works to propagate the taint information in ART. They

modify the tool dex2oat, which is provided along with

ART runtime to turn Dalvik bytecode into native code

during app’s installation. The taint propagation instruc-

tions will be inserted into the compiled code by the modi-

fied dex2oat. However, they only propagate taint at the

runtime layer, and do not support the taint propagation

through JNI or in native codes. Moreover, they cannot

handle the packed malware, because such malware usu-

ally dynamically load the Dalvik bytecode into runtime

directly without triggering the invocation of dex2oat.

CRePE [29] and DroidTrack [64] track apps’ behaviors at

the framework layer by modifying Android framework.

Boxify [20] and NJAS [24] are app sandboxes that en-

capsulate untrusted apps in a restricted execution envi-

ronment within the context of another trusted sandbox

app. Since they behave as a proxy for all system call-

s and binder channels of the isolated apps, they support

the analysis of native code and could reconstruct partial

framework layer behaviors.

ARTDroid [30] traces framework methods by hooking

the virtual framework methods and supports ART. S-

ince the boot image boot.art contains both the vtable and

virtual methods arrays that store the pointers to virtual

methods, ARTDroid hijacks vtable and virtual methods

to monitor the APIs invoked by malware.

HARVESTER and GroddDroid [10, 61] support multi-

path analysis. The former [61] covers interested code

forcibly by replacing conditionals with simple Boolean

variables, while the latter [10] uses a similar method to

jump to interested code by replacing conditional jumps

with unconditional jumps. Different from Malton, they

need to modify the bytecode of malware.
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6.2 Multi-path analysis for Android
There are a few studies about multi-path analysis for

Android. TriggerScope [40] is a static symbolic execu-

tor that handles Dalvik bytecode. Similar to other static

analysis tools, it may run into trouble when handling re-

flections, native code, dynamic Dex loading etc. Anand

et al. [15] proposed ACTEve that uses concolic execution

to generate input events for testing apps and offloads con-

straint solving to the host. There are three major differ-

ences between ACTEve and the path exploration module

of Malton. First, since ACTEve instruments the analyzed

app and the SDK, this invasive approach may be detect-

ed by malware. Second, ACTEve does not support native

code. Third, it does not apply the in-memory optimiza-

tion. ConDroid [66] also depends on the static instru-

mentation, and therefore has the same limitations.

Two recent studies [52,86] propose converting Dalvik

bytecode into Java bytecode and then using Java

PathFinder [16] to conduct symbolic execution in a cus-

tomized JVM. However, JVM cannot properly emulate

the real device. Moreover, they do not support the analy-

sis of native code.

To make concolic execution applicable for testing em-

bedded software, Chen et al. [28] and MAYHEM [26]

adopt similar offloading method. However, they do not

apply the in-memory optimization and cannot be used to

analyze Android malware. For example, Chen et al. co-

ordinates the part on device and the part on host through

the Wind River Tool Exchange protocol for VxWorks.

7 Conclusion

We propose a novel on-device non-invasive analysis sys-

tem named Malton for inspecting Android malware run-

ning on ART. Malton provides a comprehensive view

of the Android malware behaviors, by conducting multi-

layer monitoring and information flow tracking and ef-

ficient path exploration without the need of modifying

the malware. We have developed a prototype of Malton

and the evaluation with real-world sophisticated malware

samples demonstrated the effectiveness of our system.
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Abstract
Despite the pervasive nature of Internet censorship and

the continuous evolution of how and where censorship is
applied, measurements of censorship remain compara-
tively sparse. Understanding the scope, scale, and evo-
lution of Internet censorship requires global measure-
ments, performed at regular intervals. Unfortunately, the
state of the art relies on techniques that, by and large,
require users to directly participate in gathering these
measurements, drastically limiting their coverage and in-
hibiting regular data collection. To facilitate large-scale
measurements that can fill this gap in understanding, we
develop Iris, a scalable, accurate, and ethical method to
measure global manipulation of DNS resolutions. Iris
reveals widespread DNS manipulation of many domain
names; our findings both confirm anecdotal or limited re-
sults from previous work and reveal new patterns in DNS
manipulation.

1 Introduction

Anecdotes and reports indicate that Internet censorship
is widespread, affecting at least 60 countries [29, 39].
Despite its pervasive nature, empirical Internet measure-
ments revealing the scope and evolution of Internet cen-
sorship remain relatively sparse. A more complete un-
derstanding of Internet censorship around the world re-
quires diverse measurements from a wide range of geo-
graphic regions and ISPs, not only across countries but
also within regions of a single country. Diversity is im-
portant even within countries, because political dynam-
ics can vary internally, and because different ISPs may
implement filtering policies differently.

Unfortunately, most mechanisms for measuring In-
ternet censorship currently rely on volunteers who run
measurement software deployed on their own Internet-
connected devices (e.g., laptops, phones, tablets) [43,
49]. Because these tools rely on people to install soft-
ware and perform measurements, it is unlikely that they

can ever achieve the scale required to gather continu-
ous and diverse measurements about Internet censorship.
Performing measurements of the scale and frequency
necessary to understand the scope and evolution of In-
ternet censorship calls for fundamentally new techniques
that do not require human involvement or intervention.

We aim to develop techniques that can perform
widespread, longitudinal measurements of global Inter-
net manipulation without requiring the participation of
individual users in the countries of interest. Organiza-
tions may implement censorship at many layers of the In-
ternet protocol stack; they might, for example, block traf-
fic based on IP address, or they might block individual
web requests based on keywords. Recent work has de-
veloped techniques to continuously measure widespread
manipulation at the transport [23,42] and HTTP [45] lay-
ers, yet a significant gap remains in our understanding of
global information control concerning the manipulation
of the Internet’s Domain Name System (DNS). Towards
this goal, we develop and deploy a method and system
to detect, measure, and characterize the manipulation of
DNS responses in countries across the entire world.

Developing a technique to accurately detect DNS ma-
nipulation poses major challenges. Although previous
work has studied inconsistent or otherwise anomalous
DNS responses [32, 34], these methods have focused
mainly on identifying DNS responses that could reflect
a variety of underlying causes, including misconfigura-
tions. In contrast, our work aims to develop methods
for accurately identifying DNS manipulation indicative
of an intent to restrict user access to content. To achieve
high detection accuracy, we rely on a collection of met-
rics that we base on the underlying properties of DNS
domains, resolutions, and infrastructure.

One set of detection metrics focuses on consistency—
intuitively, when we query a domain from different lo-
cations, the IP addresses contained in DNS responses
should reflect hosting from either a common server (i.e.,
the same IP address) or the same autonomous system.
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Another set of detection metrics focuses on independent
verifiability, by comparison to independent information
such as the identity in the TLS certificate for the web-
site corresponding to the domain. Each of these metrics
naturally lends itself to exceptions: for example, queries
from different locations utilizing a content distribution
network (CDN) will often receive different IP addresses
(and sometimes even different CDNs). However, we can
use violations of all of the metrics as a strong indicator
of DNS manipulation.

In addition to achieving accurate results, another sig-
nificant design challenge concerns ethics. In contrast to
systems that explicitly involve volunteers in collecting
measurements, methods that send DNS queries through
open DNS resolvers deployed across the Internet raise
the issue of potentially implicating third parties who did
not in fact agree to participate in the measurement. Using
“open resolvers” is potentially problematic, as most of
these are not actual resolvers but instead DNS forwarders
in home routers and other devices [46]. A censor may
misattribute requests from these resources as individual
citizens attempting to access censored resources.

Reasoning about the risks of implicating individual
citizens requires detailed knowledge of how censors in
different countries monitor access to censored material
and how they penalize such actions. These policies and
behaviors may be complex, varying across time, region,
individuals involved, and the nature of the censored con-
tent; such risks are likely intractable to accurately de-
duce. To this end, our design takes steps to ensure that,
to the extent possible, we only query open DNS resolvers
hosted in Internet infrastructure (e.g., within Internet ser-
vice providers or cloud hosting providers), in an attempt
to eliminate any use of resolvers or forwarders in the
home networks of individual users. This step reduces
the set of DNS resolvers that we can use for our mea-
surements from tens of millions to only a few thousand.
However, we find that the resulting coverage still suffices
to achieve a global view of DNS manipulation, and—
importantly—in a safer way than previous studies that
exploit open DNS resolvers.

Our work makes the following contributions. First,
we design, implement, and deploy Iris, a scalable, eth-
ical system for measuring DNS manipulation. Second,
we develop analysis metrics for disambiguating natural
variation in DNS responses for a domain from nefarious
manipulation. Third, we perform a global measurement
study that highlights the heterogeneity of DNS manip-
ulation, across countries, resolvers, and domains. We
find that manipulation varies across DNS resolvers even
within a single country.

2 Related Work

Country-specific censorship studies. In recent years
many researchers have investigated the whats, hows, and
whys of censorship in particular countries. These stud-
ies often span a short period of time and reflect a single
vantage point within a target country, such as by renting
virtual private servers. For example, studies have specif-
ically focused on censorship practices in China [55],
Iran [7], Pakistan [38], Syria [12], and Egypt [8]. Stud-
ies have also explored the employment of various censor-
ship methods, e.g., injection of fake DNS replies [5, 36],
blocking of TCP/IP connections [54], and application-
level blocking [19, 33, 41]. A number of studies suggest
that countries sometimes change their blocking policies
and methods in times surrounding political events. For
example, Freedom House reports 15 instances of Inter-
net shutdowns—where the government cut off access to
Internet entirely—in 2016 alone [29]. Most of these were
apparently intended to prevent citizens from reaching so-
cial media to spread unwanted information.

Other studies have demonstrated that government cen-
sorship covers a broad variety of services and top-
ics, including video portals (e.g.,youtube.com) [51],
blogs (e.g., livejournal.com) [3], and news sites
(e.g., bbc.com) [9]. Censors also target circumvention
and anonymity tools; most famously, the Great Firewall
of China has engaged in a decade-long cat-and-mouse
game with Tor [24, 53]. Although these studies provide
important data points, each reflects a snapshot at a single
point in time and thus cannot capture ongoing trends and
variations in censorship practices.

Global censorship measurement tools. Several re-
search efforts developed platforms to measure censorship
by running experiments from diverse vantage points. For
instance, CensMon [48] used PlanetLab nodes in differ-
ent countries, and UBICA [1] aimed to increase vantage
points by running censorship measurement software on
home gateway devices and user desktops. In practice, as
far as we know, neither of these frameworks are still de-
ployed and collecting data. The OpenNet Initiative [39]
has used its public profile to recruit volunteers around
the world who have performed one-off measurements
from home networks each year for the past ten years.
OONI [49] and ICLab [30], two ongoing data collection
projects, use volunteers to run both custom software and
custom embedded devices (such as Raspberry Pis [26]).

Although each of these frameworks can perform a ex-
tensive set of tests, they rely on volunteers who run mea-
surement software on their Internet-connected devices.
These human involvements make it more challenging—
if not impossible—to gather continuous and diverse mea-
surements.
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Pearce et al. recently developed Augur, a method to
perform longitudinal global measurement using TCP/IP
side channels [42]. Although Augur examines a similar
set of domains and countries as Iris, it focuses on identi-
fying IP-based disruption rather than DNS-based manip-
ulation.

Measuring DNS manipulation. The DNS protocol’s
lack of authentication and integrity checking makes it
a prime target for attacks. Jones et al. presented tech-
niques for detecting unauthorized DNS root servers,
though found little such manipulation in practice [32].
Jiang et al. identified a vulnerability in DNS cache up-
date policies that allows malicious domains to stay in the
cache even if removed from the zone file [31].

Several projects have explored DNS manipulation us-
ing a limited number of vantage points. Weaver et al. ex-
plored DNS manipulation with respect to DNS redirec-
tion for advertisement purposes [52]. The authors also
observed incidents in which DNS resolvers redirected
end hosts to malware download pages. There are many
country-specific studies that show how different coun-
tries use a variety of DNS manipulation techniques to ex-
ercise Internet censorship. For example, in Iran the gov-
ernment expects ISPs to configure their DNS resolvers to
redirect contentious domains to a censorship page [7]. In
Pakistan, ISPs return NXDOMAIN responses [38]. In
China, the Great Firewall injects forged DNS packets
with seemingly arbitrary IP addresses [5]. These studies
however all drew upon a small or geographically limited
set of vantage points, and for short periods of time.

Using open resolvers. A number of studies have ex-
plored DNS manipulation at a larger scale by prob-
ing the IPv4 address space to find open resolvers. In
2008, Dagon et al. found corrupt DNS resolvers by run-
ning measurements using 200,000 open resolvers [18];
they do not analyze the results for potential censor-
ship. A similar scan by anonymous authors [4] in 2012
showed evidence of Chinese DNS censorship affecting
non-Chinese systems.

Follow-on work in 2015 by Kührer et al. tackled a
much larger scope: billions of lookups for 155 domain
names by millions of open resolvers [34]. The study
examined a broad range of potentially tampered results,
which in addition to censorship included malware, phish-
ing, domain parking, ad injection, captive portals, search
redirection, and email delivery. They detected DNS ma-
nipulation by comparing DNS responses from open re-
solvers with ground truth resolutions gathered by query-
ing control resolvers. They then identified legitimate un-
manipulated answers using a number of heuristic filter-
ing stages, such as treating a differing response as legit-
imate if its returned IP address lies within the same AS
the ground truth IP address.

We tried to use their method for conducting global
measurements specifically for detecting censorship.
However, censorship detection was not a focus of their
work, and the paper does not explicitly describe the de-
tails of its detection process. In particular, other than
examining HTTP pages for “blocked by the order of
. . . ” phrasing, the paper does not present a decision pro-
cess for determining whether a given instance of appar-
ent manipulation reflects censorship or some other phe-
nomenon. In addition, their measurements leverage open
resolvers en masse, which raises ethical concerns for end
users who may be wrongly implicated for attempting to
access banned content. In contrast, we frame an explicit,
reproducible method for globally measuring DNS-based
manipulation in an ethically responsible manner.

In 2016, Scott et al. introduced Satellite [47], a sys-
tem which leverages open resolvers to identify CDN
deployments and network interference using collected
resolutions. Given a bipartite graph linking domains
queried with IP address answers collected from the open
resolvers, Satellite identifies strongly connected com-
ponents, which represent domains hosted by the same
servers. Using metrics for domain similarity based on
the overlap in IP addresses observed for two domains,
Satellite distinguishes CDNs from network interference
as components with highly similar domains (addition-
ally, other heuristics help refine this classification).

3 Method

In this section we describe Iris, a scalable, lightweight
system to detect DNS manipulation. We begin by scop-
ing the problem space, identifying the capabilities and
limitations of various measurement building blocks, and
stating our assumptions about the threat model. We ex-
plain the process by which we select (1) which domain
names to measure, and (2) the vantage points to measure
them from, taking into consideration questions of ethics
and scalability. We then describe, given a set of mea-
surement vantage points and DNS domain names, how
we characterize the results of our measurements and use
them to draw conclusions about whether DNS manipu-
lation is taking place, based on either the consistency or
the independent verifiability of the responses that we re-
ceive. Next, we consider our technical approach in light
of existing ethical norms and guidelines, and explain how
various design decisions help us adhere to those princi-
ples as much as possible. Finally, we discuss the implicit
and technical limitations of Iris.

3.1 Overview
We aim to identify DNS manipulation, which we define
as the instance of a DNS response both (1) having at-
tributes (e.g., IP addresses, autonomous systems, web
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content) that are not consistent with respect to a well-
defined control set; and (2) returning information that is
demonstrably incorrect when compared against indepen-
dent information sources (e.g., TLS certificates).

Approach. Detecting DNS manipulation is conceptu-
ally simple: At a high-level, the idea entails performing
DNS queries through geographically distributed DNS re-
solvers and analyzing the responses for activity that sug-
gests that the responses for a DNS domain might be ma-
nipulated. Despite its apparent simplicity, however, real-
izing a system to scalably collect DNS data and analyze
it for manipulation poses both ethical and technical chal-
lenges. The ethical challenges concern selecting DNS
resolvers that do not implicate innocent citizens, as well
as ensuring that Iris does not induce undue load on the
DNS resolution infrastructure; §3.2 explains the ethical
guidelines we use to reason about design choices. §3.3
describes how Iris selects a “safe” set of open DNS re-
solvers; The technical challenges center around develop-
ing sound methods for detecting manipulation, which we
describe in §3.4 and §3.5.

Identifying DNS names to query. Iris queries a list of
sensitive URLs compiled by Citizen Lab [14]. We call
this list the Citizen Lab Block List (CLBL). This list of
URLs is compiled by experts based on known censor-
ship around the world, divided by category. We distill
the URLs down to domain names and use this list as
the basis of our dataset. We then supplement this list
by adding additional domain names selected at random
from the Alexa Top 10,000 [2]. These additional domain
names help address geographic or content biases in the
the CLBL while not drastically increasing the total num-
ber of queries.

Assumptions and focus. First, Iris aims to identify
widespread manipulation at the scale of Internet service
providers and countries. We cannot identify manipu-
lation that is targeted at specific individuals or popula-
tions or manipulation activities that exploit high-value
resources such as valid but stolen certificates. Second,
we focus on manipulation tactics that do not rely on
stealth; we assume that adversaries will use DNS re-
solvers to manipulate the responses to DNS queries. We
assume that adversaries do not return IP addresses that
are incorrect but within the same IP prefix as a correct
answer [5, 7, 38]. Finally, when attributing DNS ma-
nipulation to a particular country or dependent territory,
we rely on the country information available from Cen-
sys [21] supplemented with MaxMind’s [37] dataset to
map a resolver to a specific country (or dependent terri-
tory).

3.2 Ethics
The design of Iris incorporates many considerations re-
garding ethics. Our primary ethical concern is the risks
associated with the measurements that Iris conducts, as
issuing DNS queries for potentially censored or manipu-
lated DNS domains through resolvers that we do not own
could potentially implicate otherwise innocent users. A
second concern is whether the DNS queries that we gen-
erate introduce undue query load on authoritative DNS
nameservers for domains that we do not own. With these
concerns in mind, we consider the ethics of performing
measurements with Iris, using the ethical guidelines of
the Belmont Report [10] and Menlo Report [20] to frame
our discussion.

One important ethical principle is respect for persons;
essentially, this principle states that an experiment should
respect the rights of humans as autonomous decision-
makers. Sometimes this principle is misconstrued as a
requirement for informed consent for all experiments. In
many cases, however, informed consent is neither prac-
tical nor necessary; accordingly, Salganik [44] charac-
terizes this principle instead as “some consent for most
things”. In the case of Iris, obtaining the consent of all
open DNS resolver operators is impractical.

In lieu of attempting to obtain informed consent, we
turn to the principle of beneficence, which weighs the
benefits of conducting an experiment against the risks
associated with the experiment. Note that the goal of
beneficence is not to eliminate risk, but merely to re-
duce it to the extent possible. Iris’s design relies heavily
on this principle: Specifically, we note that the benefit
of issuing DNS queries through tens of millions of re-
solvers has rapidly diminishing returns, and that using
only open resolvers that we can determine are unlikely
to correspond to individual users greatly reduces the risk
to any individual without dramatically reducing the ben-
efits of our experiment. We note that our consideration of
ethics in this regard is a significant departure from pre-
vious work that has issued queries through open DNS
resolver infrastructure but has not considered ethics.

The principle of justice states that the beneficiaries of
an experiment should be the same population that bears
the risk of that experiment. On this front, we envi-
sion that the beneficiaries of the kinds of measurements
that we collect using Iris will be wide-ranging: design-
ers of circumvention tools, as well as policymakers, re-
searchers, and activists who are improving communica-
tions and connectivity for citizens in oppressive regimes
all need better data about the extent and scope of Internet
censorship. In short, even in the event that some entity
in a country that hosts an open DNS resolver might bear
some risk as a result of the measurements we conduct, we
envision that those same entities may ultimately benefit
from the research, policy-making, and tool development
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that Iris facilitates.
A final guideline concerns respect for law and public

interest, which essentially extends the principle of benef-
icence to all relevant stakeholders, not only the experi-
ment participants. This principle is useful for reasoning
about the externalities that our DNS queries create by in-
creasing DNS query load on the nameservers for various
DNS domains. To abide by this principle, we rate-limit
our DNS queries for each DNS domain to ensure that the
owners of these domains do not face large expenses as
a result of the queries that we issue. This rate limit is
necessary because some DNS service providers charge
based on the peak or near peak query rate.

3.3 Open DNS Resolvers
To obtain a wide range of measurement vantage points,
we use open DNS resolvers deployed around the world;
such resolvers will resolve queries for any client.

Measurement using open DNS resolvers is an ethically
complex issue. Previous work has identified tens of mil-
lions of these resolvers around the world [34]. Given
their prevalence and global diversity, open resolvers are a
compelling resource, providing researchers with consid-
erable volume and reach. Unfortunately, open resolvers
also pose a risk not only to the Internet but to individual
users.

Open resolvers can be the result of configuration
errors, frequently on end-user devices such as home
routers [34]. Using these devices for measurement can
incur monetary cost, and if the measurement involves
sensitive content or hosts, can expose the owner to harm.
Furthermore, open resolvers are also a common tool
in various online attacks such as Distributed Denial-of-
Service (DDoS) amplification attacks [35]. Despite ef-
forts to reduce both the prevalence of open resolvers and
their potential impact [40], they remain commonplace.

Due to these and the ethics considerations that we dis-
cussed in §3.2, we restrict the set of open resolvers that
we use to the few thousand resolvers that we are reason-
ably certain are part of the Internet infrastructure (e.g.,
belonging to Internet service providers, online cloud
hosting providers), as opposed to attributable to any sin-
gle individual. Figure 1 illustrates the process by which
Iris finds safe open DNS resolvers. We now explain this
process in more detail. Conceptually, the process com-
prises two steps: (1) scanning the Internet for open DNS
resolvers; or (2) pruning the list of open DNS resolvers
that we identify to limit the resolvers to a set that we can
reasonably attribute to Internet infrastructure.

By using DNS resolvers we do not control, we cannot
differentiate between country-wide or state-mandated
censorship and localized manipulation (e.g., captive por-
tals, malware [34]) at individual resolvers. Therefore

Figure 1: Overview of Iris’s DNS resolver identification and
selection pipeline. Iris begins with a global scan of the entire
IPv4 address space, followed by reverse DNS PTR lookups for
all open resolvers, and finally filtering resolvers to only include
DNS infrastructure.

we must aggregate and analyze results at ISP or coun-
try scale.

Step 1: Scanning the Internet’s IPv4 space for open
DNS resolvers. Scanning the IPv4 address space pro-
vides us with a global perspective on all open resolvers.
To do so, we developed an extension to the ZMap [22]
network scanner to enable Internet-wide DNS resolu-
tions1. This module queries port 53 of all IPv4 addresses
with a recursive DNS A record query. We use a purpose-
registered domain name we control for these queries to
ensure there is a known correct answer. We conduct
measurements and scans from IP addresses having a PTR
record identifying the machine as a “research scanner.”
These IP addresses also host a webpage identifying our
academic institution and offering the ability to opt-out of
scans. From these scans, we select all IP addresses that
return the correct answer to this query and classify them
as open resolvers. In §4.1, we explore the population of
open DNS resolvers that we use for our study.

Step 2: Identifying Infrastructure DNS Resolvers.
Given a list of all open DNS resolvers on the Internet,
we prune this list to include only DNS resolvers that
can likely be attributed to Internet infrastructure. To
do so, we aim to identify open DNS resolvers that ap-
pear to be authoritative nameservers for a given DNS
domain. Iris performs reverse DNS PTR lookups for
all open resolvers and retains only the resolvers that
have a valid PTR record beginning with the subdomain
ns[0-9]+ or nameserver[0-9]*. This filtering step
reduces the number of usable open resolvers—from mil-
lions to thousands—yet even the remaining set of open
DNS resolvers provides broad country- and network-
level coverage (characterized further in §4.1).

Using PTR records to identify infrastructure can have

1Our extension has been accepted into the open source project and
the results of our scans are available as part of the Censys [21] system.
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both false negatives and false positives. Not all infras-
tructure resolvers will have a valid PTR record, nor will
they all be authoritative nameservers. These false nega-
tives limit the scope and scale of our measurement, but
are necessary to reduce risk. Similarly, if a user oper-
ated their own authoritative nameserver on their home IP
or if a PTR record matched our naming criteria but was
not authoritative, our method would identify that IP as
infrastructure (false positives).

3.4 Performing the Measurements
Given a list of DNS domain names to query and a global
set of open DNS resolvers from which we can issue
queries, we need a mechanism that issues queries for
these domains to the set of resolvers that we have at our
disposal. Figure 2 shows an overview of the measure-
ment process. At a high level, Iris resolves each DNS
domain using the global vantage points afforded by the
open DNS resolvers, annotates the response IP addresses
with information from both outside datasets as well as
additional active probing, and uses consistency and inde-
pendent verifiability metrics to identify manipulated re-
sponses. The rest of this section outlines this measure-
ment process in detail, while §3.5 describes how we use
the results of these measurements to ultimately identify
manipulation.

Step 1: Performing global DNS queries. Iris takes as
input a list of suitable open DNS resolvers, as well as
the combined CLBL and Alexa domain names. In addi-
tion to the DNS domains that we are interested in testing,
we include 3 DNS domains that are under our control to
help us compute our consistency metrics when identify-
ing manipulation.

Querying tens of thousands of domains across tens of
thousands of resolvers required the development of a new
DNS query tool, because no existing DNS measurement
tool supports this scale. We implemented this tool in
Go [27]. The tool takes as input a set of domains and
resolvers, and coordinates random querying of each do-
main across each resolver. The tool supports a variety of
query types, multiple of which can be specified per run,
including A, AAAA, MX, and ANY. For each (domain, re-
solver) pair, the tool crafts a recursive DNS request and
sends it to the resolver. The recursive query requests that
the resolver resolve the domain and return the ultimate
answer, logging all responses, including timeouts. The
tool follows the set of responses to resolve each domain
to an IP address. For example, if a resolver returns a
CNAME, the tool then queries the resolver for resolution
of that CNAME.

To ensure resolvers are not overloaded, the tool in-
cludes a configurable rate-limit. For our experiments,
we limited queries to resolvers to an upper bound of 5

per second. In practice, this rate tends to be much lower
due to network latency in both reaching the resolver, as
well as the time it takes the resolver to perform the re-
cursive response. To cope with specific resolvers that are
unstable or timeout frequently, the tool provides a con-
figurable failure threshold that halts a specific resolver’s
set of measurements should too many queries fail.

To ensure the domains we query are not overloaded,
the tool randomizes the order of domains and limits the
number of resolvers queried in parallel such that in the
worst case no domain experiences more than 1 query per
second, in expectation.

Step 2: Annotating DNS responses with auxiliary in-
formation. Our analysis ultimately relies on character-
izing both the consistency and independent verifiability
of the DNS responses that we receive. To enable this
classification we first must gather additional details about
the IP addresses that are returned in each of the DNS re-
sponses. Iris annotates each IP address returned in the
set of DNS responses with additional information about
each IP address’s geolocation, autonomous system (AS),
port 80 HTTP responses, and port 443 HTTPS X.509 cer-
tificates. We rely on the Censys [21] dataset for this aux-
iliary information; Censys provides daily snapshots of
this information. This dataset does not contain every IP
address; for example, the dataset does not include IP ad-
dresses that have no open ports, or adversaries may in-
tentionally return IP addresses that return error pages or
are otherwise unresponsive. In these cases, we annotate
all IP addresses in our dataset with AS and geolocation
information from the Maxmind service [37].

Additional PTR and TLS scanning. For each IP ad-
dress, we perform a DNS PTR lookup to assist with some
of our subsequent consistency characterization (a process
we detail in §3.5). Another complication in the annota-
tion exercise relates to the fact that in practice a single
IP address might host many websites via HTTP or HTTPS
(i.e., virtual hosting). As a result, when Censys retrieves
certificates via port 443 (HTTPS) across the entire IPv4
address space, the certificate that Censys retrieves might
differ from the certificate that the server would return in
response to a query via TLS’s Server Name Indication
(SNI) extension. Such a discrepancy might lead Iris to
mischaracterize virtual hosting as DNS inconsistency. To
mitigate this effect, for each resulting IP address we per-
form an additional active HTTPS connection using SNI,
specifying the name originally queried. We annotate all
responses with this information, which we use for answer
classification (examined further in §5.1).

3.5 Identifying DNS Manipulation
To determine whether a DNS response is manipulated,
Iris relies on two types of metrics: consistency metrics
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Figure 2: Overview of DNS resolution, annotation, filtering, and classification. Iris inputs a set of domains and DNS resolvers and
outputs results indicating manipulated DNS responses.

and independent verifiability metrics. We say that a re-
sponse is correct if it satisfies any consistency or inde-
pendent verifiable metric; otherwise, we classify the re-
sponse as manipulated. In this section, we outline each
class of metrics as well as the specific features we de-
velop to classify answers. The rest of this section defines
these metrics; §5.1 explores the efficacy of each of them.

3.5.1 Consistency

Access to a domain should have some form of consis-
tency, even when accessed from various global vantage
points. This consistency may take the form of network
properties, infrastructure attributes, or even content. We
leverage these attributes, both in relation to control data
as well as across the dataset itself, to classify DNS re-
sponses.

Consistency Baseline: Control Domains and Re-
solvers. Central to our notion of consistency is having
a set of geographically diverse resolvers we control that
are (presumably) not subject to manipulation. These con-
trols give us a set of high-confidence correct answers we
can use to identify consistency across a range of IP ad-
dress properties. Geographic diversity helps ensure that
area-specific deployments do not cause false-positives.
For example, several domains in our dataset use differ-
ent content distribution network (CDN) hosting infras-
tructure outside North America. As part of our measure-
ments we insert domain names we control, with known
correct answers. We use these domains to ensure a re-
solver reliably returns unmanipulated results for non-
sensitive content (e.g., not a captive portal).

For each domain name, we create a set of con-
sistency metrics by taking the union of each metric
across all of our control resolvers. For example,
if Control A returns the answer 192.168.0.10

and 192.168.0.11 and Control B returns
192.168.0.12, we create a set of consistent IP set of

(192.168.0.10, 192.168.0.11, 192.168.0.12).
We say the answer is “correct” (i.e., not manip-
ulated) if, for each metric, the answer is a non-
empty subset of the controls. Returning to our IP
example, if a global resolver returns the answer
(192.168.0.10, 192.168.0.12), it is identified as
correct. When a request returns multiple records, we
check all records and consider the reply good if any
response passes the appropriate tests.

Additionally, unmanipulated passive DNS [6] data
collected simultaneously with our experiments across a
geographically diverse set of countries could enhance (or
replace) our consistency metrics. Unfortunately we are
not aware of such a dataset being available publicly.

IP Address. The simplest consistency metric is the IP
address or IP addresses that a DNS response contains.

Autonomous System / Organization. In the case of ge-
ographically distributed sites and services, such as those
hosted on CDNs, a single domain name may return dif-
ferent IP addresses as part of normal operation. To at-
tempt to account for these discrepancies, we also check
whether different IP addresses for a domain map to the
same AS we see when issuing queries for the domain
name through our control resolvers. Because a single AS
may have multiple AS numbers (ASNs), we consider two
IP addresses with either the same ASN or AS organiza-
tion name as being from the same AS. Although many
responses will exhibit AS consistency even if individual
IP addresses differ, even domains whose queries are not
manipulated will sometimes return inconsistent AS-level
and organizational information as well. This inconsis-
tency is especially common for large service providers
whose infrastructure spans multiple regions and conti-
nents and is often the result of acquisitions. To account
for these inconsistencies, we need additional consistency
metrics at higher layers of the protocol stack (specifically
HTTP and HTTPS), described next.
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HTTP Content. If an IP address is running a webserver
on port 80, we include a hash of the content returned as
an additional consistency metric. These content hashes
come from a port 80 IP address Censys crawl. This
metric effectively identifies sites with limited dynamic
content. As discussed in §5.1, this metric is also use-
ful in identifying sites with dynamic content but shared
infrastructure. For example, as these hashes are based
on HTTP GET fetches using an IP address as the Host

in the header, this fetch uniquely fingerprints and cate-
gorizes CDN failures or default host pages. In another
example, much of Google’s web hosting infrastructure
will return the byte-wise identical redirection page to
http://www.google.com/ for HTTP GETs without a
valid Google host header. These identical pages allow
us to identify Google resolutions as correct even for IP
addresses acting as a Point-of-Presence.

HTTPS Certificate. We label a response as correct if
the hash of the HTTPS certificate presented upon connec-
tion matches that of an IP returned via our controls. Note
this is not an independent verifiability metric, as the cer-
tificates may or may not be trusted, and may not even be
correct for the domain.

PTRs for CDNs. From our control data, we classify do-
mains as hosted on particular CDNs based on PTR, AS,
and certificate information. We consider a non-control
response as consistent if the PTR record for that response
points to the same CDN.

3.5.2 Independent Verifiability
In addition to consistency metrics, we also define a set of
metrics that we can independently verify using external
data sources, such as the HTTPS certificate infrastruc-
ture. We describe these methods below.

HTTPS Certificate. We consider a DNS response to
be correct, independent of controls, if the IP address
presents a valid, browser-trusted certificate for the cor-
rect domain name when queried without SNI. We further
extend this metric to allow for common configuration er-
rors, such as returning certificates for *.example.com
when requesting example.com.

HTTPS Certificate with SNI. We add an additional
metric that checks whether the certificate returned
from our follow-up SNI-enabled scans returns a valid,
browser-trusted certificate for the correct IP address.

3.6 Limitations
To facilitate global coverage in our measurements, our
method has limitations that impact our scope and limit
our results.

Localized Manipulation. Since Iris relies entirely on
open infrastructure resolvers that we do not control, in
regions with few resolvers, we cannot differentiate be-
tween localized manipulation by the resolver’s opera-
tor and ISP or country-wide manipulation. Analysis of
incorrect results focusing on consistency across ISP or
country, or examination of webpage content, could aid in
identifying localized manipulation.

Domain Bias. From our set of infrastructure resolvers,
we measure manipulation of the CLBL and a subset of
Alexa top sites. Although the CLBL is a community-
based effort to identify sensitive content globally, by its
very nature it is not complete. URLs and domains are
missing, and sensitive content may change faster than the
list is updated. Similarly, the list may exhibit geographic
bias based on the language of the project and who con-
tributes to it. This bias could affect the relative volume
and scope of manipulation that Iris can detect.

Evasion. Although we focus on manipulation at ISP or
country scale, an active adversary can still attempt to
evade our measurements. Upstream resolvers could use
EDNS Client Subnet [16] to only manipulate results for
certain target IP ranges, or ISP resolvers could choose
to manipulate only their own customers. Country-wide
firewalls that perform injection could identify our scan-
ning IP addresses and either not inject results or block
our communication entirely. An adversary could also
exploit our consistency metrics and inject incorrect IP
addresses within the same AS as the targets.

Geolocation Error. We rely on Censys [21] and Max-
mind [37] for geolocation and AS labeling of infras-
tructure resolvers to perform country or ISP-level aggre-
gation. Incorrect labeling would identify country-wide
manipulation as incomplete (false negatives), or identify
manipulation in countries where it is not present (false
positives).

4 Dataset
In this section, we characterize the data collected and
how we processed it to obtain the results used in our anal-
ysis.

4.1 Open Resolver Selection
We initially identified a large pool of open DNS resolvers
through an Internet-wide ZMap scan using our DNS ex-
tension to ZMap in January 2017. In total, 4.2 million
open resolvers responded with a correct answer to our
scan queries. This number excludes resolvers that replied
with valid DNS responses but had either a missing or in-
correct IP resolution for our scan’s query domain.
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Resolver
Datasets

Total
Resolvers

Number
Countries

Median /
Country

All Usable 4,197,543 232 659.5
Ethically Usable 6,564 157 6.0
Experiment Set 6,020 151 6.0

Table 1: DNS resolver datasets. We identify all correctly func-
tioning open resolvers are across the IPv4 address space. The
experiment set consists of resolvers that passed additional func-
tional tests beyond our basic scan. Note that the number of
countries includes dependent territories.

Resolver Dataset AF AS EU NA OC SA

All Usable 55 49 52 41 21 14
Ethically Usable 29 42 42 25 8 11
Experiment Set 26 41 41 24 8 11

Table 2: Number of countries (and dependent territories) con-
taining usable resolvers by continent. AF=Africa, AS=Asia,
EU=Europe, NA=North America, OC=Oceana/Australia,
SA=South America.

The degree to which we can investigate DNS ma-
nipulation across various countries depends on the ge-
ographic distribution of the selected DNS resolvers. By
geolocating this initial set of resolvers using Censys [21]
and MaxMind [37], we observed that these resolvers re-
side in 232 countries and dependent territories2, with a
median of 659 resolvers per country. Due to the ethi-
cal considerations we outlined in §3.2, we restrict this
set of resolvers to 6,564 infrastructure resolvers, in 157
countries, again with a median of 6 resolvers per country.
Finally, we remove unstable or otherwise anomalous re-
solvers; §4.3 describes this process in more detail. This
filtering reduces the set of usable resolvers to 6,020 in
151 countries, with a median of 6 resolvers in each. Ta-
ble 1 summarizes the resulting population of resolvers;
Table 2 shows the breakdown across continents. We also
use 4 geographically diverse resolvers for controlled ex-
periments; the 2 Google Public DNS servers [28], a Ger-
man open resolver hosted on Amazon AWS, and a re-
solver that we manage at the University of California,
Berkeley.

4.2 Domain Selection
We investigate DNS manipulation for both domains
known to be censored and domains for popular websites.
We began with the Citizen Lab Block List (CLBL) [14],
consisting of 1,376 sensitive domains. We augment
this list with 1,000 domains randomly selected from the
Alexa Top 10,000, as well as 3 control domains we man-

2Countries and dependent territories are defined by the ISO 3166-1
alpha-2 codes, the granularity of Maxmind’s country geolocation.

Response
Datasets

Total
Responses

Number
Resolvers

Number
Domains

All Responses 14,539,198 6,564 2,330
After Filtering 13,594,683 6,020 2,303

Table 3: DNS response dataset before and after filtering prob-
lematic resolvers, domains, and failed queries.

age that should not be manipulated. Due to overlap be-
tween the two domain sets, our combined dataset con-
sists of 2,330 domains. We excluded 27 problematic do-
mains that we identified through our data collection pro-
cess, resulting in our final population of 2,303 domains.

4.3 Response Filtering
We issued 14.5 million DNS A record queries for our
2,330 pre-filtered domains, across 6,564 infrastructure
and control open resolvers during a 2 day period in Jan-
uary 2017. We observed various erroneous behavior that
required further filtering. Excluding these degenerate
cases reduced our dataset collection to 13.5 million re-
sponses across 2,303 domains and 6,020 resolvers, as
summarized in Table 3. The rest of this section details
this filtering process.

Resolvers. We detected that 341 resolvers stopped re-
sponding to our queries during our experiment. An ad-
ditional 202 resolvers incorrectly resolved our control
domain names, despite previously answering correctly
during our Internet-wide scans. The common cause
of this behavior was rate limiting, as our Internet-wide
scans queried resolvers only once, whereas our experi-
ments necessitated repeated queries. We identified an-
other problematic resolver that exhibited a query fail-
ure rate above 70% due to aggressive rate limiting. We
eliminated these resolvers and their associated query re-
sponses from our dataset, reducing the number of valid
responses by 510K.

Domains. Our control DNS resolvers could not resolve
15 domain names. We excluded these and their asso-
ciated 90K query responses from our dataset. We re-
moved another 12 domains and their 72K corresponding
query responses as their DNS resolutions failed an auto-
mated sanity check; resolvers across numerous countries
provided the same incorrect DNS resolution for each of
these domains, and the IP address returned was unique
per domain (i.e., not a block page or filtering appliance).
We did not expect censors to exhibit this behavior; a sin-
gle censor is not likely to operate across multiple coun-
tries or geographic regions, and manipulations such as
block pages that use a single IP address across countries
should also be spread across multiple domains. These
domains do not support HTTPS, and exhibit geograph-
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ically specific deployments. With increased geographic
diversity of control resolvers or deployment of HTTPS
by these sites, our consistency or verifiability metrics
would account for these domains.

Queries. We filtered another 256K queries that returned
failure error codes; 93.7% of all errors were timeouts and
server failures. Timeouts denote connections where the
resolver did not respond to our query within 15 seconds.
Server failures indicate when a resolver could not recur-
sively resolve a domain within its own pre-configured
time allotment (10 seconds by default in BIND). Table 4
provides a detailed breakdown of error responses.

Failure Type Count % of Responses

Timeout 140,551 0.97%
Server Fail 107,826 0.74%
Conn Refused 7,823 0.05%
Conn Error 3,686 0.03%
Truncated 3,451 0.02%
NXDOMAIN 1,713 0.01%

Table 4: Breakdown of the 265,050 DNS responses that re-
turned a non-success error code.

Returning an NXDOMAIN response code [38], which
informs a client that a domain does not exist, is an ob-
vious potential DNS censorship mechanism. Unfortu-
nately, some CDNs return this error in normal opera-
tions, presumably due to rate limiting or client configu-
ration settings. We found that the most prevalent NX be-
havior occurred in the countries of Tonga and Pakistan;
both countries exhibited censorship of multiple content
types, including adult and LGBT. Previous studies have
observed NXDOMAIN blocking in Pakistan [38]. These
instances comprise a small percentage of overall NX-
DOMAIN responses. Given the many non-censorship
NXDOMAIN responses and the relative infrequency of
their use for censorship, we exclude these from our anal-
ysis. Another 72K responses had a SUCCESS response
code, but contained no IP address in the response. This
failure mode frequently coincide with CNAME responses
that could not be resolved further. We excluded these
queries. Table 5 provides a geographic breakdown of
NXDOMAIN responses.

After removing problematic resolvers, domains, and
failed queries, the dataset comprises of 13,594,683 DNS
responses. By applying our consistency and indepen-
dent verifiability metrics, we identify 41,778 responses
(0.31%) as manipulated, spread across 58 countries (and
dependent territories) and 1,408 domains.

Country % NXDOMAIN

Tonga 2.93%
Pakistan 0.37%

Bosnia/Herzegovina 0.12%
Isle of Man 0.04%
Cape Verde 0.04%

Table 5: The top 5 countries / dependent territories by the per-
cent of queries that responded with NXDOMAIN.
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Figure 3: The ability of each correctness metric to classify re-
sponses as correct. Table is ordered (top to bottom, left to right)
by the lines on the graph (left to right).

5 Results
We now evaluate the effectiveness of our DNS manipula-
tion metrics and explore manipulated DNS responses in
the context of Internet censorship.

5.1 Evaluating Manipulation Metrics
To assess the effectiveness of the consistency and inde-
pendent verifiability metrics, we quantify the ability of
each metric to identify unmanipulated responses (to ex-
clude from further investigation). Figure 3 shows each
metric’s efficacy. The horizontal axis represents the frac-
tion of responses from a particular resolver that are clas-
sified as correct by a given metric. The vertical axis indi-
cates the number of resolvers that exhibit that same frac-
tion of correct responses (again under the given metric).
For example, almost 6,000 resolvers had roughly 8%
of their responses identified as correct under the “Same
CDN” metric. A narrow band indicates that many re-
solvers exhibit similar fractions of correct responses un-
der that metric (i.e., it is more stable). The closer the cen-
ter mass of a histogram lies to 1.0, the more effective its
corresponding metric, since a larger fraction of responses
are classified as correct (i.e., not manipulation) using that
metric.
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Figure 4: The fraction of responses manipulated, per resolver.
For 89% of resolvers, we observed no manipulation.

The AS consistency metric (“Same AS”) is the most
effective: it classified 90% of the DNS responses as con-
sistent. Similarly, identifying matching IP addresses be-
tween responses from our control resolvers and our ex-
periment resolvers flagged about 80% of responses as
correct across most resolvers. “Same HTTP Page” is also
relatively effective, as many geographically distributed
deployments of the same site (such as with Points-of-
Presence) have either identical content or infrastructure
error characteristics (see §3.5.1). This figure also illus-
trates the importance of SNI, increasing the effective-
ness of correct and valid HTTPS certificates from 38% to
55%. The same HTTPS certificate (“Same Cert”) metric
turns out to be more effective than simply having a cor-
rect certificate (“Correct Cert”), because so many sites
incorrectly deploy HTTPS.

5.2 Manipulated DNS Responses
We detect nearly 42,000 manipulated DNS responses; we
now investigate the distribution of these responses across
resolvers, domains, and countries.

Manipulated responses by resolver. Figure 4 shows the
cumulative fraction of results that return at least a cer-
tain fraction of manipulated responses: 88% of resolvers
exhibited no manipulation; for 96% of resolvers, we ob-
serve manipulation for fewer than 5% of responses. The
modes in the CDF highlight differences between resolver
subpopulations, which upon further investigation we dis-
covered reflected differing manipulation practices across
countries. Additionally, 62% of domains are manipu-
lated by at least one resolver, which is expected given
that more than half of our selected domains are sensitive
sites on the CLBL. We explore these variations in more
detail later in this section.

Country (# Res.) Median Mean Max Min

Iran (122) 6.02% 5.99% 22.41% 0.00%
China (62) 5.22% 4.59% 8.40% 0.00%

Indonesia (80) 0.63% 2.81% 9.95% 0.00%
Greece (26) 0.28% 0.40% 0.83% 0.00%

Mongolia (6) 0.17% 0.18% 0.36% 0.00%
Iraq (7) 0.09% 1.67% 5.79% 0.00%

Bermuda (2) 0.04% 0.04% 0.09% 0.00%
Kazakhstan (14) 0.04% 0.30% 3.90% 0.00%

Belarus (18) 0.04% 0.07% 0.30% 0.00%

Table 6: Top 10 countries by median percent of manipulated
responses per resolver. We additionally provide the mean, max-
imum, and minimum percent for resolvers in each country. The
number of resolvers per country is listed with the country name.

Manipulated responses by country. Previous work has
observed that some countries deploy nation-wide DNS
censorship technology [5]; therefore, we expected to see
groups of resolvers in the same country, each manipu-
lating a similar set of domains. Table 6 lists the percent
of manipulated responses per resolver, aggregated across
resolvers in each country. Resolvers in Iran exhibited the
highest degree of manipulation, with a median of 6.02%
manipulated responses per Iranian resolver; China fol-
lows with a median value of 5.22%. These rankings de-
pend on the domains in our domain list, and may merely
reflect that the CLBL contained more domains that are
censored in these countries.

The top 10 countries shown in Table 6 all have at least
one resolver that does not manipulate any domains; IP
address geolocation inaccuracy may partially explain this
surprising finding. For example, uncensored resolvers in
Hong Kong may be incorrectly labeled as Chinese. Ad-
ditionally, for countries that do not directly implement
the technical manipulation mechanisms but rather rely on
individual ISPs to do so, the actual manifestation of ma-
nipulation may vary across ISPs within a single country.
Localized manipulation by resolver operators in coun-
tries with few resolvers could also influence these results.
§5.3 investigates these factors further.

Figure 5 shows the representation of responses in our
dataset by country. For example, the leftmost pair of bars
shows that, while less than 5% of all responses in our
dataset came from Iranian resolvers, the responses that
we received accounted for nearly 40% of manipulated re-
sponses in the dataset. Similarly, Chinese resolvers rep-
resented 1% of responses in the data but contributed to
15% of the manipulated responses. In contrast, 30% of
our DNS responses came from resolvers in the United
States, but accounted for only 5% of censored responses.

Table 7 shows the breakdown of the top manipulated
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Figure 5: The fraction of all responses in our dataset from each
country (blue), and the fraction of all manipulated responses in
our dataset from the corresponding country (red).

responses, by the IP address that appears in the manipu-
lated answer. The top two special-purpose (i.e., private)
IP addresses appear in the majority of responses within
Iran. The third most common response is an OpenDNS
(a DNS filtering and security product [13]) blockpage
indicating adult content. The fourth most frequent re-
sponse is an IP address hosting an HTTP error page
known to be used in Turkey DNS manipulation [11].

Private and special-purpose IPv4 addresses in ma-
nipulated DNS responses. Of the roughly 42,000 ma-
nipulated DNS responses, 17,806 correspond to special-
purpose IPv4 addresses as defined by RFC 6890 [17]; the
remaining 23,972 responses corresponded to addresses
in the public IP address space. Table 8 shows the ex-
tent to which countries return private IP addresses in
responses, for the top 10 countries ranked by the rela-
tive amount of DNS manipulation compared to the total
number of results from that country. For example, we
observed more manipulated responses from Turkey than
Iraq, but Iris used more open DNS resolvers in Turkey,
so observed frequencies require normalization. Here, we
notice that countries that manipulate DNS tend to either
return only special-purpose IP addresses in manipulated
responses (as in the case of Iran, Iraq, and Kuwait) or
only public IP addresses (China).

Figure 6 presents the distribution of observed pub-
lic IP addresses across manipulated responses in our
dataset. The most frequently returned public IP address,
an OpenDNS blockpage, constituted almost 15% of all
manipulated responses containing public IP addresses.
The top ten public IP addresses accounted for nearly 60%
of responses.

Many IP answers have been observed in previous stud-
ies on Chinese DNS censorship [5, 25]. These addresses

Answer Results Names Category

10.10.34.36 12,144 140 Private
10.10.34.34 4,566 776 Private

146.112.61.106 3,495 801 OpenDNS Adult
195.175.254.2 3,137 129 HTTP Error Page

93.46.8.89 1,571 88 China*
118.97.116.27 1,212 155 Safe / Filtering

243.185.187.39 1,167 88 China*
127.0.0.1 876 267 Private

95.53.248.254 566 566 Resolver’s Own IP
95.53.248.254 565 565 Resolver’s Own IP

8.7.198.45 411 75 China*
202.169.44.80 379 113 Safe / Filtering

212.47.252.200 371 371 Resolver’s Own IP
212.47.254.200 370 370 Resolver’s Own IP

213.177.28.90 352 22 Gambling Blockpg
208.91.112.55 349 320 Blockpg
180.131.146.7 312 145 Safe / Filtering

203.98.7.65 303 78 China*
202.182.48.245 302 100 Adult Blockpg
93.158.134.250 258 86 Safe / Filtering

Table 7: Most common manipulated responses by volume, with
manual classification for public, non-resolver IP addresses.
The category “China*” are IP addresses previously observed
by Farnan et al. in 2016 [25].

are seemingly arbitrary; they host no services, not even
a fundamental webpage. The 10 most frequent Chinese
responses constituted almost 75% of Chinese responses.
The remaining 25% are spread over a long tail of nearly
1,000 seemingly arbitrary non-Chinese IP addresses.

5.3 Manipulation Within Countries
Figure 7 shows the DNS manipulation of each domain by
the fraction of resolvers within a country, for the 10 coun-
tries with the most normalized amount of manipulation.
Each point represents a domain; the vertical axis repre-
sents the fraction of resolvers in that country that manip-
ulate it. Shading shows the density of points for that part
of the distribution. The plot reveals several interesting
phenomena. One group of domains is manipulated by
about 80% of resolvers in Iran, and another group is ma-
nipulated by fewer than 10% of resolvers. This second
group of domains is manipulated by a smaller fraction of
resolvers, also returning non-public IP addresses. These
effects are consistent with previously noted blackholing
employed by DNS manipulation infrastructure [7]; this
phenomenon deserves further investigation.

Similarly, one set of domains in China experiences
manipulation by approximately 80% of resolvers, and
another set experiences manipulation only half the time.
In contrast, manipulation in Greece and Kuwait is more
homogeneous across resolvers.
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Country (# Res.) % Incor. % Pub.

Iran (122) 6.02% 0.01%
China (62) 4.52% 99.46%

Indonesia (80) 2.74% 95.08%
Iraq (7) 1.68% 1.49%

New Zealand (16) 1.59% 100.00%
Turkey (192) 0.84% 99.81%

Romania (45) 0.77% 100.00%
Kuwait (10) 0.61% 0.00%
Greece (26) 0.41% 100.00%
Cyprus (5) 0.40% 100.00%

Table 8: Percent of public IP addresses in manipulated re-
sponses, by country. Countries are sorted by overall frequency
of manipulation.
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Figure 6: Manipulated but public IP addresses in our dataset.
The horizontal axis is sorted by the most common IP.

Heterogeneity across a country may suggest a situa-
tion where different ISPs implement filtering with differ-
ent block lists; it might also indicate variability across
geographic region within a country. The fact that ma-
nipulation rates vary even among resolvers in a certain
group within a country may indicate either probabilistic
manipulation, or the injection of manipulated responses
(a phenomenon that has been documented before [5]).
Other more benign explanations exist, such as corporate
firewalls (which are common in the United States), or lo-
calized manipulation by resolver operators.

Ceilings on the percent of resolvers within a country
performing manipulation, such as no domain in China
experiencing manipulation across more than approxi-
mately 85% of resolvers, suggest IP geolocation errors
are common.
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Figure 7: The fraction of resolvers within a country that ma-
nipulate each domain.
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Figure 8: The number of countries (or dependent territories)
that block each domain with observed manipulated responses,
sorted by manipulation prevalence.

5.4 Commonly Manipulated Domains

Commonly manipulated domains across countries.
Many domains experienced manipulation across a range
of countries. Figure 8 shows a CDF of the number of
countries (or dependent territories) for which at least
one resolver manipulated each domain. 30% of domains
were manipulated in only a single country, while 70%
were manipulated in 5 or fewer countries. No domain
was manipulated in more than 19 countries.

Table 9 highlights domains that experience manipula-
tion in many countries (or dependent territories). The 2
most manipulated domains are both gambling websites,
each experiencing censorship across 19 different coun-
tries. DNS resolutions for pornographic websites are
similarly manipulated, accounting for the next 3 most
commonly affected domains. Peer-to-peer file sharing
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Rank Domain Name Category # Cn # Res

1 *pokerstars.com Gambling 19 251
2 betway.com Gambling 19 234
3 pornhub.com Pornography 19 222
4 youporn.com Pornography 19 192
5 xvideos.com Pornography 19 174
6 thepiratebay.org P2P sharing 18 236
7 thepiratebay.se P2P sharing 18 217
8 xhamster.com Pornography 18 200
9 *partypoker.com Gambling 17 226

10 beeg.com Pornography 17 183

80 torproject.org Anon. & cen. 12 159
181 twitter.com Twitter 9 160
250 *youtube.com Google 8 165
495 *citizenlab.org Freedom expr. 4 148
606 www.google.com Google 3 56

1086 google.com Google 1 5

Table 9: Domain names manipulated in the most countries
(or dependent territories), ordered by number of countries with
manipulated responses. Domains beginning with * begin with
“www.”.

sites are also commonly targeted, particularly The Pi-
rate Bay. The Tor Project [50] DNS domain is the most
widely interfered with domain amongst anonymity and
censorship tools, manipulated across 12 countries. Cit-
izen Lab [15] also experienced manipulation across 4
countries. We note that www.google.com is impacted
across more countries than google.com, unsurprising
since all HTTP and HTTPS queries to google.com im-
mediately redirect to www.google.com; for example,
China manipulates www.google.com queries but disre-
gards those for google.com. This result underscores
the need for domain datasets that contain complete do-
mains and subdomains, rather than simply second-level
domains.

We also note that commonly measured sites such as
The Tor Project, Google, and Twitter, experience ma-
nipulation across significantly fewer countries than some
sites. Such disparity points to the need for a diverse do-
main dataset.

China focuses its DNS manipulation not just on adult
content but also major English news outlets, such as
nytimes.com, online.wsj.com, and www.reuters.

com. China is the only country observed to manipulate
the DNS responses for these domains; it also censored
the Chinese language Wikipedia domain.

Commonly manipulated categories. Table 10 shows
the prevalence of manipulation by CLBL categories. We
consider a category as manipulated within a country if
any resolver within that country manipulates a domain
of that category. Domains in the Alexa Top 10K expe-

Rank Domain Category # Cn. # Resolv.

1 Alexa Top 10k 36 442
2 Freedom of expr. 35 384
3 P2P file sharing 34 394
4 Human rights 31 288
5 Gambling 29 377
6 Pornography 29 342
7 Alcohol and drugs 28 274
8 Anon. & censor. 24 303
9 Hate speech 22 158

10 Multimedia sharing 21 293

20 Google 16 234
34 Facebook 10 175
38 Twitter 9 160

Table 10: Top 10 domain categories, ordered by number of
countries (or dependent territories) with manipulated answers.

rienced the most manipulation; these domains did not
appear in the CLBL, which highlights the importance
of measuring both curated lists from domain experts as
well as broad samples of popular websites. Although no
single domain experiences manipulation in more than 19
countries, several categories experience manipulation in
more than 30 countries, indicating that while broad cat-
egories appear to be commonly targeted, the specific do-
mains may vary country to country.

To study how manipulated categories vary across
countries, we analyzed the fraction of resolvers within
each country that manipulate a particular category. The
top categories vary extensively across countries. Ta-
ble 11 shows the most frequently manipulated categories
for the top 10 countries by normalized amounts of ma-
nipulation. The top category of manipulated content
in Iran, “provocative attire,” is not a category across
any of the other top 10 countries. Manipulation of do-
mains randomly selected from Alexa but not in the CLBL
(“Alexa Top 10k”) is prevalent across numerous coun-
tries, again reinforcing the need for diverse domain
datasets. Anonymity and censorship tools are manipu-
lated extensively across 85% of resolvers in China, but
not across the rest of the top 10. Pornography and gam-
bling sites are manipulated throughout.

6 Summary

Internet censorship is widespread, dynamic, and contin-
ually evolving; understanding the nature of censorship
thus requires techniques to perform continuous, large-
scale measurement. Unfortunately, the state-of-the-art
techniques for measuring manipulation—a common cen-
sorship technique—rely on human volunteers, limiting
the scale and frequency of measurements. This work in-
troduces a method for measuring DNS manipulation on
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Country Domain Category % of Resolv.

IR Provocative attire 90.98%
Alexa Top 10k 90.16%

Freedom of expr. 90.16%

CN Alexa Top 10k 85.48%
Freedom of expr. 85.48%
Anon. & censor. 85.48%

ID Pornography 57.50%
Alexa Top 10k 56.25%

P2P file sharing 52.50%

IQ Political Blog 57.14%
Alexa Top 10k 28.57%

Freedom of expr. 28.57%

NZ Alexa Top 10k 12.50%
Freedom of expr. 12.50%

P2P file sharing 12.50%

TR Alexa Top 10k 18.23%
Freedom of expr. 17.71%

Pornography 16.67%

RO Alexa Top 10k 37.78%
Gambling 37.78%

Freedom of expr. 2.22%

KW Alexa Top 10k 10.00%
Freedom of expr. 10.00%

P2P file sharing 10.00%

GR Gambling 50.00%
Alexa Top 10k 46.15%

CY Alexa Top 10k 40.00%
Gambling 40.00%

Table 11: Breakdown of the top 3 domain categories experi-
encing manipulation, per country. Countries are ordered by
the relative amount of manipulated responses for that country.
Both Greece (GR) and Cyprus (CY) only experience manipu-
lated responses across 2 categories.

a global scale by using as vantage points open DNS re-
solvers that form part of the Internet’s infrastructure.

The major contributions of our work are: (1) Iris: a
scalable, ethical system for measuring DNS manipula-
tion; (2) an analysis technique for disambiguating natu-
ral variation in DNS responses (e.g., due to CDNs) from
more nefarious types of manipulation; and (3) a large-
scale measurement study that highlights the heterogene-
ity of DNS manipulation, across countries, resolvers, and
domains. Notably, we find that manipulation is het-
erogeneous across DNS resolvers even within a single
country. Iris supports regular, continuous measurement,
which will ultimately facilitate tracking DNS manipula-
tion trends as they evolve over time; our next step is to
operationalize such measurements to facilitate longitudi-
nal analysis.
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Abstract
Facing abusive traffic from the Tor anonymity network,
online service providers discriminate against Tor users.
In this study, we characterize not only the extent of such
discrimination but also the nature of the undesired traf-
fic originating from the Tor network—a task compli-
cated by Tor’s need to maintain user anonymity. We
address this challenge by leveraging multiple indepen-
dent data sources: email complaints sent to exit opera-
tors, commercial IP blacklists, webpage crawls via Tor,
and privacy-sensitive measurements of our own Tor exit
nodes. As part of our study, we also develop methods for
classifying email complaints and an interactive crawler
to find subtle forms of discrimination, and deploy our
own exits in various configurations to understand which
are prone to discrimination. We find that conservative
exit policies are ineffective in preventing the blacklisting
of exit relays. However, a majority of the attacks origi-
nating from Tor generate high traffic volume, suggesting
the possibility of detection and prevention without vio-
lating Tor users’ privacy.

1 Introduction

Anonymity systems like Tor provide a useful service to
users who wish to access the Internet without reveal-
ing their intended destination to any local monitoring,
or their network-layer identity to the final destination.
However, as Tor has increased in scale and usage, ten-
sions have emerged between Tor users and online service
providers. Specifically, service providers claim that the
anonymity provided by Tor is often used maliciously for
spamming, vulnerability scanning, scraping, and other
undesired behavior (e.g., [1]). As a result, Tor users
now face differential treatment (e.g., needing to solve
CAPTCHAs before receiving services) and even outright
blocking [2].

At its core, the problem is that in return for anonymity,
each Tor user shares their reputation with other users.

As a result, the malicious actions of a single Tor user
can lead IP abuse blacklists to include IP addresses used
by Tor exit relays. Consequently, websites and content
providers treat even benign Tor users as malicious. In
this paper, we characterize aspects of the conflict be-
tween users desiring anonymity and websites aiming to
protect themselves against malicious Tor traffic. We in-
vestigate the nature of traffic that exits the Tor network
and is undesired by online service providers. We also
actively measure various forms of discrimination per-
formed against Tor users.

Challenges. We grapple with two key challenges: First,
measuring Tor traffic is antithetical to the goals of the
anonymity system and poses ethical challenges. Second,
defining and identifying undesired or abusive network
traffic is hard as opinions vary and encryption can render
inspection of traffic infeasible. We address both chal-
lenges by focusing on the receivers’ reactions to Tor traf-
fic rather than the traffic itself. We consider email com-
plaints sent to Tor relay operators (§4) and blacklisting
of Tor-related IP addresses (§5), and take measurements
of server responses to Tor traffic, both synthetic (§6) and
user-driven (§7). These datasets not only allow us to ob-
serve the effects of undesired traffic without measuring
it, but also provide an operational definition of undesired
traffic: the traffic that leads to complaints, blacklisting,
or rejecting of Tor users. This operationalization allows
us to sidestep debates over what constitutes abuse and
to focus on the subset of undesired Tor traffic that has
affected operators and users.

Additionally, collecting and analyzing each of these
four datasets presented technical challenges. Analyzing
3 million email complaints received by Tor relay opera-
tors since June 2010 required us to construct automated
processing methods (§4). Understanding the inclusion
of Tor-related IP addresses in IP blacklists required us to
develop methods for teasing apart reactive blacklisting—
i.e., blacklisting triggered by abuse—from proactive
blacklisting—i.e., blacklisting due to Tor’s pre-existing
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reputation (§5). Measuring the prevalence of discrimina-
tion faced by users required exercising multiple aspects
of websites and inspecting them for subtle forms of dis-
crimination (e.g., CAPTCHAs and interaction-based dis-
crimination) in addition to outright blocking. To address
this issue and accurately measure discrimination against
users, we go beyond the prior work of Khattak et al.
and develop a crawler capable of exercising the search
and login features of websites. Taking measurements of
real Tor traffic required the creation and deployment of a
privacy-sensitive logging approach for our own Tor exit
relays. We also consider aspects of Tor exit relays that
make them more susceptible to complaints, IP blacklist-
ing, or blocking. We augment this analysis by deploying
several Tor exits with varied configurations and monitor-
ing the reactions they produced.

Key Findings. One major takeaway from our analysis
is that many of the attacks originating from Tor generate
high traffic volume (e.g., DDoS attacks, port scanning),
raising the possibility of blocking them using privacy-
sensitive techniques (§8). We believe developing, im-
plementing, and deploying such techniques may provide
online service operators a more effective means of curb-
ing abuse than IP blacklisting while also preventing lost
utility to Tor from blocking.

Our analysis of email complaints shows that, histori-
cally, the most vocal complainants about Tor traffic were
a small number of copyright enforcement firms. This is
no longer be the case, possibly due to Tor blocking Bit-
Torrent’s standard ports by default (Table 2 in §4). The
most common non-copyright complaints were about net-
work abuse and attempts to gain unauthorized access (Ta-
ble 3 in §4).

From our analysis of commercial IP blacklists, we find
that 7% of the commercial IP blacklists we analyze en-
gage in proactive blocking of Tor users—i.e., blacklist-
ing Tor exit relays soon after they are listed in the con-
sensus. This is indicative of blacklists performing dis-
crimination against Tor exit relays as a matter of policy,
rather than based on undesired traffic (§5). Currently,
88% of Tor relays are blacklisted on one or more of the
blacklists, compared to 9% and 69% of the endpoints of
the VPNGate and HMA VPN services, respectively (Fig-
ure 4 in §5). We also find that conservative exit policies
do not reduce Tor exit relays’ susceptibility to getting
blacklisted, which appears to reflect that such policies
still allow for Web access, the channel most extensively
used for abuse.

Finally, we find discrimination to be a pressing con-
cern. Our synthetic experiments show that discrimina-
tion occurs on 20% of all Alexa Top 500 website front-
page loads through a subset of Tor exits. Focusing on
the search and login functionalities of the Alexa Top 500
websites, we see a 3.9% and 7.5% increase in observed

discrimination (compared to front-page load discrimina-
tion), respectively (Table 6 in §6). We also find that
real Tor users experience high fractions of failed HTTP
requests (15.8–33.4%) and HTTPS handshakes (35.0–
49.6%) while browsing the Alexa Top 1M websites using
our deployed relays (Table 8 in §7).

2 Background and Related Work

Tensions between Tor and online services. Tor is a
low-latency onion routing network with over 2M daily
users and over 7K supporting servers [3]. While propo-
nents of Internet freedom laud the anonymity provided
by Tor, it can also provide a cloak for malicious net-
work activities. Indeed, CloudFlare reported that 94% of
the requests from the Tor network are “malicious”, con-
sisting of comment spam, scanning, and content scrap-
ing [1]. According to a report published by Distill net-
works, 48% of Tor requests are malicious, higher than
non-Tor requests (38%) [4]. A study of the Sqreen appli-
cation protection service found that connections through
Tor are responsible for ≈30% of all attacks on their cus-
tomers, including password brute force attacks, account
enumerations, and fraudsters [5]. As per Akamai’s State
of the Internet report, an HTTP request from a Tor IP ad-
dress is 30 times more likely to be a malicious attack than
one from a non-Tor IP address [6]. Imperva-Incapsula
found that in a period of 2.5 weeks, 48.53% of the attack
requests came from Tor [7]. However, the majority of
these attack sessions were originated from well-known
DDoS bots and bad clients, which can be identified us-
ing approaches other than IP reputation. Not counting
the attacks from well-known attackers, the fraction of at-
tack sessions originating from Tor went down to 6.78%,
which is comparable to the attacks coming from the rest
of the Internet population in Ireland (5.45%).

Different services have reported similar types of at-
tacks from Tor. The three most common attacks from
Tor to Akamai’s services were automated scanning (path
scanning and vulnerability scanning), SQL injection, and
cross-site scripting attacks [6]. IBM reports that SQL
injection, automated scanning, and DDoS are the most
common attacks from Tor [8]. Sqreen found authen-
tication attacks (brute force attack on a specific user
account, or accounts enumeration), path scanning, and
SQL/NoSQL injections [9] are likely to originate from
Tor [5]. Our analysis of the abuse complaints to a num-
ber of Tor exit relays reflects similar proportions of attack
traffic (Section 4).

Despite reports claiming a higher likelihood of ma-
licious traffic from Tor, there have been debates about
the correctness of their inference methods. For in-
stance, Perry, writing for the Tor Project’s blog, ques-
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tions whether CloudFlare’s methods considered as ma-
licious all traffic from an exit relay that ever sent any
malicious traffic [10].

While websites might be tempted to blacklist all Tor
IPs in a proactive attempt at security, doing so could
cause a loss in revenue. Akamai’s report highlights that
Tor users are just as likely to make purchases from rev-
enue generating websites as non-Tor users [6].
Blocking and Filtering of Tor. Many government cen-
sors around the world block access to Tor [11], the sub-
ject of numerous measurement studies [12–16]. How-
ever, such government censorship blocks access to the
Tor entry nodes, which is different from server-side Tor
blocking, which blocks access from the Tor exit nodes.

Khattak et al. is the only systematic measurement
study of server-side Tor blocking [2]. They showed that
in 2015 at least 1.3 million IP addresses blocked Tor at
the TCP/IP layer, and 3.6% of the Alexa Top 1,000 web-
sites blocked Tor at the HTTP layer. At the TCP/IP layer,
the hosting services GoDaddy and Dreamhost are among
the top five Tor blockers. CloudFlare blocks access at the
HTTP layer. Our work extends the work of Khattak et
al. by additionally measuring the blocking of login and
search functionality. We find a higher rate of blocking
(20.03%) than Khattak et al. (3.6%). We demonstrate
that Khattak et al.’s headless crawler underestimates the
blocking rate (Figure 12).

To understand the impact of blocking on Tor users, we
measure the number of failed requests to Alexa Top 1M
web pages at the exit level using privacy-sensitive log-
ging on our exits.

3 Our Deployed Exits

To aid our studies of complaint emails, IP blacklisting,
and discrimination, we deployed and used data from ten
of our own exits in addition to current and historical
records about pre-existing Tor exits.

Max. BW Exit Policy Num.

Large-Default 61 MBps∗ Default 2
Medium-Default 10 MBps Default 2
Medium-RR 10 MBps RR 2
Small-Default 2 MBps Default 2
Small-RR 2 MBps RR 2

Table 1: Configurations of our deployed exit relays.
∗The large exits’ policy allows for unlimited bandwidth
usage. We provide the maximum bandwidth achieved
during the study period.

We vary the bandwidth and exit policy of our exits
in order to understand the impact of relay characteris-

tics on email complaints, blacklisting, and discrimina-
tion. We used bandwidth allocations for the relays of 2
MBps (small exits), 10 MBps (medium exits), and un-
limited (huge exits). In total, our deployed relays han-
dled over 3% of all Tor exit traffic during their deploy-
ment. The exit policies were varied to either be the Tor
default policy or the “Reduced-Reduced” policy. The de-
fault policy [17] allows all ports except those misused for
email and news spam (25, 119), network attacks (135–
139, 445, 563), or peer-to-peer file sharing (1214, 4661–
4666, 6346–6348, 6699, 6881–6999, plus the adjacent
ports 6349–6429). The Reduced-Reduced (RR) exit pol-
icy, designed to avoid blacklisting, additionally blocks
ports associated with SSH, Telnet, IRC(S), and other pro-
tocols [18]. We summarize our relay configurations in
Table 1.

Analyzing the usage statistics of ports on our exit
relays, we see that web-traffic accounts for 98.88%
of all connections made through the RR policy exits.
In contrast, traffic though the default policy exits has
higher application/port diversity, with only 31.36% of
observed traffic being HTTP(S). We measure this using
our privacy-sensitive logging described in Section 7.

4 Email Complaints about Abuse

In this section, we look at the abuse complaints received
by exit operators. We use these complaints as a proxy
for understanding the type and frequency of undesired
incidents happening through Tor exit relays.

4.1 The Email Corpus
In addition to our own exits, we obtained access to
abuse complaints emailed to four exit relay operators,
(Table 2). The largest email corpus, consisting of
≈3M emails, came from a subset of exits operated by
Torservers.net (https://torservers.net/). Using
whois queries on exit IP addresses and counting the num-
ber of exits that use Torservers.net as their abuse contact,
we estimate that they run 10 to 20 exits, with the uncer-
tainty coming from fuzzy matches.1 According to the
latest Tor consensus, Torservers is one of the largest exit
operators in terms of overall bandwidth capacity. The
apx exit family includes three exits: apx1 [19], apx2 [20]
and apx3 [21]. The other two exits are TorLand1 [22]
and jahjah [23]. TorLand1 was one of the oldest Tor ex-
its, running since 2011 until February 2017.

Our complaints dataset lacks any complaints sent by
fax or mail, or those sent to only the abuse contact of the
associated autonomous system. Also, some email com-
plaints might have been lost or deleted. For example, the

1The current operators of Torservers were unable to answer the ex-
act number of exits they ran over time.
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Exit Family # Exits % Tor Traffic Email Dates # Complaints Top Complaint

Torservers.net 10–20 7.05% 2010/06–2016/04 2,987,017 DMCA Violation (99.74%)
apx 3 1.94% 2014/11–2016/05 293 Automated Scan (38.49%)
TorLand1 1 0.75% 2011/12–2016/10 307 Malicious Traffic (16.99%)
jahjah 1 0.17% 2016/1–2017/1 75 Unauthorized Login Attempts (34.15%)
Our exits 10 3.14% 2016/9–2017/2 650 Network Attack (48.68%)

Table 2: Email complaints sent to the exit operators

jahjah exit was started in 2015 but the operator was only
able to provide complaints received from 2016 onwards.

4.2 Analysis

We extract the nature of abuse, the time of complaint, and
the associated exit IP addresses. 99.7% of the complaints
received by Torservers.net related to Digital Millennium
Copyright Act (DMCA) violations, with over 1 million
of the complaints sent by one IP address. These emails
use a template, enabling parsing of email text with regu-
lar expressions. The majority of the non-DMCA emails
also follow a template, but the structure varied across a
large number of senders. To extract the relevant abuse
information from non-DMCA complaint emails, we first
applied KMeans clustering to identify similar emails. We
manually crafted regular expressions for each cluster. We
used these regular expressions to assign high confidence
labels to emails. Not all emails matched such a tem-
plate regular expression—e.g., one-off complaints sent
by individuals. We classified these emails by looking
for keywords related to types of abuse. We iteratively
refined this process until manually labeled random sam-
ples showed the approach to be quite accurate, with only
2% cases of misidentification.

99.99% of all DMCA violation complaints were
against the Torservers’ exits. The other exits collec-
tively received only 12 such complaints. Over 99% of
DMCA complaints mentioned the usage of BitTorrent for
infringement; the rest highlighted the use of eDonkey.

We categorized the Non-DMCA complaints into five
broad categories enumerated in Table 3. Network abuse
is the most frequent category of non-DMCA complaints.
≈15% of the complaints related to network abuse came
from Icecat [24], a publisher of e-commerce statistics
and product content. Icecat’s emails complain about ex-
cessive connection attempts from the jahjah exit and 13
exit IP addresses hosted by Torservers. These emails
were received from November 2011 until December
2012. Other exit operators also received similar com-
plaints during the same time frame [25]. We checked a
recent Tor consensus in November 2016 and found eight
exits that avoided exiting to the Icecat IP address.

The second most common non-DMCA complaints are
about automated scans and bruteforce login attacks on
Wordpress. Automated scanning, specifically port and
vulnerability scanning, accounts for 13.6% of the non-
DMCA complaints across the entire time range of our
dataset. Instances of Wordpress bruteforce login at-
tacks lasted for a comparatively shorter period, Septem-
ber 2015 until May 2016, but constitute 12.1% of non-
DMCA complaints. All of the exits in our dataset re-
ceived complaints about bruteforce login attempts from
Wordpress except our own exits, probably because we
started our exits after the attack stopped.

Email, comment, and forum spam constitutes 9.01%
of non-DMCA complaints. Note that all of the exits
in question have the SMTP port 25 blocked. Our data
shows a spike in the number of abuse complaints regard-
ing referrer spam from Semalt’s bots [26] towards the
end 2016. 1.05% of the non-DMCA emails complain
about harassment. Over 11% of the non-DMCA emails
do not fall under the mentioned categories. These emails
include encrypted emails and emails unrelated to abuse.

4.3 Consequences of Undesired Traffic
Along with the complaints, some emails mention the
steps the sender will take to minimize abuse from
Tor. 34.3% of the emails mentioned temporary block-
ing (19.8%), permanent blocking (0.2%), blacklisting
(9.8%) or other types of blocking (4.6%). The rest of
the emails notify the exit operators about the abuse. For
the most frequent form of blocking, temporary blocking,
the emails threaten durations ranging from 10 minutes to
a week. Some companies (e.g., Webiron) maintain dif-
ferent blacklists depending on the severity of the abuse.
The majority of the blacklists mentioned in the emails
are either temporary or unspecified. Only 18 emails men-
tioned permanently blocking the offending IP address. A
small fraction (less than 1%) of the emails ask exit oper-
ators to change the exit policy to disallow exiting to the
corresponding website.

We did not find any complaint emails from known
Tor discriminators, such as Cloudflare and Akamai.
Among the websites we crawled to quantify discrimina-
tion against Tor, we found complaints from Expedia and
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Category Includes Percent

Network abuse DDoS, botnet, compromised machines 38.03%
Unauthorized access Failed login attempts, brute-force attacks, exploits for gaining access 26.45%
Automated scan Port scans, vulnerability scans, automated crawling 14.15%
Spam Email, comment, and forum spam 9.01%
Harassment Threats, obscenity 1.05%
Other (unreadable encrypted emails, emails not reporting abuse) 11.31%

Table 3: Categories of the Non-DMCA Email Complaints (Total 8,370 emails)

Zillow. Expedia complained about an unauthorized and
excessive search of Expedia websites and asked exit op-
erators to disallow exiting to the Expedia website. Zil-
low’s complaint was less specific, about experiencing
traffic in violation of their terms and conditions.
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Figure 1: The cumulative number of complaints aver-
aged over our exits sharing the same bandwidth and pol-
icy. Solid lines represent default policy exits and dashed
lines represent RR policy exits.

4.4 Exit Properties and Complaints
We investigate the effects of two exit properties on the
number of corresponding abuse complaints received:
policy and bandwidth. For this analysis, we counted the
number of email complaints that explicitly mention the
IP address of our exits. We find that higher-bandwidth
exits received more complaints (Figure 1). This cor-
relation is statistically significant (Pearson’s product-
moment correlation = 0.98, p-value = 0.0016). However,
exit policy did not have any statistically significant cor-
relation with the number of complaints. We also did not
notice any significant differences between the types of
complaints that exits received.

4.5 Comparison with Average Tor Traffic
We estimate the average number of simultaneous Tor
users per day through the exits getting complaints and

Exit Family Avg. users Avg. complaints

apx 23,082.08 0.53
TorLand1 59,284.54 0.17
jahjah 1,206.30 0.19
Our exits 3,050.81 5.55

Table 4: Avg. simultaneous users and complaints per day

compare it with the total amount of abuse going through
the exits. Our goal is to understand how many Tor users
will be affected if we block an exit because of abuse com-
plaints. To do this, we collect the estimation of simulta-
neous Tor users per day from Tor Metrics [27]. Then
we collect the historical Tor consensus to compute how
much traffic went through an exit per day. If an exit
A handles e% of the total Tor bandwidth on day d and
the number of simultaneous users of Tor on d is u, then
approximately eu

100 of the users used A on day d.2 We
estimate users for each exit in Table 2 from September
2011 (the beginning of the Tor metrics data). We ex-
clude the Torservers exits because tracing the Torservers
exits in the historical consensuses is difficult as those ex-
its changed IP addresses and exit fingerprints more than
once.

Compared to the average number of Tor users, the
amount of abuse is insignificant (Table 4). However,
we are considering one abuse email as one instance of
abuse, but in practice one email can correspond of many
instances of abuse, for example, one brute-force attack
can consist of thousands of visits to a website.

5 IP Address Blacklisting

We analyze how popular commercial IP blacklists treat
Tor relays. IP blacklisting can be in response to mali-
cious traffic originating from the IP, which we call re-
active blacklisting. We also observed proactive black-

2Even though the bandwidth is one of the main factors for selecting
an exit, the other factors such as the exit policy might affect which exits
will be selected. For our estimation, we do not consider the effect of
exit policies.
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listing, blacklisting based upon a network’s pre-existing
reputation or the online service’s policy (e.g., the video-
on-demand service, Hulu, blocks access to all VPN end-
points). After discussing our data sources, we describe
how we classify blacklist entries into proactive black-
listing of Tor simply due a policy decision to deny ac-
cess from Tor, versus reactive blacklisting in response to
abuse. We then look at the amount of blacklisting of Tor
and compare it to VPN IP address spaces and the IP ad-
dress space of a large university in the USA. We analyze
the impact of relay uptime, consensus weight, and exit
policy on blacklisting behaviour.

5.1 Data Sources
For our study we were given access to a system that gath-
ers commercial IP threat intelligence, including black-
lists, from large Web companies. Facebook’s ThreatEx-
change [28] platform is a major contributor to the system.
This system has gathered roughly 2TB of data from 110
sources since July 25, 2015. We have anonymized the
names of some IP blacklists in our results.

Along with the hourly Tor consensus data, we use ad-
ditional methods to gather the set of Tor exit IP addresses
seen by servers. While the Tor consensus provides the
IP addresses used to reach exit relays (their “onion rout-
ing” IP addresses), a significant fraction of all exit relays
(6% to 10%) use a different IP address for connecting
to servers. To capture these IP addresses, we also asso-
ciate with each relay its exit IP address provided by Tor
DNSEL [29]. Tor DNSEL gathers the IP address used by
a relay for exiting traffic based on active testing.

5.2 Classifying Blacklist Entries
Given Tor’s reputation of transiting undesired traffic,
some blacklists proactively include Tor relay IP ad-
dresses. Since we are interested in the rate and impact of
undesired traffic Tor is currently producing, we must sep-
arate proactive blacklisting based upon historical events
from reactive blacklisting based upon current events.

We use several methods to classify blacklist entries
into proactive and reactive ones. In the simplest case,
the blacklist provides the reason behind inclusion, either
on an entry or on a list-wide basis. In some cases of reac-
tive listing, the blacklist even provides information about
the undesired traffic leading to blacklisting.

For those entries on lists that do not provide reasons
for inclusion, we look at the behavior of the list overall
to infer its reason for blacklisting. We infer that lists in-
cluding a large percentage of Tor IP addresses soon after
they appear in the consensus data likely reflect proac-
tive listing of the addresses. If more than 30% of Tor
relay addresses have been enlisted on a blacklist within

24 hours of them appearing in the consensus, we con-
sider that blacklist proactive. We consider the remaining
lists to be reactive. We discuss the details of deciding the
threshold of 30% in Section A of the Appendix.

Figures 2a and 2b compare the rate of blacklisting by
a proactive and a reactive blacklist. These graphs show
the rate of blocking Tor exit IP addresses and of non-exit
Tor IP addresses, whose blocking may be superfluous.
In a small number of cases, the time until blacklisting
is negative since the address was blacklisted before ap-
pearing in the consensus data, presumably from the IP
address’s prior use or the blacklisting of whole blocks
of addresses. Under our analysis, the blacklist Paid Ag-
gregator, a large paid provider of threat intelligence, is
a proactive blacklist since 76.6% of Tor IPs enlisted on
it were added within 24 hours of them first appearing in
the consensus (Fig. 2a). The distributions show that the
majority of the listed IP addresses get listed within a few
hours of them becoming Tor relays. We classify Con-
tributed Blacklist 12, a data source that contributes threat
intelligence to a community aggregation project, as reac-
tive since only 0.06% of all Tor IP addresses were added
within the first 24 hours of their appearance in the con-
sensus or the DNSEL (Fig. 2b).

Using both methods of classifying lists, we found 84
lists that either include Tor exits proactively or reactively.
Using the lists’ labels and names, we classified 4 black-
lists as proactive. We additionally classify 2 blacklists as
proactive based on the time taken by them to enlist Tor
IP addresses.

Identifying the proactive blacklisting of Tor exits also
sheds light on the nature of Tor blocking employed by
servers today. Proactive blacklisting implies that Tor
users share fate not only with other users of their exits but
also with all Tor users, including the ones in the distant
past. We find that 6 out of 84 (7%) large commercially
deployed blacklists proactively block Tor IP addresses.

5.3 Amount of Blacklisting

Figure 3 depicts the fraction of exit/non-exit relay IP ad-
dresses blacklisted by various lists during the observation
time frame. From 110 blacklists that the IP reputation
system gathers, 84 list Tor IP addresses in the observa-
tion time frame. For legibility, Figure 3 shows only the
lists that included more than 1% of either Tor non-exit
relays, Tor exit relay, or a VPN’s IP addresses.

We observe that a few blacklists list a large number of
Tor IP addresses, including non-exit relay IP addresses.
In particular, Paid Aggregator (the proactive list shown
in Fig. 2a) listed not only 48% of Tor exit addresses, but
also 35% of entry and middle relay IP addresses. Black-
listing non-exit relays is surprising, since non-exit relays
are not responsible for exiting traffic from the Tor net-
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Figure 2: (a) and (b) provide the time (in hours) between first seeing a relay IP address in the consensus until the given
blacklist enlists the IP address. Negative values indicate cases where the IP address was blacklisted before appearing in
the consensus. Figure (c) compares the fraction of public IP addresses of different types of networks that are currently
in any tracked blacklist.

work. Some relays have historically, at different points
in time, been both exit and non-exit relays in the Tor con-
sensus. In our analysis, we consider a relay an exit if it
had the Exit flag at any point in its lifetime. Doing so pro-
vides a conservative estimate for the number of non-exit
IP addresses that get blacklisted. In contrast, the Snort
IP blacklist (another proactive list) enlists nearly 37% of
exit IP addresses but less than 1% of non-exit relays.

5.4 Blacklisting of Tor vs. VPN nodes

VPN services are similar to Tor since they provide users
with the option to obscure their IP addresses. In addition,
like Tor exit relays, VPN nodes also egress traffic belong-
ing to many users who could be using the VPN service
for different purposes. In this section we compare black-
listing of Tor with that of popular VPN providers.

VPN providers like VPNGate [30] and Hide-
MyAss [31] publish lists of their free-tier endpoints,
making them good candidates for our study. Figure 2c
shows, that in February 2017, over 88% of Tor exits are
blacklisted (excluding the proactive blacklists) on one or
more of the commercially available blacklists. In com-
parison, 10% of VPNGate endpoints and 69% of HMA
endpoints appear on blacklists. All of these proxy ser-
vices are considerably more blacklisted as compared to
the IP space of a major university (three /16 prefixes used
by the university campus network), of which only 0.3%
IPs are blacklisted.

To have a fair comparison of the rate of blacklisting
with Tor, we need a set of VPN endpoint IP addresses
and a notion of when they first began to operate as VPN
endpoints (similar to the notion of exit relays and their
birth in the consensus). However, it is challenging to
gather the IP addresses of VPN nodes over time since
most VPN services do not archive such information. This
is in contrast with Tor, which archives information about
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Figure 4: Comparing the time taken for Tor exit IP ad-
dresses and HMA endpoints to get blacklisted.

its relays on an hourly basis. However, the VPN provider
HideMyAss (HMA) publishes a daily list of its free VPN
endpoints [31]. We crawled archived versions of this list
using the Wayback Machine [32] for IP addresses pub-
lished between June 14, 2014 and October 27, 2016.
We can then approximate the time when an IP address
first served as an HMA VPN endpoint, assuming this oc-
curs at least 60 days after the start of the time frame. In
this manner we collected a set of 4,234 HMA endpoints
and their first seen creation times. Of these, 1,581 IP
addresses became HMA endpoints after our IP address
reputation system started gathering blacklist data. We
analyze the blacklisting of these endpoints using the IP
reputation system.

Figure 3 shows the fraction of HMA endpoints black-
listed by various blacklists. Unlike for Tor relays, no
particular blacklist dominates in the listing of HMA IPs.
Figure 4 shows how quickly HMA endpoints get black-
listed compared to Tor exits; reactive blacklisting of both
occurs at a similar rate.
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Figure 3: Fraction of Tor relay and HMA VPN IP addresses listed in IP blacklists (including proactive and reactive).
Some feed names are derived based on the broad categories of undesired traffic they blacklist: e.g., ssh (badips-ssh,
dragon-ssh), content management systems/Wordpress (badips-http, badips-cms).

5.5 Exit policies and bandwidth

We looked for but did not find any associations between
various factors and blacklisting. In an attempt to counter
IP blacklisting and abusive traffic, the Tor community
has suggested that exit operators adopt more conserva-
tive exit policies [18]. Intuitively, a more open exit pol-
icy allows a larger variety of traffic (e.g., BitTorrent, ssh,
telnet) that can lead to a larger variety of undesired traffic
seen to originate from an exit. We analyze the exit relays
that first appeared in the consensus after the IP reputation
system started to gather data using the hourly consen-
suses of year 2015 and 2016. Since exit relays have a va-
riety of exit policies, we find which well-known exit pol-
icy (Default, Reduced, Reduced-Reduced, Lightweight,
Web) most closely matches the relay’s exit policy. To
compute this closeness between exit policies, we calcu-
late the Jaccard similarity between the set of open ports
on a relay and each well-known exit policy. (See Ap-
pendix B). In this way, we associated approximate exit
policies to 21,768 exit relays. We found that in the last 18
months, only 1.2% of exit relays have exhibited different
well-known exit policies, and excluded these from our
analysis. In the resulting set of exits, we assigned 81%
to Default, 17% to Reduced, 0.6% to Reduced-Reduced,
0.5% to lightweight and 0.4% to Web policy.

We also compute the uptime (in hours) for each of the
exit relays as the number of consensuses in which the
relay was listed. In addition, we maintain the series of
consensus weights that each relay exhibits in its lifetime.
Higher consensus weights imply more traffic travelling
through the relay, proportionally increasing the chance
of undesired traffic from a relay. A high uptime increases
the chance of use of a relay for undesired activities.

We trained a linear regression model on the policies,
scaled uptimes, and consensus weights of exit relays,
where the observed variable was the ratio of hours the IP

address was blacklisted (reactive blacklisting only) and
its overall uptime. Based on the coefficients learned by
the regression model, we conclude that policy, consensus
weight, and relay uptime have very little observed asso-
ciation on IP blacklisting of Tor relays. We provide more
details about the regression model in Appendix C.

5.6 Our Newly Deployed Exit Relays
As described in Section §3, we operated exit relays of
various bandwidth capacities and exit policies to actively
monitor the response of the IP reputation system. In
this subsection, we analyze the sequence of blacklisting
events for each exit relay that we ran. Figure 5 shows the
timeline of blacklisting events for each of the exit relays
we operated. Each coloured dot represents an event. An
event is either the appearance of a relay on a blacklist or
its appearance in the consensus (an up event).

Prior to launching the exits, none of our prospective
relays’ IP addresses were on any blacklist. We see that
within less than 3 hours of launching, feeds like Snort
IP listed all our relays, supporting our classification of
Snort IP as a proactive blacklist. Additionally, both Snort
IP and Paid Blacklist (also classified as proactive) block
our relay IP addresses for long periods of time. Snort
IP enlists all of relays, and did not remove them for the
entire duration of their lifetime. Paid Blacklist enlists IP
addresses for durations of over a week. Blacklists such
as badips-ssh (for protecting SSH) and badips-cms (for
protecting content management systems such as Word-
press and Joomla) have short bans spanning a few days.
Contributed Blacklist 12 has the shortest bans, lasting
only a few hours. We consider Contributed Blacklist 12’s
blacklisting strategy in response to undesired traffic to be
in the interest of both legitimate Tor users and content
providers that do not intend to lose benign Tor traffic.
On November 29, 2016, we turned off all of our relays
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Figure 5: Blacklisting of our exit relays over time. Each coloured dot shows the instant when a relay was on a blacklist.
Snort IP and Paid Blacklist have long term bans while other blacklists enlist IPs for short periods of time ranging from
hours to a few days.

to observe how long a proactive blacklist like Snort IP
would take to de-enlist our relays. We observe that such
blacklists drop our relays just as fast as they enlist them,
suggesting a policy of crawling the Tor consensus.

Note that a synchronised absence of data from any
blacklist, while the relays are up, represents an outage
of the IP reputation system.

6 Crawling via Tor

To quantify the number of websites discriminating
against Tor, we performed crawls looking both at front-
page loads, as in prior work [2], and at search and login
functionality. We crawled the Alexa Top 500 web pages
from a control host and a subset of Tor exit relays. These
crawls identify two types of discrimination against Tor
users: (1) the Tor user is blocked from accessing con-
tent or a service accessible to non-Tor users, or (2) the
Tor user can access the content or service, but only after
additional actions not required of non-Tor users—e.g.,
solving a CAPTCHA or performing two-factor authenti-
cation.

6.1 Crawler Design
We developed and used a Selenium-based interactive
crawler to test the functionality of websites. We per-
formed three types of crawls: (1) Front-page crawls at-
tempt to load the front page of each website. We repeated
the crawl four times over the course of six weeks. (2)
Search functionality crawls perform front-page loads and
then use one of five heuristics (Table 5) to scan for the

presence of a “search box”. Upon finding the search box,
the crawler enters and submits a pre-configured search
query. Our crawler found and tested the search func-
tionality of 243 websites from the Alexa Top 500. We
performed the search functionality crawl once. (3) Login
functionality crawls load front pages and scan them for
the presence of a “login” feature. Upon finding the fea-
ture, and if it has credentials for the webpage available,
the crawler authenticates itself to the site (using Face-
book/Google OAuth when site-specific credentials were
unavailable). We created accounts on OAuth-compatible
websites prior to the crawl. Since the created accounts
had no prior history associated with them, we speculate
that they were unlikely to be blocked as a result of un-
usual behavior. For example, we found that LinkedIn
blocks log ins from Tor for accounts with prior log in
history, but not for new accounts. Our crawler found
and tested the login functionality of 62 websites from
the Alexa Top 500. We performed the login functionality
crawl once.

The crawler records screenshots, HTML sources, and
HARs (HTTP ARchives) after each interaction. Our in-
teractive crawler improves upon previous work in sev-
eral ways. First, it uses a full browser (Firefox) and in-
corporates bot-detection avoidance strategies (i.e., rate-
limited clicking, interacting only with visible elements,
and action chains which automate cursor movements
and clicks). These features allow it to avoid the (bot-
)based blocking observed while performing page-loads
via utilities such as curl and other non-webdriver li-
braries (urllib). Second, its ability to interact with
websites and exercise their functionality allows us to
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Heuristic Coverage

1. Visible and clickable textbox elements contain-
ing search related keywords (q, query, querytext,
search) in their element name, id, value, or label
are assumed to be search boxes.

98

2. The above heuristic is repeated while considering
all input DOM elements.

81

3. If the DOM contains exactly one visible and click-
able textbox element, it is assumed to be a search box.

22

4. If the DOM contains exactly one visible and click-
able input element with a defined max-length, it is
assumed to be a search box.

12

5. If the DOM contains exactly one visible and click-
able input element, it is assumed to be a search box.

30

Table 5: Heuristics used to identify search input boxes.
Heuristics are described from most specific to least spe-
cific. Coverage indicates the number of sites that were
identified using the corresponding heuristic.

identify cases where discrimination occurs beyond the
front page — e.g., www.tumblr.com serves Tor users
CAPTCHAs only after they submit a search query, and
www.imdb.com blocks Tor users when they attempt to
log in.

6.2 Relay selection
We randomly selected 100 exit relays from the set of all
exit relays that supported HTTP(S) connections (i.e., the
exit policy allows outbound connections to ports 80 and
443). In addition to these randomly sampled relays, we
also conducted crawls through our own relays (described
in Table 1) and a university-hosted control host.

Since we performed our crawls over a six-week pe-
riod, several of the selected exit relays intermittently
went offline, with a total of 0, 12, 19, and 28 offline dur-
ing crawls 1–4, respectively. We account for the result-
ing page-load failures by excluding the failures from our
analysis.

6.3 Identifying discrimination
In each of our experiments we simultaneously performed
crawls exiting through all online sampled exits and our
university-hosted control host. To identify discrimina-
tion of a selected exit relay, we first rule out cases of
client and network errors through HAR file analysis. We
use the HAR files to verify, for each page load, that (1)
the requests generated by our browser/client were sent to
the destination server (to eliminate cases of client error),
and (2) our client received at least one response from the
corresponding webpage (to eliminate cases of network
errors). If, for a given site, either the control host or the
selected exit relay did not satisfy both these conditions,

we did not report discrimination due to the possibility of
a client or network error.

Next, we compare the crawler-recorded screenshots of
the control server and each selected exit relay using per-
ceptual hashing (pHash) [33], a technique that allows us
to identify the (dis)similarity of a pair of images. We re-
port images with high similarity scores (pHash distance
< 0.40) as cases where no discrimination occurred and
images with high dissimilarity (pHash distance > 0.75)
as cases of discrimination, while flagging others for fur-
ther inspection. The thresholds were set so that only
pages with extreme differences in content and structure
would be automatically flagged as cases of discrimina-
tion, while similar pages were automatically flagged as
cases of non-discrimination. In general, minor changes
in ads/content (e.g., due to geo-location changes) do not
result in flagging. We set the thresholds using data ob-
tained from a pilot study (Figure 6).
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Figure 6: Results of pilot study to identify pHash dis-
tance thresholds for automatically identifying cases of
(non) discrimination. We manually tagged 500 ran-
domly chosen samples (i.e., pairs of control and exit re-
lay screenshots of the same website) and computed the
pHash distances. Based on the above distribution, we
classified distances < 0.40 as “non-discrimination” and
distances > 0.75 as “discrimination”. Instances having
pHash distances in the 0.40 to 0.75 range were manually
inspected and tagged.

Then, we classified as discrimination cases where exit
relays received HTTP error codes for requests that our
control host successfully loaded with a 200 status. Fi-
nally, we manually tag the screenshots of remaining
cases to identify more subtle discrimination—e.g., a
block-page served with a 200 status.

6.4 Results
Table 6 summarizes the main results of our three types of
crawls over compatible websites in the Alexa Top 500.
Here, we show the fraction of interactions on which dis-
crimination was detected. We find that 20.03% of all
Alexa Top-500 (A-500) website front-page loads showed
evidence of discrimination against Tor users, compared

334    26th USENIX Security Symposium USENIX Association



to 17.44% of the search-compatible (S-243) and 17.08%
of the login-compatible (L-62) website front-page loads.
When exercising the search functionality of the 243
search-compatible websites, we see a 3.89% increase in
discrimination compared to the front-page load discrim-
ination observed for the same set of sites. Similarly,
when exercising the login functionality of the 62 login-
compatible websites, we observe a 7.48% increase in dis-
crimination compared to the front-page discrimination
observed for the same set of sites.

Websites Interaction Discrimination observed

A-500 Front page 20.03%

S-243
Front page 17.44%
Front page + Search 21.33% (+3.89%)

L-62
Front page 17.08%
Front page + Login 24.56% (+7.48%)

Table 6: Fraction of interactions blocked from 110 ex-
its. A-500 denotes the Alexa Top 500 websites, S-243
denotes the 243 search-compatible websites, and L-62
denotes the 62 login-compatible websites.

Figure 7a shows the distribution of discrimination (for
any interaction) faced by relays from websites in the
Alexa Top 500. We find that no relay experiences dis-
crimination by more than 32.6% of the 500 websites,
but 50% of the exit relays are discriminated against by
more than 27.4% of the 500 websites. Figure 7b shows
the distribution of discrimination performed by websites
against Tor exit relays. Here, we see that 51% of the
websites perform discrimination against fewer than 5%
of our studied exits, while 11% of websites perform dis-
crimination against over 70% of our studied exits.

We now examine various factors associated with Tor
discrimination. Since we did not (and in many cases can-
not) randomly assign these factors to websites or relays,
these associations might not be causal.
Hosting Provider. Figure 8 shows the fraction of relays
discriminated against by websites hosted on four of the
six most-used hosting platforms. We find that Amazon-
and Akamai-hosted websites show the most diversity
in discrimination policy, which we take as indicative
of websites deploying their own individual policies and
blacklists. In contrast, CloudFlare has several clusters of
websites, each employing a similar blacklisting policy.
This pattern is consistent with CloudFlare’s move to al-
low individual website administrators to choose from one
of several blocking policies for Tor exit relays [1]. Fi-
nally, we see 80% of China169- and CloudFlare-hosted
websites perform discrimination against at least 60% of
our studied relays.
Relay Characteristics. Our analysis of the association
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0.0 0.2 0.4 0.6 0.8 1.0
Fraction of relays discriminated against by site

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F
 o

f 
si

te
s

(b) Distribution of discrimination performed by websites.

Figure 7: Distribution of discrimination by Alexa Top
500 websites against 110 exit relays.
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Figure 8: Distribution of discrimination performed by
websites hosted on four of the six most popular hosting
platforms.

between exit-relay characteristics and the discrimination
faced by them found no significant correlations when ac-
counting for relay-openness (fraction of ports for which
the exit relay will service requests) or for the age of the
relay. We found a small positive correlation (Pearson
correlation coefficient: 0.147) between the relay band-
width and degree of discrimination faced, but the result
was not statistically significant (p-value: 0.152). Fig-
ure 9 presents these results graphically. We further ana-
lyze the impact of relay characteristics on discrimination
performed by websites using popular hosting providers .
We find that only Amazon has a statistically significant
positive correlation between discrimination observed and
relay bandwidth (Pearson correlation coefficient: 0.247,
p-value: 0.015). These results are illustrated in Fig-
ure 10.

Service Category. We now analyze how aggressively
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Figure 9: Relationship between relay characteristics and
discrimination faced. Each circle represents a single re-
lay. Lighter colors indicate younger relays and larger
circles indicate more open exit policies. The legend
shows the Pearson correlation co-efficient (PCC) and the
p-value for each characteristic.
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Figure 10: Impact of relay characteristics on discrimina-
tion performed by websites hosted by Amazon.

four different categories of sites—search engines, shop-
ping, news, and social networking—discriminate against
Tor exit relays. We categorize sites using the McAfee
URL categorization service [34]. We find that search
engines are the least likely to discriminate against exit
relays, with 83% of all search engines discriminating
against fewer than 20% of our studied exit relays, com-
pared to 30% of social networking sites, 32% of shop-
ping sites, and 53% of news sites. We also find social net-
working and online shopping sites share similar blocking
behavior. Websites in these categories are also observed
to be the most aggressive—with 50% of them blocking
over 60% of the chosen relays. Figure 11 illustrates the
results.

The Evolution of Tor Discrimination. We now fo-
cus on discrimination changes over time. For this ex-
periment, we conducted four crawls via our own ten exit
relays to the Alexa Top 500 websites. Let Day 0 denote
the day when we set the relay’s exit flag. We conducted
crawls on Day -1, Day 0, and once a week thereafter.
Table 7 shows the fraction of websites found to to dis-
criminate against each exit set during each crawl. We
observe increases in discrimination when the exit flag is
assigned. We can attribute some of this can to our im-
proved crawling methodology deployed on Day 0 (the
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Figure 11: Distribution of discrimination performed by
websites in various categories.

Day -1 crawl utilized the crawler from Khattak et al.; see
below), although we note that the IP addresses used by
our exit relays were never used by other Tor exit relays
in the past, and did not appear in any of our studied com-
mercial blacklists before Day 0, while they immediately
manifested after setting the exit flags.

Configuration Day -1 Day 0 Wk. 2 Wk. 3 Wk. 4

Large-Default NA 17.0 19.0 21.1 25.4
Medium-Default 9.4 20.5 24.4 25.6 24.8
Medium-RR 9.9 18.3 24.1 22.7 24.7
Small-Default 9.3 20.3 20.9 23.9 23.6
Small-RR 9.4 20.5 20.7 25.7 25.3

Table 7: Percentage of discriminating page loads for each
set of deployed relays.

The high amount of discrimination observed on our
Day-0 crawl for all exit relays is indicative of proactive
discrimination against Tor exit relays. Our results do not
indicate differences due to relay cateogry in the amount
of discrimination experienced.
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Figure 12: Impact of methodological changes on mea-
sured discrimination from data generated by a single
front-page crawl.

Measurement Methodology. We now measure the
impact of changes in our discrimination identification
methodology compared to previous work by Khattak et
al. [2]. The key differences between the methodologies
are: (1) The measurements conducted by Khattak et al.
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are limited to identifying front-page discrimination. Our
crawler also tests search and login interactions. Table
6 presents the impact of this feature. (2) Khattak et al.
identify discrimination using the difference in HTTP sta-
tus codes returned by the control and test nodes. This
method is prone to underestimating discrimination due
to the inability to detect block pages that return a HTTP
200 OK status code. Our method relies on screenshot
differences and HTTP status codes as a signal for dis-
crimination. As a result, we are able to detect discrim-
ination performed by sites such as livejournal.com,
hdfc.com, and glassdoor.com. (3) Khattak et al. rely
on sending HTTP requests for front pages of websites
using the python urllib2 library. Although they mod-
ify the user agent of their crawler to match a regular web
browser, they are easily identifiable as an irregular user
since they do not load third-party objects and JavaScript.
Such crawlers are blocked by many websites and bot-
mitigation tools [35]. In contrast, we perform complete
page loads, including third-party content and execution
of JavaScript. As a consequence, our crawls are slower,
requiring around 12 hours for 500 page loads (compared
to 1–2 minutes required by the urllib2 crawler).

To understand the impact of (2) and (3), we compare
the discrimination results obtained from a single front-
page crawl performed by both crawlers. We started both
crawls on the same day, on the same set of websites, us-
ing the same set of 100 randomly sampled exit relays.
The results, illustrated in Figure 12, confirm that previ-
ous work underestimates the amount of discrimination.

7 Privacy-sensitive Exit Logging

While our crawls systematically explore popular web-
sites, they might not be typical of actual Tor usage. Thus,
we performed privacy-sensitive logging on our deployed
exit relays to measure how commonly users interacting
with Alexa Top 1M web pages experienced failed TLS
handshakes or HTTP requests This observational dataset,
based on actual Tor-user web traffic distributions and
user interactions, provides us with a picture of the dis-
crimination actually encountered by users.

7.1 Logging Approach
In order to measure the number of failed TLS handshakes
and HTTP requests, we developed a custom logger. Al-
though tools such as PrivEx [36], Historε [37], and Priv-
Count [38] were specifically built for measuring charac-
teristics of Tor exit traffic, they are not suitable for our
study for two reasons: First, they currently do not have
the capability to inspect HTTP and TLS traffic head-
ers. Adding such functionality to the tools requires mod-
ifying the Tor relay source code—possibly introducing

users of our relays to new vulnerabilities. Second, they
were built with the goal of performing secure data ag-
gregation across multiple relays. Since a single entity
owned and operated all of the relays used in our study,
this feature was unnecessary for our purposes.

We maintain counters for several events of interest
associated with users browsing websites in the Alexa
Top 1M. Our approach, designed after consultation with
members of the Tor developer community, takes precau-
tions to avoid de-anonymization of users. Since neither
the Tor users nor the service operators were the subjects
of our study, we were exempt from an IRB review.

First, we use bucketing and split the Alexa Top 1M
websites into exponentially growing sets based on their
Alexa ranks, as follows: The first set contains the top
100 websites (ranked 1–100) and the nth set for n > 1
contains the top 100× 2n−2 + 1 to 100× 2n−1 websites.
We keep a separate event counter for each set. Second,
we maintain our event counters in memory and write to
disk only once a day. Doing so allows our event counters
to attain higher count values, increasing anonymity-set
sizes. Third, to deal with the possibility of encountering
cases where 24 hours does not suffice to achieve reason-
ably high anonymity-set sizes—e.g., if only one person
visited a site during a 24 hour period—we round up each
event counter to the nearest multiple of eight before writ-
ing to disk. A similar approach is used by Tor metrics [3]
for reporting counts of bridge users per country.

We maintained per-bucket event counters for the num-
ber of: (1) HTTP requests to website front pages, (2)
error status codes observed in their corresponding re-
sponses, (3) HTTP(S) handshakes initiated, and (4)
timed-out handshakes encountered. Additionally, we
also maintained a counter for the number of packets sent
through each open port.

7.2 Results
Table 8 shows the percentage of failed HTTP requests
and incomplete HTTPS handshakes encountered by
users of our exit relays. We find that the fraction of in-
complete handshakes steadily increases over time. We
attribute the steep increase in HTTP error codes received
during weeks four and five to our relays being (ab)used
in a scraping attempt on a popular website (we received
a complaint notice due to this behavior). Besides this
sudden increase, we see that the fraction of HTTP errors
accords with data observed through our crawls, but the
fraction of incomplete HTTPS handshakes runs higher.
This is likely because incomplete handshakes provide
only very noisy indicators for user discrimination, with
many reasons for them to occur naturally.

HTTP requests and error response codes. For
exiting packets using the HTTP protocol, iff the URI
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Week 1 2 3 4 5 6

HTTP 15.8 18.1 19.8 32.8 33.4 17.9
HTTPS 36.3 35.0 41.1 45.2 47.9 49.6

Table 8: The percentage of failed HTTP requests and
incomplete HTTPS handshakes observed over time.

on the HTTP request was identical (ignoring case) to
a Top 1M website, we incremented a front-page re-
quest event counter associated with the set containing the
site. For every matching request, we maintained state
to identify the corresponding response packet. If the
corresponding response packet contained an error status
code (4XX/5XX), we incremented an error-status event
counter associated with the corresponding set. We break
down the fraction of errors by website ranks and time in
Figure 13a. We see that the fraction of error response
codes is nearly evenly distributed across each set, indi-
cating that errors are independent of website ranks.
HTTPS handshake initiation and failure. The pro-
cedure for HTTPS is similar to that for HTTP. However,
we use the SNI value of client-hello handshake initiation
packets instead of the URI of HTTP requests. Further-
more, we look for handshake failures and timed-outs in-
stead of HTTP errors. The results in Figure 13b show a
strong increasing trend in incompletion rates over time.

8 Discussion and Future Work

Limitations. Our studies each come with their own
limitations, some resulting from our desire to protect the
privacy of Tor users, others from the limited data sets
available for study. Neither our set of emails nor our set
of blacklists are complete. Given that Tor assigns traf-
fic to exits in a mostly random fashion, we believe the
emails from our sample to be representative of the com-
plaints during their time periods for exits with similar
exit policies. While there are blacklists that we were not
able to observe during the period of our study, the set of
blacklists used in our analysis includes numerous types
from a wide range of suppliers, leading us believe that
they capture all common blacklisting phenomena. Our
crawls, while more in-depth than prior efforts [2], were
too time-consuming to run often enough to gain statisti-
cal guarantees about discrimination by any one website.
Nevertheless, taken together, they show that discrimina-
tion is common and sometimes subtle.
Implications for Tor. The large amounts of block-
ing and discrimination identified by our crawling and
privacy-sensitive measurements suggest that Tor’s utility
is threatened by online service providers opting to stifle
Tor users’ access to their services (§6 & §7).

From studying blacklists we learned that some, but
not all, proactively add Tor exit IP addresses (§5), pre-
sumably in response to prior undesired traffic and an ex-
pectation of more. This result highlights that Tor users
fate-share with not just the Tor users sharing their cur-
rent exit relay, but all Tor users—present and past. Other
blacklisting appears to be reacting to undesired traffic,
suggesting that blocking may decrease if Tor can reduce
the amount of abuse it emits. Such a reduction may
even, over time, decrease proactive blacklisting as Tor’s
reputation improves. These findings suggest the utility
to implement any privacy-sensitive abuse-reduction ap-
proaches for Tor.

From the emails, we learned of the types of undesired
traffic that server operators find concerning enough to
warrant sending a complaint. Of the types of abuse iden-
tified in email complaints (§4), the vast majority—the
DMCA complaints—appear irrelevant to blocking since
DMCA violators largely use peer-to-peer services. Fur-
thermore, at least in our sample they are no longer com-
mon (Table 2). Of the remaining complaints, nearly 90%
related to large-scale abuse, such as excessive connec-
tion attempts, scanning, brute-force login attempts, and
spam. While the rate of complaining might not be pro-
portional to the rate of undesired traffic, it may provide
some insights into the nature of the most troubling abuse
exiting the Tor network. The exit policies have no sig-
nificant impact on reducing abuse complaints and rate of
discrimination against Tor users.

Given the large footprints of the observed abuse, we
believe future research should seek to provide tools to
curb such abuse while preserving privacy and Tor func-
tionality. We envision Tor nodes using cryptographic
protocols, such as secure multi-party computation and
zero-knowledge proofs, to detect and deter users pro-
ducing large amounts of traffic in patterns indicative of
abuse. For example, Tor could compute privacy-sensitive
global counts of visits to each threatened domain and
throttle exiting traffic to ones that appear over-visited.

Implications for online services. Combining our study
results, we can put the difficulties facing Tor users and
online service operators into perspective: at most 182
email complaints per 100K Tor users, and over 20% of
the top-500 websites blocking Tor users. Given that Tor
users do make purchases at the same rate as non-Tor
users [6], this response may be excessive and operators
might wish to use less restrictive means of stifling abuse.

Operators can aid Tor in developing approaches to
curb abuse or unilaterally adopt local solutions. For ex-
ample, instead of outright blocking, servers could rate-
limit users exiting from Tor for certain webpages (e.g.,
login pages). Indeed, CloudFlare is developing a crypto-
graphic scheme using blindly signed tokens to rate limit
Tor users’ access to websites it hosts [39].
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(b) Fraction of incomplete TLS handshakes

Figure 13: Fraction of errors encountered by users visiting the Top 1M websites over time. The URL category S1
consists of the top (1–100) websites and Sn (n≥ 2) consists of sites in the top [100×2n−2 +1 to 100×2n−1] ranks.

Ultimately, we do not view IP-based blacklisting as
a suitable long-term solution for the abuse problem. In
addition to Tor aggregating together users’ reputations,
IPv4 address exhaustion has resulted in significant IP ad-
dress sharing. IPv6 may introduce the opposite problem:
the abundance of addresses may make it too easy for a
single user to rapidly change addresses. Thus, in the long
run, we believe that online service operators should shift
to more advanced ways of curbing abuse; ideally, ones
compatible with Tor.
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Appendix

A Picking threshold values for proactive
blacklisting

We classify a blacklist as proactive if it enlists a large
fraction of Tor exit relays within the first 24 hours of
them appearing in the consensus. In order to decide
the threshold for the fraction of Tor exit relays that, if
blocked within 24 hours, we should consider the black-
list, we analyze the value of the fraction for all blacklists.
We find two blacklists: Snort IP and Paid Aggregator
blacklist 37% and 31% of all Tor exits within 24 hours,
respectively. All other blacklists listed fewer than 5% of
Tor IP addresses within 24 hours. This large difference
in the behaviour of blacklists encouraged us to pick the
threshold as 30%.

B Classifying exit policies

In this section we describe our method for classifying the
exit policies of all exit relays observed in 2015 and 2016.
Since each relay could potentially have an arbitrary set
of ports open (from the 65,535 possible ports), compar-
ing the openness of exit policies is difficult. To simplify
the process, we parse the exit policy of each relay to ex-
tract the set of open ports and then compute the Jaccard
similarity between the relay’s open ports and each of the
well-known exit policies that Tor supports (Default, Re-
duced, Reduced-Reduced, Lightweight and Web). We
classify a relay into one of the 5 categories based on the
Jaccard similarity value. To ensure that the similarity in
policy is large enough, we classify the relay to the cat-
egory of highest similarity, provided that the similarity
value is at least 0.7. Only the relays with a high enough
similarity value with any of the well known exit policies
are considered for further analysis.

C IP blacklisting and relay characteristics

We train a linear regression model to find the impact of
relay characteristics like uptime, policy, and consensus
weight on the time a relay spends on reactive blacklists.
The observed variable is the ratio of hours spent on the
blacklist to the uptime of the relay. We trained the model
on 20,500 exit relays’ data (with feature scaling) and
found that the coefficients learned for all the factors are
extremely small (consensus weight = -0.00007, uptime =
0.009, policy = -0.00001). This shows that these factors
have very little impact on blacklisting of relays. It also
suggests that changing to more conservative exit policies
does not reduce the chances of relays getting blacklisted.

USENIX Association 26th USENIX Security Symposium    341





DeTor: Provably Avoiding Geographic Regions in Tor

Zhihao Li, Stephen Herwig, and Dave Levin
University of Maryland

Abstract
Large, routing-capable adversaries such as nation-

states have the ability to censor and launch powerful
deanonymization attacks against Tor circuits that traverse
their borders. Tor allows users to specify a set of coun-
tries to exclude from circuit selection, but this provides
merely the illusion of control, as it does not preclude
those countries from being on the path between nodes
in a circuit. For instance, we find that circuits excluding
US Tor nodes definitively avoid the US 12% of the time.

This paper presents DeTor, a set of techniques for
proving when a Tor circuit has avoided user-specified ge-
ographic regions. DeTor extends recent work on using
speed-of-light constraints to prove that a round-trip of
communication physically could not have traversed cer-
tain geographic regions. As such, DeTor does not require
modifications to the Tor protocol, nor does it require a
map of the Internet’s topology. We show how DeTor can
be used to avoid censors (by never transiting the cen-
sor once) and to avoid timing-based deanonymization
attacks (by never transiting a geographic region twice).
We analyze DeTor’s success at finding avoidance circuits
through simulation using real latencies from Tor.

1 Introduction

Tor [8] has proven to be an effective tool at providing
anonymous communication and combating online cen-
sorship. Over time, Tor’s threat model has had to adapt to
account for powerful nation-states who are capable of in-
fluencing routes into and out of their borders—so-called
routing-capable adversaries [34].

We consider two key threats that the presence of
routing-capable adversaries now makes a practical real-
ity. First, routing-capable adversaries can (and regularly
do) censor Tor traffic. While it is well-known that some
countries block Tor traffic beginning or ending within
borders, recent studies have shown that some also block
any Tor traffic that happens to transit through their bor-
ders [4]. Second, routing-capable adversaries can launch
deanonymization attacks against Tor. If an adversarial
network is on the path of the circuit between source and
entry, and between exit and destination, then it can intro-
duce small, detectable jitter between packets to correlate
the two connections and therefore uncover the source and

destination [19].
In light of increasingly powerful attacks like these, Tor

has added the ability for users to specify a set of coun-
tries to exclude when selecting circuits. However, as
we will demonstrate, this offers users only the illusion
of control over where their traffic does not go. Among
the circuits that Tor uses to ostensibly ignore the US, we
could identify only 12% of them as definitively avoiding
the US. Alternative schemes have been proposed that
involve using traceroute to construct a map of the In-
ternet’s topology. However, routing-capable adversaries
can easily (and regularly do [35]) provide incomplete
responses to traceroute, precluding provable security
from mapping-based approaches.

In this paper, we present a set of techniques that can
prove that a circuit has avoided a geographic region. One
of the most powerful features of these techniques is how
little they require compared to many prior approaches:
they do not require modifying the hardware [3] or rout-
ing protocols [30] of the Internet, nor do they require
a map of the Internet’s routing topology [12]. Instead,
our work extends recent work on “provable avoidance
routing” [24] that uses geographic distances and speed-
of-light constraints to prove where packets physically
could not have traversed. Users can specify arbitrary ge-
ographic regions (our techniques do not rely on any no-
tion of network topology or ownership), and we return
per-packet proofs of avoidance, when available.

We construct avoidance in Tor in two applications:

Never-once proves that packets forwarded along a cir-
cuit never traversed a given geographic region, even
once. With this, users can avoid website fingerprinting
attacks [23] and censoring regimes [4].

Never-twice proves that packets forwarded along a cir-
cuit do not reveal more information to a geographically
constrained adversary than is strictly necessary by ensur-
ing that they do not appear on two non-contiguous legs
of the Tor circuit. With this, users can prevent certain
deanonymization attacks [2, 17, 29, 10, 15].

In sum, this paper makes the following contributions:

• We introduce the notion of Tor circuits that provably
avoid regions of the world. Unlike prior approaches,
our proofs do not depend on any model of network or
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AS-level topologies, and are instead based on round-
trip time measurements. Therefore, they are easy to
collect, do not require modifications to Tor, and do
not depend on Internet measurements that are manip-
ulable by a powerful adversary.

• We present the design, analysis, and evaluation of two
novel forms of avoidance: never-once to avoid censors
and website fingerprinting attacks, and never-twice to
avoid various traffic deanonymization attacks.

• We build these techniques in a system we call DeTor,
and evaluate it using real Tor latencies collected by the
Ting measurement tool [6]. We show that provable,
never-once avoidance is possible even when avoid-
ing routing-central countries like the US, and that
provable never-twice avoidance works for 98.6% of
source-destination pairs not in the same country.

Collectively, our results show that, with client-side
techniques alone, it is possible to achieve greater con-
trol over where Tor data does not go. We believe this to
be a powerful building block in future defenses.

2 Background and Related Work

In this section, we describe some of the attacks that are
possible against Tor from a powerful routing-capable ad-
versary. We also discuss prior work that has sought to
mitigate these attacks. First, we begin by reviewing the
relevant details of the Tor protocol.

2.1 A Brief Review of Tor
Tor [8] is a peer-to-peer overlay routing system that
achieves a particular type of anonymity known as unlink-
able communication. A source-destination pair is unlink-
able if no one other than the two endpoints can identify
both the source and destination. That is, an observer may
know the source (or destination) is communicating with
someone, but cannot identify with whom.

Tor achieves unlinkable communication by routing
traffic through a circuit: a sequence of overlay hosts.
There are typically three hosts in a circuit: an entry node1

(who communicates with the source), a middle node, and
an exit node (who communicates with the destination).
The source node is responsible for choosing which Tor
routers to include in a circuit, and for constructing the
circuit. Tor’s default circuit selection algorithm chooses
nodes almost uniformly at random to be in a circuit, with
three notable exceptions: (1) nodes with greater band-
width are chosen more frequently, (2) no two nodes from

1Alternatively, clients can make use of so-called bridge nodes,
which are in essence non-public entry nodes. Because they serve the
same purpose as traditional entry nodes, they pose no difference in
DeTor, and so we refer to them collectively as “entry nodes.”

the same subnet are chosen to be in the same circuit,
and (3) no nodes are chosen from a user-specified list
of countries to ignore.

Circuit construction is done in such a way that the only
host who knows all hops on the circuit is the source: each
other host knows only the hop immediately preceding
and succeeding it. By the end of the circuit construc-
tion protocol, the source has established a pairwise secret
(symmetric) key with each hop on the circuit.

The salient feature of Tor is the manner in which it
performs “onion routing.” When sending a packet p to
the destination, the source encrypts p with the symmet-
ric key it shares with the exit node; it then encrypts this
ciphertext with the key shared with the middle node; and
in turn encrypts this doubly-encrypted ciphertext with
the key shared with the entry node. Each hop on the
circuit “peels off” its layer of encryption, thereby en-
suring that anyone overhearing communication between
any two consecutive Tor routers learns nothing about the
other Tor routers on the circuit.

2.2 Threat Model

We assume a powerful routing-capable adversary [34],
e.g., a nation-state. Such an attacker has the ability
to make (potentially false) routing advertisements and
can therefore attract routes to its administrative domain.
Thus, routing-capable adversaries are able to insert them-
selves onto the path between two communicating end-
points. Once on the path, they can launch various man-
in-the-middle attacks by injecting, dropping, delaying, or
reordering packets.

Routing-capable adversaries can also mislead or ob-
fuscate attempts to map their networks. For example,
one common approach for mapping a network is to
use traceroute, but even benign networks sometimes
refuse to respond to ICMP packets, tunnel their packets
through their internal network, or simply do not decre-
ment TTLs. These efforts effectively hide routers from
a traceroute measurement, and could allow a nation-
state adversary to hide its presence on a path. It is be-
cause of these kinds of attacks that we choose not to em-
ploy traceroute-based measurements in our system.

Because we are mainly focused on nation-state adver-
saries, we assume that the attacker can be geographically
localized. For example, to avoid the United States, we
assume that a user can download the geographic infor-
mation (GPS coordinates) that succinctly describe where
the US is (including its territories, such as Guam) and
that these constitute all of the locations from which the
country could launch attacks. This was the same assump-
tion made by Levin et al. [24]. In practice, it may be pos-
sible that an adversary could infiltrate other countries’
networks, but there are many instances where a nation-
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state deploys its censorship mechanisms within its bor-
ders [7, 13].

This attack model extends naturally to colluding coun-
tries, such as the Five Eyes: one can simply consider
them as one large “nation-state” that is constrained to
its (potentially noncontiguous) borders. As we will
demonstrate, because our techniques apply to noncon-
tiguous geographic regions, they are not restricted to sin-
gle nation-states, and can be applied to arbitrary sets of
countries.

The attacker can also run its own Tor routers or col-
lude with some Tor routers, but, as per the previous as-
sumption, only within its own (or its fellow colluders’)
borders.

Finally, we make several assumptions about what an
attacker cannot do. We assume the attacker cannot vi-
olate standard cryptographic assumptions, particularly
that it cannot invert cryptographically secure hash func-
tions, infer others’ private keys, or forge digital signa-
tures or MACs. Also, we note that, while an attacker
can lie about having larger latencies (by delaying its own
packets), it is unable to lie about having lower latencies
than its links actually permit.

2.3 Attacks
This paper considers three very powerful attacks that are
at the disposal of a routing-capable adversary. We review
the attacks here, and then describe how prior work has
sought to mitigate them.

Censorship A routing-capable adversary can censor traf-
fic that enters its borders. Commonly, with Tor, this in-
volves identifying the set of active Tor routers and simply
dropping traffic to or from these hosts. The Tor Metrics
project monitors several countries who appear to perform
this kind of censorship [37].

Traffic deanonymization Consider an attacker who is
able to observe the traffic on a circuit between the source
and the entry node and between the exit node and the des-
tination. The attacker can correlate these two seemingly
independent flows of traffic in a handful of ways. For
instance, a routing-capable adversary operating a router
on the path between source and entry could introduce jit-
ter between packets that it could detect in the packets
between exit and destination. This works because Tor
routers do not delay or shuffle their packets, but rather
send them immediately in order to provide low laten-
cies [6].

Website fingerprinting Even an attacker limited to ob-
serving only the traffic between the source and entry
node can be capable of deanonymizing traffic. In par-
ticular, if the destination’s traffic patterns (e.g., the num-
ber of bytes transferred in response to apparent requests)

are well-known and unique, then an attacker may be able
to infer the destination by observing the traffic on any
leg of the circuit [23]. Such attacks run into challenges
when there is sufficient cover traffic, but unfortunately
Tor users have little control over how much cover traffic
there is.

2.4 Related Work

Sneaking through censors The traditional way of
mitigating censoring nation-states is to sneak through
them by making would-be-censored traffic look benign.
For example, decoy routing [21, 41] uses participating
routers that are outside the censoring regime but on a be-
nign path to effectively hijack traffic and redirect it to
a destination that would be censored. To the censoring
regime, the traffic appears to be going to a destination it
permits.

Other approaches employ protocol obfuscation tech-
niques to make one protocol look like another. A slew
of systems [26, 40, 27, 38, 39, 18] has explored making
Tor traffic appear to be other, innocuous traffic, notably
Skype (many censors permit video chat applications, so
as to allow their citizens to keep in touch with friends
and family abroad). We seek an altogether different ap-
proach of avoiding these nefarious regions altogether,
rather than trying to sneak through them. However, these
are somewhat orthogonal approaches, and may be com-
plementary in practice.

AS-aware Tor variants The work perhaps closest to
ours in terms of overall goals is a series of systems
that try to avoid traversing particular networks once (or
twice). To the best of our knowledge, these have focused
almost exclusively on using autonomous system (AS)-
level maps of the Internet [2, 19, 10]. Like DeTor, the
idea is that if we can reason about and enforce where our
packets may (or may not) go between hops in the circuit,
we can address attacks such as censorship and certain
forms of traffic deanonymization.

As described in §2.2, however, we assume in this pa-
per an adversary who has the ability to manipulate an ob-
server’s map of the Internet, for instance by withholding
some routing advertisements, withholding traceroute

responses, and so on. Instead of relying on these manip-
ulable data sources, we base our proofs on physical, nat-
ural limitations: the fact that information cannot travel
faster than the speed of light. As an additional depar-
ture from this line of work, we focus predominately on
nation-state adversaries, which are easier to locate and
geographically reason about than networks (which may
have points of presence throughout the world).

DeTor’s proofs of avoidance come at a cost that sys-
tems that do not offer provable security do not have to

USENIX Association 26th USENIX Security Symposium    345



pay. DeTor discards any circuit for which it cannot ob-
tain proof of avoidance, but it is possible that there are
circuits that achieve avoidance that do not meet the re-
quirements of the proof. As a result, DeTor clients have
fewer circuits to choose from than more permissive sys-
tems that rely only on AS maps, potentially leading to
greater load imbalance in DeTor. We believe this to be
a fundamental cost of security with provable properties;
however, we also believe that future work can reduce
DeTor’s “false negatives.”

Avoidance routing Recent work has proposed not to
sneak through attackers’ networks, but to avoid them al-
together. Edmundson et al. [11] propose to use maps of
the Internet’s routing topology to infer through which
countries packets traverse, and to proxy traffic through
those who appear to avoid potential attackers. However,
as with AS-aware Tor variants, this approach relies on
data that can be significantly manipulated by the kind of
powerful routing-capable adversaries that we consider.
In this paper, we seek techniques that yield provable se-
curity, even in the presence of such adversaries.

Alibi Routing [24] uses round-trip time measurements
and speed of light constraints to provably avoid user-
specified, “forbidden” geographic regions. The Alibi
Routing protocol only uses a single relay; we general-
ize this approach to apply to Tor’s three-hop circuits.
Moreover, our never-twice application avoids doubly-
traversing any region of the world, and does not require
an a priori definition of a forbidden region. We review
Alibi Routing next.

3 Background: Alibi Routing

We build upon techniques introduced in Alibi Rout-
ing [24] to achieve provable avoidance in Tor. In this
section, we briefly review how Alibi Routing achieves
its proofs of avoidance, and we outline the challenges we
address in translating it to Tor.

3.1 Proofs of Avoidance

Alibi Routing [24] is a system that provides proof that
packets have avoided a user-specified geographic region.
Specifically, a source node s specifies both a destination
t and a forbidden region F . Node s trusts all nodes that
are provably outside F (we return to this point at the end
of this subsection). Alibi Routing then seeks to identify
a relay a that is not in F and that satisfies the following
property. Let R(x,y) denote the round-trip time (RTT)
between hosts x and y, and let Re2e denote the end-to-end
RTT that s observes; then for a user-configurable δ ≥ 0:

(1+δ ) ·Re2e <

min

{
min f∈F [R(s, f )+R( f ,a)]+R(a, t)
R(s,a)+min f∈F [R(a, f )+R( f , t)]

(1)

When this inequality holds, it means that the RTT for
s forwarding packets through a to t is significantly less
than the smallest round-trip time that would also include
a host in the forbidden region. In other words, if s can
verify that its traffic is going through a and t, then the
traffic could not also go through F without inducing a
noticeable increase in end-to-end round-trip time. With
such a relay, s can prove that his packets avoided F with
two pieces of evidence:

1. A MAC (or digital signature) from a attesting to the
fact that it did indeed forward the packet, and

2. A measured end-to-end round-trip time that satisfies
Eq. (1).

These two pieces of evidence form an “alibi”: the packets
went through a and could not also have gone through F ,
therefore it avoided F . As a result, Levin et al. [24] refer
to a relay a who provides such a proof an alibi peer.

These proofs of avoidance must be obtained for each
round-trip of communication. The factor of δ acts as an
additional buffer against variable latencies. The larger δ

is, the fewer potential alibis there will be, but they will
be able to provide proofs of avoidance even when packets
suffer an uncharacteristically high delay, for instance due
to congestion. DeTor makes use of δ in the same manner.

One technical detail in Alibi Routing’s proof that
we will make use of is the process of computing
min f∈F [R(s, f )+R( f ,a)] and min f∈F [R(a, f )+R( f , t)].
After all, how can one compute the shortest RTT through
a host in an untrusted region of the world? The insight is
that, if we know the geographic locations of the hosts in
question, then we can obtain a lower bound on the round-
trip time between them. In particular, if D(x,y) denotes
the great-circle distance between hosts at locations x and
y, then we have the following bound:

min
f∈F

[R(s, f )+R( f ,a)]+R(a, t) ≥

3
c
·
(

min
f∈F

[D(s, f )+D( f ,a)]+D(a, t)
) (2)

where c denotes the speed of light. In general, informa-
tion cannot travel faster than the speed of light; in prac-
tice, information tends to travel no faster than two-thirds
the speed of light. Coupled with a 2× factor to capture
the RTT, this gives us the 3

c value in Eq. (2) as a way to
convert the great-circle distance between two hosts to a
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minimum RTT on the Internet. Provided with the set of
geographic coordinates defining the border of F , one can
compute the geographic coordinate f ∈ F that provides
this minimum distance. Critically, computing this does
not require any participation from F (e.g., sending re-
sponses to pings)—it only depends on knowing the geo-
graphic coordinates of those trusted to forward the pack-
ets: s, t, and a.

As mentioned above, Alibi Routing assumes that node
s trusts all nodes that are provably outside of its specified
forbidden region F . To determine if a node n is defini-
tively outside of F , s directly measures the RTT to n by
asking it to echo a random nonce. Recall from §2 that
attackers cannot lie about having lower latencies; thus, if
this measured RTT is smaller than the theoretical mini-
mum RTT between s and F , then n cannot be in F . Alibi
Routing applies these trust inferences transitively. We
adopt this assumption in our DeTor, as well.

3.2 Remaining Challenges

Applying Alibi Routing to Tor is not immediately
straightforward. First, Alibi Routing is defined only with
respect to a single alibi relay, whereas Tor circuits con-
sist of three or more relays. Even if we were to extend the
proofs from Eqs. (1) and (2), it is not obvious how well
this would work in practice. As we will demonstrate, we
are able to extend Alibi Routing’s approach to Tor, and
that it is surprisingly effective at finding “alibi circuits.”

Second, the notion of a fixed forbidden region does
not directly apply to the problem of deanonymization at-
tacks like those described in §2.3. Recall that these
attacks arise when an adversary is on both (a) the path
between source and entry node and (b) the path between
exit node and destination. Avoiding a region F altogether
(as with Alibi Routing) ensures that F could not have
launched such an attack, but it is overly restrictive to do
so. Note that it is not necessary to avoid a given region
altogether—it suffices to ensure that the region is not on
the path twice, at both the entry and exit legs of the cir-
cuit. This relaxation allows users to protect themselves
against deanonymization attacks launched by their home
countries, whereas it would be impossible to avoid one’s
own country altogether.

Moreover, using a static forbidden region would re-
quire users to anticipate all of those who could have
launched an attack. Ideally, a solution would be more
adaptive, by permitting avoidance of the form “wherever
packets might have gone between source and entry, avoid
those places between exit and destination.”

We demonstrate an adaptive “never-twice” tech-
nique that provably avoids regions that could launch
deanonymization attacks, and we demonstrate that it is
highly successful on the Tor network.

4 Provable Avoidance in Tor

In this section, we introduce how to construct proofs
that a round-trip of communication (a packet and its re-
sponse) over a Tor circuit has avoided geographic regions
of the world. These proofs have the benefit of being
easy to obtain (they largely consist of taking end-to-end
round-trip time measurements), easy to deploy (they do
not require modifications to Internet routing or buy-in
from ISPs), and resilient to manipulation.

4.1 Never-Once Avoidance
The goal of never-once avoidance is to obtain proof that
at no point during a round-trip of communication could
a packet or its response have traversed a user-specified
forbidden region F . Like with Alibi Routing, our proof
consists of two parts:

First, we obtain proof that the packets did go through
selected Tor routers. Whereas Alibi Routing traverses
only a single relay, we traverse a circuit of at least three
hops. Fortunately, Tor already includes end-to-end in-
tegrity checks in all of its relay cells [8], which success-
fully validate so long as the packets followed the circuit
and were unaltered by those outside or inside the circuit.
This serves as proof that the packets visited each hop,
and, thanks to onion routing, that they visited each hop
in order.

Second, we obtain proof that it could not also have
gone through the forbidden region. To this end, we mea-
sure the end-to-end round-trip time Re2e through the en-
tire circuit, and we compute the shortest possible time
necessary to go through each circuit and the forbidden
region:

Rmin =
3
c
·min


Dmin(s,F,e,m,x, t)
Dmin(s,e,F,m,x, t)
Dmin(s,e,m,F,x, t)
Dmin(s,e,m,x,F, t)

(3)

Here, Dmin(x1, . . . ,xn) denotes the shortest possible
great-circle distance to traverse nodes x1 → ··· → xn in
order. We abuse notation to also account for regions—
for example, Dmin(s,F,e) = min f∈F [D(s, f ) + D( f ,e)].
Note that Eq. (3) is in essence a generalization of Alibi
Routing’s single-relay proof (Eq. (2)), and can be easily
extended to support longer circuits.

Equation (3) captures the shortest possible distance to
go through each hop in the circuit (in order) as well as
through F . It also applies the observation that informa-
tion tends to travel no faster than two-thirds the speed
of light on the Internet. For example, in Figure 1, the top
circuit has its shortest detour through F between the mid-
dle and exit nodes; the bottom circuit’s shortest trajectory
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Figure 1: Never-once: To prove that a Tor circuit has
avoided region F , we compute the shortest possible dis-
tance to traverse the circuit as well as a point in F . This
figure has two example circuits, showing that the shortest
distance might traverse F at different legs of the circuit.

that includes F does so between source and entry.
Last, we compare this theoretical minimum RTT in-

cluding F (Rmin) with the end-to-end measured RTT
(Re2e), and ensure that

(1+δ ) ·Re2e < Rmin. (4)

For round-trip communications that pass Tor’s in-
tegrity checks and satisfy Eq. (4), we obtain our proof
that the packets could not have possibly traversed the
forbidden region. For those that do not satisfy the equa-
tion, much like Alibi Routing, we are unable to distin-
guish whether the packets traversed the forbidden region
or, e.g., were simply delayed on a congested link. We
discuss such application-level considerations in §5.3.

4.2 Never-Twice Avoidance
The goal of never-twice is to ensure that a potential ad-
versary is not able to see and manipulate both the traffic
between source and entry node and the traffic between
exit node and destination. Adversaries who are on both
the entry and exit legs of a circuit are able to launch
deanonymization attacks [28, 14, 17, 15]. However, an
adversary on no more than one of those legs cannot.

As with never-once, Tor’s onion routing ensures that
the packet and its response indeed traveled through the
Tor circuit in order, and we measure the end-to-end
round-trip time Re2e. However, as described in §3.2, our
step for establishing mutual exclusion requires a signifi-
cantly different approach.

The attacker seeks to be on the path both between s
and e (the entry leg) and between x and t (the exit leg).
All other parts of the circuit (entry to middle and middle
to exit) do not help the adversary in this particular attack.

Never-twice avoidance of a single host We begin by
constructing a proof that a circuit could not have tra-
versed any single host on both the entry and exit legs.

Ultimately, we seek to show that there is no point p for
which 3

c ·Dmin(s, p,e,m,x, p, t)≤ Re2e.
Iterating through all points on the Earth would be

computationally infeasible; although we do not have a
closed-form solution, we present an efficient empirical
check.

Note that the best-case scenario for the attacker is
that all traffic on the (e,m) and (m,x) legs of the cir-
cuit take the least amount of time possible: a total of
Rm = 3

c ·D(e,m,x). This leaves a total remaining end-
to-end latency of Re2e−Rm. This is the total time the
packets have to traverse (s,e) and (x, t); the larger this
value, the greater the chance an attacker can be on the
path of both of these legs (in the extreme, were this dif-
ference on the order of seconds, there would be enough
time to theoretically traverse any point on the planet on
both legs).

A useful way to visualize this problem is as two el-
lipses. Recall that an ellipse with focal points a and b
and radius r represents all points p such that d(a, p)+
d(p,b) ≤ r. Larger values of r result in ellipses with
greater area, while larger values of d(a,b)/r result in
more elongated ellipses (in the extreme, an ellipse with
d(a,b) = 0 is a circle).

Thus, we can view this problem as two ellipses—one
with focal points s and e and radius re and the other with
focal points x and t and radius rx, such that re + rx =
c
3 · (Re2e−Rm).

If these two ellipses intersect, then there could exist a
host through which the traffic on both the entry and exit
leg could have traversed.

Never-twice avoidance of a country The above tech-
nique for avoiding double traversal of a single host does
not preclude a powerful attacker such as a nation-state
from deploying multiple vantage points within their bor-
ders. For example, as in Figure 2b, consider an ellipse
around the entry leg that traverses southwest Europe, and
an exit leg that traverses central and eastern Europe—
even though the two ellipses never intersect one another,
they share two common nation states: France and Bel-
gium. We next explore how to avoid double traversal of
countries.

This process begins by identifying the set of countries
that either leg could go through were all of the extra la-
tency spent on either leg individually. This corresponds
to two ellipses: one with focal points s and e and radius
c
3 · (Re2e−Rm)−D(x, t), and the other with focal points
x and t and radius c

3 · (Re2e−Rm)−D(s,e). We intersect
these ellipses with a database of countries’ borders to ob-
tain the sets of countries that could have been traversed
on the entry leg (Ce) and on the exit leg (Cx).

If Ce ∩Cx = /0, as in Figure 2a, then it is not possible
for the same country to have been traversed twice, and
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(a) When Ce (yellow) and Cx (darker
blue) do not intersect, double-traversal
of any country is impossible.
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(b) When Ce and Cx do intersect (dark green), we must compute the shortest distances
for both legs to go through each country (right). The dashed lines show the shortest
distances through France, and the solid lines through Belgium.

Figure 2: Never-twice: To prove that a Tor circuit did not traverse any given country at the beginning and end of the
circuit, we compute the set of countries Ce that could have been on the path of the entry leg and the countries Cx that
could have been on the exit leg. This figure shows two example circuits with different exit nodes.

we have our proof of never-twice avoidance.
However, if the intersection is non-empty, as in Fig-

ure 2b, then we need to perform additional checks. For
each country F ∈ Ce ∩Cx, we ensure that the minimum
RTT to go through the entry leg and F plus the minimum
RTT to go through the exit leg and F is larger than the
end-to-end RTT would allow:

∀F ∈Ce∩Cx : (1+δ ) ·Re2e <

3
c
· (Dmin(s,F,e)+D(e,m,x)+Dmin(x,F, t))

(5)

The subtle yet important difference between Eq. (5)
and the previous equations is that the right hand side need
not minimize distance with respect to a single f ∈ F .
Rather, there could be two distinct points in F : one on
the entry leg’s path and another on the exit leg’s. This
puts the attacker at a greater advantage; consider the
above example wherein the entry leg was geographically
isolated to western France and the exit leg was isolated
to eastern France. When a single f ∈ F required to be
present on both legs, the packets would be required to
traverse an extra distance of roughly twice the width of
France. But with separate points in F , it could impose
arbitrarily low additional delay.

What Eq. (5) does share in common with the other
equations is that it can be computed purely locally, us-
ing only the knowledge of the circuit relays’ locations
and a database of countries’ borders, which are readily
available [16].

Never-twice avoidance of colluding countries Fi-
nally, we consider how to avoid deanonymization attacks
from a group of countries who might coordinate their ef-
forts. For example, the Five Eyes is an alliance of five
countries (Australia, Canada, New Zealand, the United
Kingdom, and the United States) who have agreed to
share intelligence. Were such a group of countries to
collude, then traversing one of them on the entry leg
and another on the exit leg could result in a successful
deanonymization attack.

Our above method for avoiding double-traversal of a
country extends naturally to colluding nation-states. One
can simply use a modified database of country borders to
flag all those in an alliance as a single “country.” That
this would result in a set of disjoint geographic polygons
is of no concern to our algorithm; in fact, many coun-
tries are already made up of disjoint regions (for instance
islands off of a country’s coast).

5 DeTor Design

The previous section demonstrates how to prove, for a
given circuit, whether a single round-trip of communica-
tion provably avoided a region (once or twice). Unfor-
tunately, not all circuits can provide such proofs, even if
they were to minimize latencies between all hosts. Triv-
ially, any circuit with a Tor router in some region F can-
not be used to avoid F . Subtler issues can also arise, such
as when two consecutive hops on a circuit are in direct
line-of-sight of a forbidden region.

In this section, we describe how DeTor identifies
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which circuits could possibly provide a proof by alibi,
and how we choose from among them to maximize both
anonymity and likelihood of success.

5.1 Identifying Potential DeTor Circuits

Alibi Routing identifies potential alibi peers through a
sophisticated overlay routing protocol in which peers as-
sist one another in finding alibis. This is necessary in Al-
ibi Routing because no one peer knows all other peers.
Fortunately, Tor’s design includes downloading a list of
all Tor routers, so we can search for alibi circuits without
requiring any explicit assistance from Tor hosts, and thus
without requiring any modifications to Tor clients or the
Tor protocol in general.

A DeTor peer first downloads the list of all Tor routers.
This includes many pieces of information about each
router, including its name, IP address, port, public key,
and typically also which country it is in. We make
the simplifying assumption that we can also obtain each
Tor router’s GPS coordinates. We envision two ways this
information could be made available: First, we can use
publicly available IP geolocation databases that map IP
addresses to locations [25, 31]. Second, we could aug-
ment the Tor protocol to allow routers to include their lo-
cations (perhaps within some privacy-preserving range)
in the public list of Tor routers.2 For never-once, as with
Alibi routing, we trust the nodes to be honest so long
as they can be proved to be outside the forbidden region
(§3); for such nodes, we trust the GPS coordinates they
self-report.

If we have the latitude and longitude of each Tor router
as well as the source and destination, then we can de-
termine if a circuit has the potential to offer proof of
avoidance by replacing Re2e in Eqs. (4) and (5) with the
shortest possible RTT (by two-thirds the speed of light)
through the circuit. This is in essence testing whether,
in the best case scenario, it would be possible to obtain
a proof of avoidance. DeTor considers all circuits that
meet these criteria as potential DeTor circuits.

Alternatively, if precise GPS coordinates are not avail-
able, we can assume that we do not have exact GPS
locations, but only which country each router is in
(as Tor currently reports). In this case, we redefine
Dmin(x1, . . . ,xn) to be the shortest sum distance from any
point in x1’s country to any point in x2’s country to any
point in x3’s country, and so on.

Armed with a set of potential DeTor circuits, we next
address the question: which among them should we
choose?

2We require that Tor routers not move significant distances between
the time that a client obtains their GPS coordinates through the time the
client uses those routers.

5.2 Choosing Circuits

There are two key considerations in choosing from
among potential DeTor circuits:

First, the circuit should have a high likelihood of actu-
ally providing proofs of avoidance. Satisfying the above
alibi conditions are necessary but not sufficient to truly
offer proof of avoidance. If any host on the circuit has
very high latencies (e.g., because their last-mile link is
a satellite or cellular link [32]), then we will never be
able to definitively prove with RTT measurements alone
where their packets could not have gone.

It is difficult to determine whether there are such high-
latency links without directly measuring them. However,
as multiple prior studies have shown, there is a strong
correlation between distance and RTT [6, 1], with very
long distances typically resulting in significantly larger
departures from the minimum speed-of-light propaga-
tion time. Therefore, as a first approximation, we seek
to choose very distal legs less often than shorter legs. We
must be cautious here: using very short legs, while likely
to offer successful proofs of avoidance, runs the risk of
choosing Tor routers within the same administrative do-
main, violating the goal of having three (or more) distinct
routers on the circuit. To address this, DeTor can option-
ally take a parameter ∆ representing a desired minimum
distance between any two routers on the circuit. Note
that this naturally captures Tor’s policy of never choos-
ing two hosts on the same subnet.

This brings us to our second consideration: the cho-
sen circuit should be chosen randomly, minimizing the
difference in probabilities of choosing one node (or ad-
ministrative domain) over another. Tor’s circuit selec-
tion provides greater weight to nodes with greater band-
width; we incorporate this with our desire for higher like-
lihood of success (lower latencies). After filtering the
circuits that can never provide us with an alibi, as well as
filtering the circuits based on minimum distance ∆, we
then choose from all remaining circuits with probability
weighted in favor of higher bandwidth and lower latency.

5.3 Constructing and Using Circuits

DeTor makes use of Tor’s transport plug-ins to guide cir-
cuit construction without requiring any modifications to
the Tor client. In particular, DeTor uses the Stem [36]
Tor controller for constructing circuits and attaching TCP
connections to them.

Much like Alibi Routing, DeTor must check for proofs
of avoidance for every round-trip of communication.
Half of this is provided by Tor’s checks that the packets
followed the circuit and were not altered; additionally,
a DeTor client measures the end-to-end RTT for each
round-trip of communication and checks this against
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Eq. (4) for never-once avoidance and/or Eq. (5) for never-
twice. A natural question is: what should DeTor do
when a round-trip of communication does not provide
proof, for instance because the end-to-end RTT is too
high? For never-once avoidance, we believe that this is
an application-specific concern. Some applications may
wish not to accept any packet that might have traversed
a forbidden region, and so they may drop these packets.
Other applications may accept some rounds of communi-
cation without proof, particularly if the data in them had
end-to-end verification or if it were not sensitive. This is
an interesting area of future work.

However, when DeTor is used for never-twice avoid-
ance, it is critical that not too many packets be sent if
there is the possibility that they doubly traversed an ad-
versary. After a round-trip of communication fails to ob-
tain proof, it may be useful for the source node to try
to trick the adversary by inserting a random number of
packets that terminate at the middle node. Such defenses
are another interesting area of future work; in the remain-
der of this paper, we focus primarily on how often we are
able to obtain proof of avoidance, and the quality of the
circuits that provide such proof.

6 Evaluation

In this section, we present the evaluation of DeTor in
terms of both never-once and never-twice avoidance.

Our evaluation is driven by several fundamental ques-
tions: who can avoid whom, does provable avoidance
harm anonymity, what is the performance of the circuits
that DeTor provides, and what are the primary indicators
of DeTor’s success (or failure)?

6.1 Experimental Setup
We evaluate DeTor in simulation, using a Tor latency
dataset collected with the Ting measurement tool [6]. As
a brief overview, Ting performs active measurements of
the Tor network and, through a novel sequence of cir-
cuits, is able to directly measure the RTT between any
two active Tor relays. This measured RTT between
two Tor relays contains the forwarding delays, which in-
cludes Tor’s crypto operations. As a part of this work,
Cangialosi et al. [6] released a dataset comprising RTTs
between all pairs of a set of 50 Tor relays spread through-
out the world.3 Also included in this dataset is the
GPS location of all 50 nodes obtained from a publicly
available IP geolocation database [31] (as measured at
the time of their study). Although we used this static
database for our evaluation, the DeTor design assumes

3For seven pairs of nodes, the RTT was reported as ‘Error’. For
these, we assume an RTT of 10 seconds; this is surely greater than their
real RTT, and so it strictly puts our results at a disadvantage.

Figure 3: Locations of the 50 nodes used in our eval-
uation: a subset of real Tor nodes, as provided in the
Ting [6] dataset.

that a client can obtain Tor relays’ GPS coordinates,
through one of several means discussed in §5.1.

Figure 3 shows the position of the Tor routers we use
in our study. Note that, like real Tor deployments, it is
skewed towards North America and Europe.

We simulate DeTor by using Ting data as a stand-in for
both ping (when establishing the set of trusted Tor re-
lays; see §3) and for end-to-end RTTs of the circuit. Re-
call that we only use these RTT measurements when de-
termining if a chosen circuit successfully provides prov-
able avoidance. Conversely, when we compute whether
a circuit could possibly offer avoidance, we rely only
on distances (computed using great-circle distance over
the relays’ GPS coordinates) and the two-thirds speed of
light propagation of data. For the purpose of the simula-
tion, the source and destination are also Tor nodes from
the selected Tor nodes set. For never-once, we construct
candidate circuits by selecting all possible permutations
of three nodes from this set. For never-twice, we con-
struct candidate circuits in the same way, but due to the
additional computation needed, we only evaluate a ran-
dom sample of the candidate circuits (1000 circuits per
source-destination pair).

For never-once avoidance, we attempt to avoid several
countries identified as having performed censorship [33]:
China, India, PR Korea, Russia, Saudi Arabia, and Syria.
Also, to see how well DeTor avoids countries with high
“routing centrality” [22], we also attempt to avoid some
countries that are on many paths: Japan and the US.

6.2 Never-Once
6.2.1 Who can avoid whom?

We begin by evaluating how successfully DeTor can find
circuits to provably avoid various regions of the world.
Figure 4 shows DeTor’s overall success rate for each
different forbidden country and δ values ranging from
0 to 1. Each stacked histogram represents the frac-
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Figure 4: DeTor’s success at never-once avoidance, and reasons for failure, across multiple choices of forbidden
regions and δ . Overall, DeTor is successful at avoiding all countries, even those prevalent on many paths, like the US.

tion of all source-destination pairs who (from bottom to
top): (1) terminate in the forbidden region and therefore
cannot possibly achieve avoidance, (2) do not have any
trusted nodes, typically because they are too close to the
forbidden region to ensure that anyone they are com-
municating with is not in it, (3) have trusted nodes but
no circuits that could possibly provide provable avoid-
ance, (4) have circuits that could theoretically avoid the
forbidden region, but none that do with real RTTs, and
(5) successfully avoid the forbidden region over at least
one DeTor circuit.

The key takeaway from this figure is that DeTor is gen-
erally successful at finding at least one DeTor circuit for
all countries and all values of δ . We note two exceptions
to this: Russia can only be avoided by approximately
35% of all source-destination pairs when δ = 0.5. We
believe this is due to the fact that Russia is close to the
large cluster of European nodes in our dataset.

The US is another example of somewhat lower suc-
cess rate; this is due, again, to our dataset comprising
many nodes from the US, and thus 45% of all pairs in our
dataset cannot possibly avoid the US. However, of the
remaining source-destination pairs who do not already
terminate in the US, 75% of them can successfully, prov-
ably avoid the US. We find this to be a highly encour-
aging result, particularly given that the US is on very
many global routes on the Internet. We note that this
is a higher avoidance rate than Alibi Routing was able to
achieve; we posit that this is because DeTor uses longer
circuits, thereby allowing it to maneuver around even
nearby countries by first “stepping away” from them. In-
vestigating the quality of longer DeTor circuits is an in-
teresting area of future work.

We also observe from Figure 4 that larger values of δ

lead to lower likelihoods of avoidance, as expected. This
is particularly more pronounced with Russia, Syria, and
Saudi Arabia; we believe that this, too, is because these
countries are near the cluster of European nodes. Inter-
estingly, this impact is least pronounced with the more
routing-central adversaries we tested (Japan and the US).
Some have proposed defense mechanisms that introduce
packet forwarding delays in Tor [9, 5, 20]; these results
lend insight into how these defenses would compose with
DeTor. In particular, note that increasing δ in essence
simulates greater end-to-end delays, which these defense
mechanisms would introduce. Thus, with greater delay
(intentional or not), DeTor experiences a lower likeli-
hood of providing proofs of avoidance.

Number of DeTor circuits The above results show
that we are successful at identifying at least one DeTor
circuit for most source-destination pairs. We next look
at how many DeTor circuits are available to each source-
destination pair.

Figure 5 shows the distribution, across all source-
destination pairs in our dataset, of the number of cir-
cuits that (1) offered successful never-once avoidance,
(2) were estimated to be possible (but may not have
achieved avoidance with real RTTs), and (3) were
trusted, but not necessarily estimated to be possible. We
look specifically at the number of circuits while attempt-
ing to avoid the US and China, with δ = 0.5.

This result shows that approximately 30% of the
source-destination pairs were only able to successfully
use a single circuit while avoiding the US; 18% of pairs
avoiding China had a single circuit. Fortunately, the
majority had much more: avoiding the US, the median
source-destination pair has over 1,000 successful circuits
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(a) US is the forbidden region.
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Figure 5: The distribution of the number of circuits that DeTor is able to find while avoiding (a) US and (b) China,
with δ = 0.5. Some source-destination pairs get only a single DeTor circuit, but the majority get 500 or more.
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Figure 6: The distribution of the fraction of source-destination pairs for which a given circuit successfully provides
provable avoidance. (δ = 0.5)

at its disposal; when avoiding China, this number is 500.

Even the most successful source-destination pairs tend
to have far fewer successful circuits than “trusted” Tor
circuits. These results allow us to infer how well Tor’s
current policies work. Recall that, in today’s Tor, users
can specify a set of countries from which they wish not
to choose relays on their circuit. This is similar to the
“trusted” line in the plots of Figure 5 (in fact, because
we actually test the ping times to verify that it is not in
the country, Tor’s policy is even more permissive). This
means that roughly 88% of the time (comparing the suc-
cessful median to the trusted median), Tor’s approach to
avoidance would in fact not be able to deliver a proof of
avoidance. It is in this sense that we say that Tor offers
its users merely the illusion of control.

All together, these results demonstrate the power of
DeTor—simply relying on random chance is highly un-
likely to result in a circuit with provable avoidance.

Given that there are source-destination pairs that have
only a handful of DeTor circuits, we ask the converse: are
there some circuits that offer avoidance for only a small
set of source-destination pairs? If so, then this opens
up potential attacks wherein knowing the circuit could
uniquely identify the source-destination pair using that

circuit. To evaluate this, we show in Figure 6 the distribu-
tion of the fraction of source-destination pairs for which
a given circuit successfully provides proof of avoidance.
The median circuit achieves provable avoidance to only
1.4% of source-destination pairs avoiding the US; 0.6%
when avoiding China. These numbers are lower than de-
sired (compare them to standard Tor routing for which
nearly 100% of circuits are viable), but we believe they
would be more reasonable in practice, for two reasons:
First, the Ting dataset we use is not representative of the
kind of node density that exists in the Tor network; in col-
lecting that dataset, the experimenters explicitly avoided
picking many hosts that were very close to one another,
yet proximal peers are common in Tor. Second, in our
simulations, we choose our source and destinations from
the Tor nodes in our dataset; in practice, clients and des-
tinations represent a far larger, more diverse set of hosts,
and thus, we believe, would make it much more difficult
to deanonymize.

6.2.2 Circuit diversity

Having many circuits is not enough to be useful in Tor;
it should also be the case that there is diversity among
the set of hosts on the DeTor circuits. Otherwise,
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Figure 7: Distribution of the 50th, 75th, and 90th percentile probabilities of a node being selected to be on a circuit,
taken across all DeTor circuits across source-destination pairs. Vertical lines denote these same percentiles across all
Tor circuits. DeTor introduces only a slight skew, preferring some nodes more frequently than usual. (δ = 0.5)
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Figure 8: The distribution of round-trip times for DeTor circuits (δ = 0.5) and regular Tor circuits. Because avoidance
becomes more difficult with higher-RTT circuits, DeTor’s successful circuits tend to have lower RTTs.

popular Tor routers may become overloaded, and it be-
comes easier to predict which Tor routers will be on a
circuit, thereby potentially opening up avenues for at-
tack. We next turn to the question of whether the set
of circuits that DeTor makes available disproportionately
favor some Tor routers over others.

To measure how equitably DeTor chooses available
Tor relays to be on its circuits, we first compute, for
each source-destination pair, the probability distribution
of each Tor relay appearing on a successful DeTor cir-
cuit. Figure 7 shows the distribution of the 50th, 75th,
and 90th percentiles across all source-destination pairs.
As a point of reference, the vertical lines represent these
same percentiles for Tor’s standard circuit selection (re-
call that Tor does not choose nodes uniformly at random,
but instead weights them by their bandwidth).

We find that DeTor’s median probability of being cho-
sen to be in a circuit is less than normal, as evidenced by
the 50th percentile curve being almost completely less
than the 50th percentile spike. When avoiding the US,
there is a slight skew towards more popular nodes, as ev-
idenced by the 75th percentile also being less than nor-
mal. When avoiding China, on the other hand, DeTor’s

90th percentile is typically less than Tor’s, indicating that
DeTor more equitably chooses nodes to be on its circuits.

It is true that DeTor may result in load balancing is-
sues, especially if Tor routers are not widely geographi-
cally dispersed – this is fundamental to DeTor: after all,
if many users are avoiding the US, then all of this load
would have to shift from the US to other routers. How-
ever, as shown in Figure 7, while DeTor does introduce
some node selection bias, it is within the skew that Tor
itself introduces.

6.2.3 Circuit performance

We investigate successful DeTor circuits by their latency
and expected bandwidth. Figure 8 compares the dis-
tribution of end-to-end RTTs through successful DeTor
circuits to the RTT distribution across all Tor circuits
in our dataset. DeTor circuits have significantly lower
RTTs—on the one hand, this is a nice improvement in
performance. But another way to view these results is
that DeTor precludes selection of many circuits, pre-
dominately those with longer RTTs. For some source-
destination-forbidden region triples, this is a necessary
byproduct of the fact that we are unlikely to be able
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Figure 9: The distribution of minimum bandwidth for DeTor circuits (δ = 0.5) and regular Tor circuits.
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Figure 10: Success rates for never-once circuits as a function of the ratio between the maximum acceptable distance
(through the circuit but not through F) and the minimum distance (directly through the circuit). This shows a positive
correlation, indicating that it is feasible to predict which circuits will be successful. (δ = 0.5)

to get proofs of avoidance if we must traverse multiple
trans-oceanic links. In these examples, China has access
to some circuits with longer RTTs, because it is farther
away from many of our simulated hosts than is the US.

Figure 9 compares bandwidths of DeTor and Tor cir-
cuits. For each circuit, we take the minimum bandwidth,
as reported by Tor’s consensus bandwidths. Here, we see
largely similar distributions between DeTor and Tor, with
Tor having more circuits with lower bandwidth. We sus-
pect that those lower-bandwidth hosts that Tor makes use
of may also have higher-latency links, therefore making
them less likely to appear in DeTor circuits.

6.2.4 Which circuits are more likely to succeed?

As Figure 5 showed, it is not uncommon for there to be
one to two orders of magnitude more circuits that meet
the theoretical requirements for being a DeTor circuit
than there are circuits who achieve avoidance in prac-
tice. In a deployed setting, a client would ideally be able
to identify which circuits are more likely to work before
actually going through the trouble of setting up the con-
nection and attaching a transport stream to it.

As a predictor for a circuit’s success for never-once
avoidance, we take the ratio of the maximum acceptable

distance (how far the packet could travel without travers-
ing the circuit and the forbidden region) to the minimum
possible distance (the direct great-circle distance through
the circuit). Our insight is that, the larger this ratio is,
the more “room for error” the circuit has, and the more
resilient it is to links whose RTTs deviate from the two-
thirds speed of light.

Figure 10 shows this ratio corresponds to the fraction
of theoretically-possible circuits that achieve successful
avoidance. As this ratio increases from 0 to 10, there is
a clear positive correlation with success. However, with
large ratio values, the relationship becomes less clear;
this is largely due to the fact that large ratio values can be
a result of very small denominators (the shortest physical
distance).

These results lend encouragement that clients can
largely determine a priori which circuits are likely to
provide provable avoidance. Exploring more precise fil-
ters is an area of future work.
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6.3 Never-Twice

6.3.1 How often does never-twice work?

Recall that, unlike never-once, there are no forbidden re-
gions explicitly stated a priori with never-twice. There-
fore, to evaluate how well never-twice works, we mea-
sure the number of source-destination pairs that yield a
successful DeTor circuit.

Ruling out the source-destination pairs who are in the
same country (as these can never avoid a double-transit),
we find that 98.6% of source-destination pairs can find
at least one never-twice DeTor circuit. This is a very
promising result, as it demonstrates that simple client-
side RTT measurements may be enough to address a
wide range of attacks. In the remainder of this section,
we investigate the quality of the circuits that our never-
twice avoidance scheme finds.

Turning once again to the number of circuits, Fig-
ure 11 compares the number of circuits that DeTor identi-
fied as possibly resulting in a proof of avoidance (as com-
puted using Eq. (5), and those that were successful given
real RTTs. Never-twice circuits tend to succeed with ap-
proximately 5× the number of circuits that never-once
receives. This demonstrates how fundamentally different
these problems are, and that our novel approach of com-
puting “forbidden” countries on the fly (as opposed to
some a priori selection of countries to avoid with never-
once) results in greater success rates.

6.3.2 Circuit diversity

We turn again to the question of how diverse the circuits
are; are some Tor relays relied upon more often than oth-
ers when achieving never-twice avoidance?

Figure 12 shows the percentile distribution across all
successful never-twice DeTor circuits. Compared with
never-once (Fig. 7), never-twice circuits fall even more
squarely within the distribution of normal Tor routers
(the vertical spikes in the figures). In particular, the top
10% most commonly picked nodes appear roughly as of-
ten as Tor’s top 10% (the median 90th percentile is al-
most exactly equal to Tor’s 90th percentile). The median
node is slightly less likely to be selected than in Tor, in-
dicating only a small skew to more popular nodes.

6.3.3 Circuit performance

We investigate successful DeTor never-twice circuits,
once more turning to latency and expected bandwidth.
Figure 13 compares successful never-twice DeTor cir-
cuits’ RTTs to those of Tor. Compared to never-once
(Fig. 8), there are never-twice DeTor circuits with greater
RTTs. We conclude from this that never-twice avoidance
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Figure 11: The distribution of the number of circuits that
DeTor is able to find with never-twice (δ = 0.5).

has the ability to draw from a more diverse set of links—
particularly when the entry and exit legs are farther from
one another.

Figure 14 reinforces our finding that never-twice has
access to a larger set of routers, as the distribution of suc-
cessful never-twice bandwidths matches those of the full
Tor network much more closely.

6.3.4 Which circuits are more likely to succeed?

We close by investigating what influences a never-twice
DeTor circuit’s success or failure. Figure 15 shows
the fraction of possible never-twice circuits that were
found to be successful, and plots them as a function
of D(e,m,x)/D(s,e,m,x, t). This ratio represents how
much of the overall circuit’s length is attributable to the
middle: that is, everything but the entry and exit legs.

There are several interesting modes in this figure that
are worth noting. When this ratio on the x-axis is very
low, it means that almost the entire circuit is made up
of the entry and exit legs, and therefore they are very
likely to intersect—as expected, few circuits succeed at
this point. DeTor succeeds more frequently as the mid-
dle legs take on a larger fraction of the circuit’s distance,
but then begins to fail as the length of the middle legs
approaches the combined length of the entry and exit
legs. This is because, in our dataset, when the middle
legs are approximately as long as the entry and exit legs,
this tends to correspond to circuits made out of the two
clusters of nodes: one in North America and the other
in Europe. Because these clusters are tightly packed, the
probability of intersecting entry and exit legs increases.
This probability of intersection decreases when the cir-
cuits no longer come from such tightly packed groups.

When the middle legs dominate the circuit’s distance
(the ratio in the figure approaches one), we again enter
a particular regime in our dataset: These very high ra-
tio values correspond to circuits with source and entry
node both in North America (or in Europe), and with
middle legs that traverse the Atlantic (and then return).
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ing on a successful never-twice DeTor
circuit. (δ = 0.5)
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DeTor circuits (δ = 0.5) and regular
Tor circuits.
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Figure 15: Success rate of never-twice DeTor circuits as
a function of how long the (e,m,x) legs of the circuit are.

In other words, to accommodate such long middle legs,
the source and entry node (and exit node and destination)
are forced into the same cluster (either North America or
Europe), which again increases the chances of intersec-
tion.

In sum, for never-twice, DeTor interestingly prefers
circuits that have middle legs that are disproportionately
large or small relative to the entry and exit legs. However,
this may be dependent on the node locations from the
Ting dataset we use, as the overall success rate of never-
twice avoidance depends on the geographical diversity of
where Tor routers are located.

7 Conclusion

In this paper, we have presented techniques that allow
end-users to provably verify when packets over their
Tor circuits have avoided traversing a geographic region
once or twice. Our system, DeTor, builds upon prior
work on provable avoidance routing [24], and extends it
(1) to work over Tor’s multiple hops, and (2) to achieve
“never-twice” avoidance. Through extensive simulations
using real Tor latency data [6], we have demonstrated
that DeTor achieves provable avoidance for most source-
destination pairs, even when avoiding large, routing-
central countries like the United States.

Although the dataset we use in evaluating DeTor
comes from live Tor measurements [6], the scale and ge-

ographic positions do not reflect the Tor network in its
entirety; our results indicate that having more Tor routers
would lead to more potential DeTor circuits and greater
overall success rates. As with any such system, the best
evaluation would be a longitudinal study with real users
on the Tor network; this would be an interesting area of
future work.

This paper is the first step towards bringing provable
avoidance to Tor, but we believe that DeTor has the po-
tential to be a powerful building block in future defenses
against censorship and deanonymization of Tor.

Our code and data are publicly available at:

https://detor.cs.umd.edu
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Abstract
Internet of Things (IoT) platforms often require users to
grant permissions to third-party apps, such as the ability to
control a lock. Unfortunately, because few users act based
upon, or even comprehend, permission screens, malicious
or careless apps can become overprivileged by requesting
unneeded permissions. To meet the IoT’s unique secu-
rity demands, such as cross-device, context-based, and
automatic operations, we present a new design that sup-
ports user-centric, semantic-based “smart” authorization.
Our technique, called SmartAuth, automatically collects
security-relevant information from an IoT app’s descrip-
tion, code and annotations, and generates an authorization
user interface to bridge the gap between the functionalities
explained to the user and the operations the app actually
performs. Through the interface, security policies can be
generated and enforced by enhancing existing platforms.
To address the unique challenges in IoT app authorization,
where states of multiple devices are used to determine the
operations that can happen on other devices, we devise
new technologies that link a device’s context (e.g., a hu-
midity sensor in a bath room) to an activity’s semantics
(e.g., taking a bath) using natural language processing
and program analysis. We evaluate SmartAuth through
user studies, finding participants who use SmartAuth are
significantly more likely to avoid overprivileged apps.

1 INTRODUCTION

The rapid progress of Internet of Things (IoT) technolo-
gies has led to a new era of home automation, with numer-
ous smart-home systems appearing on the market. Promi-
nent examples include Samsung’s SmartThings [49],
Google’s Weave and Brillo [23, 25] and Apple’s Home-
Kit [5]. These systems use cloud frameworks to integrate
numerous home IoT devices, ranging from sensors to
large digital appliances, and enable complicated opera-
tions across devices (e.g., “turn on the air conditioner
when the window is closed”) to be performed by a set
of applications. Such an application, called a SmartApp
in Samsung SmartThings or generally an IoT app, is in-

stantiated in the cloud. A user interface (UI) compo-
nent on the user’s smartphone enables monitoring and
management. Like mobile apps, IoT apps are dissemi-
nated through app stores (e.g., the SmartThings Market-
place [47]), which accept third-party developers’ apps
to foster a home-automation ecosystem. Unlike mobile
apps, IoT applications control potentially security-critical
physical devices in the home, like door locks. Without
proper protection, these devices can inflict serious harm.

A recent study on Samsung SmartThings brought to
light security risks of such IoT apps, largely caused by
inadequate protection under the framework [19]. Most
concerning is the overprivilege problem in SmartApp au-
thorization. Each SmartApp asks for a set of capabilities
(the device functionality the app needs), and the user must
choose the IoT devices to perform respective functions
for the app (for example, see Figure 1). In mapping capa-
bilities to devices, the user allows the IoT app to perform
the set of operations defined by those capabilities (e.g.,
turn on a light, unlock the door) based on event triggers
(e.g., the room becomes dark, a valid token is detected
near the door). However, this implicit authorization suf-
fers from issues related to coarse granularity and context
ignorance, namely that an app given any capability (e.g.,
monitoring battery status) of a device (e.g., a smart lock)
is automatically granted unlimited access to the whole
device (e.g., lock, unlock) and allowed to subscribe to all
its events (e.g., when locked or unlocked).

In addition to the overprivilege that results from conflat-
ing all capabilities of a single device, malicious IoT apps
can overprivilege themselves by requesting unneeded, and
sometimes dangerous, permissions. While asking users to
authorize third-party apps’ access to IoT devices would,
in concept, seem to prevent this sort of overprivileging,
prior work on permissions systems for mobile apps has re-
peatedly documented that users often fail to act based on,
or even understand, these permission screens [18, 32, 33].

Even worse, unlike the Android permission model,
which asks the user for permission to access specific re-
sources on a single device (e.g., location, audio, camera),
access control in a smart home system is much more
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Figure 1: The installation interface of SmartApp SAFETY

WATCH lists configuration options without connecting to higher-
level app functionality. There is also no guarantee the app’s
actual behavior is consistent with its description.

complicated. The policy applies across devices, defin-
ing the operations of certain devices in certain scenarios
based on observations of other devices (e.g., “ring the bell
when someone knocks on the door”). Explaining such
complicated policies to users is challenging, and effec-
tive authorization assistance should certainly go beyond
what is provided by SmartThings (illustrated in Figure 1).
In particular, it may be difficult for a user to understand
what is being requested in the capability authorization UI,
due to the gap between the app’s high-level mission and
the technical details of capabilities across devices. For
example, a user may have no idea how reading from an ac-
celerometer relates to detection of someone knocking on
a door. Furthermore, in the absence of robust monitoring
and enforcement by the platform, the authorization system
provides little guarantee that the capabilities requested by
an app actually align with the app description.

As a result, despite the existing authorization system
for IoT platforms, there can exist a crucial gap between
what a user believe an IoT app will do, and what the app
actually does. The idea that privacy is context-sensitive
has been widely studied [41]. For example, providing an
individual’s sensitive health information to a doctor for the
purpose of treating the individual would often not violate
the notion of contextual integrity, whereas providing the
same information to the individual’s financial institution
would likely violate his or her privacy. A similar principle
holds in the IoT ecosystem. If an IoT app describes its
own purpose as unlocking the door when a visitor arrives,
it is likely no surprise to a user that the app can unlock
the door. If, however, the same app had advertised itself
as a temperature-monitoring app, a user would likely find
the app’s ability to unlock the door to be a security risk.

In this paper, we propose new user-centered autho-
rization and system-level enforcement mechanisms for
current and future IoT platforms. We designed our ap-
proach, SmartAuth, to minimize the gap between a user’s

expectations of what an IoT app will do and the app’s
true functionality. To this end, SmartAuth learns about
each IoT app’s actual functionality by automatically har-
vesting and analyzing information from sources such as
the app’s source code, code annotations, and capability
requests. Because the natural-language description devel-
opers write to advertise an app in the app store is the key
source of users’ expectations for what the app will do, we
use natural language processing (NLP) to automatically
extract capabilities from this description.

SmartAuth then compares the app’s actual functionality
(determined through program analysis) to the functional-
ity developers represent (determined through NLP). This
automated process is far from trivial because an in-depth
understanding of the app focuses not only on the seman-
tics of the app activities, but also their context among
the app’s broader goals. Our approach for achieving this
level of contextual understanding relies on program anal-
ysis of the SmartApp’s source code and applying NLP
techniques to code annotations (e.g., the constant string
for explaining the position of a sensor). We use further
NLP to analyze the app description provided by the devel-
oper to extract higher-level information about the stated
functionality, including entities (e.g., “a coffee machine”),
actions (e.g., “taking a shower”), and their relationships
(e.g., “turn on the coffee machine after taking a shower”).
SmartAuth then compares such descriptions against in-
sights from program and annotation analysis to verify that
the requested capabilities and called APIs match the stated
functionality, leveraging semantic relations among differ-
ent concepts and auxiliary information that correlates
them. For example, an annotation indicating a “bathroom”
and the activity “take a shower” are used to identify the
location of the humidity sensor of interest.

To minimize user burden, SmartAuth automatically al-
lows functionality that is consistent between the app’s
natural-language description and code, yet points out dis-
crepancies between the description and code since these
are potentially unexpected behaviors. SmartAuth employs
natural-language-generation techniques to explain, and
seek approval for, these unexpected behaviors. The out-
come of this verification analysis is presented to the user
through an automatically created interface that is built
around a typical user’s mental model (for example, as in
Figure 4). SmartAuth then works within the platform to
enforce the user’s authorization policy for the IoT app.

We incorporated SmartAuth into Samsung Smart-
Things as a proof of concept and evaluated our imple-
mentation over the 180 apps available in the Smart-
Things marketplace. SmartAuth successfully recovered
authorization-related information (with 3.8% false posi-
tive rate and no false negatives) within 10 seconds. We
found that 16.7% of apps exhibit the new type of overpriv-
ilege in which some functionality is not described to the
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user despite passing Samsung’s official code review [51].
Examples of cases found stem from vague descriptions
(e.g., an app stating it can “control some devices” in your
home) or hidden security-sensitive functionality (e.g., ac-
cessing and actuating an alarm without consent).

We also performed user studies to evaluate SmartAuth’s
impact on users’ decision-making process for installing
IoT apps1. In a 100-participant laboratory study, we found
that SmartAuth helped users better understand the implicit
policies within apps, effectively identify security risks,
and make well-informed decisions regarding overprivi-
lege. For instance, given two similar apps, one of which
was overprivileged, using the current Samsung Smart-
Things interface, 48% of participants chose to install the
overprivileged app in each of five tasks. With Smart-
Auth, however, this rate reduces to 16%, demonstrating
the value of SmartAuth in avoiding overprivileged apps.

We also generated automated patches to the 180 Smart-
Apps to validate compatibility of our policy enforcement
mechanism, and we found no apparent conflicts with
SmartAuth. Given our observations of the effectiveness
of the technique, the low performance cost, and the high
compatibility with existing apps and platforms, we believe
that SmartAuth can be utilized by IoT app marketplaces
to vet submitted apps and enhance authorization mecha-
nisms, thereby providing better user protection.

Our key contributions in this paper are as follows:

• We propose the SmartAuth authorization mechanism
for protecting users under current and future smart
home platforms, using insights from code analysis
and NLP of app descriptions. We provide a new
solution to the overprivilege problem and contribute
to the process of human-centered secure computing.

• We design a new policy enforcement mechanism,
compatible with current home automation frame-
works, that enforces complicated, context-sensitive
security policies with low overhead.

• We evaluate SmartAuth over real-world applications
and human subjects, demonstrating the efficacy and
usability of our approach to mitigate the security
risks of overprivileged IoT apps.

The remainder of this paper is organized as follows.
In Section 2, we present the models and assumptions
for our work. In Section 4, we describe the high-level
design of SmartAuth. We present the details of our design
and implementation in Section 5, and our evaluation of
SmartAuth follows in Section 6. We highlight relevant
related work in Section 7 and conclusions in Section 9.

1Our user studies were conducted with IRB approval.
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Figure 2: Users install IoT apps through mobile devices, allow-
ing the vendor’s IoT cloud to interact with the user’s locally
deployed devices. IoT apps pair event handlers to devices, issue
direct commands, and enable external interaction via the web.

2 BACKGROUND

2.1 Home Automation Systems
Home automation is growing with consumers, and many
homeowners deploy cloud-connected devices such as ther-
mostats, surveillance systems, and smart door locks. Re-
cent studies predict home automation revenue of over
$100 billion by 2020 [31], drawing even more vendors
into the area. As representative examples, Samsung
SmartThings and Vera MiOS [54] connect smart devices
with a cloud-connected smart hub. Such vendors typically
host third-party IoT apps in the cloud, allowing remote
monitoring and control in a user’s home environment.

Figure 2 illustrates a typical home automation system
architecture. We use Samsung SmartThings to exemplify
key concepts and components of such a system.

IoT apps written by third-party developers can get ac-
cess to the status of sensors and control devices within a
user’s home environment. Such access provides the ba-
sic building blocks of functionality to help users manage
their home, for example turning on a heater only when
the temperature falls below the set point. Figure 2 depicts
cloud-based IoT apps BEACON CONTROL and SIMPLE
CONTROL installed by a user from their mobile device
and with access to the user’s relevant IoT devices.

Current IoT platforms use capabilities [36] to describe
app functionality and request access control and autho-
rization decisions from users. Unlike permissions, capa-
bility schemes are not designed for security, but rather
for device functionality. A smart lighting application,
for example, would have capabilities to read or control
the light switch, light level, and battery level. Due to
complexity, capabilities in home automation platforms
are often coarse grained. One capability might allow an
app to check several device attributes (status variables) or
issue a variety of commands. This functionality-oriented
design creates potential privacy risks, as granting an app
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a capability for a device allows it to access all aspects of
the device’s status and fully control the device.

An IoT app can also act as a web service (an endpoint in
Samsung Smartthings) to interact with the outside world.
Such an app handles remote commands from servers and
reacts accordingly. Many home automation platforms
support standard authentication and authorization mecha-
nisms such as OAuth [4, 50] to grant permission to third
parties for commanding or accessing devices.

2.2 NLP Technologies
Since our approach analyzes app descriptions and gaps
in users’ mental models, we rely on several existing tools
and techniques for natural language processing (NLP).
The following tools are employed in our work.

Word2Vec [22] is a state-of-the-art tool used to pro-
duce word embedding that maps words to vectors of real
numbers. Specifically, Word2Vec models are neural net-
works trained to represent linguistic contexts of words.
We use Word2Vec to determine the relation between two
words by calculating the distance between the words in
the embedding space. Word2Vec has many advantages
over previous approaches, including catching syntactic
and semantic information better than WordNet [39] and
achieving lower false positive rates than ESA [21].

Part-of-speech (POS) tagging is used to identify a
word’s part of speech (e.g., noun or verb) based on defi-
nition and context. A word’s relations with adjacent and
related words in a phrase, sentence, or paragraph impact
the POS tag assigned to a word of interest. In our work,
we rely on the highly accurate Stanford POS Tagger [38].

We also rely on the typed dependencies analysis [27]
to understand the grammatical structures of sentences,
grouping words together to recognize phrases and pair
subjects or objects with verbs. The Stanford parser applies
language models constructed from hand-parsed sentences
to accurately analyze sentences of interest.

3 IOT APP SECURITY CHALLENGES

Beyond basic overprivilege where an app requests an un-
necessary capability, previous IoT research has studied
two additional types of overprivilege [19]: coarse capa-
bility and device-app binding. In the former, a capability
needed to support app functionality also allows unneeded
activities. In the latter, a device is implicitly granted
additional capabilities that are not needed or intended.

We have identified an additional type of overprivilege
that relates not only to the functionality of the IoT app, but
also to the user’s perception of the app functionality, as
seen through the app description. We observe that several
IoT apps exhibit capability-enabled functional behaviors
that are not disclosed to the user, causing a discrepancy
between the user’s mental model and the actual privilege
of the app. We refer to this problem as undisclosed over-

privilege. This kind of overprivilege has been discussed in
mobile apps, but was never studied in the IoT space. An
example of this type is an IoT app that describes the ability
to control lights while requesting capabilities to read and
control a door lock. Previous approaches may not flag this
app as overprivileged, as long as the capabilities are used.
In fact, even after a majority of Samsung SmartThings
apps were removed from the market due to the previously
reported overprivilege issues [19], we found that 16.7%
of the remaining apps still exhibit overprivilege risks.

Remote access is also an important security risk, as it
enables apps to send sensitive data to and receive com-
mands from third-party servers. In our study, we found 27
cases of such behavior, including cases where data was
shared without user consent, a clear privacy concern. A
SmartApp’s ability to act as a web service expands the
attack surface and potentially allows a malicious server to
send dangerous commands to an app running on a user’s
smart devices, even though users may not expect such
remote control. We observed 17 apps with this behavior.
Similar to the undisclosed overprivilege, remote access
does not match the user’s mental model, which illustrates
a gap in the current configuration and approval process.

Based on these observations, a general threat in the IoT
app landscape is the ability for a malicious or compro-
mised IoT app to steal information from sensors or home
appliances or to gain unauthorized access to IoT device
functionality. Even if the IoT platform itself is secure
and trustworthy and previous issues of authentication and
unprotected communication are patched [7, 19, 40], such
issues with malicious apps may remain.

4 SMARTAUTH DESIGN OVERVIEW

We next present the high-level design of SmartAuth, in-
cluding design goals, architecture, and security model.

Given the unique security challenges of smart home
systems, we believe that an authorization system for IoT
apps should be designed to achieve the following goals.

• Least-privilege: The system should grant only the
minimum privileges to an IoT app, just enough to
support the desired functionality.

• IoT-specific: Compared with authorization models
for mobile devices, which are designed to manage a
single device, the authorization system for a smart
home framework should meet the needs for multi-
device, context-based, automatic operations. Permis-
sion models based on manifest permissions or run-
time prompts, such as those employed in Android or
iOS, either do not allow users to make context-based
decisions or cannot satisfy real-time demands (e.g.,
approval to actuate an alarm when fire is detected).

• Usable: The authorization system should be human-
centric, minimizing the burden on users while sup-
porting effective authorization decisions.
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Figure 3: We provide a high-level block diagram to illustrate
the design overview of our SmartAuth system.

• Lightweight: The authorization approach should not
inhibit performance with significant overhead.

• Compatible: The authorization approach should be
compatible with existing smart home platforms and
applications without breaking app functionality.

Since authorization decisions are made by humans, pro-
viding a human-centric design to help users to make well-
informed decisions is critical. Toward this goal, we design
an intelligent authorization system that recovers adequate
semantic information from IoT apps and presents it to
users in an understandable way. We leverage semantic
analysis techniques to automatically interpret the descrip-
tion, code, parameters, and annotations of an IoT app.
We analyze the semantic meaning of these components to
discovery inconsistency, then automatically generate an
authorization interface explaining the findings to the user.

Based on these design principles, our SmartAuth sys-
tem includes five components: a program analyzer, a
content inspector, a consistency checker, an authoriza-
tion creator and a policy enforcer, as illustrated in Fig-
ure 3. The code analyzer extracts the semantics of an
IoT app through program analysis and NLP of app code
and annotations, creating a set of privileges that support
the app functionality. In parallel, the content inspector
performs NLP on the app description to identify the re-
quired privileges explained to the user. The consistency
checker compares the results of code analysis and content
inspection to generate security policies and identify dis-
crepancies between what is claimed in the description and
what the app actually does. These policies and informa-
tion needed to support user decisions are then presented
through an authorization interface produced automatically
by the authorization creator. The resulting policies are
then implemented by the policy enforcer.

Our security policy model for the smart home architec-
ture is described in the form of a triple (E,A, T ). Item E
represents the events, inputs, or measurements involving
IoT devices and describes the context of the policy. Item
A represents the actions triggered by elements of E, in-
cluding commands such as “turn on”. Item T represents
the group of targets of the actions in A, such as a light

Figure 4: We illustrate the security policy generated for the
HUMIDITY ALERT app, which is communicated to the user
to request authorization. The indication of behavior type is
discussed in more detail in Section 5.3

receiving a command, noting that an empty target implies
broadcast of a message or command. This model captures
typical IoT app functionality, as apps are designed to issue
commands to respond to observed state changes.

This model describes not only the policy produced by
the authorization process, but also the privileges both
claimed in an app’s description and recovered from its
code. Analysis of the policy actions thus allows identi-
fication of overprivilege and presentation of conflicts or
situations that require the user to make a policy decision.
Figure 4 illustrates an example of such policies.

5 DESIGN AND IMPLEMENTATION

In this section, we detail our design and implementation
of SmartAuth.

5.1 Automatically Discovering App Behaviors
To extract an app’s security-critical behaviors, we perform
static analysis on the app’s source code and use NLP
techniques on code annotations and API documents.

We collected the source code for 180 Samsung
SmartThings apps from an source-level market in May
2016 [48]. This represents 100% of open-source Smart-
Apps and 80.2% of all SmartApps at that time.

For each app collected, we parse its code and create
an Abstract Syntax Tree (AST) from the code, resolving
classes, static imports, and variable scope. We choose
to do AST transformation for the app analysis for two
reasons. First, we have access to the source code which
is suitable for AST transformation. To enable further
analysis, we extract the key components of method names,
variable names and scope, a variety of statements. Second,
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SmartThings apps are written in Groovy, which transfers
method calls into reflective ones and creates challenges
for existing binary analysis tools to deal with reflections.
Therefore, binary analysis is not suitable.

We first extract capabilities, which are directly associ-
ated with security behaviors, by searching for the term
“capability” in the preference block. We incorporate any
search results into the list of requested capabilities col-
lected from the IoT app documentation.

To further understand how the IoT app is intended
to make use of the requested capabilities, we analyze
the commands and attributes associated with each re-
quested capability. To enable this analysis, we main-
tain a global mapping of capabilities to commands
and attributes, noting that one capability may involve
multiple commands and attributes. Since a SmartApp
gets status updates by subscribing to events, namely as
subscribe(dev,attr,hndl) for relevant IoT de-
vice dev, device attribute attr, and invoked method
hndl, we use this global mapping to search the AST for
relevant commands called and attributes subscribed.

We then generate the security policy, starting from
the method invoked on event subscription and perform
forward tracing. We first analyze the invoked function’s
code blocks to determine whether it contains conditional
statements, which we analyze immediately. Otherwise,
we trace into the called function. Within condition blocks,
we look for (1) the event and (2) the object and action.
The invoked function of the event subscription takes a
subscription parameter that carries information about the
event. Combining this information with the variables
in the AST, we identify both the event and associated
capability. We further identify the action triggered by
the event. For example, for an app that controls a heater
based on a threshold temperature setting, it is critical to
distinguish whether the app turns the heater on or off.
We thus search the result statement for commands that
control a device. If found, we continue our analysis to
match the capability through variable analysis. Otherwise,
we record the event and trace into the called function.

The previous analysis covers an app’s direct access to
IoT devices, which we use to identify overprivilege. We
also analyze whether the app has remote access to servers
other than the SmartThings cloud. We consider two types
of remote access: whether the app sends data to the re-
mote server and whether the app works as a web service
to take commands from the remote server. Both cases
are privacy-invasive and may violate user expectations.
We search the AST to match patterns including OAuth,
createAccessToken, and groovyx.net.http.

We also examine clues from code annotations (e.g.,
comments and text strings) to gain further information
about context and device state. We apply Stanford POS
Tagging and analyze the nouns to determine whether they

represent location or time contexts. We find that most
context clues in smart homes relate to a place in the home,
such as a bedroom. For example, we can extract that
the humidity sensor is associated with bathroom from un-
derstanding the annotation in the following code snippet.

Listing 1: Code Snippet about Device Selection

section("Bathroom humidity sensor") {
input "bathroom", "capability.

relativeHumidityMeasurement", title:
"Which humidity sensor?"

}

5.2 Analyzing App Descriptions
A key goal of our project is revealing any discrepancy
between what the app claims to do and what it actually
does. To find such discrepancies, we use NLP techniques
to extract the security policy from the app’s free-text
description and program analysis to compare it with the
security policy extracted from the code. We extract and
correlate the behaviors in three layers: (1) entity, (2)
context and action, and (3) condition.

We infer the security policy based on human-written,
free-text app descriptions. To do this, we first identify the
parts of speech of the words used, then analyze the typed
dependencies in the description. Nouns and verbs are
often related to entities; for example, movement might be
related to a motion sensor. From the structure of the de-
scriptions, we can then infer relationships between entities
by identifying the typed dependencies. For instance, in
the phrase “lock the door”, the noun door is the accusative
object of the verb lock (written as dobj(lock, door)). In
the corresponding security policy, lock is the action and
door is the target. Most cases are more complex than this
example, and our more comprehensive analysis follows.

Specifically, we use the Stanford POS Tagger to iden-
tify parts of speech and the Stanford Parser to analyze
sentence structure, including typed dependencies, as il-
lustrated in Figure 5. We follow standard NLP practices,
such as removing stop words (e.g., “a,” “this”) [11].

We analyze noun and verb phrases to pinpoint the rele-
vant entities, as these phrases usually describe core app
functionality. However, as discussed later, analyzing a
developer’s description comes with non-trivial challenges.
In addition, the device’s context can significantly impact
the implications of the entities. To overcome these diffi-
culties, we design and implement the following process.

The most straightforward case is when the description
explicitly includes the name of the entity (e.g., humidity
sensors). If so, we match words directly.

Because of language diversity, the first step may not
produce meaningful results. However, even when the
description does not contain the device name, the descrip-
tion might contain contextual clues related to specific
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Figure 5: We illustrate example NLP analysis for the COFFEE

AFTER SHOWER description: “This app is designed simply to
turn on your coffee machine while you are taking a shower.”
Red and blue characters respectively indicate parts of speech
(e.g., “VB” for verb) and typed dependencies (e.g., “advcl” for
adverbial clause modifier).

devices. For example, mention of flood detection hints to
a humidity or moisture sensor. We evaluate relationships
between words in the descriptions to the relevant devices
through a word distance model that combines Word2Vec
with a language model. Our language model includes a
vocabulary of three million words and phrases, trained on
roughly 100 billion words from Google News [24].

The most challenging case is when the words in
the description are not directly related to the entity
in the generated security policy. In this case, we
compare the description to the context clues from
code annotations. In the example in Figure 6, we first
extract the entity “bathroom” (the context clue) from
the annotation for the humidity sensor (capability.
relativeHumidityMeasurement) identified
through code analysis (Section 5.1). We link this entity to
the entity “shower” using the semantic relation revealed
using Word2Vec. In this way, we link “taking a shower”
to the humidity sensor. Similarly, our technique relates
“coffee machine” in the description to the switch device
(capability.switch) recovered from the code.

However, simply connecting an entity in the description
to a device in the code is insufficient to determine whether
only expected behaviors (as specified in the description)
happen. For example, “lock the door when nobody is at
home” and “unlock the door when nobody is at home”
have starkly different security implications. To compare
the semantics of an activity in description to the operation
of a device, we utilize a knowledge-based model. Specifi-
cally, we parse the API documentation of SmartThings to
generate the attribute and command models, namely the
keyword sets for attributes and commands that represent
their semantics. We thus parse words and phrases in the
description connected to the entity-related word. This can
be done by going through the typed-dependency graph.
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Figure 6: We illustrate the three-step policy correlation for the
COFFEE AFTER SHOWER app. 1) We apply the context clues
“bathroom” and “coffee” for entity correlation. 2) We use the
attribute model and command model to extract and correlate
the context and action. 3) We use typed-dependency analysis
and causal relationship model to correlate the policies generated
from the description and program analysis.

For example, in Figure 6, we have identified that “cof-
fee machine” is an entity related to the phrase “turn on”.
Such phrases will be compared with the keywords in the
attribute and command models to find matches.

After comparing the devices used in the code to those
mentioned in the description, we also need to know
whether the actual control flow matches that of the policy
model. The causal relationship is critical for multi-device
management where devices have impacts on each other.
For example, two IoT apps may both ask for access to a
door lock, motion sensor on the door, and presence sen-
sor. A benign app might unlock the door when a family
member is at the door and locks it when someone other
than a family member is there. A malicious app might
unlock the door anytime anyone is there. These two apps
use the same devices, but with different control flow.

To perform causal analysis, we analyze the typed
dependencies and build knowledge-based models of
causal relationships. The causal relationships model is
built with sentence structures and conjunctions related to
conditional relationships. We apply the initial models to
the descriptions to identify which devices caused other
devices to change status. For example, the sentence
“turn on the light when motion is sensed” represents
that motion status is the cause, and turn on the light
is the result. At the end of this process, we obtain
verified behaviors that match in code and descriptions
and unexpected behaviors that exhibit a mismatch.

5.3 Authorization Interface Generation
Towards making usability a first-order concern in design-
ing our authorization scheme, we first conduct an online
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survey to understand users’ mental models related to IoT
app installation and the overprivilege problem. Using
Amazon Mechanical Turk, we recruit adult participants
who have experience using smartphones. To avoid bias-
ing participants towards fraudulently claiming experience
with SmartThings to participate in the survey, we do not
require that participants have used any smart home plat-
forms to take the survey. However, we only analyze data
from the 31.6% of the survey participants who have pre-
vious experience with SmartThings. Please refer to the
appendix refquestion1 for the sample survey questions.

Our survey asked about: (1) experience using IoT plat-
forms and demographics, (2) the factors considered when
installing third-party IoT apps, and (3) perspective on
smart home capabilities. We received responses from 300
participants who had used SmartThings, identified by an
average age of 30.8 years old (age range is 18-60) with a
gender breakdown of 32% female, 67% male.

We asked participants to respond using a five-point
scale (strongly care, care, neither care or not care, not
care, strongly not care) about factors they consider when
deciding whether or not to install a SmartThings app.
App functionality (66% strongly care and 24% care) and
privacy (57% strongly care and 28% care) were the factors
participants stated they cared about most in their decision.

To understand participants’ perspectives on smart home
capabilities, we asked them to rate the sensitivity of differ-
ent IoT device functions and to compare the sensitivity of
SmartThings capabilities and Android/iOS permissions.
To ensure that participants understood what we meant by
smart home capabilities, we both formally defined the
concept and demonstrated it using an example screen shot
from a SmartThings device permission screen.

We asked participants to rate the sensitivity of eight
IoT device behaviors on a four-point scale (from “not sen-
sitive” to “very sensitive”). We find that participants have
very different risk perceptions for different behaviors of
the same IoT device. For example, we find the average
sensitivity rating for app’s ability to unlock their door
is 3.28, whereas reading the battery level of their door
is only 1.87 (Mann–Whitney U = 21350, n1 = n2 =
300, P < 0.001 two-tailed) [8]. These sharp distinctions
highlight the importance of increasing the transparency
to users about what precise behaviors an app will perform
in the home, rather than considering all behaviors for a
particular device monolithically. Our approach of auto-
matically identifying discrepancies between the actual
behavior of an app determined through program analysis
and the free-text app descriptions that users generally rely
on when considering whether to install apps [32] better
supports these distinctions.

To this point, most work on app permissions focuses
on smartphones. We thus asked participants to specify
whether they considered Android/iOS permissions and

smart home capabilities equally sensitive, Android/iOS
permissions to be more sensitive, smart home capabilities
to be more sensitive, or whether they were unsure. In sup-
port of our continued study, 69% of participants indicated
that they considered smart home capabilities to be more
sensitive than Android/iOS permissions. Participants pro-
vided a free-text explanation of why, and we performed
qualitative coding on these responses by two researchers
(with an agreement rate of 90.3%). The leading reason
participants found IoT apps more sensitive is that they
perceived the home environment to inherently present
greater risks. One participant wrote:

“Smart home compromises can inflict serious
damage or injury. Imagine being locked in your
house, with the heat cranked up. Or an in-
vader monitoring your location in the house,
or studying your patterns. The risk involved in
a smartphone knowing your location or access-
ing the devices hardware, like reading contents,
contacts or accessing the camera are far more
limited in potential effects by an attacker.”

In generating the user interface, we aim to minimize the
burden on the user and provide information that matches
the user’s mental model of the system. We rely on a policy
model that links app functionality with authorization. We
first automatically summarize the security policy, remov-
ing redundant logic, and then create language models to
translate the security policy into a human-understandable
description. We achieve this task using state-of-the-art
natural language generation tool SimpleNLG [1], a re-
alization engine that generates and linearizes syntactic
structures. The automatically generated description de-
tails what device attributes and commands are being used,
and why. For example, the app monitors the temperature
from the temperature sensor and whether someone is at
home by the presence sensor to turn on a heater when it
is cold and someone is home.

We designed our authorization approach to better align
users’ mental models with the actual behaviors of smart
home apps, as well as to reduce user burden during the
authorization process. Because many users rely on app
descriptions, rather than permissions screens, to evaluate
smartphone apps [32], one way of reducing user burden
is to assume that a user would implicitly grant an app the
permission to perform actions stated in the app descrip-
tion. While any assumption that a user’s actions with an
app perfectly follow the user’s intent is necessarily flawed,
prior work on smartphone permissions [32] suggests that
assuming a user would permit an app to perform the be-
haviors described in its app description is practical. The
assumption of a user would permit an app to perform the
behaviors in its description is likely at least as robust as
assuming that a user intended to grant the permissions
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specified on a permissions screen. We therefore minimize
users’ burden by automatically granting the attributes in-
ferred from the app description. For the attributes absent
from the app description, we present the user with our
automatically generated description of the policy model
rather than potentially confusing settings.

To help users understand the potential risky behaviors,
we use risk level indicators with corresponding colors and
icons in the user interface, as illustrated in Figure 4. We
define three indicator categories: verified behaviors that
match the claimed functionality, unexpected behaviors
that are not sensitive, and dangerous behaviors that are
unexpected and risky. We determine these risk levels by
asking security experts and average users to rate their per-
ceived risk based on status changes and device operations.
Specific parameters are further described in the Appendix.

5.4 Policy Enforcement
Once a user sets his or her policy settings through the user
interface, we enforce the policy end-to-end by blocking
unauthorized command and attribute access.

Our proof-of-concept implementation of the policy
enforcement mechanism operates locally on the device
through the use of REST APIs, mimicking the ideal inte-
gration directly into the SmartThings Cloud. We patched
existing SmartApps by substituting each command or at-
tribute function call with an equivalent REST API call to
the module that includes the device handler, command or
attribute name, and any additional parameters. After the
module processes the request, a return value is sent back
to the patched app and handed to the code that invokes
this command or attribute, which is transparent to the
original app. Similarly, the patched app also subscribes
to events by connecting to the enforcement module. Ap-
pendix A further details how we patch existing Groovy
apps to interact with our policy enforcement module.

The policy enforcement mechanism starts when the
user begins to install a SmartApp. The user is directed to
our enhanced interface to set up the relevant devices and
policies for the app. This information is transmitted to
the policy enforcement module to ensure that the app can
only access what the user allows. Based on the policies,
the module will make two type of decisions.

First, whenever the module receives a command or
attribute request from a patched app, it will extract the
device ID and actions and check the associated policies
from the database for proper authorization. If allowed, the
module will forward the request to the cloud service to
execute and respond, after which the module will forward
the response to the patched app. If denied, the request
will be dropped and an error message will be returned to
the patched app. We expect that SmartApps will already
be designed to handle error messages, so the denial of
requests should not impede normal operation. We further
analyze compatibility in Section 6.3. Second, whenever

there is an event reported by the SmartThings Cloud, the
module will retrieve the associated app IDs and policies
from the database and forward the event only to the apps
that are allowed to access the event according to the app
policy. The module thus blocks all unauthorized sub-
scribe, command, and attribute requests.

6 EVALUATION

We evaluate SmartAuth in several dimensions, finding
SmartAuth is effective at automatically extracting secu-
rity policies, significantly helps users avoid overprivileged
apps, and adds minimal performance overhead when en-
forcing users’ desired policies.

6.1 Effectiveness in Extracting Policies
We first evaluate SmartAuth’s ability to accurately identify
unexpected behaviors. To this end, we manually analyze
the description and the code of the 180 available Smart-
Apps and compare the results to those of the automatic
analysis. In this process, we do not observe any false
negatives, though we identify seven false positives (3.9%)
in which SmartAuth flagged a behavior as unexpected
though manual analysis of these cases suggests otherwise.

In two of these cases, the app uses a product name
to represent a device, but the product name is not rel-
evant to its functionality; for example, the MINI HUE
CONTROLLER app uses the Aeon Minimote2 device. In
two other cases, the app references another app by name
to explain its functionality; for example, the KEEP ME
COZY TWO app claims that it “works the same as KEEP
ME COZY, but enables you to pick an alternative tem-
perature sensor in a separate space from the thermostat.”
These cases could be eliminated using named entity anal-
ysis to identify the referred app and merge the behaviors
and descriptions accordingly. In another case, the de-
scription has complicated logic spread through several
sentences, causing the description to be ambiguous. In
the two remaining cases, the correlation of the context
is not intuitive, even for a human reader; for example, a
relationship between vibration of the floor with someone
waking up at night is not immediately clear.

6.2 Impact on Users
We first describe our user study to evaluate how Smart-
Auth impacted users’ app-installation decisions, followed
by additional data on the usability of SmartAuth itself.

We performed a between-subjects user study with 100
participants recruited from across our institutions. Partic-
ipants completed app installation tasks in our lab using
phones we provided and answered several relevant ques-
tions. We required participants to be adults who regularly
use a mobile device and are knowledgeable about home
automation systems. We verify participants understand

2http://aeotec.com/homeautomation
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key concepts of smartphones and home automation us-
ing screening questions. For example, we ask them how
IoT apps are installed and what purposes IoT apps serve.
We also ask questions about demographics, as well as
questions about their experiences installing IoT apps. The
protocol takes around 20 minutes. For the 100 partici-
pants in our study, their ages ranged from 19 to 41 years
with a mean age of 25.7 years, and 59% of participants
reported as male and 41% as female. The participants
have education backgrounds ranging from high school
to graduate school. 68% of participants have a technical
background (engineers or students in computer science or
related field).We carefully avoid the IoT developers when
we recruit in the company because they are very familiar
with the system and their results might be biased.

The study’s primary task is a series of selection tasks
for IoT apps using the phone we provide. For five different
types of IoT apps, the participant chooses between one of
two similar apps. Each of the two apps in a pair has iden-
tical functionality, yet only one of the two apps in a pair is
overprivileged. To prevent this difference in permissions
from being the obvious variable of interest, we used apps
whose titles and descriptions were roughly comparable.
For example, participants choose between “Lights Off
with No Motion and Presence (by Bruce Adelsman)” that
will “Turn lights off when no motion and presence is de-
tected for a set period of time” and “Darken Behind Me
(by Michael Struck)” that will “Turn your lights off after
a period of no motion being observed.”

Each participant is randomly assigned into one of
two groups, specifying whether they will see Samsung
SmartThings’ authorization interface or SmartAuth while
completing all tasks. For each of the five app-selection
tasks, participants saw the app installation page with two
choices. We asked the participant to choose only one of
the two apps to install, and to explain why.

For each of the five tasks, between 48% and 60% of
participants who saw the current SmartThings interface
chose the overprivileged app, as shown in Figure 7. Even
though the current Samsung SmartThings authorization
interfaces shows users a list of the devices the app can
access, including potentially unexpected devices, this cur-
rent interface did not help users avoid overprivileged apps.

In contrast, 84% of participants who saw the Smart-
Auth interface successfully avoided the overprivileged
app, differing significantly from the current SmartThings
interface (Holm–Bonferroni corrected χ2, p ≤ .022 for
all five tasks). Note that for two of the tasks (A and B in
Figure 7), the overprivilege was a potentially dangerous
behavior (e.g., unlock a door), whereas the overprivilege
for tasks C–E was potentially less risky (e.g., learn the
temperature). For tasks A and B with dangerous over-
privilege, only 10% and 6% of SmartAuth participants,
respectively, chose the overprivileged app, compared to
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Figure 7: For 5 tasks, participants chose between two similar
IoT apps, one of which was overprivileged. This graph shows
the proportion of participants who chose the overprivileged app.
Similar to what one would expect from random selection, around
half of participants who saw the Samsung SmartThings interface
chose the overprivileged app. In contrast, only between 6% and
26% of SmartAuth participants chose the overprivileged app.

48% and 56% for the current SmartThings interface. Even
when they still chose the overprivileged app, we found
that many SmartAuth participants were aware of the over-
privilege, yet said they either did not care about the unex-
pected behaviors or thought the app might benefit from
these behaviors in the future.

In addition to evaluating SmartAuth’s impact on user
behavior, we also measure the usability of SmartAuth
itself. In the laboratory study, after users choose among
pairs of apps and answer questions about privacy, we ask
questions to elicit their perceptions of what the interface
communicated to them. For some of these questions,
participants respond to statements on a five-point Likert
scale (from “1: strongly disagree” to “5: strongly agree”).

The first statement gauges the apparent completeness
of explanations (“I feel that the app interface explains thor-
oughly why the app can access and control these sensors/-
doors”); SmartAuth participants were more likely than
those who used Samsung SmartThings to agree (Smart-
Auth mean 4.06, SmartThings mean 2.40, Mann–Whitney
U = 337.5, n1 = n2 = 50, P < 0.001 two-tailed). The
second statement measures user comfort in making deci-
sions (“I feel confident to make a decision whether or not
to install the app after reading the interface”); SmartAuth
participants were significantly more confident in their de-
cisions (SmartAuth mean 4.12, SmartThings mean 2.46,
Mann–Whitney U = 320.5, n1 = n2 = 50, P < 0.001
two-tailed). The third statement evaluates perceived dif-
ficulty of finding information (“It is difficult to find the
information from the interface”); SmartAuth participants
were more likely to disagree with this difficulty, mean-
ing they found it easier (SmartAuth mean 2.72, Smart-
Things mean 3.56, Mann–Whitney U = 713, n1 = n2 =
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50, P < 0.001 two-tailed).
We also asked open-ended questions about what fac-

tors participants consider when deciding to install an app.
Both SmartAuth and Samsung SmartThings participants
focused on two factors in common: functionality and ease
of configuration. However, SmartAuth participants also
discussed privacy and unexpected or dangerous behaviors
as a major factor. In comparison, only one of the 50 Sam-
sung SmartThings participants pointed out a mismatch
between the description and the authorization screen.

6.3 Performance and Compatibility
To evaluate the performance impact and ease of deploy-
ability for SmartAuth, we collected all 180 open-source
SmartApps in the Samsung SmartThings marketplace
at the time of research. In order to demonstrate that
SmartAuth is both lightweight and backward compatible,
we performed two performance tests: (1) pre-processing
performance comprising program analysis, description
analysis, behavior correlations, and policy description
generation and (2) run-time performance comprising au-
thorization interface generation and policy enforcement.

For testing the pre-processing performance, we timed
the generation of the policy description for each of the
180 apps, averaging over 10 trial runs. On a 3.1 Ghz Intel
Core i7 CPU with 16 GB memory, the pre-processing
overhead for an app is 10.42 seconds on average. Since
pre-processing is a one-time cost and can be done offline,
we believe that the performance is reasonable even for
vetting a large number of applications.

For the run-time performance test and compatibility
test, we instrumented the SmartApp to interact with our
policy server running on the Amazon EC2 cloud, which
enforces the rules defined by the user. Given our purpose
of evaluating the compatibility of our technique with ex-
isting SmartApps, we set the authorization policies (grant-
ing permissions to certain commands, attributes and event
handlers) ourselves, instead of letting the user do that, as
would happen in practice. We designed our experiments
to test the technique in the worst-case scenarios. That is,
we assume users would reject all unexpected and danger-
ous behaviors, requiring the maximum amount of policy
enforcement. To enable large-scale testing without requir-
ing the purchase of every physical SmartThings device,
we used Samsung’s online SmartApp simulator platform3.
Instrumented apps are then installed on the simulator, and
their functionalities are tested with simulated IoT devices.

As shown in Figure 8, we recorded the delay incurred
by different command, attribute, and event handler ac-
tions. We performed 1800 experiments among the 180
SmartApps on a cloud server with 3.1 Ghz Intel Core i7
CPU and 1 GB memory. SmartAuth incurs an average de-
lay of 35.4 msec, which is small relative to the dominant

3https://graph.api.smartthings.com/
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Figure 8: We plot the average delay of various functions in the
SmartThings platform. The darker bar in each pair represents the
delay in the unmodified platform with virtual devices, while the
lighter represents the delay in our customized platform with the
additional overhead introduced by SmartAuth. Event handlers
incur the highest incremental overhead, while commands incur
the highest proportional overhead (almost double the base case).

network latency in cloud-based IoT platforms.
Next, we test the degree to which SmartAuth policies to

mitigate overprivilege and block third-party remote access
impact backward compatibility with existing SmartApps.
As with our performance analysis, we test the worst case
of users blocking all unexpected and dangerous behaviors
and all remote access. We again test patched apps on Sam-
sung’s online simulator environment. We trigger events at
least five times and insert debug messages into the modi-
fied apps’ source code to observe apps’ behaviors while
they gather data from the cloud or when events have been
triggered. To evaluate backward compatibility, we both
observe app behaviors and analyze the debugging mes-
sages. For tests related to overprivilege policy, we focused
on the 30 apps that exhibit undisclosed overprivilege. For
the interested reader, these 30 apps are listed in the Ap-
pendix as Table 2. These apps either request capabilities
not mentioned in their descriptions (unexpected capabil-
ity), or even worse, request capabilities that could do
harm (e.g., unlocking the door). For example, the SMART
SECURITY app presents a description: “alerts you when
there are intruders but not when you just got up for a glass
of water in the middle of the night.” After scanning the
source file, this app requests access to motionSensor,
contactSensor, and alarm capabilities, satisfying
the description, but also requests sensitive commands in-
cluding turning on/off a switch, which is not mentioned
in its description. Therefore, we mark this access as an
unexpected behavior. For the remaining 150 apps, we fur-
ther patch them to comply with our policy enforcement
mechanism. Specifically, apps with coarse capability over-
privilege and device-app binding overprivilege are also
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constrained to ensure least privilege.
In our compatibility tests, none of the 180 apps crash

after patching, even with overprivilege security rules en-
forced. Even after they are patched to remove overpriv-
ilege, the 180 apps behave the same as their original
versions. In other words, patching does not break the
functionalities claimed in the app’s description.

We further test how apps function if we block all third-
party remote access, an extreme case where the user de-
nies all such requests. Of the 180 apps, only six apps
suffer from a loss of valid functionality. For example,
VINLI HOME CONNECT allows remote services to con-
trol IoT devices, and this functionality breaks entirely
when we block remote access. We believe such examples
will continue to be rather rare, especially when users are
given clear information and useful options to configure
the app’s security policy. In addition, we envision the
possibility of a cloud-based reference monitor that could
check run-time remote access and filter out dangerous ac-
cess, but such a design is beyond the scope of this work.

6.4 Limitations
Although SmartAuth advances user-centered IoT app au-
thorization, our design has limitations. A malicious de-
veloper could use custom-defined methods and property
names mirroring SmartThings commands and attributes to
fool the program analysis. A future version of SmartAuth
could better recognize this technique. Our static analysis
tool is based on Groovy AST transformation. If handled
correctly, the tool can detect obfuscated logic (which can-
not evade AST transformation), and obfuscated dynamic
variable/function names can be handled with define-use
analysis citenielson2015principles. Furthermore, a ma-
licious developer could craft app descriptions for which
SmartAuth mistakenly extracts a malicious behavior from
the description, even when humans would not perceive
such a behavior. Future work could focus on recogniz-
ing such adversarial descriptions. External services like
IFTTT could be the future work for our project. Our
approach can be applied if we know the control flow
information from IFTTT. External devices, if they are
approved by Samsung, will be included in the capability
system and covered by our project.

In addition, dynamic method invocation from remote
servers is a threat that requires future investigation. How-
ever, this is less of a concern because Samsung bans
dynamic method execution through code review [51].

Our user studies also have important limitations. While
we did not draw attention to this fact, particularly attentive
participants might have recognized that SmartAuth was a
novel interface. This recognition might have biased partic-
ipants to be complimentary of an interface they assumed
was being tested, as well as to pay particular attention to
the interface in the absence of habituation effects. Fur-
thermore, users will not always have a choice between

an overprivileged app and a less privileged variant, and
it is an open question whether users might still install
an overprivileged app if it is the only option. We have
one assumption that users will read the app description
when they decide to install apps. However, we did not
run a formal user study to verify the assumption. We did
observe in the lab study that most users payed attention
to the app description, but it would be better to verify the
assumption formally. Currently, the smart home market
is still at an early stage, and most of the users are with a
technical background. Many participants in our lab study
have good technical background, which is representative
for the current users. However, when the smart home
systems get much more popular, our participants might
not be representative for future users.

7 RELATED WORK

We next compare our work with previous research.

7.1 Mobile Permission Studies
Many researchers have studied permission systems for
mobile devices. While some insights apply in both do-
mains, the unique features of IoT platforms introduce
new security and privacy challenges. Most similarly to
SmartAuth, the Whyper system identifies Android permis-
sions that might be used from the app’s description [42].
The researchers do an extensive analysis of app descrip-
tions and match them with permissions, but they do not
evaluate the real security behaviors from the code of the
applications. Even for analyzing descriptions, SmartAuth
is fundamentally different because Android permissions
and APIs have very specific privacy implications. In con-
trast, reasoning about implications in the IoT is much
more context-sensitive, necessitating our further use of
NLP. Zhang et al. instead analyze Android apps using
static analysis, generating descriptions for the security
behaviors in the applications [57]. These descriptions are
helpful for users to understand the app’s behavior. How-
ever, users are burdened with reading the long logs and
still need to use the original Android interface to autho-
rize. In contrast, we remove many overprivilege cases
automatically and both design and test a new scheme that
minimizes user burden.

Many approaches build on this prior work. AutoCog
compares descriptions with permissions requested [43].
AsDroid analyzes the text in the user interface and the cur-
rent behavior to see whether it is a stealthy behavior [29].
Appcontext analyzes context that triggers security behav-
iors and compares the context among apps to differenti-
ate benign and malicious apps [56]. Other researchers
compare app behaviors to app descriptions by clustering
applications with similar functionality and finding apps
that use uncommon APIs [26]. Besides mobile permis-
sions, researchers also look into the privacy policies to
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identify privacy inconsistency of the code and the privacy
policy [58].

Another line of work studies users’ mental model about
permissions, focusing on users’ perceived risks [17, 18].
For example, Egelman et al. investigate user’s percep-
tions of sensitive data stored on their phones, including
banking information and home address [13]. However,
our study about users’ mental model about IoT permis-
sion makes new contribution because the perceptions and
requirements in IoT platfroms are different from mobile
platforms. Many researchers have sought to improve mo-
bile permissions. For example, Liu et al. propose privacy
profiles to ease user burden [37]. Almuhimedi et al. pro-
pose information visualization to improve user awareness
of risks [3], Harbach et al. suggest using personal exam-
ples to better explain permission requests [28], and Tan
et al. suggest using developer-specified explanations for
understanding [52]. Researchers have also provided gen-
eral guidelines for designing permission systems [16, 44].
Users’ perceptions of mobile permissions and IoT permis-
sions share some characteristics. For instance, Wijesekera
et al. observe through a field study that mobile apps some-
times violate contextual integrity by accessing unexpected
resources [55]. However, due to the differing privacy and
security implications for IoT platforms, SmartAuth fur-
ther rethinks the design of authorization systems.

7.2 IoT Security and Privacy
IoT security and privacy is an emerging area. Previous
research has largely focused on identifying security and
privacy vulnerabilities. Naveed et al. discuss the security
binding problems of smart devices that are external to the
mobile phone [40]. Fernandes et al. run a black-box anal-
ysis of Samsung SmartThings, pinpointing the overprivi-
lege problem [19]. We instead reconceptualize overprivi-
lege to be more practical and user-centered. To enhance
security and privacy goals in IoT and home automation
systems, FlowFence [20] uses information flow control
and explicitly isolates sensitive data inside sandboxes.
This approach requires intensive modification to Smart-
Apps, and the enforcement is done on Android instead of
a real smart home hub. Jia et al. [30] gather information
before a sensitive action is executed, and ask for user
approval through frequent run-time prompts. However,
in-context prompts cannot satisfy the real-time automa-
tion of IoT apps (e.g., users need to be awake to approve
a permission when an emergency happens). Users will
likely become habituated to approving these prompts, mis-
takenly approving unexpected behaviors. Furthermore,
the information they provide to users is directly dumped
from code, whereas we generate natural language to im-
prove communication with users. BLE-Guardian [15]
controls who can discover, scan, and connect to an IoT
interface. CIDS [10] designs an anomaly-based intrusion
detection system to detect in-vehicle attacks by measuring

fingerprints from deployed ECUs based on clock behav-
iors. Sivaraman et al. [45] propose managing IoT devices
through software-defined networking (SDN) based on
day-to-day activities.

Beyond framework or architecture solutions, enhancing
the security of smart devices is also a common counter-
measure against attacks from remote or near field com-
munication surfaces. For example, SEDA [6] proposed
their attestation protocol for embedded devices. Through
software attestation and showing states gathered from
booting sequences, SEDA can construct a security model
for swarm attestation. Similar approaches to ensure IoT or
smart device integrity [2,7,9,10] complement our system.

Some researchers have also examined IoT privacy from
a usability perspective. For example, Egelman et al. sug-
gest using crowdsourcing to improve IoT devices’ privacy
indicators [14]. Further, Ur et al. investigate parents’
and teens’ perspectives on smart home privacy [53] and
Demiris et al. study seniors’ privacy perspectives for
smart homes [12]. Kim et al. study the challenges in
access control management in smarthome and present
usable access control policies [34, 35]. In contrast, beside
understanding user’s mental model about smarthome pri-
vacy. we design a new usable IoT authorization scheme.
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9 CONCLUSION

In this paper, we have identified the fundamental gap
between how users expect an IoT app to perform and
what really takes place. We rethink the notion of au-
thorization in IoT platforms and propose an automated
and usable solution called SmartAuth to bridge the gap.
SmartAuth automatically collects security-relevant infor-
mation from an IoT app’s code and description, and gen-
erates a user-friendly authorization interface. Through
manual verification and in-lab human subject studies, we
demonstrate that SmartAuth can enable users to make
more well-informed authorization decisions for IoT apps
compared to the current approach.
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A SMARTAPP PATCHING

Our patching script is written in roughly 600 lines of
python code to modify the original Groovy source file
by the following steps. A toy example for a patched app
TURN IT ON FOR 5 MINUTES is given in Listing 2.

Listing 2: We provide a code snippet for patched IoT app TURN

IT ON FOR 5 MINUTES. Text in blue indicates statements
that need to be patched, and text in red indicates either new
code instrumented by the script or replaced with our wrapped
functions. The appSetting section added after the definition
block is used for OAuth configuration.

definition(
name: "Turn It On For 5 Minutes",
namespace: "smartthings",
author: "SmartThings",
description: "When a SmartSense Multi is

opened, a switch will be
turned on, and then turned off after 5

minutes.",
category: "Safety Security",
... \\

) {
appSetting "client_idFPS" // used to config

app identifier for OAuth.
appSetting "client_secretFPS" // used to

config app secret for OAuth.
appSetting "http_serverFPS" // we configure

cloud server url here.
}
...
mappings { // act as end-points for policy

enforcement module to deliver event data
path("/post_event") {

action: [
POST: "handleEventFromProxyServer"

}
}

}
preferences {

section("When it opens...") {
input "contact1",

"capability.contactSensor"
}
section("Turn on a switch for 5

minutes..."){
input "switch1", "capability.switch"

}
}
def installed() {

log.debug "Installed with settings:
\${settings}"
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subscribe(contact1, "contact.open",
contactOpenHandler)

subscribeToServer(contact1, "contact",
"open", contactOpenHandler)

}
def updated(settings) {

log.debug "Updated with settings:
\${settings}"

unsubscribe()
unsubscribeToServer()
subscribe(contact1, "contact.open",

contactOpenHandler)
subscribeToServer(contact1, "contact",

"open", contactOpenHandler)
}
def contactOpenHandler(evt) {

switch1.on()
sendCommandToProxyServer(switch1, "on", NULL,

NULL, NULL, NULL)
def fiveMinuteDelay = 60 * 5
runIn(fiveMinuteDelay, turnOffSwitch)

}
def turnOffSwitch() {

switch1.off()
sendCommandToProxyServer(switch1, "off",

NULL, NULL, NULL, NULL)
}
...

To enable authorization in the for policy enforcement
module, the script automatically inserts dynamic pages
and prepares a URL for the patched app to enable an
OAuth authentication flow at install time. The Smart-
Things platform provides a trigger for an OAuth autho-
rization flow via the URL containing an app identifier and
its cloud-generated app secret. When the user navigates
to the URL, they will be redirected to the SmartThings lo-
gin page to enter credentials and receive an authorization
token for later use.

The script next scans all devices on the SmartThings
capability list4 by parsing all input labels from the
preferences section and its corresponding child
pages, e.g., mainPage page section. The script builds
an internal structure called DL, maintaining a pair of in-
formation (input label, device capability), for later code
substitution for command or attribute statements.

The script then parses event handler subscription and
unsubscription statements by scanning the keywords. A
subscription statement consists of its input label, associ-
ated attributes, and the corresponding event handler func-
tion. For instance, subscribe(motionSensors,
"motion.active", motionActive) means the
app subscribes an event handler for status activity of in-
put motionSensors which has motion capability, and
assign function motionActive as callback handler.
Therefore, our patching engine replaces this statement
with an internal function subscribeToServer() to
send all corresponding parameters to the policy enforce-
ment module along with its app identifier. The module

4http://docs.smartthings.com/en/latest/
capabilities-reference.html

will determine whether this subscription is allowed de-
pending on user’s rules. If successful, the module will
forward the event data to the registered SmartApp. Unsub-
scription is much easier to implement, namely by remov-
ing all subscriptions registered on the policy enforcement
module.

The last step is to search all statements for possi-
ble command issuing or attribute retrieving associated
with those device labels collected above. For example,
the structure DL may contain an input device called
switch1 which has a switch capability. When the
script parses a statement containing the label switch1,
e.g., switch1.on(), the script catches the function
call on() and checks against a capability structure de-
fined based on the list of capabilities and their associated
functions and attributes5. Once the script confirms the
call or attribute, it replaces the original statement with the
internal API call sendCommandToProxyServer()
by sending the request to the policy enforcement module
with its app identifier, device label (switch1), command
label (on()) and any corresponding parameters.

After patching, each Groovy source file will contain
around 128 new lines to provide endpoint interfaces for
the policy enforcement module.

B SMARTAUTH WORKING EXAMPLE

Here we use one example to show how SmartAuth works.
THE FLASHER is an app that claimed to flash a set of
lights to notify user when motion, open/close event, or
switch event is detected. However, besides subscribing
to motion sensor, contact sensor, and switch, the app also
subscribes to the presence sensor and the acceleration
sensor. To bridge the gap between what the users think
the app do and the app’s real behaviors, we generate the
security policy from the code and from the description.
We display the verified capabilities according to their
functionality, and notify users about the unexpected be-
haviors, similar to Figure 4. On the interface, we further
classify the unexpected actions into “unexpected” and
“dangerous”, according to the user perception measured
through our crowd-sourcing result. We present the se-
curity policy and unexpected/dangerous behaviors in a
usable authorization interface. After getting the response
from the users, we enforce the policy so that the app only
gets what it needed for the functionality and what the user
understand and would like the app to access.

C APPS USED IN THE LAB STUDY

We show the participants five group of apps in the Smart-
Auth and SmartThing interface, as shown in Table 1.In-
terfaces used in the experiments can be found at [46].

5http://docs.smartthings.com/en/latest/
capabilities-reference.html
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Table 1: Apps in the lab study

App
ID

App Name Description Overprivileged? If
so, Behavior Type

1A SMART HU-
MIDIFIER

Turn on/off humidifier based on relative humidity from a sensor. NO

1B HUMIDITY
ALERT

Notify me when the humidity rises above or falls below the given threshold. It will turn on a
switch when it rises above the first threshold and off when it falls below the second threshold.

YES, Lock (Danger-
ous)

2A VIRTUAL
THERMOSTAT

Control a space heater or window air conditioner in conjunction with any temperature sensor,
like a SmartSense Multi.

YES, Motion Sensor
(Dangerous)

2B SMART
HEATER

Turn on/off the heater based on the temperature. NO

3A LIGHTS OFF Turn lights off when no motion and presence is detected for a set period of time. NO
3B DARKEN BE-

HIND ME
Turn your lights off after a period of no motion being observed. YES, Temperature

Sensor (Unexpected)
4A FLASH A NO-

TICE
When something happens (open/close, switch on/off, motion detected), flash lights to indicate. NO

4B THE
FLASHER

Flashes a set of lights in response to motion, an open/close event, or a switch. YES, Presence Sen-
sor (Unexpected)

5A LEFT IT OPEN Turn lights off when no motion and presence is detected for a set period of time. YES, Power Meter
(Unexpected)

5B SMART WIN-
DOW

Compares two temperatures - indoor vs outdoor, - then sends an alert if windows are open (or
closed). If you don’t use an external temperature device, your zipcode will be used instead.

NO

D EXAMPLE SURVEY QUESTIONS

We list a few representative survey questions.

D.1 Example questions in the Mturk study
1. What factors will you consider when making deci-

sion of whether to install a third party app or not?
And please indicate how much you care on each
factor that you will consider. {Strongly care, care,
neither care or not care, not care, Strongly not care}
() The source / author of the app
() The popularity of the app
() The functionality of the app
() The privacy aspect of the app
() The smarthome capabilities that the app request
() The relation of capability requests to the app’s
functionality
() Others:

2. Third-party apps can access devices in the smart
home after they are installed. Please rate the risk
levels of the different behaviors to access devices.
{Very sensitive, sensitive, a bit sensitive, not sensi-
tive}
() Unlock your door
() Lock your door
() Read the input of your door lock
() Read the battery level
() Read your motion sensor
() Control your water pump
() Turn on/off your light
() Adjust the level of your light

3. Similar to smarthome capabilities, Android or iOS
also provide permissions to third-party apps to con-
trol the access to resources in the mobile phone such
as your location and contact book. Which one do

you think is more sensitive?
A) Smarthome capabilties are more sensitive
B) Android or iOS permissions are more sensitive
C) I think they are the same
D) I don’t know

4. Please explain your reasons for the last question:

D.2 Example questions in the in-lab study
Please choose how much you agree with the following
statements. {Strongly disagree, disagree, neither agree or
disagree, agree, strongly agree}.

1. I feel that the app description explains thoroughly
why the app can access and control these sensors and
devices.

2. I feel confident to make a decision whether or not to
install the app after reading the description.

3. It is difficult to find information from the description.

E CROWDSOURCING FOR UNEXPECTED
BEHAVIOR SENSITIVITY

We evaluate how sensitive the unexpected behaviors are
by combining expert reviews and crowdsourcing together.
In particular, we have two security experts and 100 Mturk-
ers to look into the apps’ unexpected behaviors and eval-
uate how sensitive the unexpected behavior is given the
context of the app. We asked the participants to clas-
sify whether these unexpected behaviors are dangerous
or not(dangerous is counted as 1, and not dangerous is
counted as 0). From the expert and Mturk responses, we
assign each security expert a weight of 0.25, and each
Mturker a weight of 0.005. If the weighted sum is over
0.5, we consider the behavior as dangerous.
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Table 2: Compatibility test results among 30 SmartApps exhibiting undisclosed overprivilege, meaning they contain capabilities
for functionality not disclosed in the app description. Of these undisclosed overprivilege cases, we refer to the low-risk cases as
unexpected capabilities and the high-risk cases as dangerous capabilities. Note that the risk levels are crowd-sourced via online
surveys. We remove the access to all the unexpected and dangerous capability to test whether the apps can still perform correctly.

App Unexpected Capability Dangerous Capability Compatible
ALFRED WORKFLOW switch lock Not if block re-

mote access
BRIGHT WHEN DARK AND/OR
BRIGHT AFTER SUNSET

switchLevel Yes

CAMERA POWER SCHEDULER switch Yes
CURLING IRON motionSensor Yes
FORGIVING SECURITY contactSensor, switch alarm, motionSensor Yes
GOOD NIGHT switch Yes
JENKINS NOTIFIER colorControl switch Yes
NOTIFY ME WHEN button, contactSensor, accelerationSensor,

presenceSensor, smokeDetector, waterSensor
motionSensor, switch Yes

PHOTO BURST WHEN accelerationSensor, contactSensor imageCapture, motion-
Sensor, switch, presence-
Sensor

Yes

PREMPOINT imageCapture, switch,
lock, garageDoorControl

Yes

RISE AND SHINE motionSensor Yes
SAFE WATCH contactSensor, accelerationSensor, threeAxis,

temperatureMeasurement
motionSensor, presence-
Sensor

Yes

SEND HAM BRIDGE COM-
MAND WHEN

contactSensor, accelerationSensor, switch,
waterSensor, smokeDetector

motionSensor, presence-
Sensor

Yes

SIMPLE CONTROL switch, lock, thermostat, doorControl, color-
Control, musicPlayer, switchLevel

lock, doorControl Not if block re-
mote access

SMART LIGHT TIMER contactSensor motionSensor Yes
SMART SECURITY switch Yes
SMART WINDOWS contactSensor Yes
SMARTBLOCK NOTIFIER switch Yes
SPEAKER CONTROL contactSensor, accelerationSensor, switch,

waterSensor, button
motionSensor, presence-
Sensor

Yes

SPEAKER MOOD MUSIC contactSensor, accelerationSensor, button,
waterSensor,musicPlayer

motionSensor, presence-
Sensor, switch

Yes

SPRAYER CONTROLLER 2 switch Yes
SPRUCE SCHEDULER contactSensor Yes
TALKING ALARM CLOCK switchLevel, temperatureMeasurement, ther-

mostat, relativeHumidityMeasurement
Yes

THE FLASHER presenceSensor Yes
TURN IT ON FOR 5 MINUTES contactSensor Yes
UNDEAD EARLY WARNING contactSensor switch Yes
VINLI HOME CONNECT switch,lock Not if block re-

mote access
VIRTUAL THERMOSTAT motionSensor Yes
WEATHER WINDOWS contactSensor Yes
WHOLE HOUSE FAN contactSensor Yes

F APPS WITH UNDISCLOSED OVERPRIV-
ILEGE

Table 2 tabulates the 30 apps that exhibit undisclosed
overprivilege. These apps either request unexpected capa-

bilities not mentioned in their descriptions or dangerous
capabilities that could cause harm.
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Abstract

System designers have long struggled with the challenge
of determining how to control when untrusted applica-
tions may perform operations using privacy-sensitive sen-
sors securely and effectively. Current systems request
that users authorize such operations once (i.e., on install
or first use), but malicious applications may abuse such
authorizations to collect data stealthily using such sensors.
Proposed research methods enable systems to infer the op-
erations associated with user input events, but malicious
applications may still trick users into allowing unexpected,
stealthy operations. To prevent users from being tricked,
we propose to bind applications’ operation requests to
the associated user input events and how they were ob-
tained explicitly, enabling users to authorize operations on
privacy-sensitive sensors unambiguously and reuse such
authorizations. To demonstrate this approach, we imple-
ment the AWare authorization framework for Android,
extending the Android Middleware to control access to
privacy-sensitive sensors. We evaluate the effectiveness
of AWare in: (1) a laboratory-based user study, finding
that at most 7% of the users were tricked by examples of
four types of attacks when using AWare, instead of 85%
on average for prior approaches; (2) a field study, showing
that the user authorization effort increases by only 2.28
decisions on average per application; (3) a compatibility
study with 1,000 of the most-downloaded Android appli-
cations, demonstrating that such applications can operate
effectively under AWare.

1 Introduction

Contemporary desktop, web, and mobile operating sys-
tems are continually increasing support for applications to
allow access to privacy-sensitive sensors, such as cameras,
microphones, and touch-screens to provide new useful
features. For example, insurance and banking applications
now utilize mobile platforms’ cameras to collect sensi-

tive information to expedite claim processing1 and check
depositing2, respectively. Several desktop and mobile
applications provide screen sharing3 and screen capturing
features for remote collaboration or remote control of
desktop and mobile platforms. Also, web search engines
now embed buttons to call the businesses linked to the
results directly.

Unfortunately, once an application is granted access
to perform such sensitive operations (e.g., on installa-
tion or first use), the application may use the operation
at will, opening opportunities for abuse. Indeed, cyber-
criminals have built malware applications available online
for purchase, called Remote Access Trojans (RATs), that
abuse authorized access to such sensors to exfiltrate audio,
video, screen content, and more, from desktop and mobile
platforms. Since 75% of operations requiring permissions
are performed when the screen is off, or applications are
running in the background as services [54], these attacks
often go unnoticed by users. Two popular RAT applica-
tions, widely discussed in security blogs and by anti-virus
companies, are Dendroid [1] and Krysanec [19]. In the
“Dendroid case”, the Federal Bureau of Investigations and
the Department of Homeland Security performed an in-
vestigation spanning several years in collaboration with
law enforcement agencies in over 20 countries. The cy-
bercriminal who pleaded guilty for spreading the malware
to over 70,000 platforms worldwide was convicted of 10
years in prison and a $250,000 fine [16, 18]. Several
other cases of abuse have been reported ever since. Some
cases leading to legal actions, including the case of the
NBA Golden State Warriors’ free application that covertly
turns on smartphones’ microphones to listen to and record
conversations [17], school laptops that were found to use
their cameras to spy on students to whom they were given
[13], and others [14, 15].

1Speed up your car insurance claim. www.esurance.com
2PNC Mobile Banking. www.pnc.com
3Remote Screen Sharing for Android Platforms. www.bomgar.com
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Researchers have also designed mobile RAT applica-
tions to demonstrate limitations of access control models
adopted by contemporary operating systems when medi-
ating access to privacy-sensitive sensors. For instance,
PlaceRaider [51] uses the camera and built-in sensors
to construct three-dimensional models of indoor environ-
ments. Soundcomber [46] exfiltrates sensitive data, such
as credit card and PIN numbers, from both tones and
speech-based interaction with phone menu systems. Even
the Meterpreter Metasploit exploit, enables microphone
recording remotely on computers running Ubuntu4.

To address these threats, researchers have proposed
methods that enable the system to infer which opera-
tion requests are associated with which user input events.
Input-Driven [33] access control authorizes the operation
request that immediately follows a user input event, but a
malicious application may steal a user input event targeted
at another application by submitting its request first. User-
Driven [39, 41] access control requires that applications
use system-defined gadgets associated with particular op-
erations to enable the system to infer operations for user
input events unambiguously, but does not enable a user
to verify the operation that she has requested by provid-
ing input. We describe four types of attacks that are still
possible when using these proposed defenses.

In this work, we propose the AWare authorization
framework to prevent abuse of privacy-sensitive sensors
by malicious applications. Our goal is to enable users
to verify that applications’ operation requests correspond
to the users’ expectations explicitly, which is a desired
objective of access control research [24, 28]. To achieve
our objective, AWare binds each operation request to a
user input event and obtains explicit authorization for the
combination of operation request, user input event, and
the user interface configuration used to elicit the event,
which we call an operation binding. The user’s autho-
rization decision for an operation binding is recorded and
may be reused as long as the application always uses the
same operation binding to request the same operation.
In this paper, we study how to leverage various features
of the user interface to monitor how user input events
are elicited, and reduce the attack options available to
adversaries significantly. Examples of features include
the widget selected, the window configuration containing
the widget, and the transitions among windows owned by
the application presenting the widget. In addition, AWare
is designed to be completely transparent to applications,
so applications require no modification run under AWare
control, encouraging adoption for contemporary operating
systems.

We implement a prototype of the AWare authorization
framework by modifying a recent version of the An-

4null-byte.wonderhowto.com

droid operating system and found, through a study of
1,000 of the most-downloaded Android applications, that
such applications can operate effectively under AWare

while incurring less than 4% performance overhead on
microbenchmarks. We conducted a laboratory-based user
study involving 90 human subjects to evaluate the effec-
tiveness of AWare against attacks from RAT applications.
We found that at most 7% of the user study participants
were tricked by examples of four types of attacks when
using AWare, while 85% of the participants were tricked
when using alternative approaches on average. We also
conducted a field-based user study involving 24 human
subjects to measure the decision overhead imposed on
users when using AWare in real-world scenarios. We
found that the study participants only had to make 2.28
additional decisions on average per application for the
entire study period.

In summary, the contributions of our research are:

• We identify four types of attacks that malicious ap-
plications may still use to obtain access to privacy-
sensitive sensors despite proposed research defenses.

• We propose AWare, an authorization framework to
prevent abuse of privacy-sensitive sensors by mali-
cious applications. AWare binds application requests
to the user interface configurations used to elicit user
inputs for the requests in operation bindings. Users
then authorize operation bindings, which may be
reused as long as the operation is requested using the
same operation binding.

• We implement AWare as an Android prototype and
test its compatibility and performance for 1,000 of
the most-downloaded Android applications. We also
evaluate its effectiveness with a laboratory-based
user study, and measure the decision overhead im-
posed on users with a field-based user study.

2 Background
Mobile platforms require user authorization for untrusted
applications to perform sensitive operations. Mobile plat-
forms only request such user authorizations once, either
at application installation time or at first use of the opera-
tion [2, 3] to avoid annoying users.

The problem is that malicious applications may abuse
such blanket user authorizations to perform authorized,
sensitive operations stealthily, without users’ knowledge
and at times that the users may not approve. Operations
that utilize sensors that enable recording of private user
actions, such as the microphone, camera, screen, etc.,
are particularly vulnerable to such abuse. Research stud-
ies have shown that such attacks are feasible in real sys-
tems, such as in commodity web browsers and mobile
apps [21, 29, 37]. These studies report that more than 78%
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Figure 1: In mobile platforms, once the system authorizes an application
to perform a operation, the application may perform that operation at any
time, enabling adversaries to stealthily access privacy-sensitive sensors,
e.g., record speech using the microphone, at any time.

of users could be potentially subject to such attacks. Fur-
thermore, security companies, such as Check Point, have
reported several malware apps that performs stealthy and
fraudulent auto-clicking [4], such as Judy, FalseGuide,
and Skinner that reached between 4.5 million and 18.5
million devices worldwide. Figure 1 shows that once an
application is granted permission to perform an operation
using a privacy-sensitive sensor, such as recording via the
microphone, that application may perform that operation
at any time, even without user consent. This shortcom-
ing enables adversaries to compromise user privacy, e.g.,
record the user’s voice and the surrounding environment,
without the user being aware. Research studies have al-
ready shown that users have a limited understanding of
security and privacy risks deriving from installing appli-
cations and granting them permissions [10].

Research [45, 51, 52] and real-world [1, 19] developers
have produced exploits, called Remote Access Trojans
(RATs), that abuse authorized operations to extract audio,
video, screen content, etc., from personal devices while
running in the background to evade detection by users.
Instances of permission abuse have been reported in sev-
eral popular mobile applications such as Shazam, TuneIn
Radio, and WhatsApp [48].

Researchers have proposed defenses to prevent stealthy
misuse of operations that use privacy-sensitive sen-
sors [33, 39, 41]. Figure 1 also provides the insight behind
these defenses: legitimate use of these sensors must be
accompanied by a user input event to grant approval for
all operations targeting privacy-sensitive sensors. First,
Input-Driven Access Control [33] (IDAC) requires ev-
ery application request for a sensor operation to follow a
user input event within a restricted time window. Thus,
IDAC would deny the stealthy accesses shown in Fig-
ure 1 because there is no accompanying user input event.
Second, User-Driven Access Control [39, 41] (UDAC)
further restricts applications to use trusted access control
gadgets provided by the operating system, where each ac-
cess control gadget is associated with a specific operation
for such sensors. Thus, UDAC requires a user input event
and limits the requesting application only to perform the
operation associated with the gadget (i.e., widget) by the
system.

3 Problem Definition
Although researchers have raised the bar for stealthy mis-
use of sensors, malicious applications may still leverage
the user as the weak link to circumvent these protection
mechanisms. Previous research [6, 12, 30] and our user
study (see Section 8.1.1) show that users frequently fail to
identify the application requesting sensor access, the user
input widget eliciting the request, and/or the actual opera-
tion being requested by an application. Such errors may
be caused by several factors, such as users failing to detect
phishing [12], failing to recognize subtle changes in the
interface [20], and/or failing to understand the operations
granted by a particular interface [38]. In this section, we
examine attacks that are still possible given proposed re-
search solutions, and what aspects of proposed solutions
remain as limitations.

3.1 User Interface Attacks
In this research, we identify four types of attacks that ma-
licious applications may use to circumvent the protection
mechanisms proposed in prior work [33, 39, 41].

Figure 2: The user’s perception of the op-
eration that is going to be performed dif-
fers from the actual operation requested
by the application, which abuses a previ-
ous granted permission.

Operation Switching: A malicious application may try
to trick a user into authorizing an unintended operation
by changing the mapping between a widget and the as-
sociated operation, as shown in Figure 2. This type of
attack is possible in IDAC because the relationship be-
tween a user input event and the operation that will be
authorized as a result of that event is implicit. Indeed,
any application can request any operation for which they
have been authorized previously (e.g., by first use) and
will be approved if it is the first request received after the
event. UDAC [39, 41] avoids this type of attack by design
by having the system define a mapping between widgets
(gadgets) and operations, so the operation is determined
precisely by the widget. Any solution we devise must
prevent this kind of attack as well.

Figure 3: A photo capturing application
presents a video camera widget, instead of
a camera widget, to trick the user into also
granting access to the microphone. The win-
dowing display context surrounding the wid-
get shows a camera preview for photo captur-
ing.

Bait-and-Context-Switch: A malicious application
may try to trick the user to authorize an unintended op-
eration by presenting a widget in a misleading display
context, as shown in Figure 3. In this case, the win-
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dowing context surrounding the widget indicates one ac-
tion (e.g., taking a picture) when the widget presented
requests access to a different operation (e.g., taking a
video). This type of attack is possible because users
engaged in interface-intensive tasks may focus on the
context rather than the widget and infer the wrong wid-
get is present, authorizing the wrong operation. Neither
IDAC [33] nor UDAC [39, 41] detect the attack shown.
Although UDAC [39] checks some properties of the dis-
play context5, plenty of flexibility remains for an adver-
sary to craft attacks since applications may choose the
layout around which the widget is displayed.

Figure 4: A malicious application
keeps the windowing display context but
switches the widget to trick users who
have made several similar selections to
grant the malicious application also ac-
cess to the microphone mistakenly.

Bait-and-Widget-Switch: A malicious application may
present the same widget for the same operation to the user
several times in succession, but then substitute another
widget for another operation, hoping that the user will not
notice the widget change. An example of this attack is
shown in Figure 4. Again, this type of attack is possible
because users engaged in interface-intensive tasks may be
distracted, thus, not notice changes in the widget. Again,
UDAC methods to detect deceptive interfaces [39] are not
restrictive enough to prevent this attack in general. For
example, one UDAC check restricts the gadget’s location
for the user input event, but this does not preclude using
different gadgets at the same location.

Figure 5: The
user may mistak-
enly authorize ac-
cess to the micro-
phone to a RAT
application spoof-
ing the graphical
aspect of a well-
known legitimate
application.

Application Spoofing: A malicious application repli-
cates the look-and-feel of another application’s interface
and replaces the foreground activity of that application
with one of its own to gain access to a sensor as shown in
Figure 5, similar to a phishing attack. For example, when
the benign application running in the foreground elicits a
user input event, the malicious application may also try
to elicit a user input event using its own activity window
by replacing the benign application currently in the fore-
ground. If the user supplies an input to the masquerading

5UDAC Audacious [39] checks that the user interface presented
does not have misleading text, that the background and text preserve
the contrast, and that the gadget is not covered by other user interface
elements.

application’s widget, then the masquerading application
can perform any operation for which it is authorized (e.g.,
from first use or its manifest). While researchers have ex-
plored methods to increase the user’s ability to detect the
foreground application [6], mistakes are still possible. In-
deed, prior studies have reported that few users notice the
presence of security indicators, such as the browser lock
icon [9, 53], and that even participants whose assets are at
risk fail to react as recommended when security indicators
are absent [44]. Since IDAC and UDAC [33, 39, 41] both
treat user input as authorization, both will be prone to this
attack6.

3.2 Limitations of Current Defenses
The main challenge is determining when users allow appli-
cations to use particular privacy-sensitive sensors without
creating too much burden on users. As a result, current
mobile platforms only request user authorization once
(e.g., on first use or installation), and proposed research
solutions aim to infer whether users authorize access to
particular sensors from user actions implicitly. However,
inferring user intentions implicitly creates a semantic gap
between what the system thinks the user intended and
what the user actually intended.

Traditionally, access control determines whether sub-
jects (e.g., users and applications) can perform operations
(e.g., read and write) on resources (e.g., sensors). Pro-
posed approaches extend traditional access control with
additional requirements, such as the presence of a user
input event [33, 41] or properties of the user interface [39].
However, some requirements may be difficult to verify,
particularly for users, as described above, so these pro-
posed approaches still grant adversaries significant flexi-
bility to launch attacks. Proposed approaches still demand
users to keep track of which application is in control, the
operations associated with widgets, which widget is being
displayed, and whether the widget or application changes.

Finally, application compatibility is a critical factor
in adopting the proposed approaches. The UDAC solu-
tions [39, 41] require developers to modify their appli-
cations to employ system-defined gadgets. It is hard to
motivate an entire development community to make even
small modifications to their applications, so solutions that
do not require application modifications would be pre-
ferred, if secure enough.

4 Security Model
Trust Model - We assume that applications are isolated
from each other either using separate processes, the same-
origin policy [42], or sandboxing [7, 36], and have no
direct access to privacy-sensitive sensors by default due
to the use of Mandatory Access Control [49, 50].

6UDAC authors [41] did acknowledge this attack, and indicated that
solutions to such problems are orthogonal.
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Figure 6: Overview of the AWare authorization framework. The three dashed lines highlight the parts of information used by AWare to generate an
operation binding. The gray arrows represent one-time steps required to obtain an explicit authorization from the user for the creation of a new
operation binding, which are not required when the operation binding has been explicitly authorized by the user in previous interactions.

We assume the presence of a trusted path for users
to receive unforgeable communications from the system
and provide unforgeable user input events to the system.
We assume that trusted paths are protected by mandatory
access control [49, 50] as well, which ensures that only
trusted software can receive input events from trusted
system input devices to guarantee the authenticity (i.e.,
prevent forgery) of user input events.

Trusted path communication from the system to the
user uses a trusted display area of the user interface,
which we assume is available to display messages for
users and applications do not have any control of the
content displayed in this area; thus they cannot interfere
with system communications to or overlay content over
the trusted display area.

These assumptions are in line with existing research
that addresses the problem of designing and building
trusted paths and trusted user interfaces for browsers [55],
X window systems [47, 56], and mobile operating sys-
tems [26, 27]. The design of our prototype leverages
mechanisms provided by the Android operating system
satisfying the above assumptions, as better described in
Section 7.

Threat Model - We assume that applications may
choose to present any user interface to users to obtain
user input events, and applications may choose any opera-
tion requests upon any sensors. Applications may deploy
user interfaces that are purposely designed to be similar
to that of another application, and replay its user inter-
face when another application is running to trick the user
into interacting with such interface to “steal” such user
input event. Applications may also submit any operation
request at any time when that application is running, even
without a corresponding user input event. Applications
may change the operation requests they make in response
to user input events.

5 Research Overview
Our objective is to develop an authorization mechanism
that eliminates ambiguity between user input events and
the operations granted to untrusted applications via those
events, while satisfying the following security, usability,
and compatibility properties:

User Initiation Every operation on privacy-sensitive
sensors must be initiated by an authentic user input event.

User Authorization Each operation on privacy-
sensitive sensors requested by each application must be
authorized by the user explicitly prior to that operation
being performed.

Limited User Effort Ideally, only one explicit user
authorization request should be necessary for any benign
application to perform an operation targeting privacy-
sensitive sensors while satisfying the properties above.

Application Compatibility No application code
should require modification to satisfy the properties
above.

We aim to control access to privacy-sensitive sensors
that operate in discrete time intervals initiated by the user,
such as the cameras, microphone, and screen buffers. We
believe the control of access to continuous sensors, such
as GPS, gyroscope, and accelerometer, requires a different
approach [34], but we leave this investigation as future
work.

To achieve these objectives, we design the AWare au-
thorization framework. The main insight of the AWare de-
sign is to extend the notion of an authorization tuple (i.e.,
subject, resource, operation) used to determine whether
to authorize an application’s operation request to include
the user interface configuration used to elicit the user in-
put event. We call these extended authorization tuples
operation bindings, and users explicitly authorize oper-
ation bindings before applications are allowed to access
sensors. An operation binding may reused to authorize
subsequent operations as long the application uses the
same user interface configuration to elicit input events to
request the same operation.

Approach Overview. Figure 6 summarizes the steps
taken by the AWare to authorize applications’ operation
requests targeting privacy-sensitive sensors.

In a typical workflow, an application starts by specify-
ing a set of user interface configuration, such as widgets
and window features, to the trusted software (step 1 ) in
charge of rendering such widgets with windows to elicit
user input (step 2 ). An authentic user interaction with
the application’s widgets in a user interface configuration
generates user input events (step 3 ), which are captured
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by the trusted software (step 4 ) together with the current
user interface configuration (e.g., enclosing window, win-
dow features, ancestors windows, etc.) and forwarded to
the application (step 5 ). Based on the user input events,
the application may generate a request for a particular
operation targeting one or more privacy-sensitive sensors,
which is captured by the trusted software (step 6 ).

At this stage, the AWare authorization framework (part
of the trusted software layer) has full visibility of: (1) the
application’s identity; (2) the application’s user interface
widget; (3) the authentic user input event associated with
that widget; (4) the user interface configuration within
which the widget is presented to the user; (5) the ap-
plication’s operation request; and (6) the target set of
privacy-sensitive sensors for such an operation. Thus, the
AWare authorization framework can bind these pieces of
information together, creating an operation binding.

Next, the AWare authorization framework checks
whether such an operation binding has already been au-
thorized by the user (step 7 ). If not, AWare presents
a request for authorization of the operation binding to
the user (Section 7), called the binding request (step 8 ).
Upon receiving a binding request, the user can explicitly
authorize the use of the set of privacy-sensitive sensors
by the requesting application for the identified operation
binding (step 9 ). Upon the user’s authorization, the
operation binding is then cached (Section 6.5) for reuse
in authorizing future requests using the same operation
binding automatically (step 10 ).

After the operation authorization, the trusted software
controlling the set of privacy-sensitive sensors starts the
data collection (step 11 ), while the user is explicitly no-
tified about the ongoing operation via an on-screen noti-
fications in a trusted display area (step 12 ). Finally, the
collected data is delivered to the requesting application
for data processing (step 13 ).

The sequence of events in Figure 6 shows that AWare
relies on a one-time, explicit user authorization that binds
the user input event, the application identity, the widget,
the widget’s user interface configuration, the operation,
and the set of target sensors; then, it reuses this authoriza-
tion for future operation requests.

6 AWare Design
6.1 Operation Bindings
As described above, AWare performs authorization using
a concept called the operation binding.

Definition 1: An operation binding is a tuple b = (app,
S, op, e, w, c), where: (1) app is the application associ-
ated with both the user interface widget and the operation
request; (2) S is the set of sensors (i.e., resources) targeted
by the request; (3) op is the operation being requested on
the sensors; (4) e is the user input event; (5) w is a user

interface widget associated with the user input event; (6)
c is the user interface configuration containing the widget.

The user interface configuration describes the structure
of the user interface when a user input event is produced,
which includdes both features of the window in which the
widget is displayed and application’s activity window call
graph, which relates the windows used by the application.
We define these two aspects of the configuration precisely
and describe their use to prevent attacks in Sections 6.3
and 6.4.

The first part of an operation binding corresponds to
the traditional authorization tuple of (subject, object, oper-
ation). An operating binding links a traditional operation
tuple with a user input event and how it was obtained in
terms of the rest of the operation binding tuple (event e,
widget w, configuration c). AWare’s authorization pro-
cess enables users to authorize operation requests for the
authorization tuple part of the operation binding (app, S,
op) associated with a particular way the user approved
the operation from the rest of the operation binding (e,
w, c). AWare reuses that authorization to permit subse-
quent operation requests by the same application when
user input events are obtained in the same manner.

A user’s authorization of an operation binding implies
that the application will be allowed to perform the re-
quested operation on the set of sensors whenever the user
produces the same input event using the same widget
within the same user interface configuration.

We explain the reasoning behind the operation binding
design by describing how AWare prevents the attacks
described in Section 3.1 in the following subsections.

6.2 Preventing Operation Switching
AWare prevents operation switching attacks by producing
an operation binding that associates a user input event and
widget with an application’s operation request.

Upon a user input event e, AWare collects the wid-
get w, the user interface configuration c in which it is
presented, and the application associated with the user
interface app. With this partial operation binding, AWare
awaits an operation request. Should the application make
an operation request within a limited time window [33],
AWare collects the application app, operation sensors S,
and operation requested op, the traditional authorization
tuple, to complete the operation binding for this operation
request.

The constructed operation binding must be explicitly
authorized by the user. To do so, AWare constructs a bind-
ing request that it presents to the user on the platform’s
screen. The binding request clearly specifies: (1) the iden-
tity of the requesting application; (2) the set of sensors
targeted by the operation request; (3) the type of operation
requested by the application; and (4) the widget receiving
the user input event action.
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This approach ensures that the user authorizes the com-
bination of these four components enabling the user to
verify the association between the operation being autho-
rized and the widget used to initiate that operation. Also,
each operation binding is associated with the specific user
interface configuration for the widget used to activate the
operation. Although, this information is not presented
to the user, it is stored for AWare to compare to future
operation requests to prevent more complex attacks, as
described below.

This prevents the operation switching attack on
IDAC [33], where another operation may be authorized
by a user input event. AWare creates a binding between a
widget and operation as UDAC [39, 41] does, but unlike
UDAC AWare creates these bindings dynamically. Ap-
plications are allowed to choose the widgets to associate
with particular operations. In addition, AWare informs
the user explicitly of the operation to be authorized for
that widget, whereas UDAC demands that the user learn
the bindings between widgets and operations correctly.
The cost is that AWare requires an explicit user autho-
rization on the first use of the widget for an operation
request, whereas UDAC does not. However, as long as
this application makes the same operation requests for
user input events associated with the same widget, AWare
will authorize those requests without further user effort.

6.3 Preventing Bait-and-Switch
Applications control their user interfaces, so they may
exploit this freedom to perform bait-and-switch attacks
by either presenting the widget in a misleading window
(Bait-And-Context-Switch) or by replacing the widget
associated with a particular window (Bait-And-Widget-
Switch). Research studies have shown that such attacks
are feasible in real systems and that the damage may be
significant in practice [21, 29, 37]. To prevent such at-
tacks, AWare binds the operation request with the user
interface configuration used to display the widget, in ad-
dition to the widget and user input event.

One aspect of the user interface configuration of the
operation binding describes features of the window en-
closing the widget.

Definition 2: A display context is a set of structural
features of the most enclosing activity window a w con-
taining the widget w.

Structural features describe how the window is pre-
sented, excepting the content (e.g., text and figures inside
web pages), which includes the position, background, bor-
ders, title information, and widgets’ position within the
window. The set of structural features used by AWare are
listed in Table 5. AWare identifies a w as a new activity
window should any of these structural features change.

The hypothesis is that the look-and-feel of an applica-
tion window defined by its structural features should be

Figure 7: Activity window call graphs are created at runtime for the
activity windows that produce authorized operations. (bg) is the back-
ground activity.

constant, while the content may change. Our examination
of Android applications shows that the same windows re-
tain the same look-and-feel consistently, but not perfectly.
For example, the exact location of the window may vary
slightly, so we consider allowing modest ranges for some
feature values. We further discuss the authentication of
display context in Section 7.

This approach prevents Bait-and-Widget-Switch at-
tacks because clearly an instance of the same window
(i.e., display context) with a different widget will not
match the previous operation binding. Similarly, for Bait-
and-Context-Switch attacks, the same widget presented in
a different window (i.e., display context) will not match
the previous operation binding, therefore a new operation
binding request will be prompted to the user.

Once the widget and the display context are bound
together and kept fixed, the adversary is left only with
the content (e.g., text and figures inside a web page) as
possible misleading tool. However, since the display
context also measures the window’s UI elements and their
positions, little space is left to the adversary for attacks.

Therefore, such an approach prevents bait-and-switch
attacks possible in both IDAC [33] and UDAC [39, 41],
where users must continuously check for subtle changes
to the widgets or their display contexts rendered on the
platform’s screen.

6.4 Preventing Application Spoofing
To launch such an attack an application must succeed in
replacing the foreground activity window of one appli-
cation with its own activity window and adopt the same
look-and-feel of the replaced application.

We can prevent applications from presenting their ac-
tivity windows arbitrarily by enforcing the application’s
authorized activity window call sequences.

Definition 3: An activity window call graph G:=
(N,E) is a graph, where each node in N represents an
activity window and each edge in E represents an inter-
activity window transition enabled either via user input
events (i.e., click of a button) or system events (i.e., in-
coming phone call).

An activity window call graph records the relationships
among the windows used by an application. An example
of an activity window call graph is shown in Figure 7,
where events may cause transitions between windows
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a w1 and a w4 and the application may enter the back-
ground only from the activity window a w2. Note that
an application’s activity window call graph can be built
while the application runs, as the user authorizes operation
bindings.

If the malicious application has not used this spoof-
ing window previously, then a binding request will be
created for the user, which then shows the identity of the
application. Thus, the user could prevent the malicious ap-
plication from ever performing this operation in any user
interface configuration. IDAC [33] and UDAC [39, 41]
do not explicitly force the user to check the application
that will be authorized, although UDAC identified the
need for such a mechanism [41].

On the other hand, a malicious application may try to
hijack a foreground activity window of another applica-
tion for a window that has been authorized by the user
previously. However, if the malicious application’s win-
dow is not authorized to transition from the background
(e.g., only the activity window a w2 is authorized in Fig-
ure 7), then the transition will not match the activity call
graph. In this case, a new binding request will be made to
the user, which will clearly identify the (malicious) appli-
cation. We discuss the authentication of the app identity
in Section 7. Both IDAC and UDAC allow such hijacking
and rely on the user to detect these subtle attacks.

A malicious application may try to circumvent the ac-
tivity call graph checking by creating a more fully con-
nected graph that allows more attack paths. However,
such an activity window call graph will require more user
authorizations, which may dissuade the user from that
application. Furthermore, intrusion analysis may lever-
age such activity window call graphs to detect possible
attacks.

6.5 Reusing Operation Bindings
Authorized operation bindings are cached to minimize the
user’s effort in making explicit authorizations of binding
requests to improve usability. Thus, AWare uses a caching
mechanism to require an explicit user’s authorization only
the first time an operation binding is identified, similarly
to the first-use permission mechanism. We hypothesize
that in most benign scenarios an authentic user interaction
with a specific application’s widget is going to gener-
ate a request for the same operation for the same set of
privacy-sensitive sensors each time. Hence, the previous
explicit authorization can be reused securely as implicit
authorization, as long as the integrity of the operation
binding is guaranteed. In Section 8.1.2, we show that
such an approach does not prohibitively increase the num-
ber of access control decisions that users need to make
thus avoiding decision fatigue [11].

However, we must ensure that operation bindings do
not become stale. For example, if the application changes

the way it elicits an operation, we should not allow the
application to reuse old methods to elicit that same oper-
ation. Thus, we require that an operation binding must
be removed from the cache whenever a new operation
binding is created for the same application that partially
matches the existing binding, except for the application
field. For example, this prevents an operation from being
authorized in multiple ways, a widget from being used
for multiple operations or in multiple configurations, etc.

6.6 Supporting Existing Applications
As an alternative to previously proposed approaches
[39, 41], AWare is completely transparent to, and back-
ward compatible with, existing applications. In fact,
AWare does not require any new external libraries, ap-
plication code annotation or rewriting, which would re-
quire significant development effort/burden and impede
backward compatibility for existing applications.

AWare can be integrated with existing off-the-shelf op-
erating systems, as we show with our AWare prototype
discussed in Section 7. AWare only requires the integra-
tion of three software components at the middleware layer.
AWare’s components dynamically monitor the creation of
operation bindings and provide visual output to the user
to enable authorization of operations on privacy-sensitive
sensors. The integration with existing off-the-shelf oper-
ating systems facilitates adoption and deployability.

We discuss how AWare addresses special cases of appli-
cations accessing privacy-sensitive sensors via alternative
methods, such as via background processes and remote
commands, in Appendix A .

7 AWare Implementation
We implemented an AWare prototype by modifying a
recent release of the Android operating system (ver-
sion 6.0.1 r5) available via the Android Open Source
Project (AOSP)7. The AWare prototype is open-sourced
on github.com8. Its footprint is about 500 SLOC in C,
800 SLOC in C++ and 600 SLOC in Java. We tested the
AWare prototype on Nexus 5 and Nexus 5X smartphones.

In the following paragraphs, we describe how we imple-
mented the components required for AWare authorization
mechanism9.

Application Identity: To prove an app’s identity in
binding requests, AWare applies two methods. First,
AWare uses the checksum of the app’s binary signed with
the developer’s private key and verifiable with the devel-
oper’s public key [40], similarly to proposals in related
work [6]. In addition, AWare detects spoofing of apps’
names or identity marks by using the Comparison Algo-

7https://source.android.com
8https://github.com/gxp18/AWare
9For brevity, in this and the following sections, we use the abbrevia-

tion app to refer to an application.
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rithm for Navigating Digital Image Databases (CANDID)
[25]. This comparison ensures that malicious apps do not
use the same name or identity mark of other official apps.
AWare collects the developers’ signatures and the apps
identity marks (names and logos) from the Google Play
store.

Widget and Display Context Authentication:
AWare identifies application-defined widgets and display
contexts at runtime before rendering the app’s user
interface to the user on the platform’s screen. AWare

uses the widget and window objects created in memory
by the Window Manager, before rendering them on the
platform’s screen, to collect their graphical features
reliably. A secure operating systems must prevent apps
from being able to directly write into the frame buffers
read by the hardware composer, which composes and
renders graphic user interfaces on the platform screen.
Modern operating systems, such as the Android OS,
leverage mandatory access control mechanisms (i.e.,
SELinux rules) to guarantee that security sensitive device
files are only accessible by trusted software, such as
the Window Manager. Therefore, as shown in Figure 6,
although apps can specify the graphic components that
should compose their user interfaces, only the Window
Manager, a trusted Android service, can directly write
into the screen buffers subsequently processed by the
hardware composer. Thus, the Window Manager is the
man-in-the-middle and controls what apps are rendering
on screen via their user interfaces. In the Appendix,
Tables 4 and Table 5 show comprehensive sets of widgets
and windows’ features used by AWare to authenticate the
widgets and their display contexts.

Activity Window Call Graph Construction: At run-
time, AWare detects inter-activity transitions necessary to
construct the per-application activity window call graph
by instrumenting the Android Activity Manager and Win-
dow Manager components. Also, AWare captures user
input events and system events by instrumenting the An-
droid Input Manager and the Event Manager components.
We discuss nested activity windows in Appendix C.

User Input Event Authentication: AWare leverages
SEAndroid [49] to ensure that processes running apps or
as background services cannot directly read or write input
events from input device files (i.e., /dev/input/*) cor-
responding to hardware interfaces attached to the mobile
platform. Thus, only the Android Input Manager, a trusted
system service, can read such files and forward input
events to apps. Also, AWare leverages the Android screen
overlay mechanism to detect when apps or background
services draw over the app currently in the foreground to
prevent input hijacking and avoid processing of any user
input event on overlaid GUI widgets. Thus, AWare consid-
ers user input events for the identification of an operation
binding only if the widget and the corresponding window

Figure 8: AWare Binding Request
prompted to the user on the mo-
bile platform’s screen at Operation
Binding creation. The app’s iden-
tity is proved by the name and the
graphical mark. For better security,
in mobile platforms equipped with
a fingerprint scanner, AWare recog-
nizes the device owner’s fingerprint
as the only authorized input for cre-
ating a new Operation Binding.

are fully visible on the platform’s screen foreground. To
intercept user input events, we placed twelve hooks inside
the stock Android Input Manager.

Operation Request Mediation: The Hardware Ab-
straction Layer (HAL) implements an interface that al-
lows system services and privileged processes to access
privacy-sensitive sensors indirectly via well-defined APIs
exposed by the kernel. Further, SEAndroid [49] ensures
that only system services can communicate with the HAL
at runtime. Thus, apps must interact with such system
services to request execution of specific operations tar-
geting privacy-sensitive sensors. Thus, AWare leverages
the complete mediation guaranteed at the system services
layer to identify operation requests generated by apps at
runtime, using ten hooks inside the stock Android Audio
System, Media Server, and Media Projection.

Operation Binding Management: The AWare pro-
totype implements the AWare MONITOR to handle call-
backs from the AWare hooks inside the Input Manager
and other system services. The AWare MONITOR is no-
tified of user input events and apps’ requests to access
privacy-sensitive sensors via a callback mechanism. Also,
the AWare MONITOR implements the logic for the opera-
tion binding creation and caching as well as the display
of binding requests and alerts to the user. User approvals
for binding requests are obtained by the AWare MON-
ITOR via authorization messages prompted to the user
on the mobile platform’s screen, as shown in Figure 8.
To protect the integrity of the trusted path for binding
requests, we prevent apps from creating windows that
overlap the AWare windows or modifying AWare win-
dows. To prevent overlapping, AWare leverages the An-
droid screen overlay protection mechanism. To prevent
unauthorized modification, AWare implements the Com-
partmented Mode Workstation model [8] by using isolated
per-window processes forked from the Window Manager.

7.1 Control Points Available to the User
AWare provides the users with control points during au-
thorized use of privacy-sensitive sensors by apps. These
control points allow the users to control the apps’ use of
sensors and correct possible mistakes made during the
authorization process.
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Figure 9: Architecture of the AWare authorization framework.

Figure 10: AWare security message dis-
played on the mobile platform’s sta-
tus bar notifying the user that the
Instagram application is previewing
the back camera (B) for pictures. The se-
curity companion (e.g., a white fish) aids
the user in verifying the authenticity of
the authorization request. Each security
message includes the app identifier (e.g.,
application name and identity mark) and
a text message specifying the ongoing
operation and the set of privacy-sensitive
sensors being accessed.

Figure 9 shows an overview of the AWare prototype
components and how the control points are activated. The
AWare MONITOR is designed to activate the AWare VI-
SUALIZER and the AWare LOGGER, upon the user autho-
rization of an operation binding.

7.1.1 Visualizing Ongoing Operations

AWare displays security messages on a reserved portion
of the screen, drawable only by the Window Manager
and not accessible by untrusted applications, to make
ongoing use of privacy-sensitive sensors visible to users
until they terminate. An example of security message is
shown in Figure 10. A security message includes the app
identifier (e.g., application name and identity mark) and a
text message specifying the ongoing operation and the set
of privacy-sensitive sensors being accessed. The use of
security messages follows the principle of what the user
sees is what is happening [23], in fact, security messages
convey ongoing operations targeting privacy-sensitive
sensors when authorized by the user.

AWare leverages the Compartmented Mode Worksta-
tion principle [8] to ensure integrity and authenticity of
security messages. Also, AWare uses a security compan-
ion, a secret image chosen by the user, to aid users in
verifying the authenticity of security messages. We modi-
fied the stock Android system user interface (SystemUI),
by adding an image view and a text view on the Android
status bar to display the AWare security messages spec-
ifying the application IDs and the ongoing operations,
whenever the AWare MONITOR authorizes system ser-

Figure 11: AWare Users may leverage AWare logs to take retrospective
security actions. The figure at the top right shows the list of operations
targeting the camera in authorized sessions. The figure at the bottom
right summarizes attempted accesses to privacy-sensitive sensors by
the SimpleFilters app, as examples of stealthy operations. The
security companion chosen by the user (e.g., a white fish) aids the user
in authenticating the logs.

vices to operate on privacy-sensitive sensors on behalf
of applications. Also, the AWare prototype leverages the
Android screen overlay mechanism to detect when appli-
cations or background services draw over the application
currently in the foreground, to prevent GUI overlay.

Further, security messages are made visible to the user
even if the application runs in full-screen mode. Re-
serving a small portion of the screen (5%) to convey a
security message is a reasonable trade-off for preventing
unwanted user distraction while delivering critical con-
tent in a timely and appropriate manner [32]. Our evalua-
tion with existing full-screen applications (Section 8.1.2)
reports that security messages do not impair the correct
functioning of full-screen apps. A transparent background
can also be used to reduce overlap with the foreground
application’s window. Lastly, the user can be given the
option to explicitly replace the on-screen notification with
a periodic distinctive sound or a hardware sensor-use in-
dicator LED.

7.1.2 Logging Authorized Operations

AWare produces real-time logs of any operation explic-
itly authorized by the user and of any attempted use of
privacy-sensitive sensors from applications without a user-
initiated input. AWare makes attempted stealthy accesses,
by installed applications, visible to users via full-screen
alert messages and by producing a distinctive sound, or
by enabling a hardware sensor-use indicator LED. AWare
then allows the user to either uninstall suspicious applica-
tions or to terminate ongoing suspicious operations. Logs
are visible to users via a system application called AWare

LOGGER, which is accessible via the applications menu
or by tapping on the AWare security messages/alerts dis-
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played on the mobile platform’s screen. Each log entry
reports information regarding the app ID, date, time, and
the privacy-sensitive sensors target of the operation, as
shown in Figure 11. Logs are not accessible to applica-
tions to preserve their integrity and avoid the creation of
side channels.

8 AWare Evaluation
We investigated the following research questions.

To what degree is the AWare operation binding concept
assisting the users in avoiding attacks? We performed a
laboratory-based user study and found that the operation
binding enforced by AWare significantly raised the bar
for malicious apps trying to trick the users in authoriz-
ing unintended operations, going from an average attack
success rate of 85% down to 7%, on average, with AWare.

What is the decision overhead imposed to users due to
per-configuration access control? We performed a field-
based user study and found that the number of decisions
imposed to users by AWare remains confined to less than
four decisions per app, on average, for the study period.

How many existing apps malfunction due to the inte-
gration of AWare? How many operations from legitimate
apps are incorrectly blocked by AWare (i.e., false posi-
tives)? We used a well-known compatibility test suite to
evaluate the compatibility of AWare with existing apps
and found that, out of 1,000 apps analyzed, only five
of them malfunctioned due to attempted operations that
AWare blocked as potentially malicious. However, these
malfunctioning instances have been resolved by features
developed in subsequent versions of the AWare prototype.

What is the performance overhead imposed by AWare

for the operation binding construction and enforcement?
We used a well-known software exerciser to measure the
performance overhead imposed by AWare. We found that
AWare introduced a negligible overhead on the order of
microseconds that is likely to be not noticeable by users.

8.1 Preliminaries for the User Studies
We designed our user studies following suggested prac-
tices for human subject studies in security to avoid com-
mon pitfalls in conducting and writing about security and
privacy human subject research [43]. Participants were in-
formed that the study was about mobile systems security,
with a focus on audio and video, and that the involved
researchers study operating systems security. An Institu-
tional Review Board (IRB) approval was obtained from
our institution. We recruited user study participants via
local mailing lists, Craigslist, and local groups on Face-
book, and compensated them with a $10 gift card. We
excluded friends and acquaintances from participating in
the studies to avoid acquiescence bias. Participants were
given the option to withdraw their consent to participate at
any time after the purpose of the study was revealed. For

all the experiments, we configured the test environment
on Nexus 5X smartphones and used a background service,
automatically relaunched at boot time, to log participants’
responses to system messages/alerts and all user input
actions taken by participants while interacting with the
testing apps.

8.1.1 Laboratory-Based User Study

We performed a laboratory-based user study to evaluate
the effectiveness of AWare in supporting users in avoiding
attacks by malicious apps and compared it with alternative
approaches.

We divided the participants into six groups. Partic-
ipants in Group1 interacted with a stock Android OS
using install-time permissions. Participants in Group2

interacted with a stock Android OS using first-use permis-
sions. Participants in Group3 interacted with a modified
version of the Android OS implementing input-driven
access control, which binds user input events to the op-
eration requested by an app but does not prove the app’s
identity to the user. Participants in Group4 interacted
with a modified version of the Android OS implementing
the first-use permissions and a security indicator that in-
forms the users about the origin of the app (i.e., developer
ID [6]). Participants in Group5 interacted with a modified
version of the Android OS implementing the use of access
control gadgets [41] including basic user interface config-
uration checks (i.e., no misleading text, UI background
and the text must preserve the contrast, no overlay of UI
elements, and user events occur in the correct location
at the correct time [39]) and timing checks for implicit
authorizations. Lastly, participants in Group6 interacted
with a modified version of the Android OS integrating the
AWare authorization framework.

Experimental Procedures: Before starting the experi-
ment, all participants were informed that attacks targeting
sensitive audio and video data were possible during the in-
teraction with apps involved in the experimental tasks, but
none of the participants were aware of the attack source.
Further, the order of the experimental tasks was random-
ized to avoid ordering bias. All the instructions to perform
the experimental tasks were provided to participants via a
handout at the beginning of the user study. Participants
were given the freedom to ignore task steps if they were
suspicious about the resulting app activities.

We used two apps, a well-known voice note recording
app called Google Keep, and a testing app (developed in
our research laboratory) called SimpleFilters, which
provides useful photo/video filtering functionality. How-
ever, SimpleFilters also attempts adversarial use of
privacy-sensitive sensors, such as the microphone and the
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Task Description (Randomized) Attack Scenario Authorization Requests (4 AWare) Attack Success Rate

TASK 1 : Take a picture with the
smartphone’s front camera by using
the SimpleFilters app.

Operation Switching: The SimpleFilters
app also starts recording audio via the
smartphone’s microphone instead of only taking
a picture.

• Allow SimpleFilters to use the
Front Camera and Microphone
to Record Video
when pressing � ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

100%
93%
100%
100%
0%
0%

TASK 2 : Take a picture with the
front camera by using the
SimpleFilters app.

Bait-and-Context-Switch: We make the video camera
widget appear in the photo capture window, with a
camera preview, to trick the user into allowing
SimpleFilters to record audio instead of just take
a picture. 2

• Allow SimpleFilters to use the
Front Camera and Microphone to
Record Video when
pressing i ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

87%
87%
93%
87%
87%
7%

TASK 3 : Take six consecutive
pictures with the smartphone’s front
camera by using the SimpleFilters
app.

Bait-and-Widget-Switch: Before the participants
took the fifth picture, the SimpleFilters
app replaced the camera widget with the
video camera widget to enable video recording instead.
The camera button was restored before the
users took the sixth picture. 2

• Allow SimpleFilters to use the
Front Camera and Microphone
to record Video
when pressing i ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

87%
87%
93%
87%
87%
7%

TASK 4 : Record a voice note
using the Keep app.

Identity Spoofing: We let the participants select
the Keep app from the app menu, however,
we programmatically triggered the SimpleFilters
app to hijack the on-screen activity
and spoof the Keep app.

• Allow SimpleFilters to use
the Microphone to Record
Audio when pressing Á ?

Group1 (Install-Time):
Group2 (First-Use):
Group3 (Input-Driven):
Group4 (Developer ID):
Group5 (AC Gadgets):
Group6 (AWare):

93%
93%
93%
47%
93%
0%

Table 1: Experimental tasks for the laboratory-based user study to evaluate the effectiveness of AWare in preventing four types of user interface
attacks. The authorization requests reported in the third column are due to the fact that AWare requests a new explicit authorization whenever a widget
is presented within a new configuration. 4 Participants from Groups6 received additional authorization requests because the widgets were presented
within new configurations automatically identified by AWare. 2 The camera preview showed a static picture to simulate a photo capture during video
recording.

camera. We explicitly asked the participants to install
such apps on the testing platforms10.

Before starting the experiment tasks, we asked the par-
ticipants to familiarize themselves with Google Keep, by
recording a voice note, and with SimpleFilters, by tak-
ing a picture and recording a video with the smartphone’s
front camera. During this phase, participants were pre-
sented with authorization requests at first use of any of
the privacy-sensitive sensors.

All the user study participants in Groups1-6 were
asked to perform the four experimental tasks reported
in Table 1. We designed such tasks to test the four types
of attacks discussed in Section 3.1. During the experi-
ment, the researchers recorded whether the participants
commented noticing any suspicious activity in the apps’
user interface, while a background service logged whether
the designed attacks took place.

Experimental Results: 90 subjects participated and
completed our experimental tasks. We randomly assigned
15 participants to each group. The last column of Table 1
summarizes the results for the four experimental tasks
used in the laboratory-based user study. The third col-
umn of Table 1 reports additional authorization requests
prompted only to subjects in Group6 using the AWare

system. Indeed, only AWare is able to identify the change
in configuration (e.g., widget in a different activity win-
dow, widget linked to a different operation or different
privacy-sensitive sensor) under which the experimental
applications are attempting access to the privacy-sensitive
sensors (i.e, microphone and cameras).

10SimpleFilters is providing interesting features to convince the
users to install it and grant the required permissions.

Overall, we found that all the operation binding compo-
nents used by AWare were useful in helping the users in
avoiding the four types of attacks. Moreover, AWare out-
performed alternative approaches conspicuously, while
each experimental task revealed interesting facts.

In particular, the analysis of the subjects’ responses to
TASK 1 revealed that the operation performed by the app

was not visible to users in the alternative approaches, thus,
leading them into making mistakes. The only exceptions
were the subjects from Group5 (AC Gadgets) because the
SimpleFilters app was not in control of the requested
operation due to the use of a system-defined access control
gadget. Furthermore, all subjects from Group6 (AWare)
did not authorize SimpleFilters to access the micro-
phone. Thus, the binding request clearly identifying the
operation requested by the app aided them in avoiding to
be tricked into granting an unintended operation.

The analysis of the subjects’ responses to TASK2 and
TASK3 revealed that the users were successfully tricked

by either switching the user interface configuration within
which a widget is presented, or by changing the widget
presented within the same configuration, thus, leading
them into making mistakes. Interestingly, there was no
noticeable improvement for subjects in Group5 (AC Gad-
gets) where the system put in place some basic user in-
terface configuration checks [39] for the presentation of
the access control gadgets. The reason was that such ba-
sic checks were insufficient to identify the user interface
modifications made by the malicious app when perform-
ing the attacks described in Table 1. Furthermore, one
subject from Group6 (AWare) had mistakenly authorized
SimpleFilters to carry out an unintended operation
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Explicit User
Authorizations

Total Operation
AuthorizationsApp

Category
App

Name First-Use AWare Avg. (s.d.)

Audio
Recording

WhatsApp
Viber
Messenger

3
1
3

6 (±1)
1 (±1)
7 (±2)

1,217 (±187)
88 (±9)

2,134 (±176)
Photo and
Video
Recording

Facebook
SilentEye
Fideo

2
2
2

4 (±1)
5 (±1)
4 (±1)

3,864 (±223)
234 (±20)
213 (±23)

Screenshot
Capture

Ok Screenshot
Screenshot Easy
Screenshot Capture

1
1
1

2 (±1)
2 (±1)
2 (±1)

49 (±8)
76 (±7)
64 (±4)

Screen
Recording

REC Screen Recorder
AZ Screen Recorder
Rec.

2
2
2

3 (±1)
4 (±2)
3 (±1)

41 (±8)
49 (±7)
66 (±4)

Full Screen
Mode

Instagram
Snapchat
Skype

2
2
2

6 (±1)
6 (±1)
9 (±3)

3,412 (±182)
5,287 (±334)

468 (±62)

Remote
Control

Prey Anti Theft
Lost Android
Avast Anti-Theft

2
2
2

8 (±2)
6 (±1)
4 (±1)

47 (±5)
37 (±6)
34 (±7)

Hands-Free
Control

Google Voice Search
HappyShutter
SnapClap

1
1
1

1 (±1)
1 (±0)
1 (±0)

1,245 (±122)
3 (±1)
4 (±2)

Table 2: Applications tested during the field-based user study, selected
among the most popular apps from the Google Play store. The last
column reports the average and standard deviation for the total number of
operation authorizations automatically granted by AWare after the user’s
explicit authorizations. The values are rounded to ease the presentation.

even after receiving a binding request clearly identifying
the operation. This event hints to the fact that users may
still make mistakes even after they are given an explicit
authorization request specifying the actual app-requested
operation. However, users who make mistakes have still
control points provided by AWare via the security mes-
sages and logs, which allow addressing such mistakes by
means of retrospective actions (Section 7.1).

Lastly, the analysis of the subjects’ responses to
TASK 4 revealed that the real identity of the app perform-

ing the operation was not visible to users in the alternative
approaches, thus, leading them into making mistakes.
However, no subjects from Group6 (AWare) authorized
SimpleFilters to access the microphone. Therefore,
the security message including the app’s identity aided
the user in identifying the attack.

8.1.2 Field-Based User Study

We performed a field-based user study to address the
concern that AWare may increase the decision overhead
imposed on users as a result of finer-grained access con-
trol. We measured the number of explicit authorizations
users had to make when interacting with AWare under
realistic and practical conditions. We also measured the
total number of authorizations handled by AWare via the
operation binding cache mechanism that, transparently to
users, granted previously authorized operations.

Experimental Procedures: Participants were asked to
use, for a period of one week, a Nexus 5X smartphone
running a modified version of the Android OS integrating
the AWare authorization framework. During this period,

participants interacted with 21 popular apps (i.e., average
number of apps users have installed on personal smart-
phones11) selected among the most popular apps with
up to millions of downloads from the Google Play store.
A description of the functionality provided by each app
was given to participants. We then asked participants to
explore each app and interact as they would normally do.
Table 2 summarizes all the apps that were pre-installed
on the smartphones for the field-based user study. The
smartphones provided to participants were running a back-
ground service with a run-time log enabled, automatically
restarted at boot time, to monitor the number of app acti-
vations, the number of widgets per app, and the number
of decisions per app made by the users.

Experimental Results: 24 subjects participated and
completed the field-based user study. Table 2 reports
the average number of explicit authorizations performed
by the participants when using AWare, for each of the 21
apps used in the field-based user study. We compare them
with the number of explicit authorizations that would be
necessary if the first-use permission mechanism was used
instead. The results show that 4 apps required the same
number of explicit authorizations as for the first-use per-
mission approach. For the remaining 17 apps, the number
of decisions imposed to the users remains very modest.
Over the 21 apps, an average of 2.28 additional explicit
user authorizations are required per app.

Also, as expected, the number of explicit authorizations
made by the users remained a constant factor compared to
the number of operation authorization requests, automati-
cally granted by AWare (last column of Table 2), which
instead grew linearly during the experiment period. In-
deed, all the successive authorizations were automatically
granted by AWare.

8.2 Compatibility Analysis
We used the Compatibility Test Suite (CTS)12, an auto-
mated testing tool, to evaluate the compatibility of AWare
with 1,000 existing apps selected from the Google Play
store among the most downloaded apps13.

The experiment took 13 hours and 28 minutes to com-
plete, and AWare passed 126,681 of the 126,686 executed
tests. Two of the failed tests were minor compatibility
issues due to attempted programmatic accesses to the plat-
form’s camera and microphone, respectively. The first
failure was due to HappyShutter, an app that automat-
ically takes pictures when the user smiles. The second
failure was due to SnapClap, an app that automatically
takes snapshots when the user claps. By default, AWare
blocks apps from programmatically accessing privacy-

11https://www.statista.com/chart/1435/top-10

-countries-by-app-usage/
12https://source.android.com/compatibility/cts/
13The Absolute 1,000 Top Apps for Android. http://bestapps
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sensitive sensors by intercepting API calls from running
apps and verifying if the user has indeed initiated the op-
eration. These checks provide a high level of protection.
Thankfully, as described in Appendix A, less than 1%
of the 1,000 analyzed apps require programmatic access
to privacy-sensitive sensors. However, we enhanced the
original AWare prototype to notify the user the first time
that a programmatic access is attempted by an app. Such
notification asks the user for an explicit authorization to
grant the app persistent access to the privacy-sensitive
sensor. The user is notified of the inherent high risk and is
discouraged from granting such type of permission. We
evaluated such feature in our field-based study as reported
in Table 2. From our experiments, we found that only 1
of the 24 users granted persistent access to the front cam-
era for the HappyShutter app, whereas, only 2 other
users granted persistent access to the microphone for the
SnapClap app.

The other two failures were due to remote access to
the smartphone’s camera attempted by two apps, namely
Lockwatch and Prey Anti-Theft, which can capture
pictures with the front camera when someone tries to
unlock the smartphone’s screen with a wrong passcode.
However, as described in Appendix A, we anticipated this
issue and suggested the extension of the mechanisms pro-
vided by AWare also to the remote app components that
enable remote access. To validate the proposed extension,
we have developed a proof-of-concept app that receives
remote commands for the initiation of video recording
via the mobile platform’s back camera. We successfully
tested it on a Nexus 5X smartphone running the Android
OS integrating AWare.

Lastly, AWare caused another spurious false positive
with the Viber app, which attempted access to the cam-
eras and microphone at each system reboot. AWare, iden-
tified the access without a user input action and blocked
the operation after displaying an onscreen alert and log-
ging the attempted operation. After analyzing the Viber
app, we noticed that the app was testing the sensors (e.g.,
cameras and microphone) at each reboot. However, pre-
venting the Viber app from using the sensors for testing
purposes did not cause subsequent video or voice calls to
fail. Thus, we believe that blocking such attempts is the
desired behavior to prevent stealthy operations targeting
privacy-sensitive sensors.

8.3 Performance Measurements
We measured the overall system performance overhead
introduced by AWare by using a macrobenchmark that
exercises the same 1,000 apps selected from the Google
Play store via the Android UI/Application Exerciser Mon-
key14. Although software exercisers only achieve a low

14https://developer.android.com/studio/test/

monkey.html

code coverage, they can create events that target specific
high-level operations and generate the same sequence of
events for comparison among several testing platforms.
Indeed, the Monkey was configured to exercise apps by
generating the exact same sequence of events and target
all operations on privacy-sensitive sensors on both the
Nexus 5X and Nexus 5 smartphones when running both
the stock Android OS and the modified version of An-
droid with AWare enabled. We open-sourced the exerciser
script for the macrobanchmark on github.com15.

The experimental results reported in the first row of Ta-
ble 3 show that the average recorded system-wide perfor-
mance overhead is 0.33% when measuring the additional
time required by AWare to handle the operation binding
construction, authorization and caching.

We also performed a microbenchmark to measure the
overhead introduced by AWare while specifically handling
access requests for operations targeting privacy-sensitive
sensors, such as the camera to take photos and videos,
the microphone to record audio, and the screen to capture
screenshots; and to measured the overhead introduced
for the authentication of app-specific widgets and their
display contexts. The overhead for operations targeting
privacy-sensitive sensors was calculated by measuring
the time interval from the time a user input action was
detected to the time the corresponding app request was
granted/denied by AWare. Instead, the overhead for the
widgets’ and display contexts’ authentication was calcu-
lated by measuring the time interval from the time the app
provided the user interface to the Window Manager to the
time such interface was rendered on the platform’s screen
by AWare. Table 3 reports the average time and stadard
deviation over 10,000 operation/rendering requests, and
the recorded overhead introduced by AWare.

Our measurements show that AWare performs effi-
ciently, with the highest overhead observed being below
4%, as shown in Table 3. Notice, the experiment artifi-
cially stressed each operation with unusual workloads,
and the overhead for a single operation/rendering is on
the order of microseconds. Thus, the overhead is likely
not to be noticeable by users.

Lastly, we recorded the average cache size used by
AWare to store authorized operation bindings and the ac-
tivity window call graphs, which was around 3 megabytes.
Overall, we did not observe a discernible performance
drop compared to the stock Android OS.

9 Related Work
Security-Enhanced Android [49] and Android Security
Framework [5] deploy restrictive security models based
on the Android Permission mechanism. However, such
models mainly operate at the kernel level, therefore, do

15https://github.com/gxp18/AWare
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Stock Android AWare

Nexus 5 Nexus 5X Nexus 5 Nexus 5X Average
Overhead

System-Wide 32,983.38
±103.76

31,873.71
±217.82

33,001.32
±109.79

31,981.02
±207.81 0.33%

Front Camera 15.90±1.54 14.39±1.12 16.11±1.77 15.01±1.38 3.22%
Back Camera 16.08±1.32 15.68±1.87 16.44±1.06 16.37±1.91 3.13%
Microphone 12.36±2.01 11.86±1.99 12.65±2.15 12.32±1.85 3.01%
Screen 17.76±0.99 16.23±0.69 18.61±0.90 17.02±1.01 3.98%

Widget 22.12±0.35 21.66±0.54 24.61±0.32 23.45±0.12 2.79%

Table 3: AWare performance overhead in microseconds (µs). Numbers
give mean values and corresponding standard deviations after 5 indepen-
dent runs for the system-wide experiment and after 10,000 independent
requests for the device-specific microbenchmark.

not have the necessary information regarding higher level
events required to associate app requests to user input
actions for operations targeting privacy-sensitive sensors.

Input-Driven Access Control (IDAC) [33] mediates
access to privacy-sensitive sensors based on the temporal
proximity of user interactions and applications’ access
requests. However, if another application’s request occurs
first after a user input event and within the given temporal
threshold, then the user input is directly used to authorize
the other applications request, no matter what operation
the application is requesting.

In What You See is What They Get [23] the authors pro-
pose the concept of a sensor-access widget. This widget
is integrated into the user interface within an applica-
tions display and provides a real-time representation of
the personal data being collected by a particular sensor
to allow the user to pay attention to the application’s at-
tempt to collect the data. Also, a widget is a control point
through which the user can configure the sensor to grant
or deny the application access. Such widgets implement
a so-called Show Widget and Allow After Input and De-
lay (SWAAID) policy. According to such policy, any
active user input, upon notification, is implicitly consid-
ered as an indication that the user is paying attention to
the widget. Thus, after a waiting period, the application
is directly authorized to access the sensor. However, the
delay introduced for the waiting time (necessary to allow
explicit denial) may cause issues for time-constrained
applications and may frustrate users.

User-Driven Access Control (UDAC) [39, 41] proposes
the use of access control gadgets to prevent malicious
operations from applications trying to access privacy-
sensitive sensors without a user-initiated input. However,
access control gadgets define the start points for when
permissions are granted but do no provide an end limit
for the sensor’s use or control points (Section 7.1) to the
users. Moreover, each sensor’s usage should be limited
to the particular configuration within which it has been
authorized by the user and should be terminated when the
application tries to continue using the sensor in a different
configuration.

Researchers have also explored a trusted output solu-
tion to provide the user with an on-screen security indica-

tor to convey the application developer’s identity for the
application with which the user is interacting [6]. Such
a solution aids the user in identifying applications devel-
oped by trusted sources (i.e., Google Inc.), but it does not
provide the user with the actual application identity or
information about when and how such an application uses
privacy-sensitive sensors.

Lastly, researchers have proposed a new operating sys-
tem abstraction called object recognizer for Augmented
Reality (AR) applications [22]. A trusted object recog-
nizer takes raw sensor data as input and only exposes
higher-level objects, such as a skeleton of a face, to appli-
cations. Then, a fine-grained permission system, based
on the visualization of sensitive data provided to AR ap-
plications, is used to request permission at the granularity
of recognizer objects. However, the proposed approach
applies only to AR applications which are a very small
fraction of the applications available on the app market.
Indeed, among the 1,000 applications used for our eval-
uation, fewer than 1% of them provide AR features. All
the other applications require full access to the raw data
in order to function properly.

10 Conclusion

To prevent abuse of privacy-sensitive sensors by untrusted
applications, we propose that user authorizations for oper-
ations on such sensors must be explicitly bound to user in-
put events and how those events are obtained from the user
(e.g., widgets and user interface configuration), called
operation bindings. We design an access control mech-
anism that constructs operation bindings authentically
and gains user approval for the application to perform
operations only under their authorized operation bindings.
By reusing such authorizations, as long as the applica-
tion always requests that operation using the same user
input event obtained in the same way, the number of ex-
plicit user authorizations can be reduced substantially. To
demonstrate the approach, we implemented the AWare

framework for Android, an extension of the Android Mid-
dleware that controls access to privacy-sensitive sensors.
We evaluated the effectiveness of AWare for eliminat-
ing ambiguity in a laboratory-based user study, finding
that users avoided mistakenly authorizing unwanted op-
erations 93% of the time on average, compared to 19%
on average when using proposed research methods and
only 9% on average when using first-use or install-time
authorizations. We further studied the compatibility of
AWare with 1,000 of the most-downloaded Android ap-
plications and demonstrated that such applications can
operate effectively under AWare while incurring less than
4% performance overhead on microbenchmarks. Thus,
AWare offers users an effective additional layer of defense
against untrusted applications with potentially malicious
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purposes, while keeping the explicit authorization over-
head very modest in ordinary cases.
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Appendices
A Compatibility Discussion
Here, we discuss how AWare addresses special cases of
applications’ accesses to privacy-sensitive sensors.

Background Access: To enable background access,
AWare still uses the explicit authorization mechanism
via the creation of a binding request. However, as soon
as the application goes in the background, any on-screen
security message used to notify ongoing operations over
privacy-sensitive sensors is replaced with a periodic dis-
tinctive sound or a small icon on the system status bar
(Section 7.1), if the platform’s screen is on, or a hardware
sensor-use indicator LED when the platform’s screen goes
off. These periodic notifications will be active until the
user terminates the background activity explicitly. Our
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notification mechanism leverages the concept introduced
in previous work [23] and extends the mechanism used in
modern operating systems for location.

Remote Access: Remote commands are instantiated
by the user via an application’s user interface displayed
on the remote terminal, thus, the AWare mechanisms are
also applicable to the widgets displayed by such remote
user interfaces. Therefore, as long as remote commands
are coming from AWare-enabled remote platforms, AWare
may pair the AWare modules running on the two platforms
by creating a Secure Socket Layer (SSL) connection to
allow secure and remote control of the privacy-sensitive
sensors by the user.

Programmatic Access: There are very rare cases of
legitimate applications requiring programmatic access to
privacy-sensitive sensors, as shown by our large-scale
compatibility analysis reported in Section 8.2. Examples
are anti-theft applications that capture pictures with the
front camera in the attempt to identify the thief when
trying to unlock the screen by guessing the passcode. Or
even, an application that uses the camera to take a picture
when the user smiles. However, only trusted software
(as part of the operating system) should be allowed to
perform such operations to be inline with our research
objective of ensuring a secure use of privacy-sensitive
sensors.

Hardware Peripheral Access: An application may use
hardware peripherals (e.g., Bluetooth R© remotes, selfie
sticks, headphone jacks or built-in hardware buttons) as
user interface. However, hardware peripherals are typ-
ically managed by a trusted software component, i.e.,
the Input Manager, and mandatory access control mech-
anisms (i.e., SELinux [31]) are adopted to ensure that
peripheral driver files are not accessible by untrusted ap-
plications. By monitoring input events received by the
Input Manger, AWare can identify user input events com-
ing from such hardware peripherals and bind them with
the corresponding operation requests from applications.

Access through Voice Commands: AWare enables per-
sonal assistant services that recognize voice commands,
such as Apple’s Siri, Google Now, and Windows’ Cor-
tana, by leveraging recent work that prevents untrusted
application from exploiting voice commands by control-
ling access over audio channels created by applications
and system services through the platform’s microphone
and speaker [35].

B UI Elements’ Features Analysis
We performed a large-scale analysis by using the 10,000
most popular application from the Google Play store,
Ubuntu Software Center and Chrome Extensions to eval-
uate how frequently the widgets’ and activity windows’

features used by AWare change among subsequent render-
ing events on the platform screen. We rendered a widget
and its activity window 50 times under different system
settings and configurations to cause the a widget or its
activity window to be rendered in different ways (i.e.,
screen orientation, concurrent activity windows, etc.).
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100%
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99%
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99%
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99%
99%

100%

98%
99%
N/A

100%
100%
100%

Table 4: Study of fixed features for GUI widget objects in X Window
Manager, Aura (Chrome Browser) Window Manager (in italic), and An-
droid Window Manager (in bold). The percentage values indicate how
many times the widget’s features did not change when the same widget
was rendered by the Window Manager. We used 1,000 applications for
each Window Manager system.
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91%
98%
99%

99%
98%
99%
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98%
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Table 5: Study of fixed features for GUI activity window objects in
X Window Manager, Aura (Chrome Browser) Window Manager (in
italic), and Android Window Manager (in bold). The percentage values
indicate the times the features did not change when the same window
was rendered by the Window Manager.

C Discussion on Activity Windows
For the ease of presentation we used the general case
where a widget appears within an activity window. How-
ever, desktop and web operating system may allow more
sophisticated user interfaces, or GUI scaling for different
screen sizes. Thus, we recognize that an activity window
could be embedded inside another activity window and
such innermost activity window could be reused across
several activity windows even in a hierarchy. Therefore,
AWare does not limit the use of nested activity windows
or prohibit activity window reuse but rather ensures that
the context is defined by the entire hierarchy of nested
activity windows. As a consequence, an application may
be authorized by the user to use a widget in a nested ac-
tivity window X in the outer activity window Y, but this
authorization does not extend for another outer activity
window Z.

396    26th USENIX Security Symposium USENIX Association



6thSense: A Context-aware Sensor-based Attack Detector for Smart Devices

Amit Kumar Sikder, Hidayet Aksu, A. Selcuk Uluagac
Cyber-Physical Systems Security Lab,

Electrical and Computer Engineering Department,
Florida International University.
{asikd003, haksu, suluagac}@fiu.edu

Abstract

Sensors (e.g., light, gyroscope, accelerometer) and sens-
ing enabled applications on a smart device make the ap-
plications more user-friendly and efficient. However, the
current permission-based sensor management systems of
smart devices only focus on certain sensors and any App
can get access to other sensors by just accessing the
generic sensor API. In this way, attackers can exploit
these sensors in numerous ways: they can extract or leak
users’ sensitive information, transfer malware, or record
or steal sensitive information from other nearby devices.
In this paper, we propose 6thSense, a context-aware in-
trusion detection system which enhances the security of
smart devices by observing changes in sensor data for
different tasks of users and creating a contextual model
to distinguish benign and malicious behavior of sen-
sors. 6thSense utilizes three different Machine Learning-
based detection mechanisms (i.e., Markov Chain, Naive
Bayes, and LMT) to detect malicious behavior associated
with sensors. We implemented 6thSense on a sensor-
rich Android smart device (i.e., smartphone) and col-
lected data from typical daily activities of 50 real users.
Furthermore, we evaluated the performance of 6thSense
against three sensor-based threats: (1) a malicious App
that can be triggered via a sensor (e.g., light), (2) a mali-
cious App that can leak information via a sensor, and (3)
a malicious App that can steal data using sensors. Our
extensive evaluations show that the 6thSense framework
is an effective and practical approach to defeat growing
sensor-based threats with an accuracy above 96% with-
out compromising the normal functionality of the device.
Moreover, our framework costs minimal overhead.

1 Introduction

Smart devices such as smartphones and smartwatches
have become omnipresent in every aspect of human life.
Nowadays, the role of smart devices is not limited to

making phone calls and messaging only. They are in-
tegrated into various applications from home security to
health care to military [18, 60]. Since smart devices
seamlessly integrate the physical world with the cyber
world via their sensors (e.g., light, accelerometer, gyro-
scope, etc.), they provide more efficient and user-friendly
applications [37, 41, 85, 55, 48].

While the number of applications using different sen-
sors [38] is increasing and new devices offer more sen-
sors, the presence of sensors have opened novel ways
to exploit the smart devices [76]. Attackers can exploit
the sensors in many different ways [76]: they can trig-
ger an existing malware on a device with a simple flash-
light [28]; they can use a sensor (e.g., light sensor) to leak
sensitive information; using motion sensors such as ac-
celerometer, and gyroscope, attackers can record or steal
sensitive information from other nearby devices (e.g.,
computers, keyboards) or people [10, 87, 26, 42]. They
can even transfer a specific malware using sensors as a
communication channel [76]. Such sensor-based threats
become more serious with the rapid growth of Apps uti-
lizing many sensors [6, 2].

In fact, these sensor-based threats highlight the flaws
of existing sensor management systems used by smart
devices. Specifically, Android sensor management sys-
tem relies on permission-based access control, which
considers only a few sensors (i.e., microphone, camera,
and GPS)1. Android asks for access permission (i.e., with
a list of permissions) only while an App is being installed
for the first time. Once this permission is granted, the
user has no control over how the listed sensors and other
sensors (not listed) will be used by the specific App.
Moreover, using some sensors is not considered as a vi-
olation of security and privacy in Android. For instance,
any App is permitted to access to motion sensors by just
accessing the sensor API. Access to motion sensors is
not controlled in Android.

1IOS, Windows, and Blackberry also have permission-based sensor
management systems. In this work, we focus on Android.
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Existing studies have proposed enhanced access con-
trol mechanisms for some of the sensors, but these en-
hancements do not cover all the sensors of a smart de-
vice [69]. Some proposed solutions introduced trusted
paths on top of the existing security mechanism for con-
trolling information flow between sensors and Apps, but
these are also App-specific solutions and depend upon
explicit user consent [32, 61]. Thus, introducing ad-
ditional permission controls for sensors of a smart de-
vice will not mitigate the risk of all sensor-based threats
as they are App specific and address only data leakage
risks. Some attacks may not abuse sensors directly, in-
stead, they may use sensors as side channels to acti-
vate another malware [34]. Albeit useful, existing se-
curity schemes overlook these critical threats which di-
rectly impact the security and privacy of the smart device
ecosystem. Moreover, although sensors on smart devices
seem to work independently from each other, a task or
activity on a smart device may activate more than one
sensor to accomplish the task. Hence, it is necessary to
secure all the different sensors [5] on a smart device and
consider the context of the sensors in building any solu-
tion against sensor-based threats.

In order to address the sensor-based threats, in this pa-
per, we present a novel intrusion detection (IDS) frame-
work called 6thSense, a comprehensive security solution
for sensor-based threats for smart devices. The proposed
framework is a context-aware IDS and is built upon the
observation that for any user activity or task (e.g., tex-
ting, making calls, browsing, driving, etc.), a different,
but a specific set of sensors becomes active. In a context-
aware setting, the 6thSense framework is aware of the
sensors activated by each activity or task. 6thSense ob-
serves sensors data in real time and determines the cur-
rent use context of the device according to which it con-
cludes whether the current sensor use is malicious or
not. 6thSense is context-aware and correlates the sen-
sor data for different user activities (e.g., texting, mak-
ing calls, browsing, driving, etc.) on the smart device
and learns how sensors’ data correlates with different ac-
tivities. As a detection mechanism, 6thSense observes
sensors’ data and checks against the learned behavior of
the sensors. In 6thSense, the framework utilizes several
different Machine Learning-based detection mechanisms
to catch sensor-based threats including Markov Chain,
Naive Bayes, and LMT. In this paper, we present the
design of 6thSense on an Android smartphone because
of its large market share [7] and its rich set of sensors.
To evaluate the efficiency of the framework, we tested
it with data collected from real users (50 different users,
nine different typical daily activities [3]). We also evalu-
ated the performance of 6thSense against three different
sensor-based threats and finally analyzed its overhead.
Our evaluation shows that 6thSense can detect sensor-

based attacks with an accuracy and F-Score over 96%.
Also, our evaluation shows a minimal overhead on the
utilization of the system resources.

Contributions: In summary, the main contributions of
this paper are threefold—

• First, the design of 6thSense, a context-aware IDS
to detect sensor-based threats utilizing different ma-
chine learning based models from Markov Chain to
Naive Bayes to LMT.

• Second, the extensive performance evaluation of
6thSense with real user experiments over 50 users.

• Third, testing 6thSense against three different
sensor-based threats.

Organization: The rest of the paper is organized as
follows: we give an overview of sensor-based threats
and existing solutions in Section 2. In section 3, we
briefly discuss the Android’s sensor management system.
Adversary model and design facts and assumptions for
6thSense are briefly discussed in Section 4. Different de-
tection techniques used in our framework are described
in Section 5. In Sections 6 and 7, we provide a detailed
overview of 6thSense including its different components
and discuss its effectiveness by analyzing different per-
formance metrics. Finally, we discuss features and lim-
itations and conclude this paper in Sections 8 and 9, re-
spectively.

2 Related Work

Sensor-based threats [76] on mobile devices have be-
come more prevalent than before with the use of dif-
ferent sensors in smartphones such as user’s location,
keystroke information, etc. Different works [73] have in-
vestigated the possibility of these threats and presented
different potential threats in recent years. One of the
most common threats is keystroke inference in smart-
phones. Smartphones use on-screen QWERTY keyboard
which has specific position for each button. When a user
types in this keyboard, values in smartphone’s motion
sensor (i.e., accelerometer and gyroscope) change ac-
cordingly [16]. As different keystrokes yield different,
but specific values in motion sensors, typing informa-
tion on smartphones can be inferred from an unautho-
rized sensor such as motion sensor data or motion sen-
sor data patterns collected either in the device or from
a nearby device can be used to extract users’ input in
smartphones [9, 66, 52]. The motion sensor data can
be analyzed using different techniques (e.g., machine
learning, frequency domain analysis, shared-memory ac-
cess, etc.) to improve the accuracy of inference tech-
niques such as [12, 53, 81, 46, 58, 47]. Another form of

398    26th USENIX Security Symposium USENIX Association



keystroke inference threat can be performed by observ-
ing only gyroscope data. Smartphones have a feature
of creating vibrations while a user types on the touch-
pad. The gyroscope is sensitive to this vibrational force
and it can be used to distinguish different inputs given
by the users on the touchpad [51, 15, 44]. Recently,
ICS-CERT also issued an alert for accelerometer-based
attacks that can deactivate any device by matching vi-
bration frequency of the accelerometer [2, 1, 70]. Light
sensor readings also change while a user types on the
smartphone; hence, the user input in a smartphone can
be inferred by differentiating the light sensor data in nor-
mal and typing modes [71]. The light sensor can also be
used as a medium to transfer malicious code and trigger
message to activate malware [28, 76]. The audio sen-
sor of a smartphone can be exploited to launch different
malicious attacks (e.g., information leakage, eavesdrop-
ping, etc.) on the device. Attackers can infer keystrokes
by recording tap noises on touchpad [24], record conver-
sation of users [63], transfer malicious code to the device
[73, 76], or even replicate voice commands used in voice-
enabled different Apps like Siri, Google Voice Search,
etc. [21, 39]. Modern smartphone cameras can be used
to covertly capture screenshot or video and to infer infor-
mation about surroundings or user activities [68, 43, 67].
GPS of a smartphone can be exploited to perform a false
data injection attack on smartphones and infer the loca-
tion of a specific device [75, 19].

Solutions for sensor-based threats: Although re-
searchers identified different sensor-based threats in re-
cent years, no complete security mechanism has been
proposed that can secure sensors of a smart device.
Most of the proposed security mechanisms for smart de-
vices are related to anomaly detection at the application
level [78, 74, 80, 22] which are not built with any protec-
tion against sensor-based threats. On the other hand, dif-
ferent methods of intrusion detection have been proposed
for wireless sensor networks (WSN) [72, 30, 86, 23, 59],
but they are not compatible with smart devices. Xu et
al. proposed a privacy-aware sensor management frame-
work for smartphones named Semadroid [82], an exten-
sion to the existing sensor management system where
users could monitor sensor usage of different Apps and
invoke different policies to control sensor access by ac-
tive Apps on a smartphone. Petracca et al. introduced
AuDroid, a SELinux-based policy framework for smart-
phones by performing behavior analysis of microphones
and speakers [57]. AuDroid controls the flow of infor-
mation in the audio channel and notifies users when-
ever an audio channel is requested for access. Jana et
al. proposed DARKLY, a trust management framework
for smartphones which audits applications of different
trust levels with different sensor access permissions [31].
Darkly scans for vulnerability in the source code of an

Figure 1: Android Sensor Management Architecture

application and try to modify the run-time environment
of the device to ensure the privacy of sensor data.

Differences from the existing solutions: Though
there is no direct comparable work to compare 6thSense
with, differences between existing solutions and our
framework can be noted as follows. The main limitation
of Semadroid [82] is that the proposed solution is only
tested against a similar type of attack scenario (informa-
tion leakage by a background application). Semadroid
also does not provide any extensive performance evalua-
tion for the proposed scheme. Finally, this work depends
on user permissions to fully enforce an updated policy
on the sensor usage which is vulnerable as users might
unknowingly approve the sensor permissions for mali-
cious Apps. In another prior work Darkly [31], the pro-
posed framework is not tested against any sensor-based
threats. More recent work Audroid presented a policy
enforced framework to secure only the audio channels
of a smart device. Albeit useful, similar to the others,
this work does not consider other sensor-based threats,
either. Compared to these prior works, 6thSense pro-
vides a comprehensive coverage to all the sensors in a
smart device and ensures security against three different
types of sensor-based threats with high accuracy.

3 Background: Sensor Management in
Smart Devices

Present versions of Android, iOS, or Blackberry do not
comprise of any security mechanism to manage the infor-
mation flow from sensors or among them. For example,
any App can get access to motion sensors by just access-
ing sensor API. One task may need more than one sensor,
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but protecting only one sensor is not a viable design. The
lack of ability to secure the information flow between the
sensors and Apps and a holistic view into the utilization
of sensors can lead to different malicious scenarios like
information leakage, eavesdropping, etc.

In our work, we focus on Android because of its open-
source nature. In Figure 1, we present how Android han-
dles access to different sensors by Apps (installed by the
user) and system Apps (installed automatically by An-
droid). Apps access to sensors by sending requests via
Software Development Kit (SDK) API platform which
then registers the App to a corresponding sensor [45]. If
more than one App tries to access the same sensor, the
SDK API runs a multiplexing process which enables dif-
ferent Apps to be registered in the same sensor. Hard-
ware Abstraction Layer (HAL) works as an interface to
bind the sensor hardware with the device drivers in An-
droid. HAL has two parts: Sensors.h works as HAL in-
terface and Sensors.cpp works as the HAL implementa-
tion. Through the HAL library, different applications can
communicate with the underlying Linux kernel to read
and write files associated with sensors. For most of the
sensors, no permission is needed to access these files. For
permission-imposed sensors (i.e., camera, microphone,
and GPS), a permission is explicitly needed from the user
to ensure file access to a specific App. This user permis-
sion is declared inside the AndroidManifest.xml file of an
App and once the user accepts the permission, that App
can have access to the corresponding sensor and other
no-permission imposed sensors even without any explicit
approval from the users. This lack of security in sensor
access can lead to different malicious attacks on a device.

4 Adversary Model and Assumptions

In this section, we discuss different threats that may use
sensors to execute malicious activities on a smart device.
Different design assumptions are also explained in this
section.

4.1 Adversary Model

For this work, we consider the following sensor-based
threats similar to [76]:

• Threat 1-Triggering a malicious App via a sen-
sor. A malicious App can exist in the smart device
which can be triggered by sending a specific sen-
sory pattern or message via sensors.

• Threat 2-Information leakage via a sensor. A ma-
licious App can exist in the device which can leak
information to any third party using sensors.

• Threat 3-Stealing information via a sensor. A ma-
licious App can exist in the device which can exploit
the sensors of a smart device and start stealing infor-
mation after inferring a specific device mode (e.g.,
sleeping).

In this paper, we cover these three types of malicious
sensor-based threats. We also note that to build our ad-
versary model, we consider any component on a smart
device that interacts with the physical world as a sen-
sor [57]. In section 7, we show how 6thSense defends
against these threats.

4.2 Design Assumptions and Features

In designing a comprehensive security scheme like
6thSense for sensor-based threats, we note the following
design assumptions and features:

• Sensor co-dependence: A sensor in a smart device
is normally considered as an independent entity on
the device. Thus, one sensor does not know what is
happening in another sensor. However, in this work,
we consider sensors as co-dependent entities on a
device instead of independent entities. The reason
for this stems from the fact that for each user activity
or task on a smart device, a specific set of sensors re-
mains active. For example, if a user is walking with
a phone in hand, motion sensors (i.e., gyroscope,
accelerometer), the light sensor, GPS will be ac-
tive. On the contrary, if the user is walking with the
phone in the pocket or bag, instead of the light sen-
sor, the proximity sensor will remain active. Thus,
a co-dependent relationship exists between sensors
while performing a specific task. Each activity uses
different, but specific set of sensors to perform the
task efficiently. Hence, one can distinguish the user
activity by observing the context of the sensors for
a specific task. 6thSense uses the context of all the
sensors to distinguish between normal user activi-
ties and malicious activities. In summary, sensors
in a smart device are individually independent, but
per activity-wise dependent and 6thSense considers
the context of the activities in its design.

• Adaptive sensor sampling: Different sensors have
different sampling frequencies. To monitor all the
sensor data for a specific time, a developed solu-
tion must consider and sample the sensor data cor-
rectly. Our proposed framework considers sampling
the sensor data over a certain time period instead of
individual sensor frequencies which mitigates any
possible error in processing of data from different
sensors.
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• Faster computation: Modern high precision sen-
sors on smart devices have high resolution and sam-
pling rate. As a result, sensors provide large volume
of data even for a small time interval. A solution
for sensor-based threats should quickly process any
large data from different sensors in real time while
ensuring a high detection rate. To address this, we
use different machine learning algorithms which are
proven simple and fast techniques [11, 62].

• Real-time monitoring: 6thSense provides real-time
monitoring to all the sensors which mitigates the
possibility of data tempering or false data injection
on the device.

5 Detection Techniques: Theoretical Foun-
dation

In this section, we describe the details of the detection
techniques used in 6thSense from a theoretical perspec-
tive.

For the context-aware IDS in 6thSense, we utilize sev-
eral different machine learning-based techniques includ-
ing Markov Chain [13], Naive Bayes [50] and alterna-
tive set of ML algorithms (e.g., PART, Logistic Function,
J48, LMT, Hoeffding Tree, and Multilayer Perception)
to differentiate between normal behavior from malicious
behavior on a smart device. The main advantage of us-
ing Markov Chain model is that it is easy to build the
model from a large dataset and computational require-
ments are modest which can be met by resource-limited
devices. As smart devices have less processing speed,
a Markov Chain-based approach can work smoothly in
the context of sensor data analysis. On the other hand,
Naive Bayes technique is chosen for its fast computa-
tion rate, small training dataset requirement, and ability
to modify it with new training data without rebuilding
the model from scratch. Other ML techniques are also
common in malware detection because of higher accu-
racy rate. A brief discussion of these approaches in the
context of 6thSense is given below. The efficacy of these
different approaches utilized in 6thSense is analyzed in
Section 7.

5.1 Markov Chain-Based Detection
A Markov Chain-based detection model can be described
as a discrete-time stochastic process which denotes a
set of random variables and defines how these variables
change over time. Markov Chain can be applied to illus-
trate a series of events where and what state will occur
next depends only on the previous state. In 6thSense, a
series of events represents user activity and state repre-
sents sensor conditions (i.e., sensor values, on/off status)

of the sensors in a smart device. We can represent the
probabilistic condition of Markov Chain as in Equation
1 where Xt denotes the state at time t [35]:

P(Xt+1 = x|X1 = x1,X2 = x2...,Xt = xt) =

P(Xt+1 = x|Xt = Xt),

when, P(X1 = x1,X2 = x2...,Xt = xt)> 0
(1)

In 6thSense, we observe the changes of the conditions
of a set of sensors as a variable which changes over time.
The condition of a sensor indicates whether the sensor
value is changing or not from a previous sensor value in
time. As such, S denotes a set which represents current
conditions of n number of sensors. So, S can be repre-
sented as follows.

S = {S1,S2,S3, ...,Sn},
S1,S2,S3, ...,Sn = 0 or 1

(2)

For 6thSense, we use a modified version of the general
Markov Chain. Here, instead of predicting the next state,
6thSense determines the probability of a transition oc-
curring between two states at a given time. In 6thSense,
the Markov Chain model is trained with a training dataset
collected from real users and the transition matrix is built
accordingly. Then, 6thSense determines conditions of
sensors for time t and t+1. Let us assume, a and b are
a sensor’s state in time t and t+1. 6thSense looks up for
the probability of transition from state a to b which can
be found by looking up in the transition matrix, P and
calculating P(a,b). As the training dataset consists sen-
sor data from benign activities, we can assume that, if
transition from state a to b is malicious, the calculated
probability from transition matrix will be zero. Details
of this Markov Chain-based detection model in 6thSense
are given in Appendix A1.

5.2 Naive Bayes Based Detection
Naive Bayes model is a simple probability estimation
method which is based on Bayes’ method. The main as-
sumption of the Naive Bayes detection is that the pres-
ence of a particular sensor condition in a task/activity
has no influence over the presence of any other feature
on that particular event. The probability of each event
can be calculated by observing the presence of a set of
specific features.

6thSense considers users’ activity as a combination of
n number of sensors. Assume X is a set which repre-
sents current conditions of n number of sensors. We con-
sider that conditions of sensors are conditionally inde-
pendent (See Section 4.2), which means a change in one
sensor’s working condition (i.e., on/off states) has no ef-
fect over a change in another sensor’s working condition.
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As explained earlier, the probability of executing a task
depends on the conditions of a specific set of sensors.
So, in summary, although one sensors’ condition does
not control another sensor’s condition, overall the proba-
bility of executing a specific task depends on all the sen-
sors’ conditions. As an example, if a person is walking
with his smartphone in his hand, the motion sensors (ac-
celerometer and gyroscope) will change. However, this
change will not force the light sensor or the proximity
sensor to change its condition. Thus, sensors in a smart-
phone change their conditions independently, but execute
a task together. We can have a generalized model for this
context-aware detection [49] as follows:

p(X |c) =
n

∏
i=1

p(Xi|c) (3)

Detailed description of this Naive Bayes model in
6thSense is given in Appendix A2.

5.3 Alternative Detection Techniques

In addition to Markov Chain and Naive Bayes mod-
els above, there are other machine learning algorithms
(such as PART, Logistic Function, J48, LMT, Hoeffding
Tree, and Multilayer Perception) that are very popular
for anomaly detection frameworks because of their faster
computation ability and easy implementation feature. In
the alternative detection techniques, we used four types
of ML-based classifier to build an analytical model for
6thSense. The following briefly discusses these classi-
fiers and our rationale to include them.

Rule-based Learning. Rule-based ML works by iden-
tifying a set of relational rules between attributes of a
given dataset and represents the model observed by the
system [25]. The main advantage of the rule-based learn-
ing is that it identifies a single model which can be ap-
plied commonly to any instances of the dataset to make a
prediction of outcome. As we train 6thSense with differ-
ent user activities, the rule-based learning provides one
model to predict data for all the user activities which sim-
plifies the framework. For 6thSense, we chose, PART al-
gorithm for the rule-based learning.

Regression Model. Regression model is widely used in
data mining for its faster computation ability. This type
of classifier observes the relations between dependent
and independent variables to build a prediction model
[20, 79]. For 6thSense, we have a total 11 attributes
where we have one dependent variable (device state:
malicious/benign) and ten independent variables (sensor
conditions). Regression model observes the change in
the dependent variable by changing the values of the in-
dependent variables and build the prediction model. We
use the logistic regression model in 6thSense, which per-

Figure 2: Overview of 6thSense.

forms with high accuracy against conventional Android
malware [65].

Neural Network. Neural network is another common
technique that is being adapted by researchers for mal-
ware detection. In neural network techniques, the rela-
tion between attributes of dataset is compared with the
biological neurons and a relation map is created to ob-
serve the changes for each attribute [40]. We chose Mul-
tilayer Perceptron algorithm for training the 6thSense
framework as it can distinguish relationships among non-
linear dataset.

Decision Tree. Decision tree algorithms are predictive
models where decision maps are created by observing
the changes in one attribute in different instances [84].
These types of algorithms are mostly used in a prediction
model where output can have a finite set of values. For
6thSense, we utilized and tested three different decision
tree algorithms (J48, LMT (Logistic Model Tree), and
Hoeffding tree) to compare the outcome of our frame-
work.

6 6thSense Framework

In this section, we provide a detailed overview of our
proposed contextual behavior IDS framework, 6thSense,
for detecting sensor-based threats on smart devices. As
illustrated in Figure 2, 6thSense has three main phases:
(1) data collection, (2) data processing, and (3) data anal-
ysis. In the data collection phase, we use a custom An-
droid application to collect the sensor data for differ-
ent user activities and the collected sensor data are then
processed in the data processing phase. Note that in
6thSense some sensors provide discrete values as data
(e.g., accelerometer, gyroscope, light sensor, etc.) while
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other sensors provide their on-off state as sensor data
(e.g., microphone, speaker, etc.). In phase 3, the col-
lected data is fed into detection models and the end result
indicates whether the current state of the device is mali-
cious or not. The following sub-sections briefly describe
these three phases.

6.1 Data Collection Phase
In this phase, 6thSense collects data from different sen-
sors of a smart device. There can be multiple sensors in
a smart device. We chose nine sensors in total to identify
different user activities using a sensor-rich Android de-
vice. The sensors selected are accelerometer, gyroscope,
light sensor, proximity sensor, GPS, audio sensor (micro-
phone and speaker), camera, and headphone. 6thSense
does not consider all the other sensors available in the
device because all typical user activities do not affect all
the sensor values. For example, the gravity sensor value
does not change effectively while talking or walking with
the phone. The chosen sensors are then categorized into
two following categories.

• No-permission-imposed sensors: No-permission-
imposed sensors can be defined as sensors that do
not need any user permission explicitly to be ac-
cessed by an App. For 6thSense, we chose four
no-permission imposed sensors (i.e., accelerome-
ter, gyroscope, light, proximity sensors). We can
also refer these sensors as data-oriented sensors in
the context of 6thSense because values provided by
these sensors need to be observed to infer user activ-
ities. For example, accelerometer’s and gyroscope’s
values change with motion and they give values on
X, Y, and Z axes. These values change along with
the motion in different axes. To detect whether a
sensor is activated or not for a specific activity, one
needs to observe values of these sensors.

• Permission-imposed sensors: Permission-imposed
sensors are those which need user permission to be
accessed by an App. For 6thSense, we chose five
permission-imposed sensors to build the context-
aware model (camera, microphone, GPS, speaker,
and headset). The conditions of these sensors can
be represented by their logical states (on/off status)
for different user activities. Hence, we also referred
to these sensors as logic-oriented sensors in the con-
text of 6thSense. For example, camera has only two
values to identify users’ activity: on and off. So, it
can be represented with 0 or 1 to detect if the cam-
era is on or off correspondingly.

To collect the data and logical values from sensors,
we built a custom Android App and 6thSense used this

in the data collection phase. In Android, this App uses
sensoreventlistener API to log numerical values of the
data-oriented sensors. On the other hand, the App deter-
mines the state of the sensor and logs 0 or 1 if the sensor
is on or off, respectively. This App uses the user permis-
sion access to use the microphone, GPS, and camera to
record the working condition of these sensors. For GPS,
we consider two datasets - either GPS is turned on or
not and either location is changing or not. In total, six
different logic state information for five aforementioned
permission-imposed sensors are collected by this App.

Note that we chose different typical daily human activ-
ities [4] that involve the smart device to build our contex-
tual model. These activities include walking (with phone
in hand and pocket), talking, interacting (playing games,
browsing, listening to music), video calling, driving (as
driver and passenger). Furthermore, the number of ac-
tivities is configurable in 6thSense and is not limited to
aforementioned examples. In the evaluation of 6thSense,
we chose a total of nine typical daily activities as they
are considered as common user activities for a smart de-
vice [4]. We collect these data using the App for different
users to train the 6thSense framework which is then used
to distinguish the normal sensor behavior from the ma-
licious behavior. In summary, the aforementioned App
collects data from nine different sensors for nine typi-
cal user activities. We observe sensor state (combina-
tion of working conditions (i.e., values, on/off status) of
nine different sensors) in a per second manner for each
user activity. Each second of data for user activity cor-
responds to 1024 state information from nine different
sensors.

6.2 Data Processing Phase

After the data collection, in the second phase of the
framework, we organize the data to use in the proposed
IDS framework. As different sensors have different fre-
quencies on the smart device, the total number of read-
ings of sensors for a specific time period is different. For
example, the accelerometer and gyroscope of Samsung
Galaxy S5 have a sampling frequency of approximately
202 Hz while the light sensor has a sampling frequency
of 5.62 Hz. Thus, the data collected in Phase 1 needs
to be sampled and reorganized. 6thSense observes the
change in the sensor condition in each second to deter-
mine the overall state of our device and from this per
second change, 6thSense determines the activity of users.
For this reason, 6thSense takes all the data given by a sin-
gle sensor in a second and calculates the average value
of the sensor reading. This process is only applicable for
the data oriented sensors as mentioned earlier. Again, the
data collected from the App is numerical value given by
the sensor. However, for the detection model, we only
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Sensor
type Name Model Specification

No-permission imposed
sensors

Accelerometer MPU6500 Acceleration Sensor 19.6133 m/s2, 203.60 Hz, 0.25 mA
Gyroscope MPU6500 Gyroscope Sensor 8.726646 rad/s, 203.60 Hz, 6.1 mA

Light Sensor TMG399X RGB Sensor 600000 lux, 5.62 Hz, 0.75 mA
Proximity Sensor TMG399X proximity sensor 8V, 0.75 mA

Permission-imposed sensors
Camera Samsung S5K2P2XX 12 megapixels, 30 fps, 4.7 mA

Microphone
Qualcomm Snapdragon

801 Processor built in microphone
86 dB, .75 mA

Speaker
Qualcomm Snapdragon

801 Processor built in speaker
110 dB, 1 mA

Table 1: Sensor list of Samsung Galaxy S5 Duo used in experiment.

consider the condition of the sensors. 6thSense observes
the data collected by the aforementioned App and deter-
mines whether the condition of sensors is changing or
not. If the sensor value is changing from the previous
value in time, 6thSense represents the sensor condition
as 1 and 0 otherwise. The logic state information col-
lected from the sensors need to be reorganized, too as
these data are merged with the data collected from the
collected values from the other sensors to create an in-
put matrix. The sampling frequency of the logical state
detection is 0.2 Hz which means in every five seconds
the App generates one session of dataset. We consider
the condition of the sensors to be the same over this time
period and organize the data accordingly. The reorga-
nized data generated from the aforementioned App are
then merged to create the training matrices.

6.3 Data Analysis Phase

In the third and final phase, 6thSense uses different ma-
chine learning-based detection techniques introduced in
the previous section to analyze the data matrices gener-
ated in the previous phase.

For the Markov Chain-based detection, we use 75% of
the collected data to train 6thSense and generate the tran-
sition matrix. This transition matrix is used to determine
whether the transition from one state to another is appro-
priate or not. Here, state refers to generic representation
of all the sensors’ conditions on a device. For testing pur-
poses we have two different data set — basic activities or
trusted model and malicious activities or threat model.
The trusted model consists of 25% of the collected data
for different user activities. We test the trusted model
to ensure the accuracy of the 6thSense framework in de-
tecting benign activities. The threat model is built from
performing the attack scenarios mentioned in Section 4.
We calculate the probability of a transition occurring be-
tween two states at a given time and accumulate the total
probability to distinguish between normal and malicious
activities.

To implement the Naive Bayes-based detection tech-

nique, we use the training sessions to define different
user activities. In 6thSense, we have nine typical user
activities in total as listed in Table 2. We use groundtruth
user data to define these activities. Using the theoretical
foundation explained in Section 5, we calculate the prob-
ability of a test session to belong to any of these defined
activities. As we consider one second of data in each
computational cycle, we calculate the total probability
up to a predefined configurable time interval (in this case
five minutes). This calculated probability is used to de-
tect malicious activities from normal activities. If the
computed probability for all the known benign activities
is not over a predefined threshold, then it is detected as a
malicious activity.

For the other alternative machine-learning-based de-
tection techniques, we used WEKA, a data mining tool
which offers data analysis using different machine learn-
ing approaches [64, 27]. Basically, WEKA is a collection
of machine learning algorithms developed at the Univer-
sity of Waikato, New Zealand, which can be directly ap-
plied to a dataset or can be integrated with a framework
using JAVA platform [56]. WEKA offers different types
of classifier to analyze and build predictive model from
given dataset. We use 10 fold cross-validation method to
train and test 6thSense with different ML techniques in
Section 7.

7 Performance Evaluation of 6thSense

In this section, we evaluate the efficiency of the proposed
context-aware IDS framework, 6thSense, in detecting the
sensor-based threats on a smart device. We test 6thSense
with the data collected from different users for benign
activities and adversary model described in Section 4.
As discussed earlier, 6thSense considers three sensor-
based threats: (1) a malicious App that can be triggered
via a light or motion sensors, (2) a malicious App that
can leak information via audio sensor, and (3) a mali-
cious App that steals data via camera. Furthermore, we
measured the performance impact of 6thSense on the de-
vice and present a detailed results for the efficiency of
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the 6thSense framework. Finally, we discuss the perfor-
mance overhead of the framework in this section.

7.1 Training Environment

In order to test the effectiveness of 6thSense, we imple-
mented it on a sensor-rich Android-based smartphone.
However, our framework would also efficiently work in
another smart device such as smartwatch. In the eval-
uations, we used Samsung Galaxy S5 Duos as a refer-
ence Android device to collect sensor data for different
typical user activities. We chose this Android device as
Samsung currently holds approximately 20.7% of total
marketshare of smartphone [8] and provides a rich set of
sensors. A list of sensors of Samsung Galaxy S5 Duos is
given in Table 1. As discussed earlier, we selected 9 dif-
ferent typical user activities or tasks to collect user data.
These are typical basic activities with smartphones that
people usually do in their daily lives [3]. The user ac-
tivities/tasks are categorized in two categories as generic
activities and user related activities.

Generic activities are the activities in which the sensor
readings are not affected by the smartphone users. Sleep-
ing, driving with the phone using GPS as a navigator, and
driving with phone in pocket are three generic activities
that we considered in this work. Basically, in the generic
activities, sensors’ data are not affected by different users
since the smart phone is not in contact with the user or
user is not directly interacting with the phone. For user-
related activities, in which the sensor readings may be
affected by the device user, we identified six different ac-
tivities including walking with the phone in hand, play-
ing games, browsing, and making voice calls and video
calls.

6thSense was tested by 50 different individuals aged
from 18 to 45 while the sensor data was collected. We
note that our study with human subjects was approved
by the appropriate Institutional Review Board (IRB) and
we followed all the procedures strictly in our study. Each
participant received some monetary compensation for
participating in our experiments. To ensure privacy and
anonymity, we used fake user IDs rather than any per-
sonal information. We collected 300 sets of data for six
user-related activities where each dataset comprised of 5
minutes long data from the selected nine sensors men-
tioned in Section 6. We also collected three sets of data
for each general activity. We asked the different users to
perform the same activity to ensure the integrity for dif-
ferent tasks. Note that each five minute of data collected
for user related and generic activities corresponds to 300
events with 1024 different states. Here, states represent a
combination of conditions (i.e., values, on/off status) of
nine different sensors and events represent user activities
per second. So, a total of 307,200 different event-state

information were analyzed by 6thSense.
For the malicious dataset, we created three different

attack scenarios considering the adversary model men-
tioned in Section 4. For Threat 1, we developed two dif-
ferent Android Apps which could be triggered using the
light sensor and motion sensors on the smartphone. To
perform the attack described in Threat 2, we developed
a malware that could record conversations as audio clips
and playback after a specific time to leak the informa-
tion. This attack scenario included both the microphone
and speaker on the smartphone. For Threat 3, we devel-
oped a malicious App that could scan all the sensors and
if none of the sensors were changing their working con-

Task Category Task Name

Generic Activities
1. Sleeping
2. Driving as driver
3. Driving as passenger

User-related Activities

1. Walking with phone in
hand
2. Walking with phone in
pocket/bag
3. Playing games
4. Browsing
5. Making phone calls
6. Making video calls

Table 2: Typical Activities of Users on Smart Device [3].

ditions, the malicious App could open up the camera and
record videos surreptitiously. We collected 15 different
datasets from these three attack scenarios to test the effi-
cacy of 6thSense against these adversaries.

7.2 Dataset
In order to test 6thSense, we divided the collected real
user data into two sections as it is a common practice
[77]. 75% of the collected benign dataset was used to
train the 6thSense framework and 25% of the collected
data along with malicious dataset were used for test-
ing purposes. For the Markov Chain-based detection
technique, the training dataset was used to compute the
state transitions and to build the transition matrix. On
the other hand, in the Naive Bayes-based detection tech-
nique, the training dataset was used to determine the fre-
quency of sensor condition changes for a particular ac-
tivity or task. As noted earlier, there were nine activities
for the Naive Bayes technique. We split the data accord-
ing to their activity for this approach. For the analysis of
the other ML-based approaches, we define all the data in
benign and malicious classes. The data were then used
to train and test 6thSense using 10-fold cross validation
for different ML algorithms.
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Threshold
(Number of consecutive

malicious states )

Recall
rate

False negative
rate

Precision rate
(specificity)

False positive
rate Accuracy F-score

0 0.62 0.38 1 0 0.6833 0.7654
1 0.86 0.14 1 0 0.8833 0.9247
2 0.96 0.04 1 0 0.9667 0.9796
3 0.98 0.02 1 0 0.9833 0.9899
5 1 0 0.9 0.1 0.9833 0.9474
6 1 0 0.8 0.2 0.9667 0.8889
8 1 0 0.6 0.4 0.9333 0.75

10 1 0 0.5 0.5 0.9167 0.6667
12 1 0 0.5 0.5 0.9167 0.6667
15 1 0 0.3 0.7 0.8833 0.4615

Table 3: Performance evaluation of Markov Chain based model.

7.3 Performance Metrics
In the evaluation of 6thSense, we utilized the following
six different performance metrics: Recall rate (sensitiv-
ity or True Positive rate), False Negative rate, Specificity
(True Negative rate), False Positive rate, Accuracy, and
F-score. True Positive (TP) indicates number of benign
activities that are detected correctly while true negative
(TN) refers to the number of correctly detected malicious
activities. On the other hand, False Positive (FP) states
malicious activities that are detected as benign activities
and False Negative (FN) defines number of benign activ-
ities that are categorized as malicious activity. F-score is
the performance metric of a framework that reflects the
accuracy of the framework by considering the recall rate
and specificity. These performance metrics are defined
as follows:

Recall rate =
T P

T P+FN
, (4)

False negative rate =
FN

T P+FN
, (5)

Speci f icity =
T N

T N +FP
, (6)

False positive rate =
FP

T N +FP
, (7)

Recall rate =
T P

T P+FN
, (8)

Accuracy =
T P+T N

T P+T N +FP+FN
, (9)

F− score =
2∗Recall rate∗Precision rate

Recall rate+Precision rate
(10)

In addition to the aforementioned performance metrics,
we considered Receiver Operating Characterstic (ROC)
curve as another performance metric for 6thSense.

7.4 Evaluation of Markov Chain-Based
Detection

In the Markov Chain-based detection technique, we
question whether the transition between two states (sen-
sors’ on/off condition in each second) is expected or not.
In the evaluations, we used 65 testing sessions in total,
among which 50 sessions were for the benign activities
and the rest of the sessions were for the malicious ac-
tivities. A session is composed of a series of sensory
context conditions where a sensory context condition is
the set of all available sensor conditions (on/off state) for
different sensors. As discussed earlier in Section 6, a
sensor condition is a value indicating whether the sen-
sor data is changing or not. In this evaluation, the sen-
sory context conditions were computed every one sec-
ond. We observed that in real devices sometimes some
sensor readings would be missed or real data would not
be reflected probably due to hardware or software im-
perfections. And, real malicious Apps would cause con-
secutive malicious states on the device. Therefore, to
overcome this, we also keep track of number of consecu-
tive malicious states and use it as a threshold after which
the session is considered as malicious. Table 3 displays
the evaluation results associated wit the Markov Chain-
based detection technique. When the threshold for con-
secutive malicious states is 0, i.e., when no threshold is
applied, the accuracy is just 68% and FNR is as high as
38%. With increasing the threshold value, the accuracy
first increases up to 98% then start decreasing.

The possible cut-off threshold can be three consecu-
tive malicious occurrences which has both accuracy and
F-score over 98%. In Table 3, different performance in-
dicators for Markov Chain based detection are presented.
We can observe that FN and TN rates of Markov Chain-
based detection decrease as the threshold of consecutive
malicious states increases. Again, both accuracy and F-
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Threshold
Probability

Recall
rate

False negative
rate

Precision rate
(specificity)

False positive
rate Accuracy F-score

55% 1 0 0.6 0.4 0.9333 0.75
57% 1 0 0.7 0.3 0.95 0.8235
60% 1 0 0.7 0.3 0.95 0.8235
62% 1 0 0.7 0.3 0.95 0.8235
65% 0.94 0.06 0.7 0.3 0.9 0.8024
67% 0.88 0.12 0.7 0.3 0.85 0.7797
70% 0.7 0.3 0.8 0.2 0.7167 0.7467
72% 0.7 0.3 0.9 0.1 0.7333 0.7875
75% 0.66 0.34 0.9 0.1 0.7 0.7616
80% 0.66 0.34 0.9 0.1 0.7 0.7615

Table 4: Performance evaluation of Naive Bayes model.

score reach to a peak value with the threshold of three
consecutive malicious states on the device. From Fig-
ure 3, we can see that FP rate remains zero while TP rate
increases at the beginning. The highest TP rate without
introducing any FP case is over 98%. After 98%, it intro-
duces some FP cases in the system which is considered as
a risk to the system. In summary, Markov Chain-base de-
tection in 6thSense can acquire accuracy over 98% with-
out introducing any FP cases.

Figure 3: ROC curve of Markov Chain-based detection.

7.5 Evaluation of Naive Bayes-based De-
tection

In the Naive Bayes-based detection technique, 6thSense
calculates the probability of a session to match it with
each activity defined in Section7.1. Since all the activ-
ities are benign and there is no malicious activity (i.e.,
ground-truth data), 6thSense checks calculated probabil-
ity of an activity from dataset against a threshold to de-
termine the correct activity. If there is no match for a cer-
tain sensor condition with any of the activities, 6thSense
detects the session as malicious. Table 4 shows the eval-
uation results.

For a threshold value of 55%, FN rate
is zero. However, FPR is too high, which lowers F-

score of the framework. For a threshold of 60%, FPR
decreases while FNR is still zero. In this case, accu-
racy is 95% and F-score is 82%. If the threshold is in-
creased over 65%, it reduces the recall rate which affects
accuracy and F-score. The evaluation indicates that the
threshold value of 60% provides an accuracy of 95% and
F-score of 82%.

From Figure 4, one can observe the relation between
FPR and TPR of Naive Bayes-based detection. For FPR
larger than 0.3, TPR becomes 1.

Figure 4: ROC curve of Naive Bayes-based detection.

7.6 Evaluation of Alternative Detection
Techniques

In alternative detection techniques, we used other super-
vised machine learning techniques to train the 6thSense
framework. For this, we utilized WEKA and it provides
three types of analysis - split percentage analysis, cross-
validation analysis, and supplied test set analysis. We
chose 10 fold cross-validation analysis to ensure that all
the data was used for both training and test. Thus, the
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Algorithms Recall
rate

False negative
rate Precision rate False positive

rate Accuracy F-score

PART 0.9998 0.0002 0.6528 0.3472 0.99 0.7899
Logistic Function 0.9997 0.0003 0.2778 0.7222 0.998 0.4348

J48 0.9998 0.0002 0.6528 0.3472 0.99 0.7899
LMT 0.9998 0.0002 0.9306 0.0694 0.9997 0.964

Hoeffding Tree 1 0 0.0556 0.9444 0.9978 0.1053
Multilayer Perceptron 0.9998 0.0002 0.6944 0.3056 0.9991 0.8196

Table 5: Performance of other different machine learning based-detection techniques tested in 6thSense.

error rate of the predictive model would be minimized
in the cross validation. In Table 5, a detailed evalua-
tion of different machine learning algorithms is given for
6thSense. For Rule Based Learning, 6thSense has the
best result for PART algorithm, which has an accuracy
of 0.99 and F-score of 0.7899. On the other hand, for
Regression Analysis, we use the logistic function which
has high FPR (0.7222) and lower F-score (0.4348). Mul-
tilayer Perceptron algorithm gives an accuracy of 0.9991
and F-score of 0.8196, which is higher than previously
mentioned algorithms. However, FPR is much higher
(0.3056), which is actually a limitation for intrusion de-
tection frameworks in general. Compared to these algo-
rithms, Linear Model Tree (LMT) gives better results in
detecting sensor-based attacks. This evaluation indicates
that LMT provides an accuracy of 0.9997 and F-score of
0.964.

7.7 Comparison

In this subsection, we give a comparison among the
different machine-learning-based detection approaches
tested in 6thSense for defending against sensor-based
threats. For all the approaches, we select the best pos-
sible case and report their performance metrics in Ta-
ble 6. For Markov Chain-based detection, we choose
three consecutive malicious states as valid device con-
ditions. On the other hand, in Naive Bayes approach, the
best performance is observed for the threshold of 60%.
For other machine learning algorithms tested via WEKA,
we choose LMT as it gives highest accuracy among other
machine learning algorithms. These results indicate that
LMT provides highest accuracy and F-score compared to
the other two approaches.

On the contrary, Naive Bayes model displays higher
recall rate and less FNR than other approaches. However,
the presence of FPR in IDS is a serious security threat to
the system since FPR refers to a malicious attack that is
identified as a valid state, which is a threat to user pri-
vacy and security of the device. Both Markov Chain and
LMT has lower FPR. In summary, considering F-score
and accuracy of all these approaches, we conclude that

LMT performs better than the others.

Performance
Metrics

Markov
Chain

Naive
Bayes LMT

Recall rate 0.98 1 0.9998
False Negative Rate 0.02 0 0.0002
Precision rate 1 0.7 0.9306
False positive rate 0 0.3 0.0694
Accuracy 0.9833 0.9492 0.9997
F-Score 0.9899 0.8235 0.964
auPRC 0.947 0.686 0.91

Table 6: Comparison of different machine-learning-
based approaches proposed for 6thSense (i.e., Markov
Chain, Naive Bayes, and LMT).

7.8 Performance Overhead
As previously mentioned, 6thSense collects data in an
Android device from different sensors (permission and
no-permission imposed sensors). In this sub-section,
we measure the performance overhead introduced by
6thSense on the tested Android device in terms of CPU
usage, RAM usage, file size, and power consumption and
Table 7 gives the details of the performance overhead.

For no-permission-imposed sensors, the data collec-
tion phase logs all the values within a time interval
which causes an increased usage of RAM, CPU and
Disc compared to permission- imposed or logic-oriented
sensors. For the power consumption, we observe that
no-permission-imposed sensors use higher power than
permission-imposed sensors. This is mainly because
logic-oriented sensors have lower sampling rate, which
reduces its resource needs.

The overall performance overhead is as low as 4% of
CPU, less then 40MB RAM space, and less than 15MB
disc space. Thus, its overhead is minimal and accept-
able for an IDS system on current smartphones. One of
the main concerns of implementing 6thSense on Android
device is the power consumption.

Table 7 also shows the power consumption of the
Android app used in 6thsense. For one minute,
6thsense consumes 16.62 mW power which increases
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upto 178.33mW for ten seconds. The main reason of
this high power consumption is that all the sensors are
kept on for the data collection and all the data are saved
on device for later analysis. However, in practical set-
tings, the data would not be saved on device rather a real
time analysis would be done, which indeed will decrease
the power consumption. Without saving the data, the
power consumption significantly becomes smaller. From
Table 7, we can observe that the power consumption of
6thSense becomes 72.35 mW which is almost 2.5 times
lower than otherwise. Also, all the sensors do not have
to remain on for the analysis part. Data can be observed
if the smart device is in unlocked status. Also, a suitable
interval can be chosen for the data analysis by estimat-
ing average time of an attack. This is one of the possible
future research directions for 6thSense.

Parameters Time
No-permission
imposed
sensors

Permission
imposed
sensors

CPU Usage N/A 3.90% 0.3%
RAM Usage N/A 23 MB 14 MB

Disc Usage
For 1 min 6.5 MB 1 KB
For 5 min 9 MB 2 KB
For 10
min

12 MB 3 KB

Power
Consumption

1 min 13.5 mW 3.12 mW
5 min 96.67 mW 27.4 mW
10 min 133.33 mW 45 mW

Power
Consumption
(without datafile)

1 min 2.68 mW 0.23 mW
5 min 23.4 mW 9.63 mW
10 min 55.35 mW 17 mW

Table 7: Performance Overhead of Android Apps.

8 Discussion and Limitations

• Features and Benefits- Compared to the existing
solutions, 6thSense differentiates itself by consid-
ering a context-aware model to detect sensor-based
threats. As sensors provide continuous data to the
apps, security schemes must handle real-time data
rather than stored data in the system. While most of
the existing solutions work with the stored data or
the data used by Apps [14, 29], 6thSense offers real-
time sensor monitoring. On the other hand, mod-
ern high precision sensors on-board have higher fre-
quency and sensitivity. These sensors can detect
slight changes in the smart device’s ambiance which
reflects on sensor values. To overcome frequent
changes in sensor values, 6thSense considers av-
erage values over one second, which mitigates the
effect of changes in sensor values caused by the
device ambiance. For example, if a person walks
by a smartphone, the light sensor and motion sen-

sors values will be changed for that instance. How-
ever, if one considers the average value over one
second, it will be compensated by other readings
recorded over one second. Another unique fea-
ture of 6thSense is that instead of considering the
individual sensor data accessed by the Apps, user
activities are monitored, which forms the basis of
the contextual model for the 6thSense framework.
6thSense observes changes in sensors for different
user activities. As more than one sensor remain ac-
tive to perform a task, attackers need to learn the
pattern of all the sensors for user activities to out-
perform 6thSense. If an attacker targets one spe-
cific sensor, an attack scenario will differ from nor-
mal user activity which can be easily detected by
6thSense. Thus, the context of user activities is very
important to detect malicious activities in 6thSense.
Moreover, 6thSense considers all the sensors’ con-
ditions as one device state, which provides easy
monitoring of the sensors by one framework. Fi-
nally, 6thSense can work with all the sensors on a
smart device extending the security beyond the tra-
ditional permission-imposed sensors (i.e., GPS, mi-
crophone, and camera).

• Application Level Detection- One of the promis-
ing practical applications of 6thSense is to com-
bine the sensor level detection with an application
level intrusion detection. 6thSense focuses on de-
tecting malicious activities by observing working
conditions of sensors rather than individual App be-
haviors. However, some prior works [82, 57, 78]
also show that it is possible to achieve good accu-
racy when detecting malicious activities by observ-
ing sensor usage in the application level. The com-
bination of application and sensor level detection
might be one promising way to further improve the
performance of 6thSense. Another interesting ap-
plication of 6thSense would be to combine it with
an online training method to eliminate the necessity
of offline training.

• Sensor-based threats in real-life settings - One
limitation of 6thSense is the adversaries (sensor-
based attacks) used in the evaluation were con-
structed in a lab environment. Note that as of this
writing, there are no real sensor-based malware in
the wild. However, recently, many independent re-
searchers have confirmed the feasibility of sensor-
based threats for smart devices [57, 17, 1, 70]. In-
deed, more recently, ICS-CERT also warned the
vendors and the wider communities about the pos-
sibility of exploiting the sensors of a device to alter
sensors’ output in a controlled way to perform ma-
licious behavior in the device [2]. Although there
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are different limited security schemes to mitigate
these attacks, there is no comprehensive contextual
solution to secure smart devices from the sensor-
based threats. Furthermore, we note that even lock-
ing down the sensor API with explicit permissions
at the OS level would not surpass the sensor-based
threats as users are not aware of these threats yet
and can allow malicious Apps to use sensors un-
knowingly. For all these points, we built the prof-
of-concept versions of the sensor-based threats dis-
cussed in Section 4. We also note that to ensure
the reliability of the lab-made malware (i.e., a spe-
cific malicious App) for three threats described in
the Adversary Model Section, we checked how they
perform with respect to the real malicious software
scanners. For this, we uploaded our lab-made mal-
ware on VirusTotal and tabulated the results of the
performance of 60 different malware scanners avail-
able at the VirusTotal website in Table 8. As seen
in this table, the sensor-based threats are not recog-
nized by the different scanners. Only 2 out of 60
reported that they could detect, but these two only
reported risks without clearly identifying any ex-
plicit malicious behaviour. Hence, it is difficult to

Adversary Model Detection Ratio

Threat-1 2/60
Threat-2 2/60
Threat-3 3/62

Table 8: VirusTotal scan result for the adversary models.

detect the sensor-based threats mentioned in this pa-
per by existing security schemes. Moreover, some
security schemes only provide security to the spe-
cific sensors [57]. 6thSense covers several sen-
sors as opposed to other existing existing security
schemes without alerting the device. Also, existing
sensor management systems of Android depends on
explicit user-permission only for specific sensors
(e.g., microphone, camera, speaker). As users are
not aware of sensor-based threats yet, they can al-
low malicious Apps to use sensors unknowingly.
Additionally, 6thSense also covers no-permission-
imposed sensors (e.g., motion sensors, light sensor,
etc.) in its design.

• Context-aware Malicious App- One compelling
case is that how 6thSense can defend against a ma-
licious App which can learn and imitate a user’s be-
havior. As described earlier, Threat 3, described in
Section 4.1, can observe the working conditions of
all the sensors and detect, for instance, a sleeping
activity that records videos stealthily. 6thSense can
even detect this powerful context-aware malware

successfully. In summary, to outperform 6thSense,
a malicious App must behave like a benign App all
the time in a device, which limits its malicious pur-
poses. Any incompatible behavior in the sensors of
a smart device can be easily detected by 6thSense.

9 Conclusion

Wide utilization of sensor-rich smart devices created a
new attack surface namely sensor-based attacks. Ac-
celerometer, gyroscope, light, etc. sensors can be abused
to steal and leak sensitive information or malicious
Apps can be triggered via sensors. Security in current
smart devices lacks appropriate defense mechanisms for
such sensor-based threats. In this paper, we presented
6thSense, a novel context-aware task-oriented sensor-
based attack detector for smart devices. We articulated
problems in existing sensor management systems and
different sensor-based threats for smart devices. Then,
we presented the design of 6thSense to detect sensor-
based attacks on a sensor-rich smart device with low-
performance overhead. 6thSense utilized different ma-
chine learning (ML) techniques to distinguish malicious
activities from benign activities on a device. To the
best of our knowledge, 6thSense is the first compre-
hensive context-aware security solution against sensor-
based threats. We evaluated 6thSense on real devices
with 50 different individuals. 6thSense achieved over
95% of accuracy with different ML algorithms includ-
ing Markov Chain, Naive Bayes, and LMT . We also
evaluated 6thSense against three different sensor-based
threats, i.e., information leakage, eavesdropping, and
triggering a malware via sensors. The empirical evalu-
ation revealed that 6thSense is highly effective and ef-
ficient at detecting sensor-based attacks while yielding
minimal overhead.

Future Work: While 6thSense detects different
sensor-based threats with high accuracy, we will ex-
pand 6thSense in our future work as follows: We will
study other performance metrics such as Precision Recall
Curve (PRC). We will evaluate the efficacy of 6thSense
in other smart devices such as smartwatches and ana-
lyze all of its phases in its operations. Moreover, due
to limited resources of the smart devices, trade-off be-
tween power consumption and effectiveness is a prime
concern of any intrusion detection framework. Hence,
we will study frequency-accuracy trade-off, battery-
accuracy trade-off, and battery-frequency trade-off of
6thSense in different smart devices.
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A Theoretical Foundation

A.1 Markov Chain-Based Detection
For the Markov Chain detection model, 6thSense ob-
serves the changes of condition of a set of sensors as a
variable which changes over time. The condition of a
sensor indicates whether the sensor value is changing or
not from a previous value in time. For a specific time,
t, 6thSense considers the combination of all the sensors’
condition in the smart device as the state of our model.
As 6thSense considers change in a sensor’s condition as
binary output (1 or 0, where 1 denotes that sensor value is
changing from previous instance and 0 denotes that sen-
sor value is not changing), the number of total states of
in the detection model will be exponents of 2. For ex-
ample, if we consider the total number of sensors in set
S is 10, the number of states in our Markov Chain will
be 210 or 1024 and the states can be represented as a 10
bit binary number where each bit will represent the state
of a corresponding sensor. Assume that pi j denotes the
probability that the system in a state j at time t+1 given
that system is in state i at time t. If we have n num-
ber of sensors and m = 2n states in our model, the transi-
tion probability matrix of this Markov Chain can be con-
structed by observing the transitions from one state to
another state for a certain time. Assume that 6thSense’s
states are X0,X1, . . . ,XT at a given time t = 0,1, . . . ,T .
We can represent the transition probability matrix [83]
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with Pi j =
Ni j
Ni

with Ni j = the number of transitions from
Xt to Xt+1, where Xt in state i and Xt+1 in state j; Ni =
the number of transitions from Xt to Xt+1, where Xt in
state i and Xt+1 in any other state. The initial probability
distribution of this Markov Chain can be as follows [33]:

Q =
[
q1 q2 q3 . . . . . . qm

]
(11)

where, qm is the probability that the model is in state
m at time 0. The probability of observing a sequence
of states X1,X2, . . . ,XT at a given time 1, . . . ,T can be
computed using the following equation:

P(X1,X2, . . . ,XT ) = qx1

T

∏
2

PXt−1Xt (12)

As described earlier in Section 5, for 6thSense, we use
a modified version of the general Markov Chain model.
Instead of predicting the next state, 6thSense determines
the probability of a transition occurring between two
states at a given time.

A.2 Naive Bayes Based Detection
Naive Bayes model is a simple probability estimation
method which is based on Bayes’ method. The main as-
sumption of the Naive Bayes detection is the presence of
a particular particular sensor condition in a task/activity
has no influence over the presence of any other feature
on that particular event.

Assume p(x1,x2) is the general probability distribu-
tion of two events x1,x2. Using the Bayes rule, we
can have p(x1,x2) = p(x1|x2)p(x2) where, p(x1|x2) =
Probability of event x1 given that event x2 will happen.
Now, with c, we can rewrite this formula as p(x1,x2|c) =
p(x1|x2,c)p(x2|c). If c is sufficient enough to determine
the probability of event x1, we can state that there is con-
ditional independence between x1 and x2 [54]. So, we
can rewrite the first part as p(x1|x2,c) = p(x1|c), which
then modifies the formula as follows:

p(x1,x2|c) = p(x1|c)p(x2|c) (13)

6thSense considers users’ activity as a combination of
n number of sensors. Assume X is a set which repre-
sents current conditions of n number of sensors. We con-
sider that conditions of sensors are conditionally inde-
pendent (See Section 4.2), which means a change in one
sensor’s working condition (i.e., on/off states) has no ef-
fect over a change in another sensor’s working condition.
As explained earlier, the probability of executing a task
depends on the conditions of a specific set of sensors.
So, in summary, although one sensors’ condition does
not control another sensor’s condition, overall the proba-
bility of executing a specific task depends on all the sen-
sors’ conditions. As an example, if a person is walking

with his smartphone in his hand, the motion sensors (ac-
celerometer and gyroscope) will change. However, this
change will not force the light sensor or the proximity
sensor to change its condition. Thus, sensors in a smart-
phone change their conditions independently, but execute
a task together. We can have a generalized model for this
context-aware detection [49] as follows:

p(X |c) =
n

∏
i=1

p(Xi|c) (14)

In 6thSense’s context-aware activity-oriented detec-
tion model, we have a set of training data for users’ ac-
tivities. Assume that B represents a set which denotes m
numbers of user activities. We can determine the prob-
ability of a dataset X to be classified as a user activity
using the following equation:

P(Bi|X) =
P(X |Bi)P(Bi)

P(X)
, (15)

where i= 1,2, . . . , m. As the sum of all the conditional
probabilities for X will be 1, we can have the following
equation, which then will lead to Equation 17 [36]:

m

∑
i=1

P(Bi|X) = 1. (16)

P(Bi|X) =
P(X |Bi)P(Bi)

∑
m
i=1 P(X |Bi)P(Bi)

. (17)

This calculated conditional probability then is used to
determine the benign user activity or malicious attacks in
6thSense. In this way, 6thSense computes the probability
of occurring an activity over a certain period of time.

6thSense divides the sensor data into smaller time val-
ues (1 second) and calculates the probability of each in-
stance to infer the user activity. The calculated probabil-
ity of each second data is then used in the expected value
to calculate the total probability. As such, the probability
of the first instance is p1 with a value of a1, the proba-
bility of the second instance is p2 with a value of a2 and
so on up to the value an. Then, the expected value can be
calculated by the following formula:

E[N] =
a1 p1 +a2 p2 +a3 p3 + . . . . . .+an pn

a1 +a2 + . . . . . .+an
. (18)

As all the values of a1, a2, ... ..., an are equally
likely, this expected value becomes a simple average of
the cumulative probability of each instance. In this way,
6thSense infers the user activity by setting up a config-
urable threshold value and checking whether the calcu-
lated value is higher than the threshold or not. If it is
lower than the threshold value, 6thSense concludes that
the malicious activity is occurring in the smart device.
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Abstract
In this work, we demonstrate a novel attack in SDN

networks, Persona Hijacking, that breaks the bindings of
all layers of the networking stack and fools the network
infrastructure into believing that the attacker is the le-
gitimate owner of the victim’s identifiers, which signifi-
cantly increases persistence. We then present a defense,
SECUREBINDER, that prevents identifier binding attacks
at all layers of the network by leveraging SDN’s data and
control plane separation, global network view, and pro-
grammatic control of the network, while building upon
IEEE 802.1x as a root of trust. To evaluate its effective-
ness we both implement it in a testbed and use model
checking to verify the guarantees it provides.

1 Introduction

Modern networks use various identifiers to specify en-
tities at network stack layers. These identifiers include
addresses, like IP addresses or MAC addresses, and do-
main names, as well as less explicitly known values such
as the switch identifier and the physical switch port to
which a machine is connected. Identifiers are used in
modern networks not only to establish traffic flow and
deliver packets, but also to enforce security policies such
as in firewalls or network access control systems [3]. In
order to achieve proper operation and security guaran-
tees, network infrastructure devices (e.g., switches, net-
work servers, and SDN controllers) implicitly or explic-
itly associate various identifiers of the same entity with
each other in a process we call identifier binding. For ex-
ample, when a host acquires an IP address from a DHCP
server, the server binds that IP address to the host’s MAC
address; when an ARP reply is sent in response to an

∗This work is sponsored by the Department of Defense under Air
Force Contract #FA8721-05-C-0002. Opinions, interpretations, con-
clusions and recommendations are those of the author and are not nec-
essarily endorsed by the United States Government.

ARP request, the source host binds the IP address in the
ARP request to the MAC address in the ARP reply.

Given the importance of these identifier bindings, it is
not surprising that numerous attacks against them have
been developed, including DNS spoofing [48], ARP poi-
soning [29], DHCP forgery, and host location hijack-
ing [24]. These attacks are facilitated by several net-
work design characteristics: (1) reliance on insecure
protocols that use techniques such as broadcast for re-
quests and responses without any authentication mech-
anisms, (2) allowing binding changes without consider-
ing the network-wide impact of services relying on them,
(3) allowing independent bindings across different lay-
ers without any attempt to check consistency, and (4) al-
lowing high-level changes to identifiers that are designed
and assumed to be unique. Numerous defenses have also
been proposed to prevent identifier binding attacks of
various types in traditional networks [18, 48, 2].

Software-Defined Networking (SDN) is a new net-
working paradigm that facilitates network management
and administration by providing an interface to con-
trol network infrastructure devices (e.g., switches). In
this paradigm, the system responsible for making traf-
fic path decisions (the control plane) is separated from
the switches responsible for delivering the traffic to the
destination (the data plane). The SDN controller is the
centralized system that manages the switches, installs
forwarding rules, and presents an abstract view of the
network to SDN applications. SDN provides flexibility,
manageability, and programmability for network admin-
istrators. Although previous work has focused on var-
ious aspects of the intersection of security and SDNs
[46, 27, 28, 45, 26, 36, 44, 5, 14, 52], there has been lit-
tle work on studying identifier binding attacks and their
implications in SDN systems.

In this paper, we first study identifier binding attacks
in SDN systems. We show that the centralized control
exacerbates the implications and consequences of weak
identifier binding. This allows malicious hosts to poi-

USENIX Association 26th USENIX Security Symposium    415



son identifier bindings not only in their own broadcast
domain, as is the case with many identifier binding at-
tacks in traditional networks, but also in the entire SDN
network. Moreover, we show that, unlike traditional net-
works where identifier binding attacks are limited to a
small subset of identifiers, in SDN, identifier binding at-
tacks can be so severe that they allow complete takeover
of all network identifiers of the victim host at once, in
an attack we dub Persona Hijacking. More damagingly,
in a Persona Hijacking attack the malicious host fools the
network infrastructure devices into believing that it is the
legitimate owner of the victim’s identifiers, allowing it to
persistently hold the compromised identifiers. Our at-
tack succeeds even in the presence of the latest secure
SDN solutions such as TopoGuard [24], SPHINX [14],
and SE-Floodlight [45].

We then show how the SDN design philosophies of
programmable infrastructure, separation of control and
data planes, and centralized control can be used to pre-
vent identifier binding attacks. We design and implement
a defense, SECUREBINDER, to establish strong bindings
between various network identifiers. First, we extend the
802.1x protocol to establish a root-of-trust for strong au-
thentication of a machine. Building on this root-of-trust,
we then implement additional components of the defense
to strongly bind higher-level identifiers to the MAC ad-
dress. As part of SECUREBINDER, we force all identifier
binding broadcast traffic to go through the control plane
and program switches to drop all data plane broadcasts,
preventing the hijacking of higher-level identifiers (IP or
domain name) bound to a given MAC address. Our solu-
tion does not require any changes on the end-hosts.

We extensively evaluate the effectiveness of our de-
fense experimentally, using testbed implementations of
various identifier binding attacks, as well as formally, us-
ing model checking. Our experimental and formal eval-
uations indicate that SECUREBINDER can successfully
stop identifier binding attacks while incurring a small
overhead, mainly in the form of additional network join
latency due to the initial authentication step.

Roadmap. In section 2, we discuss the key bindings
in a modern network stack. In section 3 we describe the
Persona Hijacking attack. We present our defense in sec-
tion 4, then evaluate it formally and experimentally in
section 5. We discuss limitations of our attack and de-
fense in section 6 and then consider related work in sec-
tion 7 before concluding in section 8.

2 Identifier Binding

In this section we provide an overview of the main iden-
tifiers used at different network layers and discuss iden-
tifier binding attacks in traditional networks and what
makes these attacks more dangerous in SDN networks.

Device
Network
Location

MAC
Address

IP
Address

Hostname Username

L2 Switch
ARP

DHCP
DNS

Directory
Services

Figure 1: Network Identifier Bindings. Protocols
mediating the binding for IPv4 are shown at bottom.

2.1 Overview of Identifier Bindings
Network protocols rely on identifier binding in order to
operate correctly and efficiently. Because of the stack
model where layers can access services only from adja-
cent layers, identifier binding takes place in two forms,
explicit – achieved through network protocols or man-
ual configuration, and implicit – achieved through al-
ready existing mappings. Below we describe the iden-
tifier bindings that are critical to correct functioning of a
network (see Fig. 1). For additional background on the
identifiers discussed here, please see Appendix A.
Network location to device: In traditional networks, a
device’s network location is represented implicitly by the
switch and port that packet forwarding rules are bound
to and the location of ACL rules or other configuration
specific to that device.
MAC address to network location: Binding MAC ad-
dresses to network locations is done implicitly based on
observed network traffic by Layer-2 switches; the source
MAC address of traffic is used to learn which network
port on a switch corresponds to that MAC address.
IP address to MAC address: Mapping a unicast IP ad-
dress to a MAC address is usually done via ARP for IPv4
and NDP for IPv6. These mechanisms broadcast a query
asking who has a given IP address and the device with
that IP address unicasts a response including its MAC
address. An interface with a single MAC address may
have more than one IP address associated with it.
Host names to IP addresses and IP addresses to host-
names: Hostnames are mapped to IP addresses in several
ways. The most common is unicast, centrally configured
DNS. However, multicast DNS (mDNS) without a cen-
tral server also exists, as does a legacy naming service for
Microsoft Windows known as NETBIOS. Note that DNS
and mDNS can also be used for reverse resolution: find-
ing a hostname given an IP address. A single IP address
may be associated with multiple hostnames and a single
hostname may be associated with multiple IP addresses.

In unicast DNS, the hostname to IP bindings are ei-
ther manually configured by an administrator or automat-
ically updated using the DNS update command. The pro-
tocol for automatically updating hostnames is Dynamic
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DNS [51] and lacks authentication. A secure version [53]
exists, but is rarely used. Microsoft Active Directory
has its own scheme to authenticate DNS updates to AD-
integrated DNS servers while other directory services
have the DHCP server update the DNS records for clients
when they acquire IP addresses [19]. To map a hostname
to an IP address, unicast DNS uses UDP (although TCP
can also be used) to send a request to the DNS server.
Responses are returned in the same way and contain no
authentication. DNSSEC [2] cryptographically authenti-
cates DNS responses, preventing modification or forgery,
but is rarely deployed. Both Multicast DNS (mDNS) and
NETBIOS rely on unauthenticated broadcast requests.
Hosts listen for these requests and respond if they have
the queried hostname. NETBIOS can use a registration
server to speed up this process.
Username to hostname: This binding occurs either as
per-system user accounts or via a directory service, of
which Active Directory is the most prominent.

Active Directory (and its open-source counterpart
Samba) is a directory service that maintains information
on users, groups, access rights, and configuration infor-
mation for an organization and uses this information for
centralized authentication and management. It leverages
LDAP for directory access and Kerberos for authentica-
tion. It authenticates both users and machines to the net-
work and provides configuration management to Win-
dows clients. Unfortunately, Active Directory machine
authentication does not provide authentication of lower
level network identifiers like MAC or IP addresses. Au-
thentication is based on Kerberos, but Active Directory-
issued tickets are bound only to the hostname and not to
the IP address by default [17].

Directory services like Active Directory do not know
precisely who is logged in at any given point in time.
Further, a connection to the network might not trigger
authentication. For example, if a user is already logged
in when they connect to the network, the connection does
not trigger authentication. For per-system user accounts,
the authentication and management is local to each sys-
tem and not visible to the network. Higher level proto-
cols, like NFS, may still rely on this information.

2.2 Binding Attacks in non-SDN Networks

The ultimate goal of layer-to-layer bindings is to allow a
mapping across the entire stack where higher level iden-
tifiers are mapped by transitivity to lower layers and, ul-
timately, to device identifiers.

Definition 1 (Identifier binding attack): We define an
identifier binding attack as 1) replacing or creating a
binding such that the identifiers bound together are as-
sociated with different devices, or 2) utilizing identifiers
associated with a known, offline device in a binding.

There are several design factors and architectural char-
acteristics that facilitate identifier binding attacks:

(1) Reliance on insecure protocols: Many of these
bindings are constructed based on broadcast requests
that query the entire broadcast domain while others are
formed implicitly based on spoof-able identifiers in ob-
served traffic. Thus, an attacker can easily impact these
bindings simply by sending spoofed packets or listening
for broadcast queries and responding.

(2) Treating binding creation and changes as the same
operation: Once a binding is created, there are services
that rely on it. Changing a binding, for example, because
of a host migration or IP address reassignment, has impli-
cations on all services that rely on it network-wide. Not
distinguishing between creation and changes to a bind-
ing allows an attacker to reset existing bindings simply
by claiming to have an identifier.

(3) Independent changes: Many bindings are treated
independently from each other with no attempts to use
information recorded in one binding, for example the
MAC to network location binding, to validate updates
being made to others, like the IP address to MAC address
binding. This enables attackers to use packets that violate
one binding to successfully attack a different binding.

(4) Ability to change identifiers: Identifiers that are as-
sumed to be unique, like MAC addresses, are actually
mutable and easily changed in software. Hence, attack-
ers can readily impersonate other devices to the network.

These characteristics enable a wide variety of attacks
on identifier binding protocols, including ARP spoofing,
DNS spoofing, and Rogue DHCP servers. ARP spoof-
ing is enabled by the broadcast mechanism employed by
ARP to bind IP addresses to MAC addresses as well as
by bindings at different layers not being used to validate
each other. In a similar manner, Rogue DHCP servers are
enabled by the broadcast nature of DHCP that allows any
host to listen for and respond to requests. DNS spoofing
is possible because bindings are treated independently,
allowing a host to use spoofed packets to send DNS re-
sponses as if they came from the legitimate DNS server.

Limitations of identifier binding attacks in tradi-
tional networks: Identifier management in IPv4 Ether-
nets must contend with several architectural aspects of
the network stack that impact the scope, consistency, and
security of identifier bindings between different network
identifiers.

(1) Distributed Control State: Traditional networks
maintain distributed control state in both network in-
frastructure (e.g., switches and routers) as well as ded-
icated identifier management servers such as DHCP and
DNS. This ensures that network layer boundaries define
the scope of the relevant identifier bindings. Layer-2
switches form broadcast domains over which packets are
forwarded based on MAC–Port bindings maintained by
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each device. Outside of these layer boundaries, Layer-2
identifiers are overwritten by routers and forwarding is
based on Layer-3 IP addresses. This effectively limits
the scope of Layer-2 attacks like ARP or MAC spoofing
only to that broadcast domain, as all other regions of the
network are only reachable via Layer-3 routing.

(2) Intelligent Routers: Modern switches and routers
have defenses to mitigate attacks on identifier bindings.
These include techniques such as Cisco’s Dynamic ARP
Inspection and DHCP Snooping systems, which main-
tain local databases of identifier bindings and can drop
packets based on coarse-grained heuristics and manually
configured trust relationships [10]. Network interfaces
which are not registered as DHCP servers, can be set to
drop server-side DHCP messages such as lease offers.

(3) Rapid Rule Consistency: Modern IPv4 Ethernets
rely on interior gateway protocols (e.g., OSPF) to build a
network information base (NIB) at every router. The NIB
is used to install routing rules, which are updated when-
ever the NIB state changes. Since this update is local to
the router, there is very little delay between a NIB update
and a routing rule change to make forwarding behavior
consistent with the NIB. This limits the ability of an at-
tacker to cause blackhole or redirection attacks based on
stale routing rules (though attacks on the routing protocol
itself remain possible).

2.3 Binding Attacks in SDN Networks

While identifier management in SDNs uses largely the
same protocols as those used by IPv4 Ethernets, the ar-
chitecture of an SDN imposes different challenges to
maintaining the security of identifier bindings. SDNs dif-
fer from traditional networks in three key aspects that can
be used to amplify the impact of existing identifier bind-
ing attacks: a unified control plane, bare-metal switches,
and delayed rule consistency.
Unified Control Plane: OpenFlow networks are divided
into a separate data plane (the switches) and control
plane (the controller). This unifies the entire network
under a single SDN controller (or communicating set of
controllers) and removes most traditional divisions of a
network into broadcast domains and subnets. Protocol
data structures which would normally be maintained per-
switch or per-router are maintained only at the controller,
and messages which would normally not leave the lo-
cal switch/router are instead sent to the controller. Many
controllers implement Proxy ARP, for example, in which
a single master ARP table is maintained for the entire
network. ARP Requests are sent to the controller, which
generates an ARP Reply via a packet out. Attackers
can use this to their advantage. Any ARP Spoofing attack
can now target any victim on the entire SDN, whereas
a traditional network requires the attacker and victim to

share a broadcast domain.
Bare-Metal Switches: OpenFlow switches have no in-
ternal packet-processing logic beyond the flow rules in-
stalled by a controller. Thus, defenses that have tra-
ditionally been implemented by network infrastructure
(such as Dynamic ARP inspection and DHCP Snooping
[10]) are not present in SDNs. Additionally, no open
source SDN controller currently provides any Layer-2 or
Layer-3 security systems beyond user-configurable fire-
wall rules. As a result, attacks which are easily detected
in traditional networks (such as Rogue DHCP servers) go
unnoticed in vanilla OpenFlow networks.
Delayed Rule Consistency: SDN controllers imple-
ment a global NIB in order to determine what flow
rules to install in response to a packet in event. Ap-
proaches to populating it have a common component.
During packet in processing, the source IP and MAC
addresses are used to update the NIB with the switch
and port on which an end-host is located. Destination
IP and MAC addresses are looked up in the NIB to de-
termine the switch port on which the packet should be
forwarded. A flow rule is then synchronously installed
in the relevant switch(es) with match fields determined
by the current NIB state before the packet is sent back
to the switch for forwarding. Unfortunately, when the
NIB state is updated, old flow rules are not removed from
switches (probably because attempting to differentially
update all flow rules on NIB updates would dramatically
increase flow latency). A common work-around (used
by Ryu and POX) is to set a hard or soft timeout on flow
rules. Soft timeouts count down from the last time the
rule was triggered, while hard timeouts count down from
rule installation. When a timeout is reached, the rule is
deleted. This bounds the duration that inconsistent rules
can persist, but does not solve the problem on shorter
timescales. Attackers can take advantage of temporarily
inconsistent flow rules to intercept messages meant for
another host or blackhole traffic.

We have observed the lack of traditional ARP poison-
ing/DHCP snooping defenses and the presence of de-
layed rule consistency experimentally in ONOS and Ryu
and confirmed both in the Floodlight and POX source
code. We leave a complete exploration of additional con-
trollers to future work.

3 Persona Hijacking

We present an attack against identifier bindings in SDNs
that allows complete takeover of all network identifiers
of the victim host at once, an attack we dub Persona Hi-
jacking. We first describe the attacker capabilities re-
quired by the attack, then describe the Persona Hijack-
ing attack in detail.
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Table 1: Impact of Identifier Binding Attacks

Attack
Spoofed ID

Persistence Area Affected Legitimized
Defenses

MAC IP Hostname Non-SDN SDN
ARP Spoofing X X – Minutes Broadcast Domain – X –
Rogue DHCP – X X Days Subnet – X –
DNS Spoofing – X X Minutes DNS Domain X X X
Persona Hijacking X X X Days Entire Network X – –

3.1 Attacker Model

We consider an enterprise IPv4 Ethernet network using
the Openflow SDN architecture and a standard Open-
Flow controller such as Ryu, POX, NOX, Floodlight,
OpenDaylight, ONOS, or Beacon. End-hosts use ARP
to look up the MAC address associated with an IP and
use DHCP to obtain IP addresses from a single DHCP
server. Additionally, the network has an internal DNS
server for managing intranet hostnames and a directory
services package such as Microsoft Active Directory.

We assume the attacker has compromised one or more
end-hosts on this network and is attempting to use those
hosts to impersonate a target server to clients in order
to subvert additional end-hosts and move laterally in the
network. OpenFlow switches and the controller are out-
side of adversarial control and act as trusted infrastruc-
ture. Thus, the attacker cannot perform a man-in-the-
middle attack without corrupting network routing state
or stealing the identifiers (e.g., IP address) of the victim
end-host.

We assume that the attacker has not compromised any
of the critical servers (such as directory services, DNS,
or DHCP). This is because the attacker would have more
powerful options than the attack presented here, if such
servers have been compromised.

3.2 Persona Hijacking Attacks

While several attacks against identifier bindings exist,
their impact is limited in traditional networks. They im-
pact only a single binding, persist briefly, have a limited
area of effect, and many defensive solutions exist. We
summarize the characteristics of the most common at-
tacks on identifier bindings in Table 1. ARP Spoofing,
for example, corrupts a MAC–IP binding within a Layer
2 broadcast domain until the ARP cache entry times out,
at which point the attack must be re-launched.

These limitations do not hold for SDNs, which per-
mit powerful new attacks on identifier bindings. We in-
troduce one such attack, Persona Hijacking, which al-
lows complete takeover of all network identifiers of the
victim host at once, can persist for days, affects the en-
tire network, and has no existing defenses. Specifically,
our Persona Hijacking attack allows an attacker in an
SDN-based network to take over an IP address and DNS

domain name from a victim end-host by progressively
breaking the MAC Address to Network Location, IP Ad-
dress to MAC address, and (in some network configura-
tions) Hostname to IP Address bindings.

A key feature of our attack, which is unachievable
using traditional identifier binding attacks (e.g., ARP
spoofing), is that it affects the network infrastructure
such that the attacker becomes the owner of record for
the IP address. That is, the DHCP server believes that
the victim’s IP is bound to the attacker’s MAC address.
This allows Persona Hijacking attacks to effectively co-
opt the DHCP server and propagate the deception further
into the network.

Persona Hijacking consists of two main phases. The
first phase, which we refer to as IP takeover, relies on a
client-side attack against DHCP to break the IP address
to MAC address and hostname to IP address bindings in
order to hijack the IP address and hostname of the victim
by binding both of them to the attacker’s MAC address.
The second phase, which we refer to as Flow Poison-
ing, exploits the delayed flow rule consistency present in
SDNs to break (from the perspective of the victim) the
MAC address to network location binding of the DHCP
server in order to (from the perspective of the DHCP
server) legitimize the first phase and make the victim ap-
pear to have willingly given up its IP address. A timeline
of the complete attack is shown in Figure 2.

IP takeover Details. IP takeover operates in two
steps. First, the attacker breaks the binding between
the victim’s IP address and MAC address by forging a
DHCP RELEASE message to make the DHCP server re-
lease the victim’s IP address into the pool of available
addresses. This does not break the hostname to IP ad-
dress binding, as the recommended practice in an enter-
prise setting is for the client to manage DNS A record
updates [33]. The next step is to bind the released IP
address to the attacker’s MAC address. However, the
DHCP specification [15] recommends that the DHCP
server should offer addresses from their unused pool
before offering addresses that were recently released.
Hence, the attacker mounts a partial (and temporary)
DHCP starvation attack. The DHCP server is flooded
with DHCP DISCOVER messages using random MAC
addresses, until the target’s IP address is offered. Once
the DHCP server offers the victim’s IP, the attacker con-
firms the lease, and the starvation attack is halted. The
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Figure 2: Timeline of the Persona Hijacking attack.

victim’s IP address and hostname are now bound to the
attacker’s MAC address by the DHCP server.

Note that the DHCP DISCOVER is the first half of the
DHCP handshake. An additional confirmation from the
client is required to finalize the lease, and most DHCP
servers will avoid offering such addresses to other clients
for a few minutes. This limits the exposure of the exhaus-
tion attack and its impact on legitimate clients to a short
time window. Furthermore in networks with high DHCP
churn, an attacker can perform strategically timed and
limited DHCP starvation to avoid detection by allowing
new clients to consume the IP addresses in the unused
pool.

IP takeover Impact: SDN controllers that use DHCP
to manage forwarding rules will redirect traffic bound for
the victim’s IP address to the attacker’s network location.
This blackholes the victim, preventing them from receiv-
ing further traffic, and allows the attacker to impersonate
the victim. Any client request made to the hostname as-
sociated with the stolen IP address will be sent to the at-
tacker. Any existing connections made by the victim will
continue uninterrupted. New connection requests made
by the victim will reach their destination but the response
packets will be sent to the attacker. Since the victim is
unaware that its IP address has been re-bound, the attack
lasts until the victim obtains a new DHCP lease, which
would typically be hours or days later. This ensures the
hijacked binding will persist over large timescales.

Flow Poisoning Details. In some cases the IP
takeover phase is sufficient, and the victim’s persona is
successfully hijacked. However, in order to be compliant
with the DHCP RFC [15], many DHCP servers probe
a reused address before re-allocating it to a new client.
Typically, the DHCP server sends a broadcast ARP re-
quest to see if any host claims the reused address, vali-
dating that this IP address is not in use. If this probing
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Figure 3: Timeline of the Flow Poisoning Attack

before re-allocating an IP address is used, the IP takeover
phase will fail, because the victim is not aware that their
IP address has been released by the DHCP server and
will respond to the ARP request, causing the DHCP
server to refuse to lease the target IP address. In order
to ensure that IP takeover succeeds even in the presence
of probing, we developed a Flow Poisoning attack that
breaks the MAC address to network location binding of
the DHCP server in order to blackhole this response.

Our Flow Poisoning attack takes advantage of a race
condition unique to SDNs in order to break the MAC ad-
dress to network location binding of a targeted end-host.
The attack relies on the fact that SDN flow rules may
be temporarily inconsistent with the NIB maintained by
the controller. Since flow rules reflect the NIB state at
the time of their installation and (due to scalability chal-
lenges and network latency) are not updated instantly
when the NIB state changes, they may reflect previous
network states that no longer hold. Two approaches
are used to bound the duration of this inconsistency.
The first, used by Ryu and other learning-switch-based
controllers, relies on installing hard or soft timeouts on
all rules. The second, used by ONOS and other con-
trollers that implement a Host-Discovery Protocol, uses
a separate monitoring thread to detect host movement
and remove inconsistent rules. This monitor runs con-
currently with the NIB updater responsible for generat-
ing packet out events, which introduces an exploitable
race condition where the message is sent prior to new
flow rules being installed.

The attacker can take advantage of this temporary in-
consistency to blackhole traffic from a target source s to
a target destination d. Figure 3 depicts a timeline of this
attack. First, the attacker sends traffic (we chose ICMP
pings, but the attack is agnostic to the packet payload)
to s with the source MAC address of d. This breaks the
MAC address to network location binding of d.

Upon entering the switch, the forged packets cause a
flow table miss (since the MAC address of d is not bound
to the network location of the attacker) and are sent to the
controller. The controller updates its MAC to location
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binding such that the destination MAC d is bound to the
attacker’s switch port. It then installs a new flow rule in
the switch enforcing this binding and forwards the ping
to the victim s. The victim s replies to the forged ICMP
ping, which causes another flow rule to be inserted into
the switch that sends all traffic from s to d to the switch
port on which the attacker resides.

Once d originates traffic, the controller will update its
internal mappings to correctly track d’s location (i.e., re-
binding the MAC address of d to the network location of
d). This begins the race condition on which Flow Poison-
ing relies. The now-inconsistent flow rule which binds
the attacker’s location to d’s MAC address will not be
removed from the switch upon NIB update. Instead, it
will either timeout several seconds later or be deleted by
the separate host mobility tracking thread. Until this oc-
curs, traffic from s to d will be sent to the attacker.

In the context of IP takeover, this technique can be
used to blackhole the reachability probe conducted by
a DHCP server prior to assigning the victim’s IP to the
attacker. Since the initial ARP request from the DHCP
server is broadcast to all ports, it is not possible to black-
hole. We, therefore, blackhole the unicast response from
the victim to the DHCP server by breaking the DHCP
server’s MAC address to network location binding. Note
that while the Flow Poisoning phase of the attack only
lasts until the flow rules are updated, the larger Persona
Hijacking attack utilizes this to create an attack that will
persist until the victim’s DHCP lease expires.

3.3 Attack Implementation
We have implemented both the IP takeover and Flow
Poisoning phases as fully automated Python scripts run-
ning on an attacking end-host. We use Scapy1 to forge a
DHCP RELEASE message for the IP takeover phase and
to request new IP addresses until the victim’s address is
offered. The Flow Poisoning phase simply consists of
sending an ICMP ping with the DHCP server’s MAC ad-
dress to the victim as soon as the DHCP Offer is received
by the attacker. The entire attack was tested in an emu-
lated SDN environment using Mininet 2.2.1 [30], against
both the ONOS and Ryu controllers. An analysis of the
Floodlight and POX source code suggests that they are
also vulnerable.

Because Flow Poisoning relies on a race condition, we
measured the Persona Hijacking success rate over 10 tri-
als, each of which took an average of 90.39 seconds to
acquire the target IP address. For Ryu, which uses hard
flow rule timeouts, the success rate was 90%. Failures
corresponded to an ARP Reply that was sent by the vic-
tim to the DHCP server after the inconsistent flow rule
expired. For ONOS, the Flow Poisoning phase was not

1http://www.secdev.org/projects/scapy/

Figure 4: Components of the network that must be
trusted with and without SECUREBINDER

necessary because ONOS provides a DHCP server in the
controller which does not probe reused addresses before
allocating them to new clients. Persona Hijacking was
always successful.

Our testbed was a machine running Ubuntu 14.04 with
an Intel Core i7-3740QM CPU and 16GB memory. The
experimental topology consisted of three hosts directly
connected to an OpenFlow 1.3 switch. One of these
hosts was a DHCP server running udhcpd from Busy-
Box v1.21.1. The other two were the attacker and the
victim. The DHCP server was configured to lease a total
of 5 IP addresses.

4 SECUREBINDER

This section presents SECUREBINDER, our system for
securing network identifier bindings. We first present our
design and then describe our implementation.

4.1 Design
The Persona Hijacking attack and other identifier attacks
are possible because of several network design character-
istics of identifier binding in traditional networks: (1) re-
liance on insecure protocols using techniques like broad-
cast for requests and responses without any authentica-
tion mechanisms, (2) allowing the changing of bindings
without considering the network-wide impact to services
relying on them, (3) allowing for independent bindings
across different layers without any attempt to check con-
sistency, and (4) allowing high-level changes to identi-
fiers that are designed and assumed to be unique. We
design SECUREBINDER as a comprehensive solution to
identifier binding attacks and the above attack facilitating
factors, not merely as another defense against a specific
attack. In doing so we dramatically reduce the number
of network components that must be trusted, as shown in
Figure 4.

SECUREBINDER leverages SDN and IEEE 802.1x to
target the facilitating factors as follows:

• It leverages SDN functionality to separate the iden-
tifier binding control traffic from the regular data plane,
isolating it from an attacker, and creating a binding me-
diator which can perform additional security checks on
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identifier bindings. While this approach does not elim-
inate the use of insecure protocols for identifier binding
(which would require changes to every end host), it does
remove the requirement to trust these protocols.
• It validates identifier binding changes, by leverag-

ing the global view of the network and its identifiers that
SDN provides. It distinguishes between creating new
bindings and changing existing ones, requiring valida-
tion that the old binding is no longer active before allow-
ing changes.
• It prevents independent binding across layers by us-

ing lower layer bindings to validate messages that at-
tempt to change bindings at higher layers.
• It protects against readily changed, but supposedly

unique, identifiers by leveraging IEEE 802.1x to provide
a root-of-trust for network identifiers, binding the MAC
address to a cryptographic authentication and eliminating
disconnected host race conditions.

Assumptions. SECUREBINDER assumes that the
switches and the controller are not compromised and
that OpenFlow messages are cryptographically protected
(e.g., with TLS). It also assumes that the controller im-
plements secure topology detection, to be able to cor-
rectly differentiate network edge ports from internal
ports. This is in line with protection already provided
by solutions such as TopoGuard [24].

At a high-level, SECUREBINDER consists of a bind-
ing protocol mediator module, a binding store database, a
port control module, and a device authenticator module.
The binding store maintains authenticated bindings at all
layers that the protocol mediator uses to validate binding
protocol messages. It is updated by the binding protocol
mediator as bindings are updated. The binding protocol
mediator itself is responsible for verifying the bindings
in these protocol messages, performing additional vali-
dation for binding updates, and ensuring that bindings
are consistent with lower layers. The port control mod-
ule is responsible for configuring flow rules on individual
network ports to separate binding protocol traffic and en-
able egress filtering based on identifier binding updates,
802.1x authentication, and changes in port or switch sta-
tus. The device authenticator is responsible for authenti-
cating the MAC addresses of hosts using 802.1x.

Mediator. The mediator separates identifier binding
control traffic, like DHCP, ARP, and 802.1x, from nor-
mal data plane traffic and sends it to the control plane.
This means broadcast traffic no longer goes to all hosts
on the network, enabling all hosts to influence identifier
bindings, but only to the controller and a few select ap-
plications processing those broadcast requests. Once this
identifier binding control traffic reaches the controller,
the binding mediator validates it by using the global view
of the network enabled by SDN to check incoming bind-
ing control traffic against existing bindings. If an attempt

is made to rebind an identifier that is already bound, for
example, binding an IP address to a different MAC ad-
dress, the mediator performs additional verification, by
checking that the old identifier is no longer reachable,
before allowing this rebinding. Similarly, the mediator
enforces cross-layer consistency in identifier bindings,
requiring binding requests to originate at the same lo-
cation as the known identifier.

Port control. This module addresses bindings (i.e.,
MAC address to network location) that are implicitly in-
ferred from network traffic without an explicit signal-
ing protocol. It performs dynamic egress (i.e., source-
address) filtering on a per-port basis based on the binding
information, thus preventing spoofed packets at the first
SDN-controlled port and changing this implicit binding
to an explicit one controlled by the configuration of the
egress filters. While egress filtering has been used in the
past [29], SDN’s ability to automatically identify net-
work edge ports and dynamically configure flow rules
allows egress filtering to be done automatically.

Device authenticator. While the mediator and port
controller securely bind all higher identifiers to a MAC
address, they cannot guarantee that a MAC address cor-
responds to a particular physical device. This is because
MAC addresses can be easily changed on all modern
NICs and operating systems. This fundamental weak-
ness affects many traditional and SDN-based security
and access control systems, including Ethane [6] and
techniques that tie a MAC address to a single physical
port. The device authenticator addresses this issue by ex-
tending IEEE 802.1x, a network access technology sup-
ported by all major operating systems and platforms that
is designed to enable a network port if-and-only-if an au-
thorized client is connected. Traditionally, the RADIUS
authentication server used with 802.1x only verifies that
the device is authorized to connect to the network with-
out checking its MAC address or any other network iden-
tifier. If the device is authorized, 802.1x enables the port
and the device to send arbitrary traffic into the network.
We extend the authentication to validate each device’s
MAC address as well, providing a cryptographic root-of-
trust for our network identifier bindings.

802.1x operates using an authenticator on the switch
which tunnels EAP [1] messages between a supplicant
on the client and a RADIUS [42] authentication server
on the backend. The use of EAP and RADIUS en-
able many authentication mechanisms, including both
password based mechanisms (e.g., EAP-MSCHAPv2)
and certificate based mechanisms (e.g., EAP-TLS). We
choose to deploy EAP-TLS [47], which uses client cer-
tificates signed by a CA in the RADIUS server. A client
that is able to present a certificate signed by the CA is
considered authorized to access the network.

We augment 802.1x to validate the client’s MAC ad-
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dress by having the (trusted) 802.1x authenticator, im-
plemented in the SDN controller, pass the client’s MAC
address to the RADIUS server. We then maintain a
database in our RADIUS server that associates each cer-
tificate’s common name with its MAC address.2 When
a new device is added to the network, the admin gener-
ates a certificate for it and adds its common name and
the device’s MAC address to this database. When the
client presents its certificate, it is first verified, and then,
if it is valid, its common name and the client’s MAC are
checked against this database. Only if they match is the
client authenticated. Note that this database is not acces-
sible outside of the system running the RADIUS server
and is only modified manually by the admin.

While we seek to provide a secure network that com-
pletely prevents identifier binding attacks, we also take
into account the currently-existing network devices. In
particular, while 802.1x is supported by the majority of
devices and operating systems, it is not yet universally
supported. For those devices, like printers or IP phones,
that do not support it, SECUREBINDER provides a weak
authentication based on the device’s MAC address. It
is important to understand that this drastically weakens
the authentication guarantees provided for that device,
allowing an attacker to impersonate that device to the
network.

Due to space constraints, for further details we refer
the reader to Appendix B.

4.2 Implementation
The introduction of multiple flow tables in OpenFlow
1.3 [38] eases the implementation of SECUREBINDER.
In particular, we reserve the first table, table 0, for sep-
arating identifier binding traffic from regular data-plane
traffic and doing egress filtering, while tables 1+ are used
for routing and other applications as normal. High prior-
ity flow rules are inserted into table 0 such that all 802.1x,
ARP, and DHCP traffic is sent to the controller while
DNS and Active Directory traffic are routed directly to
their respective servers. Egress filtering is accomplished
by inserting flow rules into table 0 such that flows with
expected source identifiers (both MAC and IP addresses)
are sent directly to table 1 to be routed as normal, while
all other traffic is rate limited and sent to the controller.

SECUREBINDER takes the form of a privileged SDN
controller application which has configured itself to han-
dle all packet in events before any other application. It
then looks for packets sent to it as a result of rules in ta-
ble 0. Any identifier binding traffic is validated, used to
update binding information, and sent to the relevant ap-
plication. Any other packets sent to the controller from

2This indirection enables a single certificate to be used on a multi-
homed host that has multiple MAC addresses.

rules in table 0 will be logged and dropped.
We implemented SECUREBINDER as an SDN appli-

cation in ONOS 1.5.1.3 We had to make a few modifica-
tions, totaling 548 lines of code, to the core of ONOS.
The major change, totaling 438 lines, was to secure
the implementation of topology detection provided by
ONOS. SECUREBINDER leverages secure topology de-
tection as a major performance optimization to dramati-
cally reduce the overhead by only validating packets and
installing egress filters at the edge of the network. While
existing work like TopoGuard [24] has demonstrated the
importance of secure topology detection and provided an
implementation, ONOS has not yet incorporated this fea-
ture. Secure topology detection protects against a wide
range of attacks so we believe it should be a service pro-
vided by all SDN controllers. Hence, we use it as an
optimization in SECUREBINDER. The remaining modi-
fications reserve table 0 for SECUREBINDER, moving all
other applications to table 1.

Our SECUREBINDER application itself is 2,350 lines
of Java. Since it processes packets prior to any other ap-
plication in the controller, it protects other applications
in use from incorrect binding information. This enables
us to use the existing ONOS ProxyARP and DHCP ap-
plications without modification.

5 Evaluation

In this section we provide a formal evaluation of the
security provided by SECUREBINDER against identifier
binding attacks and evaluate its effectiveness against our
new Persona Hijacking attack and its performance im-
pact in a testbed environment.

5.1 Formal Evaluation
In order to assess the security properties of SECURE-
BINDER, we conducted a formal, model checking-based
analysis of hosts interacting via ARP and DHCP over an
SDN, both with and without SECUREBINDER in place
at the controller. We defined a set of security invariants
which, if violated, correspond to the successful malicious
use of ARP, DHCP, or IP/MAC spoofing. Using the SPIN
model checker [22], we first ran an analysis without SE-
CUREBINDER. This returned a large set of automatically
discovered counter-examples (invariant violations) that
correspond to known ARP spoofing, Host-Location Hi-
jacking (also independently and manually discovered by
Hong, et al. [24]), and rogue DHCP attacks, as well as
our own IP takeover and Flow Poisoning attacks. Next,
we enabled SECUREBINDER in the model and re-ran the
analysis against the same set of security invariants. In

3http://onosproject.org/
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this case, SPIN was unable to find any security viola-
tions, indicating that our defense prevented all of the pre-
viously discovered attacks.

Model Checking. Our formal models were written in
the Promela process modeling language, and the security
properties were checked using the SPIN model checker.
Models written in Promela define properties written in
Linear Temporal Logic (LTL). LTL has been used to
check safety and liveness properties, but also security in-
variants. For a full explanation of LTL syntax and seman-
tics, the interested reader can refer to the book by Reeves
and Clarke [41]. Once a Promela model is written and
the logical properties of its state variables defined, SPIN
can then be used to verify that those properties hold over
all reachable system states, or to find a counter-example
(i.e., an attack violating a security property). SPIN mod-
els all possible inter-leavings of non-atomic actions in a
concurrent system of communicating processes.

Model Architecture. Our analysis considers end-
hosts communicating via packets passed to an SDN
switch managed by a controller that uses the source ad-
dress fields of packet in events to populate a NIB used
to make routing decisions. A packet consists of an Eth-
ernet frame (containing source and destination MAC ad-
dresses) encapsulating either an ARP message or an IP
header and DHCP payload.

ARP is implemented as defined in RFC 826 [40], but
does not include the message fields or associated checks
for hardware and protocol types, since our analysis is fo-
cused on IPv4 Ethernet networks. ARP clients may also
send gratuitous ARP requests or replies.

A fragment of DHCP is implemented as defined in
RFC 2131 [15]. The full client and server state machines
are implemented (using symbolic addresses), but we do
not include any generic representation of DHCP options
or other configuration parameters not essential to the as-
signment of IP addresses. This is because we define any
DHCP payload from an unauthorized DHCP server to be
malicious, regardless of its content.

Communication occurs through uni-directional chan-
nels, in which senders place packets on a finite-length
FIFO queue and receivers remove messages from the
head of that queue. All communication between end-
hosts is mediated by the switch: that is, end-hosts place
packets in a switch queue, and the switch determines the
end-host queue to which it should forward the packet.

End-hosts are processes which non-deterministically4

send and receive ARP and DHCP client messages. The
target of unicast traffic is chosen non-deterministically.
One end-host is also designated as a DHCP server and
implements a DHCP server that uses ARP probes to de-
termine if a previously-used address is still in use. All

4Promela’s control structures are non-deterministic, because SPIN
considers all possible orderings of events in a system.

end-hosts faithfully follow protocol specifications (e.g.,
using correct source addresses).

An adversarial end-host does not follow protocol spec-
ifications. Any data field in an Ethernet, ARP, IP, or
DHCP message may be non-deterministically assigned
any symbolic value (e.g., another end-host’s source ad-
dress). Adversarial end-hosts may also act simultane-
ously as both DHCP servers and clients.

Security Properties. Our analysis is based on check-
ing the same set of invariants in two different cases: a ba-
sic SDN, and one in which SECUREBINDER is deployed.
These invariants are designed to completely capture cor-
rect network identifier binding behavior in the case of an
IPv4 Ethernet network with at most one IP address as-
signed to each network interface, one end-host connected
to each switch port, and no multi-homed end-hosts, as
described in Section 2.1. They utilize several ground-
truth tracking tables maintained in the model to check
the actual values of client and controller data structures
against their intended values in the absence of adversar-
ial behavior. The ground-truth invariants are intended
to represent ‘idealized’ network security enforcement,
which, while not implementable in the real world, will
be violated in the presence of any kind of attack against
network identifier bindings. Note that a number of sub-
invariants (such as a one-to-one binding of IP-to-MAC
and Mac-to-Port mappings) are implicitly captured, as a
violation of these would result in a violation of one or
more of the explicitly checked invariants.

We define two kinds of security properties: invari-
ants, which must hold in all model states, and assertions,
which must hold in a subset of model states. The former
are encoded as LTL formulas over model state variables
(e.g., the entries in each end-host’s ARP cache). SPIN
uses an automata-theoretic construction (see [22]) to en-
sure that no LTL violations occur in any reachable model
state, and to return an execution trace in the case that a
violation was found. Assertions are encoded as Boolean
predicates inserted inline in the model code, which are
checked whenever the model executes that line. LTL
invariants were used when security requirements con-
strained the value of a persistent data structure, such as
ARP or DHCP tables. The G operator in LTL states that
the formula must hold Globally over all reachable states.
Assertions were used for constraints on the value of non-
persistent messages passed over the network.

The security requirements that we checked are pre-
sented in Table 2 and discussed in detail in Appendix C.

Results. Because model checking is limited to a finite
state space search, it is necessary to bound the size of the
network for each analysis. We checked our invariants for
networks with a single attacker, DHCP server, and SDN
switch. Analyses were conducted for networks with end-
host populations ranging from 1 to 20.
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Table 2: Identifier Correctness Requirements
Requirement Name Requirement Formula (LTL Invariants and Message Assertions)
Port–MAC Binding G(port to mac[p] == g mac at[p]) for each port p
MAC–IP Binding
(ARP)

G(arp tbls[c][i] == NO ENTRY || g mac to ip[arp tbls[c][i]] == i ||

g mac to ip[arp tbls[c][i]] == NO ENTRY) for each ARP table c and each entry i

Authorized DHCP (msg.cid == DHCP SERVER && (msg.dhcp.type==DHCP OFFER || msg.dhcp.type==DHCP ACK ||

msg.dhcp.type==DHCP NAK)) || (msg.cid != DHCP SERVER && (msg.dhcp.type==DHCP DISCOVER

|| msg.dhcp.type==DHCP REQUEST || msg.dhcp.type==DHCP DECLINE || msg.dhcp.type ==

DHCP RELEASE))

Genuine chaddr msg.dhcp.chaddr == g mac[msg.cid]

Genuine ciaddr msg.dhcp.ciaddr == g ip[msg.cid]

Genuine MAC msg.frame.eth src == g mac[msg.cid]

Genuine IP msg.ip.nw src == g ip[msg.cid]

Table 3: Attacks Found Through Invariant Checking
Attack Class Description Invariant Violated
ARP Spoof Gratuitous Request with Victim’s SPA and TPA and

own SHA
MAC–IP Binding (ARP)

ARP Spoof Gratuitous Reply with Victim’s SPA and own TPA MAC–IP Binding (ARP)
ARP Spoof Reply to Request with Victim’s SPA and own TPA MAC–IP Binding (ARP)
Host-Location Hijacking [24] Ethernet packet with victim’s MAC Port–MAC Binding, Genuine MAC
IP takeover DHCP Release with victim’s IP Genuine ciaddr
Flow Poisoning Ethernet packet to victim with target’s MAC Port–MAC Binding, Genuine MAC
Rogue DHCP DHCP OFFER from attacker Authorized DHCP

When SECUREBINDER was not deployed, many in-
variant violations were found corresponding to existing
attacks. Manual inspection of the execution traces re-
vealed that all of these are either known attacks or cor-
respond to our IP takeover or Flow Poisoning attacks.
These are summarized in Table 3.

When SECUREBINDER was enabled, no invariant vi-
olations were found. This indicates that the set of SDN-
based checks implemented by SECUREBINDER is equiv-
alent to the ideal invariants that can be checked with ac-
cess to ground truth. Note that formal verification via
model checking is sound but incomplete, because it is
based on a finite state space search of a larger, potentially
infinite, space. Model checking can be made complete,
however, if it can be shown that the larger region reduces
(e.g., via equivalence classes) to the explored region.

We argue (but do not formally prove) that this is the
case for our analysis. Above an end-host population of
3, all invariant violations were variants of those already
found in networks of 3 or fewer end-hosts. That is, while
the specific details of the violation (e.g., the protocol ad-
dress, hardware address, or ARP table) varied, the actual
violating condition (e.g., an IP address bound to a MAC
address not assigned by the DHCP server) was one al-
ready seen in the smaller analyses. Given this empirical
evidence, we suspect that no new attacks will be found
by adding more end-hosts to the analysis, nor will any
attacks be found in the case that SECUREBINDER is de-
ployed. Clearly, making the analysis more complex in
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Figure 5: Testbed Evaluation Network Topology

other ways (e.g., allowing multi-homing or multiple end-
hosts to share a switch port) may introduce new vulner-
abilities. Exploring these more complex scenarios is a
component of our future work.

5.2 Experimental Evaluation
We construct an emulated SDN testbed network and
launch three separate identifier binding attacks, includ-
ing our Persona Hijacking attack, at ONOS 1.5.1 with
and without SECUREBINDER. To guarantee representa-
tive results, we repeat each of the attacks ten times.

For our emulated SDN testbed we used Mininet
2.2.1 [30] with Open vSwitch 2.4.05 software switches.
We chose a minimal topology with a single switch and

5http://openvswitch.org/

USENIX Association 26th USENIX Security Symposium    425



Table 4: Performance Results
Controller Host Join New Flow pkt in’s
ONOS 1.5.1 505±578ms 8±4ms 131±2
SECUREBINDER 3,505±678ms 6±5ms 193±8
Overhead +3000ms -2ms +62

three hosts—an attacker, a victim, and a user that wishes
to contact the victim—for our network, as shown in Fig-
ure 5. The attacks we test are also relevant for more
complex topologies; we demonstrate them on a mini-
mal topology for simplicity. The experiments were per-
formed in an Ubuntu 14.04.4 VM with 2 cores of an
2.70GHz Intel i7 CPU available and 15GB of RAM. Our
test network uses ONOS 1.5.1 as the controller, provid-
ing shortest path routing, proxyARP, and DHCP.

Persona Hijacking attack. Since we test against
ONOS, we need only the IP takeover phase of the attack.
The attack was successful, allowing the attacker to steal
the victim’s IP address. On average, an attack took 49.8
seconds to execute, with effects lasting indefinitely.

ARP poisoning. The attack was successful, allowing
the attacker to receive traffic destined for the victim. This
attack lasts until the victim sends traffic that traverses the
controller, 41 seconds in our experiments, but depends
highly on the workload of the victim machine.

Host location hijacking. In this attack, previously re-
ported by Hong, et al. [24], the attacker sends spoofed
packets that contain the victim’s MAC address as their
Ethernet source address with the goal of confusing the
SDN controller into thinking that the victim has moved
to the attacker’s location. If this can be accomplished,
traffic for the victim will be sent to the attacker’s loca-
tion. We observed this attack to be completely successful
as well, allowing the attacker to receive traffic destined
for the victim. Like the ARP poisoning attack, this at-
tack has a limited lifetime. Once the victim sends traffic
that traverses the controller, the controller is able to cor-
rect the victim’s location, ending the attack. In our ex-
periments, this was an average of 51 seconds, but highly
depends on the workload of the victim.

In all of the above scenarios, SECUREBINDER threw
an alert and blocked the attack immediately.

5.3 Performance Evaluation
We evaluate the additional overhead our defense imposes
in terms of extra latency for devices joining the network
and on each new flow, as well as the additional controller
load and flow rules it generates. We run each experiment
10 times and present averages and standard deviations.

Latency. We measure Host Join Latency and New
Flow Latency. Host Join latency measures the latency
for a host to join the network and includes network link
detection, DHCP negotiation, 802.1x authentication–for

SECUREBINDER–, host detection, and flow rule setup
and installation of the first flow. New Flow Latency
measures the latency to start a new flow—sending a
packet in to the controller, forwarding, and rule in-
stallation. We measure Host Join Latency from the first
packet a host sends until the insertion of the first flow
rule. For New Flow Latency, we measure it from the
moment the first packet of the flow arrives at the switch
until the first flow rule is inserted. No packets after the
first in each flow will be diverted to the controller, so any
additional latency only impacts the first packet of a flow.

We compared unmodified ONOS 1.5.1, providing
shortest path routing, proxyARP, and DHCP, with SE-
CUREBINDER in a network topology with a single
switch. Table 4 shows the results. Host Join Latency is
higher for SECUREBINDER, at about 3.5 seconds. This
is compared to about 0.5 seconds for ONOS 1.5.1. Most
of this difference is due to the 802.1x authentication
and additional flow rule insertions required by SECURE-
BINDER. However, 3.5 seconds is actually fairly reason-
able considering that Host Join Latency represents the
latency for a host to join a new network.

New Flow Latency, by contrast, is essentially the same
between unmodified ONOS 1.5.1 and SECUREBINDER.
Our results even appear to indicate a slight decrease
when using SECUREBINDER, although that difference is
within the noise and not actually meaningful.

Controller load. We approximate controller load as
the number of packets handled by the controller. While
different packets may take noticeably different amounts
of processing to handle, this is a common proxy for con-
troller load and does accurately account for the addi-
tional load placed on the network via packet in mes-
sages, TLS message encryption load, message parsing,
and event loop processing.

We measured the number of packet in messages sent
to the controller using a Mininet network with 3 switches
and 4 hosts in a tree toplogy and compare unmodified
ONOS 1.5.1, providing shortest path routing, proxyARP,
and DHCP, with SECUREBINDER. Our experiment con-
sists of starting the network, waiting 30 seconds for the
network to stablize, performing a pairwise ping between
all hosts, and shutting the network down. Our results ap-
pear in the third column of Table 4. We observe a 47%
increase in the number of packet in’s processed by SE-
CUREBINDER, which is fairly significant. However, of
the 62 additional packet in’s, 32 are a result of 802.1x
authentication. This means that this additional load oc-
curs only when a new host joins the network.

Number of additional flow rules needed by SECURE-
BINDER. Flow rules are a limited resource in OpenFlow
switches. We can calculate the number of additional flow
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Figure 6: Number of flow rules needed in each switch
for SECUREBINDER, as a function of the number of

switch ports. Dashed black line marks minimum TCAM
rule slots in a modern SDN switch.

rules required per switch by SECUREBINDER as:

26+13∗ edge ports+ internal ports

The first term relates to static flow rules installed globally
in each switch to send 802.1x, ARP, and DHCP traffic to
the controller and block DNS, mDNS, and Active Direc-
tory by default. The second term describes flow rules
installed for each edge switch port to enable egress fil-
tering and allow non-spoofed Active Directory and DNS
traffic destined for the legitimate servers. The final term
includes the flow rules that are inserted in table 0 for in-
ternal network ports to send traffic directly to the normal
forwarding rules in table 1.

We plot this equation for both edge and core switches
with between 1 and 100 ports in Figure 6. We assume
edge switches have one port connected to the core net-
work with all other ports connected to edge devices while
core switches are connected only to other switches. Keep
in mind that most edge switches are usually in the 24-48
port range with the very high degree switches in the core
of the network. For a 48 port edge switch, SECURE-
BINDER would require 638 flow rules.

Determining the number of flow rules supported by
modern SDN switches is surprisingly challenging. The
number of TCAM slots in current SDN switches of about
48-ports varies from around 512 to 8,192 [12, 43, 7, 21]
and many vendors claim to be able to support 65,536
flow rules or more [7, 21]. We use 2,048 TCAM entries
(available on many switches) as a lowerbound and denote
it with a black dashed lined in Figure 6. For this lower-
bound, SECUREBINDER would require 31% of the rules
in a 48 port edge switch, 16% in a 24 port edge switch,
and only 4% in a 48 port core switch. For edge switches,
this is a significant, but still practical, overhead; assum-
ing the devices connected to such a switch communicate
evenly, each can talk to 29 other devices simultaneously

before exceeding the flow table limits. For core switches,
the overhead of SECUREBINDER is insignificant. Fur-
ther, if we consider the use of higher-end switches with
8,192 rules per switch, these overhead figures become
8%, 4%, and 0.9%, respectively.

6 Limitations and Discussion

Although the Persona Hijacking attack is extremely pow-
erful, it does have some limitations as well as several pos-
sible partial mitigations that may not prevent the attack
but can alert an attentive defender.

DHCP. Principle among these is that the target must
be using DHCP for Persona Hijacking to be applica-
ble. Another limitation is that DHCP starvation, de-
spite being extremely transient, is easily detectable and
likely to be monitored because it can also indicate net-
work malfunction. In a similar way, the large number of
DHCP DISCOVERs needed to launch the attack would
be readily noticed by a network anomaly detector. If
such monitoring systems are deployed, Persona Hijack-
ing would quickly be brought to the attention of the net-
work administrators. However, even if detected, mitiga-
tion would require the involvement of a human operator,
probably on a time scale of tens of minutes to hours.

Another factor that can complicate a Persona Hi-
jacking attack is the use of static DHCP leases fixing
IP addresses to specific MAC addresses. If the net-
work protects against MAC spoofing, this will com-
pletely prevent Persona Hijacking. However, we are un-
aware of any SDN controller implementing any form of
MAC spoofing protection. As a result, the attacker is
free to launch the Persona Hijacking attack by spoofing
DHCP DISCOVERs with the target’s MAC address at
a different network location. Interestingly, in this case
DHCP starvation is not required.

A number of security features commonly found in
traditional switches (e.g., port security [9] and DHCP
snooping [8]) make it more difficult to launch a DHCP
starvation attack by limiting the number of source MAC
addresses originating from a single port; however, a re-
cent starvation technique has been developed to bypass
these defensive mechanisms [50]. This technique ex-
ploits the DHCP server’s IP address conflict detection by
answering all the probes used to check if an address is in
use, without spoofed MAC addresses.

Despite these limitations Persona Hijacking remains a
powerful attack that co-opts the network infrastructure
to propagate a malicious identifier binding that will reli-
ably last for a significant time even in the presence of a
vigilant system administrator running many monitoring
tools. This level of persistence is unmatched among ex-
isting network identifier attacks and gives the attacker a
reasonable window in which to achieve their goals. Fur-
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ther, while various security features can make this attack
more challenging to launch, they do not prevent it.

Our new defense, SECUREBINDER, is designed to
prevent not only Persona Hijacking attacks, but also any
other identifier binding attack. Much of the existing work
on defenses has focused on preventing single attacks.
Once such a defense is deployed, the attacker modifies
their attack slightly or transitions to a new binding and
continues. SECUREBINDER’s goal is to end this game of
whack-a-mole by providing a defense against all identi-
fier binding attacks. This influenced our design choices.

Use of 802.11 IEEE 802.1x is not required to de-
fend against Persona Hijacking or ARP poisoning. How-
ever, it is still an essential component of a unified de-
fense against identifier binding attacks, despite poten-
tially complicated configuration and deployment. In par-
ticular, 802.1x prevents MAC spoofing from being used
to bypass network access controls, like firewalls. With-
out 802.1x, an attacker can present a fake MAC address
belonging to a more privileged device. This presents
network access control systems with a confused deputy
problem; a device is identified by its MAC address and
any identifiers bound to that address, while the attacker
presents a MAC address corresponding to an authorized
device. Restricting MAC addresses to specific network
ports or ensuring that a MAC address is only present at a
single network port at a time can only partially mitigate
this attack. There will still be some important system
that must be widely mobile and occasionally powered
off. Attackers can simply attack this system.

Universal IEEE 802.1x deployment is not needed
on networks implementing a Bring Your Own Device
(BYOD) or public access policy. The purpose of 802.1x
is to prevent the attacker from impersonating a more priv-
ileged device. In these networks, all BYOD or pub-
lic devices are unknown to the network and therefore
equally (un)privileged. Hence, no confused deputy prob-
lem arises that would require strong device identities.
Note, however, that any known and trusted devices shar-
ing the same network should use 802.1x to protect them-
selves from being impersonated.

Applicability to wireless networks. Wireless de-
vices, like cell phones and laptops, are particularly vul-
nerable to impersonation in this manner. We have fo-
cused in this work on wired networks; however, SE-
CUREBINDER is equally applicable to wireless networks.
Unfortunately, OpenFlow support for wireless networks
is still nascent. While a few efforts have looked at the
changes to OpenFlow needed to support wireless net-
works [34, 54, 13], no code, devices, or emulators ex-
ist yet. Note that deploying SECUREBINDER at the first
wired switch after a wireless access point would still pro-
vide significantly improved security and would prevent
attacks that have to traverse the wired network.

7 Related Work

The closest work to ours is Ethane [6], which lever-
aged the SDN-provided global view of the network to
enable access control based on identifiers like hostnames
and users. However, it does not provide a root-of-trust
for network identifiers, instead authenticating based on
MAC addresses, and does not appear to distinguish be-
tween creating new bindings and updating existing bind-
ings. Additionally, Ethane does not manage or protect
the hostname-to-IP or user-to-hostname bindings.

A number of efforts [23, 20, 25] have investigated ac-
cess control in SDN networks. This is an important, but
orthogonal line of research. Access control allows or de-
nies network flows based on particular network identi-
fiers or characteristics. In this work, we attack and se-
cure the bindings between these identifiers. By breaking
these bindings an attacker can gain access to a false iden-
tity and all the network access rights of that false identity.
Access control is also being applied in the controller to
protect against malicious SDN applications [39].

TopoGuard [24] and SPHINX [14] studied attacks on
the MAC address to network location binding, which
they refer to as Host Location Hijacking. TopoGuard
proposes a defense based on differentiating between cre-
ating new bindings and updating existing bindings, re-
quiring a host to not be reachable at its old location
before updating the binding. SPHINX defends against
these attacks by ensuring that new flows conform to ex-
isting identifier bindings, preventing spoofed packets.
Both defenses are vulnerable to MAC address spoofing.

In traditional networks, several network identifier at-
tacks and defenses have been developed over the years;
they tend to only address a single layer of the network
stack at a time, and the defenses may only be heuristic in
nature. Port Security [9] is a heuristic defense against
MAC spoofing, which limits the number of MAC ad-
dresses that can be present on a single network port.

To prevent ARP spoofing [11], a wide range of de-
fenses based on replacing ARP with secure variants have
been proposed [4, 32, 35]; however, vendor-supported
technologies such as Cisco Dynamic ARP Inspection
(DAI) [29], which compares ARP replies with DHCP
server records, or monitoring tools like arpwatch [31]
are used more often in practice. These technologies have
a number of limitations, including not protecting static
IP addresses and requiring manual configuration.

To prevent rogue DHCP servers [49], DHCP Snoop-
ing [8] can be used to separate the switch ports into
trusted and untrusted zones. This defense requires man-
ual configuration of the trusted and untrusted zones and
is limited to protecting against attacks on DHCP only.

Defenses against DNS spoofing [48] include increas-
ing the randomness in the DNS query, using random
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source ports and transaction IDs, to protect against blind
attackers [48], as well as cryptographic techniques like
DNSSEC [2] that protect the authoritative response from
tampering. DNSSEC has yet to be widely deployed.

The username to hostname binding can be protected
using Kerberos [37] for authentication, as is the case in
Microsoft Active Directory, but architectural and imple-
mentation issues enable various attacks, such as pass-the-
hash [16, 17], in practice.

8 Conclusion

We have built a proof-of-concept attack in SDNs to hi-
jack MAC and IP addresses, steal hostnames, and poison
flows to remove victim bindings and accessibility. We
have thereafter shown how to use SDN capabilities to
prevent such attacks by implementing a new defense that
exploits SDN’s data and control plane separation, pro-
grammability, and centralized control to protect network
identifier bindings, and builds upon the IEEE 802.1x
standard to establish a cryptographic root-of-trust. Eval-
uation shows that our defense formally and experimen-
tally prevents identifier binding attacks with little addi-
tional burden or overhead.
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A Network Identifiers

Network protocols rely on identifiers of the communicat-
ing entities in order to achieve their goals. Such goals,
are not only to ensure delivery of packets from a source
to a destination, but also to enforce access control and
authorization policies (e.g., authority to update a DNS
record or to access a service using Kerberos). The key
identifiers used at different layers of the networking stack
are: network location, MAC address, IP address, host-
name, and username.

We consider the device as the basic entity with an iden-
tifier, be it an end-host, a server, a printer, or an embed-
ded system, etc. Devices are distinct from users of those
devices. Devices may have multiple network interfaces
(e.g., virtualized interfaces or multiple Network Interface
Cards (NICs)), which may have different identifiers.
Network Location: The lowest level network identifier
is the physical switch and port to which a device is con-
nected. We refer to this identifier as the Network Loca-
tion of a device and define it as a tuple (switch, port),
where switch is a unique identifier for a switch, a se-
rial number or management IP address in traditional net-
works and a Data Path Identifier (DPID) in OpenFlow
SDNs, and port is an integer representing the port num-
ber on that switch. As a device’s network location is at
the edge of the network, a device could potentially have
multiple network locations if it is multi-homed. Addi-
tionally, multiple devices may be associated to the same
network location due to, e.g., virtualization of end-hosts.
Thus the mapping between devices and network location
is a many-to-many mapping.
MAC Address: A MAC address identifies a NIC or
group of NICs on an Ethernet network. There are three
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Figure 7: State Machine for each Network Port in
SECUREBINDER

types of these addresses: Unicast, Multicast, and Broad-
cast. Multicast and broadcast addresses allow sending
traffic to a particular subset of devices simultaneously
while unicast addresses are intended to unambiguously
identify a device on the network. Unicast MAC ad-
dresses need to be unique in any given Ethernet network
or traffic mis-delivery will occur; a unicast MAC address
is assigned to each NIC during manufacture.
IP Address: An IP address is used to route traffic across
and between networks to a particular device. There are
four types of these addresses: Unicast, Multicast, Any-
cast, and Broadcast. The last three categories are spe-
cial addresses used to send traffic to a particular sub-
set of devices simultaneously. A Unicast IP address is
a unique identifier for a device interface which is con-
strained to a particular subnetwork (to enable route ag-
gregation). They are either statically configured or as-
signed using DHCP for IPv4 or DHCPv6 for IPv6. IPv6
also adds a stateless autoconfiguration assignment mech-
anism known as SLAAC. Only one device in a network
can have a particular unicast IP address.
Hostname: A hostname is a human readable name for a
system that can be used instead of an IP address. Since
one hostname could be associated with multiple IP ad-
dresses and one IP address could be associated with mul-
tiple hostnames, this is a many-to-many mapping.
Username: A user account identifies a particular user
logged onto a system (denoted with a hostname). Many
users may be logged into the same system and a single
user may be logged into multiple systems, making this a
many-to-many mapping.

B SECUREBINDER Design Details

In SECUREBINDER, each network port in the system
is in one of four states: Unknown, Internal, Edge,
or Quarantined. Each port initially comes up in the
Unknown state, where all traffic is sent to the controller.
A port connected to another switch, as identified by the
controller’s topology detection using LLDP, is put into
the Internal state, where it sends all traffic directly to
table 1 for forwarding. Once at least one host is detected
on a port, it is put into the Edge state, where it is part

of the network edge. In this state, rules are inserted to
send packets from known and validated source addresses
directly to table 1 while all other traffic is sent to the con-
troller. Finally, a port is placed into the Quarantined

state when it has been determined that a device on that
port is misbehaving. All traffic from Quarantined ports
is dropped. See Figure 7 for the state machine.

To protect the MAC address to network location bind-
ing, we use egress filtering along with 802.1x such that
all packets except 802.1x frames that are not associated
with an existing binding on a port are dropped. 802.1x
frames are passed to our system’s 802.1x authenticator
in the SDN controller, where the encapsulated EAP mes-
sages are sent to the RADIUS server.

We use EAP-TLS authentication, which requires the
client to present a valid certificate signed by our internal
CA. Additionally, we maintain a database mapping cer-
tificate common names to MAC addresses and require
the MAC address of the client (as recorded by the trusted
802.1x authenticator in the SDN controller) to match the
MAC address associated with the the common name of
its certificate in the database. This database is updated
manually by the administrator as part of the initial de-
vice configuration. If the authentication succeeds, we
bind this MAC address to this port and insert flow rules
sending packets with this MAC address and port to table
1, for forwarding.

To identify hosts that have disconnected, we listen for
port down events and 802.1x log-off messages and re-
move the corresponding MAC to location bindings. To
account for cases where a host may leave the network
without sending a log-off message and without the port
going down (e.g., a device behind a hub), we periodically
query all idle hosts with an ARP ping; devices that do not
respond are removed.

We provide support for non-802.1x devices by moni-
toring the MAC addresses seen on each port and check-
ing whether each one attempts 802.1x authentication
within 60 seconds of connecting. If it does not, we as-
sume the device does not support 802.1x and send a RA-
DIUS access request where the username and password
attributes simply contain the device’s MAC address. The
RADIUS server uses a separate database to look up this
username and password pair (i.e., MAC address) to see
if this device has been granted access. If it has, we then
setup the MAC address to network location binding and
egress filters to allow it access to the network. Note that
since there is no guarantee that this MAC address repre-
sents the expected physical device, we recommend stati-
cally configuring the network port that each of these de-
vices may connect to and placing stringent ACL rules in
the network for such devices to limit network access to
only expected locations.

To secure the binding from IP addresses to MAC ad-
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dresses, we insert high priority flow rules sending all
DHCP and ARP traffic to the controller. Our controller
application then checks these packets to ensure that they
are self-consistent (i.e., source identifiers in the Ether-
net header match those in the ARP/DHCP headers) and
that they are consistent with our existing IP to MAC
and MAC to location bindings. Inconsistent packets are
dropped while validated packets are passed off to an ex-
ternal DHCP server or the controller’s ProxyARP appli-
cation to handle. Note that since our application is the
first application to handle these packets, any packets with
invalid mappings will be dropped by our application be-
fore they can poison other controller applications.

For DHCP, we drop all server messages except those
originating from the legitimate server’s network location,
thereby preventing rogue DHCP servers. We also track
the IP address assigned by the server to update our IP to
MAC binding information.

We support manually configured static IP addresses
by requiring the IP to MAC mapping to be entered in
a configuration file. This static IP can be additionally
constrained to a single network location. Note that tradi-
tional networks with multiple subnets would require sim-
ilar configuration.

Once we have an IP to MAC address binding, whether
from DHCP or static configuration, and know the loca-
tion of this MAC address in the network, we update the
egress filters. In particular, we add one flow rule match-
ing on the port, MAC, and IP address that belongs to this
device which sends legitimate traffic to table 1 for for-
warding, and we add a second rule that sends all other IP
traffic from this port and MAC address to the controller
(after a rate limit), preventing IP spoofing.

Interestingly, with 802.1x, DHCP, and manual static IP
configuration, we can automatically populate the MAC
to location and IP to MAC bindings for all possible
reachable hosts. This means we never need to depend
on ARP replies from end hosts to populate our bindings.
This completely eliminates all ARP poisoning attacks,
which operate by either changing the IP to MAC binding
or the MAC to location binding.

To secure the hostname to IP address binding, we in-
sert high priority flow rules to drop spoofed DNS pack-
ets and send all valid DNS requests to the DNS server
while dropping all DNS replies that do not originate at
the legitimate DNS server. This prevents the operation of
rogue DNS servers and the use of alternate DNS servers.
We also drop all multicast DNS and NETBIOS traffic be-
cause the broadcast nature of these protocols makes them
inherently insecure.

Finally, to secure the username to hostname binding
we separate directory service traffic from the dataplane
by inserting high priority flow rules to send this traffic di-
rectly to the directory server while dropping all spoofed

packets. This prevents rogue directory servers and many
replay attacks.

C SECUREBINDER Security Require-
ments

We used SPIN to check our formal model of identifier
bindings and SECUREBINDER against the following se-
curity requirements listed in Table 2 in Section 5. These
formal security requirements attempt to capture the fol-
lowing natural goals:

• Port–MAC Binding checks that the SDN’s map-
ping of MAC addresses to switch ports is consistent
with the ground-truth mapping.

• MAC–IP Binding (ARP) checks that for every en-
try in the client’s ARP Table, one of the following
properties holds:

– There is no MAC address for the associated IP.
– The MAC address for that IP address is the

ground-truth owner of that IP address.
– There is no ground-truth owner of that IP ad-

dress. This condition arises due to stale ARP
cache entries for a released IP address.

• Authorized DHCP checks that DHCP messages
which should only be sent by the DHCP server
are sent by the DHCP server. It also checks that
messages which should only be sent by a DHCP
client were not sent by the server. This assertion
is checked whenever a DHCP message is received
by a client or server, prior to any other packet pro-
cessing.

• Genuine chaddr checks that the client hardware
address in a DHCP message matches the ground-
truth MAC address of the sender. This assertion
is checked whenever the DHCP server receives a
DHCP message.

• Genuine ciaddr checks that the client network ad-
dress in a DHCP message matches the ground-
truth IP address of the sender. This condition
is checked whenever the DHCP Server receives a
DHCP REQUEST or DHCP RELEASE.

• Genuine MAC checks that the source MAC in an
Ethernet frame matches the ground-truth MAC ad-
dress of the originator. This condition is checked
whenever a packet is received on a switch port.

• Genuine IP checks that the source address in an IP
header matches the ground-truth IP address of the
originator. This condition is checked whenever a
packet is received on a switch port.
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Abstract

Bootstrapping trust between wireless devices without en-
tering or preloading secrets is a fundamental security
problem in many applications, including home network-
ing, mobile device tethering, and the Internet-of-Things.
This is because many new wireless devices lack the nec-
essary interfaces (keyboard, screen, etc.) to manually en-
ter passwords, or are often preloaded with default keys
that are easily leaked. Alternatively, two devices can es-
tablish a common secret by executing key agreement pro-
tocols. However, the latter are vulnerable to Man-in-the-
Middle (MitM) attacks. In the wireless domain, MitM
attacks can be launched by manipulating the over-the-air
transmissions. The strongest form of manipulation is sig-
nal cancellation, which completely annihilates the signal
at a targeted receiver. Recently, cancellation attacks were
shown to be practical under predictable channel condi-
tions, without an effective defense mechanism.

In this paper, we propose HELP, a helper-assisted mes-
sage integrity verification primitive that detects message
manipulation and signal cancellation over the wireless
channel (rather than prevent it). By leveraging transmis-
sions from a helper device which has already established
trust with one of the devices (e.g., the hub), we enable
signal tampering detection with high probability. We
then use HELP to build a device pairing protocol, which
securely introduces new devices to the network without
requiring them to share any secret keys with the exist-
ing devices beforehand. We carry out extensive analysis
and real-world experiments to validate the security and
performance of our proposed protocol.

1 Introduction

In recent years, we have experienced a proliferation
of advanced personal wireless devices (APDs) such as
smartwatches, wearable sensors, RFID devices, home
monitoring sensors for Internet-of-Things applications,

etc. [38]. These devices often connect to a gateway/hub
(e.g., a Wi-Fi access point) for data collection or for re-
mote actuation. Securing the communication between
APDs and the hub is of paramount importance when the
former collect sensitive data, or can control critical func-
tions within their environment. The process of establish-
ing trust between the APD and the hub is known as se-
cure bootstrapping and is achieved via a two-party mu-
tual authentication and key-agreement mechanism.

The prevailing methods for secure device bootstrap-
ping are either by manually loading the hub’s secret to
the device or to preload the APDs with some unique
secret. The preloaded secret of APDs can be made
known to the hub using an out-of-band (OOB) chan-
nel, e.g., the user enters the secret manually. How-
ever, many APDs such as smart bulbs, motion sensors,
smart key locks, etc., lack advanced interfaces for en-
tering or changing passwords. Moreover, it is a com-
mon occurrence that manufacturers opt to preload de-
vices with default keys that are easily leaked. In fact,
the largest DDoS attack launched to date exploited de-
fault passwords preloaded to APDs–IP cameras, digital
video recorders, smart TVs–to recruit hundreds of thou-
sands of nodes into the Mirai botnet and attack the DNS
infrastructure [57].

On the other hand, a public key infrastructure (PKI) is
also impractical for wide deployments. This is because a
PKI typically requires a connection to a centralized cer-
tification authority. For devices deployed on-the-fly in
areas with intermittent Internet connectivity, reachback
to central certificate repositories may not be a robust op-
tion. Moreover, PKIs face significant scalability, hetero-
geneity, and interoperability challenges. As an average
person or household owns an increasing number of de-
vices, the device association process must happen within
a short time and require very little or no human effort.
Also, a trust initialization protocol must be lightweight,
as APDs typically have low processing capability and are
energy constrained.
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Several device pairing protocols have been proposed
for device pairing without pre-shared secrets [1,8,11,18,
26, 29, 32, 37, 40–42, 44, 54]. Most such protocols re-
quire an auxiliary secure out-of-band (OOB) channel, an
audio or visual channel for example, that is observable
by a user to aid the authentication of messages trans-
mitted over the public wireless channel. However, such
OOB channels introduce practical interoperability issues
due to the heterogeneity of the devices and are not user-
friendly. Recently, in-band pairing protocols [10, 17, 23]
have been proposed as an alternative to OOB pairing.
The former protocols only require that devices possess
a common wireless interface to communicate. Since the
wireless channel is known to be insecure in general, the
security of these protocols relies on the assumption that
wireless signal cancellation is infeasible, so that message
integrity and authentication properties can be derived by
encoding the messages in a special way. However, as
demonstrated by Popper et al. [47], this assumption may
not hold in many cases. Thus, it remains an open prob-
lem as to whether secure in-band device pairing proto-
cols can still be designed under a strong Dolev-Yao at-
tacker which can annihilate wireless signals.

In this paper, for the first time, we seek an answer to
the above question. Instead of trying to prevent signal
cancellation attacks, we propose an approach to detect
the presence of an attacker who attempts to nullify the
signal at a receiver. Our core idea for verifying the in-
tegrity of a message m is to superimpose another signal
from a helper device (e.g., a smartphone) while m is be-
ing transmitted. Any cancellation attack on m is bound
to also cancel the superimposed signal from the helper.
The helper is assumed to have an existing trust associ-
ation with one of the devices in the network (e.g., the
hub), and is co-present with the primary device that is
authenticated by the hub. The superimposed signal is
later revealed by the helper via the authenticated chan-
nel, to allow for the recovery of m. Our protocol achieves
a strong “tamper-evidence” property where there are no
restrictions on what kind of signal manipulation the at-
tacker is allowed to do.

Specifically, the device’s message m is encoded with
ON-OFF keying and Manchester-coding. During the
transmission of m, the helper synchronously injects some
random signal at randomly selected slots. Any signal
nullification attempt will cancel both the legitimate trans-
mitter’s and the helper’s signal, presuming that the activ-
ity periods for the helper are not easily discernible. The
helper later reveals its activity periods via an authenti-
cated channel to enable the hub in the detection of sig-
nal nullification attempts. Trust between the hub and the
helper is established using traditional means (e.g., input
a shared random password on the smartphone when it is
first paired with the hub), which is a one-time cost. With

only one helper in a network, we can securely introduce
many new devices at no extra hardware cost, thus ensur-
ing scalability and usability. Essentially, by exploiting
the co-presence of the helper with the new device(s), our
protocol transfers the trust from the helper to the new de-
vice(s).

The main contributions of this paper are four-fold:

• We construct a novel physical layer message in-
tegrity verification primitive to detect signal cancel-
lation attacks over the wireless channel. We show
that our primitive achieves message integrity pro-
tection with only in-band communications.

• We utilize the proposed message integrity verifi-
cation primitive to construct a secure in-band de-
vice pairing protocol named HELP based on the
Diffie-Hellman (DH) key agreement [14]. Whereas
the primitive provides one-way integrity verifica-
tion (device-to-hub), we show that HELP achieves
two-way authenticated key agreement (counter-
intuitively). This is done via a novel way that ex-
ploits the helper’s superposed random signals to si-
multaneously protect both the integrity and confi-
dentiality of the DH public parameters, such that
an adversary impersonating the hub cannot success-
fully establish a key with a legitimate device.

• We theoretically analyze the security of the pro-
posed integrity verification primitive and the HELP
protocol, and we establish bounds for the adver-
sary’s success probability under active attacks (es-
pecially Man-in-the-Middle attacks). We show that
the adversary’s success probability is a negligible
function of the protocol parameters and thus can be
driven to an arbitrary small value.

• We carry out extensive experiments to evaluate the
effectiveness of the signal cancellation detection
mechanism and the pairing protocol. Our experi-
ments verify that device co-presence significantly
hardens the adversary’s ability to distinguish be-
tween the helper’s and the legitimate device’s trans-
missions. We also implement the proposed protocol
in our Universal Software Radio Peripheral (USRP)
testbed and evaluate the adversary’s successful pair-
ing probability with and without the protection of
our integrity verification primitive. The experimen-
tal results are in line with our analytical findings.

The paper is organized as follows: we discuss related
work in Section 2. We state the system and threat models
in Section 3. We present the integrity verification prim-
itive and the HELP pairing protocol in Section 4. The
security of the pairing primitive and of HELP are ana-
lyzed in Section 5. In Section 6, we study the adversary’s
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capability in inferring the helper’s transmissions and in-
jecting modified messages by performing experiments on
the USRP platform. We further experimentally evaluate
the HELP assisted key-agreement protocol. We conclude
the paper in Section 7.

2 Related Work

In this section, we review previous works in trust estab-
lishment without prior associations, which involves both
message authentication and key-agreement. It is well
known that key agreement can be achieved using tra-
ditional cryptographic protocols such as a DH key ex-
change [14]; however, public message exchange over
the wireless medium is vulnerable to Man-in-the-Middle
(MitM) attacks, which are notoriously difficult to thwart
without any prior security associations. To thwart MitM
attacks, additional message authentication and integrity
protection mechanisms are required. Therefore, next we
mainly review works in authentication/integrity protec-
tion without pre-shared secrets.

2.1 Out-of-Band Channel based Ap-
proaches

Many existing secure device pairing methods rely on
some out-of-band (OOB) channel to defend against
MitM attacks [1, 8, 11, 18, 26, 29, 32, 37, 40–42, 44, 54].
The OOB channel is assumed to possess certain secu-
rity properties (e.g., it is only accessible by the user),
which helps verify the integrity of messages transmit-
ted over the wireless channel. However, OOB chan-
nels usually require non-trivial human support and ad-
vanced user interfaces. For example, when a visual chan-
nel is used, a user needs to read a string from one de-
vice’s screen and input it into another [1, 11, 37], or vi-
sually compare multiple strings or LED flashing patterns
[31, 32, 44]. Other works require specialized hardware
such as a Faraday cage to isolate the legitimate commu-
nication channel [27, 30]. On the other hand, biometric
signals [3,12,21,46,53,61,62,64] have been proposed to
create a secure channel through which nodes on the same
body can derive a shared secret. However, their applica-
tions are restricted to wearable devices, require uniform
sensing hardware, and are susceptible to remote biomet-
rics sensing attacks [20]. In addition, others have pro-
posed to exploit the shared physical context for authenti-
cation and key agreement. Examples of common modal-
ities include the accelerometer measurements when two
devices are shaken together [35, 36], or light and sound
for two devices located in the same room [38,52]. Again,
these require additional hardware and are not interopera-
ble, whereas in many cases the contextual source has low
entropy.

2.2 Non-cryptographic Device Authentica-
tion

As an alternative, non-cryptographic authentication tech-
niques usually derive trust from hard-to-forge physical-
layer characteristics unique to each device/link. They
usually transmit information “in-band” without requir-
ing an OOB channel. Existing approaches on non-
cryptographic device authentication [9,25,33,45,60,65]
can be classified into three categories: (a) device proxim-
ity, (b) location distinction, and (c) device identification.
In device proximity methods, the common idea is to ex-
ploit the channel reciprocity and its rapid decorrelation
(within a few wavelengths) with distance. However, such
techniques typically require advanced hardware which is
not suitable for constrained wireless devices. For ex-
ample, [9, 45, 65] require multiple-antennas, and [33]
needs a wide-band receiver. Moreover, these techniques
only address the common key extraction problem, leav-
ing them vulnerable to MitM attacks. Distance bound-
ing techniques [5, 49, 50] were also proposed to ensure
proximity, but they are not so practical yet (either resort
to OOB channels or specially designed hardware). Lo-
cation distinction methods such as temporal link signa-
tures that detect location differences [25, 43, 60] require
high bandwidth (> 40MHz), which is not always avail-
able to low-cost, resource-constrained devices. Finally,
device identification techniques [6,13,16] distinguish de-
vices based on their unique physical-layer or hardware
features. Unfortunately, both location distinction and
device identification techniques require prior training or
frequent retraining, which is not applicable to APDs first
introduced to an environment.

2.3 In-Band Approaches for Message In-
tegrity Protection

Whereas the above approaches authenticate a device’s
presence, they do not necessarily protect the integrity of
the messages transmitted by a device, due to the possibil-
ity of signal manipulation attacks over the wireless chan-
nel [10]. There have been few past attempts to design
in-band message integrity protection mechanisms, which
assume that signal cancellation over the wireless chan-
nel is not possible [10, 23], or occurs with bounded suc-
cess [22]. For example, Tamper-Evident Pairing (TEP)
proposed by Gollakota et al. in 2011 [17], and in-
tegrity codes (I-codes) proposed by Čapkun et al. in
2008 [10] both assumed the infeasibility of signal can-
cellation. Based on message integrity, message authenti-
cation can be achieved by assuming the presence of the
legitimate device is known (a.k.a. authentication through
presence). However, the infeasibility of signal cancel-
lation assumption does not always hold. Pöpper et al.
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demonstrated an effective relay signal cancellation attack
using a pair of directional antennas, which works regard-
less of the packet content and modulation [47]. Recently,
Hou et. al. [22] showed that it is possible to prevent sig-
nal cancellation only if the channel itself has enough ran-
domness. A typical indoor environment may not be suf-
ficient because the devices are static and the channel is
usually stable.

To remedy the significant shortcomings of existing de-
vice pairing schemes, we (for the first time) introduce the
core idea of detecting signal manipulation attacks even if
signal cancellation is 100% effective. This is achieved
through the introduction of a helper device which is al-
ready securely paired with the hub in an offline fashion
(e.g., using conventional pairing methods). With the aid
of the helper, trust can be established securely for newly
introduced devices without significant human effort or
any advanced hardware. Our protocol only uses in-band
wireless communication, and thus, it is interoperable.

3 Problem Statement

3.1 System Model

We consider a star network topology, where a wire-
less base station (BS) services multiple personal devices,
which is similar to an Internet-of-things (IoTs) scenario.
For example, the network can reside inside a home or an
office space. Our goal is to securely pair an unauthenti-
cated device with the base station in the presence of an
adversary and establish a common key between the de-
vice and the BS. The adversary can either try to hijack
the uplink communication to pair with the BS, or spoof a
rogue BS to pair with a legitimate device. The device and
the BS do not pre-share any common secrets (e.g. secret
cryptographic keys). We assume that a user initiates the
pairing process by powering the device and setting it to
pairing mode. Figure 1 describes the system model. For-
mally, the following entities are part of the system model.

Base Station (BS): The BS serves all the legitimate de-
vices and needs to establish a secure communication link
with each of them. The BS connects with the legitimate
devices through a wireless channel. The BS verifies and
pairs with any legitimate device requesting to join the
network.

Helper Device (H): The helper is an auxiliary device
such as a smartphone, that assists the BS in the pair-
ing process. The helper has already established a secure
authenticated channel with the BS, either by establish-
ing a common key, using a public/private key pair, or
through some OOB channel [1, 37]. Using this secure

Figure 1: Entities of the system model and basic setup.

channel, H can apply an authenticated encryption func-
tion AE(·) on a message mH to guarantee the confiden-
tiality and integrity of mH , and the authenticity of the
source. Any such AE(·) can be utilized with the pro-
posed protocol. For example, if H and the BS share a
public/private key pair, H can encrypt/sign/encrypt (or
sign/encrypt/sign) its message to guarantee the necessary
security properties. If H and BS share a common master
symmetric key, an encrypt-then-MAC operation can be
followed to implement AE(·), after separate symmetric
keys are generated from the master key for the encryption
and MAC operations. One of the examples is to use en-
cryption then message authentication code hashing with
the shared key. We refer the reader to [2] for more details
on authenticated encryption. We leave the exact specifi-
cation of AE(·) open to allow for both symmetric and/or
asymmetric methods.

Note that pairing H to the BS is a one-time effort and
need not be repeated with every device join. Moreover,
only the helper is required to have an advanced interface
to pair with the BS.

Legitimate Device (D): A legitimate device is a typical
APD which does not share any secrets with the BS or H.
The device is usually small and has simple user interfaces
(such as a power button) and hardware capabilities. The
legitimate device, H, and the BS are assumed to be co-
present during the pairing process. H and D are placed
in close proximity such that they have a highly correlated
wireless channel.

3.2 Threat Model

Adversary: We consider the typical Dolev-Yao model
[15]. The adversary (A), can fully control the wireless
channels of the network. For example, it can eaves-
drop, modify, remove, replay or inject messages (frames)
transmitted on the wireless channel. The adversary is
also powerful enough to annihilate signals transmitted
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from D and H over the wireless channel, such that they
do not reach the BS (and vice versa). This can be ac-
complished by techniques proposed by Pöpper et al. [47].
The pairing protocol itself is known to A, but the adver-
sary does not have physical access to any of the devices.
The helper device is assumed to be trusted and its secret
key with the BS is kept away from adversaries.

Note that we do not impose any location restriction for
the attacker. Although the devices are typically located
in a physically bounded area such as a home, we do not
assume that this is a secure region. Instead, the attacker
can be located inside the physical space, as long as the
attacker cannot physically control the device and the BS
to be paired. That is, the attacker does not control the
helper so that it cannot initiate the pairing with the BS
when no legitimate device is present. The user is aware
of the presence of both the BS and of the legitimate de-
vice (which are powered on) when the pairing is initiated.
This is the minimal assumption adopted by the majority
of the previous works in device pairing.

The goal of an attacker is to pair successfully with the
BS and/or D. Therefore, we mainly consider a MitM at-
tacker in our security analysis. However, in this paper,
we do not focus on preventing denial-of-service (DoS)
attacks such as jamming, which is orthogonal to our stud-
ies. Similarly with all relevant literature, we assume that
the adversary is incapable of physically blocking signals
(e.g., by adding a Faraday cage) to the device, the helper,
or the base station.

In addition, at any point in time, the attacker may try
to find out who is transmitting on the wireless chan-
nel. There could be several cases: device only, helper
only, BS only, or device plus helper together. For
example, the attacker can do so via energy detection
or use physical layer identification/fingerprinting tech-
niques [7,19,28,39,55,59]. Since we assume that D and
H have a highly correlated channel due to their proxim-
ity, it is generally difficult for the attacker to differen-
tiate between the cases of device only and helper only.
Thus, the attacker can differentiate between the number
of transmitters (i.e., D+H or D/H alone), but the attacker
cannot perfectly distinguish D and H (i.e., the probability
of successful detection is less than 100%). We propose
specific power and slot synchronization randomization
methods to ensure that D and H are not easily distin-
guishable. Note that any device distinction method has
to operate only to correspond to the online nature of a
MitM attack.

4 HELP: Helper-Enabled Pairing

In this section, we present HELP, an in-band Helper-
enabled pairing protocol that does not require secret
preloading. HELP makes use of a new PHY-layer mes-

sage integrity protection primitive to detect signal can-
cellation attacks that are launched to perform a MitM
attack against a key agreement protocol. We first de-
scribe the PHY-layer protection primitive and then use
this primitive to construct HELP.

4.1 Message Integrity Protection Against
Signal Cancellation

Consider the simple scenario depicted in Figure 1. A new
legitimate device D wants to pair with the BS by transmit-
ting a message mD over a wireless channel. Message mD
is not protected by any cryptographic message integrity
mechanism such as a MAC because D and the BS do not
share any prior security association. Let xD denote the
corresponding signal transmitted from D carrying mD.
Let also an adversary A perform a signal cancellation at-
tack on the received signal yD = hD,BSxD at the BS, where
hD,BS denotes the channel between D and the BS. Simul-
taneously, A injects his own signal xA carrying message
mA. The main challenge in providing message integrity
is to detect that a cancellation/injection has taken place.

To combat signal cancellations, we employ
Manchester-coded (MC) ON-OFF keying modula-
tion to transmit mD from D to the BS similar to [10, 17].
In ON-OFF keying, a zero bit is mapped to (OFF, ON)
slots pair, whereas a one bit is mapped to (ON, OFF)
slots pair. The receiver demodulates the ON-OFF keying
sequence by applying energy detection on every slot.
The advantage of ON-OFF keying is that it hardens
signal cancellations, as the adversarial device, A has to
“erase” the received signal yD at the BS by synchronizing
its own signal transmission xA and taking into account
the channels hD,BS and hA,BS. Different from previous
approaches [10, 17, 24], we consider the worst case
scenario where signal cancellation is possible due to the
stability and predictability of the respective channels, as
it was demonstrated in [47].

The MC facilitates several functions. First, the alter-
ation between ON and OFF slots prevents the zero wan-
dering problem, allowing the receiver to keep a power
reference for differentiating between ON and OFF slots,
irrespective of the data sequence. More importantly, an
MC message contains an equal number of zeros and
ones. Our integrity protection mechanism relies on the
detection of canceled ON slots and therefore, the guar-
antee of ON slots irrespective of the data sequence is
critical to the protocol security. Finally, the use of MC
allows for the recovery of the device’s message when the
latter has been corrupted from the intentional transmis-
sions of the helper. Revealing the “time locations” of the
helper’s ON slots enables the message recovery.

In the proposed integrity primitive, the helper is placed
in close proximity to the unauthenticated device D and
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synchronously transmits a message mH while mD is be-
ing transmitted. A signal cancellation targeted at the BS
is bound to also cancel the signal from H. With the com-
pletion of the mD transmission, the helper reveals mH to
the BS, who verifies if any part of mH has been canceled.

If the message integrity verification test is passed, the
BS exploits the knowledge of mH to recover mD. A key
requirement for the successful detection of signal can-
cellations is that the adversary A cannot swiftly identify
the ON slots of the helper. We achieve this requirement
by placing the helper in close proximity to D and by ran-
domizing the transmit power and the starting time of each
ON-OFF slot at D and H. Placing H close to D makes
it difficult to differentiate the two devices using trans-
mission directionality or the uniqueness of the wireless
channel. Note that the ON-OFF transmissions contain
no preambles, so channel estimation becomes difficult.
The randomization of the power and ON slot firing times
aim at preventing the device distinction using RSS mea-
surements or the possible time misalignment between the
two devices due to inaccurate synchronization or differ-
ent paths to the adversary. We emphasize that any device
distinction mechanism must operate online—the adver-
sary has to decide to cancel an ON slot within the first
few samples—which renders existing sophisticated radio
fingerprinting techniques inadequate [7,19,28,39,55,59].
We now describe the PHY-layer message integrity verifi-
cation primitive in detail.

4.2 HELP Integrity Verification
We propose a message integrity verification method
called HELP that operates with the assistance of a helper
device H. The integrity of a message mD transmitted
from D to the BS is verified via the following steps.

1. Device Placement: The helper H is placed in close
proximity to the unauthenticated device D.

2. Initialization: The user presses a button on D or
simply switches D on to set it to pairing mode. The
user then presses a button on H to initiate the pro-
tocol. The helper sends an authenticated request-
to-communicate message to the BS using the AE(·)
function. This message attests that the legitimate
device D is present and H is placed near D.

3. Device Synchronization: The BS sends a publicly
known synchronization frame SYNC to synchro-
nize the clocks of D, H and itself1. The SYNC
frame is similar in function to the known preamble

1The SYNC message doesn’t need to be secured since if it is can-
celed at both device and helper, it becomes a DoS attack. If the device
and helper are forced to be out of sync by an attacker, BS will fail to
decode which is again a DoS.

that is attached to wireless transmissions for syn-
chronizing the receiver to the transmitter. In our
protocol, all three entities synchronize to the same
time reference, using the known SYNC message.

4. Transmission of mD: D transmits mD in the form
[h(mD)],mD, where [·] denotes an MC ON-OFF
keyed message and h is a cryptographically-secure
hash function. Note that no key input is used with
h, as D and the BS do not share a common key.

5. Helper Signal Superposition: Synchronously with
the transmission of [h(mD)], the helper transmits a
signal mH with ON slots in a random number of slot
locations determined by vector s. The ON slots in
s are time-aligned with the slots (ON or OFF) of
[h(mD)]. Only one slot of mH can be ON per MC
ON-OFF bit of [h(mD)]. Sequence mH is not nec-
essarily a proper MC sequence (and hence, is not
marked by [·]).

6. Reception at the BS: The BS receives ([h(mD)]+
mH)

′ and m′D.

7. Revealing mH : The helper reveals AE(s,K) to the
BS.

8. Integrity Verification of s: The BS decrypts s and
verifies its integrity using function VD(·), which is
the corresponding decryption/verification function
to AE(·). If verification fails, the BS aborts m′D.

9. Integrity Verification of mD: The BS verifies that
all slot locations indicated by s are ON on the re-
ceived ([h(mD)] + mH)

′. If not, a signal cancella-
tion attack is detected and m′D is rejected. Other-
wise, the BS recovers h(mD)

′, by removing mH from
([h(mD)]+mH)

′ using the knowledge of s. For bits
where s was OFF in both corresponding slots, the
MC sequence is decoded using typical decoding.
For an ON slot in s, a bit bD is decoded using the
truth table in Figure 2(a). Upon recovery of h(mD)

′,

the BS checks if h(m′D)
?
= h(mD)

′. If the integrity
verification fails at the BS, either the BS or H dis-
play a FAILURE message, and all entities abort the
protocol. The user has to restart the pairing process
from the initialization step. If the integrity verifi-
cation passes, then BS or H display a SUCCESS
message.

The steps for extracting [h(mD)
′] from ([h(mD)] +

mH)
′ at the BS are shown in Figure 2(b). After syn-

chronization, D transmits h(mD) = 0110110101 in the
form of [h(mD)] (for illustration purposes, we have re-
stricted the length of the hash function to 10 bits).
The helper synchronously transmits during slots s =
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bD +bH bH bD

(a) (b)

Figure 2: (a) Truth table for recovering [h(mD)
′] from ([h(mD)]+mH)

′, using s, and (b) an example of recovering [h(mD)
′] from ([h(mD)]+mH)

′.

{4,10,13,15,18}. The BS receives the superimposed
signal ([h(mD)] + mH)

′. Using the truth table in Fig-
ure 2(a), the original MC sequence corresponding to
h(mD) is recovered.

4.3 Device Pairing with HELP

In this section, we describe how the BS and D can estab-
lish a secret key in the presence of a MitM adversary.
We complement the DH key agreement protocol with
the HELP integrity verification primitive. The latter is
used to detect the cancellation portion of a MitM attack.
Moreover, the helper provides the necessary authentica-
tion for the DH message exchange. The HELP-enabled
DH message exchange is shown in Figure 3.

To fix the ideas, the BS (or D) publishes parameters
(G,q,g) of the DH scheme, where (G is a cyclic group of
order q and g is a generator of G). If (G,q,g) are already
publicly known, they need not be sent by either party.
Device D computes zD = gXD , where XD is chosen from
Zq uniformly at random. After the initialization and syn-
chronization steps (omitted from Figure 3), D transmits
the integrity-protected form of mD : IDD,zD to the BS,
while the helper is injecting mH on slot positions denoted
by s. Here, we opt to protect both h(mD) and mD with the
PHY-layer primitive to conceal the value of mD from an
adversary A, who cannot learn the helper’s sequence mH .
This prevents a rogue BS from recovering mD, so that
it cannot pair with the device successfully. The helper
then reveals s to the BS through the secret channel im-
plemented by AE(·). The BS uses s to verify the in-
tegrity of mD and recover zD. BS replies with zBS = gXBS ,
where XBS is chosen in Zq uniformly at random. Each
party independently calculates kD,BS = gXD·XBS . Immedi-
ately following the key-agreement, D and BS engage in a
key confirmation phase, initiated by D. This can be done
by executing a two-way challenge-response protocol [4],
as shown in Figure 4. If any of the verification steps fail,
the corresponding party aborts the pairing protocol.

D BS
Given IDD, Given IDBS,
(G,q,g) (G,q,g)

Pick XD ∈U Zq XBS ∈U Zq
zD← gXD zBS← gXBS

mD← IDD,zD mBS← IDBS,zBS

(H active)
[h(mD),mD]

+mH−−−−−−→
(H active)

AE(s,K)−−−−−−→ Verify
& Extract zD

mBS←−−−−−−
kD,BS← (zBS)

XD kD,BS← (zD)
XBS

Figure 3: Diffie-Hellman key-agreement on kD,BS using the HELP
PHY-layer integrity verification method.

5 Security Analysis

In this section, we analyze the security of the HELP in-
tegrity verification primitive and evaluate the security of
the DH-based pairing protocol presented in Section 4.3.

5.1 Security of the HELP primitive
Consider the transmission of [h(mD)],mD from D to the
BS, superimposed with the transmission of mH . The goal
of the adversary A is to replace mD with some desired m′D
and pass the verification at the BS. In the absence of the
helper, a straightforward strategy for A is to annihilate
[h(mD)],mD and inject [h(m′D)],m

′
D. However, when mH

is superimposed on [h(mD)], a cancellation of [h(mD)]+
mH leads to the likely detection of the cancellation attack
due to the “erasure” of the helper’s ON slots.

Rather than blindly canceling the composite signal
[h(mD)]+mH transmitted by D and H, the adversary can
attempt to detect the ON slots of the helper and leave
those intact. He can then target only the OFF symbols of
mH and modify those to desired values so that the BS de-
codes m′D. To pass the integrity verification performed by
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D BS
CD ∈U Zq

IDD,CD−−−−−→
RBS←hkD,BS

(IDBS||CD||0)

Ver(RBS)=true?
RBS←−−−−−

CBS ∈U Zq
IDBS,CBS←−−−−−−

RD←hkD,BS
(IDD||CBS||1)

RD−−−−→ Ver(RD) = true?

Figure 4: Key confirmation of kD,BS using a challenge-response proto-
col.

the BS, it must hold that (a) all the ON slots indicated in
s are also ON slots in [h(m′D)]+mH , and (b) the removal
of mH during step 8 of HELP (see Section 4.2), leads to
the decoding of [h(m′D)]. As mD follows in plaintext, the
adversary can then replace mD with m′D.

We first show that if the adversary can identify the ON
slots of the helper (this is equivalent to knowing mH ),
then it can modify the transmitted signal such that the
desired value m′D is decoded at the BS. Consider the
transmission of one MC ON-OFF bit bD and the super-
position of an ON slot by H either during the ON or the
OFF slot of the coded bD. The possible outcomes of this
superposition are shown in the third column of Table 1.
Moreover, we show the signal bA that must be injected
by A to cause the decoding of the desired value b′D at the
BS. For illustration purposes, we show the signal cancel-
lation as a negation of the ON value.

From Table 1, we observe that if bH is known, the
adversary can always make the BS decode the desired
bit b′D, irrespective of the value of bD. Moreover, since
the ON bits of mH stay intact, the modified signal will
pass the PHY-layer integrity verification at the BS. How-
ever, identifying the ON slots of the helper is difficult
due to the location proximity between D and H and also
the strict reaction time necessary to perform the cancel-
lation attack in an online fashion. In the next proposition,
we prove the security of the integrity verification mech-
anism under the realistic assumption that an ON slot for
the helper is timely identified by A with some probabil-
ity. We experimentally evaluate this probability in Sec-
tion 6. The security of the integrity verification of HELP
is given by Proposition 1.

Proposition 1. The HELP integrity verification primitive
is δ–secure with

δ =

(
1− 1− pI

4

)|s|
. (1)

Here δ is the probability that the BS accepts a message

Table 1: Injection of desired bit b′D, when the ON slots of the helper
can be detected.

bD bH bD +bH bA bD +bH b′D
+bA

1

2
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8
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Figure 5: Probability of accepting a forged message m′D at the BS as a
function of |s|, for varying inference capabilities of helper activity.

forgery by A, |s| is the length of the vector indicating
the number of the helper’s ON slots, and pI is the prob-
ability of inferring the helper’s activity during one MC
ON-OFF bit when D and H do not co-transmit. Here, δ

is a negligible function of |s|. In eq. (1), it is assumed
that a strongly universal hash function is used as part of
the HELP primitive.

Proof. The proof is provided in Appendix A.

In our analysis, we set the inference probability of H’s
activity to one when either D and H co-transmit or none
transmits. In the former case, the presence of high power
can be used to detect the superposition of D and H ON
slots, and hence infer H’s ON slot. In the latter case, the
absence of power can be used to detect a helper’s OFF
slot. When either D or H are active, the inference prob-
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ability is set to pI < 1 due to the ambiguity in deciding
which of the two devices is active. Summarizing,

Pr[Inference] =


1, D & H transmit
1, D & H do not transmit
pI , D or H transmits.

(2)

In Proposition 1, δ depends on two variables; the car-
dinality of s and pI . From (1), it is evident that δ is a
negligible function of |s|, and a monotonically increas-
ing function of pI . In Figure 5, we show δ as a function
of |s| for various values of pI . As expected, a higher pI
yields a higher δ value for the adversary. For instance,
when pI = 0.9, δ = 0.0174, when |s|= 160, which may
not be acceptable. However, doubling the size of s low-
ers δ to 0.0003. Note that in a single use of the HELP
primitive, the attacker has only one chance to guess s
and modify the value of mD in an online fashion. Hence,
a higher probability of forgery is acceptable here relative
to standard cryptographic security (similar security val-
ues are sought in previous pairing protocols, which use
short authentication strings [40]).

5.2 Security of the Device Pairing Protocol
We now analyze the security of the device pairing pro-
tocol proposed in Section 4.3. Since the security of the
DH key-agreement protocol under a passive adversary is
standard [56], we focus on the security under active at-
tacks. We divide our analysis into two parts. In the first
part, we examine if the adversary can pair a rogue device
to a legitimate BS. In the second part, we examine if a le-
gitimate device can be deceived to pair with a rogue base
station. These two steps are part of a MitM attack.

5.2.1 Pairing a Rogue Device with a legitimate BS

The pairing of a rogue device D′ with the BS can occur
under two different scenarios: (a) D′ pairs in the absence
of a legitimate device D, and (b) D′ pairs while D and the
BS execute a pairing session.

Pairing in the absence of a legitimate device: The pair-
ing protocol described in Section 4.3 is initiated with the
placement of H in close proximity to the legitimate de-
vice and the press of a button on H and D, respectively.
The button pressing sends a pairing initialization mes-
sage to the BS which is authenticated using the secure
AE(·) function. Without access to the helper device, the
adversary cannot initiate the pairing process from a re-
mote location.

Hijacking a legitimate pairing session: Since A cannot
initiate the pairing process with the BS, he can only at-
tempt to pair a rogue device with the BS by hijacking a

pairing session involving a legitimate device D. To estab-
lish a secret key with the BS, the adversary must modify
the DH public number zD of D into its own DH public
number z′D, where zD is contained in the first message
mD sent from D to the BS (similar to a typical MitM at-
tack against a DH key exchange).

However, mD is protected by our integrity verification
primitive. Note that in the HELP primitive, only h(mD)
is encoded using MC ON-OFF keying while mH is being
superimposed. The actual value of mD follows in plain-
text. In our proposed modified DH protocol, both h(mD)
and mD are encoded using HELP. According to Proposi-
tion 1, the adversary’s success probability in forging mD
in the HELP primitive is δ . When both h(mD) and mD
are encoded using HELP, we claim that the adversary’s
success probability in replacing mD is upper bounded by
δ . This is because in the primitive, the adversary can
change mD into any m′D with probability 1, but his ad-
vantage is limited by the probability of changing h(mD)
into h(m′D), which is δ . In the pairing protocol, the ad-
versary’s success probability of changing mD into m′D is
less or equal to 1. Thus overall, its success probability
is less or equal to δ , which is a negligible function of |s|
(number of ON slots injected by helper during [h(m′D)]).
Therefore, the adversary will be unable to pair D′ with
the legitimate BS.

5.2.2 Pairing D with a Rogue Base Station

We now examine whether the adversary acting as a rogue
BS can pair with a legitimate device D. To do so, the ad-
versary can perform a similar MitM attack as in the up-
link direction, by replacing the BS’s DH public parameter
zBS with its own number zBS′ . This step of the MitM at-
tack corresponding to the message sent by A to D after
the reception of mD is shown in Figure 6.

For this attack to be successful, the adversary must
extract the DH public value zD so that it can com-
pute kD,BS′ = (zD)

XBS′ . The value of zD is carried in
[h(mD),mD]+mH , using the HELP primitive. To recover
mD, the adversary must be able to determine the loca-
tion vector s that is used to generate mH for the portion
that corresponds to the transmission of mD. However, s
is transmitted from H to BS using the authenticated en-
cryption function AE(·), so A cannot obtain s directly
from the encrypted version of it.

Alternatively, A can collect and analyze the transmit-
ted signal of [h(mD),mD]+mH after receiving it and at-
tempt to identify all the ON slots in mH using radio fin-
gerprinting methods [7,19,28,39,55,59]. However, none
of the fingerprinting methods can achieve 100% accu-
racy. As long as A infers H’s ON slots with some prob-
ability smaller than one, we can drive the probability of
successfully extracting mD arbitrarily low by increasing
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D A BS
Given IDD, (G,q,g) Given IDD′ , (G,q,g) Given IDBS, (G,q,g)

Pick XD ∈U Zq XD′ ∈U Zq XBS ∈U Zq
zD← gXD zD′ ← gXD′ zBS← gXBS

mD← IDD,zD m′D← IDD′ ,zD′ mBS← IDBS,zBS

(H active)
[h(mD),mD]+mH−−−−−−−−−→ Cancel and inject

[h(m′D),m
′
D]−−−−−−−−−−→

(H active)
AE(s,K)−−−−−−−−−→ AE(s,K)−−−−−−−−−−→ Verify & Extract zD′

mBS←−−−−−−−−−
k′D′,BS← (zBS)

XD′ k′D′,BS← (zD′)
XBS

XBS′ ∈U Zq
zBS′ → gXBS′

mBS′ → IDD′ ,zBS′
mBS′←−−−−−−−−−

Recover z′D
kD,BS′ ← (zBS′)

XD k′D,BS′ ← (z′D)
XBS′

Figure 6: MitM attack against the key-agreement phase of HELP-enabled pairing protocol.

the number of slots carrying mD.
In the following proposition, we derive the probability

of D successfully pairing with a rogue BS, when the ON
slots of the helper are inferred with probability p′I . Note
that in general p′I is different than the pI of Proposition
1. The inference of the helper’s ON slots in Proposition
1 must occur based on very few samples because the ad-
versary must quickly decide whether to perform signal
cancellation. In the rogue BS case, the adversary can an-
alyze [h(mD),mD]+mH based on all the samples, so it is
expected that p′I > pI .

Proposition 2. A legitimate device D pairs with a rogue
BS with probability δ + ε , where

δ =
(

p′I
)|s′|

, (3)

and ε is a negligible function of the hash length. Here
|s′|< |s| corresponds to the number of helper’s ON slots
only during the transmission of mD in the [h(mD),mD], p′I
is the probability of inferring the helper’s activity during
one MC ON-OFF bit when D and H do not co-transmit,
and δ is a negligible function of |s′| when p′I < 1.

Proof. The proof is provided in Appendix B.

In Proposition 2, δ depends on two variables; the car-
dinality of set s′ which is a subset of s corresponding
to H’s ON signal only during the transmission of mD in
[h(mD),mD], and the inference probability of the helper’s
activity during the transmission of [h(mD),mD] + mH ,
which is p′I . From eq. (3), it is evident that δ is a neg-
ligible function of |mD|, and a monotonically increasing
function of p′I . In Figure 7, we show δ as a function of
|s′| for various values of p′I and fixed hash length of ` =
160. As expected, a higher p′I yields a higher δ value for
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Figure 7: Probability of pairing with a rogue BS as a function of |s|, for
varying inference capabilities of helper activity.

the adversary. For instance, when p′I = 0.9, δ = 0.0018,
when |s′| = 80, which may not be acceptable. However,
doubling the size of s′ lowers δ to 5× 10−8. Note that,
such an attack has to happen in an online manner. This is
because the rogue BS must pass the challenge-response
phase from the device in the key confirmation phase, so
the attacker only has one chance to guess s and derive a
probable DH key from the guessed zD, which is only suc-
cessful with small probability δ (similar to limited-guess
online password attacks).

6 Evaluation

6.1 Helper Activity Inference

In this section, we first analyze A’s capability in timely
identifying the helper’s ON slot when the helper is trans-
mitting the ON-OFF message mH . For this purpose, the
adversary could employ several PHY-layer characteris-
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tics of the helper’s transmission to pinpoint when H is ac-
tive. These include (a) the received signal strength [55],
(b) the frequency offset [59], (c) the channel impulse re-
sponse hH,A [39], (d) the I/Q origin offset [7], (e) the
transient radio state [19], and (f) the angle of arrival for
the incoming signal [28].

We first examine A’s attempt to perform the signal can-
cellation and injection required by the MitM attack of
Figure 6. To avoid rejection of m′D by the BS, the adver-
sary has to swiftly detect a helper’s ON slot and decide
whether to perform signal cancellation. Most existing ra-
dio fingerprinting methods are not suitable for such quick
online detection. The frequency offset and channel im-
pulse response are estimated using known preambles that
are typically included in headers. Such preambles do not
precede the helper’s ON slots. The I/Q origin offset is not
a suitable method because we employ ON-OFF modula-
tion for message transmission. The methods that detect
the transient state of a radio when it turns on can only be
used to identify the start of a transmission (although an
ON-OFF modulation implies a transition from an OFF to
an ON state, the radio transmitter is powered through the
entire transmission of an ON-OFF signal and a transient
state is not observed with every slot). Differentiating be-
tween D and H using an AOA requires a very narrow
directional beam due to the proximity between H and D.
Such narrow beamwidths can be achieved by using an
antenna array [48] or a parabolic antenna [63]. However,
the hardware cost is prohibitive and the antenna would
be quite visible. For example, an adversary at 50ft from
D and H requires two 50-element antenna arrays pointed
to D and H respectively via the LoS path, to differentiate
between D and H when their distance is set to 4ft. This
calculation assumes a 2.4GHz operating frequency.

6.1.1 Fast Helper Detection based on RSS

The simplest and most timely method for detecting the
presence of the helper is to measure the received signal
strength over some small number of samples at the be-
ginning of every slot. Let bD and bH represent the bit si-
multaneously transmitted by D and H respectively over
two slots ti and ti+1. There are four possible bit combina-
tions that yield two candidate power profiles for bD+bH ,
as measured by the adversary. When bD = bH , the helper
and D overlap in one of the two slots (either ti or ti+1),
depending on the value of bD,bH . In this case, one of the
slots is OFF whereas the other slot is ON with a signifi-
cantly higher power because the two ON slots of H and
D are superimposed (here, we have considered the worst-
case scenario and ignored the possibility of destructive
interference). We expect that A will be able to infer the
ON slot of the helper with probability pI = 1, due to the
higher RSS value of the first few samples of the ON slot.

When bD 6= bH , both ti and ti+1 are ON and have sim-
ilar power profiles if H and D transmit with the same
power and are placed in close proximity. In this case,
the adversary is expected to be unable to differentiate a
helper’s ON slot from a device’s ON slot with the proba-
bility much higher than a random guess. The four possi-
ble cases for one slot observed by the adversary are: (a)
P1 : both H and D are ON, (b) P2 : H is ON and D is OFF,
(c) P3 : D is ON and H is OFF, and (d) P4 : both H and
D are OFF. For each case, the adversary determines four
threshold values E[P1],E[P2],E[P3], and E[P4], that rep-
resent the average expected power, as measured by the
first few samples of a slot.

Without loss of generality, let E[P1]> E[P2]> E[P3]>
E[P4].

2 Let also E[P(ti)] denote the average power mea-
sured over slot ti using the first few samples. The ad-
versary classifies ti to one of four cases by mapping
E[P(ti)] to the closest threshold. That is, case P1 is
inferred if E[P(ti)] >

E[P1]+E[P2]
2 , case P2 is inferred if

E[P1]+E[P2]
2 ≤ E[P(ti)] <

E[P2]+E[P3]
2 , etc. A wrong infer-

ence is made when E[P(ti)] that belongs to case Pi is
mapped to a case Pj with Pi 6= Pj. In Proposition 1, we
have assumed that the probability pI for correctly infer-
ring cases P1 and P4 is equal to one. In P1, the RSS is
expected to be relatively high due to the co-transmission
from D and H. In P4, the RSS is expected to be low
because neither D nor H are transmitting. However, the
thresholds for cases P2 and P3 are expected to be very
close, thus leading to frequent wrong inferences. We ex-
perimentally verify this claim.

Experimental Evaluation of pI : Experimental setup:
To evaluate pI , we setup three NI-USRP 2921 devices in
an indoor laboratory environment. Two USRP devices
represented D and H, whereas a third USRP device is
placed at 24 feet away acting as an adversary. The trans-
mit power for an ON slot was set to 20dBm for both D
and H with a symbol duration of 1ms. The devices were
set to work at 2.4GHz and were synchronized. The sam-
pling frequency was set to 2MHz. We tested two scenar-
ios: (1) H is stacked on top of D, and (2) H is moved
away from the legitimate device. The experiment setup
is shown in Figure 8(a).

We implemented amplitude shift keying (ASK) to
transmit MC ON-OFF coded messages and repeatedly
transmitted message {1,0,1,0} from D and message
{1,1,0,0} from H simultaneously. The signals from H
are MC-coded only when the bit value is one. The su-
perposition of the two signals implemented all four cases
P1-P4.

Results: Let PDH denote the probability of detecting that
D and H transmit simultaneously, PNDH denote the prob-

2E[P2] and E[P3] can be similar but not exactly the same, so we can
assume some ordering to make a classification rule.

USENIX Association 26th USENIX Security Symposium    443



10 40 70 100 130 160

Window of Samples

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ro
b
ab

il
it
y
of

In
fe
re
n
ce

P
DH

P
NDH

P
H

10 40 70 100 130 160

Window of Samples

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ro
b
ab

il
it
y
of

In
fe
re
n
ce

P
DH

P
NDH

P
H

0 0.5 1 1.5 2

Distance(feet)

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

P
ro
b
ab

il
it
y
of

In
fe
re
n
ce

P
DH

P
NDH

P
H

(a) (b) (c) (d)

Figure 8: (a) Experimental setup, (b) detection probability as a function of the window of samples when the power at H and D is fixed, (c) detection
probability as a function of the window of samples when the power at H and D varies, and (d) detection probability as a function of the distance
between D and H, when H and D remain equidistant from A.

ability of detecting that neither D nor H transmit, and
PH denote the probability of detecting that H is transmit-
ting alone. These correspond to pI for any of the candi-
date scenarios. In the first experiment, we measured the
detection probability as a function of the sampling win-
dow size used for computing the average RSS value for a
given slot. Intuitively, a longer sampling window would
lead to better inference but will delay the cancellation op-
eration. Figure 8(b) shows the resulting detection proba-
bilities as a function of the sample window. We observe
that the detection probabilities PDH and PNDH are rela-
tively low and are further reduced with the increase of
the sample window. However, the detection probability
PH is close to 0.5 irrespective of the sample window size.
This indicates that differentiating between the ON slots
of the helper and of the legitimate device, when only one
of the two transmits, is practically equivalent to a ran-
dom guess. Our results justify the selection of pI = 1
when the H and D are simultaneously absent or present,
and pI = 0.5 otherwise.

In the second experiment, we repeated the first experi-
ments but configured H and D to vary their transmission
power on a per-slot basis. The power was varied to re-
duce the inference capability of A. Specifically, H and
D oscillated their power at random between 10dBm and
20dBm. Figure 8(c) shows the detection probabilities as
a function of the window of samples used for inference.

Effect of proximity on pI: We further performed ex-
periments to evaluate the effect of the proximity between
D and H on their distinguishability. We repeated the first
experiment and varied the distance between H and D.
In the first part of the experiment, H was moved away
from D while keeping the D-A and H-A distances sim-
ilar (the helper’s motion was perpendicular to the D-A
line. Figure 8(d) shows that the detection probability for
each case is similar to the case where H is stacked on
top of D. In the second part of the experiment, H was
moved towards A, and therefore, the distance between H
and A was gradually reduced. Figure 9(a) shows the re-
spective detection probabilities. As expected, decreasing
the distance between A and H improves the adversary’s
inference capability, but the inference remains imperfect
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Figure 9: (a) Detection probability as a function of the distance between
D and H when H is moved towards A, and (b) detection probability as
a function of the distance between D and H when H is moved towards
A, when D and H are transmitting random powers.

when D and H remain relatively close.
In the fourth experiment, we repeated the second

part of the third experiment but configured H and D to
vary their transmission power on a per-slot basis. The
power was varied to reduce the inference capability of
A. Specifically, H and D oscillated their power at ran-
dom between 10dBm and 20dBm. Figure 9(b) shows the
same results when the distance between D and H was
also varied, with H moving towards A. We observe that
PH remains a random guess even when H is moved away
from D (comparison of PH in Figures 9(a) and 9(b)), in-
dicating that a power variation approach can account for
situations where H is not placed exactly on top of D. Dis-
tinguishing signals from D and H using RSS remains a
random guess even when H is 2ft away from D.

6.1.2 Fast Helper Detection Based on Time

In this section, we discuss an inference technique that ex-
ploits the possible time misalignment between the trans-
missions of H and D due to clock drift and different path
delays to the receiver. There have been extensive studies
on synchronization of independent wireless nodes, but
practically it is impossible to reach perfect synchroniza-
tion [51]. The adversary can exploit the synchronization
offset between H and D to infer the presence of helper’s
ON signals. If H is faster (slower) than D, the ON slots
of H will appear slightly earlier (later) than the ON slots
of D. An example of a fast H is shown in Figure 10,
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Figure 10: Synchronization offset without and with randomized start
time of each bit.
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Figure 11: Fraction of slots that one device is faster than the other as a
function of the delay offset ε .

where there is a synchronization offset ε between D and
H. If A fixes his clock to H, it can infer the presence of
helper’s ON slots without having to resort to RSS estima-
tion. It should be noted here, the BS performs detection
of ON slots by taking an average value of the power of
all the samples. Therefore, a perfect synchronization be-
tween D and H is not required for the correctness of the
proposed protocol.

To prevent the inference of the helper’s ON slots based
on time misalignment, we randomize the start times of
each bit (first slot of the MC ON-OFF bit) both at H and
D. Specifically, a random time offset ε, positive or neg-
ative, is selected from a uniform distribution U (εl ,εh).
The lower bound εl is selected to be the maximum syn-
chronization error between D and H. This can be cal-
culated as the expected clock drift over the transmission
time of H plus a maximum time difference between path
delays. The upper bound τh can be some reasonable
value (e.g., 2εl). Moreover τ << t, where t is the slot
duration. This will ensure the correct sequence decoding

at the BS. The lower part of Figure 10 shows an exam-
ple of applying the randomized start time for each bit.
We observe that no device is always faster (slower), thus
preventing A from fixing its clock to H.

Experimental Evaluation of pI : To verify the valid-
ity of our time randomization approach and its impact
on the inference probability pI , we setup three NI-USRP
2921 devices in an indoor laboratory environment as D,
H, and A, respectively. As in previous experiments, H
was stacked on top of D, whereas A was placed 24 feet
away from D,H. The transmit power for an ON slot was
set to 20dBm with a symbol duration of 1ms. An arti-
ficial clock misalignment τ = 0.1msec was set between
H and D to emulate the maximum synchronization error.
We then varied the random time offset ε selected by H
and D. The experiment lasted for the transmission of 106

sequences of 40 bits each.
Figure 11 shows the fraction of slots for which each

device was detected to be faster as a function of the max-
imum synchronization error ε . We observe that for suf-
ficiently high values of ε, H is almost 50% of the time
faster than D. Practically, using time misalignment to
distinguish the helper becomes a random guess.

6.2 Protocol Evaluation

In the final set of experiments, we evaluated the integrity
protection offered by HELP against an adversary capable
of canceling and injecting signals. We setup two USRP
devices stacked over each other as D and H, one device
(Rx1) at 24ft from D,H acting as the BS and a second
device RX2 set by RX1 that performed cancellation on
RX1. The transmitters and the receivers are shown in
Figure 12(a) and Figure 12(b), respectively. The dis-
tance between the two receivers was set to approximately
one wavelength λ to cause signal inversion at RX1. Af-
ter receiving the transmissions of D and H at Rx1 and
Rx2, cancellation was performed via signal processing in
MATLAB [34]. The signal of RX2 was added to RX1 to
cancel the transmission of D and H, whereas a random
signal was added to emulate A’s signal injection.

In the first scenario, we transmitted MC ON-OFF se-
quences of length `= {4,8,12,20}, while the helper was
inactive. We measured the probability δ of accepting A’s
random sequence at the BS (RX1). We also varied the
probability of successful cancellation pC by suppressing
cancellation for a corresponding fraction of bits. Fig-
ure 12(c), shows δ as a function of ` for various pC. We
observe that for high cancellation probability values pC,
a message cancellation/injection has a high success prob-
ability (close to one).

We repeated the experiment of the first scenario in the
presence of H who transmitted at random slot locations
simultaneously with D. In the experiment, the adversary
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Figure 12: (a) Placement of D and H, (b) placement of the BS (RX1) and RX2. (c) probability of acceptance of a modified message at the BS in the
absence of H, and (d) probability of acceptance of a modified message at the BS in the presence of H.

attempted to distinguish between D and H using the RSS
sampling method discussed in Section 6.1.1. Also, the
adversary canceled slots on which D or H’s signals were
indistinguishable. Figure 12(d) shows the probability δ

of accepting the adversary’s modified message as a func-
tion of the number of active helper slots |s|when the mes-
sage length is `= 20. We observe that δ decreases dras-
tically compared to Figure 12(c). Moreover, imperfect
cancellation (pC < 1) leads to further deterioration of the
adversary’s performance. The results obtained support
the analytical results provided in Section 5, which are
computed assuming pC = 1.

Timing performance: The upper bound on the exe-
cution time of the DH protocol with HELP primarily de-
pends on the communication time of the ON-OFF keyed
message, since the rest of the messages are exchanged
in the normal communication mode. Public key param-
eters for an EC-DH key-agreement [58] can have values
from 160–512 bits, depending on the security require-
ment. Assuming a hash length of 160 bits and a slot du-
ration of 1ms, the time required to transmit the HELP
protected DH public primitive varies between 0.6–1.4s,
which is acceptable.

7 Conclusion

We considered the problem of pairing two devices using
in-band communications in the absence of prior shared
secrets. We proposed a new PHY-layer integrity protec-
tion scheme called HELP that is resistant to signal can-
cellation attacks. Our scheme operates with the assis-
tance of a helper device that has an authenticated chan-
nel to the BS. The helper is placed in close proximity

to the legitimate device and simultaneously transmits at
random times to allow the detection of cancellation at-
tacks at the BS. We showed that a pairing protocol such
as the DH key agreement protocol using HELP as an in-
tegrity protection primitive can resist MitM attacks with-
out requiring an authenticated channel between D and the
BS. This was not previously feasible by any of the pair-
ing methods if signal cancellation is possible. We studied
various implementation details of HELP and analyzed its
security. Our protocol is aimed at alleviating the device
pairing problem for IoT devices that may not have the
appropriate interfaces for entering or pre-loading crypto-
graphic primitives.

Acknowledgments

We thank our shepherd Manos Antonakakis and the
anonymous reviewers for their insightful comments.
This research was supported in part by the NSF under
grant CNS-1409172 and CNS-1410000. Any opinions,
findings, conclusions, or recommendations expressed in
this paper are those of the author(s) and do not necessar-
ily reflect the views of the NSF.

References
[1] BALFANZ, D., SMETTERS, D. K., STEWART, P., AND WONG,

H. C. Talking to strangers: authentication in ad-hoc wireless
networks. In Proc. of NDSS’02 (2002).

[2] BELLARE, M., AND NAMPREMPRE, C. Authenticated encryp-
tion: Relations among notions and analysis of the generic com-
position paradigm. In Proc. of International Conference on the
Theory and Application of Cryptology and Information Security
(2000), Springer, pp. 531–545.

446    26th USENIX Security Symposium USENIX Association



[3] BICHLER, D., STROMBERG, G., HUEMER, M., AND LÖW, M.
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Physical-layer identification of rfid devices. In Proc. of the 18th
conference on USENIX security symposium (2009), USENIX As-
sociation, pp. 199–214.

[14] DIFFIE, W., AND HELLMAN, M. E. New directions in cryptog-
raphy. IEEE Transactions on Information Theory 22, 6 (1976),
644–654.

[15] DOLEV, D., AND YAO, A. C. On the security of public key pro-
tocols. Information Theory, IEEE Transactions on 29, 2 (1983),
198–208.

[16] FRANKLIN, J., MCCOY, D., TABRIZ, P., NEAGOE, V., RAND-
WYK, J., AND SICKER, D. Passive data link layer 802.11 wire-
less device driver fingerprinting. In Proc. 15th USENIX Security
Symposium (2006), pp. 167–178.

[17] GOLLAKOTA, S., AHMED, N., ZELDOVICH, N., AND KATABI,
D. Secure in-band wireless pairing. In Proc. of USENIX security
symposium (2011), San Francisco, CA, USA, pp. 1–16.

[18] GOODRICH, M. T., SIRIVIANOS, M., SOLIS, J., TSUDIK, G.,
AND UZUN, E. Loud and clear: Human-verifiable authentication
based on audio. In Proc. of IEEE ICDCS 2006 (2006), p. 10.

[19] HALL, J., BARBEAU, M., AND KRANAKIS, E. Enhancing intru-
sion detection in wireless networks using radio frequency finger-
printing. In Proc. of Communications, Internet, and Information
Technology (2004), pp. 201–206.

[20] HARLAND, C. J., CLARK, T. D., AND PRANCE, R. J. Electric
potential probes - new directions in the remote sensing of the hu-
man body. Measurement Science and Technology 13, 2 (2002),
163.

[21] HEI, X., AND DU, X. Biometric-based two-level secure access
control for implantable medical devices during emergencies. In
Proc. of 30th IEEE International Conference on Computer Com-
munications (Shanghai, P.R.China, April 2011), pp. 346 – 350.

[22] HOU, Y., LI, M., CHAUHAN, R., GERDES, R. M., AND ZENG,
K. Message integrity protection over wireless channel by coun-
tering signal cancellation: Theory and practice. In Proc. of Asi-
aCCS Symposium (2015), pp. 261–272.

[23] HOU, Y., LI, M., AND GUTTMAN, J. D. Chorus: Scalable in-
band trust establishment for multiple constrained devices over the
insecure wireless channel. In Proc. of WiSec Conference (2013),
pp. 167–178.

[24] HU, B., ZHANG, Y., AND LAZOS, L. PHYVOS: Physical layer
voting for secure and fast cooperation. In Proc. of IEEE Confer-
ence on Communications and Networks Security (2015).

[25] KALAMANDEEN, A., SCANNELL, A., DE LARA, E., SHETH,
A., AND LAMARCA, A. Ensemble: cooperative proximity-
based authentication. In Proc. of 8th international conference
on Mobile systems, applications, and services (New York, NY,
USA, 2010), MobiSys ’10, ACM, pp. 331–344.

[26] KUMAR, A., SAXENA, N., TSUDIK, G., AND UZUN, E. Caveat
eptor: A comparative study of secure device pairing methods. In
Proc. of IEEE PerCom ’09 (2009), pp. 1–10.

[27] KUO, C., LUK, M., NEGI, R., AND PERRIG, A. Message-in-a-
bottle: user-friendly and secure key deployment for sensor nodes.
In Proc. of SenSys’07 (2007), pp. 233–246.

[28] LAITINEN, H., LAHTEENMAKI, J., AND NORDSTROM, T.
Database correlation method for gsm location. In Proc. of 53rd
IEEE Vehicular Technology Conference (2001), vol. 4, IEEE,
pp. 2504–2508.

[29] LAUR, S., AND PASINI, S. SAS-Based Group Authentication
and Key Agreement Protocols. In Proc. of Public Key Cryptog-
raphy - PKC’08 (2008), LNCS, pp. 197–213.

[30] LAW, Y., MONIAVA, G., GONG, Z., HARTEL, P., AND
PALANISWAMI, M. Kalwen: A new practical and interopera-
ble key management scheme for body sensor networks. Security
and Communication Networks (2010).

[31] LI, M., YU, S., GUTTMAN, J. D., LOU, W., AND REN, K.
Secure ad hoc trust initialization and key management in wireless
body area networks. ACM Trans. Sen. Netw. 9, 2 (Apr. 2013),
18:1–18:35.

[32] LIN, Y.-H., STUDER, A., HSIAO, H.-C., MCCUNE, J. M.,
WANG, K.-H., KROHN, M., LIN, P.-L., PERRIG, A., SUN, H.-
M., AND YANG, B.-Y. Spate: small-group pki-less authenticated
trust establishment. In Proc. of Mobisys’09 (2009), pp. 1–14.

[33] MATHUR, S., MILLER, R., VARSHAVSKY, A., TRAPPE, W.,
AND MANDAYAM, N. Proximate: proximity-based secure pair-
ing using ambient wireless signals. In Proc. of 9th international
conference on Mobile systems, applications, and services (New
York, NY, USA, 2011), MobiSys ’11, ACM, pp. 211–224.

[34] MATLAB. version 9.0.0.341360 (R2016a). The MathWorks
Inc., Natick, Massachusetts, 2016.

[35] MAYRHOFER, R., AND GELLERSEN, H. Shake well before use:
Authentication based on accelerometer data. In Proc. of Inter-
national Conference on Pervasive Computing (2007), Springer,
pp. 144–161.

[36] MAYRHOFER, R., AND GELLERSEN, H. Shake well before use:
Intuitive and secure pairing of mobile devices. IEEE Transactions
on Mobile Computing 8 (2009), 792–806.

USENIX Association 26th USENIX Security Symposium    447



[37] MCCUNE, J. M., PERRIG, A., AND REITER, M. K. Seeing-is-
believing: Using camera phones for human-verifiable authentica-
tion. In Proc. of IEEE S & P (2005), pp. 110–124.

[38] MIETTINEN, M., ASOKAN, N., NGUYEN, T. D., SADEGHI,
A.-R., AND SOBHANI, M. Context-based zero-interaction pair-
ing and key evolution for advanced personal devices. In Proc. of
the CCS Conference (2014), pp. 880–891.

[39] NERGUIZIAN, C., DESPINS, C., AND AFFÈS, S. Geolocation in
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Appendix A

Proposition. The PHY-layer integrity verification of D
by mechanism in Section 4.2 is δ–secure, where

δ =

(
1− 1− pI

4

)|s|
. (4)

Here δ is the probability that the BS accepts a message
forgery by A, |s| is the length of the vector indicating
the number of the helper’s ON slots, and pI is the prob-
ability of inferring the helper’s activity during one MC
ON-OFF bit when D and H do not co-transmit. Here, δ

is a negligible function of |s|. In eq. (4), it is assumed
that a strongly universal hash function is used as part of
the HELP primitive.

Proof. Assume that the adversary A wants to modify
the message mD sent from D to the BS to a message
m′D 6= mD. To accept m′D, the BS must correctly receive
[h(m′D)],m

′
D and all the slots indicated in s must be ON
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slots. The modification of mD to m′D can be made by
canceling mD and injecting m′D. However, to pass verifi-
cation, A has to modify [h(mD)] to [h(m′D)]. Since, mD is
unknown to the adversary while [h(mD)] is being trans-
mitted due to the one-wayness of h(·), A cannot predict
the signal transmitted from D.

To modify [h(mD)], the adversary must launch a sig-
nal cancellation on [h(mD)] +mH and inject [h(m′D)] at
the same time. Moreover, all the ON slots denoted in
the helper’s location vector s must remain as ON slots in
[h(m′D)]. Also, the BS must decode [h(m′D)] after mH is
removed. This can be achieved if A does not apply any
cancellation on the ON slots indicated in s and modifies
the rest of the slots (OFF slots in mH ) to decode to the
desired message. The signal injections of A are made
according to Table 1.

The derivation of the probability δ that the adversary’s
modification is accepted at the BS is performed in two
parts. In the first part, we derive the probability that
A’s cancellation/injection is detected, when A modifies
the transmission one bit. We then compute the prob-
ability of detecting signal modifications by A over all
bits. Consider the ith bit of h(m′D) which corresponds
to Manchester-coded slots t2i−1 and t2i.

Here, we assume a probability pI , which is the prob-
ability of inference of detecting the presence of H’s sig-
nal. This is discussed in details in the Section 6. Here
we state an assumption, that if H’s signal is detected the
adversary does not cancel the signal. The probability of
cancel is (1− pI).

The adversary is detected for ith bit on which H is ac-
tive, for two conditions with wrong inference (1− pI).
(a) First, the helper bit is zero i.e. H injects energy on t2i
slot, device bit is one slot and adversary bit is one. (b)
Second, the helper bit is one i.e. H injects energy on the
t2i−1 slot, device bit is zero and the adversary bit is zero.

Let Pr denote the probability that the BS rejects the
corresponding bit of [h(m′D)] at bit bi due to cases (a)
and (b). This probability can be calculated as:

pr = (Pr[bH
i = 0,bD

i = 1,bA
i = 1]

+Pr[bH
i = 1,bD

i = 0,bA
i = 0])

Pr[wrong inference]

=

(
1
2
· 1

2
· 1

2
+

1
2
· 1

2
· 1

2

)
(1− pI)

=
1− pI

4
, (5)

In (5), bX
i denotes the transmitted value of device X at

bit bi, and pI is the probability of inference of helper’s
activity by the A on a given bit. For (5), we have used
the fact that a strictly universal hash function is the part
of HELP. For a strictly universal hash function, output

hashes for two different inputs differ on each bit with
probability 1/2.

The probability δ of accepting the modified message
of A at the BS is computed by taking into account all |s|
cardinality of the set of bits on which the helper was ac-
tive. The adversary’s modified message is accepted by
the BS if none of the bits in |s| is rejected. Each bit bi
is rejected with probability pr given by (5). As rejection
on each slot occurs independently, the overall probabil-
ity of accepting [h(m′D)] is computed via the Binomial
distribution with parameter pr. That is,

δ = 1−
|s|

∑
x=1

B(x, |s|, pr)

= 1−
|s|

∑
x=0

B(x, |s|, pr)+B(0, |s|, pr)

= (1− pr)
|s|

= (1− 1− pI

4
)|s|. (6)

where B(α,β ,γ) is the Binomial probability density
function.

We now show that δ is a negligible function of |s|.
In (6), δ is a negligible function if (1− pr)

|s| is shown
to be a negligible function. To prove the latter, let
µ(|s|) = a−|s| where a = 1

1−pr
. For µ(|s|) to be a neg-

ligible function, ∀ c ∈ N there exists a n0 ∈ N such that
|s|> n0 and µ(|s|)< n−c. Let n0 = c

a
a−1 . Then

a|s| = (aloga |s|)
− |s|

loga |s|

= (|s|)−
|s|

loga |s| ,

Since |s|> n0, it follows that

|s|
loga |s|

>
n0

loga n0
>

n0

n
1
a
0

> c.

Therefore,

µ(|s|) = a−|s|

= (|s|)−
|s|

loga |s|

< n−c.

This proves that (1− pr)
|s| is a negligible function for

a 6= 1 or equivalently pr 6= 0, thus concluding the proof
on the negligibility of δ for pr 6= 0.

Appendix B

Proposition. A legitimate device D pairs with a rogue
BS with probability δ + ε , where

δ =
(

p′I
)|s′|

, (7)
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and ε is a negligible function of the hash length. Here
|s′|< |s| corresponds to the number of helper’s ON slots
only during the transmission of mD in the [h(mD),mD], p′I
is the probability of inferring the helper’s activity during
one MC ON-OFF bit when D and H do not co-transmit,
and δ is a negligible function of |s′| when p′I < 1.

Proof. Assume that the adversary A wants to decode the
mD which contains the key public parameter zD from
[h(mD),mD]+mH without the knowledge of set s.

For [h(mD),mD] a bit zero corresponds to (OFF, ON)
whereas a bit one corresponds to (ON, OFF). With su-
perimposing H’s signal, the BS will also receive slots
combinations of (ON, ON). The adversary can extract
some information of mD from the (OFF, ON) and (ON,
OFF) slots in the [h(mD),mD] +mH . But to extract the
information from (ON, ON) slots without the knowledge
of s. The adversary has to make intelligent guesses for
received (ON, ON) slots, which is parameterized as the
probability of inferring the helper’s activity by A.

Let p′I be the inference probability for detecting the
presence of H’s signal. This is discussed in details in
Section 6. Note that, if H’s signal is wrongly inferred
(with probability (1− p′I)), A maps the received bit on
which H was active to a wrong outcome.

The adversary makes wrong mapping when it receives
(ON, ON) slots on received [h(mD),mD] +mH . It hap-
pens when A cannot detect the presence of the helper’s
signal on the slot where D has injected no energy.

pr = Pr[wrong inference] = (1− p′I). (8)

In (8), p′I is the probability that A detects the H’s signal
correctly on a particular bit.

The probability δ of extracting correct mD from re-
ceived signal [h(mD),mD]+mH by A. The adversary can
decode correct mD if none of the bits are decoded wrong.
Each bit is wrongly mapped with probability pr, given
by (8). As rejection on each slot occurs independently,
the overall probability of correctly decoding mD from
[h(mD),mD] +mH is computed via the Binomial distri-
bution with parameter pr. That is,

δ = 1−
|s′|

∑
x=1

B
(
x, |s′|, pr

)
= 1−

|s′|

∑
x=0

B
(
x, |s′|, pr

)
+B

(
0, |s′|pr

)
= (1− pr)

|s′|

=
(
1− (1− p′I)

)|s′|
=

(
p′I
)|s′|

. (9)

where B(α,β ,γ) is the Binomial probability density
function and |s′| ⊂ |s|, which corresponds to the num-

ber of helper’s ON signals only during the transmission
of mD in the [h(mD),mD].

We now show that δ is a negligible function of |s′|.
In (9), δ is a negligible function if (1− pr)

|s′| is shown
to be a negligible function. To prove the latter, let
µ(|s′|) = a−|s

′| where a = 1
1−pr

. For µ(|s′|) to be a neg-
ligible function, ∀ c ∈ N there exists a n0 ∈ N such that
|s′|> n0 and µ(|s′|)< n−c. Let n0 = c

a
a−1 . Then

a|s
′| = (aloga |s′|)

− |s′ |
loga |s′ |

= (|s′|)−
|s′ |

loga |s′ | ,

Since |s′|> n0, it follows that

|s′|
loga |s′|

>
n0

loga n0

>
n0

n
1
a
0

> c.

Therefore,

µ(|s′|) = a−|s
′|

= (|s′|)−
|s′ |

loga |s′ |

< n−c.

This proves that (1− pr)
|s′| is a negligible function for

a 6= 1 or equivalently pr 6= 0.
After the attacker extracts mD, the rogue BS needs

to pass the challenge-response authentication in the
key confirmation phase. Assuming the use of a
strongly universal hash function to compute the response
hkD,BS′

(IDBS||CD||0), he can only pass this authentication
if he has the correct key kD,BS′ . Otherwise, his successful
probability ε is negligible. But he can only obtain the
correct key by extracting the correct mD value. There-
fore, the success probability of the rogue BS to pair with
the device is upper bounded by δ +ε , where ε is a negli-
gible function (of the length of the hash function). Since
δ is a negligible function of |s′| which can be the same
as the message length (and here the mD is a DH public
number, whose bit length is typically larger or equal to
the hash length), the overall probability is a negligible
function. This concludes the proof.
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Abstract

Software-Defined Networking (SDN) has significantly
enriched network functionalities by decoupling pro-
grammable network controllers from the network hard-
ware. Because SDN controllers are serving as the brain
of the entire network, their security and reliability are of
extreme importance. For the first time in the literature,
we introduce a novel attack against SDN networks that
can cause serious security and reliability risks by exploit-
ing harmful race conditions in the SDN controllers, simi-
lar in spirit to classic TOCTTOU (Time of Check to Time
of Use) attacks against file systems. In this attack, even
a weak adversary without controlling/compromising
any SDN controller/switch/app/protocol but only hav-
ing malware-infected regular hosts can generate exter-
nal network events to crash the SDN controllers, disrupt
core services, or steal privacy information. We develop
a novel dynamic framework, CONGUARD, that can ef-
fectively detect and exploit harmful race conditions. We
have evaluated CONGUARD on three mainstream SDN
controllers (Floodlight, ONOS, and OpenDaylight) with
34 applications. CONGUARD detected totally 15 previ-
ously unknown vulnerabilities, all of which have been
confirmed by developers and 12 of them are patched with
our assistance.

1 Introduction

Software-Defined Networking (SDN) is rapidly chang-
ing the networking industry through a new paradigm of
network programming, in which a logically centralized,
programmable control plane, i.e., the brain, manages a
collection of physical devices (i.e., the data plane). By
separating data and control planes, SDN enables a wide
range of new innovative applications from traffic engi-
neering to data center virtualization, fine-grained access
control, and so on [16].

Despite the popularity, unfortunately, SDN has also

changed the attack surface of traditional networks. An
SDN controller and its applications maintain a list of
network states such as host profile, switch liveness, link
status, etc. By referencing proper network states, SDN
controllers can enforce various network policies, such as
end-to-end routing, network monitoring, and flow bal-
ancing. However, referencing network states is under the
risk of introducing concurrency vulnerabilities because
external network events can concurrently update the in-
ternal network states.

In this paper, we present a new attack, namely state
manipulation attack, in the SDN control plane that is
rooted in the asynchronism of SDN. The asynchronism
leads to many harmful race conditions on the shared net-
work states, which can be exploited by the attackers to
cause denial of services (e.g., controller crash, core ser-
vice disruption) and privacy leakage, etc. On the sur-
face, this is similar to the well-known TOCTTOU (Time
of Check to Time of Use) attacks [46, 14, 12] against
file systems. However, this attack is closely tied to the
unique SDN semantics, which makes all popular SDN
controllers (e.g., Floodlight [1], ONOS [3], and Open-
Daylight [4]) vulnerable. Consider a real example we
discovered in the Floodlight controller in Figure 1. When
the controller receives a SWITCH_JOIN event, it updates a
network state variable (i.e., switches) to store the profile
of the joining switch. Shortly, the LinkDiscoveryMan-
ager application fetches the activated switch information
from switches to discover links between switches. How-
ever, a SWITCH_LEAVE event can concurrently remove
the profile of the activated switch in switches. If the op-
eration at line 4 is executed before that at line 8, it will
trigger a Null-Pointer Exception (NPE) when the null
switch object is dereferenced at line 9, which leads to
the crash of the thread and eventually causes Denial-of-
Service (DoS) attacks on the controller.

The root cause of this vulnerability is a logic flaw in
the implementation of Floodlight that permits a harmful
race condition. In the SDN control plane, race condi-
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switchAdded(){
1: this.switches.put(dpid, sw);
}

…
switchStatusChanged(){
2: addUpdateToQueue(update);
}

run(){
5: update = updates.take();
6: update.dispatch();
}

…
Dispatch(){
7: listener.switchActivated();
}

addUpdatetoQeueue(update){
3: this.updates.put(update);
}

switchActivated(){
8: sw=switchService.getSwitch(dpid);
9: sw.getEnabledPortNumber();
}

getSwitch(dpid){
10: return this.switches.get(dpid);
}

Controller

LinkDiscoveryManager

OFSwitchManager

Controller

OFSwitchManager

switchDisconnected(){
4: this.switches.remove(dpid);
} OFSwitchManager

NIO thread
(Switch Connection)

Main Thread
(Loopper)

Race Condition !

SWITCH_JOIN

SWITCH_LEAVE

Event
dispatching

Event
dispatching

NPE

Figure 1: A harmful race condition in Floodlight v1.1.

tions are common due to a massive number of network
events on the shared network states. To meet the perfor-
mance requirement, the event handlers in the SDN con-
troller may run in parallel, which allows race conditions
on the shared network states. By design, all such race
conditions should be benign since they are protected by
mutual exclusion synchronizations and do not break the
consistency of the network states. However, in practice,
many of these race conditions become harmful races be-
cause it is difficult for the SDN developers to avoid logic
flaws such as the one in Figure 1.

The key insight of State Manipulation Attack is that
we can leverage the existence of such harmful race con-
ditions in SDN controllers to trigger inconsistent net-
work states. Nevertheless, a successful attack requires
tackling two challenging problems:

• First, how to locate such harmful race conditions in
the SDN controller source code?

• Second, how to trigger the harmful race conditions
by an external attacker who has no control of the
controller schedule?

For the first problem, the key challenges are that it is
generally unknown if a race condition is harmful or not,
and that detecting race conditions in a program is gen-
erally undecidable. Although many data race detectors
have been developed for different domains [18, 32, 22,
19, 31, 36], there is no existing tool to detect race con-
ditions in the SDN controllers. We note that race condi-
tions are different from data races but are a more general
phenomenon; while data races concern whether accesses
to shared variables are properly synchronized or not, race
conditions concern about the memory effect of high-level
races, regardless of synchronizations. For example, a

data race detector cannot find the race condition in Fig-
ure 1 because the accesses to the switches variable are all
protected by synchronization. Moreover, in SDN con-
trollers there are many domain-specific happens-before
rules. These rules must be properly modeled in a race
detector; otherwise, a large number of false alarms will
be reported. Therefore, conventional data race detectors
are inadequate to find race conditions in SDN controllers.

To address this problem, we develop a technique
called adversarial state racing to detect harmful race
conditions in the SDN control plane. Our key observa-
tion is that harmful race conditions are commonly rooted
by two conflicting operations upon shared network states
that are not commutative, i.e., mutating the scheduling
order of them leads to a different state though the two op-
erations can be well-synchronized (e.g., by using locks).
Because there is no pre-defined order between the two
conflicting operations, we can hence actively control the
scheduler (e.g., by inserting delays) to run an adversar-
ial schedule, which forces one operation to execute after
another. If we observe an erroneous state (e.g., an ex-
ception or a crash) in the adversarial schedule, we have
found a harmful race condition.

For the second problem, the key challenge is that a
harmful race condition occurs very rarely in normal oper-
ations, but relies on a combination of a certain input and
an unexpected thread schedule to manifest. As the adver-
sary typically has no control of the machine or operating
system running the SDN controllers, even if a harmful
race condition is known, it is difficult for an adversary to
create the input and schedule combination to trigger the
harmful race condition.

Nevertheless, we show that an adversary can remotely
exploit many harmful race conditions with a high success
ratio by injecting the “right” external events into the SDN
network. Because SDN controllers define an event han-
dler to process each network event, a correlation between
external network events and their corresponding event
handlers can be established by analyzing the controller
source code. By further mapping the event handlers to
their operations, we can correlate the conflicting opera-
tions in a harmful race condition to their corresponding
network events. An adversary can then generate many
sequences of these network events repeatedly to increase
the chance of hitting a right schedule to trigger the harm-
ful race condition.

We have designed and implemented a framework
called CONGUARD for exploiting concurrency vulnera-
bilities in the SDN control plane, and we have evaluated
it on three mainstream open-source SDN controllers –
Floodlight, ONOS, and OpenDaylight, with 34 applica-
tions in total. CONGUARD found 15 previously unknown
harmful race conditions in these SDN controllers. We
show that these harmful race conditions can incur serious
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reliability issues and remote attacks to the whole SDN
network. Some attacks can be mounted by compromised
hosts/virtual machines within the network, and some of
them are possible if the SDN network uses in-band con-
trol messages1 even when those messages are protected
by SSL/TLS.

We highlight our key contributions as follows:

• We present a new attack on SDN networks by ex-
ploiting the harmful race conditions in the SDN
control plane, which can be triggered by asyn-
chronous network events in unexpected schedules.

• We design CONGUARD, a novel framework to pin-
point and exploit harmful race conditions in SDN
controllers. We present a causality model that cap-
tures the domain-specific happens-before rules of
SDN, which significantly increases the precision of
race detection in the SDN control plane.

• We present an extensive evaluation of CONGUARD
on three mainstream SDN controllers. CONGUARD
has uncovered 15 previously unknown vulnerabil-
ities that can result in both security and reliability
issues. All these vulnerabilities were confirmed by
the developers. By the time of writing, we have al-
ready assisted the developers to patch 12 of them.

The rest of the paper is organized as follows: Section 2
introduces background. Section 3 discusses the state ma-
nipulation attack. Section 4 and Section 5 describe the
design and implementation of our CONGUARD frame-
work. Section 6 evaluates CONGUARD. Section 7 dis-
cusses defense mechanisms to mitigate this kind of at-
tacks. Section 8 discusses limitations of our approach
and future work. Section 9 reviews related work and Sec-
tion 10 concludes this paper.

2 Background

In this section, we introduce the necessary background of
SDN in order to understand the harmful race conditions
in this domain.

The heart of SDN is a logically centralized control
plane (i.e., SDN controllers) that is separated from the
data plane (i.e., SDN switches). The programmable
SDN controllers allow the network administrators to per-
form holistic management tasks, e.g., load-balancing,
network visualization, and access control. OpenFlow [6]
is the dominant communication protocol between the

1There are two deployment options for SDN/OpenFlow networks,
i.e., out-of-band option and in-band option. The out-of-band option
requires a separated physical network for control traffic. In contrast,
the in-band option allows OpenFlow switches also forward the SDN
control traffic, which is a more convenient and cost-efficient way for
large area networks [6, 13].

User App 1Service Apps

SDN Control Plane

Event
Provider

Storage

Event
Handlers

Storage

Event
Handlers

Storage

Event
Handlers

……

User App N

Service
Functions

SDN Data Plane

Network EventsAdmin Events
(e.g. REST Reqs)

Network Events

Figure 2: The abstraction model of the SDN control
plane .

SDN control plane and the data plane. In this paper, we
may use SDN and OpenFlow interchangeably.

The SDN control plane embraces a concurrent modu-
lar model. As shown in Figure 2, the SDN control plane
embeds various modules (also known as applications) to
enforce various network management policies, e.g., traf-
fic engineering, virtualization, and access control. An
SDN application manages a set of network states and
provides service functions for other applications to ref-
erence the managed network states. For example, an ac-
cess control application can install access control rules to
all activated switches by querying the switch state from a
switch manager application in the SDN controller. Also,
each application operates in an event-driven fashion that
implements handlers to process its corresponding events.
It will update its managed network states when it receives
corresponding network events.

Also, some applications, namely service applications,
in the SDN control plane paraphrase external network
events (i.e., OpenFlow messages) to its own internal net-
work events and dispatch them to other applications’
event handlers. For example, when a switch manager
application recognizes that a new OpenFlow-enabled
switch2 has joined the network, it issues a SWITCH_JOIN
event to all corresponding handlers for policy enforce-
ment. In addition, a network administrator can configure
the SDN controller via REST APIs, which we call ad-
ministrative events in the paper.

Table 1 shows several network-related events and ad-
ministrative events in the SDN control plane. In this pa-
per, we focus on these network events because they are

2Without specific description, all term “switch” in this paper refer
to OpenFlow-enabled switch.
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Table 1: Common network events in SDN controllers.

Entity Events
HOST JOIN, LEAVE
SWITCH JOIN, LEAVE

Network PORT UP, DOWN
LINK UP, DOWN
OFP PACKET_IN, OFP_PORT_STATUS, etc

Admin REST HOST_CONFIG, CREATE_VIP, etc

commonly supported in all SDN controllers and they can
be purposely generated by remote adversaries to exploit
the race condition vulnerabilities.

We also note that certain events form implicit causal
relationships. For example, a SWITCH_LEAVE event
can implicitly trigger corresponding LINK_DOWN and
HOST_LEAVE events. These implicit causal relationships
must be captured to reason about race conditions in the
SDN control plane. We present a comprehensive model
of such causal relationships in Section 4.1.1.

3 State Manipulation Attacks

In this section, we present state manipulation attacks in
SDN networks by exploiting harmful race conditions.
We first present the threat model and explain how an ex-
ternal adversary can generate various network events in
an SDN network. We then discuss two vulnerabilities
related to harmful race conditions that we discovered in
existing SDN controllers, and we show how an attacker
can exploit them to steal privacy information and disrupt
important services of SDN networks. We will discuss
more vulnerabilities found in our experiments in Section
6.

3.1 Threat Model

We consider two scenarios: non-adversarial and adver-
sarial. In a non-adversarial case, a harmful race condition
in the SDN control plane can happen rarely under nor-
mal network operation by asynchronous events as listed
in Table 1.

In contrast, in an adversarial case, the adversary could
identify the harmful race conditions in the SDN con-
troller source code and externally trigger them by con-
trolling compromised hosts or virtual machines (e.g., via
malware infection) with the system privilege to control
network interfaces.

We do not assume that the adversary can compromise
SDN controllers or switches, and we do not assume the
adversary can compromise SDN applications or proto-
cols. That is, we consider operating systems of SDN con-
trollers and switches are well protected from the adver-
sary, and the control channels between SDN controllers

and SDN switches, as well as administrative manage-
ment channels between administrators and SDN con-
trollers, e.g., REST APIs, can be properly protected by
SSL/TLS, which is particularly important when the SDN
network is configured to use in-band control messages.
As we discuss in Section 6.5, some of our attacks are
possible even when the network is configured to use out-
of-band control messages. For those attacks that assume
in-band control messages, we assume control messages
are properly protected by SSL/TLS.

3.2 Adversarial Event Generation

Host-related events (HOST_JOIN, HOST_LEAVE, and
OFP_PACKET_IN) can be easily generated by an attacker
from a compromised host or virtual machine without any
knowledge about the switch. More specifically, to gen-
erate HOST_JOIN and HOST_LEAVE events, the attacker
can simply enable/disable the network interface linked
to a switch. The attacker can also send out crafted pack-
ets with randomized IP and MAC addresses to force a
table miss in the switch’s flow table3, which can trig-
ger OFP_PACKET_IN events. Switch port events (i.e.,
PORT_UP and PORT_DOWN) can also be indirectly gener-
ated by network interface manipulation (up and down)
from a connected compromised host by using interface
configuration tools, e.g., ifconfig.

In addition, an attacker can generate switch-dedicated
events (i.e., SWITCH_JOIN and SWITCH_LEAVE) atop
an in-band deployment of SDN networks. Even con-
trol messages are well protected by SSL/TLS, the at-
tacker could still find important communication informa-
tion (e.g., TCP header fields and types of control mes-
sages) between an SDN controller and switches by uti-
lizing legacy techniques such as TCP/IP header analy-
sis, size-based classification (given fixed size of control
messages), etc. Then, the attacker may launch TCP ses-
sion reset attacks [49] or drop control messages to dis-
rupt the connection to generate SWITCH_LEAVE, thereby
incurring SWITCH_JOIN subsequently. For example, as
shown in Figure 3, we can use TCP reset to generate a
SWITCH_LEAVE event in the Floodlight controller.

19:51:05.691 ERROR [n.f.c.i.OFChannelHandler:New I/O worker #11] Disconnecting switch
[00:00:00:00:00:00:00:01 from 192.168.1.102:59537] due to IO Error: Connection reset by peer
19:51:05.692 WARN [n.f.c.i.C.s.notification:main] Switch 00:00:00:00:00:00:00:01 disconnected.
19:51:05.692 INFO [n.f.c.i.OFChannelHandler:New I/O worker #11] [[00:00:00:00:00:00:00:01 from
192.168.1.102:59537]] Disconnected connection

Figure 3: SWITCH_LEAVE event generated by TCP
Resets.

3An OpenFlow switch reports all packets to the SDN control plane
if those packets do not hit its existing flow rule table.
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3.3 Attack Cases

Here, we discuss two attack cases exploiting harmful
race conditions we detected in the LoadBalancer appli-
cation of the Floodlight controller and DHCPRelay ap-
plication of the ONOS controller.

Internet 1

2

3 4

Server Replica
(10.0.0.4)

Client
(10.0.0.1)

Switch 2Switch 1 Switch 3

5

SWITCH
LEAVE

Floodlight
(LoadBalancer)

Control Plane

Data Plane

Figure 4: Attacking the Floodlight LoadBalancer.

3.3.1 Stealing Privacy Information

Figure 4 shows the workflow of the Floodlight LoadBal-
ancer application. 1© A client sends out a service re-
quest packet with the virtual IP address (10.10.10.10) of
server. 2© Switch 1 issues an OFP_PACKET_IN event to
Floodlight controller to report a table-miss packet. 3©
The OFP_PACKET_IN handler selects a service replica
(10.0.0.4) to process the request and installs inbound
flow rules in each switch along the route from the client
to the replica. In addition, for routing and privacy pur-
poses, an extra flow rule is installed into switch 1 to
convert the destination IP address of packets from vir-
tual IP address (10.10.10.10) to physical IP address of
the replica (10.0.0.4). 4© The OFP_PACKET_IN handler
also installs outbound flow rules from the service replica
to the client and restores the virtual IP address on Switch
1 (i.e., from 10.0.0.4 to 10.10.10.10). 5© As a result,
the client can successfully communicate with the server
replica.

We found a harmful race condition in this application,
i.e., a concurrent SWITCH_LEAVE event from any switch
along the routing path can trigger an internal exception
of the Floodlight controller and further violate the policy
enforcement from step 3© to step 4©. If that happens,
no source IP address conversion rule (from 10.10.10.10
to 10.0.0.4) will be installed in switch 1. As a result, the
sensitive physical IP address information is disclosed to

the client which sent requests to the public service. We
detail more about the exploitation of such vulnerability
in Section 6.6.

DHCP ServerONOS Controller
(DHCPRelay)

Attacker

Discovery
Discovery

Response

HOST_LEAVE

Request
Request

Offer

…

HOST_LEAVE

Tim
e

Figure 5: Attacking the ONOS DHCPRelay application.

3.3.2 Disrupting Packet Processing Service

In order to provide a DHCP service in different sub-
nets, the DHCPRelay application in the ONOS controller
relays DHCP messages between DHCP clients and the
DHCP server. However, due to a harmful race condi-
tion, a conflicting HOST_LEAVE event can manipulate the
internal state of the host, which may result in an un-
expected exception and further disrupt the packet pro-
cessing service when the DHCPRelay application relays
DHCP response/offer messages to the sender, as illus-
trated in Figure 5. The root cause of this vulnerability lies
in that the host state variable referenced by DHCPRelay
application can be nullified by a HOST_LEAVE event. We
detail more about such attack in Section 6.6.

4 CONGUARD Overview

In this section, we present our framework, CONGUARD,
for detecting and exploiting the race condition vulnera-
bilities in SDN controllers. CONGUARD contains two
main phases: (i) locating harmful race conditions in the
controller source code by utilizing dynamic analysis and
adversarial state racing, (ii) triggering harmful race con-
ditions in the running SDN controller by remotely inject-
ing right external network events with the proper timing.

4.1 Pinpointing Harmful Race Conditions
To locate harmful race conditions, our basic idea is to
use dynamic analysis to first detect a superset of poten-
tially harmful race conditions, and then use adversarial
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state racing to manifest those real harmful ones. More
specifically, given a target SDN controller, we first ana-
lyze its dynamic behavior (by generating network events
as inputs to it and then tracing the execution) to de-
tect race conditions consisting of two race operations
on a shared network state. These two operations may
or may not have a common lock protecting them, but
there should not be any predefined order causality be-
tween them. Then, for each pair of such operations, we
re-run the SDN controller but force it to follow an erro-
neous schedule to check if a race condition is harmful or
not.

In this step, there are two major challenges:

• First, how to avoid reporting a myriad of race warn-
ings that are in fact false alarms? Lack of accurate
modeling of the SDN semantics can significantly
impede the precision of race detection. For exam-
ple, in Figure 1, without reasoning the causality or-
der between line 3 and line 5 for the internal event
dispatching, the state update operation at line 1 and
state reference at line 10 will be reported as a false
positive.

• Second, how to manifest and verify harmful race
conditions? Witnessing/reproducing concurrency
errors is infamously difficult since they may be non-
deterministic that only occur in rare scenarios with
the special input and schedule. For example, the
vulnerability in Figure 1 is triggered when the write
operation on the state variable switches (e.g., trig-
gered by the SWITCH_JOIN event) occurs before the
read operation of the state variable (e.g., caused by
the SWITCH_JOIN event). In addition, the runtime
context of the two state operations must be consis-
tent, e.g., the value of dpid at lines 4 and 10 must be
equal.

To address the first challenge, we develop an execution
model of the SDN control plane that formulates happens-
before semantics in the SDN domain, which can help
us greatly reduce false positives. For the second chal-
lenge, we develop an adversarial testing approach with
a context-aware and deterministic scheduling technique,
called Active Scheduling, to verify and manifest harmful
race conditions.

4.1.1 Modeling the SDN Control Plane

Generally, an execution of an SDN controller corre-
sponds to a sequence of operations performed by threads
on a collection of state objects. For detecting races, we
would like to develop a model such that it captures all the
critical operations inside the SDN control plane (as an
execution trace) and their causality relationships in any

execution of the SDN controller (as happens-before re-
lations). Different from general multi-thread programs,
there are a number of distinct types of operations and
domain-specific causality rules in the SDN control plane.

Execution Trace: First, we model an execution of the
SDN control plane as a sequence of operations as listed
following:

• read(T,V): reads variable V in thread T.
• write(T,V): writes variable V in thread T.
• init(A): initializes the functions of application A in

the SDN control plane.
• terminate(A): terminates the functions of applica-

tion A in the SDN control plane.
• dispatch(E): issues event E.
• receive(H,E): receives event E by event handler H.
• schedule(TA): instantiates a singleton task TA.
• end(TA): terminates a singleton task TA.

Happens-Before Causality: In this paper, we utilize
happens-before relations [28] to model the concurrency
semantics of the SDN controller. A happens-before re-
lation is a transitively closed binary relation to represent
order causality between two operations, as denoted by
≺ in this paper. That is, α ≺ β means operation α hap-
pens before operation β . Moreover, we utilize α <τ β

to denote that operation α occurs before operation β

in an execution trace τ . As illustrated in Figure 6, we
list happens-before relations we derive in the SDN con-
text by studying implementations of SDN controllers and
OpenFlow switch specification [5]. For simplicity, we do
not list those happens-before rules widely used in tradi-
tional thread-based programs, e.g., program order rules
and fork/join rules. Instead, we elaborate some happens-
before rules mostly unique to the SDN control plane as
listed in Figure 6, which we intend to expand over time.

Application Life Cycle. We define two happens-
before rules to model the life cycle of an SDN applica-
tion. First, an application must be initialized before it
can handle any network event; second, all event handling
operations in an application must happen before the de-
activation of the application.

Event Dispatching. For each network event (as
shown in Table 1), we consider dispatching of the event
must happen before the receipt of the event in various
event handlers.

Sequential Event Handling. Moreover, most SDN
controllers (e.g., OpenDaylight, ONOS, Floodlight, Pox,
Ryu, etc.) handle network events sequentially, i.e., at
any time an event can only be processed in a single event
handler. Hence, we deduce that the receipt of a specific
event for different handler functions should follow their
orders in the observed execution trace.

Switch Event Dispatching. Before issuing
SWITCH_JOIN event, the SDN control plane must
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Application Life Cycle
α ∈ init(A) β .app id = A.app id

α ≺ β
α.app id = A.app id β ∈ terminate(A)

α ≺ β
Event Dispatching

α ∈ dispatch(E) β ∈ receive(H,E)
α ≺ β

Sequential Event Handling
α = receive(H1,E) β = receive(H2,E) α <τ β

α ≺ β
Switch Event Dispatching

α = receive(H,E1) β = dispatch(E2)
E1.type = OFP_FEATURES_REPLY E2.type = SWITCH_JOIN

E1.switch id = E2.switch id
α ≺ β

Port Event Dispatching
α = (H,E1) β = dispatch(E2)

E1.type = OFP_PORT_STATUS E2.type = PORT_UP
E1.port id = E2.port id E1.reason = OFPPR_ADD

α ≺ β
α = (H,E1) β = dispatch(E2)

E1.type = OFP_PORT_STATUS E2.type = PORT_DOWN
E1.port id = E2.port id E1.reason = OFPPR_DELETE

α ≺ β
Explicit Link Down and Host Leave

α = (H,E1) β = dispatch(E2) E1.port id = E2.port id
E1.type = PORT_DOWN E1.type = {LINK_DOWN,HOST_LEAVE}

E1.port id = E2.port id
α ≺ β

α = (H,E1) β = dispatch(E2) E1.switch id = E2.switch id
E1.type = SWITCH_LEAVE E1.type = {LINK_DOWN,HOST_LEAVE}

α ≺ β
Singleton Task

α = end(TA) β = schedule(TA) α <τ β
α ≺ β

Figure 6: Happens-before rules in the SDN control
plane.

receive an OFP_FEATURES_REPLY event that includes
important information of the joining switch, e.g.,
Datapath ID.

Port Event Dispatching. The SDN control plane
monitors OFP_PORT_STATUS OpenFlow messages to de-
tect the addition and deletion of switch ports in the data
plane. Consequently, the corresponding PortManager
application dispatches PORT_UP or PORT_DOWN events to
inform other applications.

Implicit Host Leave or Link Down. In the SDN con-
trol plane, we also monitor implicit causalities between
events, i.e., a PORT_DOWN or SWITCH_LEAVE event may
implicitly indicate a HOST_LEAVE or LINK_DOWN event.

Singleton Task. We note that a specific singleton task
can only be instantiated once at a time. In order to avoid
non-determinism of thread scheduling (especially in a
thread pool), we define one happens-before relation to
model the causality order that the last completion of a
specific singleton task happens before the next schedule
of the task.

4.1.2 Detecting Race State Operations

Our algorithm for detecting race state operations upon
shared network state variables is based on the happens-
before rules constructed in the previous section. Given an
observed execution trace τ of an SDN controller, we con-
struct happens-before relations ≺ between each pair of
operations listed in the execution model in Section 4.1.1.
For each pair of memory access operations, i.e., (α,β ),
on the same state variable, we report (α,β ) as a race
state operation, if it meets two conditions: 1) either α or
β updates the state variable; 2) α 6≺ β and β 6≺ α .

Taking the raw execution trace as input, we first con-
duct an effective preprocessing step to filter out redun-
dant operations in the trace. Specifically, we remove
those operations on thread-local or immutable data, since
we only need to reason about conflicting operations on
shared state variables. We also perform a duplication
checking to prune duplicated write and read operations.
In SDN, an event handler can repeatedly process iden-
tical network events, which produces a large number of
duplicated events in the trace. Removing such redundant
events significantly improves the efficiency of race con-
dition detection.

We note that standard vector-clock based tech-
niques [19] for computing happens-before relation is dif-
ficult to scale to the SDN domain, which typically con-
tains a large number of network events and threads. In-
stead, we develop a graph-based algorithm [24, 31] that
constructs a directed acyclic graph (DAG) from the pre-
processed trace to detect commutative races. In the DAG,
nodes denote operations, and edges denote happens-
before relations between them. The rationale is that the
problem of checking happens-before can be converted to
a graph reachability problem. To facilitate race detection,
we group operations by their accessed state variable. We
can then pinpoint race operations by checking if there
is a path between each pair of conflicting nodes in the
DAG. Specifically, if a write node and a read node are
from the same group, and there is no path between them,
we report they are race operations.

4.1.3 Adversarial State Racing

Verifying a potentially harmful race condition is a chal-
lenging problem because it can only be triggered in a
specific execution branch of the SDN controller under a
certain schedule of operations. An intuitive approach is
to instrument control logic to force an erroneous execu-
tion order, e.g., the state update executes before the state
reference. However, we find such strawman approach
introduces non-determinism due to two reasons. First,
SDN applications may reference the same network state
variable in different program branches. Second, incon-
sistent input parameters of the library methods upon a
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state variable may impede the verification, e.g., schedul-
ing switches.remove(sw1) before switches.get(sw2) will
not lead to a harmful race condition. To address the
first problem, we propose to explore all possible program
branches to the reference operation upon the state vari-
able and verify all of them at runtime deterministically.
To address the second problem, we check the consistency
of parameters for library methods upon the same state
variable.

Thread a Thread b

Operation 1
(State Reference)

Operation 2
(State Update)

P1 P2

P4P3

pause

WP 1 WP 2 WP N

Branch 1 Branch 2 Branch N

……
SDN

Controller

Figure 7: Active Scheduling to force a state update to
execute before a state reference (WP denotes waypoint).

Active Scheduling. Taking a potentially harmful race
condition as input, our active scheduling technique re-
executes the program to force two operations (like oper-
ations in line 4 and line 10 in Figure 1) to follow a spe-
cific erroneous order, as shown in Figure 7. To force the
deterministic schedule in a certain control branch (and
external triggers), we put an exclusive waypoint (a check
point in the code) to differentiate it with other branches.
In addition to utilizing the waypoint to ensure execution
context, we also add four atomic control points (P1, P2,
P3, and P4) and one flag (F1) to enforce the deterministic
scheduling between the state reference operation and the
state update operation with consistent runtime informa-
tion.

More specifically, we place P1 ahead of Operation 1,
P2 ahead of Operation 2, P3 after Operation 1 and P4
after Operation 2. The active scheduling works as fol-
lows: In P1, if the corresponding waypoint is marked
(which means the branch under test is covered), we
pause Thread a by using a blocking method and save the
runtime parameter value if necessary (e.g., the dpid of
switches.getSwitch(dpid) in Figure 1). When Thread b
enters P2, we set flag F1 if two conditions are satisfied:
(1) Thread a is blocked; (2) the runtime value for Oper-
ation 2 is equal to runtime value of Operation 1. In P4,
we unblock Thread a if flag F1 is set.

4.2 Remotely Triggering Harmful Race
Conditions

To launch the attack, an adversary, who has no control
of the SDN controller except sending external network
events, first needs to figure out what external events to
trigger a harmful race condition. For example, in Fig-
ure 1, a SWITCH_JOIN event can trigger a reference on
the switch state and SWITCH_LEAVE event can trigger an
update on the switch state. In addition, the attacker needs
to trigger a “bad” schedule that can expose the harmful
race condition. For example, a schedule in which the up-
date on the switch state happens before the dereference.

4.2.1 Trigger Correlation

Since SDN controllers define different handler functions
to process various network events, we first statically an-
alyze the program to extract a map from external events
to their corresponding handler functions. Then, for each
operation in a potentially harmful race condition, we
backtrack the control flow graph from the operation to
correlate the operation with the external event. In par-
ticular, we consider that a trigger event is correlated to
a state reference operation and an update event is cor-
related to a state update operation. Moreover, we re-
solve potential contextual relations between trigger event
and state update event by inspecting input parameters
of state operations. For example, to exploit the vul-
nerability in Figure 1, the dpid of the update event
SWITCH_LEAVE should be consistent with that of the trig-
ger event SWITCH_JOIN.

4.2.2 Exploitation

In general, hitting a specific schedule that manifests
harmful races is difficult because the space of all pos-
sible schedules is huge. Nevertheless, in SDN networks,
an attacker can explore several effective ways to increase
the chance of hitting an erroneous schedule.

First, we come up with a basic attack strategy, i.e., an
attacker can repeat a proper sequence of crafted events
(including ordered <trigger event, update event>). The
trigger events will push the SDN controller to reference
the state while the update events will modify the state.
Hence, there are two resulting scenarios: 1) if the update
event can update the network state before the reference
happens, the exploitation succeeds; 2) if the update event
falls behind the reference operation, a harmful race con-
dition will not be triggered. In addition to injecting or-
dered attack event sequences, an attacker can probe the
signals from SDN controllers to infer the attack results
which can also benefit next-round exploitations. For ex-
ample, in Figure 1, if the update event is late, we can
observe the SDN controller send out LLDP packets to all
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enabled ports of the activated switch. The attacker can
hence tune the timing interval between trigger event and
update event to enhance the exploitability. Several other
kinds of feedback information such as responses from
service IP address and DHCP response/offer messages
can also be utilized by the attacker to increase the suc-
cess rate of the exploitations. We present more examples
later in Table 5.

Moreover, an attacker can tactically increase the prob-
ability of success by selecting a larger vulnerable win-
dow [51] for a specific exploitation. The vulnerable win-
dow is the timing window that a concurrency vulnerabil-
ity may occur. For some vulnerabilities, we found that
their vulnerable windows are subject to network con-
ditions, e.g., the size of network topology or network
round-trip latency. For example, as the harmful race
condition in Figure 5, the attacker can launch the attack
when the network delay is high. In such a case, an at-
tacker can first utilize a probe testing to pick up an ad-
vantageous condition to launch the attack.

5 Implementation

We have implemented CONGUARD and tested it on three
mainstream SDN controllers, including Floodlight [1],
ONOS [3] and OpenDaylight [4].
Input Generation: To inject network events, we intro-
duce an SDN control plane specific input generator in
our framework. We utilize Mininet 2.2 [7], an SDN net-
work simulator, to mock an SDN testbed. Mininet can
generate all the network events as shown in Table 1. In
addition, we create test scripts to send REST requests as
another source of inputs to the SDN controller.
Instrumentation: We use the ASM [9] bytecode rewrit-
ing framework to instrument and analyze SDN con-
trollers at the Java bytecode level. For each event in
the execution trace, we assign a global incremental num-
ber as its identifier, a location ID to store its source
code context (i.e., class name and line number), and a
thread ID. At runtime, the execution traces and contex-
tual metadata are stored in a database (H2 [2]). Since
we focus on locating harmful race conditions in the SDN
controller source code, we exclude external packages in
third-party libraries from the instrumentation. In addi-
tion, to improve performance, we only instrument those
network state variables with reference data types and ex-
clude primitive types (e.g., int, bool) because typically
only reference types are involved in harmful race condi-
tions.

We log memory accesses (e.g., putfield and getfield)
upon objects and class fields as well as their values as
metadata. We note that the SDN control plane em-
braces heterogeneous storages for network state includ-
ing third party libraries such as java.util.HashMap. Fail-

ing to resolve those storage methods (e.g., remove() and
get()) would lead to missing of potential vulnerabilities.
Hence, we map those library method invocation oper-
ations as write or read operations upon the state ob-
ject. For example, we consider switches.remove(dpid) is
a write operation on switches.

We locate two kinds of event dispatching manners in
SDN controllers, i.e., queue-based and observer-based.
For queue-based rules, we record write and read opera-
tions upon global event queues as dispatch and receive
operations. In contrast, for observer-based scheme, we
log the invocations of event handler functions with the
context of application name as receive operations upon
the event.

We track schedule and end task operations by monitor-
ing the life-cycle of run() method for singleton tasks. We
log application life-cycle operations (i.e., init and termi-
nate) by monitoring application-related callback meth-
ods (as listed in Table 2) with the identifier of the name
of the class.

Table 2: Initialization and destroy methods of SDN
controllers.

Controller Init Methods Destroy Methods
Floodlight init(), startup() –

ONOS activate() deactivate()
OpenDaylight init() destroy()

Active Scheduling: We implement active scheduling as
a service module in the SDN controller that provides
functions such as atomic control points (i.e., P1-P4) and
waypoints. In order to cover all potential branches to
trigger the bug, we statically generate the call graph of
the tested controller. For each race state operations, we
backtrack all paths (i.e., sequences of calling methods)
to reach the state reference operation. For each path, we
choose the method as the waypoint if it is: (1) nearest
to the use operation in the call graph and (2) not listed
in any other path. Taking the location of race state op-
erations and all its corresponding waypoints as input, we
instrument the SDN controller to invoke methods of the
active scheduling service module.

6 Evaluation

In this section, we present our evaluation results of
CONGUARD on the three mainstream open-source SDN
controllers with 34 applications as listed in Table 7 in
Appendix A. We hosted all the tested SDN controllers on
a machine running GNU/Linux Ubuntu 14.04 LTS with
dual-core 3.00 GHz CPU and 8 GB memory.
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Table 3: Overall race detection results. ( #RT: the size of raw traces before preprocessing; #OT: the size of optimized
traces; RE: reduction ratio by preprocessing; OTATime: the total time for offline trace analysis; #Races: the number

of detected race conditions; #RSVs: the number of Race State Variables)

1 2 3 4 5 6 7 8
SDN Controller Trace Processing Race Detection Results

Name Version #RT #OT RE OTATime #Races #RSVs
Floodlight 1.1 234,517 8,063 96.6% 43s 153 22

1.2 410,128 52,271 87.2% 101s 184 35
OpenDaylight 0.1.7 47,855 3,752 92.1% 5s 221 26

ONOS 1.2 69,214 1,292 98.1% 5s 13 5

6.1 Detection Results

Table 3 summarizes our race detection results in Flood-
light 1.1 and 1.2, ONOS 1.2 and OpenDaylight 0.1.7. In
total, our tool found 153 race conditions on 22 network
state variables in Floodlight 1.1, 184 race conditions on
35 variables in Floodlight 1.2, 221 race conditions on 26
variables in OpenDaylight, and 13 race conditions on 5
variables in ONOS. The numbers of detected race op-
erations and network state variables in ONOS are much
smaller than those of the other two controllers, because
ONOS uses a centralized data storage to manage the net-
work states. In addition, our results show that our offline
trace analysis is highly effective and efficient. The pre-
processing step reduces the size of traces (by removing
redundant events) by more than 87%. For all the three
controllers, the offline analysis was able to finish in less
than two minutes.

To evaluate the effectiveness of the SDN domain-
specific happens-before rules, we compared the fol-
lowing two configurations on running race detection
of CONGUARD with Floodlight version 1.1: (1) en-
forces only thread-based happens-before rules; (2) en-
forces both thread-based and SDN-specific rules. Our
results show that adopting SDN-specific happens-before
rules reduces 105 reported race conditions in total (153
vs 258). We manually inspected all those race condi-
tion warnings filtered by SDN-specific rules and found
that all of them are false positives. We expect that
the happens-before rules formulated in this work greatly
complement existing thread-based rules for conducting
more precise concurrency defect detection in SDN con-
trollers.

6.2 Comparing With Existing Techniques

To evaluate the effectiveness of our approach for iden-
tifying harmful race conditions, we also compared
CONGUARD with an SDN-specific race detector, SD-
NRacer [18], and a state-of-the-art general dynamic race
detector, RV-Predict (version 1.7) [22].

Comparing with SDNRacer. SDNRacer is a dy-
namic race detector that also locates concurrency vio-

lations in SDN networks. Because SDNRacer can also
work on the Floodlight controller, we directly compared
their results with ours. In a single-switch topology,
SDNRacer reported 2, 281 data races. However, we
find that none of those data races are relevant to our
detected harmful race conditions. The reason lies in
that SDNRacer only models memory operations in SDN
switches but ignores internal state operations in SDN
controllers. In this sense, we consider our new detection
solution is orthogonal and complementary to SDNRacer.

Comparing with RV-Predict. RV-Predict is the
state-of-the-art general-purpose data race detector that
achieves maximal detection capability based on a pro-
gram trace but does not consider harmful race conditions,
and does not have SDN-specific causality rules. We eval-
uated RV-Predict as a Java agent for Floodlight v1.1 with
our implemented network event generator and REST test
scripts. We found that RV-Predict reported a total of 29
data races. However, none of them was harmful and none
of them was related to harmful race conditions4. The rea-
son is that all those harmful race conditions are caused
by well-synchronized operations in Java concurrent li-
braries, which are not data races.

6.3 CONGUARD Runtime Performance
We evaluated the runtime performance of CONGUARD
for trace collection using Cbench [8], an SDN controller
performance benchmark. We use Cbench to generate
a sequence of OFP_PACKET_IN events and test the de-
lay. To remove network latency, we locate Cbench in
the same physical machine with SDN controllers and
range testbed from 2 switches to 16 switches. Our results
show that CONGUARD incurs about 30X, 10X and 8X
latency overhead for Floodlight, ONOS and OpenDay-
light, respectively. The network functionalities can work
properly and the instrumentation does not affect the col-
lection of execution traces. The performance overhead
mainly comes from instrumentation sites that frequently
write event traces into the database. Although apparently

4 We manually backtracked the call graph information for every data
race reported by RV-Predict and checked if it could lead to harmful race
conditions.
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8X-30X latency is not small, we note that our tool is for
offline bug/vulnerability finding purpose in the develop-
ment and testing phase instead of online use in the actual
operation phase. Thus, the overhead is acceptable as long
as the tool can effectively find true bugs/vulnerabilities.

10:30:58.430 ERROR [n.f.c.i.Controller:main] Exception in controller updates loop
java.lang.NullPointerException: null
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.generateLLDPMessage(L
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.sendDiscoveryMessage(
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.discover(LinkDiscoveryM
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.processNewPort(LinkDis
at net.floodlightcontroller.linkdiscovery.internal.LinkDiscoveryManager.switchActivated(LinkDisc
at net.floodlightcontroller.core.internal.OFSwitchManager$SwitchUpdate.dispatch(OFSwitchMa

Figure 8: A harmful race condition causes the
Floodlight controller out of service.

22:33:28.298 ERROR [n.f.c.i.OFChannelHandler:New I/O worker #12]
Error while processing message from switch [00:00:00:00:00:00:00:01 from 192.168.1.102:5281
state net.floodlightcontroller.core.internal.OFChannelHandler$CompleteState@32250656
java.lang.NullPointerException: null
at net.floodlightcontroller.loadbalancer.LoadBalancer.processPacketIn(LoadBalancer.java:234) ~
…
at java.lang.Thread.run(Thread.java:745) [na:1.7.0_79]22:33:28.299
WARN [n.f.c.i.C.s.notification:main] Switch 00:00:00:00:00:00:00:01 disconnected.

Figure 9: A harmful race condition in Floodlight causes
disconnection of a switch.

Error while processing message from switch org.onosproject.driver.handshaker.DefaultSwitchHandshaker
[/192.168.1.102:42140 DPID[00:00:00:00:00:00:00:01]]state ACTIVE
java.lang.NullPointerException
….

at org.onosproject.segmentrouting.ArpHandler.processPacketIn(ArpHandler.java:84)
….
Switch disconnected callback for sw:org.onosproject.driver.handshaker.DefaultSwitchHandshaker
[/192.168.1.102:42140 DPID[00:00:00:00:00:00:00:01]]. Cleaning up ...
org.onosproject.driver.handshaker.DefaultSwitchHandshaker [/192.168.1.102:42140
DPID[00:00:00:00:00:00:00:01]]: removal called
Device of:0000000000000001 disconnected from this node

Figure 10: A harmful race condition in ONOS causes
disconnection of a switch.

6.4 Impact Analysis of the Detected Vul-
nerabilities

By utilizing adversarial testing, we identified 15 concur-
rency bugs/vulnerabilities caused by harmful race condi-
tions including 10, 2, 3 in Floodlight, ONOS and Open-
Daylight, respectively. Furthermore, we conduct an im-
pact analysis for those vulnerabilities, as shown in Ta-
ble 4. We note that a single harmful race condition can
have multiple impacts depending on different program
branches/schedules and contexts.

Impact #1: System Crash. In Floodlight, we found 4
serious crash bugs, in which three of them (Bug-1, Bug-
2 and Bug-3) are in the LinkDiscoveryManager applica-
tion and one of them (Bug-4) is in DHCPSwitchServer

application. We manifested such vulnerabilities by ac-
tive scheduling (as shown in Figure 8) and found that the
main thread of Floodlight controller was unexpectedly
terminated.

Impact #2: Switch Connection Disruption. We
found 7 bugs (Bug-5, Bug-6, Bug-7, Bug-8, Bug-9,
Bug-11 and Bug-12) that could cause the SDN controller
to actively close the connection to an online switch. Fig-
ure 9 and Figure 10 show stack traces reproducing this
issue in Floodlight and ONOS controllers. The connec-
tion disruption is a serious issue in SDN domain since:
(1) by default, the victim switch may downgrade to tradi-
tional Non-OpenFlow enabled switch and then traffic can
go through it without controller’s inspection; (2) an SDN
controller may send instructions to clear the flow table of
the victim switch when the controller recognizes a con-
nection attempt from the switch5. As a result, security-
related rules may also be purged.

Impact #3: Service Disruption. We also found sev-
eral bugs that could interrupt the enforcement of services
inside the SDN control plane, which may lead to serious
logic bugs that hazard the whole SDN network.

In Floodlight, we found 3 bugs (Bug-1, Bug-2, and
Bug-3) in the LinkDiscoveryManager application that
can violate the operation of link discovery procedure.
Moreover, we found 1 bug (Bug-10) in the Statistics
application that disrupts the processing of REST re-
quests. In addition, we located 5 such bugs in the
OFP_PACKET_IN handler of LoadBalancer application.
Bug-5 and Bug-6 could cause a logic flaw that leaks
the physical IP address of the public server’s replica.
Bug-7, Bug-8 and Bug-9 could disrupt the handling of
OFP_PACKET_IN events.

In ONOS, we found two such bugs (Bug-11 and Bug-
12). The bug Bug-11 is in the SegmentRouting ap-
plication that can disable the proxy ARP service and
lead to the temporary block of end-to-end communica-
tion on a specific host. Similarly, the bug Bug-12 is in
the DHCPRelay application that will disable the DHCP
relay service to send out DHCP reply to its clients.

In OpenDaylight, we found two such bugs. One (Bug-
13) is in the HostTracker application, which could deny
the REST API requests for creating a static host for a
known host. The other (Bug-15) could affect the func-
tionality of a Web UI application.

Impact #4: Service Chain Interference. We found
several bugs that could violate the network visibility
among various applications and could block applica-
tions from receiving their subscribed network events. In
Floodlight, we found 5 such bugs (Bug-5, Bug-6, Bug-7,
Bug-8 and Bug-9) in the LoadBalancer application that

5This is an optional feature specified in OpenFlow protocol to pre-
vent residual flow rule problem. However, we find that this feature
could be enabled in most of SDN controllers.
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Table 4: Summary of harmful race conditions uncovered by CONGUARD. Impact #1: System Crash; Impact #2:
Connection Disruption; Impact #3: Service Disruption; Impact #4: Service Chain Interference.

Controller Application Bug# Correlated Attack Event Pairs Impact Vector
<trigger event, update event> #1 #2 #3 #4

Link 1∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>   
Discovery 2∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>   
Manager 3∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>   

Flood- DHCPServer 4∗ <SWITCH_JOIN, SWITCH_LEAVE>, <PORT_UP, SWITCH_LEAVE>  
light 5∗ <OFP_PACKET_IN, SWITCH_LEAVE>    

6∗ <OFP_PACKET_IN, SWITCH_LEAVE>    
Load 7†

<OFP_PACKET_IN, REST_REQUEST>    
Balancer 8†

<OFP_PACKET_IN, REST_REQUEST>    
9†

<OFP_PACKET_IN, REST_REQUEST>   
Statistics 10†

<REST_REQUEST, SWITCH_LEAVE>  

ONOS SegmentRouting 11 <OFP_PACKET_IN, HOST_LEAVE>    
DHCPRelay 12 <OFP_PACKET_IN, HOST_LEAVE>    

OpenDay- Host 13†
<REST_REQUEST, HOST_LEAVE>  

light Tracker 14 <HOST_JOIN, HOST_LEAVE>  
Web UI 15†∗

<REST_REQUEST, SWITCH_LEAVE>  
∗ exploitable if the network is configured with in-band control, or if the adversary has access to the out-of-band network
† exploitable if the adversary can send authenticated administrative events (REST APIs) to the controller

could break the service chain for OFP_PACKET_IN event
handlers. Similarly, we found 1 bug (Bug-14) in Open-
Daylight, i.e., a concurrent HOST_LEAVE event can break
the host event handling chain.

6.5 Remote Exploitation Analysis
We consider all of the detected harmful race conditions
can be triggered non-deterministically in normal oper-
ations of an SDN/OpenFlow network. In addition, we
study the adversarial exploitations of those harmful race
conditions by a remote attacker as discussed in Sec-
tion 3.1. We first investigate their external triggers, i.e.,
the trigger event and update event pair, as shown in
Table 4. For 15 harmful race conditions we detected,
we found 9 of them can be exploited by external net-
work events. An attacker with the control of compro-
mised hosts/virtual machines in SDN networks can eas-
ily trigger three harmful race conditions (i.e., Bug-11,
Bug-12 and Bug-14 ) by generating OFP_PACKET_IN,
HOST_JOIN, HOST_LEAVE, PORT_UP, and PORT_DOWN.
Moreover, the attacker can remotely exploit 6 more
harmful race conditions (i.e., Bug-1, Bug-2, Bug-3,
Bug-4, Bug-5 and Bug-6) by utilizing SWITCH_JOIN

and SWITCH_LEAVE events when the SDN network uti-
lizes in-band control messages. For the rest 6 harm-
ful race conditions (i.e., Bug-7, Bug-8, Bug-9, Bug-10,
Bug-13, and Bug-15), we found that they correlate with
REST API requests which are administrative events and
might be protected by TLS/SSL. We consider the ex-

ploitation of those 6 harmful race conditions is out of
scope of the paper since we do not assume an attacker
can generate authenticated administrative events in the
paper. Also, we found that there might have multiple
triggers for a specific harmful race condition since SDN
applications may reference the same network state vari-
able in order to react upon various network events.

Moreover, based on results from Table 4, we evaluate
the feasibility of an external attacker to exploit harmful
race conditions. In particular, we utilize Mininet to inject
ordered attack event sequences with a proper timing and
test how many trials an external attacker needs to trig-
ger a harmful race condition. Table 6 shows the average
number of injected event sequences from 5 successful ex-
ploitations for an attacker to exploit a harmful race con-
dition in an SDN controller6. Consequently, we found
an attacker can exploit 7 out of 9 harmful race conditions
within only hundreds of attempts.

Furthermore, Table 5 lists some feedback information
that an attacker can use to infer the result of exploita-
tions. For Bug-1, Bug-2, Bug-3, and Bug-4, the attacker
can infer the failure of exploitation by monitoring LLDP
packets from the SDN controller to the active ports of
the activated switch. For Bug-5 and Bug-6, the attacker
can notice the unsuccessful exploitations by receiving re-

6Note that since some attack event sequence may trigger multiple
harmful race condition (e.g., <SWITCH_LEAVE, SWITCH_JOIN> can
trigger Bug-1, Bug-2, Bug-3, and Bug-4), we only record the first bug
exploitation because an exploitation of harmful race condition may dis-
rupt the operation of the SDN controller.
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sponses from the virtual IP address of the public service.
For Bug-12, as long as the attacker receives a DHCP re-
sponse/offer message, he/she can infer that the exploita-
tion fails. More importantly, the indicative information
is useful for the attacker to tune their exploitations such
as to minimize the timing interval between trigger event
and update event.

In addition to injecting ordered attack events and tun-
ing the timing between attack events, we also found that,
the vulnerable windows of 7 harmful race conditions
(i.e., Bug-1, Bug-2, Bug-3, Bug-4, Bug-5, Bug-6, and
Bug-12) can be enlarged in some conditions. In par-
ticular, the vulnerable windows of Bug-1 and Bug-4 in-
clude the dispatch of all previous updates of Floodlight
controller as shown in Figure 1, where the more unpro-
cessed network events (e.g., SWITCH_JOIN, PORT_UP,
and PORT_DOWN) and the more event handler functions
of SDN applications can enlarge the window. The vul-
nerable windows of Bug-2 and Bug-3 are linearly corre-
lated with the numbers of active ports of the switch. The
vulnerable windows of Bug-5 and Bug-6 are relevant to
the number of switches in the route between the com-
promised host and the target server in Figure 4. Lastly,
as discussed in Section 3.3.2, the vulnerable window of
Bug-12 is subject to round-trip delay between ONOS
controller and the DHCP server. An attacker could uti-
lize them to increase the success rate of exploitation.

Table 5: Feedback information for the exploitations of
harmful race conditions.

Bug # Indications of Failed Exploitation

1,2,3,4 receipt of LLDP packets
5,6 receipt of responses from the service IP address
12 receipt of DHCP response/offer messages

Table 6: Remote exploitation result.

Bug # Attack Case Trials (average)

1 (SWITCH_JOIN,SWITCH_LEAVE) 10.6
2 (SWITCH_JOIN,SWITCH_LEAVE) 78.4
3 (SWITCH_JOIN,SWITCH_LEAVE) 120
4 (SWITCH_JOIN,SWITCH_LEAVE) 10
5 (OFP_PACKET_IN,SWITCH_LEAVE) 67.6
6 (OFP_PACKET_IN,SWITCH_LEAVE) 106.8

11 (OFP_PACKET_IN,HOST_LEAVE) -
12 (OPP_PACKET_IN,HOST_LEAVE) 1
14 (HOST_LEAVE,HOST_JOIN) -

6.6 Case Studies
Here we detail two state manipulation attack examples as
briefly introduced in Section 3.3.

Sniffing Physical IP Address of Service Replica.
In order to exploit the harmful race condition remotely,

we set up an experiment as shown in Figure 4 in
Mininet [7]. To launch the attack, we periodically in-
jected OFP_PACKET_IN and SWITCH_LEAVE events. In
particular, we updated the source IP address of a host and
sent out ICMP echo requests (with the destination IP ad-
dress of the public service 10.10.10.10) into the network
to trigger the OFP_PACKET_IN messages. We also re-
set the TCP session between switch 2 and the Floodlight
controller to generate SWITCH_LEAVE. As long as ob-
serving an ICMP echo reply whose source IP address is
the physical replica (10.0.0.4), we consider the exploita-
tion succeeds. Consequently, we successfully sniffed the
physical IP address of the service replica after injecting
tens of SWITCH_LEAVE events, as shown in Figure 11 be-
low.

Figure 11: Privacy leakage in Floodlight LoadBalancer.

Disrupting Packet Processing Service. We set up
an attack experiment in Mininet (with 500ms delay link
between the DHCP server and its connected switch),
where we injected ordered attack event sequences, i.e.,
<OFP_PACKET_IN, HOST_LEAVE>. In detail, we con-
trolled a host to send out a DHCP request (to generate
OFP_PACKET_IN) and turn off the network interface (to
inject a HOST_LEAVE event) immediately after the trans-
mission of the DHCP request. As a result, the harmful
race condition is triggered by injecting an attack event
sequence, which actually disrupts the packet processing
service (as shown in Figure 12) to dispatch the incoming
packets to OFP_PACKET_IN event handlers of SDN con-
troller/applications. The exploitation possibility of such
harmful race condition is comparatively high for a re-
mote attacker since its vulnerable window is subject to
round-trip delay between the ONOS controller and the
DHCP server. In this case, a tactical attacker can even
pick up a network congestion timing to increase the suc-
cess ratio of the exploitation.
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WARN | ew I/O worker #2 | PacketManager | 76 org.onosproject.onos core net 1.7.2.SNAPSHOT | Packet
processor org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor
@6018f73a threw an exceptionjava.lang.NullPointerException
at org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor.sendReply(DhcpRelay.java:391)
[172:org.onosproject.onos app dhcprelay:1.7.2.SNAPSHOT]
at org.onosproject.dhcprelay.DhcpRelay$DhcpRelayPacketProcessor.processDhcpPacket(DhcpRelay.java:333)
[172:org.onosproject.onos app dhcprelay:1.7.2.SNAPSHOT]

Figure 12: Service disruption in ONOS DHCPRelay.

7 Defense Schemes

In this section, we discuss some possible defense tech-
niques that developers or network administrators can use
to mitigate this type of attacks.

Safety Check. To defend against the attack, one way
is to remove those harmful race conditions once detected.
The root cause of harmful race conditions is the concur-
rency violations inside the SDN controller/applications
that may render inconsistency during state transition. For
example, a concurrent SWITCH_LEAVE event modifying
the state of a switch may incur some logic flaw in the
handler of SWITCH_JOIN event for the switch. In this
paper, we mitigate the exploitation of harmful race con-
ditions by adding extra state checks in the SDN con-
troller/applications to ensure the state is unchanged at
the referenced location. By adding such safety checks,
we have assisted the developers of SDN controllers to
patch 12 harmful race conditions. Our future work will
investigate how to automate this procedure.

Deterministic Execution Runtime. Another defense
solution is to guarantee the deterministic execution of
state operations in the SDN control plane at runtime.
However, such a solution is difficult to correctly imple-
ment due to the undecidable order of two race opera-
tions. Even though we successfully resolve the orders
between race operations, it inevitably undermines the
parallelism of event processing, which further affects the
overall performance of SDN controllers for a large-scale
network environment. Designing a deterministic execu-
tion runtime system to mitigate concurrency errors in the
SDN control plane with minor performance overhead is
a meaningful future research direction.

Sanitizing External Events. One important factor of
successful exploitation of harmful race conditions lies in
that an attacker can intentionally inject various control
plane messages (e.g., HOST_LEAVE, SWITCH_LEAVE) to
modify the internal state inside the SDN control plane.
In this sense, adopting an anomaly detection system to
sanitize suspicious state update events could impede the
exploitation of harmful race conditions. For example,
an anomaly detection system may block some host to
join SDN networks if its connection status is flipping
frequently in a short time. Designing such anomaly de-
tection with low false positives/negatives is worth future

investigation.

8 Limitations and Discussion

Testing Coverage. As a common drawback of dy-
namic analysis techniques [10], the race detection part
of CONGUARD cannot cover all execution paths. Thus,
CONGUARD may not cover all harmful race conditions
due to its dynamic nature. Instead, it focuses on locat-
ing the vulnerabilities more accurately given an execu-
tion trace. Also, our SDN-specific input generator is de-
signed to cover essential and remote-attacker-accessible
SDN events as much as possible to pinpoint concurrency
vulnerabilities in the SDN control plane. To increase the
code coverage, in our future work, we plan to comple-
ment CONGUARD with other coverage-based techniques
such as symbolic execution [47, 42].

Supporting More Controllers and Other Event-
driven Systems. The current implementations of
CONGUARD are targeting Java-based mainstream SDN
controllers such as Floodlight, ONOS and Opendaylight,
which are widely adopted in both academia and indus-
try. In fact, our technical principles and approaches are
generic because the design of CONGUARD is based on
the abstracted semantics of the SDN control plane. In
that sense, we can easily port CONGUARD to other SDN
controllers. We consider this work as a starting point for
the security research on the concurrency issues inside the
SDN control plane. In the future, we plan to extend our
platform to other SDN controllers.

In addition to the SDN control plane and its applica-
tions, we note that harmful race conditions may occur in
other multi-threaded event-driven systems, such as Web
and Android applications. At high level, our approach is
generic to those systems because our basic principle is to
locate harmful race conditions from commutative races.
In order to adapt our approach to other systems, one
needs to feed CONGUARD with precise domain-specific
models (like happens-before rules discussed in Section
4.1.1) and proper design of Active Scheduling.

Misuses of SDN Control Plane Northbound Inter-
faces (NBIs). An application may provide service func-
tions to other applications for referencing its managed
state (e.g., Switch Manager application provides switch
state by the service function getSwitch()). If the state
variable is subject to race state operations, an SDN ap-
plication may misuse service functions (which are also
known as NBIs) to reference network state variables
from other applications. In this work, we have studied
the concurrency violations introduced by specific mis-
uses of those NBIs. However, verification and sanitiza-
tion of more generalized uses of SDN control plane NBIs
are still challenging issues. We plan to study these prob-
lems in future work.
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9 Related Work

TOCTTOU vulnerabilities and attacks. One infamous
category of concurrency vulnerabilities is TOCTTOU
(Time of Check to Time of Use) vulnerabilities widely
identified in file systems, which allow attackers to violate
access control checks due to non-atomicity between the
check and the use on the system resources [46, 14, 12]. In
this paper, we study harmful race conditions in SDN net-
works, i.e., harmful race conditions upon shared network
state variables triggered by external network events. In
contrast to TOCTTOU vulnerabilities, a harmful race
condition detected in this paper is a more general type
of concurrency errors which does not necessarily include
a check operation upon race state variables.

Race Detectors. To date, researchers have developed
numerous race detectors for general thread-based pro-
grams [39, 19, 22] and domain-specific programs in web
and Android [21, 31, 36, 33]. However, these existing de-
tectors do not work well for harmful race conditions dis-
cussed in this paper because (1) harmful race condition
vulnerabilities are not necessary data races as discussed
earlier (in many cases they are not), (2) these detectors
lack SDN concurrency semantics.

In the SDN domain, SDNRacer [32, 18] proposes
to detect concurrency violations in the data plane of
SDN networks while treating the SDN control plane as a
blackbox. SDNRacer utilizes happens-before relations to
model SDN data plane and commutative specification to
locate data plane commutative violations. Attendre [45]
extends OpenFlow protocol to mitigate three kinds of
data plane race conditions to facilitate packet forwarding
and model checking. However, SDNRacer and Atten-
dre are exclusively effective in the SDN data plane and
fail to solve concurrency flaws in the SDN control plane,
which has different semantics. In this sense, our work
is complementary to those work in effectively locating
unknown concurrency flaws in the SDN control plane.

Active Testing Techniques. Our active scheduling
technique is inspired by the schools of active testing tech-
niques for software testing [41, 23], which actively con-
trol thread schedules to expose certain concurrency bugs
such as data races and deadlocks. Differently, our tech-
nique is specialized for the SDN controllers.

Verification and Debugging Research in SDN.
Anteater [30] presents a static analysis approach to de-
bug SDN data plane by translating network invariant ver-
ification to the boolean satisfiability problem. NICE [15]
complements model checking with symbolic execution
to locate operation bugs inside SDN controller appli-
cations. Vericon [11] develops a system to verify if
an SDN program is correct to user-specified admissible
network topologies and desired network-wide invariants.
OFRewind [40] proposes to reproduce SDN operation er-

rors by utilizing record-and-replay technique. SOFT [27]
complements symbolic execution with cross checking to
test interoperability of SDN switches. STS [50] lever-
ages delta debugging algorithm to derive minimal causal
sequence for SDN controller operation bugs, which can
facilitate network troubleshooting and root-cause anal-
ysis. Veriflow [26] proposes a shim layer between the
SDN controller and switches to check network invari-
ants. NetPlumber [25] introduces Header Space Analy-
sis to verify network-wide invariant at real-time. None of
the above verification tools are designed to precisely pin-
point concurrency flaws inside SDN control plane, which
is the focus of this work.

Security Research in SDN. Recently, there are many
studies investigating security issues in SDNs. Ropke and
Holz propose that attackers can utilize rootkit techniques
to subvert SDN controllers [38]. DELTA [29] presents a
fuzzing-based penetration testing framework to find un-
known attacks in SDN controllers. TopoGuard [20] pin-
points two new attack vectors against SDN control plane
that can poison network visibility and mislead further
network operation, as well as proposes mitigation ap-
proaches to fortify SDN control plane. In contrast to ex-
isting threats, in this paper we study a new threat to the
SDN, i.e., harmful race conditions in the SDN control
plane.

To fortify SDN networks, AvantGuard [44] and Flood-
Guard [48] propose schemes to defend against unique
Denial-of-Service attacks inside SDN networks. Fort-
NOX [35] and SE-FloodLight [34] propose several se-
curity extensions to prevent malicious applications from
violating security policies enforced in the data plane.
SPHINX [17] presents a novel model representation,
called flow-graph, to detect several network attacks
against SDN networks. Rosemary [43] and [37] propose
sandbox strategies to protect SDN control plane from
malicious applications. Although some of those work
could isolate some impacts introduced by the harmful
race conditions, such as system crash, they are not de-
signed to detect those concurrency flaws as we have il-
lustrated in this paper.

10 Conclusion

In this work, we present a new attack on SDN networks
that leverages harmful race conditions in the SDN con-
trol plane to crash SDN controllers, disrupt core services,
steal privacy information, etc. We develop a dynamic
framework including a set of novel techniques for de-
tecting and exploiting harmful race conditions. Our tool
CONGUARD has found 15 previously unknown vulner-
abilities in three mainstream SDN controllers. We hope
this work will pave a foundation for detecting concur-
rency vulnerabilities in the SDN control plane, and in

USENIX Association 26th USENIX Security Symposium    465



general will stimulate more future research to improve
SDN security.
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[47] VISSER, W., PǍSǍREANU, C. S., AND KHURSHID, S. Test
input generation with java pathfinder. In ISSTA’04 (2004).

[48] WANG, H., XU, L., AND GU, G. FloodGuard: A DoS Attack
Prevention Extension in Software-Defined Networks. In DSN’15
(2015).

[49] WEAVER, N., SOMMER, R., AND PAXSON, V. Detecting Forged
TCP Reset Packets. In NDSS’09 (2009).

[50] WU, A., D. LEVIN, S. S., AND FELDMANN, A. Troubleshoot-
ing Blackbox SDN Control Software with Minimal Causal Se-
quences. In SIGCOMM’14 (2014).

[51] YANG, J., CUI, A., STOLFO, S., AND SETHUMADHAVAN, S.
Concurrency Attacks. In USENIX Workshop on Hot Topics in
Parallelism ’12 (2012).

USENIX Association 26th USENIX Security Symposium    467



A Tested SDN Applications

Table 7: Tested SDN Applications

Controller Application Name Location

Floodlight

Switch Manager net.floodlightcontroller.core.internal
Link Manager net.floodlightcontroller.linkdiscovery
Host Manager net.floodlightcontroller.devicemanager
Topology Manager net.floodlightcontroller.topology
Forwarding net.floodlightcontroller.forwarding
LoadBalancer net.floodlightcontroller.loadbalancer
Firewall net.floodlightcontroller.firewall
DHCP Server net.floodlightcontroller.dhcpserver
AccessControlList net.floodlightcontroller.accesscontrollist
Static Route Pusher net.floodlightcontroller.staticflowentry
Statistics net.floodlightcontroller.statistics

OpenDaylight

Switch Manager org.opendaylight.controller.switchmanager
Statistics Manager org.opendaylight.controller.statisticsmanager
Topology Manager org.opendaylight.controller.topologymanager
ForwardingRulesManager org.opendaylight.controller.forwardingrulesmanager
HostTracker org.opendaylight.controller.hosttracker
ArpHandler org.opendaylight.controller.arphandler
LoadBalancerService org.opendaylight.controller.samples.loadbalancer
SimpleForwardingImpl org.opendaylight.controller.samples.simpleforwarding
Static Routing org.opendaylight.controller.forwarding.staticrouting

ONOS

OpenFlow Controller org.onosproject.openflow.controller.impl
Switch Manager org.onosproject.store.device.impl
Host Manager org.onosproject.store.host.impl
Packet Manager org.onosproject.store.packet.impl
Link Manager org.onosproject.store.link.impl
ProxyArp org.onosproject.proxyarp
ReactiveForwarding org.onosproject.fwd
HostMobility org.onosproject.mobility
SegmentRouting org.onosproject.segmentrouting
ACL org.onosproject.acl
DHCP org.onosproject.dhcp
DHCPRelay org.onosproject.dhcprelay
FaultManagement org.onosproject.faultmanagement
FlowAnalyzer org.onosproject.flowanalyzer
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Abstract
We present a new approach for detecting credential
spearphishing attacks in enterprise settings. Our method
uses features derived from an analysis of fundamental
characteristics of spearphishing attacks, combined with a
new non-parametric anomaly scoring technique for rank-
ing alerts. We evaluate our technique on a multi-year
dataset of over 370 million emails from a large enterprise
with thousands of employees. Our system successfully
detects 6 known spearphishing campaigns that succeeded
(missing one instance); an additional 9 that failed; plus
2 successful spearphishing attacks that were previously
unknown, thus demonstrating the value of our approach.
We also establish that our detector’s false positive rate is
low enough to be practical: on average, a single analyst
can investigate an entire month’s worth of alerts in un-
der 15 minutes. Comparing our anomaly scoring method
against standard anomaly detection techniques, we find
that standard techniques using the same features would
need to generate at least 9 times as many alerts as our
method to detect the same number of attacks.

1 Introduction
Over the past several years, a litany of high-profile
breaches has highlighted the growing prevalence and po-
tency of spearphishing attacks. Leveraging these attacks,
adversaries have successfully compromised a wide range
of government systems (e.g., the US State Department
and the White House [1]), prominent companies (e.g.,
Google and RSA [3]), and recently, political figures and
organizations (e.g., John Podesta and the DNC [21]).

Unlike exploits that target technical vulnerabilities in
software and protocols, spearphishing is a type of social
engineering attack where the attacker sends a targeted,
deceptive email that tricks the recipient into performing
some kind of dangerous action for the adversary. From
an attacker’s perspective, spearphishing requires little
technical sophistication, does not rely upon any specific
vulnerability, eludes technical defenses, and often suc-
ceeds. From a defender’s perspective, spearphishing is
difficult to counter due to email’s susceptibility to spoof-
ing and because attackers thoughtfully handcraft their at-
tack emails to appear legitimate. For these reasons, there

are currently no generally effective tools for detecting or
preventing spearphishing, making it the predominant at-
tack for breaching valuable targets [17].

Spearphishing attacks take several forms. One of the
most well-known involves an email that tries to fool the
recipient into opening a malicious attachment. However,
in our work, which draws upon several years worth of
data from the Lawrence Berkeley National Lab (LBNL),
a large national lab supported by the US Department of
Energy, none of the successful spearphishing attacks in-
volved a malicious attachment. Instead, the predominant
form of spearphishing that LBNL encounters is creden-
tial spearphishing, where a malicious email convinces
the recipient to click on a link and then enter their creden-
tials on the resulting webpage. For an attachment-driven
spearphish to succeed against a site like LBNL, which
aggressively scans emails for malware, maintains fre-
quently updated machines, and has a team of several full-
time security staff members, an attacker will often need
to resort to an expensive zero-day exploit. In contrast,
credential spearphishing has an incredibly low barrier to
entry: an attacker only needs to host a website and craft a
deceptive email for the attack to succeed. Moreover, with
widespread usage of remote desktops, VPN applications,
and cloud-based email providers, stolen credentials often
provide attackers with rich information and capabilities.
Thus, although other forms of spearphishing constitute
an important threat, credential spearphishing poses a ma-
jor and unsolved threat in-and-of itself.

Our work presents a new approach for detecting cre-
dential spearphishing attacks in enterprise settings. This
domain proves highly challenging due to base-rate is-
sues. For example, our enterprise dataset contains
370 million emails, but fewer than 10 known instances
of spearphishing. Consequently, many natural methods
fail, because their false positive rates are too high: even
a false positive rate as low as 0.1% would lead to 370,000
false alarms. Additionally, with such a small number of
known spearphishing instances, standard machine learn-
ing approaches seem unlikely to succeed: the training set
is too small and the class imbalance too extreme.

To overcome these challenges, we introduce two key
contributions. First, we present an analysis of character-
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istics that we argue are fundamental to spearphishing at-
tacks; from this analysis, we derive a set of features that
target the different stages of a successful spearphishing
attack. Second, we introduce a simple, new anomaly
detection technique (called DAS) that requires no la-
beled training data and operates in a non-parametric fash-
ion. Our technique allows its user to easily incorporate
domain knowledge about their problem space into the
anomaly scores DAS assigns to events. As such, in our
setting, DAS can achieve an order-of-magnitude better
performance than standard anomaly detection techniques
that use the same features. Combining these two ideas to-
gether, we present the design of a real-time detector for
credential spearphishing attacks.

Working with the security team at LBNL, we eval-
uated our detector on nearly 4 years worth of email
data (about 370 million emails), as well as associated
HTTP logs. On this large-scale, real-world dataset, our
detector generates an average of under 10 alerts per day;
and on average, an analyst can process a month’s worth
of these alerts in 15 minutes. Assessing our detector’s
true positive accuracy, we find that it not only detects
all but one spearphishing attack known to LBNL, but
also uncovers 2 previously undiscovered spearphishing
attacks. Ultimately, our detector’s ability to identify both
known and novel attacks, and the low volume and burden
of alerts it imposes, suggests that our approach provides
a practical path towards detecting credential spearphish-
ing attacks.

2 Attack Taxonomy and Security Model
In a spearphishing attack, the adversary sends a targeted
email designed to trick the recipient into performing a
dangerous action. Whereas regular phishing emails pri-
marily aim to make money by deceiving any arbitrary
user [18, 22], spearphishing attacks are specifically tar-
geted at users who possess some kind of privileged ac-
cess or capability that the adversary seeks. This selective
targeting and motivation delineates spearphishing (our
work’s focus) from regular phishing attacks.

2.1 Taxonomy for Spearphishing Attacks
Spearphishing spans a wide range of social-engineering
attacks. To better understand this complex prob-
lem space, we present a taxonomy that characterizes
spearphishing attacks across two dimensions. These cor-
respond to the two key stages of a successful attack.
Throughout this paper, we refer to the attacker as Mal-
lory and the victim as Alice.

2.1.1 Lure
Spearphishing attacks require Mallory to convince Alice
to perform some action described in the email. To ac-
complish this, Mallory needs to imbue her email with a

Previously Unseen Attacker
“Enterprise X IT Staff” 

<director@enterpriseY.com>

Lateral Attacker
“Alice Good”

<alice@enterpriseX.com>

Name Spoofer
“Alice Good” 

<alice@evil.com>

Address Spoofer
“Alice”

<alice@enterpriseX.com>

Real User
“Alice Good”

<alice@enterpriseX.com>

Figure 1: Examples of four different impersonation models for
a real user “Alice Good”. In the address spoofer impersonation
model, an attacker might also spoof the username to exactly
match the true user’s (e.g., by using Alice Good instead of
just Alice). Our work focuses on detecting the latter three
threat models, as discussed in Section 2.2: name spoofer, pre-
viously unseen attacker, and lateral attacker.

sense of trust or authority that convinces Alice to execute
the action. Attackers typically achieve this by sending
the email under the identity of a trusted or authoritative
entity and then including some compelling content in the
email.

Impersonation Model: Spearphishing involves imper-
sonating the identity of someone else, both to create trust
in the recipient and also to to minimize the risk of attri-
bution and punishment. There are several types of im-
personation:

1. An address spoofer uses the email address of a
trusted individual in the From field of the attack
email. The attacker may spoof the name in the
From header as well, so that the attacker’s From
header exactly matches the true user’s typical From
header.
DKIM and DMARC [2] block this impersonation
model by allowing domains to sign their sent
emails’ headers with a cryptographic signature,
which receiving servers can verify with a DNS-
based verification key. In recent years, these pro-
tocols have seen increasingly widespread adoption,
with many large email providers, such as Gmail, de-
ploying them in response to the rise of phishing at-
tacks [4].
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2. A name spoofer spoofs the name in their email’s
From header to exactly match the name of an
existing, trusted individual (e.g.,Alice Good in
Alice Good <alice@evil.com>). How-
ever, in this impersonation model, the attacker does
not forge the email address of their From header,
relying instead on the recipient to only view the
name of the sender, or on the recipient’s mail client
to show only the name of the sender. By not spoof-
ing the From email address, this impersonation
model circumvents DKIM/DMARC.

3. A previously unseen attacker selects a name and
email address to put in the From field of the
spearphishing email, where neither the name nor
the email address actually match a true user’s name
or email address (though they might be perceived
as trustworthy or similar to a real user’s identity).
For instance, Mallory might choose to spoof the
name LBNL IT Staff and the email address
<helpdesk@enterpriseY.com>.

4. A lateral attacker sends the spearphishing email
from a compromised user’s email account.

2.1.2 Exploit Payload
Once Mallory has gained Alice’s trust, she then needs to
exploit this trust by inducing Alice to perform some dan-
gerous action. Three types of exploitation are commonly
seen: (i) attachments or URLs that contain malware, (ii)
URLs leading to websites that attempt to trick Alice into
revealing her credentials, and (iii) out-of-band actions
(e.g., tricking a company’s CFO into wiring money to
a fake, malicious “corporate partner”).

2.2 Security Model

Threat Model: In this work, we specifically focus on an
enterprise credential spearphishing threat model, where
Mallory tries to fool a targeted enterprise’s user (Alice)
into revealing her credentials. We assume that the adver-
sary can send arbitrary emails to the victim and can con-
vince the recipient to click on URLs embedded in the ad-
versary’s email (leading the victim to a credential phish-
ing website). To impersonate a trusted entity, the attacker
may set any of the email header fields to arbitrary values.

In other words, we focus on attacks where Mallory’s
lure includes masquerading as a trusted entity, her pay-
load is a link to a credential phishing page, and she
chooses from any of the last three impersonation mod-
els. Because organizations can deploy DKIM/DMARC
to mitigate address spoofing (and many large email
providers have done so), we exclude address spoofing
from our work.

Security Goals: First, a detector must produce an ex-
tremely low false positive burden, ideally only 10 or so

Data Source Fields/Information per Entry
SMTP logs Timestamp

From (sender, as displayed to recipient)
RCPT TO (all recipients; from the SMTP dialog)

NIDS logs URL visited
SMTP log id for the earliest email with this URL
Earliest time this URL was visited in HTTP traffic
# prior HTTP visits to this URL
# prior HTTP visits to any URL with this hostname
Clicked hostname (fully qualified domain of this URL)
Earliest time any URL with this hostname was visited

LDAP logs Employee’s email address
Time of current login
Time of subsequent login, if any
# total logins by this employee
# employees who have logged in from current login’s city
# prior logins by this employee from current login’s city

Table 1: Schema for each entry in our data sources. All sensi-
tive information is anonymized before we receive the logs. The
NIDS logs contain one entry for each visit to a URL seen in any
email. The LDAP logs contain one entry for each login where
an employee authenticated from an IP address that he/she has
never used in prior (successful) logins.

false alarms per day that take at most minutes for an in-
cident response team to process. Second, a detector must
detect real spearphishing attacks (true positives). Given
that current methods for detecting credential spearphish-
ing often rely on users to report an attack, if our ap-
proach can detect even a moderate number of true posi-
tives or identify undiscovered attacks, while achieving a
low false positive rate, then it already serves as a major
improvement to the current state of detection and mitiga-
tion.

3 Datasets
Our work draws on the SMTP logs, NIDS logs, and
LDAP logs from LBNL; several full-time security staff
members maintain these extensive, multi-year logs, as
well as a well-documented incident database of success-
ful attacks that we draw upon for our evaluation in Sec-
tion 6. For privacy reasons, before giving us access to
the data, staff members at LBNL anonymized all data
using the procedure described in each subsection below.
Additionally, our anonymized datasets do not contain the
contents of email bodies or webpages. Table 1 shows the
relevant information in these datasets and Table 2 sum-
marizes the size and timeframe of our data.

3.1 SMTP Logs
The SMTP logs contain anonymized SMTP headers for
all inbound and outbound emails during the Mar 1, 2013
– Jan 14, 2017 time period. These logs contain informa-
tion about all emails sent to and from the organization’s
employees (including emails between two employees),
a total of 372,530,595 emails. The second row of Ta-
ble 1 shows the relevant header information we receive
for each email in these logs.
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The data was anonymized by applying a keyed hash
to each sensitive field. Consider a header such as
Alice Good <ali@company.com>. The ‘name’
of a header is the human name (Alice Good in our
example); when no human name is present, we treat the
email address as the header’s ‘name’. The ‘address’ of
a header is the email address: <ali@company.com>.
Each name and each email address is separately hashed.

3.2 NIDS Logs
LBNL has a distributed network monitor (Bro) that logs
all HTTP GET and POST requests that traverse its bor-
ders. Each log entry records information about the re-
quest, including the full URL.

Additionally, the NIDS remembers all URLs seen in
the bodies of inbound and outbound emails at LBNL.1

Each time any URL embedded in an email gets visited as
the destination of an HTTP request, the NIDS will record
information about the request, including the URL that
was visited and the entry in the SMTP logs for the email
that contained the fetched URL. The NIDS remembers
URLs for at least one month after an email’s arrival; all
HTTP visits to a URL are matched to the earliest email
that contained the URL.

We received anonymized logs of all HTTP requests,
with a keyed hash applied to each separate field. Also,
we received anonymized logs that identify each email
whose URL was clicked, and anonymized information
about the email and the URL, as shown in Table 1.

3.3 LDAP Logs
LBNL uses corporate Gmail to manage its employees’
emails.2 Each time an employee successfully logs in,
Gmail logs the user’s corporate email address, the time
when the login occurred, and the IP address from which
the user authenticated. From these LDAP logs, we
received anonymized information about login sessions
where (1) the login IP address had never been used by the
user during any previous successful login, (2) the user
had more than 25 prior logins, and (3) the login IP ad-
dress did not belong to LBNL’s network. The last row of
Table 1 shows the anonymized data in each entry of the
LDAP logs.

4 Challenge: Diversity of Benign Behavior
Prior work has used machine learning to identify
spearphishing attacks, based on suspicious content in
email headers and bodies [8,19]. While that work detects
several spearphishing attacks, their optimal false positive

1Shortened URLs are expanded to their final destination URLs.
2Email between two employees also flows through corporate

Gmail, which allows our detector to scan “internal” emails for lateral
spearphishing attacks.

Time span Mar 1, 2013– Jan 14, 2017
Total emails 372,530,595

Unique sender names 3,415,471
(names in From)
Unique sender addresses 4,791,624
(email addresses in From)

Emails with clicked URLs 2,032,921
Unique sender names 246,505
(names in From)
Unique sender addresses 227,869
(email addresses in From)
# total clicks on embedded URLs 30,011,810
Unique URLs 4,014,412
Unique hostnames 220,932

Logins from new IP address 219,027
# geolocated cities among all 7,937
new IP addresses
# of emails sent during sessions 2,225,050
where employee logged in from
new IP address

Table 2: Summary of data in the three logs. Note that some
emails contain multiple URLs, some or all of which may be
visited multiple times by multiple recipients (thus, there are
more clicked-URLs than emails that contain clicked-URLs).

rates (FPR) are 1% or higher, which is far too high for
our setting: a FPR of 1% would lead to 3.7 million false
alarms on our dataset of nearly 370 million.

In this section, we identify several issues that make
spearphishing detection a particularly difficult challenge.
Specifically, when operating on a real-world volume of
millions of emails per week, the diversity of benign be-
havior produces an untenable number of false positives
for detectors that merely look for anomalous header val-
ues.

4.1 Challenge 1: Senders with Limited
Prior History

A natural detection strategy is to compare the headers
of the current email under analysis against all histor-
ical email headers from the current email’s purported
sender. For example, consider a name spoofer who at-
tempts to spearphish one of Alice’s team members by
sending an email with a From header of Alice Good
<alice@evil.com>. An anomaly-based detector
could identify this attack by comparing the email’s From
address (<alice@evil.com>) against all From ad-
dresses in prior email with a From name of Alice
Good.

However, this approach will not detect a different
spearphishing attack where neither the name nor the
address of the From header have ever been seen be-
fore: Alice <alice@evil.com> or HR Team
<hr.enterpriseX@gmail.com>. In this previ-
ously unseen attacker setting, there is no prior history
to determine whether the From address is anomalous.
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Figure 2: Distribution of the number of emails sent per From
name. Nearly 40% of all From names appear in only one
email and over 60% of all From names appear in three or fewer
emails.

To address this gap, one might flag all emails with a
new or previously unknown From name (e.g., any email
where the From name has been seen in two or fewer
emails leads to an alert). Unfortunately, this approach
generates an overwhelming number of alerts in practice
because millions of From names are only ever seen in a
few emails. Figure 2 shows the distribution of the num-
ber of emails per From name in our dataset. In particu-
lar, we find that over 60% of From names sent three or
fewer emails and over 40% of From names sent exactly
one email. Thus, even if one ran a detector retrospec-
tively to alert on every email with a From name that had
never been seen before and did not eventually become
an active and engaged sender, it would produce over 1.1
million alerts: a false positive rate of less than 1% on
our dataset of nearly 370 million emails, but still orders
of magnitude more than our target. Even though spam
might account for a proportion of these emails with new
From names, LBNL’s security staff investigated a ran-
dom sample of these emails and found a spectrum of be-
nign behavior: event/conference invitations, mailing list
management notices, trial software advertisements, and
help support emails. Thus, a detector that only lever-
ages the traditional approach of searching for anomalies
in header values faces a stifling range of anomalous but
benign behavior.

4.2 Challenge 2: Churn in Header Values
Even if we were to give up on detecting attacks that
come from previously unseen From names or addresses,
a detector based on header anomalies still runs into yet
another spectrum of diverse, benign behavior. Namely,
header values for a sender often change for a variety of
benign reasons. To illustrate this, we consider all From
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Figure 3: Distribution of the total number of From addresses
per From name (who send over 100 emails) across all emails
sent by the From name. Over half (52%) of these From names
sent email from two or more From addresses (i.e., have at least
one new From address).

names that appear in at least 100 emails (our dataset con-
tains 125,172 of them) and assess the frequency at which
these names use a new From email address when send-
ing email.

Figure 3 shows the cumulative distribution of the to-
tal number of From email addresses per From name.
From this graph, we see that even among From names
with substantial history (sent over 100 emails), there is
considerable variability in header values: 52% of these
From names send email from more than one From email
address. We find that 1,347,744 emails contain a new
From email address which has never been used in any
of the From name’s prior emails. Generating an alert for
each of these emails would far exceed our target of 10
alerts per day.

This large number of new email addresses per From
name stems from a variety of different sources: work
vs. personal email addresses for a user, popular hu-
man names where each email address represents a
different person in real life (e.g., multiple people
named John Smith), professional society surveys,
and functionality-specific email addresses (e.g. Foo
<noreply@foo.com>, Foo <help@foo.com>,
Foo <donate@foo.com>). While it might be
tempting to leverage domain reputation or domain simi-
larity between a new From address and the From name’s
prior addresses to filter out false positives, this fails in
a number of different cases. For example, consider the
case where Alice suddenly sends email from a new
email address, whose domain is a large email hosting
provider; this could either correspond to Alice sending
email from her personal email account, or it might rep-
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resent a name spoofer using a Gmail account with a
spoofed From name.

Given the prevalence of emails with anomalous, yet
benign, header values, a practical detector clearly needs
to leverage additional signals beyond an email’s header
values. Some prior academic work has attempted to
incorporate stylometry features from an email’s body
to identify spearphishing attacks [19]; however, as dis-
cussed earlier, these systems have false positive rates
of 1% or higher, which would lead to millions of false
alarms, a prohibitively high number for practical usage.
In the following section, we present a novel approach that
leverages a different set of signals based on the underly-
ing nature of spearphishing attacks.

5 Detector Design
At a high level, our detector consists of three stages il-
lustrated in Figure 4 and described below: a feature ex-
traction stage (§ 5.1 and § 5.2), a nightly scoring stage
(§ 5.4), and a real-time alert generation stage (§ 5.5).
Conceptually, our work introduces two key ideas that en-
able our detector to detect a wide range of attacks, while
achieving a practical volume of false positives that is over
200 times lower than prior work. First, our detector ex-
tracts two sets of reputation-based features that indepen-
dently target the two key stages of a spearphishing attack
identified in our attack taxonomy. Second, we introduce
a novel, unsupervised anomaly detection technique that
enables our detector to automatically rank a set of unla-
beled events and select the most suspicious events for the
security team to review. We first discuss each of these
elements and then show how to combine them for our
real-time detector.

5.1 Features per Attack Stage
Fundamentally, spearphishing attacks aim to trick their
recipients into performing a dangerous action described
in the email. If the attacker fails to persuade the vic-
tim into taking the action, the attack fails. For credential
spearphishing, the dangerous action is clicking on a link
in an email that leads the victim to a credential phish-
ing website.3 Thus, we analyze every email that contains
a link that a user clicked on; we call this clicked link a
click-in-email event.

As discussed in our taxonomy (§ 2.1), spearphishing
attacks consist of two necessary stages: the lure stage,
where the attacker persuades the victim to trust him, and
the exploit stage, where the victim performs a dangerous

3While an adversary could attempt to spearphish an employee’s cre-
dentials by fooling them into including the credentials in an email re-
sponse, this attack variant is likely more difficult to successfully exe-
cute given employee awareness from security training and education.
Based on their multi-year incident database, LBNL has not observed
such attacks succeed in practice.

action for the attacker. This insight leads to the first core
idea in our approach: we craft two sets of features to tar-
get both of these stages of a spearphishing attack. Prior
work has often used features that capture only the lure
or the exploit; our insight is that we can do significantly
better by using both types of features.

Accordingly, we have two classes of features: domain
reputation features, and sender reputation features. In
order to steal the victim’s credentials, the attacker must
link to a site under her control. Because spearphish-
ing attacks are so tightly targeted, visits to this mali-
cious website will presumably be rare among the histor-
ical network traffic from the organization’s employees.
Therefore, for each click-in-email event, the domain rep-
utation features characterize the likelihood that an em-
ployee would visit that URL, based on its (fully quali-
fied) domain. The sender reputation features character-
ize whether the sender of that email falls under one of the
impersonation models outlined in our taxonomy. Effec-
tively, the sender reputation features capture elements of
the lure (by recognizing different types of spoofing that
the attacker might use to gain the victim’s trust), and the
domain reputation features capture characteristics of the
exploit.

Because the sender reputation features differ for each
impersonation model (§ 5.2.2), our detector actually con-
sists of three sub-detectors, one for each impersonation
model. As discussed below (§ 5.5), if any of the sub-
detectors flags an email as spearphishing, the detector
treats it as an attack and generates an alert for the se-
curity team.

5.2 Features
Each sub-detector uses a feature vector containing four
scalar values, two for domain reputation and two for
sender reputation; Appendix A contains a summary ta-
ble of these features, which we discuss below. As we
show later (§ 6), these compact feature vectors suffice to
detect a wide-range of attacks while achieving a practical
volume of false positives.

5.2.1 Domain Reputation Features
All sub-detectors use the same two features to character-
ize the reputation of a link that the user clicked on. Intu-
itively, if few employees from the enterprise have visited
URLs from the link’s domain, then we would like to treat
a visit to the email’s link as suspicious. Additionally, if
employees have never visited URLs from a domain until
very recently, then we would also like to treat visits to
the domain’s URLs as risky. Based on these two ideas,
the first feature counts the number of prior visits to any
URL with the same fully qualified domain name (FQDN)
as the clicked URL; this is a global count across all em-
ployees’ visits, from the NIDS logs. The second fea-
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Figure 4: Overview of our real-time detector, which leverages output from a nightly batch job during its real-time analysis, as
described in § 5.4 and § 5.5. As emails arrive, our detector leverages historical logs to extract and save three feature vectors (one FV
per impersonation model) for each URL in the email (§ 5.1). Using the network traffic logs, our detector logs all clicks on URLs
embedded in emails. Each night, our detector runs our anomaly scoring algorithm on the FVs from a sliding window over the
past month’s clicked URLs and stores a ComparisonSet of the month’s most suspicious FVs for each impersonation model (§ 5.4).
Observing real-time network traffic, our detector sees clicked email URLs, compares the real-time click’s feature vector for each
impersonation model against the ComparisonSet, and generates an alert for the security team if needed (§ 5.5).

ture counts the number of days between the first visit by
any employee to a URL on the clicked link’s FQDN and
the time when the clicked link’s email initially arrived at
LBNL.

We chose to characterize a clicked link’s reputation
in terms of its FQDN, rather than the full URL, be-
cause over half of the clicked URLs in our dataset had
never been visited prior to a click-in-email event. Con-
sequently, operating at the granularity of the full URL
would render the URL reputation features ineffective be-
cause the majority of URLs would have the lowest possi-
ble feature values (i.e., never been visited prior to the
email recipient). Additionally, using a coarser granu-
larity such as the URL’s registered domain name or its
effective second-level domain could allow attackers to
acquire high reputation attack URLs by hosting their
phishing webpages on popular hosting sites (e.g., at-
tacker.blogspot.com). By defining a URL’s reputation in
terms of its FQDN, we mitigate this risk.

5.2.2 Sender Reputation Features

Name Spoofer: As discussed earlier (§ 2.1.1), in this at-
tacker model Mallory masquerades as a trusted entity by
spoofing the name in the From header, but she does not
spoof the name’s true email address. Because the trusted
user that Mallory impersonates does not send email from
Mallory’s spoofed address, the spearphishing email will
have a From email address that does not match any of
the historical email addresses for its From name. There-
fore, the first sender reputation feature counts the number
of previous days where we saw an email whose From
header contains the same name and address as the email
being scored.

Also, in this attacker model, the adversary spoofs the
From name because the name corresponds to someone
known and trusted. If that name did not correspond to

someone trustworthy or authoritative, there would be no
point in spoofing it, or it would manifest itself under our
previously unseen attacker threat model. Thus, the sec-
ond sender reputation feature for a clicked email reflects
the trustworthiness of the name in its From header. We
measure the trustworthiness of a name by counting the
total number of weeks where this name sent at least one
email for every weekday of the week. Intuitively, the idea
is that From names that frequently and consistently send
emails will be perceived as familiar and trustworthy.

Previously Unseen Attacker: In this threat model
(§ 2.1.1), Mallory chooses a name and email address
that resembles a known or authoritative entity, but
where the name and email address do not exactly match
any existing entity’s values (e.g.,IT Support Team
<helpdesk@company.net>); if the name or ad-
dress did exactly match an existing entity, the attack
would instead fall under the name spoofer or address
spoofer threat model. Compared to name-spoofing at-
tacks, these attacks are more difficult to detect because
we have no prior history to compare against; indeed,
prior work does not attempt to detect attacks from this
threat model. To deal with this obstacle, we rely on an
assumption that the attacker will seek to avoid detection,
and thus the spoofed identity will be infrequently used;
each time Mallory uses the spoofed identity, she runs the
risk that the employee she’s interacting with might rec-
ognize that Mallory has forged the name or email address
and report it. Accordingly, we use two features: the num-
ber of prior days that the From name has sent email, and
the number of prior days that the From address has sent
emails.

Lateral Attacker: This sub-detector aims to catch
spearphishing emails sent from a compromised user’s ac-
counts (without using any spoofing). To detect this pow-
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erful class of attackers, we leverage the LDAP logs pro-
vided by Gmail’s corporate email services (§ 3). When
a recipient clicks on a link in an email, if the email was
sent by an employee, we check the LDAP logs to see
if the email was sent during a login session where the
sender-employee logged in using an IP address that the
sender-employee has never used before. If so, this sub-
detector computes the geolocated city of the session’s IP
address, say city C. It then extracts two features: the
number of distinct employees that have logged in from
city C, and the number of previous logins where this
sender-employee logged in from an IP address that ge-
olocated to city C.

Content-Based Features: As discussed in Section 3, for
privacy reasons we do not have access to either the bod-
ies of emails or the contents of a clicked URL’s webpage.
If desired, enterprises could augment our sender reputa-
tion features with additional features from the raw con-
tent in the email message or website (e.g., NLP features
that characterize whether the email message relates to ac-
counts/credentials/passwords or reflects particular senti-
ments such as urgency).

5.3 Limitations of Standard Detection
Techniques

Once our detector has extracted features for each click-
in-email event, it needs to decide which ones should trig-
ger an alert for the security team. We first discuss three
natural, but ultimately ineffective, approaches for deter-
mining which events to alert on. Then, in the following
subsection, we present a new technique that our detec-
tor uses to overcome the limitations of these canonical
approaches.

Manual Thresholds: The simplest approach would be
to manually select a threshold for each feature, and gen-
erate an alert if all feature values are below the thresh-
old. One might use domain knowledge of each feature
to guess a threshold for each feature dimension: e.g.,
spearphishing attacks will use URLs whose domain has
fewer than five visits or was first visited less than five
days ago. Unfortunately, this approach is inherently ar-
bitrary since we do not know the true distribution of fea-
ture values for spearphishing attacks. Thus, this ad hoc
approach can easily miss attacks, and does not provide a
selection criteria that generalizes across different enter-
prises.

Supervised Learning: A large body of literature
on attack detection, from spam classification to prior
spearphishing work, draws heavily on supervised ma-
chine learning algorithms. However, those methods are
not suitable for our setting.

To accurately classify new events, supervised learning
techniques require a labeled training dataset that reflects
the range of possible malicious and benign feature val-
ues. Unfortunately, in our context, it is difficult to as-
semble a large enough training set. Because spearphish-
ing attacks are extremely difficult to detect and occur at
a low rate, we have few malicious samples to train on.

Additionally, our setting exhibits extreme class im-
balance: because of the scarcity of data on known
spearphishing attacks, the training set will have vastly
more benign instances than malicious instances. Super-
vised techniques often need a relatively balanced dataset;
classifiers trained on highly imbalanced data often learn
to always predict the majority class (missing real at-
tacks), pathologically overfit to accidental characteris-
tics of the minority class, or generate too lax of a deci-
sion boundary and generate prohibitively high numbers
of false positives [10]. While the machine learning com-
munity has explored a number of techniques for address-
ing imbalanced training data [6, 10], such as undersam-
pling the over-represented class or synthetically generat-
ing samples for the under-represented class, these tech-
niques do not scale to imbalances on the order of millions
to one.

Standard Anomaly Detection: Alternatively, one might
consider unsupervised or semi-supervised anomaly de-
tection techniques. While a number of such tech-
niques exist, including density estimation techniques
such as Gaussian Mixture Models (GMMs) [5] and clus-
tering and distance-based techniques such as k-nearest-
neighbor (kNN) [13], these classical techniques suffer
from three limitations.

First, in a number of security settings, scalar features
often have a directionality to their values; and indeed,
all of our features have this property. For example,
the fewer visits a domain has, the more suspicious it
is; an unusually small number of visits is grounds for
suspicion, but an unusually large number is not. Stan-
dard anomaly detection techniques do not incorporate
notions of asymmetry or directionality into their compu-
tations. For example, density-based anomaly detection
techniques such as kernel density estimation (KDE) and
GMMs fit a probability distribution to the data and alert
on the lowest-probability events. Events that have sta-
tistically extreme—but benign—feature values will have
a very low probability of occurring, triggering a large
number of useless alerts.

Second, standard anomaly detection techniques often
treat an event as anomalous even if only one or a few
of the event’s features are statistically anomalous. How-
ever, in our setting, we expect that attacks will be anoma-
lous and suspicious in all feature dimensions. Conse-
quently, in our setting, classical techniques will generate
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Algorithm 1 Scoring and Alert Selection in DAS

Score(E, L):
1: for each event X in L do:
2: if E is more suspicious than X in every dimension:
3: Increment E’s score by one

AlertGen(L (a list of events), N):
1: for each event E in L do:
2: Score(E, L)
3: Sort L by each event’s score
4: return the N events from L with the highest scores

many spurious alerts for events that are only anomalous
in a few dimensions. As we show in Section 6.3, this
causes classical techniques to miss the vast majority of
spearphishing attacks in our dataset because they exhaust
their alert budget with emails that have benign feature
values in all but one dimension.

Third, classical techniques are parametric: they either
assume the data comes from a particular underlying dis-
tribution, or they contain a number of parameters that
must be correctly set by their deployer in order for the
technique to obtain acceptable performance. GMMs as-
sume the data comes from a mixture of Gaussian distri-
butions, KDE has a bandwidth parameter that requires
tuning by the deployer, and kNN needs the deployer to
select a value of k (the number of nearest neighbors/most
similar events, which the algorithm will use to compute
an event’s anomaly score). These requirements are prob-
lematic for spearphishing detection since we do not know
the true distribution of attack and benign emails, the un-
derlying distribution might not be Gaussian, and we do
not have a sound way to select the parameters.

5.4 Directed Anomaly Scoring (DAS)
Given the limitations of traditional detection techniques,
we introduce a simple and general technique for automat-
ically selecting the most suspicious events from an unla-
beled dataset. We call our technique Directed Anomaly
Scoring (DAS). At a high level, DAS ranks all events by
comparing how suspicious each event is relative to all
other events. Once all events have been ranked, DAS
simply selects the N most suspicious (highest-ranked)
events, where N is the security team’s alert budget.

Algorithm 1 shows the procedure for scoring and gen-
erating alerts with DAS. Concretely, DAS first assigns an
anomaly score for each event, E, by computing the to-
tal number of other events where E’s feature vector is at
least as suspicious as the other event in every feature di-
mension. Thus, E’s score counts how many events it is at
least as suspicious as; events with higher scores are more
suspicious than ones with lower scores. Figure 5 presents
a few visual examples of computing DAS scores. After

scoring every event, our algorithm simply sorts all events
by their scores and outputs the N highest-scoring events.

Formally, we identify each event with its feature vec-
tor E ∈ Rd . We consider event E to be at least as sus-
picious as event E ′, written E < E ′, if Ei ≤ E ′i for all
i = 1,2, . . . ,d. (For simplicity, we assume that smaller
feature values are more suspicious, in every dimension;
for dimensions where the reverse is true, we replace the
comparator≤with≥. Appendix A summarizes the com-
parators we use for each feature.) Then, the score of
event E is the cardinality of the set {E ′ : E < E ′}.

DAS is well-suited for a range of security detection
problems where attacks can be characterized by a com-
bination of numerical and boolean features, such as our
spearphishing use case. As we show in Section 6, DAS
achieves orders-of-magnitude better results than classi-
cal anomaly detection techniques because it leverages
domain knowledge about which regions of the feature
space are most suspicious; in particular, it overcomes all
three limitations of classical techniques discussed in Sec-
tion 5.3.

5.5 Real-time Detection Architecture
We now synthesize the ideas discussed in previous sub-
sections to provide an end-to-end overview of how we
leverage DAS to generate alerts (illustrated in Figure 4).
Our detector has access to the enterprise’s log data, real-
time network traffic (e.g., via a NIDS like Bro), and an
alert budget β for each sub-detector, which specifies the
daily volume of alerts that the security team deems ac-
ceptable. As each email arrives, for each URL in the
email, our detector extracts the feature vector for that
URL and saves it in a table indexed by the URL. Each
HTTP request seen by the enterprise’s NIDS is looked
up in the table. Each time the detector sees a visit to
a URL that was earlier seen in some email (a “click-
in-email event”), it adds that feature vector to a list of
events. Finally, our detector uses the DAS algorithm to
rank the events and determine which ones to alert on.

This approach would work fine for a batch algorithm
that runs the DAS algorithm once a month on the past
thirty day’s events. However, a spearphishing attack
might not be detected by this batch approach until as
much as a month after it occurs. Therefore, we now turn
to extending our approach to work in real-time.

Naively, at the end of each day we could gather the
day’s events, rank them using DAS, and alert on the
β most suspicious. However, this might miss attacks
that would have been detected by the batch algorithm,
as some days might have many benign but seemingly-
suspicious events that mask a true attack.

Instead, we use a more sophisticated algorithm that
comes closer to the batch algorithm, yet operates in real
time. Each night, our detector collects all the click-in-

USENIX Association 26th USENIX Security Symposium    477



M
O
R
E

B
E
N
I
G
N

MORE	BENIGN

6 1

1
0

3

1
1

M
O
R
E

B
E
N
I
G
N

MORE	BENIGN

D

A

3

B
C

M
O
R
E

B
E
N
I
G
N

MORE	BENIGN

1

A

B

Figure 5: Example diagrams of DAS scores for events in a 2
dimensional feature space. X-values to the right and Y-values
toward the top are more benign (thus, values toward the bottom
and left are more suspicious). Each circle represents an exam-
ple event. The number in each circle is the DAS score for the
event. For example, looking at the third diagram, the purple
event only receives a score of 1. Although the purple event has
a more suspicious feature value in the Y dimension than event
B, it is more benign in the X dimension. Thus, event B does
not cause the purple event’s score to increment.

email events for the past month and computes their as-
sociated feature vectors. For each sub-detector, we rank
these events using DAS, select the 30× β most suspi-
cious events, and save them in a set that we call the Com-
parisonSet.

In real time, when our detector observes a click-in-
email event from the NIDS, it fetches the event’s feature
vectors for each impersonation model. Our detector then
computes if any of the current click’s feature vectors are
at least as suspicious as any of the feature vectors in the
ComparisonSet for its respective impersonation model.4

If so, our detector generates an alert for the security team.
Intuitively, this approach alerts if the event would have
been selected by DAS on any day in the past month; or,
more precisely, if it is among the 30β most suspicious
events in the past month. Our evaluation (§ 6) shows
that this real-time approach can safely detect the same
attacks as the batch scoring procedure. On some days
our real-time approach might generate more alerts than
the target budget if a day has a burst of particularly sus-
picious click-in-email events; however, we show in the
next section that this occurs infrequently in practice.

6 Evaluation and Analysis
We evaluated our real-time detector on our dataset of
370 million emails from LBNL, measuring its detection
performance (true positives), the time burden (false pos-
itives) it imposes on an enterprise’s security staff, and
how it performs relative to standard anomaly detection
techniques that use the same set of features.

For each click-in-email event, we computed its repu-
tation features using log data from a sliding window over
the six months prior to the click event. To bootstrap this
process, we use the first six months of our dataset as a
burn-in period and do not generate alerts for any emails
in that period. Later (§ 7), we explore the impact of using
a smaller window of historical data to compute feature
values.

We configured our detector with a daily budget of 10
alerts per day. LBNL’s security team specified 10 alerts
per day as a very tolerable number since their team con-
sists of several analysts who routinely process a few hun-
dred alerts each day. To divide this budget among each of
our three sub-detectors, we allocated 4 alerts per day for
each of the name spoofer and previously unseen attacker
sub-detectors and 2 alerts per day for our lateral attacker
sub-detector; since lateral spearphishing requires the use
of a compromised account, we expect it to occur less of-
ten than spoofing-based spearphishing.

6.1 Detection Results: True Positives
Because spearphishing attacks occur infrequently and of-
ten go undetected, developing ground truth and measur-
ing true positives is a hard problem. For our evaluation,
we draw upon LBNL’s incident database, which contains

4This is equivalent to running DAS to score the current feature vec-
tor against the ComparisonSet and checking whether it gives the current
feature vector a score of at least 1.
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Alert Classification Name spoofer Previously unseen attacker Lateral attacker Total Count
Spearphish: known + successful attack 2 2 2 6 / 7
Spearphish: unknown + successful attack 1 1 0 2 / 2
Spearphish: failed attack 3 6 0 9 / 10
Total Spearphish Detected 6 9 2 17 / 19

Table 3: Summary of our real-time detection results for emails in our test window from Sep 1, 2013 - Jan 14, 2017 (1,232 days).
Rows represent the type/classification of an alert following analysis by security staff members at LBNL. Columns 2–4 show alerts
broken down per attacker model (§ 5.2.2). Column 5 shows the total number of spearphishing campaigns identified by our real-time
detector in the numerator and the total number of spearphishing campaigns in the denominator. Out of 19 spearphishing attacks,
our detector failed to detect 2 attacks (one that successfully stole an employee’s credentials and one that did not); both of these
missed attacks fall under the previously unseen attacker threat model, where neither the username nor the email address matched
an existing entity.

7 known successful spearphishing attacks; this includes 1
spearphishing exercise, designed by an external security
firm and conducted independently of our work, that suc-
cessfully stole employee credentials. Additionally, mem-
bers of LBNL’s security team manually investigated and
labeled 15,521 alerts. We generated these alerts from a
combination of running (1) an older version of our detec-
tor that used manually chosen thresholds instead of the
DAS algorithm; and (2) a batched version of our anomaly
scoring detector, which ran the full DAS scoring proce-
dure over the click-in-email events in our evaluation win-
dow (Sep. 2013 onward) and selected the highest scoring
alerts within the cumulative budget for that timeframe.

From this procedure, we identified a total of 19
spearphishing campaigns: 9 which succeeded in stealing
an employee’s credentials and 10 where the employee
clicked on the spearphishing link, but upon arriving at
the phishing landing page, did not enter their creden-
tials.5 We did not augment this dataset with simulated
or injected attacks (e.g., from public blogposts) because
the true distribution of feature values for spearphishing
attacks is unknown. Even for specific public examples,
without actual historical log data one can only speculate
on what the values of our reputation features should be.

To evaluate our true positive rates, we ran our real-
time detector (§ 5.5) on each attack date, with a budget
of 10 alerts per day. We then computed whether or not
the attack campaign was flagged in a real-time alert gen-
erated on those days. Table 3 summarizes our evaluation
results. Overall, our real-time detector successfully iden-
tifies 17 out of 19 spearphishing campaigns, a 89% true
positive rate.

Of these, LBNL’s incident database contained 7
known, successful spearphishing campaigns (their inci-
dent database catalogues successful attacks, but not ones
that fail). Although our detector missed one of these suc-
cessful attacks, it identified 2 previously undiscovered at-
tacks that successfully stole an employee’s credentials.
The missed attack used a now-deprecated feature from

5A campaign is identified by a unique triplet of 〈the attack URL,
email subject, and email’s From header〉.
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Figure 6: Histogram of the total number of daily alerts gener-
ated by our real-time detector (cumulative across all three sub-
detectors) on 100 randomly sampled days. The median is 7
alerts/day.

Dropbox [7] that allowed users to host static HTML
pages under one of Dropbox’s primary hostnames, which
is both outside of LBNL’s NIDS visibility because of
HTTPS and inherits Dropbox’s high reputation. This
represents a limitation of our detector: if an attacker can
successfully host the malicious phishing page on a high-
reputation site or outside of the network monitor’s vis-
ibility, then we will likely fail to detect it. However,
Dropbox and many other major file sharing sites (e.g.,
Google Drive) have dropped these website-hosting fea-
tures due to a number of security concerns, such as facil-
itating phishing. Ironically, in the specific case of Drop-
box, industry reports mention a large increase in phishing
attacks targeted against Dropbox users, where the phish-
ing attack would itself be hosted via Dropbox’s website
hosting feature, and thus appear to victims under Drop-
box’s real hostname [11]. Among the attacks that our de-
tector correctly identified, manual analysis by staff mem-
bers at LBNL indicated that our sub-detectors aptly de-
tected spearphish that fell under each of their respective
threat models (outlined in Section 2.1).
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6.2 False Positives and Burden of Alerts
At a daily budget of 10 alerts per day, our detector
achieved an average false positive rate of 0.004% (the
median number of emails per day is 263,086). How-
ever, as discussed earlier (§ 5.5), our real-time detector
is not guaranteed to produce exactly 10 alerts per day;
some days might have a burst of particularly suspicious
emails while other days might not have any unusual ac-
tivity at all. To evaluate the actual daily alert load, we ran
our real-time detector on one hundred randomly selected
days in our dataset and computed the total number of
alerts it generated on each day, shown in Figure 6. From
this histogram, we see that while our detector occasion-
ally generates bursts over our target budget, on the vast
majority of days (80%) it generates 10 or fewer alerts per
day; on nearly 20% of days, it generates no alerts.

During their manual investigation of the 15,521 alerts
created during our ground truth generation process,
LBNL’s security staff tracked how long it took them to
investigate these alerts. Surprisingly, LBNL’s security
staff reported that a single analyst could process an entire
month’s worth of alerts in under 15 minutes (and thus, on
average, under one minute to analyze one day’s worth of
alerts).

This rapid processing time arises because the analysts
were able to develop a two-pass workflow that enabled
them to quickly discard over 98% of the alerts, at a rate
of 2 seconds per alert; and then follow up with a more in-
depth analysis pass (e.g., analyzing detailed HTTP logs
and examining the full email headers) over the remain-
ing 2% of alerts, at a rate of 30 seconds per alert. The
first pass is so fast because, for the vast majority of our
detector’s alerts, an analyst could quickly tell if an email
constituted a plausible spearphishing threat by inspect-
ing the Subject line, From line, and clicked URL of
the email. For over 98% of our alerts, this trio of in-
formation indicated that the email was highly unlikely
to contain a credential spearphishing attack. For exam-
ple, emails with subjects such as “Never Lose Your Keys,
Wallet, or Purse Again!” and “ATTN: Your Stomach Is-
sues FINALLY Explained. See Video Here” are surely
not spearphishing attacks.

While the more time-intensive 2% of alerts contained
mostly false positives (i.e., not spearphishing), the an-
alysts found two interesting classes of alerts. First, in
addition to detecting spearphishing attacks, our detector
identified 41 emails from regular phishing campaigns.
The analysts distinguished between regular phishing and
spearphishing by checking whether the email and HTTP
response from the clicked URL contained content that
was specifically targeted at LBNL. Second, ironically,
our detector generated 40 alerts where the person who
clicked on the link in the email was not one of the
email’s recipients, but rather a member of LBNL’s se-

curity staff. These clicks were part of routine investiga-
tions conducted by LBNL’s security staff; for example,
in response to a user reporting a suspicious email.

6.3 Anomaly Detection Comparisons
In Section 5.4 we introduced DAS, a simple new tech-
nique for anomaly detection on unlabeled data. Now,
we evaluate the effectiveness of DAS compared to tra-
ditional unsupervised anomaly detection techniques.

We tested three common anomaly detection tech-
niques from the machine learning literature: Kernel
Density Estimation (KDE), Gaussian Mixture Models
(GMM), and k-Nearest Neighbors (kNN) [5]. To com-
pare the real-time detection performance of each of
these classical techniques against DAS’s real-time per-
formance, we ran each of these classical techniques using
the same training and evaluation procedures we used for
our real-time detector’s evaluation. Specifically, given
the date of each of the 19 attacks and its impersonation
model, we extracted the same exact feature values for
all click-in-email events that occurred within a thirty
day window ending on the attack date; the thirty day
window reflected the size of our ComparisonSet. We
then normalized these feature values and ran each of the
three classical anomaly detection techniques on this set
of click-in-email events for each attack date. For quanti-
tative comparisons, we computed (1) the number of at-
tacks that would have been detected by each classical
technique if it used the same budget that our real-time
detector used and (2) the daily budget the classical tech-
nique would need to detect all of the attacks that our
DAS-driven detector identified.

Like other machine learning methods, these classical
algorithms require the user to set various hyperparame-
ters that affect the algorithm’s performance. For our eval-
uation, we tested each classical technique under a range
of different hyperparameter values and report the results
for whichever values gave the best results (i.e., compar-
ing DAS against the best-case version of these classical
techniques).

Table 4 summarizes the results of this comparative ex-
periment. All three traditional techniques detected fewer
than 25% of the attacks found by DAS. Moreover, in or-
der for KDE (the best performing classical technique) to
detect as many attacks as DAS, it would need a daily
budget nearly an order of magnitude larger than ours.

To illustrate why standard unsupervised techniques
perform so poorly, the two plots in Figure 7 show the
sender reputation features for a random sample of 10,000
lateral attacker click-in-email events. The left plot
shows the feature values for the actual alerts our DAS
detector generated (in red), while the right plot shows
the feature values for the alerts selected by KDE using
the same budget as our detector. KDE selects a mass
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Figure 7: Both plots show the sender reputation feature values (scaled between [0, 1]) of a random sample of 10,000 lateral attacker
click-in-email events. Filled red points denote events that generated alerts within the daily budget by DAS (left-hand figure) and
KDE (right-hand figure).

Algorithm Detected Daily Budget
kNN 3/19 10

17/19 2,455
GMM 4/19 10

17/19 147
KDE 4/19 10

17/19 91
DAS (§ 5.4) 17/19 10

Table 4: Comparing classical anomaly detection techniques to
our real-time detector, on the same dataset and features. For
each of the standard anomaly detection algorithms, the first row
shows the number of attacks detected under the same daily bud-
get as ours; the second row shows what the classical technique’s
budget would need to be to detect all 17 attacks that our real-
time detector identified on a daily budget of 10 alerts per day.

of points in the upper-right corner, which illustrates one
of limitations of standard techniques discussed in Sec-
tion 5.4: they do not take into account the directionality
of feature values. Because extremely large feature val-
ues occur infrequently, KDE ranks those events as highly
anomalous, even though they correspond to benign login
sessions where the user happened to login from a new
IP address in a residential city nearby LBNL. Second,
KDE selects a group of events in the bottom-right cor-
ner, which correspond to login sessions where an em-
ployee logged in from a city that they have frequently
authenticated from in the past, but where few other em-
ployees have logged in from. KDE’s selection of these
benign logins illustrates another limitation of standard
techniques: they often select events that are anomalous in
just one dimension, without taking into account our do-
main knowledge that an attack will be anomalous in all

dimensions. Even though the bottom-right corner repre-
sents employee logins where few other employees have
logged in from the same city, they are not suspicious, be-
cause that employee has previously logged in many times
from that location: they correspond to benign logins by
remote employees who live and work from cities far from
LBNL’s main campus. Thus, DAS can significantly out-
perform standard unsupervised anomaly detection tech-
niques because it allows us to incorporate domain knowl-
edge of the features into DAS’s decision making.

7 Discussion and Limitations

Detection systems operate in adversarial environments.
While we have shown our approach can detect both
known and previously undiscovered spearphishing at-
tacks, there are limitations and evasion strategies that ad-
versaries might pursue.

Limited Visibility: Our detection strategy hinges on
identifying if an email’s recipient engaged in a po-
tentially dangerous action. In the case of credential
spearphishing, LBNL’s network traffic logs allowed us
to infer this behavior. However, our approach has two
limitations: first, email and network activity conducted
outside of LBNL’s network borders will not get recorded
in the NIDS logs. Second, LBNL made a conscious
decision not to man-in-the-middle traffic served over
HTTPS; thus, we will miss attacks where the email links
to an HTTPS website. Both of these are typical chal-
lenges that network-level monitoring faces in practice.
One strategy for alleviating this problem would be to use
endpoint monitoring agents on employee machines. Al-
ternatively, a detector could leverage SNI [23] to develop

USENIX Association 26th USENIX Security Symposium    481



its domain reputation for HTTPS and identify when users
visit potentially dangerous HTTPS domains.

In addition to limited network visibility, our detector
might miss attacks if a spearphishing email came from a
compromised personal email account. Since our detector
relies on access to a user’s prior login information to de-
tect lateral spearphishing attacks, it will not have the nec-
essary data to compute the features for this sub-detector.
To defend against this genre of lateral spearphishing,
one could leverage alternative sender reputation features,
such as ones based on stylometry [8, 19].

False Negatives and Evasion Strategies: Our detector
attempts to meet an upper-bound on the number of alerts
it generates. As a result, it might miss some attacks if
a number of successful spearphishing campaigns occur
on a given day; in effect, the clicks on URLs from the
campaigns earlier in the day will mask campaigns that
occur later on. To overcome this problem, the security
staff could increase the detector’s alert budget on days
with many attack alerts.

Aside from trying to mask one attack campaign with
another, an adversary could attempt to escape detection
by crafting an email whose domain or sender reputation
features are high. An attacker could boost her link’s do-
main reputation by compromising a frequently visited
website and using it to host the credential spearphish-
ing website. This strategy incurs greater costs to exe-
cute than modern-day attacks (where an adversary can
simply setup her own cheap phishing webpage), and it
is unclear whether such an attack would succeed if the
site does not normally ask for the employee’s corporate
credentials. For example, if an adversary compromises
a popular video website (e.g., netflix.com), many users
might find it unusual for that popular domain to suddenly
start asking for the user’s enterprise credentials.

Alternatively, an attacker could attempt to inflate the
sender reputation features of their adversarial email be-
fore using it in an attack. For instance, to prepare a mali-
cious email address for a name spoofing attack, an adver-
sary could start sending emails with the malicious email
address and spoofed From name for several days before
sending a spearphishing email to the targeted recipient.
However, the more frequently this address is used, the
more the adversary risks someone detecting the adver-
sary’s use of a spoofed name; thus this evasion strategy
does incur a cost and risk to the attacker.

Future work could explore methods to make DAS
more robust. In particular, rather than treating an event
E as more suspicious than another event X only if E is
more suspicious than X in every dimension, the scoring
algorithm could be changed to treat E as more suspicious
if it is more suspicious than X in at least k dimensions.

Prior History for Feature Extraction: For each click-
in-email event, our detector leveraged 6 months of prior
log data in order to compute meaningful reputation fea-
tures. LBNL stores several years worth of logs, so this
amount of prior history was easily available for our de-
tector. However, with less historical data, the quality of
our detector might degrade (e.g., in the degenerate case
with no prior history, all From names and addresses will
appear as suspicious new entities). To assess how much
history our detector needs, we re-ran our evaluation ex-
periments (§ 6.1 and § 6.2) with 3 months of history and
with 1 month of history. A 3-month historical window
sufficed to detect the same attacks as our 6-month real-
time detector, and the median number of alerts per day
remained the same (7 per day). However, a detector with
only 1 month of history failed to detect one of the attacks
and generated a median of 18 alerts per day. With just
one month of prior data, too many click-in-email events
have the smallest possible feature values; this causes our
detector to select entire batches of them because they
share the same DAS score.

Extending to Preventative Protection: One could ex-
tend our real-time detector to operate in a preventative
fashion. As emails arrived, our detector could compute
each email’s feature values and then check each URL in
the email to see whether or not it would generate an alert
if the URL were clicked at that moment. If so, we could
rewrite the email’s URL (before delivering the email to
its recipient) to point to an interstitial warning page set
up by the enterprise’s security team. Our computations
show that if we used our real-time detector with a budget
of 10 alerts/day, an employee would encounter a median
of 2 interstitial pages over the nearly 4-year time span of
our evaluation data (Appendix B). Given this low bur-
den, future work could explore how to design effective
warning mechanisms as part of a preventative defense.

8 Related Work

Recently, a number of papers have highlighted the threat
of spearphishing and explored potential defenses [8, 12,
19, 24]. Closest to our work, the systems proposed by
Stringhini et al. [19], Duman et al. [8], and Khonji et
al. [12] build behavioral models for senders based on
metadata, stylometry, and timing features. They then
classify an email as spearphishing or not by using the be-
havioral model to see whether a new email’s features dif-
fer from the sender’s historical behavioral profile. This
prior work cannot detect spearphish sent by a previously
unseen attacker since the sender has no prior history (and
thus no behavioral model to compare the attack email
against). More importantly, when they evaluate their sys-
tems on smaller datasets with simulated attacks, the best
performing detectors obtain false positive rates (FPRs)
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in the range of 1–10%. Although quite low, an FPR of
even 1% is too high for a practical enterprise settings;
our dataset contains over 250,000 emails per day, so an
FPR of 1% would lead to 2,500 alerts each day. In con-
trast, our detector can detect real-world attacks, includ-
ing those from a previously unseen attacker, with a bud-
get of 10 alerts per day.

Other work has characterized the landscape of
spearphishing attacks against individual activists and dis-
sidents [9, 15, 16, 20]. This body of work shows that
targeted attacks on individuals span a wide spectrum of
sophistication, from simple third-party tracking software
and common exploits to purchasing specialized spyware
and exploits from commercial firms. Most recently,
LeBlond et al. conducted a large-scale analysis of exploit
documents used in targeted attacks [14]. Their analysis
found that none of these malicious attachments used a
zero-day exploit, and over 95% of these documents relied
on a vulnerability that was at least one year old. While
these attacks can succeed against vulnerable activists and
individuals, such dated exploits will likely fail against an
enterprise with good security hygiene. Indeed, over the
past few years, all of the spearphishing attacks on LBNL
have been credential spearphishing.

9 Conclusion

In this work, we developed a real-time detector for iden-
tifying credential spearphishing attacks in enterprise set-
tings. Two key contributions enabled our detector to
achieve practical performance: (1) a new set of features
that targets the two fundamental stages of successful
spearphishing attacks, and (2) a new anomaly detection
technique that leverages these features to detect attacks,
without the need for any labeled training data.

We evaluated our approach on an anonymized dataset
of over 370 million emails collected from a large national
lab. At a false positive rate of less than 0.005%, our sys-
tem detected all but two attacks in our dataset and uncov-
ered two previously unknown successful attacks. Com-
pared against our anomaly scoring technique, standard
anomaly detection techniques would need to generate or-
ders of magnitude more false positives to detect the same
attacks as our algorithm. Because of our approach’s
ability to detect a wide range of attacks, including pre-
viously undiscovered attacks, and its low false positive
cost, LBNL has implemented and deployed a version of
our detector.
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A Feature Vectors and Comparators per
Sub-Detector

Name spoofer Features Comparator for DAS
Host age of clicked URL ≤
(email ts − domain’s 1st visit ts)
# visits to clicked URL’s host prior to email ts ≤
# weeks that From name has ≥
sent email on ≥ 5 days
# days that From name and From addr ≤
have appeared together in emails

Table 5: Summary of the feature vector for our name spoofer
sub-detector and the “suspiciousness” comparator we provide
to DAS for each feature.

Previously unseen attacker Features Comparator for DAS
Host age of clicked URL ≤
(email ts − domain’s 1st visit ts)
# visits to clicked URL’s host prior to email ts ≤
# days that From name has sent email ≤
# days that From addr has sent email ≤

Table 6: Summary of the feature vector for our previously un-
seen attacker sub-detector and the “suspiciousness” compara-
tor we provide to DAS for each feature.

Lateral attacker Features Comparator for DAS
Host age of clicked URL ≤
(email ts − domain’s 1st visit ts)
# visits to clicked URL’s host prior to email ts ≤
# distinct employees who have previously logged in ≤
from the same city as the session’s new IP addr
# previous logins by the current employee from ≤
the same city as the session’s new IP addr

Table 7: Summary of the feature vector for our lateral attacker
sub-detector and the “suspiciousness” comparator we provide
to DAS for each feature.

B Preventative Interstitials
In Section 7 we discussed how to extend our detec-
tor from a realtime alert system to a preventative de-
fense by rewriting suspicious URLs in emails to redi-
rect to an interstitial page. This defense can only be
practical if it does not cause employees to frequently
land on interstial’ed pages. To assess this concern, we
ran our detector on our entire evaluation dataset (Sep
1, 2013 – Jan 14, 2017) with an average daily budget
of 10 alerts, and selected the alerts that fell within our
cumulative budget for that window (i.e., selecting the
top B = 10∗NdaysInEvalWindow = 12,310 most suspicious
click-in-email events). For each recipient (RCPT TO
email address) that received the emails of those 12,310
alerts, we computed the number alerts that recipient re-
ceived over the entire evaluation time window. Figures 8
and 9 show these results in histogram and CDF form.
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Figure 8: Histogram of alerts per RCPT TO address for our
detector using an average budget of 10 alerts per day across the
Sep 1, 2013 – Jan 14, 2017 timeframe.
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Figure 9: CDF of alerts per RCPT TO address for our detector
using an average budget of 10 alerts per day across the Sep 1,
2013 – Jan 14, 2017 timeframe.

From these figures, we see that over 95% of employ-
ees would see fewer than 10 interstitials across the entire
time span of nearly 3.5 years.
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Abstract
We present an approach and system for real-time recon-
struction of attack scenarios on an enterprise host. To
meet the scalability and real-time needs of the problem,
we develop a platform-neutral, main-memory based, de-
pendency graph abstraction of audit-log data. We then
present efficient, tag-based techniques for attack detec-
tion and reconstruction, including source identification
and impact analysis. We also develop methods to reveal
the big picture of attacks by construction of compact, vi-
sual graphs of attack steps. Our system participated in a
red team evaluation organized by DARPA and was able
to successfully detect and reconstruct the details of the
red team’s attacks on hosts running Windows, FreeBSD
and Linux.

1 Introduction
We are witnessing a rapid escalation in targeted cyber-
attacks (“Enterprise Advanced and Persistent Threats
(APTs)”) [1] conducted by skilled adversaries. By
combining social engineering techniques (e.g., spear-
phishing) with advanced exploit techniques, these adver-
saries routinely bypass widely-deployed software protec-
tions such as ASLR, DEP and sandboxes. As a result,
enterprises have come to rely increasingly on second-
line defenses, e.g., intrusion detection systems (IDS), se-
curity information and event management (SIEM) tools,
identity and access management tools, and application
firewalls. While these tools are generally useful, they
typically generate a vast amount of information, making
it difficult for a security analyst to distinguish truly sig-
nificant attacks — the proverbial “needle-in-a-haystack”

∗This work was primarily supported by DARPA (contract FA8650-
15-C-7561) and in part by NSF (CNS-1319137, CNS-1421893,
CNS-1514472 and DGE-1069311) and ONR (N00014-15-1-2208 and
N00014-15-1-2378). The views, opinions, and/or findings expressed
are those of the author(s) and should not be interpreted as representing
the official views or policies of the Department of Defense or the U.S.
Government.

— from background noise. Moreover, analysts lack the
tools to “connect the dots,” i.e., piece together fragments
of an attack campaign that span multiple applications or
hosts and extend over a long time period. Instead, sig-
nificant manual effort and expertise are needed to piece
together numerous alarms emitted by multiple security
tools. Consequently, many attack campaigns are missed
for weeks or even months [7, 40].

In order to effectively contain advanced attack cam-
paigns, analysts need a new generation of tools that not
only assist with detection but also produce a compact
summary of the causal chains that summarize an attack.
Such a summary would enable an analyst to quickly as-
certain whether there is a significant intrusion, under-
stand how the attacker initially breached security, and
determine the impact of the attack.

The problem of piecing together the causal chain of
events leading to an attack was first explored in Back-
tracker [25, 26]. Subsequent research [31, 37] improved
on the precision of the dependency chains constructed by
Backtracker. However, these works operate in a purely
forensic setting and therefore do not deal with the chal-
lenge of performing the analysis in real-time. In contrast,
this paper presents SLEUTH,1 a system that can alert an-
alysts in real-time about an ongoing campaign, and pro-
vide them with a compact, visual summary of the activity
in seconds or minutes after the attack. This would enable
a timely response before enormous damage is inflicted
on the victim enterprise.

Real-time attack detection and scenario reconstruction
poses the following additional challenges over a purely
forensic analysis:

1. Event storage and analysis: How can we store the
millions of records from event streams efficiently
and have algorithms sift through this data in a matter
of seconds?

1SLEUTH stands for (attack) Scenario LinkagE Using provenance
Tracking of Host audit data.
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Fig. 1: SLEUTH System Overview

2. Prioritizing entities for analysis: How can we assist
the analyst, who is overwhelmed with the volume of
data, prioritize and quickly “zoom in” on the most
likely attack scenario?

3. Scenario reconstruction: How do we succinctly
summarize the attack scenario, starting from the at-
tacker’s entry point and identifying the impact of the
entire campaign on the system?

4. Dealing with common usage scenarios: How does
one cope with normal, benign activities that may
resemble activities commonly observed during at-
tacks, e.g., software downloads?

5. Fast, interactive reasoning: How can we provide
the analyst with the ability to efficiently reason
through the data, say, with an alternate hypothesis?

Below, we provide a brief overview of SLEUTH, and
summarize our contributions. SLEUTH assumes that at-
tacks initially come from outside the enterprise. For ex-
ample, an adversary could start the attack by hijacking
a web browser through externally supplied malicious in-
put, by plugging in an infected USB memory stick, or
by supplying a zero-day exploit to a network server run-
ning within the enterprise. We assume that the adversary
has not implanted persistent malware on the host before
SLEUTH started monitoring the system. We also assume
that the OS kernel and audit systems are trustworthy.

1.1 Approach Overview and Contributions
Figure 1 provides an overview of our approach. SLEUTH
is OS-neutral, and currently supports Microsoft Win-
dows, Linux and FreeBSD. Audit data from these OSes
is processed into a platform-neutral graph representation,
where vertices represent subjects (processes) and objects
(files, sockets), and edges denote audit events (e.g., op-
erations such as read, write, execute, and connect). This
graph serves as the basis for attack detection as well as
causality analysis and scenario reconstruction.

The first contribution of this paper, which addresses
the challenge of efficient event storage and analysis, is
the development of a compact main-memory dependence
graph representation (Section 2). Graph algorithms on
main memory representation can be orders of magnitude

faster than on-disk representations, an important factor
in achieving real-time analysis capabilities. In our ex-
periments, we were able to process 79 hours worth of
audit data from a FreeBSD system in 14 seconds, with
a main memory usage of 84MB. This performance rep-
resents an analysis rate that is 20K times faster than the
rate at which the data was generated.

The second major contribution of this paper is the de-
velopment of a tag-based approach for identifying sub-
jects, objects and events that are most likely involved in
attacks. Tags enable us to prioritize and focus our anal-
ysis, thereby addressing the second challenge mentioned
above. Tags encode an assessment of trustworthiness and
sensitivity of data (i.e., objects) as well as processes (sub-
jects). This assessment is based on data provenance de-
rived from audit logs. In this sense, tags derived from
audit data are similar to coarse-grain information flow la-
bels. Our analysis can naturally support finer-granularity
tags as well, e.g., fine-grained taint tags [42, 58], if they
are available. Tags are described in more detail in Sec-
tion 3, together with their application to attack detection.

A third contribution of this paper is the development of
novel algorithms that leverage tags for root-cause iden-
tification and impact analysis (Section 5). Starting from
alerts produced by the attack detection component shown
in Fig. 1, our backward analysis algorithm follows the
dependencies in the graph to identify the sources of the
attack. Starting from the sources, we perform a full im-
pact analysis of the actions of the adversary using a for-
ward search. We present several criteria for pruning these
searches in order to produce a compact graph. We also
present a number of transformations that further simplify
this graph and produce a graph that visually captures the
attack in a succinct and semantically meaningful way,
e.g., the graph in Fig. 4. Experiments show that our tag-
based approach is very effective: for instance, SLEUTH
can analyze 38.5M events and produce an attack scenario
graph with just 130 events, representing five orders of
magnitude reduction in event volume.

The fourth contribution of this paper, aimed at tackling
the last two challenges mentioned above, is a customiz-
able policy framework (Section 4) for tag initialization
and propagation. Our framework comes with sensible
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defaults, but they can be overridden to accommodate be-
haviors specific to an OS or application. This enables
tuning of our detection and analysis techniques to avoid
false positives in cases where benign applications exhibit
behaviors that resemble attacks. (See Section 6.6 for de-
tails.) Policies also enable an analyst to test out “alternate
hypotheses” of attacks, by reclassifying what is consid-
ered trustworthy or sensitive and re-running the analysis.
If an analyst suspects that some behavior is the result of
an attack, they can also use policies to capture these be-
haviors, and rerun the analysis to discover its cause and
impact. Since we can process and analyze audit data tens
of thousands of times faster than the rate at which it is
generated, efficient, parallel, real-time testing of alter-
nate hypotheses is possible.

The final contribution of this paper is an experimen-
tal evaluation (Section 6), based mainly on a red team
evaluation organized by DARPA as part of its Trans-
parent Computing program. In this evaluation, attack
campaigns resembling modern APTs were carried out on
Windows, FreeBSD and Linux hosts over a two week pe-
riod. In this evaluation, SLEUTH was able to:
• process, in a matter of seconds, audit logs contain-

ing tens of millions of events generated during the
engagement;

• successfully detect and reconstruct the details of
these attacks, including their entry points, activities
in the system, and exfiltration points;

• filter away extraneous events, achieving very high re-
ductions rates in the data (up to 100K times), thus
providing a clear semantic representation of these at-
tacks containing almost no noise from other activities
in the system; and

• achieve low false positive and false negative rates.
Our evaluation is not intended to show that we detected
the most sophisticated adversary; instead, our point is
that, given several unknown possibilities, the prioritized
results from our system can be right on spot in real-time,
without any human assistance. Thus, it really fills a gap
that exists today, where forensic analysis seems to be pri-
marily initiated manually.

2 Main Memory Dependency Graph
To support fast detection and real-time analysis, we store
dependencies in a graph data structure. One possible op-
tion for storing this graph is a graph database. How-
ever, the performance [39] of popular databases such
as Neo4J [4] or Titan [6] is limited for many graph al-
gorithms unless main memory is large enough to hold
most of data. Moreover, the memory use of general
graph databases is too high for our problem. Even
STINGER [16] and NetworkX [5], two graph databases

optimized for main-memory performance, use about 250
bytes and 3KB, respectively, per graph edge [39]. The
number of audit events reported on enterprise networks
can easily range in billions to tens of billions per day,
which will require main memory in the range of several
terabytes. In contrast, we present a much more space-
efficient dependence graph design that uses only about
10 bytes per edge. In one experiment, we were able to
store 38M events in just 329MB of main memory.

The dependency graph is a per-host data structure. It
can reference entities on other hosts but is optimized for
the common case of intra-host reference. The graph rep-
resents two types of entities: subjects, which represent
processes, and objects, which represent entities such as
files, pipes, and network connections. Subject attributes
include process id (pid), command line, owner, and tags
for code and data. Objects attributes include name, type
(file, pipe, socket, etc.), owner, and tags.

Events reported in the audit log are captured using la-
beled edges between subjects and objects or between two
subjects. For brevity, we use UNIX names such as read,
connect, and execve for events.

We have developed a number of techniques to reduce
storage requirements for the dependence graph. Wher-
ever possible, we use 32-bit identifiers instead of 64-bit
pointers. This allows a single host’s dependence graph
to contain 4 billion objects and subjects. The number of
objects/subjects in our largest data set was a few orders
of magnitude smaller than this number.

While our design emphasizes compact data structures
for objects and subjects, compactness of events is far
more important: events outnumber objects and subjects
by about two orders of magnitude in our largest data
set. Moreover, the ratio of events to objects+subjects in-
creases with time. For this reason, we have developed
an ultra-compact representation for events that can use
as little as 6 bytes of storage for many events.

Events are stored inside subjects, thereby eliminating
a need for subject-to-event pointers, or the need for event
identifiers. Their representation uses variable-length en-
coding, so that in the typical case, they can use just 4
bytes of storage, but when needed, they can use 8, 12, or
16 bytes. Most events operate on an object and have a
timestamp. Since a per-subject order of events is main-
tained, we dispense with microsecond granularity for
timestamps, instead opting for millisecond resolution. In
addition, we store only relative time since the last event
on the same subject, which allows us to do with 16-bits
for the timestamp in the typical case2. Objects are ref-
erenced within events using an index into a per-subject
table of object identifiers. These indices can be thought
of like file descriptors — they tend to have small val-

2Longer intervals are supported by recording a special “timegap”
event that can represent millions of years.
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ues, since most subjects use a relatively small number
of objects. This enables object references to be repre-
sented using 8 bits or less. We encode event names for
frequently occurring events (e.g., open, close, read and
write) using 3 bits or less. This leaves us with several
bits for storing a summary of event argument informa-
tion, while still being within 32 bits.

We can navigate from subjects to objects using the
event data stored within subjects. However, forensic
analysis also requires us to navigate from objects to sub-
jects. For this purpose, we need to maintain event infor-
mation within objects using object-event records. Object
event records are maintained only for a subset of events:
specifically, events such as read and write that result
in a dataflow. Other events (e.g., open) are not stored
within objects. Object-event records are further shrunk
by storing a reference to the corresponding subject-event
record, instead of duplicating information.

As with subject-event records, we use a variable-
length encoding for object-event records that enables
them to be stored in just 16 bits in the most common
case. To see how this is possible, note that objects tend
to be operated on by a single subject at a time. Typically,
this subject performs a sequence of operations on the ob-
ject, e.g., an open followed by a few reads or writes,
and then a close. By allowing object-event records to
reuse the subject from their predecessor, we can avoid the
need for storing subject identifiers in most records. Next,
we allow object-event records to store a relative index
for event records within subjects. Two successive event
records within a subject that operate on the same object
are likely to be relatively close to each other, say, with
tens or hundreds of events in-between. This means that
the relative index stored with object-event record can be
12 bits or less in most cases, thus allowing these records
to be 16 bits or less in the typical case.

This design thus allows us to store bidirectional times-
tamped edges in as little as 6 bytes (4 bytes for a subject-
event record and 2 bytes for an object-event record). In
experiments with larger data sets, the total memory use
of our system is within 10 bytes per event on average.

Our variable length encoding allows us to represent
full information about important (but rare) events, such
as rename, chmod, execve, and so on. So, compactness is
achieved without losing any important information. Al-
though such encoding slows down access, access times
are still typically less than 100ns, which is many orders
of magnitude faster than disk latencies that dominate ran-
dom access on disk-resident data structures.

3 Tags and Attack Detection
We use tags to summarize our assessment of the trust-
worthiness and sensitivity of objects and subjects. This
assessment can be based on three main factors:

• Provenance: the tags on the immediate predecessors
of an object or subject in the dependence graph,

• Prior system knowledge: our knowledge about the
behavior of important applications, such as remote
access servers and software installers, and important
files such as /etc/passwd and /dev/audio, and

• Behavior: observed behavior of subjects, and how
they compare to their expected behavior.

We have developed a policy framework, described in
Section 4, for initializing and propagating tags based on
these factors. In the absence of specific policies, a de-
fault policy is used that propagates tags from inputs to
outputs. The default policy assigns to an output the low-
est among the trustworthiness tags of the inputs, and the
highest among the confidentiality tags. This policy is
conservative: it can err on the side of over-tainting, but
will not cause attacks to go undetected, or cause a for-
ward (or backward) analysis to miss objects, subjects or
events.

Tags play a central role in SLEUTH. They provide im-
portant context for attack detection. Each audited event
is interpreted in the context of these tags to determine its
likelihood of contributing to an attack. In addition, tags
are instrumental for the speed of our forward and back-
ward analysis. Finally, tags play a central role in scenario
reconstruction by eliminating vast amounts of audit data
that satisfy the technical definition of dependence but do
not meaningfully contribute to our understanding of an
attack.

3.1 Tag Design
We define the following trustworthiness tags (t-tags):

• Benign authentic tag is assigned to data/code re-
ceived from sources trusted to be benign, and whose
authenticity can be verified.

• Benign tag reflects a reduced level of trust than be-
nign authentic: while the data/code is still believed to
be benign, adequate authentication hasn’t been per-
formed to verify the source.

• Unknown tag is given to data/code from sources
about which we have no information on trustworthi-
ness. Such data can sometimes be malicious.

Policies define what sources are benign and what forms
of authentication are sufficient. In the simplest case,
these policies take the form of whitelists, but we support
more complex policies as well. If no policy is applicable
to a source, then its t-tag is set to unknown.

We define the following confidentiality tags (c-tags),
to reason about information stealing attacks:

• Secret: Highly sensitive information, such as login
credentials and private keys.
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• Sensitive: Data whose disclosure can have a signif-
icant security impact, e.g., reveal vulnerabilities in
the system, but does not provide a direct way for an
attacker to gain access to the system.

• Private: Data whose disclosure is a privacy concern,
but does not necessarily pose a security threat.

• Public: Data that can be widely available, e.g., on
public web sites.

An important aspect of our design is the separation
between t-tags for code and data. Specifically, a subject
(i.e., a process) is given two t-tags: one that captures its
code trustworthiness (code t-tag) and another for its data
trustworthiness (data t-tag). This separation significantly
improves attack detection. More importantly, it can sig-
nificantly speed up forensic analysis by focusing it on
fewer suspicious events, while substantially reducing the
size of the reconstructed scenario. Note that confiden-
tiality tags are associated only with data (and not code).

Pre-existing objects and subjects are assigned initial
tags using tag initialization policies. Objects represent-
ing external entities, such as a remote network connec-
tion, also need to be assigned initial tags. The rest of the
objects and subjects are created during system execution,
and their tags are determined using tag propagation poli-
cies. Finally, attacks are detected using behavior-based
policies called detection policies.

As mentioned before, if no specific policy is provided,
then sources are tagged with unknown trustworthiness.
Similarly, in the absence of specific propagation policies,
the default conservative propagation policy is used.

3.2 Tag-based Attack Detection
An important constraint in SLEUTH is that we are limited
to information available in audit data. This suggests the
use of provenance reflected in audit data as a possible ba-
sis for detection. Since tags are a function of provenance,
we use them for attack detection. Note that in our threat
model, audit data is trustworthy, so tags provide a sound
basis for detection.

A second constraint in SLEUTH is that detection
methods should not require detailed application-specific
knowledge. In contrast, most existing intrusion detec-
tion and sandboxing techniques interpret each security-
sensitive operation in the context of a specific application
to determine whether it could be malicious. This requires
expert knowledge about the application, or in-the-field
training in a dynamic environment, where applications
may be frequently updated.

Instead of focusing on application behaviors that tend
to be variable, we focus our detection techniques on the
high-level objectives of most attackers, such as backdoor
insertion and data exfiltration. Specifically, we com-
bine reasoning about an attacker’s motive and means. If

an event in the audit data can help the attacker achieve
his/her key high-level objectives, that would provide the
motivation and justification for using that event in an at-
tack. But this is not enough: the attacker also needs the
means to cause this event, or more broadly, influence it.
Note that our tags are designed to capture means: if a
piece of data or code bears the unknown t-tag, then it
was derived from (and hence influenced by) untrusted
sources.

As for the high-level objectives of an attacker, sev-
eral reports and white papers have identified that the fol-
lowing steps are typical in most advanced attack cam-
paigns [1, 2, 3]:

1. Deploy and run attacker’s code on victim system.

2. Replace or modify important files, e.g.,
/etc/passwd or ssh keys.

3. Exfiltrate sensitive data.
Attacks with a transient effect may be able to avoid the
first two steps, but most sophisticated attacks, such as
those used in APT campaigns, require the establishment
of a more permanent footprint on the victim system. In
those cases, there does not seem to be a way to avoid one
or both of the first two steps. Even in those cases where
the attacker’s goal could be achieved without establish-
ing a permanent base, the third step usually represents an
essential attacker goal.

Based on the above reasoning, we define the follow-
ing policies for attack detection that incorporate the at-
tacker’s objectives and means:
• Untrusted code execution: This policy triggers an

alarm when a subject with a higher code t-tag exe-
cutes (or loads) an object with a lower t-tag3.

• Modification by subjects with lower code t-tag: This
policy raises an alarm when a subject with a lower
code t-tag modifies an object with a higher t-tag.
Modification may pertain to the file content or other
attributes such as name, permissions, etc.

• Confidential data leak: An alarm is raised when un-
trusted subjects exfiltrate sensitive data. Specifically,
this policy is triggered on network writes by subjects
with a sensitive c-tag and a code t-tag of unknown.

• Preparation of untrusted data for execution: This
policy is triggered by an operation by a subject with a
code t-tag of unknown, provided this operation makes
an object executable. Such operations include chmod
and mprotect4,5.

3Customized policies can be defined for interpreters such as bash
so that reads are treated the same as loads.

4Binary code injection attacks on today’s OSes ultimately involve a
call to change the permission of a writable memory page so that it be-
comes executable. To the extent that such memory permission change
operations are included in the audit data, this policy can spot them.

5Our implementation can identify mprotect operations that occur
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It is important to note that “means” is not diluted just
because data or code passes through multiple intermedi-
aries. For instance, the untrusted code policy does not
require a direct load of data from an unknown web site;
instead, the data could be downloaded, extracted, uncom-
pressed, and possibly compiled, and then loaded. Re-
gardless of the number of intermediate steps, this policy
will be triggered when the resulting file is loaded or exe-
cuted. This is one of the most important reasons for the
effectiveness of our attack detection.

Today’s vulnerability exploits typically do not involve
untrusted code in their first step, and hence won’t be de-
tected by the untrusted code execution policy. However,
the eventual goal of an attacker is to execute his/her code,
either by downloading and executing a file, or by adding
execute permissions to a memory page containing un-
trusted data. In either case, one of the above policies can
detect the attack. A subsequent backward analysis can
help identify the first step of the exploit.

Additional detector inputs can be easily integrated into
SLEUTH. For instance, if an external detector flags a sub-
ject as a suspect, this can be incorporated by setting the
code t-tag of the subject to unknown. As a result, the re-
maining detection policies mentioned above can all ben-
efit from the information provided by the external detec-
tor. Moreover, setting of unknown t-tag at suspect nodes
preserves the dependency structure between the graph
vertices that cause alarms, a fact that we exploit in our
forensic analysis.

The fact that many of our policies are triggered by un-
trusted code execution should not be interpreted to mean
that they work in a static environment, where no new
code is permitted in the system. Indeed, we expect soft-
ware updates and upgrades to be happening constantly,
but in an enterprise setting, we don’t expect end users to
be downloading unknown code from random sites. Ac-
cordingly, we subsequently describe how to support stan-
dardized software updating mechanisms such as those
used on contemporary OSes.

4 Policy Framework
We have developed a flexible policy framework for tag
assignment, propagation, and attack detection. We ex-
press policies using a simple rule-based notation, e.g.,

exec(s,o) : o.ttag < benign→ alert("UntrustedExec")

This rule is triggered when the subject s executes a (file)
object o with a t-tag less than benign. Its effect is to raise
an alert named UntrustedExec. As illustrated by this
example, rules are generally associated with events, and
include conditions on the attributes of objects and/or sub-
jects involved in the event. Attributes of interest include:

in conjunction with library loading operations. This policy is not trig-
gered on those mprotect’s.

Event Direction Alarm Tag
trigger trigger

define init
read O→S read propRd

load, execve O→S exec propEx
write S→O write propWr

rm, rename S→O write
chmod, chown S→O write, modi f y

setuid S→S propSu

Table 2: Edges with policy trigger points. In the direction column, S
indicates subject, and O indicates object. The next two columns indi-
cate trigger points for detection policies and tag setting policies.

• name: regular expressions can be used to match ob-
ject names and subject command lines. We use Perl
syntax for regular expressions.

• tags: conditions can be placed on t-tags and c-tags of
objects and/or subjects. For subjects, code and data
t-tags can be independently accessed.

• ownership and permission: conditions can be placed
on the ownership of objects and subjects, or permis-
sions associated with the object or the event.

The effect of a policy depends on its type. The effect of
a detection policy is to raise an alarm. For tag initial-
ization and propagation policies, the effect is to modify
tag(s) associated with the object or subject involved in
the event. While we use a rule-based notation to specify
policies in this paper, in our implementation, each rule is
encoded as a (C++) function.

To provide a finer degree of control over the order in
which different types of policies are checked, we asso-
ciate policies with trigger points instead of events. In ad-
dition, trigger points provide a level of indirection that
enables sharing of policies across distinct events that
have a similar purpose. Table 2 shows the trigger points
currently defined in our policy framework. The first col-
umn identifies events, the second column specifies the
direction of information flow, and the last two columns
define the trigger points associated with these events.

Note that we use a special event called define to de-
note audit records that define a new object. This pseudo-
event is assumed to have occurred when a new object
is encountered for the first time, e.g., establishment of
a new network connection, the first mention of a pre-
existing file, creation of a new file, etc. The remaining
events in the table are self-explanatory.

When an event occurs, all detection policies associated
with its alarm trigger are executed. Unless specifically
configured, detection policies are checked only when the
tag of the target subject or object is about to change.
(“Target” here refers to the destination of data flow in an
operation.) Following this, policies associated with the
event’s tag triggers are tried in the order in which they
are specified. As soon as a matching rule is found, the
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tags specified by this rule are assigned to the target of the
event, and the remaining tag policies are not evaluated.

Our current detection policies are informally described
in the previous section. We therefore focus in this section
on our current tag initialization and propagation policies.

4.1 Tag Initialization Policies
These policies are invoked at the init trigger, and are used
to initialize tags for new objects, or preexisting objects
when they are first mentioned in the audit data. Recall
that when a subject creates a new object, the object in-
herits the subject’s tags by default; however, this can be
overridden using tag initialization policies.

Our current tag initialization policy is as follows. Note
the use of regular expressions to conveniently define ini-
tial tags for groups of objects.

init(o): match(o.name,"^IP:(10\.0|127)")→
o.ttag = BENIGN AUTH,o.ctag = PRIVATE

init(o): match(o.name,"^IP:")→
o.ttag = UNKNOWN,o.ctag = PRIVATE

init(o): o.type == FILE→
o.ttag = BENIGN AUTH,o.ctag = PUBLIC

The first rule specifies tags for intranet connections, iden-
tified by address prefixes 10.0 and 127 for the remote
host. It is useful in a context where SLEUTH isn’t de-
ployed on the remote host6. The second rule states that
all other hosts are untrusted. All preexisting files are as-
signed the same tags by the third rule. Our implementa-
tion uses two additional policies that specify c-tags.

4.2 Tag Propagation Policies
These policies can be used to override default tag propa-
gation semantics. Different tag propagation policies can
be defined for different groups of related event types, as
indicated in the “Tag trigger” column in Table 2.

Tag propagation policies can be used to prevent
“over-tainting” that can result from files such as
.bash history that are repeatedly read and written by
an application each time it is invoked. The following pol-
icy skips taint propagation for this specific file:

propRd(s,o): match(o.name,"\.bash_history$")→ skip7

Here is a policy that treats files read by bash, which is an
interpreter, as a load, and hence updates the code t-tag.

propRd(s,o): match(s.cmdline,"^/bin/bash$")→
s.code ttag = s.data ttag = o.ttag,s.ctag = o.ctag

Although trusted servers such as sshd interact with un-
trusted sites, they can be expected to protect themselves,

6If SLEUTH is deployed on the remote host, there will be no define
event associated with the establishment of a network connection, and
hence this policy won’t be triggered. Instead, we will already have
computed a tag for the remote network endpoint, which will now prop-
agate to any local subject that reads from the connection.

7Here, “skip” means do nothing, i.e., leave tags unchanged.

and let only authorized users access the system. Such
servers should not have their data trustworthiness down-
graded. A similar comment applies to programs such as
software updaters and installers that download code from
untrusted sites, but verify the signature of a trusted soft-
ware provider before the install.

propRd(o,s): match(s.cmdline,"^/sbin/sshd$")→ skip

Moreover, when the login phase is complete, typically
identified by execution of a setuid operation, the pro-
cess should be assigned appropriate tags.

propSu(s): match(s.cmdline,"^/usr/sbin/sshd$")→
s.code ttag = s.data ttag = BENIGN,s.ctag = PRIVATE

5 Tag-Based Bi-Directional Analysis
5.1 Backward Analysis
The goal of backward analysis is to identify the entry
points of an attack campaign. Entry points are the nodes
in the graph with an in-degree of zero and are marked
untrusted. Typically they represent network connections,
but they can also be of other types, e.g., a file on a USB
stick that was plugged into the victim host.

The starting points for the backward analysis are the
alarms generated by the detection policies. In particu-
lar, each alarm is related to one or more entities, which
are marked as suspect nodes in the graph. Backward
search involves a backward traversal of the graph to iden-
tify paths that connect the suspect nodes to entry nodes.
We note that the direction of the dependency edges is
reversed in such a traversal and in the following discus-
sions. Backward search poses several significant chal-
lenges:
• Performance: The dependence graph can easily con-

tain hundreds of millions of edges. Alarms can easily
number in thousands. Running backward searches on
such a large graph is computationally expensive.

• Multiple paths: Typically numerous entry points are
backward reachable from a suspect node. However,
in APT-style attacks, there is often just one real entry
point. Thus, a naive backward search can lead to a
large number of false positives.

The key insight behind our approach is that tags can be
used to address both challenges. In fact, tag computation
and propagation is already an implicit path computation,
which can be reused. Furthermore, a tag value of un-
known on a node provides an important clue about the
likelihood of that node being a potential part of an at-
tack. In particular, if an unknown tag exists for some
node A, that means that there exists at least a path from
an untrusted entry node to node A, therefore node A is
more likely to be part of an attack than other neighbors
with benign tags. Utilizing tags for the backward search
greatly reduces the search space by eliminating many ir-
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relevant nodes and sets SLEUTH apart from other sce-
nario reconstruction approaches such as [25, 31].

Based on this insight, we formulate backward ana-
lyis as an instance of shortest path problem, where tags
are used to define edge costs. In effect, tags are able
to “guide” the search along relevant paths, and away
from unlikely paths. This factor enables the search to
be completed without necessarily traversing the entire
graph, thus addressing the performance challenge. In ad-
dition, our shortest path formulation addresses the multi-
ple paths chalenge by by preferring the entry point clos-
est (as measured by path cost) to a suspect node.

For shortest path, we use Dijkstra’s algorithm, as it
discovers paths in increasing order of cost. In particular,
each step of this algorithm adds a node to the shortest
path tree, which consists of the shortest paths computed
so far. This enables the search to stop as soon as an entry
point node is added to this tree.

Cost function design. Our design assigns low costs to
edges representing dependencies on nodes with unknown
tags, and higher costs to other edges. Specifically, the
costs are as follows:

• Edges that introduce a dependency from a node with
unknown code or data t-tag to a node with benign
code or data t-tag are assigned a cost of 0.

• Edges introducing a dependency from a node with
benign code and data t-tags are assigned a high cost.

• Edges introducing dependencies between nodes al-
ready having an unknown tag are assigned a cost of 1.

The intuition behind this design is as follows. A be-
nign subject or object immediately related to an unknown
subject/object represents the boundary between the ma-
licious and benign portions of the graph. Therefore, they
must be included in the search, thus the cost of these
edges is 0. Information flows among benign entities are
not part of the attack, therefore we set their cost to very
high so that they are excluded from the search. Infor-
mation flows among untrusted nodes are likely part of
an attack, so we set their cost to a low value. They will
be included in the search result unless alternative paths
consisting of fewer edges are available.

5.2 Forward Analysis
The purpose of forward analysis is to assess the impact
of a campaign, by starting from an entry point and dis-
covering all the possible effects dependent on the entry
point. Similar to backward analysis, the main challenge
is the size of the graph. A naive approach would identify
and flag all subjects and objects reachable from the entry
point(s) identified by backward analysis. Unfortunately,
such an approach will result in an impact graph that is too
large to be useful to an analyst. For instance, in our ex-

periments, a naive analysis produced impact graphs with
millions of edges, whereas our refined algorithm reduces
this number by 100x to 500x.

A natural approach for reducing the size is to use a
distance threshold dth to exclude nodes that are “too far”
from the suspect nodes. Threshold dth can be interac-
tively tuned by an analyst. We use the same cost met-
ric that was used for backward analysis, but modified to
consider confidentiality8. In particular, edges between
nodes with high confidentiality tags (e.g., secret) and
nodes with low code integrity tags (e.g., unknown pro-
cess) or low data integrity tags (e.g., unknown socket)
are assigned a cost of 0, while edges to nodes with be-
nign tags are assigned a high cost.

5.3 Reconstruction and Presentation
We apply the following simplifications to the output of
forward analysis, in order to provide a more succinct
view of the attack:
• Pruning uninteresting nodes. The result of forward

analysis may include many dependencies that are not
relevant for the attack, e.g., subjects writing to cache
and log files, or writing to a temporary file and then
removing it. These nodes may appear in the results
of the forward analysis but no suspect nodes depend
on them, so they can be pruned.

• Merging entities with the same name. This simplifi-
cation merges subjects that have the same name, dis-
regarding their process ids and command-line argu-
ments.

• Repeated event filtering. This simplification merges
into one those events that happen multiple times (e.g.,
multiple writes, multiple reads) between the same en-
tities. If there are interleaving events, then we show
two events representing the first and the last occur-
rence of an event between the two entities.

6 Experimental Evaluation
6.1 Implementation
Most components of SLEUTH, including the graph
model, policy engine, attack detection and some parts of
the forensic analysis are implemented in C++, and con-
sist of about 9.5KLoC. The remaining components, in-
cluding that for reconstruction and presentation, are im-
plemented in Python, and consist of 1.6KLoC.

6.2 Data Sets
Table 3 summarizes the dataset used in our evaluation.
The first eight rows of the table correspond to attack cam-

8Recall that some alarms are related to exfiltration of confidential
data, so we need to decide which edges representing the flow of confi-
dential information should be included in the scenario.
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Dataset
Duration

(hh-mm-ss) Open
Connect +

Accept Read Write
Clone +

Exec
Close +

Exit
Mmap /
Loadlib Others

Total # of
Events

Scenario
Graph

W-1 06:22:42 N/A 22.14% 44.70% 5.12% 3.73% 3.88% 17.40% 3.02% 100K Fig. 15
W-2 19:43:46 N/A 17.40% 47.63% 8.03% 3.28% 3.26% 15.22% 5.17% 401K Fig. 5
L-1 07:59:26 37% 0.11% 18.01% 1.15% 0.92% 38.76% 3.97% 0.07% 2.68M Fig. 12
L-2 79:06:39 39.58% 0.08% 12.19% 2% 0.83% 41.28% 3.79% 0.25% 38.5M -
L-3 79:05:13 38.88% 0.04% 11.81% 2.35% 0.95% 40.98% 4.14% 0.84% 19.3M Fig. 16
F-1 08:17:30 9.46% 0.40% 24.65% 40.86% 2.10% 12.55% 9.08% 0.89% 701K Fig. 13
F-2 78:56:48 11.78% 0.42% 16.60% 44.52% 2.10% 15.04% 8.54% 1.01% 5.86M Fig. 14
F-3 79:04:54 11.31% 0.40% 19.46% 45.71% 1.64% 14.30% 6.16% 1.03% 5.68M Fig. 4

Benign 329:11:40 11.68% 0.71% 26.22% 30.03% 0.63% 15.42% 14.32% 0.99% 32.83M N/A

Table 3: Dataset for each campaign with duration, distribution of different system calls and total number of events.

paigns carried out by a red team as part of the DARPA
Transparent Computing (TC) program. This set spans
a period of 358 hours, and contains about 73 million
events. The last row corresponds to benign data collected
over a period of 3 to 5 days across four Linux servers in
our research laboratory.

Attack data sets were collected on Windows (W-1
and W-2), Linux (L-1 through L-3) and FreeBSD (F-1
through F-3) by three research teams that are also part
of the DARPA TC program. The goal of these research
teams is to provide fine-grained provenance information
that goes far beyond what is found in typical audit data.
However, at the time of the evaluation, these advanced
features had not been implemented in the Windows and
FreeBSD data sets. Linux data set did incorporate finer-
granularity provenance (using the unit abstraction devel-
oped in [31]), but the implementation was not mature
enough to provide consistent results in our tests. For this
reason, we omitted any fine-grained provenance included
in their dataset, falling back to the data they collected
from the built-in auditing system of Linux. The FreeBSD
team built their capabilities over DTrace. Their data also
corresponded to roughly the same level as Linux audit
logs. The Windows team’s data was roughly at the level
of Windows event logs. All of the teams converted their
data into a common representation to facilitate analysis.

The “duration” column in Table 3 refers to the length
of time for which audit data was emitted from a host.
Note that this period covers both benign activities and
attack related activities on a host. The next several
columns provide a break down of audit log events into
different types of operations. File open and close op-
erations were not included in W-1 and W-2 data sets.
Note that “read” and “write” columns include not only
file reads/writes, but also network reads and writes on
Linux. However, on Windows, only file reads and writes
were reported. Operations to load libraries were reported
on Windows, but memory mapping operations weren’t.
On Linux and FreeBSD, there are no load operations,
but most of the mmap calls are related to loading. So,
the mmap count is a loose approximation of the num-

ber of loads on these two OSes. The “Others” column
includes all the remaining audit operations, including
rename, link, rm, unlink, chmod, setuid, and so on.
The last column in the table identifies the scenario graph
constructed by SLEUTH for each campaign. Due to space
limitations, we have omitted scenario graphs for cam-
paign L-2.

6.3 Engagement Setup

The attack scenarios in our evaluation are setup as fol-
lows. Five of the campaigns (i.e., W-2, L-2, L3, F-2, and
F3) ran in parallel for 4 days, while the remaining three
(W-1, L-1, and F-1) were run in parallel for 2 days. Dur-
ing each campaign, the red team carried out a series of
attacks on the target hosts. The campaigns are aimed at
achieving varying adversarial objectives, which include
dropping and execution of an executable, gathering intel-
ligence about a target host, backdoor injection, privilege
escalation, and data exfiltration.

Being an adversarial engagement, we had no prior
knowledge of the attacks planned by the red team. We
were only told the broad range of attacker objectives de-
scribed in the previous paragraph. It is worth noting that,
while the red team was carrying out attacks on the tar-
get hosts, benign background activities were also being
carried out on the hosts. These include activities such
as browsing and downloading files, reading and writing
emails, document processing, and so on. On average,
more than 99.9% of the events corresponded to benign
activity. Hence, SLEUTH had to automatically detect and
reconstruct the attacks from a set of events including both
benign and malicious activities.

We present our results in comparison with the ground
truth data released by the red team. Before the release
of ground truth data, we had to provide a report of our
findings to the red team. The findings we report in this
paper match the findings we submitted to the red team.
A summary of our detection and reconstruction results is
provided in a tabular form in Table 7. Below, we first
present reconstructed scenarios for selected datasets be-
fore proceeding to a discussion of these summary results.

USENIX Association 26th USENIX Security Symposium    495



/var/dropbear_latest/
dropbearFREEBSD.tar

sshd

bash

sudoscp

whoami

date

ps

hostname

ls

3. fork

5. fork

7. fork

4. fork

6. fork

2. fork
8. fork

9. fork10.write

bsdtar
13. read

/var/dropbear_latest/
dropbear/dropbearkey

15.write

/var/dropbear_latest/
dropbear/dropbearscript

14.write

/var/dropbear_latest/
dropbear/dropbear

16.write

vi18. read
17. fork

sh

20. read
19. fork

sudodropbearkey 22. fork

23.execute

sudo

25. fork

dropbear

26. fork

27. execute

/usr/local/etc/dropbear/
dropbear_rsa_host_key

24. write

28. read

128.55.12.167

1. receive

29.receive

bash

ls

31. fork

30. fork

cat

37. fork

uname

33. fork

bash

39. fork

/usr/home/user/procstat

34. write38. write 32. writescp 40. fork

/usr/home/user/archiver 

41. write

ps

35. fork

36. write

archiver43.execute 44. read

42. fork

128.55.12.167:2525

45. send

sudo

11. fork

12. fork

21. fork

Fig. 4: Scenario graph reconstructed from campaign F-3.

6.4 Selected Reconstruction Results

Of the 8 attack scenarios successfully reconstructed by
SLEUTH, we discuss campaigns W-2 (Windows) and F-3
(FreeBSD) in this section, while deferring the rest to Sec-
tion 6.10. To make it easier to follow the scenario graph,
we provide a narrative that explains how the attack un-
folded. This narrative requires manual interpretation of
the graph, but the graph generation itself is automated.
In these graphs, edge labels include the event name and a
sequence number that indicates the global order in which
that event was performed. Ovals, diamonds and rectan-
gles represent processes, sockets and files, respectively.
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Fig. 5: Scenario graph reconstructed from campaign W-2.

Campaign W-2. Figure 5 shows the graph recon-
structed by SLEUTH from Windows audit data. Although
the actual attack campaign lasted half an hour, the host
was running benign background activities for 20 hours.
These background activities corresponded to more than
99.8% of the events in the corresponding audit log.
Entry: The initial entry point for the attack is Firefox,
which is compromised on visiting the web server
129.55.12.167.
Backdoor insertion: Once Firefox is compromised, a ma-
licious program called dropper is downloaded and ex-
ecuted. Dropper seems to provide a remote interactive
shell, connecting to ports 443 and then 4430 on the attack
host, and executing received commands using cmd.exe.
Intelligence gathering: Dropper then invokes cmd.exe

multiple times, using it to perform various data gath-
ering tasks. The programs whoami, hostname and
netstat are being used as stand-ins for these data
gathering applications. The collected data is written to
C:\Users\User1\Documents\Thumbs\thumbit\test\thumbs.db.
Data exfiltration: Then the collected intelligence is exfil-
trated to 129.55.12.51:9418 using git.
Clean-up: Dropper downloads a batch file called
burnout.bat. This file contains commands to clean up
the attack footprint, which are executed by cmd.exe (see
edges 11,12, 31-33).

Campaign F-3. (Figure 4). Under the command of
an attacker who uses stolen ssh credentials, sshd forks
a bash process. Note that though there is no direct ev-
idence from the audit data about the stolen ssh creden-
tials, because of the subsequent events (scp) from this
shell, we conclude this as a sign of an attacker that uses
stolen ssh credentials.
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Next the attacker, invokes scp,
which downloads a file into location
/var/dropbear latest/dropbearFREEBSD.tar, which
is then uncompressed. The file dropbearscript is
next read and interpreted by sh. This action cre-
ates the process dropbearkey, which writes to /usr/

local/etc/dropbear/dropbear ecdsa host key and
/usr/local/etc/dropbear/dropbear rsa host key.
Next, another sudo process created by bash starts
another dropbear process which reads these two keys
for future use (presumably to assist in connecting to a
remote host).

Dropbear next starts a shell process, which executes
a series of commands ls, bash, uname, ps, all of which
write to a file /usr/home/user/procstats.

Finally, dropbear starts a bash process, which uses
scp to download a file called /usr/home/user/archiver,
and executes that file. The resulting process, called
archiver, reads the file /usr/home/user/procstats,
which contains the data output earlier, and exfiltrates this
information to 128.55.12.167:2525.

Summary. The above two graphs were constructed au-
tomatically by SLEUTH from audit data. They demon-
strate how SLEUTH enables an analyst to obtain compact
yet complete attack scenarios from hours of audit data.
SLEUTH is able to hone in on the attack activity, even
when it is hidden among benign data that is at least three
orders of magnitude larger.

6.5 Overall Effectiveness
To assess the effectiveness of SLEUTH in capturing es-
sential stages of an APT, in Table 6, we correlate pieces
of attack scenarios constructed by SLEUTH with APT
stages documented in postmortem reports of notable
APT campaigns (e.g., the MANDIANT [3] report). In
7 of the 8 attack scenarios, SLEUTH uncovered the
drop&load activity. In all the scenarios, SLEUTH cap-
tured concrete evidence of data exfiltration, a key stage
in an APT campaign. In 7 of the scenarios, commands
used by the attacker to gather information about the tar-
get host were captured by SLEUTH.

Another distinctive aspect of an APT is the injection of
backdoors to targets and their use for C&C and data exfil-

Dataset
Drop
&
Load

Intelligence
Gathering

Backdoor
Insertion

Privilege
Escalation

Data
Exfiltration

Cleanup

W-1 X X X X
W-2 X X X X X
L-1 X X X X X
L-2 X X X X X X
L-3 X X X X X X
F-1 X X
F-2 X X X X
F-3 X X X

Table 6: SLEUTH results with respect to a typical APT campaign.

Dataset Entry
Entities

Programs
Executed

Key
Files

Exit
Points

Correctly
Identified
Entities

Incorrectly
Identified
Entities

Missed
Entities

W-1 2 8 7 3 20 0 0
W-2 2 8 4 4 18 0 0

L-1 2 10 7 2 20 0 1
L-2 2 20 11 4 37 0 0
L-3 1 6 6 5 18 0 0

F-1 4 13 9 2 13 0 1
F-2 2 10 7 3 22 0 0
F-3 4 14 7 1 26 0 0

Total 19 89 58 24 174 0 2

Table 7: Attack scenario reconstruction summary.

tration. In this regard, 6 of the 8 scenarios reconstructed
by SLEUTH involve backdoor injection. Cleaning the at-
tack footprint is a common element of an APT campaign.
In our experiments, in 5 of the 8 scenarios, SLEUTH un-
covered attack cleanup activities, e.g., removing dropped
executables and data files created during the attack.

Table 7 shows another way of breaking down the at-
tack scenario reconstruction results, counting the number
of key files, network connections, and programs involved
in the attack. Specifically, we count the number of at-
tack entry entities (including the entry points and the pro-
cesses that communicate with those entry points), attack-
related program executions, key files that were gener-
ated and used during the campaign, and the number of
exit points used for exfiltration (e.g., network sockets).
This data was compared with the ground truth, which
was made available to us after we obtained the results.
The last two columns show the incorrectly reported and
missed entities, respectively.

The two missed entities were the result of the fact that
we had not spent any effort in cataloging sensitive data
files and device files. As a result, these entities were fil-
tered out during the forward analysis and simplification
steps. Once we marked the two files correctly, they were
no longer filtered out, and we were able to identify all of
the key entities.

In addition to the missed entities shown in Table 7,
the red team reported that we missed a few other attacks
and entities. Some of these were in data sets we did not
examine. In particular, campaign W-2 was run multiple
times, and we examined the data set from only one in-
stance of it. Also, there was a third attack campaign W-3
on Windows, but the team producing Windows data sets
had difficulties during W-3 that caused the attack activ-
ities not to be recorded, so that data set is omitted from
the results in Table 7. Similarly, the team responsible
for producing Linux data sets had some issues during
campaign L-3 that caused some attack activities not to
be recorded. To account for this, Table 7 counts only the
subset of key entities whose names are present in the L-3
data set given to us.

According to the ground truth provided by the red
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Dataset Log Size
on Disk

# of
Events

Duration
hh:mm:ss

Packages
Updated

Binary
Files
Written

Server 1 1.1G 2.17M 00:13:06 110 1.8K
Server 2 2.7G 4.67M 105:08:22 4 4.2K
Server 3 12G 20.9M 104:36:43 4 4.3K
Server 4 3.2G 5.09M 119:13:29 4 4.3K

Table 8: False alarms in a benign environment with software upgrades
and updates. No alerts were triggered during this period.

team, we incorrectly identified 21 entities in F-1 that
were not part of an attack. Subsequent investigation
showed that the auditing system had not been shutdown
at the end of the F-1 campaign, and all of these false pos-
itives correspond to testing/administration steps carried
out after the end of the engagement, when the auditing
system should not have been running.

6.6 False Alarms in a Benign Environment

In order to study SLEUTH’s performance in a benign
environment, we collected audit data from four Ubuntu
Linux servers over a period of 3 to 5 days. One of these
is a mail server, another is a web server, and a third is
an NFS/SSH/SVN server. Our focus was on software
updates and upgrades during this period, since these up-
dates can download code from the network, thereby rais-
ing the possibility of untrusted code execution alarms.
There were four security updates (including kernel up-
dates) performed over this period. In addition, on a
fourth server, we collected data when a software upgrade
was performed, resulting in changes to 110 packages.
Several thousand binary and script files were updated
during this period, and the audit logs contained over 30M
events. All of this information is summarized in Table 8.

As noted before, policies should be configured to per-
mit software updates and upgrades using standard means
approved in an enterprise. For Ubuntu Linux, we had
one policy rule for this: when dpkg was executed by
apt-commands, or by unattended-upgrades, the pro-
cess is not downgraded even when reading from files
with untrusted labels. This is because both apt and
unattended-upgrades verify and authenticate the hash
on the downloaded packages, and only after these verifi-
cations do they invoke dpkg to extract the contents and
write to various directories containing binaries and li-
braries. Because of this policy, all of the 10K+ files
downloaded were marked benign. As a result of this, no
alarms were generated from their execution by SLEUTH.

6.7 Runtime and Memory Use

Table 9 shows the runtime and memory used by SLEUTH
for analyzing various scenarios. The measurements were
made on a Ubuntu 16.04 server with 2.8GHz AMD
Opteron 62xx processor and 48GB main memory. Only a
single core of a single processor was used. The first col-

Dataset Duration Memory Runtime
(hh:mm:ss) Usage Time Speed-up

W-1 06:22:42 3 MB 1.19 s 19.3 K
W-2 19:43:46 10 MB 2.13 s 33.3 K

W-Mean 6.5 MB 26.3 K

L-1 07:59:26 26 MB 8.71 s 3.3 K
L-2 79:06:39 329 MB 114.14s 2.5 K
L-3 79:05:13 175 MB 74.14 s 3.9 K

L-Mean 177 MB 3.2 K
F-1 08:17:30 8 MB 1.86 s 16 K
F-2 78:56:48 84 MB 14.02 s 20.2 K
F-3 79:04:54 95 MB 15.75 s 18.1 K

F-Mean 62.3 MB 18.1 K

Table 9: Memory use and runtime for scenario reconstruction.

umn shows the campaign name, while the second shows
the total duration of the data set.

The third column shows the memory used for the de-
pendence graph. As described in Section 2, we have de-
signed a main memory representation that is very com-
pact. This compact representation enables SLEUTH to
store data spanning very long periods of time. As an ex-
ample, consider campaign L-2, whose data were the most
dense. SLEUTH used approximately 329MB to store
38.5M events spanning about 3.5 days. Across all data
sets, SLEUTH needed about 8 bytes of memory per event
on the larger data sets, and about 20 bytes per event on
the smaller data sets.

The fourth column shows the total run time, including
the times for consuming the dataset, constructing the de-
pendence graph, detecting attacks, and reconstructing the
scenario. We note that this time was measured after the
engagement when all the data sets were available. Dur-
ing the engagement, SLEUTH was consuming these data
as they were being produced. Although the data typically
covers a duration of several hours to a few days, the anal-
ysis itself is very fast, taking just seconds to a couple of
minutes. Because of our use of tags, most information
needed for the analysis is locally available. This is the
principal reason for the performance we achieve.

The “speed-up” column illustrates the performance
benefits of SLEUTH. It can be thought of as the num-
ber of simultaneous data streams that can be handled by
SLEUTH, if CPU use was the only constraint.

In summary, SLEUTH is able to consume and analyze
audit COTS data from several OSes in real time while
having a small memory footprint.

6.8 Benefit of split tags for code and data
As described earlier, we maintain two trustworthiness
tags for each subject, one corresponding to its code, and
another corresponding to its data. By prioritizing detec-
tion and forward analysis on code trustworthiness, we cut
down vast numbers of alarms, while greatly decreasing
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Dataset
Untrusted
execution

Modification by
low code t-tag subject

Preparation of untrusted
data for execution

Confidential
data leak

Single t-tag Split t-tags Single t-tag Split t-tags Single t-tags Split t-tags Single t-tag Split t-tags
W-1 21 3 1.2 K 3 0 0 6.1 K 11
W-2 44 2 3.7 K 108 0 0 20.2 K 18

L-1 60 2 53 5 1 1 19 6
L-2 1.5 K 5 19.5 K 1 280 8 122 K 159
L-3 695 5 26.1 K 2 270 0 62.1 K 5.3 K

Average Reduction 45.39x 517x 6.24x 112x

Table 10: Reduction in (false) alarms by maintaining separate code and data trustworthiness tags. The average reduction shows the average factor
of reduction we get for alarms generation when using split trustworthiness tag over single trustworthiness tag.

the size of forward analysis output.
Table 10 shows the difference between the number of

alarms generated by our four detection policies with sin-
gle trustworthiness tag and with the split trustworthiness
(code and integrity) tags. Note that the split reduces the
alarms by a factor of 100 to over 1000 in some cases.

Table 11 shows the improvement achieved in forward
analysis as a result of this split. In particular, the in-
creased selectivity reported in column 5 of this table
comes from splitting the tag. Note that often, there is
a 100x to 1000x reduction in the size of the graph.

6.9 Analysis Selectivity
Table 11 shows the data reduction pipeline of the analy-
ses in SLEUTH. The second column shows the number
of original events in each campaign. These events in-
clude all the events in the system (benign and malicious)
over several days with an overwhelming majority having
a benign nature, unrelated to the attack.

The third column shows the final number of events that
go into the attack scenario graph.

The fourth column shows the reduction factor when
a naive forward analysis with single trustworthiness tag
(single t-tag) is used from the entry points identified by
our backward analysis. Note that the graph size is very
large in most cases. The fifth column shows the reduction
factor using the forward analysis of SLEUTH— which is
based on split (code and data) trustworthiness tags. As

Dataset
Initial
# of

Events

Final
# of

Events

Reduction Factor
Single
t-tag

Split
t-tag

SLEUTH
Simplif. Total

W-1 100 K 51 4.4x 1394x 1.4x 1951x
W-2 401 K 28 3.6x 552x 26x 14352x

L-1 2.68 M 36 8.9x 15931x 4.7x 74875x
L-2 38.5 M 130 7.3x 2971x 100x 297100x
L-3 19.3 M 45 7.6x 1208x 356x 430048x

F-1 701 K 45 2.3x 376x 41x 15416x
F-2 5.86 M 39 1.9x 689x 218x 150202x
F-3 5.68 M 45 6.7x 740x 170x 125800x

Average Reduction 4.68x 1305x 41.8x 54517x

Table 11: Comparison of selectivity achieved using forward analysis
with single trustworthiness tags, forward analysis with split code and
data trustworthiness tags, and finally simplifications.

can be seen from the table, SLEUTH achieved two to
three orders of magnitude reduction with respect to sin-
gle t-tag based analysis.

The output of forward analysis is then fed into the sim-
plification engine. The sixth column shows the reduction
factor achieved by the simplifications over the output of
our forward analysis. The last column shows the overall
reduction we get over original events using split (code
and data) trustworthiness tags and performing the sim-
plification.

Overall, the combined effect of all of these steps is
very substantial: data sets consisting of tens of millions
of edges are reduced into graphs with perhaps a hundred
edges, representing five orders of magnitude reduction
in the case of L-2 and L-3 data sets, and four orders of
magnitude reduction on other data.
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Fig. 12: Scenario graph reconstructed from campaign L-1.
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Fig. 13: Scenario graph reconstructed from campaign F-1.

6.10 Discussion of Additional Attacks
In this section, we provide graphs that reconstruct at-
tack campaigns that weren’t discussed in Section 6.4.
Specifically, we discuss attacks L-1, F-1, F-2, W-1, and
L-3. Attack L-1. In this attack (Figure 12), firefox
is exploited to drop and execute via a shell the file
mozillanightly. The process mozillanightly first
downloads and executes mozillaautoup, then starts a
shell, which spawns several other processes. Next, the
information gathered in file netrecon.log is exfiltrated
and the file removed.

Attack F-1. In this attack (Figure 13), the nginx

server is exploited to drop and execute via shell the file
dropper. Upon execution, the dropper process forks
a shell that spawns several processes, which write to a
file and reads and writes to sensitive files. In addition,
dropper communicates with the IP of the attacker. We
report in the figure the graph related to the restoration
and administration carried out after the engagement, as
discussed in Section 6.5.

Attack F-2. The start of this attack (Figure 14) is sim-
ilar to F-1. However, upon execution, the dropper pro-
cess downloads three files named recon, sysman, and
mailman. Later, these files are executed and used which
are used to exfiltrate data gathered from the system.

Attack W-1. In this attack (Figure 15), firefox

is exploited twice to drop and execute a file
mozillanightly. The first mozillanightly process
downloads and executes the file photosnap.exe,
which takes a screenshot of the victim’s screen and
saves it to a png file. Subsequently, the jpeg file
is exfiltrated by mozillanightly. The second
mozillanightly process downloads and executes two

files: 1) burnout.bat, which is read, and later used to
issue commands to cmd.exe to gather data about the
system; 2) mnsend.exe, which is executed by cmd.exe

to exfiltrate the data gathered previously.
Attack L-3. In this attack (Figure 16), the file

dropbearLINUX.tar is downloaded and extracted.
Next, the program dropbearkey is executed to create
three keys, which are read by a program dropbear,
which subsequently performs exfiltration.

7 Related Work
In this section, we compare SLEUTH with efforts from
academia and open source industry tools. We omit com-
parison to proprietary products from the industry as there
is scarce technical documentation available for an in-
depth comparison.

Provenance tracking and Forensics Several logging
and provenance tracking systems have been built to mon-
itor the activities of a system [21, 41, 23, 22, 13, 45, 9]
and build provenance graphs. Among these, Backtracker
[25, 26] is one of the first works that used dependence
graphs to trace back to the root causes of intrusions.
These graphs are built by correlating events collected by
a logging system and by determining the causality among
system entities, to help in forensic analysis after an attack
is detected.

SLEUTH improves on the techniques of Backtracker
in two important ways. First, Backtracker was meant
to operate in a forensic setting, whereas our analysis
and data representation techniques are designed towards
real-time detection. Setting aside hardware comparisons,
we note that Bactracker took 3 hours for analyzing au-
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Fig. 14: Scenario graph reconstructed from campaign F-2.
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Fig. 15: Scenario graph reconstructed from campaign W-1.

dit data from a 24-hour period, whereas SLEUTH was
able to process 358 hours of logs in a little less than 3
minutes. Secondly, Backtracker relies on alarms gener-
ated by external tools, therefore its forensic search and
pruning cannot leverage the reasons that generated those
alarms. In contrast, our analysis procedures leverage the
results from our principled tag-based detection methods
and therefore are inherently more precise. For example,
if an attack deliberately writes into a well-known log file,
Backtracker’s search heuristics may remove the log file
from the final graph, whereas our tag-based analysis will
prevent that node from being pruned away.

In a similar spirit, BEEP [31] and its evolution Pro-
Tracer [37] build dependence graphs that are used for
forensic analysis. In contrast, SLEUTH builds depen-

dence graphs for real-time detection from which scenario
subgraphs are extracted during a forensic analysis. The
forensic analysis of [31, 37] ensures more precision than
Backtracker [25] by heuristically dividing the execution
of the program into execution units, where each unit rep-
resents one iteration of the main loop in the program.
The instrumentation required to produce units is not al-
ways automated, making the scalability of their approach
a challenge. SLEUTH can make use of the additional pre-
cision afforded by [31] in real-time detection, when such
information is available.

While the majority of the aforementioned systems op-
erate at the system call level, several other systems track
information flows at finer granularities [24, 8, 31]. They
typically instrument applications (e.g., using Pin [35]) to
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Fig. 16: Scenario graph reconstructed from campaign L-3.

track information flows through a program. Such fine-
grained tainting can provide much more precise prove-
nance information, at the cost of higher overhead. Our
approach can take advantage of finer granularity prove-
nance, when available, to further improve accuracy.

Attack Detection A number of recent research efforts
on attack detection/prevention focus on “inline” tech-
niques that are incorporated into the protected system,
e.g., address space randomization, control-flow integrity,
taint-based defenses and so on. Offline intrusion detec-
tion using logs has been studied for a much longer period
[15, 36, 19]. In particular, host-based IDS using system-
call monitoring and/or audit logs has been investigated
by numerous research efforts [57, 32, 47, 55, 18, 29].

Host-based intrusion detection techniques mainly fall
into three categories: (1) misuse-based, which rely on
specifications of bad behaviors associated with known
attacks; (2) anomaly-based [19, 32, 47, 20, 30, 11, 48],
which rely on learning a model of benign behavior
and detecting deviations from this behavior; and (3)
specification-based [27, 54], which rely on specifications
(or policies) specified by an expert. The main drawback
of misuse-based techniques is that their signature-based
approach is not amenable to detection of previously un-
seen attacks. Anomaly detection techniques avoid this

drawback, but their false positives rates deter widespread
deployment. Specification/policy-based techniques can
reduce these false positives, but they require application-
specific policies that are time-consuming to develop
and/or rely on expert knowledge. Unlike these ap-
proaches, SLEUTH relies on application-independent
policies. We develop such policies by exploiting prove-
nance information computed from audit data. In particu-
lar, an audit event

Information Flow Control (IFC) IFC techniques as-
sign security labels and propagate them in a manner sim-
ilar to our tags. Early works, such as Bell-LaPadula
[10] and Biba [12], relied on strict policies. These strict
policies impact usability and hence have not found fa-
vor among contemporary OSes. Although IFC is avail-
able in SELinux [34], it is not often used, as users prefer
its access control framework based on domain-and-type
enforcement. While most above works centralize IFC,
decentralized IFC (DIFC) techniques [59, 17, 28] em-
phasize the ability of principals to define and create new
labels. This flexibility comes with the cost of nontrivial
changes to application and/or OS code.

Although our tags are conceptually similar to those
in IFC systems, the central research challenges faced in
these systems are very different from SLEUTH. In par-
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ticular, the focus of IFC systems is enforcement and pre-
vention. A challenge for IFC enforcement is that their
policies tend to break applications. Thus, most recent ef-
forts [50, 38, 33, 53, 51, 52, 49] in this regard focus on
refinement and relaxation of policies so that compatibil-
ity can be preserved without weakening security. In con-
trast, neither enforcement nor compatibility pose chal-
lenges in our setting. On the other hand, IFC systems do
not need to address the question of what happens when
policies are violated. Yet, this is the central challenge we
face: how to distinguish attacks from the vast number of
normal activities on the system; and more importantly,
once attacks do take place, how to tease apart attack ac-
tions from the vast amounts of audit data.

Alert Correlation Network IDSs often produce myr-
iad alerts. Alert correlation analyzes relationships
among alerts, to help users deal with the deluge. The
main approaches, often used together, are to cluster sim-
ilar alerts, prioritize alerts, and identify causal relation-
ships between alerts [14, 43, 46, 44, 56]. Furthermore,
they require manually supplied expert knowledge about
dependencies between alert types (e.g., consequences
for each network IDS alert type) to identify causal re-
lationships. In contrast, we are not interested in clus-
tering/statistical techniques to aggregate alerts. Instead,
our goals are to use provenance tracking to determine
causal relationships between different alarms to recon-
struct the attack scenario, and to do so without relying
on (application-dependent) expert knowledge.

8 Conclusion
We presented an approach and a system called SLEUTH
for real-time detection of attacks and attack reconstruc-
tion from COTS audit logs. SLEUTH uses a main mem-
ory graph data model and a rich tag-based policy frame-
work that make its analysis both efficient and precise. We
evaluated SLEUTH on large datasets from 3 major OSes
under attack by an independent red team, efficiently re-
constructing all the attacks with very few errors.
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Abstract
Success stories in usable security are rare. In this pa-

per, however, we examine one notable security success:
the year-long collaborative investigation of more than
two terabytes of leaked documents during the “Panama
Papers” project. During this effort, a large, diverse group
of globally-distributed journalists met and maintained
critical security goals–including protecting the source of
the leaked documents and preserving the secrecy of the
project until the desired launch date–all while hundreds
of journalists collaborated remotely on a near-daily basis.

Through survey data from 118 participating journal-
ists, as well as in-depth, semi-structured interviews with
the designers and implementers of the systems under-
pinning the collaboration, we investigate the factors that
supported this effort. We find that the tools developed for
the project were both highly useful and highly usable,
motivating journalists to use the secure communica-
tion platforms provided instead of seeking workarounds.
We also found that, despite having little prior com-
puter security experience, journalists adopted—and even
appreciated—the strict security requirements imposed
by the project leads. We also find that a shared sense
of community and responsibility contributed to partici-
pants’ motivation to meet and maintain security require-
ments. From these and other findings, we distill lessons
for socio-technical systems with strong security require-
ments and identify opportunities for future work.

1 Introduction
On April 3, 2016, a coordinated network of dozens of
news organizations around the world [32] began publish-
ing stories based on a set of year-long investigations into
the uses of offshore funds by clients of the Panamanian
law firm Mossack Fonseca. The revelations contained
in these “Panama Papers” led to the ouster of Icelandic
Prime Minister Sigmundur David Gunnlaugsson [17],
and helped instigate investigations from Argentina and
Australia to Canada, Denmark, France, India, Indonesia,

Mexico, Pakistan, and others [42].
Facilitated by the International Consortium of In-

vestigative Journalists (ICIJ), the Panama Papers
project [31] represents a uniquely positive security case
study, wherein systems designed, implemented, and
managed by a handful of ICIJ staffers helped meet and
maintain the organization’s security goals for the project.
While it is impossible to state definitively that this (or
any) system could not have been compromised, ICIJ’s
efforts appear to have been successful in maintaining
their primary security goals, including: (1) protecting
the identity of the source of the Panama Papers’ docu-
ments (2) maintaining control of the documents within
their network of collaborators and preventing their early
public disclosure, (3) protecting the documents them-
selves from attackers (e.g., the companies, criminals and
political figures they implicated), and, finally (4) keep-
ing the investigation itself a secret for over a year. Re-
markably, all of this was achieved while supporting the
collaborative analysis of the documents by nearly 400
journalist-contributors worldwide, who communicated
regularly across time zones and language barriers.

In the computer security literature and beyond, users
are often referred to as “the weakest link” in security
systems (e.g., [26, 48, 50]). Recent case studies on ac-
tivist organizations and NGOs [21, 39, 43], for example,
highlight such security failures in context. Through ex-
amination of the Panama Papers project, then, we seek
to learn (1) what technical and human factors facilitated
the successful preservation of the project’s security goals
and, (2) what lessons can be drawn from this case study
to support the development of similarly effective pro-
cesses for both journalistic collaborations and secure, us-
able systems in general. For while the technical systems
used in the Panama Papers project did not necessarily in-
corporate all technical security best practices, our inves-
tigation helps illuminate how the systems’ hundreds of
users were nevertheless able to collaborate securely over
a long period of time.
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Figure 1: Blacklight. Screenshot of the document search plat-
form. Courtesy: ICIJ.

Figure 2: I-Hub. Screenshot of the collaboration and commu-
nication platform. Courtesy: ICIJ.

To uncover the factors that contributed to the Panama
Papers’ security success, we (1) analyze survey data col-
lected from 118 journalists involved in the project, and
(2) conduct in-depth, semi-structured interviews with the
designers and implementers of the technical systems and
collaborative processes underpinning the Panama Papers
collaboration. These systems1 included:

• Blacklight (Figure 1), a document-search plat-
form where contributing journalists could access the
leaked documents.

• I-Hub (Figure 2), a collaboration and communi-
cation platform where contributors formed interest
groups, shared discoveries, and exchanged ideas.

• Linkurious (Figure 3), a visualization system that
provided visual graphs of the relationships between
entities mentioned in the leaked documents.

From this survey and interview data, we identify sev-
eral key design decisions and deployment strategies that
appear to have contributed to the security successes of
the project.

1All screenshots were approved for publication by ICIJ.

Figure 3: Linkurious. Screenshot of the system that visualizes
links between entities mentioned in the Panama Papers docu-
ments. Courtesy: ICIJ.

For example, we were surprised to learn that project
leaders were able to consistently enforce strict security
requirements–such as two-factor authentication and the
use of PGP–despite the fact that few of the participants
had previously used these technologies. Our findings
suggest that journalists found the collaboration systems
provided so useful that they relied on them in spite of
sometimes onerous security requirements. We observe
that project leaders also frequently and consistently ar-
ticulated the importance of security measures, explic-
itly cultivating a sense of collaboration, mutual trust
and shared security responsibility among system users.
Moreover, this organizational buy-in for security mea-
sures went beyond rhetoric: in one instance, the orga-
nization bought and set up phones as second factors for
journalists who did not have them.

From these and other findings, we distill lessons and
recommendations for integrating computer security mea-
sures into future socio-technical systems. For example,
we recommend normalizing secure communication re-
quirements to reduce the decision-making burden they
may otherwise impose. In the Panama Papers project, for
example, making PGP a default tool and ensuring every-
one had a PGP key meant that participants did not need to
expend additional energy evaluating secure communica-
tion options. We also identify opportunities for future re-
search, such as comparing this to other security successes
to determine which factors are necessary and/or suffi-
cient to achieve similarly effective secure socio-technical
systems. Instrumenting technical systems to achieve a
more complete picture of activity and possible compro-
mises would also contribute to this understanding.
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In summary, we make the following contributions:
• We analyze quantitative survey data from 118 jour-

nalists involved in the Panama Papers project.
• We conduct semi-structured, in-depth interviews

with key stakeholders–including editorial and tech-
nical staff– involved in designing and implementing
the technical systems used in the collaboration.

• From these two datasets, we investigate the socio-
technical systems that supported the realization of
the security goals of the Panama Papers’ project.

• We identify an actively maintained and explicitly
articulated culture of security that leveraged peer-
oriented trust and accountability. We also identify
several technical security issues that may have been
present, but do not appear to have led to compro-
mise in this case.

• Based on this case study, we make recommenda-
tions for future socio-technical systems with strong
computer security requirements and identify oppor-
tunities for future work.

Overall, the Panama Papers project—which required
international collaboration among hundreds of journal-
ists over an entire year—is a unique case study that pro-
vides insight into the design and deployment of secure
communication and collaboration systems for diverse,
distributed organizations. To the best of our knowledge,
this is one of the first in-depth case studies of such a secu-
rity success. Though this paper is neither a comprehen-
sive description of the technical features of the Panama
Papers’ systems, nor a prescription for technical security
best practices, we believe the insights presented here–
taken in conjunction with existing technical security best
practices–provide a valuable foundation for secure col-
laborative system design.

2 Background
In this section, we provide specific background on the
Panama Papers project (unless otherwise noted, details
here are sourced from [12], published by ICIJ). Addi-
tional related work is discussion in Section 7.

The International Consortium of Investigative Journal-
ists (ICIJ) is a non-profit, selective-membership organi-
zation founded in 1997. Comprised of just under 200
investigative journalists in more than 65 countries, since
2012 ICIJ has obtained several caches of leaked docu-
ments that have led to collaborative investigations across
news organizations around the world (e.g., [28–30]). Yet,
in the words of one ICIJ staffer interviewed for this pa-
per, the Panama Papers project [31] — which lasted from
approximately May 2015 to April 2016 — was where the
organization’s work collaborative and analytical systems
“all came together.”

Consisting of over 11.5 million documents in dozens
of formats occupying 2.6 TB of disk space, the Panama

Papers dataset was by far the largest and most complex
that ICIJ had handled (the “Offshore Leaks” project, by
contrast, comprised only 260 GB [13]). While just one
staffer was devoted to research during ICIJ’s first major
leak project in 2011, by 2016, data and research positions
comprised half of ICIJ’s 12-person staff.

To deal with the enormous scale and complexity of the
data, as well as facilitate the large, globally distributed
team required to investigate it, ICIJ’s Data and Research
Unit built and/or refined several systems whose develop-
ment had begun during prior document-based projects.
Favoring open-source technologies, they chose Tesser-
act [7] to OCR the documents, Apache Tika [2] for doc-
ument processing, and Apache Solr [1] for indexing.
The UI for this last platform also became its namesake,
Project Blacklight [6] (see Figure 1).

ICIJ also developed a secure communication hub–
called Global I-Hub–by customizing OxWall [5], an ex-
isting open-source messaging platform (Figure 2). Fi-
nally, ICIJ licensed the Linkurious software [4] to visu-
ally graph relationships among entities that appeared in
the data (Figure 3).

3 Methods
To better understand the decisions that shaped the
Panama Papers’ suite of collaboration systems–as well as
identify factors that may have contributed to the success-
ful maintenance of the group’s security goals–we con-
ducted two studies: an analysis of survey data collected
from Panama Papers project contributors by the ICIJ, and
a semi-structured, in-depth interview with each member
of the ICIJ staff who had significant influence over the
security features and policies related to the Blacklight,
I-Hub and Linkurious systems.

3.1 Participants

All survey participants are investigative journalists who
actively participated in the Panama Papers project. All
interview participants currently work full-time for the
ICIJ and/or had a significant role in determining the se-
curity features and requirements of the collaboration sys-
tems used throughout the project by the journalists sur-
veyed. In the results presented here, participants com-
pleted either a survey or an interview.

Survey. Survey participants were 118 journalists work-
ing in 58 different countries representing every continent
except Antarctica. No other demographic data was col-
lected. This sample represents approximately 33% (118
of 354) of all non-ICIJ staff who worked on the project.

Interview. ICIJ consists of only twelve full-time em-
ployees. For this study we interviewed all five of the ICIJ
personnel with significant editorial or technical input on
the systems used during the Panama Papers project. In-
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Security Practice Unaware Never Few Occasionally Frequently
Passphrase 9% 21% 13% 15% 52%
Two-factor 16% 29% 14% 13% 42%
PGP 14% 34% 10% 17% 25%

Table 1: Familiarity with and Usage of Security Practices Prior to Project (N=118). Scale items were “Never heard of it before”
(Unaware); “Knew about it, hadn’t used” (Never); “Had used a few times” (Few); “Used occasionally” (Occasionally) and; “Used
frequently” (Frequently).

terview participants were two technical and two edito-
rial management staff of ICIJ, as well as the journalist
who received the original Panama Papers materials and
worked closely with ICIJ on the system requirements. Of
these five participants, two participants were women and
three were men. To maximize the insight gained from
these interviews, we designed the interview script us-
ing information from a careful review of public infor-
mation available about the systems (e.g., [10, 36]), as
well as insight from an IRB-approved background (pi-
lot) interview with an individual member of the Panama
Papers project who had intimate knowledge of the sys-
tems involved. The team then collected and iteratively
refined the major themes for the interviews, customiz-
ing their content based on the individual’s primary (self-
identified) role in the project as either an editorial (E) or
technical (IT) leader.

3.2 Materials

Materials consisted of a survey and two interview scripts,
described here and reproduced in Appendices A and B.

Survey Instrument. The survey was created by ICIJ to
investigate collaborating journalists’ use of the Black-
light, I-Hub, and Linkurious systems used during the
Panama Papers project, as well as their experiences with
the security of these systems. In this paper, we focus
on the 10 survey questions related to the use and secu-
rity of the systems provided to journalists by ICIJ (see
Appendix A). In addition to these security-related ques-
tions, the survey also captured information about the
value to journalists of other services provided by ICIJ.

Interview Scripts. We created two distinct, but mostly
overlapping interview scripts for the editorial and tech-
nical interview participants. Topics for both groups
included questions about the participants’ background,
their experience with the overall system, system func-
tionality, any training they offered as part of the project,
any breaches or failures they were aware of, and the po-
tential scalability of the system. Additionally, we asked
editors about how they selected and recruited journalists
for project participation. Please see Appendix B for the
complete interview scripts.

3.3 Procedure

Survey. The survey was conducted between July 28th
and August 15th, 2016 by the ICIJ. Participants com-
pleted the survey via a Google form and took around 10
minutes to complete. Participants could choose to an-
swer the survey anonymously or provide their name if
they wished. ICIJ provided us with the survey responses
as a de-identified dataset. Participants were not provided
an incentive to take the survey.

Interview. We interviewed participants between Decem-
ber 2016 and January 2017. Interviews typically lasted
about one hour and were conducted via telephone/online
video/voice conference (four), with one taking place in
person. All participants spoke fluent English and were
interviewed in English. Participants were not provided
an incentive to participate in the interview.

3.4 Data Preparation and Analysis

Once all interviews were complete, we transcribed the
audio recordings, producing 96 pages of text. Using an
inductive process we completed an initial round of qual-
itative coding to identify key themes, as substantive cat-
egories emerged from the data via grounded theory anal-
ysis [19]. These themes were then evaluated and refined
through group discussion among all researchers, with a
goal of capturing the core variables constituting our par-
ticipants’ experiences.

3.5 Ethical Considerations

Our entire protocol was IRB approved. Furthermore,
because of the sensitive nature of our interview topic,
we took extra precautions to maintain the privacy and
anonymity of research participants. We explicitly did not
request information about or publish details about secu-
rity protocols that could compromise source identities,
sensitive information, or future work.

All interview participants agreed to be audio recorded
during the interview and answered all of the questions
in the interview script. We stored and transmitted audio
recordings only in encrypted form and used de-identified
transcripts for the majority of the data analysis.
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4 Results
In this section, we present results from the survey and
semi-structured interviews.

4.1 Survey Results

Apart from de-identification, the survey data analyzed
below is a summary of the un-redacted responses
(n=118) and comments (n=57) from the 118 journalist
contributors who completed the ICIJ survey. Where rel-
evant, we have included representative comments along-
side the survey results. We identify quotes using only a
letter (J for journalist) and participant number.

4.1.1 Prior Familiarity with Security Practices

The challenge of meeting security goals when work-
ing with non-expert users has been widely documented
(e.g. [8]). To evaluate the significance of the Panama Pa-
pers project as a “security success story,” we analyzed
survey results to determine whether prior security exper-
tise of the journalist contributors may have been a factor.

In fact, in response to a question about prior familiarity
with digital security practices (see Table 1), almost half
of participants indicated that they were “Unaware” of or
had “Never” used PGP or two-factor authentication prior
to this project (47% and 45% respectively).

Familiarity with passphrases (i.e., passwords created
by concatenating multiple dictionary words, along the
lines of [52]) was somewhat greater, with only about a
third (31%) reporting that they were “Unaware” of or had
“Never” used a passphrase. More than half (52%) of par-
ticipants reported that they frequently used a passphrase
prior to participation in this project, while 42% reported
they frequently used two-factor authentication. Only
one-quarter (25%) reported that they frequently used
PGP prior to participation in the Panama Papers project.

Given journalists’ limited familiarity with strong secu-
rity practices prior to the Panama Papers project, we note
that ICIJ’s decision to mandate PGP for all collaborators
is especially striking. We discuss the implications of this
further in Section 5.

4.1.2 Perceived Difficulty of Security Compliance

Each of the three primary systems journalists used for
this project —Blacklight, I-Hub, and Linkurious—had a
distinct login that required two-factor authentication for
every sign-on. Moreover, every journalist on the project
was required to use PGP for password-reset and some
system notifications. Despite relatively limited prior ex-
posure to some of these security practices, however, par-
ticipants reported that they perceived it to be relatively
easy to comply with these requirements.

On a seven-point scale from 1 (“Super easy”) to 7
(“Extremely Hard”), participants’ overall mean rating
was 3.13 (see Table 2), with the majority (63%) rating

Super Easy 1 15%
2 31%
3 17%
4 14%
5 13%
6 7%

Extremely Hard 7 3%

Table 2: Perceived Difficulty of Security Compliance
(N=118). On a scale from 1 - 7, where 1 is “Super easy” and
7 is “Extremely hard”, how challenging was it to comply with
the digital security requirements?

compliance with the security requirements on the “easy”
side of the scale. As one participant put it:

I am kind of technologically challenged, so the
fact that I was able to navigate these security
features means it was probably as simple as it
could be while still being effective. (J11)

Meanwhile, only 10% of participants (12/118) rated
the difficulty of complying with security practices as ex-
tremely hard (“7”: 3% or “6”: 7%).

Participants’ low difficulty ratings of complying with
these security requirements is especially surprising given
that they include use of PGP, which prior work indicates
is notoriously difficult to use (e.g., [40, 60]). We dis-
cuss possible explanations for these results—including
the participants’ trust in the team leading the project—in
subsequent sections.

4.1.3 Perceived Utility of ICIJ Technology Services

Research indicates that motivation can play a significant
role in the adoption of security practices in organizations
(e.g., [23, 54]), and is increased if users find a system
useful—or even necessary—to achieving their primary
work objectives [57].

When rating the utility/necessity of the technology
services provided by ICIJ (summarized in Table 3), the
vast majority of participants reported that the technology
was essential (83% for data and tools and 78% for co-
ordination). Though less than half of participants (43%)
reported that the training was essential, almost all partic-
ipants (95%) rated the training as at least “useful.” None
of the 5% of journalist-contributors who did not find the
training useful commented on the training, though others
did comment specifically on their interest in additional
training. For example:

I would like to receive more training at digital
security tools. It was really useful. I learned
for myself how to encrypt my computer and
find out how vulnerable was my information,
due to my lack of expertise using digital secu-
rity tools. (J81)
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Service Unnecessary Not Useful Useful Very Useful Essential
Data 0% 0% 4% 13% 83%
Coordination 0% 0% 8% 14% 78%
Tools 0% 0% 4% 13% 83%
Training 2% 3% 23% 29% 43%

Table 3: Necessity and Usefulness of Technology Services Provided by ICIJ (N=118).

Service Never Daily Weekly Monthly
Blacklight 0% 64% 33% 3%
I-Hub 3% 41% 48% 8%
Linkcurious 19% 4% 45% 31%

Table 4: Frequency of Use of ICIJ Technologies (N=118).
Frequency of use during the three months preceding publica-
tion; “monthly” includes responses “every now and then.”

4.1.4 Frequency of Use of ICIJ Technologies

In order to assess how well contributors’ reported useful-
ness of the ICIJ systems matched their actual behaviors,
we analyzed survey data on how frequently journalists
used Blacklight, I-Hub, and Linkurious (see Figures 1-
3). These results are summarized in Table 4.

The majority of respondents (64%) indicated that
they used Blacklight—the document-search platform
where contributing journalists could access the leaked
documents—at least daily during the three months prior
to the project launch date in April 2016. One third (33%)
used Blacklight at least weekly, and only 3% used it
monthly.

The vast majority of respondents (89%) used I-Hub—
the collaboration and communication platform with fo-
rum and chat features—daily or weekly. Only 8% used
I-Hub only monthly, while just 3% reported never having
used it.

By contrast, a significant portion (19%) of respondents
indicated they had never used Linkurious—the system
that provided visual graphs of the relationships between
entities mentioned in the leaked documents. About a
third (31%) said they used it monthly and nearly a half
said they used it weekly. Only 4% used it daily.

4.1.5 Collaboration Outside Home Organization

A key objective for ICIJ in facilitating the Panama Papers
project was to encourage inter-organizational collabo-
ration among participating journalists, to maximize the
quality and impact of the resulting publications. The de-
gree of collaboration therefore offers insight into both the
utility and usability of these systems. Given the global
distribution of the journalist-contributors, collaborative
data management strategies like using local-only servers
or in-person meetings, were not feasible. These circum-
stances therefore also gave rise to specific technical secu-
rity requirements for inter-organizational collaboration.

Survey participants were asked to rate how much they
collaborated outside of their own organization on a scale
of 1 - 7 (where 1 indicated “I worked independently” and
7 indicated “I’ve collaborated more than ever”). Nearly
one third (32%) of participants indicated they had collab-
orated with journalists outside their organization “more
than ever” during the Panama Papers project, and the vast
majority of participants (74%) responded on the positive
side of the scale (5, 6, or 7), with a mean rating of 5.33.
Only 13% indicating lower levels of inter-organizational
collaboration by responding on the negative side of the
scale (1, 2, or 3). This data is summarized in Table 5.

4.1.6 Contributor Suggestions about Security

The survey data we analyzed also included one open-
ended question: “Do you have any suggestions or com-
ments about the digital security tools and requirements
for this project?” Fifty-seven contributors offered open-
ended feedback. While the themes of these comments
varied, the most frequent theme was a feature request
(14% total, of which more than half were requests for
additional security features). The second most common
themes were compliments (13%), statements affirming
the need for security (5%), and requests for additional
training (4%). Notably, only 3% of comments described
the project’s security requirements as a barrier to work.

For example, several participants (5) specifically men-
tioned issues around phone-based authentication.

The Google Authentificator [sic] tool... when
I changed my phone (twice during the investi-
gation) I had to communicate with the support
team to reboot the passwords. (J118)

At certain times security turned into a bar-
rier into getting more done... Every time a
cellphone died or went missing (frequently) I
needed to reconfigure authentication. (J68)

However, another participant noted that while security
was a barrier, it was worth the slow-down:

It’s always a pain and even slowed us down.
But this work is important and anything to
keep it secure is fine. (J78)

Finally, others explicitly called-out the need for secu-
rity and even praised ICIJ’s focus on it:

I like the fact that ICIJ considers security as a
priority. Maybe ICIJ can explore other ways to
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Independent 1 3%
2 4%
3 6%
4 14%
5 25%
6 17%

Collaborative 7 32%

Table 5: Collaboration Outside Own Organization (N=118).
Scale items were “I worked independently” (1) and “I’ve col-
laborated more than ever” (7).

find log in ways that will not discourage poten-
tial users while at the same time putting secu-
rity of our work a priority. (J109)

Not been an expert, I believe the ICIJ team has
done a fantastic work on security. (J111)

As we will discuss further in Section 5, this trust
placed by contributors in the ICIJ team likely contributed
to that team’s ability to mandate security requirements.

4.2 Results from Interviews

We now turn to a discussion of our interview results, ac-
cording to the topics from the interview script. Where
relevant, we include verbatim quotes from participants
to illustrate our findings. We identify quotes using only a
letter (IT for technical staff, E for editorial staff, includ-
ing the journalist who originally received the Panama Pa-
pers documents) and participant number.

4.2.1 Security Goals and Threat Model

Because the documents at the center of the Panama Pa-
pers project related largely to tax evasion, government
actors—who could expect to recoup lost revenue through
their exposure—were explicitly not considered to be part
of the threat model for the project. That said, the compa-
nies, criminals (such as tax evaders, money-launderers
and drug-traffickers), and politicians who were impli-
cated in the documents were all identified as actors who
could potentially confiscate locally-held data as well as
threaten, imprison ,or even kill the journalists involved
and/or block publication or access to the work. Given
the size and resources of ICIJ, the primary security goals
prior to publication therefore centered on protecting the
source of the documents, maintaining the secrecy of the
project, and maintaining the availability of the Black-
light, I-Hub, and Linkurious systems.

While our research participants only explicitly men-
tioned DDoS attacks and inadvertent project expo-
sure as risks, training documents provided by par-
ticipants indicate a range of security concerns, such
as: spyware/malware, network monitoring, weak pass-
words/password reuse, physical interception of data (via
locally-stored, unencrypted data or printouts) and legal

attacks via third-parties. For example, a training docu-
ment explicitly warned contributors against using third-
party applications to translate, OCR or visualize the
Panama Papers data, and encouraged storing local data
from the project only in encrypted, hidden volumes.

These concerns informed the system design in myr-
iad ways. First, both the sheer volume of the data–and
the goal of protecting its source–led in part to the de-
cision to use a centralized, remotely-accessible method
of sharing the documents, rather than providing contrib-
utors with individual hard drives, as ICIJ had done in
previous projects. As one ICIJ staffer put it:

This is sensitive data that has been leaked to
ICIJ for a reason, and that those sources are
trusting us with being. . . guardians of that in-
formation and protectors. So it’s not for us to
give away to anybody, not even a trusted col-
league. (E2)

Instead, the centralized system allowed ICIJ to grant
all journalist contributors access to the documents, while
still allowing ICIJ to monitor–and restrict–the volume of
data that they could download from the system.

Second, the lack of a nation-state adversary–in con-
junction with the specifics of Amazon Cloud’s contrac-
tual agreements–made cloud-hosting an option. It was
also a technical requirement, due to the volume of data
involved and the need for substantial pre-processing.

4.3 System Design

Informing and interacting with ICIJ’s security goals for
the project were the organization’s driving journalistic
objectives: supporting high-quality, high-impact report-
ing and publications. Due to the enormous volume of
data and documents involved (2.6 TB consisting of about
11.5 million documents), as well as their global na-
ture, remote search and collaboration were essential—
priorities that were clearly shared by both the editorial
and technical staff:

The needs are... communicate, and search doc-
uments, and to do it collaboratively. (E3)

One of the more important impacts was that
journalists discovered how convenient, power-
ful and good it is to collaborate. . . I think that
the I-Hub contributed to this: to teach them
how to interact, and it is a really good thing to
share knowledge, share documents, share data,
and build these networks. (IT2)

One reason the multi-national collaboration was es-
sential was the variety of formats and languages within
the source material, especially since participants were
warned–through training, tip-sheets, and regular messag-
ing from project leaders–against using third-party tools
like Google Translate due to security concerns. ICIJ’s
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tools were therefore crucial to effective collaboration
across timezone and language barriers:

With cultural barriers, with language barriers
and with time zones and all that... I think it was
just the speed and the friendliness... it made
11 million documents look easy, look doable,
and look—because it was easy and friendly to
use, it became addictive to the reporters doing
searches... and I like that. (E2)

Indeed, explicitly cultivating collaboration was a key
design goal of I-Hub in particular, and it seemed to work:

You cannot collaborate on email, or encrypted
email, or Signal. You need a real space that
feels comfortable and friendly and it’s colorful,
and [I-Hub] was. (E2)

The forum was never as used and crowded as
this time... It felt like everybody was sharing
[and] working very collaboratively. (E1)

One reason that I-Hub may have been so easily
adopted was its explicit similarity to familiar technolo-
gies (see also Figure 2):

You can upload files, you can “like” a topic.
You know, which is something that we’re all
so used to in the Facebook world. But that
simple kind of “liking” thing also helped re-
porters bond together and encourage one an-
other. And they were not going crazy with the
likes, you know, most of the time people were
not “liking” things, they were actually con-
tributing useful information. But sometimes,
you know, when somebody has made an im-
portant discovery...it just helped tremendously
with providing a sense of team. (E2)

As we discuss further in Section 5, the fact that the
ICIJ explicitly cultivated and supported such a collabo-
rative culture—and that this collaboration was core to the
success of the project itself—helped lay the groundwork
for users’ acceptance of strong security requirements.

4.3.1 Selecting Journalist Collaborators

In line with prior research on investigative journalists
(e.g., [46]), our survey results indicate that the major-
ity of the journalist contributors to the Panama Papers
project were not security experts. Since any member of
the collaboration is a potential “weakest link”, we exam-
ine how these collaborators were chosen.

While ICIJ explicitly sought project contributors
based in as wide a range of countries as possible, the core
group of journalists (which numbered approximately 100
as of September 2015 and grew to nearly 400 by project
launch in April 2016) were all existing ICIJ members.

Interestingly, members who brought in non-member col-
leagues were considered responsible for disseminating
and enforcing security protocols set by ICIJ:

We would reach out to our member and trusted
person... then the trusted journalist talks to a
very small group of people in his own media
organization... And then, if they get assigned
to do the story, then we would train them, we
would give them access to platforms... It’s up
to the trusted member and reporter to enforce
all the rules and regulations with any person
that that reporter bring on board. (E2)

Our interviews suggest that explicitly leveraging trust
relationships within an established social network helped
maintain the project’s security requirements even as new
members joined. While in practice this resembles a “web
of trust” model, we note that unlike some traditional
web-based implementations, each human “link” in this
chain had a strong-tie connection to their closest link.

4.3.2 System Security

We now turn to a discussion of the security decisions
made in the design and maintenance of ICIJ’s systems,
based on our interviews.

Technical Security. Key security aspects of all systems
includes careful vetting of the source documents (includ-
ing scanning them for known malware), deploying well-
tested HTTPS, and requiring two-factor authentication
for each of the three core systems.

The team experimented with multiple versions of two-
factor authentication, including virtual machines (dis-
carded as too complex) and browser extensions (dis-
carded as insufficiently secure). Eventually, they settled
on a smartphone-based app solution, which proved scal-
able despite initial concerns:

You have to have a smartphone. And, we
had a little discussion about, “Is this going to
work?” Because Africa is big on cell phones,
but mostly they’re not smartphones... And
then, when we started adding partners to the
Panama Papers, everybody pretty much ended
up having a smartphone. (E3)

Secure Defaults. One striking security decision was
making PGP-encrypted email the default communication
method for essential system functions. By summer 2016,
participants were required provide a PGP key in order to
obtain system credentials (including reset/recovery). To-
day, all notification emails from those systems are also
encrypted by default.

Initially, however, contributors could receive pass-
word rest information via HushMail HushMail, and un-
encrypted system notifications still included details like
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the summary of an updated thread. As security concerns
increased post-launch, however, all details were elim-
inated from notifications until default PGP encryption
could be implemented. Yet we note that the security cul-
ture among these journalists was strong enough by this
point that they were willing to tolerate several months of
reduced functionality for security purposes.

Achieving these secure defaults, however, was not the
result of voluntary collective action: at some point, ICIJ
mandated that all contributors create and use a PGP key:

It was not a choice... If somebody did not get
themselves a PGP, he did not get access to the
forum and to the I-Hub. (E1)

A helpful side-effect of this requirement, however,
was that it became possible for PGP-encrypted email to
become a default for communication even beyond the I-
Hub—and it was, even for seemingly non-sensitive ma-
terial. As one core editorial affiliate put it:

We had a rule in our team that whatever is
about the Panama Papers—and if it’s only
about, I don’t know, “Let’s meet at nine,
okay?” then we encrypt it because we encrypt
everything that has to do with the Panama Pa-
pers. So that was our rule... the automatic step
was to encrypt. (E1)

By creating secure defaults—especially ones that were
useful outside of the project’s infrastructure—the secu-
rity achieved within the Panama Papers project systems
also enhanced journalists’ level of security beyond them.

Human Support and Communication with Users.
Both technical and editorial staff emphasized the incre-
mental was in which security features were rolled out.
Moreover, they highlighted that security mandates from
ICIJ were counterbalanced by increasing user investment
in the systems, supported in part by open feedback chan-
nels and the addition of user-requested features:

I said, “If you have any suggestions or any
questions regarding the platforms, email me.”
(E3)
We also encouraged the community to tell us
through the Global I-Hub. There was a group
called “data geeks” or something like that, and
we encouraged them to tell us where we could
improve. (E3)

ICIJ also provided accessible (human) technical sup-
port:

We also have a support channel... So we’re
always assisting them all the time with their
technological needs... Some of them forgot to
change their phones... [and] didn’t know how
to re-install or how to reconnect with a new au-
thenticator. (E2)

The result was a pace of security upgrades that
matched users’ investment in and need for the systems:

So we have people to teach them how to [set
up their PGP key], we have a support team
that can help them. . . It went well because they
were interested in keeping the access to the
[platform]. (IT2)

In addition, these open lines of communication led to
broad-based improvements in the platforms’ function-
ality. For example, the user-suggested functionality of
“batch search” was mentioned by four out five interview
participants as one of the most valuable features of the
Blacklight system:

I was very glad that we could do batch searches
in the end, which is a huge help. (E1)

Security Disagreements. Of course, security-related
disagreements did arise. As security concerns increased
post-launch, for example, reliance on the more usable
Hushmail was scrapped in favor of PGP:

It’s much easier to create a Hushmail account.
It’s like creating a Google account. You know,
like it takes that long [snaps finger]. Like noth-
ing. I think that they say it’s an encrypted sys-
tem end-to-end and other things, but the reality
is also that you don’t know. (E2)

At one point, I approached my managers and I
said, look, everyone has serious doubts about
HushMail... we just need to change our policy.
(IT1)

ICIJ technologists also considered using CryptDB [3,
49], to encrypt the source documents while keeping them
searchable. Yet while both primary technologists agreed
that CryptDB was not a good fit, their reasoning around
this decision was different. While one participant cited
a mismatch in threat model, another had concerns about
CryptDB’s maturity:

I don’t think that there is any benefit in en-
crypting data at rest. We had this discussion
early on in the project. One of the propos-
als was to use an encrypted version of MySQL
[CryptDB]... the passwords have to be stored
on the servers themselves... So what’s the
point? (IT1)

We tried to use CryptDB, which is an en-
crypted database, but it was a new project and
it didn’t work... because the project was not
stable enough. (IT2)

4.3.3 Security Weaknesses

Incidents. Our interviewees knew of no system breaches
that took place during the course of the Panama Papers
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project. Prior to launch, there was only one occasion
when system monitoring suggested a possible attack:

We had to ask one of our partners to bring
his computer because we were detecting some
weird requests to our systems. (IT2)

Once the partner in question changed machines, the
requests stopped, though the underlying cause was never
determined (the device was reviewed by the partner’s or-
ganization, but no report was made to ICIJ).

Two security incidents occurred post-launch, both
centering on the exposure of the systems’ URLs, which
had been intentionally kept secret. Due in part to the cost
of more robust DDoS protection, project leads opted to
maintain endpoint secrecy:

If someone gets the location of the servers,
they can do several attacks... We are pre-
pared for this, for brute force [authentication]
attacks... But yeah they also can send a DDoS
attack, for example... So we have to protect the
location, the server location. (IT2)

However, this “security by obscurity” approach suf-
fered from an accidental leak:

For example, we have requested that no URLs
were ever shared or showed on television, like
URLs of our platforms. And [partner organiza-
tion] forgot about it and shared URLs on tele-
vision... When this thing happened with the
URL, we had to basically disconnect everyone
from the platform and change the URL. (E2)

Though exposure of the URL only enabled attacks
on system availability/uptime—knowledge of the URLs
alone did not provide access to sensitive data—ICIJ was
concerned enough about these exposures that they chose
to take the systems temporarily offline in order to change
their locations.

Technical Limitations. Though ICIJ and its collabora-
tors were able to maintain the project’s security goals,
our study suggests several potential technical security
limitations in their approaches.

For example, while ICIJ focused heavily on preven-
tative security measures (e.g., ensuring encrypted com-
munications), systematic approaches to dealing with po-
tential security incidents seemed limited. While some
networking monitoring and logging was available for
network activity and document downloads, no system-
atic approaches to detecting or responding to potential
data exfiltration events or other system breaches were de-
scribed by our interview participants. For example, the
discovery of an accidentally broadcast system URL was
handled in an apparently ad-hoc way.

We also observe a strong focus on communications
security (e.g., PGP) but less focus on endpoint secu-

rity. While ICIJ was in a position to mandate secu-
rity measures around communications, their influence on
endpoint and operational security was limited to occa-
sional training opportunities and “best practices” docu-
ments shared with contributors that addressed password
management, third-party tool use, use of new/unfamiliar
networks and basic threat modeling. They also rec-
ommended (and provided instructions for) creating en-
crypted hidden volumes for project documents stored lo-
cally. However, we do not know of any measures taken
to verify adherence to these guidelines by participants.

ICIJ may have deployed additional security measures
that we did not learn about in our interviews, but we high-
light these potential weaknesses to provide context for
the overall success of the project. We encourage future
system designers to take the lessons from this paper in
conjunction with existing security best practices.

4.4 Results Summary

In summary, we found that a large group of geographi-
cally and culturally diverse journalistswere able to col-
laborate securely over roughly a one-year period. To
achieve their security goals, they relied on established se-
curity mechanisms such as PGP and two-factor authen-
tication, as well as less systematized security practices
like a social-network approach to adding members.

Overall, our survey results suggest that participants
felt that complying with the security requirements of
these systems was relatively easy, in spite of the fact
that a large proportion of them had never used secu-
rity technologies including two-factor authentication and
PGP prior to the project. This is even more striking given
that the vast majority of participants reported using the
Blacklight and I-Hub systems daily in the 3 months prior
to the project launch, each of which required a separate,
two-factor login for every sign-on.

Our interviews, meanwhile, offer insight into both the
core system requirements of the Panama Papers project,
as well as the specific ways—such as strong HTTPS,
two-factor authentication, a PGP/encrypted email de-
fault, and centralized control of the documents—the
project’s security goals were met. Through secure de-
faults and strong trust relationships reinforced through
these collaborative systems, the limited security inci-
dents were well-tolerated and compromised none of
ICIJ’s major security goals for the project.

5 Discussion
We now step back and reflect on the contributing factors
to the Panama Papers project’s security success, and re-
flect on how these factors may usefully inform the design
of secure journalistic collaborations, as well as usably se-
cure socio-technical systems more generally.
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5.1 Factors for Success

Useful and necessary system functionality allowed for
security mandates. A key factor in the success of
ICIJ’s approach was that journalists found their systems
both useful and necessary, independent of their security
properties. Journalists needed these systems for their
core functionality (i.e., access to the source documents
and collaboration with their peers), making strong secu-
rity requirements (such as two-factor authentication and
PGP) acceptable trade-offs to gain and maintain access.
ICIJ staff were aware of this dynamic:

You have to keep a balance between function-
ality and security. Because if you start with
all the good practices in security at once, jour-
nalists will react to that and they will resist it,
because it will be less functional. (IT2)

Our findings here align with research from man-
agement science, such as the Technology Acceptance
Model [15, 56, 57], which argues that successful technol-
ogy adoption in organizations depends not on mandated
compliance, but rather on (1) usefulness and (2) ease
of use. These factors a blend of both “social influence
processes” (e.g., working norm, voluntariness, and im-
age) and “cognitive instrumental processes” (e.g., job
relevance, output quality, perceived ease of use) [57].
Among these, however, “usefulness” (defined as the
user’s perception that the new technology will enhance
their job performance and output) was found to be the
most powerful determinant of user acceptance.

Normalized security practices and secure defaults.
The Panama Papers project leads actively cultivated a
security-conscious culture in which secure communica-
tions were the norm. This norm helped project partic-
ipants avoid the need to make granular decisions about
which interactions warranted secure treatment. Several
of our interview participants clearly identified the value
of this approach. For example:

In this project we just routinely encrypted ev-
erything we wrote... Because we were just
used to doing it and that helped us a lot as a
team, that we understood that it’s not such a
big thing, it’s not such a pain in the ass—but
you’re always on the safe side of it. (E1)

By contrast, prior work [18] on email encryption adop-
tion in an activist organization identified issues around
encryption of non-sensitive messages. By universally en-
crypting all project-related communication, the Panama
Papers team avoided such social complexities.

Usable alternatives for secure communication min-
imized workarounds. The ICIJ’s systems supported
multiple forms of secure communication, giving users

flexibility depending on their needs and task. For ex-
ample, I-Hub enabled secure group communication:

For colleagues who are not that experienced
with PGP or Signal or whatever...[the I-Hub is]
a good way to write secure emails or messages
to each other. (E1)

Where ICIJ systems didn’t meet a particular need,
however, contributors often reached for tools mandated
by ICIJ (e.g., PGP) or other secure alternatives, thanks
to the overarching security culture of the project, and the
familiarity with and trust in these tools that the project
provided:

I don’t like using PGP on the cell phone partic-
ularly. So then I would mostly switch to other
channels, like Signal. (E1)

System designers, meanwhile, were conscious of
users’ primary task objectives and strove to minimize the
friction of security security processes:

It had to be as secure as possible, and still al-
low working with it without doing a three-day
procedure to get into the I-Hub. (E1)

Cultivating mutual respect and reciprocity. The
Panama Papers project systems were the product of an
iterative design process within a particular community
(journalists) and use case (i.e., facilitating global collab-
oration around a large trove of documents). This gave
the ICIJ team confidence that the systems honored both
their needs and values as an organization, and those of
the journalist-contributors:

It’s great, it’s just software that is designed for
journalists. . . and that’s all we care about. (E2)

Panama Papers is the project where we tried to
apply all the lessons learned from the previous
projects. (E3)

ICIJ also maintained a careful balance between man-
dating security protocols and adding user-requested fea-
tures (e.g. batch search), creating a sense of bal-
ance and equal partnership between the organization and
journalist-collaborators:

Once you have users, users will ask for things.
They’re helpful, you know? So, batch search-
ing feature, I did not plan that. But people
started asking “Would it be possible?” And it’s
like, “Ah, sure. This is a great idea.” (E3)

This culture of mutual interest and respect helped
users accept–and even support–ICIJ’s strong security re-
quirements.

Consultation with security experts. The ICIJ team
chose third-party services carefully, based on advice
from outside security experts:
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In the beginning we talked a lot to security ex-
perts. We did not really tell them what we had,
of course not. But we needed to know more
about the whole issue and the [organization]
explained a lot about it worked... and why it’s
secure... So I know this seemed to make sense,
and we spoke to other experts and they said
“Yeah, you’re on the safe side with that.” (E1)

For example, while there were initial questions about
using cloud hosting, Amazon Cloud Services’ contract
promises to inform customers of government access re-
quests, allaying some fears:

Amazon has quite a good reputation when it
comes to ensuring the confidentiality of the
customers...Their policy is to inform organiza-
tions if a state agency has requested a form or
information from them. (IT2)

Hushmail, on the other hand, was eventually aban-
doned due to uncertainty around its security properties:

I dont even know whether [Hushmail] has end-
to-end encryption. It’s just completely...non-
transparent. It’s much better to use PGP. (IT1)

Although the technical security measures deployed by
the ICIJ were not necessarily complete, we note that they
were thoughtfully constructed. We encourage future sys-
tem designers to similarly engage security experts and/or
rely on current security best practices as much as possi-
ble during the design process.

Leveraging social relationships to build trust and
shared responsibility. Strong trust and social relation-
ships were integral to the Panama Papers’ collaboration
from the start: the initial group of contributers were all
ICIJ members, and becoming a member requires the ex-
plicit support of multiple existing members.

In addition to leveraging their strong ties with existing
members, actively cultivating a collaborative, trust-based
ecosystem among the non-ICIJ journalists helped secu-
rity practices permeate the otherwise disparate and phys-
ically disconnected group. In addition, frequent project
updates and security reminders from the ICIJ team–as
well as specific design elements of I-Hub–helped further
develop this sense of team and trust:

[On the I-Hub,] the small things, like the fact
that there’s an avatar and you can see the face
of the journalist, and you can have direct com-
munications and all that. . . it helps with trust.
It helps with bonding. (E2)

This observation echoes prior work [37] which found
that users make security decisions motivated in part by
a desire to maintain social work relationships. Indeed,
social pressure can nudge users towards security com-
pliance even if that compliance is burdensome or time

intensive [48]. Prior work [33] has also found that a high
rate of in-group communication fosters greater trust. Our
findings suggest that these factors all played in a role in
the security success of the Panama Papers project.

Sustained emphasis on security. Project leads at ICIJ
also clearly and frequently communicated the impor-
tance of security and what was at stake:

In every editorial note I would write, I would
remind [contributors] about some security
measure, how it takes one of us to make a mis-
take for the whole thing to basically fall to hell,
and you would lose an entire year of work, and
we would be—a joke basically. Nobody would
ever come to us again with any confidential in-
formation. So, I would remind them so they
didn’t feel comfortable and too confident. (E2)

Organizational resource commitment. A key success
factor was the ICIJ’s willingness to commit resources to
developing useful and secure systems:

[Collaborating] requires a team, and it re-
quires systematic work. . . If there’s no com-
pelling need, journalists are not going to use
it. . . It has to be enforced also by the managers
and embraced by everyone. (E2)

Though stakeholders sometimes disagreed, develop-
ers actively sought management buy-in for creating long-
term security solutions. For example:

There is a tendency... to have this kind of
quick solution and where it puts the load of the
problem onto staff. The solution my managers
proposed [for password reset issues].. created
a huge support burden... Selling [long-term
technical solutions] is a little difficult to direc-
tors... But when you do implement it, it works
beautifully I think, and becomes an example to
other organizations. (IT2)

5.2 Lessons and Opportunities for Future Research

For the computer security research community, this
case study represent a rare example of security success,
achieved despite many complicating factors. Examples
include: mandating important but notoriously inconve-
nient and/or hard to use protocols, like PGP [60]; con-
tributors’ lack of prior experience with the mandated
security practices; participants’ wide geographic dis-
tribution and diverse native languages. Yet ICIJ was
able to mandate their security requirements, and hun-
dreds of contributing journalists adhered to—and even
applauded—those requirements, allowing the project’s
security goals to be met. While the systems used in
the Panama Papers project are not appropriate for ev-
ery project, organization, or security scenario, we believe
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this example offers important insights for those wishing
to design similarly effective systems, especially from a
human-centered perspective.

Lessons for Journalistic Collaborations. A key fac-
tor in the Panama Papers’ security success was the rep-
utation ICIJ had built for exclusive, high-impact investi-
gations. Journalists approached for the Panama Papers’
project were thus strongly incentivized to meet ICIJ’s
security requirements, which were required to gain ac-
cess to the systems and the documents they held. The
risk of being left out of future projects or ostracized
by colleagues and partner organizations made the cost
of security non-compliance particularly high. Similarly,
the importance of clear communication around security
suggests that tying security requirements to demonstra-
ble professional advantage, along with clear expectation-
setting (including negative consequences) are key factors
in motivating journalists to adopt and maintain even po-
tentially onerous security practices.

Recommendations for Socio-Technical Systems. Prior
work shows that employees will often sidestep secu-
rity requirements to focus on their primary tasks [24].
As the Panama Papers project demonstrates, however,
when security measures are integral to those tasks, they
may be better honored by users. This suggests that
security measures perceived as a “bolt-on” to existing
systems—especially if organizational leaders are not vo-
cal about their importance—may engender avoidance be-
haviors from users. Similarly, insufficient attention by
system and security experts to the specific work needs
and task priorities of users may lead to brittle systems:
tools and protocols that do not offer multiple methods
for meeting a particular security requirement (e.g. text-
based communication), may lead users to rely on inse-
cure workarounds to meet their needs. This affirms prior
work (e.g., [48, 55]) suggesting that ongoing attention to
both security and primary work objectives by organiza-
tional leaders and security experts is key to creating and
maintaining secure collaborative systems.

Opportunities for Future Work. Though our work has
identified multiple factors that may have contributed to
the effective security of the Panama Papers collaboration,
we do not know which of these factors were necessary,
nor which combination of them would have been suffi-
cient. We also cannot tease out the importance of other
potentially relevant factors, such as whether the small
size of ICIJ itself helped facilitate organizational consen-
sus on security issues.

Two key directions for future work, then, include
(1) conducting additional case studies of socio-technical
security successes and (2) comparing these case stud-
ies to clarify which factors are necessary and/or suffi-

cient. While our findings support prior work on the value
of social relationships for motivating security behaviors,
exploring other motivations (such as professional norms
or organizational identity) may highlight additional paths
towards similar types of security success.

6 Limitations
The Panama Papers project provides a remarkable exam-
ple of a diverse, highly-distributed group of journalists
meeting the security goals of the coordinating organi-
zation. However, we know that no system is perfectly
secure, and that even systems that appear to meet their
security goals may have been breached. In this case,
a highly-motivated and/or -resourced attacker could—
without the organization’s awareness—have potentially
or actually compromised the systems we described here.
We do not claim causality, ultimate system security, or
lack of vulnerabilities, but rather identify factors that
may have contributed to the ICIJ’s success in achieving
their security goals (protecting the source and preserving
the secrecy of the project until the desired launch date)
in a complex socio-technical system.

Thus, the measures describes above should not be in-
terpreted as a guarantee of security or recipe for suc-
cess, nor a complete technical description of the systems
used. Indeed, we highlighted several technical limita-
tions of the system and encourage readers to treat this
case study as a potential starting point from which to
incorporate other technical security best practices (e.g.,
mechanisms for detecting compromise or strengthening
endpoint security). We leave a technical analysis of these
still-evolving systems to future research.

Finally, because the survey instrument was designed
by ICIJ, we could not control what questions were asked
and how. We include the survey instrument in Ap-
pendix A for transparency.

7 Related Work
To the best of our knowledge, this paper represents one of
the first in-depth studies of a security success story. Due
to the novelty of such a case study in the security litera-
ture, below we examine related work in adjacent fields.

7.1 Security for Journalists and Activists

Recent work has studied computer security for journal-
ists specifically, both individually [40, 44] and organiza-
tionally [45]. These works identified computer security
challenges due to, e.g., the fragility of journalists’ rela-
tionships with their sources, as well as the limited re-
sources available within journalistic organizations.

Like NGOs and activist groups, journalists’ work
makes them high-value targets for cyberattack and
surveillance (e.g., [20]). Certain nation-states have been
known to monitor these groups and scan for evidence
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of political dissent, by “eavesdropping, stealing informa-
tion, and/or unmasking anonymous users” [43]. In addi-
tion to surveillance, such groups have also been the tar-
get of malware attacks and tailored phishing attacks, on
which several case studies have been published [21, 39].

7.2 Security in Organizations

More generally, when considering computer security
within organizations or other networks, users are often
considered the “weakest link” [8]—a theme that has be-
come common in a range of fields (e.g., [26, 48, 50]).

Usability studies have begun to amend this assump-
tion, looking at how to strike the balance between secu-
rity and usability (e.g., [35]). Work in this field shows
that users make decisions informed by a rational concern
for efficiency, so much so that many deliberately ignore
security advice and training [24, 25].

Scholars have found that organizational culture is
a critical component for the successful implementa-
tion of security policy [58]. For example, Kirlappos
and Sasse [37] show that social relationships between
employees impact compliance with security mandates.
Blythe et al. [10] identified factors contributing to em-
ployees’ security behaviors, including security knowl-
edge and perceptions of responsibility. Thomson et
al. [55] highlight the importance of integrating security
awareness into an organization’s daily culture. Pfleeger
et al. [48] discuss the rollout of security mandates in the
context of employees’ mental workload and interaction
with their primary task flow, All of these factors from
prior work—peer trust relationships, organizational se-
curity culture and norms, and integration with primary
tasks—are echoed in our findings.

Other fields, including managerial and behavioral
studies as well as social psychology and sensemaking,
also consider the role of employee-culture in general
managerial compliance. Organizational culture, in par-
ticular, has been found to exert outsized influence on em-
ployee behavior [16, 22, 26, 34, 41, 48, 51, 53].

7.3 Security on Distributed Teams

As technology has enabled geographically distributed
teamwork, top-down management has given way to de-
centralization and flat hierarchies [14] This change has
security implications: top-down enforcement has been
shown to be less effective than socially embedded, trust-
based cultural compliance [37]. Moreover, top-down
mandates can actually lead to employees’ distrust of the
organization [59] or harm productivity [27]. Our findings
here—where security mandates were accepted and even
supported by journalist-contributors—suggest that this
distrust effect may be overcome by sufficiently strong so-
cial relationships and/or respect for the organization.

For digital rather than physical collaborations, com-

puter security becomes critically important, and knowl-
edge management in such teams is a topic of interest for
researchers [9, 11, 38, 47]. However, with some notable
exceptions [14, 33], the specific requirements of such
teams for security compliance are understudied. Our re-
search helps address this gap in the literature.

8 Conclusion
In this paper, we have explored a security success story:
the case of the year-long Panama Papers project collab-
oration among hundreds of journalists around the world.
We presented and analyzed survey data from 118 jour-
nalists involved with the project, as well as interviews
with the editorial and technical staff behind the design
and implementation of the collaboration tools used dur-
ing the project. From these datasets, we distilled success
factors and recommendations for designing and imple-
menting secure socio-technical systems.

We found that users will accept strict security require-
ments in order to use tools critical to their core (non-
security) efforts; that a strategy of reducing security de-
cisions by making secure behavior the default and pro-
viding secure alternatives for functionality not directly
supported may discourage insecure “workaround” be-
haviors; that leveraging peer relationships can help foster
a collaborative culture with a shared sense of security
responsibility; and that inviting—and engaging—input
from users helps establish a sense of reciprocity that fa-
cilitates their adoption of security mandates. This case
study demonstrates not only that meeting significant se-
curity goals is possible in a complex socio-technical sys-
tem, but provides valuable insights into how similarly
successful future systems can be designed.
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A Appendix: Survey Instrument
This appendix contains the questions from ICIJ’s survey
of contributing journalists for which we received data.

A.1 ICIJ Journalist Survey

We want to know your opinion about the project plat-
forms and your experience working on the project. It
should take you 10 minutes. Your honest feedback will
be important to make adjustments to future investiga-
tions and we will use your answers only for ICIJ internal
purposes. You can answer the survey anonymously,
although we appreciate if you tell us who you are.
Thanks for helping us to improve global collaboration in
journalism!

1. Name [short answer]
2. Country [short answer]
3. Media Outlet [short answer]
4. Email [short answer]

5. How much did you collaborate with others outside
your organization for this project?
(I worked independently) 1 2 3 4 5 6 7 (I’ve collaborated
more than ever)

6. How would you rate the services provided by ICIJ
throughout this project?
For 6.A-C, the scale was: Unnecessary, Not useful, Use-
ful, Very useful, Essential.
A. Project coordination
B. Digital tools (I-Hub, Blacklight, etc.)
C. Training (tools, data and digital security)

7. How did you find the coordination of the project?
(Poor) 1 2 3 4 5 6 7 (Excellent)

8. How often did you use during the last three
months before publication?
For 8.A-C, the scale was: Every day, Two or three times a
week, Once a week, Once a month, Every now and then,
I never used the service, Other: [short answer].
A. Blacklight
B. I-Hub
C. Linkcurious

9. Which digital security practices were you familiar
with prior to working on this project?
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For 9.A-C, the scale was: Never heard of it before, Knew
about it but hadn’t used, Had used a few times, Used
occasionally, Used frequently.
A. Passphrases (instead of passwords)
B. Two-factor authentication (Google authenticator)
C. PGP encryption (for email)

10. Which improvements (if any) would you like to
see in Blacklight? [short answer]

B Appendix: Interview Instruments
This appendix contains our interview script for ICIJ ed-
itorial personnel and for ICIJ technical staff. We note
inline where the interview script differed between edito-
rial and technical staff.

Background
1. What was your [editorial/technical] background

and/or main area of responsibility for ICIJ prior to
the start of the Panama Papers project?

2. Prior to the Panama Papers, had you worked on any
other collaborative investigative projects at ICIJ, or
any other organization? If so, can you tell us a lit-
tle bit about how the Panama Papers differed from
these earlier efforts?

Overall System Design
1. Were you directly involved in the [technical] de-

sign [and/or deployment] of the collaborative sys-
tems used during the Panama Papers to store and/or
share the source documents? If so:

(a) What did you feel were the most important
features of the system in terms of function-
ality? What were the most significant chal-
lenges to including these features?

(b) What did you feel were the most important
features of the system in terms of security?
What were the most significant challenges to
including these features?

(c) We understand that PGP was required to dis-
tribute at least some system credentials. Can
you tell me a little bit about why PGP was se-
lected, and how that requirement was commu-
nicated to users?

2. Were any of the technologists who worked on the
projects not ICIJ employees? If so, how were they
selected for involvement? Was their access to the
design and/or implementation details of the project
limited in any way?

3. To the extent that you are aware, how did the sys-
tems evolve over the course of its use during the
Panama Papers project? Have they continued to
change since the launch? In what ways?

4. From your perspective, what were the most success-
ful aspects of the system design and deployment?
What were the least successful? What surprised you
the most about how the system was used?

5. For technical staff only: Were regular backups per-
formed on the system? If so, how were backups
initiated and carried out?

6. For technical staff only: Was content stored on the
system generally encrypted at rest? If so, was there
a mechanism for searching this content?

Recruitment and Participation
For editorial staff only:

1. How did journalists generally get involved in the
Panama Papers project? Were they recruited, or did
they reach out to ICIJ?

2. What was the general process for vetting individuals
or organizations for participation? Was anyone ever
rejected? Why?

3. Was there a group of people who were responsible
for verifying the authenticity of received documents
and information? If so, what type of process did
they use?

4. As more information was received, how was it in-
tegrated into the system? Who was responsible for
this, and how was the process determined?

General System Functionality: BlackLight and I-Hub
1. We understand that there were two primary systems

used to manage the Panama Papers project: Black-
Light and I-Hub. In your own words, you could de-
scribe each of these systems, both in terms of their
functionality and how they were implemented?

2. Did journalists have separate logins to the two sys-
tems? To the best of your knowledge:

(a) Were there specific password requirements
(e.g., length, various characters, etc.)?

(b) Was two-factor authentication required?

(c) How could users change/reset passwords?
Were regular password changes required?

3. For editorial staff only: Were users allowed to up-
load files to either system? If so, were there any sys-
tem features included to scan or clean these files?

4. For technical staff only: Were users authorized to
upload files to either system? If so, was there any
service/feature embedded with the file server, to de-
tect and clean malware when a file is uploaded?

5. For editorial staff only: If users had a difficulty with
one of the systems, what resources were available
to them? Was providing user support a significant
consideration in the design of the system?
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6. For technical staff only: If users had a difficulty
with one of the systems, could they contact the IT
team directly? If so, what was the mechanism? If
not, what types of resources or protocol was made
available for these users?

I-Hub
1. Did all journalist users have the same level of per-

missions on the system?
2. What type of user could create new “chat rooms”

or threads? Could administrators see all of these,
and/or remove content, if needed?

3. For editorial staff only: Were there any features that
you would have liked to see included in the system,
but that could not be integrated for technical rea-
sons? What were they?

4. For technical staff only: What type of encryption
was implemented on this system? Was it end-to-
end (in the style of PGP or OTR) or client-to-server
(e.g. HTTPS connection to platform)?

BlackLight
1. For editorial staff only: How did the BlackLight

system work? Why was BlackLight selected as the
base project from which to create the Panama Pa-
pers system? What features do you wish it had that
it didn’t?

2. For technical staff only: Why was BlackLight se-
lected as the base project from which to create the
Panama Papers system? Was it difficult to adapt or
secure for use on this project? In what ways?

Listserv
1. How did communications on the listserv differ from

those on I-Hub?
2. For technical staff only: What were the func-

tional/security differences between I-Hub and the
listserv?

3. Are you aware of any instances where the listserv
was used inappropriately? If so, how was this ad-
dressed, and by whom?

Information Security Training
1. Who generally provided security training for jour-

nalists? Who designed the content of the trainings?
2. Did you provide or design any of these trainings? If

so, please tell me a little bit about how they were
delivered and what content they contained:

(a) Were they “live” (e.g. streamed) or recorded?
Why or why not?

(b) Did they involve hands-on exercises? Why or
why not?

(c) Was there any type of evaluation/grading of
participants? Could a “failing” grade limit ac-
cess or require the training be taken again?
Why or why not?

(d) How many different trainings/topics did each
user have to engage before being granted ac-
cess to the systems?

3. What was the goal of providing these trainings? Do
you feel they were successful? What would you
change or do differently around training for a simi-
lar project in the future?

Security Breaches and System Failures
1. To what extent was keeping the online location (i.e.

URL) of the project an important security concern?
2. Was there a specific protocol for taking the system

offline due to errors, updates or security incidents?
How were these communicated to the users of the
system (if at all)?

3. For editorial staff only: Were there specific plans
in place for detecting and/or handling system ex-
posures or security incidents? How were the users
and/or publications involved monitored, if at all?
By whom?

4. For technical staff only: Were there specific plans
in place for detecting and/or handling security inci-
dents? For example, were there automated intrusion
detection systems, or checks on the locations of sys-
tem access?

5. Without revealing specifics that could compromise
continued use of the system, can you share a general
sense of what kind of security incidents happened
during the project, and how they were handled?

Scaling and Future Development
1. Do you feel that you would use – or encourage oth-

ers to use – this type of system for collaborative in-
vestigative projects in the future? Why or why not?

2. From both a functionality and support perspective,
do you think the systems used for the Panama Pa-
pers are scalable to a larger number of projects
and/or users?

3. Are there any [design or deployment / technical or
system design] lessons you learned from this project
that you intend to apply to the design of future sys-
tems, whether for similar projects or not? If so,
what features or aspects would you keep or change
for other projects, and why?

4. Would you change the content or mechanism of
training or support for future systems?

5. Is there anything else about this project that you’d
like to tell us or think we should know?
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Abstract

Intel Software Guard Extensions (SGX) is a hardware-
based Trusted Execution Environment (TEE) that is
widely seen as a promising solution to traditional security
threats. While SGX promises strong protection to bug-
free software, decades of experience show that we have
to expect vulnerabilities in any non-trivial application. In
a traditional environment, such vulnerabilities often allow
attackers to take complete control of vulnerable systems.
Efforts to evaluate the security of SGX have focused on
side-channels. So far, neither a practical attack against
a vulnerability in enclave code nor a proof-of-concept
attack scenario has been demonstrated. Thus, a funda-
mental question remains: What are the consequences and
dangers of having a memory corruption vulnerability in
enclave code?

To answer this question, we comprehensively analyze
exploitation techniques against vulnerabilities inside en-
claves. We demonstrate a practical exploitation technique,
called Dark-ROP, which can completely disarm the se-
curity guarantees of SGX. Dark-ROP exploits a memory
corruption vulnerability in the enclave software through
return-oriented programming (ROP). However Dark-ROP
differs significantly from traditional ROP attacks because
the target code runs under solid hardware protection. We
overcome the problem of exploiting SGX-specific prop-
erties and obstacles by formulating a novel ROP attack
scheme against SGX under practical assumptions. Specif-
ically, we build several oracles that inform the attacker
about the status of enclave execution. This enables him
to launch the ROP attack while both code and data are
hidden. In addition, we exfiltrate the enclave’s code and
data into a shadow application to fully control the exe-
cution environment. This shadow application emulates
the enclave under the complete control of the attacker,
using the enclave (through ROP calls) only to perform
SGX operations such as reading the enclave’s SGX crypto
keys.

The consequences of Dark-ROP are alarming; the at-
tacker can completely breach the enclave’s memory pro-
tections and trick the SGX hardware into disclosing the
enclave’s encryption keys and producing measurement
reports that defeat remote attestation. This result strongly
suggests that SGX research should focus more on tradi-
tional security mitigations rather than on making enclave
development more convenient by expanding the trusted
computing base and the attack surface (e.g., Graphene,
Haven).

1 Introduction

Computer systems have become very complex. Even
simple, security-sensitive applications typically inherit the
huge trusted computing base (TCB) of the platforms they
run on. Trusted execution environments such as ARM
TrustZone [2] or Intel TXT [14] were invented to allow
small programs to run in isolation from the much larger
underlying platform software. However, the adoption of
these systems has been limited, as they were either closed
or required trusted hypervisors or operating systems that
have not materialized in the mass market.

Intel Software Guard Extensions (SGX) [16] is a new
processor feature that isolates security-critical applica-
tions from system software such as hypervisors, operating
systems, or the BIOS. SGX has been integrated into re-
cent Intel processor models and is seeing mass-market
deployment. It is widely seen as the technology that
can finally enable applications with a small TCB in the
mass market. A number of systems have been using
SGX to protect applications from threats ranging from
untrusted cloud providers to compromised operating sys-
tems [3, 6, 17, 27, 30, 36, 39].

Recent work has explored the practical limitations of
this vision. Several authors [26, 33, 38] have identified
side channels that can leak large amounts of sensitive
information out of the application’s isolated execution
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environment (enclave). A synchronization bug has been
shown to lead to a breakdown in enclave security [37].
However, a fundamental question about the security of
SGX remains unanswered: What is the effect of having a
memory-corruption vulnerability in an enclave and how
dangerous is it?

This question is important, as such vulnerabilities have
been found in a wide range of applications, including
security applications [4, 12, 13]. Furthermore, a major
branch of SGX-based system design runs unmodified
legacy applications and their complex operating system
support inside enclaves [6, 36]. The enclave software
of such systems is bound to have memory corruption
vulnerabilities.

In a regular environment, such vulnerabilities often re-
sult in an attack that changes the control flow of a victim
program to execute arbitrary code. However, enclaves
in SGX differ from such environments in several impor-
tant ways. In particular, SGX protects the entire memory
contents of the enclave program. Memory values and
registers that are required to launch an attack are com-
pletely hidden from attackers. More important, recent
SGX-based systems even keep the enclave code secret
from attackers. For example, under VC3 [30], the pro-
gram binaries are encrypted. This poses a problem for
ROP attacks [8, 9, 32], as the attacker needs to find a
vulnerability and gadgets in the victim’s code.

In this paper, we comprehensively analyze the af-
termath of exploiting a vulnerability in enclave code
by demonstrating a practical attack, called Dark-ROP.
Dark-ROP can completely disarm the security guarantees
of SGX. In essence, Dark-ROP exploits a control-flow
hijacking vulnerability in the enclave software through
return-oriented programming (ROP). Since SGX prevents
all access to enclave code and data from outside the en-
clave, we cannot directly apply typical ROP attacks.

To overcome these challenges, we construct a novel
method for finding a vulnerability and useful ROP gad-
gets in fully encrypted binaries (unknown code) running
under SGX. The method constructs three oracles that (a)
detect the number of register pops before a ret instruc-
tion, (b) reveal enclave register values, and (c) leak the
secret enclave memory contents. The method requires
no knowledge of the content of the binary running in the
enclave. Dark-ROP can chain the gadgets found in this
way and utilize them to invoke security-critical functions
such as data sealing and generating measurement reports
for remote attestation.

In addition, we construct a shadow application (i.e.,
SGX Malware) that runs outside an enclave but fully em-
ulates the environment of an SGX enclave. This demon-
strates the ability of Dark-ROP to fully control the en-
clave program. Dark-ROP utilizes ROP chains to copy

the complete enclave state, including both code and data
to unprotected memory. In addition to breaching enclave
confidentiality, this also enables Dark-ROP to emulate the
enclave software. It can run the enclave’s code outside the
enclave, except for a small number of SGX instructions.
The latter are used for attestation and for obtaining the
enclave’s crypto keys. Dark-ROP emulates these instruc-
tions by invoking ROP calls into the victim enclave.

The shadow application runs in unprotected memory
under the control of the attacker. When a remote server
requests a measurement report to check the integrity of
the victim enclave, the shadow application first receives
the request (as a man-in-the-middle), and then invokes an
ROP call that generates the correct measurement report in
the victim enclave and sends a reply to the remote party
to complete the attestation protocol. This man-in-the-
middle construction allows attackers to have complete
flexibility in executing any code of their choice in the
shadow application because it is not protected by SGX at
all. At the same time, the remote party cannot detect the
attack through the remote attestation because the shadow
application can use the real enclave to generate the correct
measurement report.

We summarize the contributions of the Dark-ROP at-
tack as follows:

1. First ROP demonstration against an SGX pro-
gram on real hardware. The Dark-ROP attack can
completely disarm the security guarantees of SGX.
This includes 1) exfiltrating secret code and data
from enclave memory, 2) bypassing local and re-
mote attestation, and 3) decrypting and generating
the correctly sealed data.

2. New ROP techniques. We devise a new way to
launch a code-reuse attack by 1) blindly finding a
vulnerability and useful gadgets from an encrypted
program in the enclave and 2) constructing a shadow
enclave that poses as a man-in-the-middle to mas-
querade the entire application of the enclave.

3. Informing the community. There is a tempta-
tion to focus on convenience (e.g., running unmod-
ified programs on SGX via library OSes [3, 6, 36])
rather than security (e.g., verification of enclave pro-
grams [34, 35]).
While SGX-like execution environments may make
exploitation more difficult, software vulnerabilities
continue to be a real threat. Thus, there is a need for
well-studied security mechanisms that are tailored
to the SGX environment.

We organize the rest of the paper as follows. §2 pro-
vides background on SGX. §3 discusses the challenges
and the threat model of Dark-ROP. §4 illustrates the de-
sign of Dark-ROP. §5 describes various ways to further
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develop this attack for malicious uses. In §7, we discuss
the feasibility and effectiveness of our attack. §8 covers
related work. We conclude in §9.

2 Background

In this section, we present the background on SGX that is
necessary to further the understanding of Dark-ROP.

Intel SGX. Intel Software Guard Extensions (SGX) is
an extension of the x86 instruction set architecture (ISA),
which enables the creation of trusted execution environ-
ments (TEE), called enclaves. An enclave has an isolated
memory space and execution runtime. SGX protects pro-
grams running in enclaves from attacks that undermine
the integrity and the confidentiality of code and data of
the program. For example, SGX prevents enclaves from
being tampered with by privileged software (e.g., kernel),
and from many physical attacks such as the cold-boot
attacks.

2.1 Security Features of SGX

Memory encryption/isolation in SGX. SGX provides
hardware-based access control mechanism and memory
encryption to strongly guarantee the confidentiality and
integrity of the entire memory used by an enclave program
(Enclave Page Cache (EPC)).

The SGX processor enforces an access control policy
that restricts all access to an enclave’s memory to code
running inside that enclave. That is, no other software,
including the operating system, can read or write enclave
memory. This access restriction is enforced by the Mem-
ory Management Unit (MMU) integrated in the processor
package, which cannot be manipulated by the system soft-
ware. Specifically, page miss handler (PMH) [23] checks
an access permission of the EPC pages when any software
requests read or write access to the enclave memory.

In addition, a memory encryption engine (MEE) [11,
15] that is a extension of the memory controller encrypts
enclave code and data before they are being written to
main memory. This reduces the hardware TCB of SGX
to the processor package and prevents a variety of attacks
such as cold boot or DMA attacks.

Ensuring program integrity through attestation. At-
testation is a secure assertion mechanism that confirms
the correct application has been properly instantiated on
a specific platform [1].

The purpose of attestation in SGX is twofold: ensur-
ing that an enclave is running an expected program on a
certified SGX platform with a correct configuration and
securely sharing a secret to build a secure communication
channel between an enclave and a remote entity (e.g., the

owner of the enclave).
A complete end-to-end SGX attestation involves a long

series of steps, most of which are not relevant for this
paper. The one step that is relevant to Dark-ROP is that
an enclave needs to obtain a cryptographic message au-
thentication code (MAC) from the processor as part of the
attestation. The enclave calls the EREPORT instruction
to obtain the MAC. EREPORT computes the MAC over
a data structure that includes the calling enclave’s crypto-
graphic identity (digest) with a processor key that is not
revealed to the caller.

Data sealing. SGX provides the means for securely
exporting sensitive data from an enclave by encryption
(i.e. data sealing).

The processor provides each enclave with crypto keys
that are unique to the enclave’s cryptographic identity
(digest). That is, different enclaves will receive different
keys. Enclave code can use these keys to implement data
sealing: It can cryptographically protect (e.g., encrypt,
MAC) data before asking untrusted code to store them
persistently. At a later time, a different instance of the
same enclave (with the same enclave digest) can obtain
the same key from the processor and decrypt the data.
Enclaves can use the EGETKEY SGX leaf function to
access their keys.

Deploying an encrypted binary in SGX. Several re-
searchers have pointed out and built systems [5, 6, 24,
29, 30] that can deploy a completely encrypted program
to the SGX platform. This can increase program secu-
rity by preventing attackers from reverse engineering the
program.

In short, the enclave owner builds the enclave with a
simple plaintext loader binary. The loader will copy a sec-
ond, encrypted binary into enclave memory and decrypt
it inside the enclave with a key that it can obtain from the
enclave owner using remote attestation. The loader then
invokes the second binary. Optionally, the loader code
can be erased from enclave memory to deprive attackers
of known gadget building material.

This process requires memory that is at some time
writable and at another time executable. Current SGX
specification (SGX1 [19]) does not allow changing mem-
ory page permissions after an enclave has been created.
Thus, the pages into which the second binary is loaded
have to be made writable and executable. A new SGX
specification (SGX2 [20]), promises to support the mod-
ification of page permissions of running enclaves. That
would allow the deployment of encrypted binaries without
requiring pages to be both executable and writable.

In summary, SGX makes it possible to deploy en-
crypted binaries, which means that attackers may never
be able to see the code running inside the enclave they are
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Create a cryptographic report

Retrieve a cryptographic key

Synchronously exit an enclave

Extend an EPC access permission

Instruction RAX value Leaf function Description

Figure 1: ENCLU instruction and its leaf functions. To invoke
a leaf function of interest through the ENCLU instruction, an
application developer can load the index of the function into the
rax register and then execute ENCLU. For example, the value of
rax is required to be 0x4 to invoke EEXIT.

trying to attack.

2.2 Instruction Specifications

SGX adds two new instructions, ENCLU and ENCLS, to the
x86 ISA [19, 20]. ENCLU handles the user-level operations
(i.e., Ring 3) such as deriving encryption keys and gen-
erating measurement reports. ENCLS, on the other hand,
handles privileged level operations (i.e., Ring 0) such
as creating enclaves, allocating memory pages. While
SGX introduces many operations for creating enclaves
and managing them, these two instructions work as gates
that help dispatch a variety of functions, which are called
leaf functions [19, 20].

Leaf functions. Figure 1 shows how a user-level process
can invoke each leaf function through an ENCLU gate. To
call a leaf function, a developer can load the index of
a leaf function into the rax register and call ENCLU. For
example, setting rax to 0x0 will call EREPORT, 0x1 will
call EGETKEY, etc. Each leaf function requires different pa-
rameters, which are passed through the rbx, rcx, and rdx
registers. For example, EEXIT, one of the leaf functions
of ENCLU, requires two parameters: 1) a target address
outside the enclave and 2) the address of the current Asyn-
chronous Exit Pointer (AEP). These two parameters are
passed through the rbx and rcx registers. After setting the
required parameters, the developer can now set rax to the
index of the leaf function (in this case, 0x4). Finally, ex-
ecuting the ENCLU instruction will execute the EEXIT leaf
function. This calling convention for leaf functions is very
similar to invoking a system call in Linux or Windows on
the x86 architecture.

3 Overview

In this section, we present an overview of Dark-ROP
with a simple enclave program that has a buffer overflow
vulnerability as an example.

1 // EENTER can run this function
2 Data* import_data_to_enclave(char *out_of_enclave_memory)
3 {
4 // data to be returned
5 Data *data = new Data();
6 // a stack buffer in the enclave
7 char in_enclave_buffer[0x100];
8

9 // possible buffer overflow
10 strcpy(in_enclave_buffer, out_of_enclave_memory);
11

12 // ...
13 // do some processing
14 // ...
15 return data;
16 }

Figure 2: An example enclave program that has a buffer over-
flow vulnerability. The untrusted program can call an exported
function import_data_to_enclave() in the enclave through the
EENTER leaf function. The function will copy data from memory
outside the enclave to an in-enclave stack buffer. However, the
buffer can overflow during the copy because the size of data to
be copied is not checked.

3.1 Launching the ROP attack in SGX

Figure 2 shows an example of a potentially ex-
ploitable vulnerability. In particular, the function
import_data_to_enclave() reads the data from outside
the enclave and creates a class object (i.e., Data in the
code) by parsing the raw data. An untrusted program can
invoke a function in the enclave (from outside the enclave)
if an enclave program has exported the function. To call
the function in the enclave, the untrusted program can set
the rbx register as the address of the Thread Control Struc-
ture (TCS), which is a data structure that contains the entry
point of the enclave (e.g., the import_data_to_enclave()
function in this case) and its argument (i.e., the attack
buffer as out_of_enclave_memory) as a pointer of the un-
trusted memory. Then, running EENTER will invoke the
function in the enclave. In the function, the data at the
untrusted memory will be copied (see line 10) using the
strcpy() function, which does not check the size of the
data to be copied so that the attacker can exploit this buffer
overflow vulnerability. While the vulnerability does not
have to be in this form specifically, the code is very simple
to represent a general example of an enclave program that
has an exploitable vulnerability.

To launch the ROP attack on the vulnerability, the at-
tacker can fill the attack buffer to more than the size of
the buffer in the enclave, which is 0x100, to overwrite the
return address and then build the stack with ROP gadgets
and function arguments to control the program execution
at the attacker’s will.

However, the ROP attack against enclaves will not
simply work in the typical way because the information
for the execution environment as well as the program
itself is encrypted, so it is hidden to attackers.
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Challenge: encrypted binary makes the ROP attack
difficult. In the example, since we know the source
code of the program, we can easily find the location and
the triggering condition of the vulnerability. However,
in the most secure configuration of the SGX platform
(deploying an encrypted binary as in §2.1), the assumption
that we know the location of the vulnerability and the
condition that triggers vulnerability does not hold. This
makes the launching of an ROP attack harder even if
there is a buffer overflow vulnerability because attackers
are required to find the vulnerability while having no
knowledge of the target program.

Additionally, finding gadgets over the encrypted pro-
gram is another challenge that is orthogonal to finding
vulnerabilities. Suppose that an attacker could find the
location and the condition for triggering a vulnerability.
To successfully exploit the vulnerability and take control
of the program, the attacker is required to launch a code
reuse attack (if there is no code injection vulnerability)
through return-oriented programming (ROP).

Unfortunately, chaining the ROP gadgets to execute
an arbitrary function is exceptionally difficult in enclaves
because the program binary is encrypted. Deploying a
program binary in a fully encrypted form in SGX results
in the code in the binary being completely unknown to the
attacker. In other words, the attacker has to find gadgets
for their execution and chain them together under the
blindness condition.

Although a recent work on Blind ROP [7] demonstrates
an ROP attack against unknown code, the attack relies
critically on properties of certain server applications that
are based on the fork() system call, which does not hold
for SGX enclaves.

3.2 The Dark-ROP Attack

Consequently, to launch a successful ROP attack against
the enclaves in SGX, the attacker must overcome the
aforementioned challenges. In Dark-ROP attack, we re-
solve the challenges as follows.

Finding a buffer overflow vulnerability. To find a
buffer overflow vulnerability in an encrypted enclave pro-
gram, the Dark-ROP attack exploits the exception han-
dling mechanism of SGX as follows.

For an enclave program, it has a fixed number of (ex-
ported) entry points (i.e., functions of enclave program)
specified in the enclave configuration. Because these are
the only point at which an untrusted OS can supply an in-
put to the enclave program, we enumerate those functions
and apply fuzzing to its argument to find any memory
corruption vulnerability. In fuzzing functions, we can de-
tect a vulnerability by exploiting the exception handling
mechanism of the enclave. Since an enclave program

runs as a user-level program, which cannot handle pro-
cessor exceptions, when it encounters memory corruption
(i.e., page fault) on its execution, the enclave gives back
the execution to the untrusted operating system to handle
the fault. This fall-back routine for handling the excep-
tion is called Asynchronous Enclave Exit (AEX). If we
detect any AEX caused by a page fault on fuzzing, this
means that there was a memory corruption so that we set
the function and the argument that currently fuzzed as a
candidate for the buffer overflow vulnerability.

Next, to detect vulnerability triggering conditions such
as the size of the buffer and the location of the return
address, we exploit the value of the CR2 register at the
AEX handler, the register that stores the source address
of a page fault. By constructing the fuzzing buffer to
contain an invalid memory address (e.g. 0x41414000) in
the buffer, we can determine the potential target of the
return address if the exception arose from the supplied
value (i.e., if the value of CR2 is 0x41414000).

Finding gadgets in darkness. After finding a
buffer overflow vulnerability in an enclave program, the
Dark-ROP attack finds gadgets to exploit the vulnerabil-
ity. To overcome the challenge of finding gadgets against
the unknown binary, we make the following assumptions
on the code in the binary.

First, the code must have the ENCLU instruction. This
is always true for the binaries in enclaves because the
enclave program can call the leaf functions only with the
ENCLU instruction. Without having the instruction, the
enclave cannot enjoy the features provided by SGX.

Second, the code should have the ROP gadgets that
consist of one or multiple “pop a register” (i.e., pop rbx)
instructions before the return instruction, especially for
the rax, rbx, rcx, rdx, rdi, and rsi registers. The reason
we require pop gadgets for such registers is that these
registers are used for the index of the leaf function (rax),
for arguments passing (the other registers) for the leaf
function, and a library function in the x86-64 architecture.
For the rbx, rcx, and rdx registers, the ENCLU instruction
uses them for passing the arguments. Similarly, for the
rdi and rsi registers, the library functions use them for
passing the arguments. To successfully call the leaf func-
tions and library functions, the value of these registers
must be under the control of the attacker.

The second assumption is also a very common case for
the enclave binary because these registers are callee-saved
registers. As mentioned above, the leaf functions and the
library functions use them for passing the argument so
that the callee must have a routine that restores the regis-
ters, and this is typically done by running multiple “pop
a register” instructions before the return of the function.
Thus, the code typically includes the “pop a register” gad-
get for these registers. Furthermore, since rax is reserved
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for passing the return value of the function in the x86-64
architecture, having an instruction such as mov rax, rbx
before the function epilogue is a very common case.

Third, we assume that the program in the enclave has a
function that operates as a memcpy function (e.g., memcpy,
memmove, or strncpy, etc.). The assumption still targets a
typical condition because the isolated architecture of SGX
memory requires frequent copying of memory between
the trusted in-enclave area and the untrusted area.

We believe the assumptions we made for the gadgets
targets a typical condition of enclave programs because
without such gadgets, the programs will be broken or run
unconventionally.

Based on the assumption of gadgets, we attempt to find
the useful ROP gadgets without having any knowledge
of the code in the binary, so we called this attack “Dark-”
ROP. To this end, we construct three oracles that give
the attackers a hint of the binary code to find the useful
gadgets: 1) a page-fault-based oracle to find a gadget that
can set the general purpose register values; 2) the EEXIT
oracle can verify which registers are overwritten by the
gadgets found by 1); and 3) the memory oracle that can
find the gadget has a memory copy functionality to inject
data from untrusted space to the enclave or to exfiltrate
the data vice versa. For the details of the oracles, please
refer to §4 for the further descriptions.

By utilizing these three oracles, the Dark-ROP attack
achieves the ability to execute security-critical functions
such as key derivation for data sealing and generating the
correct measurement report for attestation, and arbitrarily
read or write data between the untrusted memory and the
memory of the enclaves.

3.3 Threat Model

To reflect the environment of SGX deployed in the real
world, the Dark-ROP attack is based on the following
assumptions:

1. The target system is equipped with the processor that
supports SGX, and we assume that the hardware is
not vulnerable. Additionally, we also exclude the
case that requires physical access to the machine be-
cause the Dark-ROP attack is a pure software-based
attack.

2. SGX and the enclave application are configured cor-
rectly. That is, we assume that all software settings
that affect the enclave such as BIOS settings and the
setting of page permissions for the enclave etc. are
configured correctly, as described in the Intel man-
ual [19–22] to guarantee the security promised by
SGX if the application has no vulnerability.

3. The application harvests the entire security benefit

of SGX. That is, the application that runs in the
enclave is distributed in an encrypted format and
removing the loader program after launching the
payload, which makes it completely hidden to the
attacker, and the application uses data sealing for pro-
tecting application data as well as remote attestation
to verify the running status of the enclave.

4. However, the application that runs inside the enclave
has an exploitable memory-corruption vulnerability.

5. The attacker has full control of all software of the
system, including the operating system and the un-
trusted application that interacts with the enclave,
etc., except the software that runs inside the enclave.

6. The target application is built with a standard com-
piler (e.g. Visual Studio for SGX, or gcc), with the
standard SDK that is supplied by Intel.

The threat model of Dark-ROP is pragmatic because it
assumes the standard, and secure configuration of SGX
for the attack target, as well as assuming only the software-
level attacker. The extra assumption that we add to the
standard is that the software in the enclave has an ex-
ploitable vulnerability. Since removing all vulnerabilities
from the software is an inextricable challenge, we believe
that the assumptions depict the common best practices of
using of SGX.

4 Attack Design

In this section, we illustrate how an attacker can launch
the ROP attack by overcoming the challenges of the at-
tack in the SGX environment. We first describe how an
attacker can find the gadgets required for the Dark-ROP
attack by exploiting the three oracles that can provide
the hints with respect to the code in the unknown (en-
crypted) binary in the enclave. After that, we demonstrate
a proof-of-concept example that invokes security-critical
functions within the enclave through the vulnerability by
chaining the ROP gadgets.

4.1 Finding gadgets in a hidden enclave
program

To find gadgets from the completely hidden binary in
an enclave, we devised three techniques that can turn an
enclave into an oracle for finding a gadget: 1) Reading
the cr2 register at the page fault handler to find the gadget
with multiple register pops to control the value of registers.
2) Leaking the register values at the page fault handler by
calling the EEXIT leaf function to identify which registers
are changed by 1. 3) Examining the memory outside
the enclave to find a function in the memcpy() family to
perform arbitrary read/write on the enclave.

528    26th USENIX Security Symposium USENIX Association



0xF7501200: pop rdx
0xF7501201: retAddress Access

Permission

A
PPL

IC
AT

IO
N

0x400000
- 0x408000 r-x

0x607000
- 0x608000 r--

……

E
N

C
L

AV
E

0xF7500000
- 0xF752b000

(Code)
r-x

……

0xF7741000
-

0xF7841000
rw-

0xF7842000
-

0xF7882000
rw-

0xF7883000
-

0xF7884000
rw-

……

Buf[100] Ret_addr
(0xF7501200)

PF_Region_0
(0xF7741000)

PF_Region_1
(0xF7742000)

PF_Region_2
(0xF7743000)

PF_Region_3
(0xF7744000) ……

Memory map

Enclave Stack

AEX_handler in page fault handler

Candidate gadget in enclave code section

①Return to candidate gadget

④

uint64_t PF_R[10] = {0xF7741000, 0xF7742000, 
0xF7743000, 0xF7744000, ……}

AEX_handler(unsigned long CR2, pt_regs *regs)
{

// Indicate exception within enclave
if( regs → ax == 0x03)  {

if (CR2 == 0)
gadget = CRASH;

else {
int count = 0;
foreach (uint64_t fault_addr in PF_R) {

// verify number of pops
if (fault_addr == CR2) {

number_of_pops = count; 
break;

}
count++;

}
……

②

Return to non-executable area 
(PF_Region_1)
③

AEX
(page fault)

Load PF_Region_1 
as return address 

Figure 3: An overview of page fault oracle and the AEX handler.
The workflow for identifying pop gadgets by using the page
fault oracle is as follows: (1) The attacker sets an arbitrary
address in the code section on the stack to probe if the address
is for a pop gadget (e.g. 0xF7501200 in the figure) and then set
several non-executable addresses in PF_region. (2) Because the
probed address in the figure contains a single pop and a return
instruction, the processor attempts to pop the first address in
PF_region (i.e., PF_region_0) then return to the second address
on the stack, PF_region_1 (i.e., 0xF7742000). (3) Returning to
the PF_region_1 address emits the page fault exception because
the address is non-executable. (4) At the exception handler,
the attacker can locate this address from the cr2 register in the
exception context so that the attacker can identify that only one
pop is in the gadget.

Page fault oracle for changing register values. We
first find gadgets that can set a value to a specific
register from the values in the stack. For instance,
a pop gadget like pop rbx; pop rcx; pop rdx; retq;
can change the value of the rbx, rcx, and rdx registers at
once if values are set at the attack stack by exploiting a
buffer overflow vulnerability.

To find such gadgets, we turn the Asynchronous En-
clave Exit (AEX) and page fault handler into an oracle
for detecting the gadgets. An interesting property of the
Intel processor is that when a page fault exception arises,
the cr2 register stores the address of the page that gen-
erated the fault. On the other hand, if a page fault arises
in the enclave, the AEX happens and it clears the least
12 significant bits of the cr2 register and overwrites the
General Purpose Registers (GPRs) with the synthesized
value to protect its execution context. Therefore, for the
page fault that arises in the enclave, we can identify which
address triggered the page fault in a page granularity by

examining the value in the cr2 register at the page fault
handler (i.e., AEX handler in this paper).

To turn this into a gadget-finding oracle, we set the
attack stack as in Figure 3. In essence, by exploiting the
memory corruption bug, we set the return address to be
the address that we want to probe whether it is a pop
gadget or not. The probing will scan through the entire
executable address space of the enclave memory. At the
same time, we put several non-executable addresses, all
of which reside in the address space of the enclave, on the
stack.

Because the untrusted operating system manages all
the memory allocations, the attacker knows the coarse-
grained memory map of the enclave (on the left side
of the Figure 3) so that the attacker can easily identify
the non-executable enclave memory pages (e.g., enclave
stack or heap pages). We call this memory region as
PF_region and, PF_R array in the code contains the list of
non-executable page addresses.

For instance, we put 0xf7741000, 0xf7742000,
0xf7743000, and 0xf7744000, etc. on the enclave stack
to set the register values if it is a pop gadget (see at the
bottom of the Figure 3. For example, if the gadget at the
return address is pop rdx; ret;, then 0xf7741000will be
stored into the rdx register, and the processor will attempt
to return to the address of 0xf7742000. However, the ad-
dress 0xf7742000 is a non-executable address; returning
to such an address will cause the processor to generate the
page fault. Then, the AEX handler will catch this page
fault. At the AEX handler, the attacker is able to distin-
guish the number of pops in the gadget by examining the
value in the cr2 register. In the case of the example, the
value is 0xf7742000, the second value on the stack, which
means that the gadget has only one pop before the return
because the first value, 0xf7741000, is popped. Taking
another example, when the gadget has three pops, the first
three values on the stack will be removed so that the value
in the cr2 register will be 0xf7743000.

Using this method, the attacker can identify the num-
ber of pops before the return on the gadgets. How-
ever, the oracle does not allow the attacker to figure out
which registers are being popped. Moreover, the gadget
found by this method could not be a pop gadget because
the page fault can be triggered in other cases such as
pop rax; mov rbx,QWORD PTR [rax+0x4] (fault by mov
instruction). In the next oracle, we will remove the uncer-
tainty of the gadgets found by this oracle.

Identifying the gadgets and the registers on EEXIT.
The second oracle we build is for identifying pop gadgets
among the gadget candidates found from the first AEX
oracle. The second oracle exploits the fact that the values
in registers are not automatically cleared by the hardware
on the execution of the EEXIT leaf function. As a result,
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EEXIT_handler(pt_regs *regs, ulong error)
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Figure 4: An overview of searching an ENCLU gadget and the
behavior of EEXIT. (1) The attacker chains multiple pop gadgets
found in Figure 3, as many as possible, and put the value 0x4
as the number of pops in the gadget. (2) If the probing address
(the last return address) contains the ENCLU instruction, then it
will invoke EEXIT and jump to the address specified in rbx (i.e.,
0x4 because of the pop gadgets). (3) The execution of EEXIT
generates the page fault because the exit address in rbx (0x4)
does not belong to the valid address region. (4) At the page
fault handler, the attacker can be notified that EEXIT is invoked
accordingly by examining the error code and the value of the
rax register. The error code of EEXIT handler contains the value
that indicates the cause of page fault. In this case, the page fault
is generated by pointing an invalid address 0x4 as jump address
(i.e., the value of rbx register). So if the error code contains the
flags for PF_PROT (un-allocated), PF_USER (userspace memory),
and PF_INSTR (fault on execution), and the value of rax is 0x4
(the value for EEXIT leaf function), then the attacker can assume
the probed address is where the ENCLU instruction is located.

the attacker can identify the values of the registers that
were changed by the pop gadget that is executed prior to
EEXIT. This helps the attacker to identify the pop gadgets
among the candidates and the registers that are popped by
the gadgets.

To build this oracle, we need to find the ENCLU instruc-
tion first because the EEXIT leaf function can only be in-
voked by the instruction by supplying the index at the rax
register as 0x4. Then, at the EEXIT handler, we identify
the pop gadgets and the registers popped by the gadget.
To find the ENCLU instruction, we take the following strat-
egy. First, for all of the pop gadget candidates, we set
them as return addresses of a ROP chain. Second, we put
0x4, the index of the EEXIT leaf function, as the value to
be popped on that gadgets. For example, if the gadget has
three pops, we put the same number (three) 0x4 on the
stack right after the gadget address. Finally, we put the

Host operating system

#define BASE ((void*)0x80000000)
uint64_t zero = 0;

mmap(BASE, 0x1000, 7, MAP_ANONYMOUS | 
MAP_FIXED | MAP_PRIVATE , -1, 0);

ROP_to_enclave (source_addr, dest_addr, length);

if (memcmp( BASE, &zero, 0x8) != 0) { //If memory content is changed
printf (“memcpy found\n”);

}
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Figure 5: An overview of finding memcpy() gadget. (1) The
attacker exploits a memory corruption bug inside the enclave
and overwrites the stack with a gadget chain. (2) The gadgets in
the chain sets the arguments (rdi, rsi, rdx) as the destination
address (0x80000000) in rdi, the source address (0x75000000)
in rsi, and the size (0x8) in rdx to discover the memcpy() gadget.
(3) On the probing, if the final return address points to the
memcpy() gadget, then it will copy the 8 bytes of enclave code
(0xf7500000) to the pre-allocated address in application memory
(0x80000000), which was initialized with all zero. (4) To check
if the memcpy() gadget is found, the attacker (application code)
compares the contents of the memory region (0x80000000) with
zero after each probing. Any non-zero values in the compared
area results the discovery of the memcpy().

address to scan at the end to probe whether the address is
a ENCLU gadget.

The mechanism behind the scene is like the following.
The value 0x4 is the index for the leaf function EEXIT.
What we aim to change the value for is the rax register
because it is the selector of the EEXIT leaf function. For
the combinations of pop gadget candidates and the address
of probing, the enclave will trigger EEXIT if the address of
a gadget that changes rax and the address of ENCLU sits on
the stack. The attacker can catch this by using an SIGSEGV
handler because the return address of EEXIT (stored in the
rbx register) was not correct so that it will generate the
exception. If the handler is invoked and the value of rax
is 0x4, then the return address placed at the end of the
attack stack points to the ENCLU instruction.

After we find the method to invoke EEXIT, we exploit
the EEXIT gadget to identify which registers are popped by
the pop gadget. This is possible because, unlike AEX, the
processor will not automatically clear the register values
on running the EEXIT leaf function. Thus, if we put a pop
gadget, and put some distinguishable values as its items to
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be popped, for instance, 0x1, 0x2, and 0x3, and then run
the EEXIT at the end, we can identify the popped registers
by the values.

For example, if the pop gadget is pop rdi; pop rsi;
pop rdx; ret, then at the handler, we can see the value
of 0x1 at rdi, value of 0x2 at rsi, value of 0x3 at rdx.
Accordingly, we can determine that the gadget pops the
rdi, rsi, and rdx registers.

By using this oracle, we probe all candidates of pop
gadgets until we can control all six registers that are re-
quired to launch the Dark-ROP attack.

Untrusted memory as a read/write gadget oracle.
The last oracle we build is the memory-based one to find
a function that can copy data between the enclave and the
untrusted memory.

To find such a function, we build an ROP chain that
copies data from the memory in the enclave to the un-
trusted area only if the probed address (set as a return
address) is matched with the starting of the memcpy()
function. In particular, we set the stack to have an ad-
dress at the untrusted area for the first argument (i.e., the
destination of memcpy()), an address in the enclave for
the second argument (i.e., the source of memcpy()), and
the size of data to be copied for the third argument in
order to probe the return address as one of the functions
in the memcpy() family. Then, we set the value of the
destination address (at the untrusted area) with all zero
bytes. After this, we probe each address of the enclave
to find the memcpy() function. The probing finishes when
we detect any change in the untrusted memory because
the change proves that the memory copy is executed.

The memcpy() ROP gadget allows attackers to have
an arbitrary read/write in both directions in between the
enclave and the untrusted memory space because the at-
tacker can set the source and destination addresses arbi-
trarily at the attack stack.

4.2 A proof-of-concept Dark-ROP attack

After finding all gadgets, including the register pop gadget,
ENCLU, and memcpy(), an attacker can control the enclave
in two ways. First, the attacker can run any leaf function
through ENCLU by setting arbitrary values in the registers
that are used for setting parameters. Second, the attacker
can copy-in and copy-out the data from the untrusted
memory to the trusted in-enclave memory by using the
memcpy() gadget. In the Dark-ROP attack, we chain those
two capabilities together to run the security-critical op-
erations in SGX and then extract generated (secret) data
from the enclave to the untrusted space solely based on
launching the ROP attack. In particular, for the proof-
of-concept demonstration, we execute EGETKEY, a leaf
function for encryption key derivation, and extract the

generated key from the enclave Note that EGETKEY must
be executed in the enclave because the return value, which
is an encryption key, is unique to the enclave and tied to
the hardware.

Leaking the encryption key for data sealing. The
EGETKEY leaf function handles the generation of the en-
cryption key used for data sealing and verifying the
REPORT in attestation. The requirement for calling the
EGETKEY function is that, first, the value of rax regis-
ter, which is the selector of ENCLU, should be set as 0x1.
Second, the rbx register should point to the address of
KEYREQUEST, which is a metadata that contains configura-
tions for key generation, and the address must be aligned
in 128 bytes. Third, the rcx register should point to a
writable address in the enclave because the processor will
store the generated key into that address.

To call EGETKEY through ROP gadgets correctly, we do
use the following steps. We first construct a KEYREQUEST
metadata object in the untrusted space and place a
memcpy() gadget to the attack stack to copy this object
to an 128-byte aligned in-enclave address that is both
writable and readable. Finding such memory area in the
enclave is not difficult. In the SGX security model, the
attacker already knows the region of the memory that is
used by the enclave because all the memory allocation is
handled by the untrusted operating system. Even though
the page permission in the page table entry could not be
matched with the permission on EPCM, the attacker can
scan the entire address space to find the in-enclave address
that can be used for a buffer. Second, we place multiple
pop gadgets to change the value of the registers. We set
rbx to be the in-enclave destination address and rcx to be
both a readable and writable region in the enclave. At the
same time, we set the rax register to 0x1, the index of the
EGETKEY leaf function. Third, we place the ENCLU gadget
to execute the EGETKEY leaf function. Finally, we put the
memcpy() gadget again by chaining the pop gadgets to set
rdi to a writable untrusted memory address and rsi to
the address of the generated key in the enclave, which is
the value of rcx on the second step.

The chain of gadgets will first call memcpy() to copy
the KEYREQUEST data from the untrusted space to the
in-enclave memory, execute EGETKEY with the prepared
KEYREQUEST as a parameter, and then call memcpy() again
to copy the generated key from the enclave to the un-
trusted space. At the end of the chain, the attacker can
extract the key at the untrusted memory address that is set
on rdi at the final step of memcpy() chaining. Using the
extracted key, the attacker can freely encrypt/decrypt the
data as well as generate the MAC to seal the data at the un-
trusted space because SGX uses the standard encryption
algorithm (e.g., AES-256-GCM), which can be replicated
anywhere if the same encryption key is supplied.
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5 The SGX Malware

In this section, we demonstrate how the Dark-ROP attack
can be applied in the real world to completely disarm the
security guarantees of SGX.

From the proof-of-concept attack, the attacker can ob-
tain the ability to call any leaf functions of SGX within
the enclave to extract the secret data and inject data into
the (trusted) enclave space. In addition to calling leaf
functions to invoke the security-critical functions of SGX,
we present techniques to implement the SGX malware,
which can perform the man-in-the-middle (MiTM) attack
to mimic the real enclave program for running security-
critical operations within the enclave and to freely run
attackers’ code outside the enclave without any restric-
tions.

To achieve full control of the enclave, we construct the
SGX malware as follows: 1) By using the memcpy() gad-
get, the attacker can extract any secret data in the enclave,
including the program binary and data. Additionally, the
attacker runs the extracted program binary outside the
enclave to replicate the enclave execution. Moreover, the
attacker can inject any arbitrary code to this extracted
binary because it runs outside the enclave, which is fully
controllable by the attacker. 2) The attacker is able to
launch the security-critical operations of SGX that must
be run in the enclave at any time. This can be done by
launching the Dark-ROP attack to call the target leaf func-
tion with arbitrary register values. 3) The remote party
must not know that the enclave is under attack, even with
the remote attestation feature provided by SGX. This can
be achieved by hijacking remote attestation by calling
the EREPORT leaf function and constructing the correct
measurement data outside the enclave.

In the following, we illustrate how we construct the
SGX malware with preserving such requirements so that
the SGX malware can run at the attacker’s discretion
while bypassing attack detection using the remote attesta-
tion.

Extracting the hidden binary/data from the enclave.
The Dark-ROP attack allows the attacker to call the
memcpy() function with arbitrary source and destination
addresses (i.e., arbitrary read/write functionality). By uti-
lizing this, the attacker can set the source address to be
the start address of the binary section of the enclave, the
destination to be untrusted memory region, and the size
to be the entire mapped space for the enclave. Then, an
execution of the memcpy() gadget will copy the hidden
content of the binary from the enclave to the untrusted
area. After obtaining the binary by dumping the area, the
attacker can analyze the dump and run it to mimic the real
enclave program. Moreover, because this binary does not
run in the protected space, the attacker can freely inject

the code to alter the program for his/her own purpose.
Using a similar method, by setting the source address

to be the address of the secret data in the enclave, the
attacker can extract them to process them outside the
enclave without being protected by SGX.

Man-in-the-Middle ROP for launching the leaf func-
tions. While running extracted binary at the untrusted
space can mimic the execution of the regular instructions,
however, the leaf functions of SGX must be run inside
the enclave. Thus, when the extracted binary requires
calling the leaf functions, the SGX malware invokes the
function by launching the Dark-ROP attack against the
real enclave.

To this end, we construct the SGX malware as a Man-
in-the-Middle (MitM) architecture. In particular, the
general mechanism for calling the leaf function in the
enclave by exploiting the ROP attack works as follows.
The SGX malware first injects required data for the target
leaf function into the enclave using the memcpy() gadget.
Next, the SGX malware loads the required parameters
of the leaf function at the general purpose registers by
using pop gadgets, and then jumps into ENCLU to call the
leaf function. Finally, the malware copies the generated
data by the leaf function from the enclave to the untrusted
memory.

After this process, the SGX malware can continue to
execute the code in the extracted binary by supplying
the (extracted) return values of the leaf function (e.g., a
derived encryption key for EGETKEY) to the current (un-
trusted) execution. This shows that the attacker has full
control over the binary because the untrusted execution
can run the regular instructions as well as the leaf func-
tions whenever they are required.

Bypassing remote attestation. The last attack target of
the SGX malware is to bypass remote attestation while
running the binary at the untrusted area. Since the attesta-
tion requires generating the report in the enclave, primar-
ily, we call the EREPORT leaf function by the Dark-ROP
attack to generate the measurement report, and we em-
ulate the entire process of the remote attestation in the
binary outside the enclave to reply the correct measure-
ment report to the remote server.

Before describing the emulation step, we present the
background on how remote attestation typically works, as
in Intel SGX SDK.

Remote attestation in Intel SGX SDK. The purpose
of remote attestation is to ensure the correct settings and
running of the enclave before conducting secret operations
such as provisioning secrets and establishing a secure
communication channel with the enclave in the remote
machine.

The Intel SGX SDK uses the protocol in Figure 6 for
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④
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Figure 6: The (simplified) remote attestation protocol of SGX.

the remote attestation of the enclave and establishing
a secure communication channel between the remote
server and the enclave. First, (1) the untrusted part of the
application deployed by an Independent Software Ven-
dor (ISV, i.e., software distributor), called the untrusted
program isv_app, launches the enclave program (we
call this trusted program isv_enclave). On launching
isv_enclave, isv_app requests the generation of Elliptic-
Curve Diffie-Hellman (ECDH) public/private key pair to
the enclave. The ECDH key pair will be used for sharing
secret with the remote server. Then, the isv_enclave gen-
erates the key pair, securely stores the private key in the
enclave memory and returns the public key to isv_app.
This public key will be sent to the remote server for later
use of sharing the secret for establishing a secure commu-
nication channel.

Second, on receiving the “hello” message from
isv_enclave, (2) the remote server generates its own
ECDH key pair that the server will use.

Third, (3) the server sends a quote request to the
isv_app, to verify if the public key that the server re-
ceived is from isv_enclave. Also, the server sends back
the public key (of the remote server) to isv_enclave.
To process the request, isv_app will invoke the func-
tion named Compute_DH_Key in isv_enclave to generate
the shared secret and the measurement report (we re-
fer this as REPORT). It contains the ECDH public key
that isv_enclave uses as one of the parameters to bind
the public key with the REPORT. Inside the enclave,
isv_enclave uses the EREPORT leaf function to generate
REPORT. On calling the leaf function, isv_enclave sets
the REPORTDATA, an object that passed as an argument to
the EREPORT leaf function, to bind the generated ECDH
public key to the REPORT. After isv_enclave generates
the REPORT, the untrusted isv_app delivers this to a Quot-
ing Enclave(QE), a new enclave (trusted) for verifying

the REPORT and then signs it with Intel EPID securely. As
a result, the REPORT generated by isv_enclave contains
the information for the ECDH public key that the enclave
uses, and this information is signed by the QE.

Fourth, (4) the signed REPORT will be delivered to the
remote server. The remote server can ensure that the
isv_enclave runs correctly at the client side and then use
the ECDH public key received at step (1) if the signed
REPORT is verified correctly.

Finally, the server run Compute_DH_Key to generate the
shared secret. (5) the remote server and isv_enclave
can communicate securely because they securely shared
the secret through the ECDH key exchange (with mutual
authentication).

Controlling the REPORT generation. To defeat the re-
mote attestation, and finally defeat the secure communica-
tion channel between the remote server and isv_enclave,
in the SGX malware, we aim to generate the REPORT from
isv_enclave with an arbitrary ECDH public key. For
this, we especially focus on part (3), how isv_enclave
binds the generated ECDH public key with the REPORT on
calling the EREPORT leaf function.

The Dark-ROP attack allows the SGX malware to have
the power of invoking the EREPORT leaf function with any
parameters. Thus, we can alter the parameter to generate
the REPORT that contains the ECDH public key that we
chose, instead of the key that is generated by isv_enclave.
On generating the REPORT, we prepare a REPORTDATA at
the untrusted space using the chosen ECDH public key,
and then chain the ROP gadgets to copy the REPORTDATA
to the enclave space. Note that the EREPORT requires
its parameters to be located in the enclave space. After
copying the REPORTDATA, we call the EREPORT leaf func-
tion with copied data to generate the REPORT inside the
isv_enclave. After this, we copy the generated REPORT
from the isv_enclave to isv_app and delivers the REPORT
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Figure 7: The Man-in-the-middle (MitM) attack of the SGX malware for hijacking the remote attestation in SGX.

to the QE to sign it.
As a result, at the untrusted space, the attacker can

retrieve the REPORT that contains the ECDH parameter of
his/her own choice, and the REPORT is signed correctly.

Hijacking remote attestation. The full steps of hijack-
ing the remote attestation of an enclave are as follows (see
Figure 7).

First, (1) instead of isv_enclave, the SGX malware
generates an ECDH public/private key pair and own the
private key. (2) the SGX malware sends the generated
public key to the remote server.

Then, (3) on receiving the quote request from the server,
the SGX malware calculates the shared secret correspond-
ing to the parameters received by the remote server. Also,
the SGX malware prepares TARGETINFO and REPORTDATA
at isv_app. The TARGETINFO contains the information of
the QE that enables the QE to cryptographically verify
and sign the generated REPORT. The REPORTDATA is gener-
ated with the chosen public key as a key parameter to run
EREPORT in the isv_enclave. After that, SGX malware
launches the Dark-ROP attack (3-1, 3-2 and 3-3) to copy
prepared parameters (TARGETINFO and REPORTDATA) from
the untrusted app to the enclave and generate REPORT with
the ECDH public key that the SGX malware generated at
the first step. Moreover (3-4), the generated report will be
copied out to the SGX malware from the isv_enclave,
and the SGX malware sends the generated REPORT to the
Quoting Enclave to sign this with the correct key. Because
the REPORT is generated by the enclave correctly, the QE
will sign this and return it to the attacker.

Finally, (4) the SGX malware sends this signed REPORT
to the remote server. Now, the remote server shares the
secret; however, it is not shared with the isv_enclave,

but with the SGX malware so that the secure communica-
tion channel is hijacked by the SGX malware. Note that
the remote server cannot detect the hijacking because all
parameters and the signature are correct and verified.

6 Implementation

We implemented both the proof-of-concept attack and
the SGX malware in the real SGX hardware. For the
hardware setup, we use the Intel Core i7-6700 Skylake
processor, which supports the first and only available
specification of SGX, SGXv1. For the software, we run
the attack on Ubuntu 14.04 LTS, running Linux kernel
4.4.0. Additionally, we use the standard Intel SGX SDK
and compiler (gcc-5) to compile the code for the enclave
for both attacks.

To launch the Dark-ROP attack on the real SGX hard-
ware, we use the RemoteAttestation example binary in
the Intel SGX SDK, which is a minimal program that
only runs the remote attestation protocol, with slight mod-
ification, to inject an entry point that has a buffer overflow
vulnerability, as mentioned in Figure 2.

Because the example is a very minimal one, we be-
lieve that if the Dark-ROP attack is successful against the
RemoteAttestation example, then any other enclave pro-
grams that utilizes the remote attestation are exploitable
by Dark-ROP if the program has memory corruption
bugs.

Finding gadgets from standard SGX libraries. First,
we search for gadgets from the example binary. To show
the generality of finding gadgets, we find gadgets from the
standard SGX libraries that are essential to run enclave
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Table 1: Information for the length of ROP gadget chains for
launching functions that breach the security of SGX.

Length of gadget chains (byte)
memcpy LEAF FUNCTION EGETKEY EREPORT

80 88 248 248

programs such as the library for controlling the enclave
(libsgx_trts.a), the library that handles remote attestation
protocol (libsgx_tkey_exchange.a), and the standard C
library for SGX (libsgx_tstdc.a) because these libraries
will be linked regardless of the program logic.

From the example binary, we found that four gad-
gets are enough to fulfill the gadget requirement de-
scribed in §3 to launch the Dark-ROP attack against the
RemoteAttestation example. Table 2 lists these four
gadgets found in the example binary.

Constructing ROP chains for Dark-ROP. By chain-
ing these gadgets, we construct ROP chains for calling
the memcpy() function, and the EREPORT and EGETKEY leaf
functions. To call the memcpy() function, we chained
the four gadgets as follows. To set the registers for
calling the memcpy function, we chained three gad-
gets, pop rsi; pop r15; ret and pop rdi; ret to set
the destination and source address of memory copy, and
pop rdx; pop rcx; pop rbx; ret to set the length of
the data to be copied. As a result, we constructed an
ROP chain for calling the memcpy() function. The total
size of the gadget chain was 80 bytes, as shown in Ta-
ble 1. To call the EGETKEY leaf function, we should call the
memcpy() function to copy the KEYREQUEST structure first,
set the register arguments for EGETKEY, and then call the
memcpy() function again to move the generated key out
to the untrusted area. By chaining two memcpy() gadgets
and the leaf function gadgets, calling EGETKEY requires
248 bytes for gadget chaining. Similar to above, calling
the EREPORT also requires 248 bytes for gadget chaining.
Because the size of the chain is small enough (248 bytes
as max) to fit into the overflowed stack (or heap area), we
believe that the attack will work well in most cases.

7 Mitigation

We expect the adoption of traditional defense mechanisms
in SGX to possibly mitigate Dark-ROP. However, since
there are discrepancies between the normal execution en-
vironment and SGX, the specific features of SGX, which
facilitate the attack in some aspects, need to be considered
in the implementation of those defenses.

Gadget elimination. As shown in [28], the useful gad-
get that can be exploited to launch Dark-ROP can be
eliminated before the enclave is deployed. For instance,
we can transform the enclave code in a way to ensure

that it does not contain any non-intended ret instructions.
Moreover, we need to consider how to manage the non-
removable SGX specific gadgets that contain the ENCLU
instruction. For the transition between the host program
and the enclave, at least one ENCLU instruction (for
EEXIT leaf function) is required for the enclave, the re-
quirement that makes it hard to completely remove the
gadgets. We expect that implanting the register validation
logic right after the ENCLU instruction could be a possi-
ble solution. Specifically, we can ensure that the ENCLU
instruction in a certain location is tightly coupled with
one of the pre-defined leaf functions. Besides, the way to
remove the gadget that performs as a memcpy function,
which is generally required to operate (un)marshalling
the parameters between the host program and the enclave,
should also be considered.

Control flow integrity. Deploying the CFI in the en-
clave also needs to consider the SGX-specific features.
For instance, as shown in Figure 3, an attacker can arbi-
trarily incur the AEX to freeze the status (context) in the
enclave. Then, he can create another thread to leak or
manipulate the context (e.g., the saved general-purpose
registers in the stack) of the trapped thread. Therefore,
if the CFI implementation uses one of the general regis-
ters to point to the reference table that defines allowed
target blocks, it can be easily bypassed by the attacker’s
manipulating the context saved in the stack of the trapped
thread.

Fine-grained ASLR. Research projects that adopt
fine-grained ASLR on enclave programs such as SGX-
Shield [31] would possibly mitigate Dark-ROP. However,
it should also accompany with enclave developer’s care-
ful configuration since Dark-ROP can still be effective by
exploiting the number of state save area (NSSA) field that
defines the number of allowed re-entrances to the enclave
without reconstructing it. More specifically, SGX allows
multiple synchronous entrances (EENTER) depending
on the value configured in the NSSA field, even after the
AEX happens (if ERESUME is executed instead of EEN-
TER, the enclave crashes and thus the attacker needs to
reconstruct the enclave). Therefore, if the value of the
NSSA field is large enough, the attacker might be able to
continuously reenter the enclave without reconstructing
it, which enables the preservation of the previous mem-
ory layout. According to SGX specifications [20, 21],
the value of NSSA can be up to a 4-byte integer, and we
expect this to be enough to reliably locate all necessary
gadgets.

8 Related work

In this section, we describe SGX-related prior works in
the following respects: (1) application of SGX, (2) attacks
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against SGX, (3) enclave confidentiality protection, and
(4) comparison between BROP and Dark-ROP.

SGX application. Intel SGX has been utilized to se-
cure various applications. Ryoan [17] ported Google
NaCl in and SGX enclave to create a distributed sand-
box that prevents sensitive data leakage. SCONE [3]
leverages SGX to host a Docker container in the enclave,
which specifically concerns the security enhancement and
low overhead. Town Crier [39] isolates the crypto func-
tions for the smart contract in the enclave. To prevent
an Iago [10] attack, Haven [6] isolates the unmodified
Windows application, library OS, and shielded module
together in the enclave. Network services and protocols
such as software-defined inter-domain routing are shown
to possibly coordinate with SGX in Kim et al [25].

Attacks on SGX. Several research projects have ex-
plored potential attack surfaces on SGX. The controlled
side-channel attack [33, 38] shows that the confidentiality
of the enclave can be broken by deliberately introducing
page faults. Asyncshock [37] presents how a synchro-
nization bug inside the multi-threaded enclave can be
exploited. Unfortunately, this work does not target the
attacker who has full control over the enclave program.
Instead, the work describes how the proposed attack can
subvert the confidentiality and integrity of SGX.

Enclave confidentiality protection. As described in
[18, 24, 30], an enclave binary can be distributed as a
cipher text to preserve the confidentiality of the code and
data deployed in the enclave. VC3 [30] shows a concrete
implementation example that partitions the enclave code
base as public (plaintext) and private (encrypted) and
enables the public code to decrypt the private code. CON-
FIDENTIAL [34] provides a methodology that prevents
the secret leakage from the enclave by enforcing the nar-
row interface between the user program and small library,
and defining the formal model to verify the information
release confinement. In addition, Moat [34, 35] tracks
information flows by using static analysis to preserve the
enclave confidentiality. Our work shows that, even with
the protection of enclave confidentiality, Dark-ROP can
be successfully deployed by exploiting a certain SGX
hardware design and its functionality.

Revisiting BROP for Dark-ROP. Blind ROP [7] is an
attack technique that can locate and verify the required
gadgets in the restrictive environment where neither the
target binaries nor the source code is known to the attacker.
To this end, it depends on two primary gadgets, which
are called the trap gadget and the stop gadget, both of
which incur the program to be crashed or stopped when
they are consumed (popped) as part of the input payload
that is crafted by an attacker to specify the potential (and
currently probed) gadget.

On the contrary, the Dark-ROP attack takes an orthog-
onal approach, which exploits the three oracles that allow
the attacker to obtain hints of the gadgets by the fea-
tures of SGX (i.e., page fault, EEXIT, and the memory)
to identify required gadgets from a completely hidden
environment. Additionally, the Dark-ROP attack can be
applied to any application that runs in an enclave, whereas
original Blind ROP is only applicable to server-like appli-
cations.

9 Conclusion

Dark-ROP is the first practical ROP attack on real SGX
hardware that exploits a memory-corruption vulnerability
and demonstrates how the security perimeters guaranteed
by SGX can be disarmed. Despite the vulnerability in the
enclave, realizing the attack is not straightforward since
we assume the most restrictive environment where all the
available security measures based on Intel SGX SDK and
recent SGX-related studies are deployed in the enclave;
thus, the code reuse attack and reverse engineering on the
enclave binary may not be conducted. To overcome this
challenge and accomplish the attack, Dark-ROP proposes
the novel attack mechanism, which can blindly locate
the required ROP gadgets by exploiting SGX-specific
features such as enclave page fault and its handling by
an asynchronous exception handler, ENCLU introduced
as part of new SGX instructions, and shared memory
for the communication between the enclave and the non-
enclave part of program. Finally, as a consequence of
Dark-ROP, we show that the attacker can successfully
exfiltrate the secret from the enclave, bypass the SGX at-
testation, and break the data-sealing properties. We hope
that our work can encourage the community to explore the
SGX characteristic-aware defense mechanisms as well as
an efficient way to reduce the TCB in the enclave.

10 Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back. This research was supported by Basic Science
Research Program through the National Research Foun-
dation of Korea (NRF) funded by the Ministry of Science,
ICT & Future Planning (NRF-2017R1A2B3006360), ICT
R&D programs MSIP/IITP [R-20150223-000167] and
MSIP/IITP [R0190-15-2010]. Jaehyuk Lee was partially
supported by internship at Microsoft Research. This re-
search was also partially supported by the NSF award
DGE-1500084, CNS-1563848, CRI-1629851, ONR un-
der grant N000141512162, DARPA TC program under
contract No. DARPA FA8650-15-C-7556, and DARPA
XD3 program under contract No. DARPA HR0011-16-C-
0059, and ETRI MSIP/IITP[B0101-15-0644].

536    26th USENIX Security Symposium USENIX Association



References

[1] ANATI, I., GUERON, S., JOHNSON, S., AND SCARLATA, V.
Innovative technology for cpu based attestation and sealing. In
Proceedings of the 2nd international workshop on hardware and
architectural support for security and privacy (2013), vol. 13.

[2] ARM. Building a secure system ising trustzone technology, Dec.
2008. PRD29-GENC-009492C.

[3] ARNAUTOV, S., TRACH, B., GREGOR, F., KNAUTH, T.,
MARTIN, A., PRIEBE, C., LIND, J., MUTHUKUMARAN, D.,
O’KEEFFE, D., STILLWELL, M. L., ET AL. Scone: Secure linux
containers with intel sgx. In 12th USENIX Symposium on Op-
erating Systems Design and Implementation (OSDI 16) (2016),
USENIX Association.

[4] BARNETT, R. Ghost gethostbyname () heap overflow in glibc
(cve-2015-0235), january 2015.

[5] BAUMAN, E., AND LIN, Z. A case for protecting computer games
with sgx. In Proceedings of the 1st Workshop on System Software
for Trusted Execution (2016), ACM, p. 4.

[6] BAUMANN, A., PEINADO, M., AND HUNT, G. Shielding ap-
plications from an untrusted cloud with haven. In Proceedings
of the 11th USENIX Symposium on Operating Systems Design
and Implementation (OSDI) (Broomfield, Colorado, Oct. 2014),
pp. 267–283.

[7] BITTAU, A., BELAY, A., MASHTIZADEH, A., MAZIÈRES, D.,
AND BONEH, D. Hacking blind. In 2014 IEEE Symposium on
Security and Privacy (2014), IEEE, pp. 227–242.

[8] BLETSCH, T., JIANG, X., FREEH, V. W., AND LIANG, Z. Jump-
oriented programming: a new class of code-reuse attack. In
Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security (2011), ACM, pp. 30–40.

[9] BUCHANAN, E., ROEMER, R., SHACHAM, H., AND SAVAGE,
S. When good instructions go bad: Generalizing return-oriented
programming to risc. In Proceedings of the 15th ACM conference
on Computer and communications security (2008), ACM, pp. 27–
38.

[10] CHECKOWAY, S., AND SHACHAM, H. Iago Attacks: Why the Sys-
tem Call API is a Bad Untrusted RPC Interface. In Proceedings of
the 18th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(Houston, TX, Mar. 2013), pp. 253–264.

[11] CHHABRA, S., SAVAGAONKAR, U., LONG, M., BORRAYO, E.,
TRIVEDI, A., AND ORNELAS, C. Memory encryption engine
integration, June 23 2016. US Patent App. 14/581,928.

[12] DURUMERIC, Z., KASTEN, J., ADRIAN, D., HALDERMAN,
J. A., BAILEY, M., LI, F., WEAVER, N., AMANN, J., BEEKMAN,
J., PAYER, M., ET AL. The matter of heartbleed. In Proceedings of
the 2014 Conference on Internet Measurement Conference (2014),
ACM, pp. 475–488.

[13] GOOGLE. glibc getaddrinfo() stack-based buffer overflow (cve-
2015-7547), february 2016.

[14] GREENE, J. Intel trusted execution technology. Intel Technology
White Paper (2012).

[15] GUERON, S. A memory encryption engine suitable for general
purpose processors. Cryptology ePrint Archive, Report 2016/204,
2016. http://eprint.iacr.org/.

[16] HOEKSTRA, M., LAL, R., PAPPACHAN, P., PHEGADE, V., AND
DEL CUVILLO, J. Using innovative instructions to create trust-
worthy software solutions. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security
and Privacy (HASP) (Tel-Aviv, Israel, 2013), pp. 1–8.

[17] HUNT, T., ZHU, Z., XU, Y., PETER, S., AND WITCHEL, E.
Ryoan: A distributed sandbox for untrusted computation on secret
data. In 12th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 16), USENIX Association.

[18] INTEL. SGX Tutorial, ISCA 2015. http://sgxisca.weebly.
com/, June 2015.

[19] INTEL CORPORATION. Intel Software Guard Extensions Program-
ming Reference (rev1), Sept. 2013. 329298-001US.

[20] INTEL CORPORATION. Intel Software Guard Extensions Program-
ming Reference (rev2), Oct. 2014. 329298-002US.

[21] INTEL CORPORATION. Intel SGX Enclave Writers Guide
(rev1.02), 2015. https://software.intel.com/sites/
default/files/managed/ae/48/Software-Guard-
Extensions-Enclave-Writers-Guide.pdf.

[22] INTEL CORPORATION. Intel SGX SDK for Windows* User
Guide (rev1.1.1), 2016. https://software.intel.com/
sites/default/files/managed/d5/e7/Intel-SGX-SDK-
Users-Guide-for-Windows-OS.pdf.

[23] JOHNSON, S., SAVAGAONKAR, U., SCARLATA, V., MCKEEN,
F., AND ROZAS, C. Technique for supporting multiple secure
enclaves, June 21 2012. US Patent App. 12/972,406.

[24] JP AUMASSON, L. M. Sgx secure enclaves in practice:security
and crypto review, 2016. [Online; accessed 16-August-2016].

[25] KIM, S., SHIN, Y., HA, J., KIM, T., AND HAN, D. A First Step
Towards Leveraging Commodity Trusted Execution Environments
for Network Applications. In Proceedings of the 14th ACM Work-
shop on Hot Topics in Networks (HotNets) (Philadelphia, PA, Nov.
2015).

[26] LEE, S., SHIH, M.-W., GERA, P., KIM, T., KIM, H., AND
PEINADO, M. Inferring Fine-grained Control Flow Inside SGX
Enclaves with Branch Shadowing (to appear). In Proceedings
of the 26th USENIX Security Symposium (Security) (Vancouver,
Canada, Aug. 2017).

[27] OHRIMENKO, O., SCHUSTER, F., FOURNET, C., MEHTA, A.,
NOWOZIN, S., VASWANI, K., AND COSTA, M. Oblivious multi-
party machine learning on trusted processors. In USENIX Security
Symposium (2016), pp. 619–636.

[28] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Smashing the gadgets: Hindering return-oriented programming
using in-place code randomization. In 2012 IEEE Symposium on
Security and Privacy (2012), IEEE, pp. 601–615.

[29] RUTKOWSKA, J. Thoughts on Intel’s upcoming Software Guard
Extensions (Part 2), Sept. 2013. http://theinvisiblethings.
blogspot.com/2013/09/thoughts-on-intels-upcoming-
software.html.

[30] SCHUSTER, F., COSTA, M., FOURNET, C., GKANTSIDIS, C.,
PEINADO, M., MAINAR-RUIZ, G., AND RUSSINOVICH, M.
VC3: Trustworthy Data Analytics in the Cloud using SGX. In
Proceedings of the 36th IEEE Symposium on Security and Privacy
(Oakland) (San Jose, CA, May 2015).

USENIX Association 26th USENIX Security Symposium    537

http://eprint.iacr.org/
http://sgxisca.weebly.com/
http://sgxisca.weebly.com/
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/ae/48/Software-Guard-Extensions-Enclave-Writers-Guide.pdf
https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/d5/e7/Intel-SGX-SDK-Users-Guide-for-Windows-OS.pdf
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intels-upcoming-software.html
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intels-upcoming-software.html
http://theinvisiblethings.blogspot.com/2013/09/thoughts-on-intels-upcoming-software.html


[31] SEO, J., LEE, B., KIM, S., SHIH, M.-W., SHIN, I., HAN, D.,
AND KIM, T. SGX-Shield: Enabling Address Space Layout
Randomization for SGX Programs (to appear). In Proceedings
of the 2017 Annual Network and Distributed System Security
Symposium (NDSS) (San Diego, CA, Feb. 2017).

[32] SHACHAM, H. The geometry of innocent flesh on the bone:
Return-into-libc without function calls (on the x86). In Proceed-
ings of the 14th ACM conference on Computer and communica-
tions security (2007), ACM, pp. 552–561.

[33] SHINDE, S., CHUA, Z. L., NARAYANAN, V., AND SAXENA, P.
Preventing page faults from telling your secrets. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communi-
cations Security (2016), ACM, pp. 317–328.

[34] SINHA, R., COSTA, M., LAL, A., LOPES, N., SESHIA, S.,
RAJAMANI, S., AND VASWANI, K. A design and verification
methodology for secure isolated regions. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (2016), ACM.

[35] SINHA, R., RAJAMANI, S., SESHIA, S., AND VASWANI, K.
Moat: Verifying confidentiality of enclave programs. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1169–1184.

[36] TSAI, C.-C., ARORA, K. S., BANDI, N., JAIN, B., JANNEN, W.,
JOHN, J., KALODNER, H. A., KULKARNI, V., OLIVEIRA, D.,
AND PORTER, D. E. Cooperation and security isolation of library
oses for multi-process applications. In Proceedings of the Ninth
European Conference on Computer Systems (2014), ACM, p. 9.

[37] WEICHBRODT, N., KURMUS, A., PIETZUCH, P., AND KAPITZA,
R. Asyncshock: Exploiting synchronisation bugs in intel sgx
enclaves. In European Symposium on Research in Computer
Security (2016), Springer, pp. 440–457.

[38] XU, Y., CUI, W., AND PEINADO, M. Controlled-channel attacks:
Deterministic side channels for untrusted operating systems. In
Security and Privacy (SP), 2015 IEEE Symposium on (2015),
IEEE, pp. 640–656.

[39] ZHANG, F., CECCHETTI, E., CROMAN, K., JUELS, A., AND SHI,
E. Town crier: An authenticated data feed for smart contracts. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security (2016), ACM, pp. 270–282.

538    26th USENIX Security Symposium USENIX Association



A Dark-ROP gadgets

Table 2: Gadgets used for launching the Dark-ROP attack against the RemoteAttestation example code in the Intel SGX SDK. We
note that we found all gadgets from the standard library files, which are usually linked to the enclave program. First, the entire
objects in the libsgx_trts.a must be linked to the enclave binary because the library contains the code for controlling the enclave and
communication between the untrusted app and the enclave, which are essential to function the enclave. Finally, we found memcpy()
gadget from the standard c library for SGX (libsgx_tstdc.a).

Gadget Description From

ENCLU Gadget
do_ereport:

enclu The ENCLU gadget for invoking the leaf functions. libsgx_trts.a

pop rdx The gadget is followed by three pop gadgets

pop rcx so that the attacker can set the

pop rbx rdx, rcx, and rbx registers to arbitrary values,

ret which will be used for passing arguments to the leaf functions.

sgx_register_exception_handler:

mov rax, rbx A gadget for manipulating the rax register. libsgx_trts.a

pop rbx Since the attacker can control the rbx register with the gadget above,

pop rbp the attacker can set rax to be an arbitrary value.

pop r12 This is for setting the index of the leaf function for

ret the ENCLU instruction.

relocate_enclave: libsgx_trts.a

pop rsi A gadget for manipulating rsi and rdi registers

pop r15 to set arguments for invoking memcpy

ret and the other library functions.

pop rdi

ret

Memcpy Gadget
memcpy: A gadget for copying enclave code and data to untrusted memory, libsgx_tstdc.a

and for copying in the reverse direction vice versa.

Table 3: Gadgets used to launch Dark-ROP in Windows 64bit.

Gadget Description From

GPR Modification Gadget
__intel_cpu_indicator_init:

pop r15 This gadget is used for manipulating GPRs sgx_tstdc.lib

pop r14 All Pop-gadgets required for launch Dark-ROP

pop r13 can be located in this one function

pop r12

pop r9 This function is introduced by libirc.a

pop r8 which is an Intel support library for CPU dispatch

pop rbp Note that this function is also available at

pop rsi libsgx_tstdc.a in Linux 64bit.

pop rdi

pop rbx

pop rcx

pop rdx

pop rax

ret

ENCLU Gadget
do_ereport:

enclu sgx_trts.lib

pop rax

ret
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Abstract
ARM TrustZone, a security extension that provides a se-

cure world, a trusted execution environment (TEE), to

run security-sensitive code, has been widely adopted in

mobile platforms. With the increasing momentum of

ARM64 being adopted in server markets like cloud, it

is likely to see TrustZone being adopted as a key pil-

lar for cloud security. Unfortunately, TrustZone is not

designed to be virtualizable as there is only one TEE

provided by the hardware, which prevents it from be-

ing securely shared by multiple virtual machines (VMs).

This paper conducts a study on variable approaches to

virtualizing TrustZone in virtualized environments and

then presents vTZ, a solution that securely provides each

guest VM with a virtualized guest TEE using existing

hardware. vTZ leverages the idea of separating function-

ality from protection by maintaining a secure co-running

VM to serve as a guest TEE, while using the hardware

TrustZone to enforce strong isolation among guest TEEs

and the untrusted hypervisor. Specifically, vTZ uses a

tiny monitor running within the physical TrustZone that

securely interposes and virtualizes memory mapping and

world switching. vTZ further leverages a few pieces of

protected, self-contained code running in a Constrained

Isolated Execution Environment (CIEE) to provide se-

cure virtualization and isolation among multiple guest

TEEs. We have implemented vTZ on Xen 4.8 on both

ARMv7 and ARMv8 development boards. Evaluation

using two common TEE-kernels (secure kernel running

in TEE) such as seL4 1 and OP-TEE shows that vTZ pro-

vides strong security with small performance overhead.

1 Introduction

ARM TrustZone [20] has been widely used as an ap-

proach to providing a TEE for mobile devices including

Samsung’s Galaxy [14] and Huawei’s Mate [17]. TEE

has been used to protect security-critical data like cryp-

tographic keys and payment information [45, 42, 54].

Generally, TrustZone provides hardware-based access

control of hardware resources, by enabling a proces-

sor to run in two asymmetrically-isolated execution en-

vironments: a secure world, which is a trusted execu-

tion environment (TEE), can be configured to access all

resources of a normal world but not vice versa. To

enable TrustZone as a security pillar for ARM-based

platform, there have been many secure kernels running

in TEEs (called TEE-kernel), including Trustonic [11],

Qualcomm’s QSEE [7] and Linaro’s OP-TEE [6], to host

various Trusted Applications (TAs) with different func-

tionalities [21, 55, 43, 42, 38, 66, 59, 8].

While currently TrustZone is mainly deployed on mo-

bile platforms, AMD has integrated TrustZone in their

first 64-bit ARM-based SoC solution named “Hiero-

falcon” [1]. There are also many ARM-based server

SoC in the market, including AppliedMicro’s “X-Gene

3” [12], Cavium’s ThunderX [47], and AMD’s “Opteron

A1100” [2]. Internet companies like PayPal and Baidu

have deployed ARM servers at scale for years [60, 52].

On the other hand, an increasing number of virtualization

features have been incorporated into ARM platforms.

For example, in ARMv7 architecture, a special CPU

mode called hyp mode is added for hosting a hypervi-

sor; two-stage address translation together with System

Memory Management Unit (SMMU) are also provided

to support address translation and secure DMA for virtu-

alization. With such virtualization extensions, commer-

cial virtualization softwares like Xen [37] and KVM [28]

have provided built-in support for ARM platform.

With ARM gaining increasing momentum in the

server market, one natural question to ask is: can Trust-

Zone, the security pillar of ARM platform, be leveraged

by multiple VMs on a virtualized platform? Unfortu-

nately, as TrustZone currently provides almost no sup-

port for virtualization, all VMs have to share one secure

world, which means one TEE-kernel in the secure world

serves different TAs for all VMs. Meanwhile, it is known

that TEE-kernels are not bug-free and there have been
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multiple security vulnerabilities discovered from major

TEE-kernel providers including Samsung, Huawei and

Qualcomm [61, 62, 24]. Since the TEE-kernel has a

higher privilege than any normal world software, once

it gets compromised, attackers can access any resources

of all VMs as well as the hypervisor, which makes the

TEE-kernel the “single point of breach”.

One straightforward way to virtualize TrustZone

would be using a hypervisor in the normal world to sim-

ulate TrustZone without leveraging any features of the

hardware TrustZone. However, such an approach heav-

ily relies on the security of the hypervisor, which has a

Trusted Computing Base (TCB) with millions of lines of

code and usually hundreds of security vulnerabilities dis-

covered [68, 23]. Hence, once a hypervisor is compro-

mised, all guest TEEs (in the following paper, the guest

TEE presents the virtual secure world for each guest and

the secure world presents the hardware secure world) are

also under attackers’ control.

To address these issues, this paper introduces vTZ that

provides transparent virtualization of TrustZone while

still maintaining strong isolation among guest TEEs with

minimal software TCB. The key idea is separating func-

tionality from protection by maintaining one secure co-

running VM serving as a guest TEE for each guest, while

using the physical TrustZone to enforce strong isolation

among them together with the hypervisor. Specifically,

vTZ uses two secured modules running within the secure

world that interpose memory mapping and world switch-

ing. Based on the interposition, vTZ further provides

multiple Constrained Isolated Execution Environments

(CIEEs) that protect self-contained code snippets run-

ning inside them by leveraging TrustZone-enabled same-

privilege isolation [30, 21, 31] such that the hypervisor

cannot tamper with the CIEE or break their execution

integrity. The CIEEs are then used to contain the logic

that virtualizes the functionalities of the physical Trust-

Zone, including secure booting, secure configuration of

memory and devices for each guest TEE. vTZ also pro-

vides Control Flow Locking (CFLock) to enforce that the

CIEEs will be invoked at some specific point and cannot

be bypassed. Building atop vTZ, we also provide various

VM management operations including VM suspending

and resuming while preserving the security properties.

We have implemented vTZ based on Xen-ARM 4.8

on both LeMaker Hikey ARMv8 development board as

well as a Samsung’s Exynos Cortex development board,

and run two common TEE-kernels: seL4 [40, 39] and

OP-TEE [6] from STMicroelectronics and Linaro in

the guest TEE. The performance evaluation shows that

the average applications overhead introduced by vTZ is

smc
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Figure 1: ARM with TrustZone and virtualization extensions:

TrustZone splits CPU into normal world and secure world, all other

hardware resources are split as well. Each world has its own user and

kernel space, and can switch to each other by smc instruction. Only

the normal world has virtualization support. TrustZone Address Space

Controller (TZASC): configure DRAM as secure or non-secure (S/NS)

partition. TrustZone Memory Adapter (TZMA): configure SRAM S/NS

partition. TrustZone Protection Controller (TZPC): configure periph-

eral S/NS partition. General Interrupt Controller (GIC): control in-

terrupt, can also configure interrupt S/NS partition. Random Number

Generator (RNG): device for generating the random number.

about 3% compared with Xen.

2 Background and Motivation

We first give a detail introduction on ARM hardware ex-

tensions including TrustZone and virtualization. Then

we introduce existing applications of TrustZone and dis-

cuss why virtualize it.

2.1 Overview of TrustZone

TrustZone [20] is a hardware security mechanism since

ARMv6 architecture, which includes security extensions

to ARM System-On-Chip (SoC) covering the processor,

memory and peripherals. For processor, TrustZone splits

it into two execution environments, a normal world and

a secure world (as shown in Figure 1). Both worlds

have their own user space and kernel space, together with

cache, memory and other resources. It is noted that only

the normal world has hyp mode.

The normal world cannot access the secure world’s re-

sources while the latter can access all the resources. Base

on this asymmetrical permission, the normal world is

used to run a commodity OS, which provides a Rich Exe-

cution Environment (REE). Meanwhile, the secure world,

always locates a secure small kernel (TEE-kernel). The

two worlds can switch to each other under the strict su-

pervision of a Secure Monitor running in monitor mode.

Typically, a special instruction called “secure monitor

call” (smc) is used for worlds switching.

TrustZone divides all memory into two parts: normal

part and secure part, which are distributed into normal
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world and secure world accordingly. Again, TrustZone

ensures that the normal world cannot access the secure

part of memory while the secure world can access the en-

tire memory. With this feature, two worlds can commu-

nicate with each other by using a piece of shared mem-

ory. Besides, the memory partition can be dynamically

controlled by the secure world, which gives secure ser-

vices running in the secure world the ability to dynami-

cally protect certain memory.

For I/O devices and interrupts, TrustZone also splits

them into two worlds. An I/O device can be partitioned

to one specific world. TrustZone ensures that the normal

world cannot access the secure world’s I/O devices while

the secure world can control the whole system’s devices.

For each interrupt, TrustZone can designate which world

to handle it. When a secure interrupt arrives, TrustZone

will switch the processor to the secure world to handle it.

Similar to memory, the partitioning of I/O devices and

interrupts can be dynamically configured by the secure

world.

2.2 Address Translation in ARM

The ARM virtualization extension not only adds a new

hyp mode in CPU, but brings a complex address trans-

lation [4]. ARM architecture leverages translation ta-

ble, which is pointed by a translation table base regis-

ter, to perform address translation. There exist two dif-

ferent kinds of address translations: one-stage and two-

stage. The one-stage translation simply maps virtual ad-

dress (VA) to physical address (PA). It is used in the hyp

mode (using a hyp-mode translation table) and the se-

cure world (using a stage-1 translation table). Both of

them have their own translation table base register. Two-

stage translation includes stage-1 and stage-2, which is

used by guest VMs. In stage-1, a VA is translated to an

intermediate physical address (IPA); in stage-2, the IPA

is further translated to the corresponding PA. The stage-1

page table is controlled by guest OS and the stage-2 page

table is controlled by the hypervisor.

2.3 TrustZone-based Applications

TrustZone is getting increasing popularity and has been

used in various scenarios to protect security-critical data

and enhance the security of the normal world.

Secure Storage and Credential Protection: The iso-

lation property of TrustZone makes it an ideal choice to

store user’s secret data, e.g., private keys, passwords,

credit card numbers, etc. For example, a web server

could put the private key and all the code accessing it into

the secure world [55] so that the private key will never

be accessed by the normal world, which can effectively

defend against memory exposure attacks such as Heart-

bleed attack [16] or buffer overread attack [58]. The

TrustOTP project [59] provides a secure one-time pass-

word (OTP) device on a mobile phone using TrustZone,

which can keep working even if the REE OS crashes.

Rubinov et al. [54] propose a method to automatically

partition a Java application to two parts: one security-

sensitive part in secure world and one feature-rich part in

normal world. All these systems and technologies can be

applied to the server platform in a seamless way.

Enforcing REE Security: TEE can be used to en-

hance the security of REE because the secure world

has higher privilege than the normal world. For ex-

ample, TZ-RKP [21] provides real-time protection for

the normal world kernel from within the secure world.

SPROBES [32] provides an introspection mechanism

protected by TrustZone that can instrument any instruc-

tion of a REE OS, which is able to detect REE kernel

rootkit. These technologies can also be used to enforce

the security of server OS and applications.

2.4 The Need to Virtualize TrustZone

On mobile phone, the TEE-kernel is usually device de-

pendent and is deployed by the phone manufacturer. For

example, Apple [35], Samsung [14] and Huawei [36] use

different TEE-kernels in their phones. A phone user is

not allowed to install a third party TEE-kernel even after

iOS jailbreak or Android root. Each TEE has one root

key, which is controlled by the device manufacturer and

used for TA authentication. A new TA needs to be signed

by the root key before running in the TEE of correspond-

ing device.

Since trustZone is not designed to be virtualizable,

currently on a virtualized environment, e.g., cloud, all

VMs on the same host have to share one TEE-kernel.

Such solution is not only inefficient, but may also cause

security issues, since there is no way for each VM to de-

ploy its own TEE-kernel. It means that cloud users are

restricted to use the root key controlled by the vender to

sign their TAs, and have to trust the only TEE-kernel pro-

vided by the vender which is the single point of breach in

software running inside TrustZone. Unfortunately, there

have been various security vulnerabilities discovered in

major vendors’ TEE-kernel [62, 61, 63, 64, 15]. These

motivate us to design vTZ to virtualize TrustZone to be

seamlessly used by multiple virtual machines, while pre-

serving the security properties offered by the hardware-

based TrustZone, so that each virtual machine can run its

own TEE-kernel in a secure and isolated environment.

3 Design Overview

In this section, we first discuss the goals and challenges

of TrustZone virtualization, and present two intuitive de-
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Table 1: Properties enforced by TrustZone which should also be enforced by vTZ. Meanwhile, shows how a malicious hypervisor can violate

these properties as well as possible results. S/W means secure world. N/W means normal world.

TrustZone

Features
System Properties Properties Violation by Malicious Hypervisor → Consequence

Secure Boot
P-1.1: S/W must boot before N/W. Violate boot order. → Secure configuration bypass.

P-1.2: Boot image of S/W must be checked. Violate integrity check of boot image. → Code injection in guest TEE.

P-1.3: S/W cannot be replaced. Replace a guest TEE with another one. → Providing malicious TEE.

CPU States

Protection

P-2.1: smc must switch to the correct world. Switch to a wrong guest TEE. → Providing malicious TEE.

P-2.2: Protect the integrity of N/W CPU states

during switching.
Tamper CPU states during switching. → Controlling execution of guest TEE.

P-2.3: Protect S/W CPU states. Tamper guest TEE’s CPU states. → Controlling execution of guest TEE.

Memory

Isolation

P-3.1: Only S/W can access secure memory. Let arbitrary VM access guest secure memory. → Info leakage.

P-3.2: Only S/W can configure memory parti-

tion.

Let arbitrary VM configure guest memory partition. → Reconfigure secure

memory as normal.

Peripheral

Assignment

P-4.1: Secure interrupts must be injected into

S/W.

Forbid interrupt being injected into guest TEE. → Disturbing the execution of

guest TEE.

P-4.2: N/W cannot access secure peripherals. Let guest N/W access secure peripherals. → Info leakage of secure peripherals.

P-4.3: Secure peripherals are trusted for S/W. Provide malicious peripherals for guest TEE. → Info leakage of guest TEE.

P-4.4: Only S/W can partition interrupt/periph-

erals.

Let arbitrary VM configure guest interrupt/peripherals. → Reconfigure secure

peripheral as normal.

signs. We then show our threat model, assumptions and

the design of vTZ.

3.1 Goals and Challenges

The goal of vTZ is to embrace both strong security as

well as high performance. We analyze a set of security

properties that physical TrustZone provides, as shown in

Table 1, which should be kept after TrustZone virtualiza-

tion. To enforce these properties, vTZ needs to address

the following challenges:

• Challenge 1: A compromised hypervisor may vio-

late the booting sequence or booting a compromised

or even a malicious guest TEE-kernel.

• Challenge 2: A compromised hypervisor may hi-

jack a guest TEE’s execution by tampering with its

CPU states. It may even switch to a malicious TEE

when performing world switching.

• Challenge 3: Once the hypervisor is compromised,

there is no confidentiality and integrity guarantee

for the secure memory owned by a guest TEE.

• Challenge 4: Guest TEEs trust peripherals that are

configured as secure. A malicious hypervisor may

provide a malicious virtual peripheral to a guest

TEE.

3.2 Alternative Designs

Design-1: Dual-Hypervisor. This design uses a full-

featured hypervisor to virtualize the secure world, which

can be called a TEE hypervisor, as shown in Figure 2(a).

Like the hypervisor in the normal world, the TEE hyper-

visor is in charge of multiplexing the secure world and

offers a virtualized interface of TrustZone to the normal

world. It also needs to associate a guest VM with its cor-

responding guest TEE. However, this design has several

issues.

The first issue is its large TCB. A TEE hypervisor

needs to virtualize a full-featured execution environment

as the physical TrustZone provides, which requires non-

trivial implementation complexity due to the lack of vir-

tualization support in the secure world. This leads to a

large code base for the TEE hypervisor. Further, since

the TEE hypervisor needs to work together with the REE

hypervisor to bind one guest TEE for each guest, the

TCB of such a design includes not only the TEE hyper-

visor but also the REE hypervisor. Otherwise, a mali-

cious REE hypervisor may let one guest VM in the nor-

mal world switch to another guest’s TEE.

The second issue is the poor compatibility with ex-

isting TEE-kernels. The TEE-kernel cannot run in the

kernel mode, since only the TEE hypervisor can reside

at the highest privilege level. While “trap and emulate”

may be a viable solution, there are some sensitive but

unprivileged instructions, which will silently fail instead

of trapping into the hypervisor when being executed in

user mode. For example, modifying some privileged

bits in CPSR register in user mode will just be ignored.

Para-virtualization is also possible, but it may lead to

compatibility and security problems since existing TEE-

kernels have to be modified and the TEE hypervisor has

to weaken isolation due to exposing more states and in-

terfaces to guest TEE-kernels.

The third issue is the large overhead due to costly

world switching, which involves two hypervisors to trap
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Figure 2: Different designs of TrustZone virtualization. V Mn and V Ms mean the normal world and secure world of a VM, respectively. T-K

means TEE-kernel.

and emulates the world switching. An smc (secure mon-

itor call) will first be trapped in the REE hypervisor and

then transferred to the TEE hypervisor, which in turn

transfer the call to the designated guest TEE. This results

in a long call path and several privilege level crossings.

Design-2: Full Simulation of TrustZone. This de-

sign fully simulates multiple guest TEEs by using the

hypervisor running in the normal world to virtualize the

guest TEEs along with the normal world guest VMs and

to handle their interaction, as shown in Figure 2(b). All

switches between two virtualized worlds are simulated

by switching between two different VMs (called VMn

and VMs). This also means that the physical TrustZone

is not essential (not used).

Comparing with the first design, this design can

achieve better performance, less complexity, and better

compatibility. The main problem is its large TCB of a

commodity hypervisor, which includes not only the hy-

pervisor but also the management VM (for Xen) or the

host OS (for KVM). Either contains millions of lines of

code (LoC). There have been 236 and 103 security vul-

nerabilities uncovered in Xen [19] and KVM [18] respec-

tively, not to mention those in Linux itself.

3.3 Threat Model and Assumptions

vTZ assumes an ARM-based platform that implements

the TrustZone extension together with the virtualization

extension. All the hardware implementations are correct

and trustworthy. vTZ also assumes that the whole sys-

tem is loaded securely, including both the secure world’s

and the normal world’s code, which is ensured by se-

cure boot technology of TrustZone. Intuitively, secure

boot only guarantees the integrity of the system during

the boot-up process, but not the integrity thereafter. We

do not consider side channel attacks or physical attacks

to the memory and SoC, like cold boot or bus snooping.

We also do not consider the vulnerabilities within a guest

TEE.

We assume that any guest VM or guest TEE can be

malicious. Like prior work using same privilege level

protection [30, 21, 31], we assume the hypervisor itself

is not malicious, which is trust during system booting to

do initialization correctly. After booting, the hypervisor

can be compromised.

3.4 Our Design: vTZ

vTZ adopts the principle of separating functionality from

protection [68]. Specifically, vTZ relies on the nor-

mal world hypervisor to virtualize functionality of guest

TEEs but leverages the physical TrustZone to enforce

protection, as shown in Figure 2(c).

To enforce the booting integrity, vTZ uses the secure

world to check the booting sequence as well as perform

integrity checking (Section 5.1). To provide efficient

memory protection, vTZ uses Secured Memory Mapping

(SMM), a module in the secure world, to control all the

stage-2 translation tables as well as hypervisor’s transla-

tion table (Section 4.1). Based on that, vTZ can set secu-

rity policies to, e.g., ensure that any of the guest TEE’s

secure memory will never be mapped to other VMs or

the hypervisor, and the hypervisor cannot map any new

executable pages in hyp mode after booting up.

To protect the CPU states during context switching

and guest TEE’s execution, Secured World Switching

(SWS) hooks and checks all the switches in the secure

world, which alternatively saves and restores guest CPU

states for each guest TEE (Section 4.3). The virtual pe-

ripherals are also isolated through securely virtualizing

resource partitioning of peripherals and interrupts (Sec-

tion 5.3).
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Figure 3: System Architecture: Two secured modules (Secured

World Switching (SWS) and Secured Memory Mapping (SMM)) are

located in secure world. Constrained Isolated Execution Environment

(CIEE) is running in hyp mode in the normal world. Control-flow Lock

(CFLock) provides non-bypassable hook for CIEE and secured mod-

ules when an exception happens.

The key to achieving the above interposition and pro-

tection is efficiency and vTZ achieves these by extend-

ing prior work with same privilege isolation [30, 21, 31]

to virtualized environments. Specifically, vTZ provides

a set of Constrained Isolated Execution Environments

(CIEEs) in hyp mode (Section 4.4). CIEE is isolated

from each other as well as from the hypervisor. To pre-

vent sophisticated attacks like ROP [53], vTZ ensures

the control flow and data flow integrity for code snip-

pets within each CIEE. Control Flow Locking (CFLock)

(Section 4.2) is used to provide non-bypassable hook for

CIEE and secured modules (SMM and SWS) in the se-

cure world. CIEE is not part of TCB since a compro-

mised CIEE cannot affect the security of other CIEEs or

guest TEEs.

The TCB of vTZ contains only the secured modules

running in the secure world, which has less than 2k LoC.

In contrast, the TCB for design-1 contains the huge REE

hypervisor as well as a smaller TEE hypervisor contain-

ing tens of thousands of LoC (e.g., NOVA [57] con-

tains a 9k LoC microhypervisor and 29k LoC VMM,

OKL4 [33] contains 9.8k LoC). The TCB for design-2

includes a whole commodity hypervisor, which contains

several millions of LoC.

4 Protection Mechanisms

As mentioned in Section 3.4, vTZ leverages four mech-

anisms: SMM, CFLock, SWS and CIEE to enforce the

security properties for guest TEEs, as demonstrated in

Figure 3. This section will describe all these mechanisms

in details.

4.1 SMM: Secured Memory Mapping

The Secured Memory Mapping (SMM) module runs in

the secure world for memory isolation. SMM controls

the VA-to-PA mapping in the hyp mode as well as IPA-

to-PA mappings for guest VMs in an exclusive way. It

provides two interfaces to the hypervisor, one for load-

ing a translation table and the other for modifying en-

tries of a translation table. Based on that, SMM manages

and enforces different security policies on every mem-

ory mapping operation. It only provides one interface to

some specific CIEEs which contain virtual partitioning

controller emulator (introduced in Section 5.3) to config-

ure security policies.

Exclusive Control of Memory Mapping: To ensure

that only the SMM can load or change memory mapping,

vTZ enforces that the hypervisor does not contain any in-

struction to do so. There are three ways for a hypervisor

to modify memory mapping: changing the base regis-

ter to a new translation table 2, changing the entries of

translation table, or disabling the address translation 3. In

vTZ, the hypervisor is modified so that is no instruction

that loads new translation table or disables translation.

Meanwhile, all the page tables are set as read-only to the

hypervisor. The corresponding operations are replaced

to invocations to SMM.

SMM maps the code pages of the hypervisor as read-

only so that the code will not be changed at runtime. It

also controls the swapping of hypervisor code and en-

sures the integrity of code during swapping in process.

To prevent return-to-guest attack, SMM ensures that no

guest memory will be mapped as executable in hyper-

visor’s space. Moreover, SMM forbids to map any new

page as executable in the hypervisor’s address space after

system booting. vTZ also ensures that there is no ROP

gadget that can be used to form new instructions to op-

erate the translation table (which is relatively trivial on

ARM platform since instruction alignment is required).

We also consider all the ISAs with different length.

4.2 CFLock: Control Flow Locking

Locking the control flow means enforcing a control flow

transfer to specific code at some certain event, so that the

code will not be bypassed to handle the event. CFLock

can “lock” the control flow when any exception hap-

pens, which is used to ensure the non-bypassability of

the SWS and CIEEs (described in following sections).

We force the control flow at the entry of different ex-

ception handlers. The ARM architecture uses a special

register to point to the base address of exception table,

and each table entry will correspond to one exception

handler. We deprive the hypervisor of ability to mod-

ify this base register by replacing all the modification

instructions with invocations to secure world, similar as

Section 4.1. The exception table will also be marked as

read-only by SMM, to enforce that each exception will

eventually reach to one specific handler. After that, cer-

tain control flow transfer instructions (e.g., an uncondi-
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tional jump to the entry of a CIEE) will be implanted in

these handlers. Since SMM ensures the code of hypervi-

sor is read-only, such instruction will never be modified.

4.3 SWS: Secured World Switching

Secured World Switching (SWS) is a module running

in the secure world enforcing the security properties of

guest’s world switching. SWS interposes two types of

switching: between one guest’s V Mn and VMs, as well

as between a virtual machine and the hypervisor. In vTZ,

these two types can be handled uniformly since the for-

mer is also handled by the hypervisor. To achieve com-

plete interposition, SWS ensures that each switching will

first trap to SWS itself.

Complete Interposition: On ARM architecture, there

are two situations causing switching from a guest VM

to the hypervisor. One is IRQ/FIQ interrupt which is

caused by hardware interrupts, the other is guest sync ex-

ception (hyp trap in ARM32), which is caused by any

trapping instructions (like smc, co-processor accessing,

hypercall, etc.) or data abort (like stage-2 translation ta-

ble abort). In both situations, switching is caused by ex-

ception. Hence, CFLock can be used to enforce that the

control flow will eventually be transferred to SWS.

If the hypervisor needs to switch to a guest, it must

change the current exception level from the hyp mode to

kernel mode. There are three methods for the hypervi-

sor to do so: by executing eret instruction, by executing

movs pc, lr instruction, or directly setting the exception

level (e.g., by executing CPS instruction); In order to en-

force a single exit point, SWS requires the hypervisor to

remove all these instructions and replace them with cor-

responding invocations to SWS. Thus, SWS ensures that

its interposition will be non-bypassable for each control

transfer between guest VMs and the hypervisor.

4.4 CIEE: Constrained Isolated Execution

Environment

CIEE is an environment in the hyp mode, which is used

to implement some key logics that emulate the function-

alities of TrustZone, e.g., virtualizing partition controller

(see Section 5.3). Each CIEE has its own translation ta-

ble, stack page and secure objects, and contains a piece

of code with a strong control flow integrity as well as

data flow integrity. Meanwhile, SMM and SWS will as-

sign different capabilities to different CIEEs, so that one

CIEE can only access its own secure objects. Each CIEE

has different copies of secure objects for different guests,

and one CIEE can only serve one caller guest at a time.

Enforce Security of CIEE: In order to protect CIEE

from a compromised hypervisor and ensure that it cannot

be bypassed, it must satisfy following requirements:

Normal World

CIEE
(Constrained Isolated 

Execution Environment)

Secure World

smc

smc

CIEE-code

stack 
page

write

request

writeread

hypervisor
data

r/w

code

Secure Obj

Figure 4: Constrained Isolated Execution Environment (CIEE): an

execution environment which is fixed on memory location to identify

itself to the secured modules running in the secure world. Its execu-

tion only depends on the stack page and secure objects. Interrupts are

disabled when in CIEE.

1. Single entry point: It is illegal to jump to the mid-

dle of a CIEE.

2. Run-to-completion: Once starting to run, it must

run to the completion without being interrupted.

3. No dependence on the hypervisor’s data: Other-

wise a compromised hypervisor can affect CIEE’s

execution.

4. No data exposure to the hypervisor: Otherwise a

compromised hypervisor may tamper with CIEE’s

running states.

5. Unforgeable to the secure world: A CIEE needs to

identify itself to the modules running in the secure

world; otherwise the hypervisor may impersonate to

be CIEE.

Figure 4 shows the design of CIEE in vTZ. Each

CIEE’s code is loaded to a fixed memory address during

initialization. The secure world is aware of CIEE’s meta-

data, which includes {entry addr, exit addr}, to meet the

requirement- 5©. The code pages of CIEE are mapped

as read-only by SMM to ensure the code integrity. By

default, the code pages of CIEE are mapped as non-

executable. The first and last instructions of a CIEE are

always smc. After the first smc (on a different executable

page) trapping to the secure world, vTZ will check the

trapping address stored in LR mon 4 and to identify the

specific CIEE by the address. Then SMM will remap the

corresponding CIEE’s code body to be executable, and

map stack pages as read/write. The remapping is done

only on the current CPU core; thus on other cores the

CIEE is still non-executable and its stack is not accessi-

ble. In this way, the execution must start from the first

smc, and the requirement- 1© is satisfied.

vTZ will disable any interrupt before transferring con-

trol to a CIEE. The code in CIEE must be self-contained,
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and will keep running till the last smc instruction. Thus,

the requirement- 2© is met. When trapping due to the

last smc, SMM will again remap the code body to non-

executable and clean the stack page to meet requirement-

4©. There is no need for the hypervisor to access CIEE’s

code, secure objects or CIEE’s stack page.

To further enforce the control flow integrity, protecting

the code page alone is not enough. We also ensure that

CIEE’s code only depends on either local data in stack

page or secure objects. The former is only mapped when

CIEE is executed, and the latter is mapped as read-only in

the hyp mode and can only be modified by invoking the

secured modules. So that we can satisfy requirement- 3©,

and hypervisor cannot tamper with CIEE’s control flow.

Since a CIEE contains code which serves the guest or

the hypervisor, vTZ enables a CIEE to write results back

to them. The memory used to store results for a guest

is marked as secure object, and the CIEE needs to ask

the SMM to write it. The hypervisor’s data is mapped

to the CIEE, so that the CIEE can directly write results

to the hypervisor’s memory. For example, the CIEE for

VM suspending (Section 5.4) could directly return the

encrypted snapshot of a VMs back to the hypervisor.

Privilege Isolation: CIEE is not in the TCB of vTZ.

vTZ isolates the privilege of different CIEEs from two

dimensions. First, one CIEE cannot access any sensitive

data not belonging to it. This is enforced by SMM which

ensures one CIEE’s own secure object and stack page

will never be mapped into other’s address space. Second,

one CIEE can only provide service to the current guest.

One CIEE will have different secure objects for different

guests. SWS can identify the current guest and then only

allows a CIEE to access current guest’s secure objects.

5 TrustZone Virtualization

In this section, we present how to virtualize TrustZone

features listed in Table 1 by using the four mechanisms

described in last section. We also demonstrate the pro-

cess of suspending and resuming a guest with its guest

TEE.

5.1 Virtualizing Secure Boot

Secure boot is used to ensure the integrity of booting.

The booting process of a TrustZone-enabled device in-

cludes following steps: 1) Loading a bootloader from

ROM, which is tamper resistant. 2) The bootloader ini-

tializes the secure world and loads a TEE-kernel to mem-

ory. 3) The TEE-kernel does a full initialization of the

secure world, including the secure world translation ta-

ble, vector table and so on. 4) The TEE-kernel switches

to the normal world and executes a kernel-loader. 5) The

kernel-loader loads a non-secure OS and runs it.

During the process, each time a loader loads a binary

image, it will calculate the checksum of the image to ver-

ify its integrity. Meanwhile, the booting order is also

fixed: the TEE-kernel is the first to run so that it can ini-

tialize the platform first. To virtualize the secure boot

process, vTZ is required to enforce the following proper-

ties:

• P-1.1: S/W must boot before N/W.

• P-1.2: Boot image of S/W must be checked.

• P-1.3: S/W cannot be replaced.

The virtualized secure boot process of vTZ is shown

in the top part of Figure 5. The hypervisor initializes

the data structure and allocates memory for both guest

VMn and its corresponding V Ms, loads the TEE-kernel

image and guest normal world OS image to the mem-

ory, respectively. Then the hypervisor will register the

two VMs in the Secured World Switching (SWS) mod-

ule. Since SWS controls all the world switches between

the hyp mode and a VM, it can ensure that only regis-

tered VM can be executed. During registration, SWS

first asks the Secured Memory Mapping (SMM) module

to remove all the mapping of memory pages allocated

to the guest from the hypervisor’s translation table and

checks the integrity of a guest’s TEE-kernel. Then SWS

creates a binding between the guest VMn and VMs by

recording their VMID, and marks their context data as

read-only to hypervisor. SMM will also initialize the

stage-2 translation tables of these two VMs and set the

VMID in the stage-2 translation table base register. So

the P-1.2 and P-1.3 are enforced. The scheduling of VM

is done by the hypervisor. SWS will ensure that the VMs

must run before the corresponding VMn to enforce P-1.1.

5.2 Protecting CPU states

vTZ needs to enforce following properties to provide the

same CPU states protection of TrustZone.

• P-2.1: smc must switch to the correct world.

• P-2.2: Protect the integrity of N/W CPU states dur-

ing switching.

• P-2.3: Protect S/W CPU states.

SWS intercepts all the switching between a guest VM

and the hypervisor, A switching includes saving states

of the current VM, finding the next VM, and restoring

its states. The states saving and restoring are done by

SWS in the secure world, while the finding of next VM

is done by the hypervisor, as shown in the bottom half of

Figure 5. Then SWS can check the restored target VM
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Figure 5: Boot and context switch process: Hypervisor is responsible

to build VM for each guest. SWS verifies every guest before hypervisor

can execute it, including initializing guest EPT and checking image

integrity. Let hypervisor switch between V Ms and V Mn. SWS checks

all entering to a VM.

to ensure P-2.1 and P-2.2 are satisfied. During execu-

tion, SWS also prevents the hypervisor from stealing or

tampering with V Ms’s context to achieve P-2.3. For ex-

ample, if one VM is exited because of the scheduling,

then its CPU states cannot be modified. Further, VMs’s

system control registers also cannot be modified by the

normal world hypervisor.

5.3 Virtualizing Resource Partitioning

TrustZone can split hardware resources to the normal

world or the secure world. Three different resource par-

titions are provided, together with three different con-

trollers which are used to configure the partition:

• Memory partitioning, which is configured by

TrustZone Address Space Controller (TZASC).

• Peripheral partitioning, which is configured by

TrustZone Protection Controller (TZPC).

• Interrupt partitioning, which is configured by

General Interrupt Controller (GIC).

Once set as secure, the resource can only be accessed by

the secure world. A secure interrupt must be injected to

the secure world and will lead to a world switching if it

happens in the normal world. All the three controllers

can be used to repartition the resource only by the secure

world.

It is needed for a guest to dynamically partition some

critical virtual devices such as virtual Random Num-

ber Generator (vRNG), vGIC and so on. For example,

a guest may only allow its guest TEE to configure the

vGIC, or first initialize a vRNG in VMs and then use it in

VMn. To support these requirements, vTZ provides the

same semantic of resource partitioning as a real Trust-

Zone, which includes the configuration of partitioning

and the enforcement of partitioning.

Virtualizing Partitioning Controllers: Following

two properties should be satisfied:

• P-3.2: Only S/W can configure memory partition.

• P-4.4: Only S/W can partition interrupt/peripher-

als.

The virtualization of partitioning configuration is done

by the classic “trap and emulate” method. vTZ provides

three virtual controllers (vTZASC, vTZPC and vGIC) for

each guest. ARM only provides memory mapped I/O, all

devices are operated by accessing their device memory

region. By mapping all the three controllers’ memory re-

gions as read-only in each guest’s stage-2 translation ta-

ble, any write to them will cause a trap to the hypervisor.

The CFLock enforces that the trap will be handled by a

handler in a CIEE. The handler first checks whether the

trap is raised by a VMs, and will ignore it if not, which

enforce P-3.2 and P-4.4. The handler then invokes a cor-

responding controller emulator to do the configuration.

The emulator runs in another CIEE and can only reparti-

tion for the guest who performs the write operation.

Secure Memory Partitioning: The following prop-

erty is a fundamental one:

• P-3.1: Only S/W can access secure memory.

This property is enforced by the SMM module through

the following policy: any guest’s secure memory region

can only be mapped in its VMs but not any other VMs or

the hypervisor.

Secure Device Partitioning: In secure device part,

vTZ must enforce the following two properties:

• P-4.2: N/W cannot access secure peripherals.

• P-4.3: Secure peripherals are trusted for S/W.

We have implemented commonly used secure devices

for existing TEE-kernel, like TZASC, TZPC, GIC, uart,

RTIC and so on. We virtualize these devices for each

guest by “trap and emulate”. Since all ARM devices use

memory mapped I/O, access to a virtual secure device

can be easily trapped by controlling stage-2 translation

table. When a virtual secure device is accessed, the CPU

will get trapped. The trap will be handled by a corre-

sponding emulator, which runs in a CIEE. The device

states are stored as secure objects belonging to the CIEE.

vTZ keeps different copies of devices state for different

guests, so that the emulator can virtualize the secure de-

vice for different guests. If the device is marked as a

secure peripheral by one guest, the emulator will enforce
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that it cannot be accessed by this guest’s VMn, so the

P-4.2 is enforced. One guest’s configuration will not in-

fluence others. The entire process is also protected by

CFLock, so that all the operations on virtual secure de-

vice will eventually be handled by the emulator in CIEE,

and P-4.3 is satisfied.

Secure Interrupt Partitioning: For interrupts, vTZ

needs to ensure the following property:

• P-4.1: Secure interrupts must be injected into S/W.

Each time when an interrupt happens, it will be han-

dled by a secure interrupt dispatcher. The dispatcher can

decide whether the interrupt is secure or not according

to a virtual interrupt partition list which is managed by

trusted virtual GIC. The CFLock enforces that the dis-

patcher cannot be bypassed and the CIEE ensures the se-

curity of it. These work together to enforce P-4.1.

5.4 Supporting TEE Management Opera-

tions

Suspending and resuming are two important operations

of virtualization. vTZ enforces the correctness and secu-

rity of these operations, as shown in Figure 6.

Guest TEE Suspension/Resumption: The hypervi-

sor needs to ask a suspend CIEE to save all secure states

of one guest. The suspend CIEE will first invoke the

SWS to encrypt and hash guest’s vTZ related data, in-

cluding CPU states, memory partition, interrupt parti-

tion, device partition, etc. Then it asks the SMM to en-

crypt and hash all guest’s secure pages and share them

with the hypervisor. The hypervisor stores all these en-

crypted data and hash value together with guest VMn’s

states into a snapshot file. Resuming process is similar

with that for suspending but in the opposite direction.

6 Performance Evaluation

We evaluate the performance of vTZ on both a Hikey

ARMv8 development board (64-bit) and an Exynos Cor-

tex ARMv7 development board (32-bit). The Hikey

board enables eight 1.2 GHz cores together with 2GB

memory. The Exynos board enables one 1.7 GHz core

and 1GB memory. We use Xen 4.4 [13] as the hyper-

visor and Linux 4.1 as the guest normal world kernel

and Dom0 kernel. For guest TEE-kernel, We ported

two widely used TEE-kernels, namely seL4 [9] and OP-

TEE [6], to vTZ. On the Exynos board, each guest to-

gether with Dom0 has one virtual CPU. On the Hikey

board, each guest, as well as Dom0, has one virtual CPU

and each virtual CPU is pinned on one physical CPU.

We leverage ARM’s performance monitor unit (PMU) to

measure the clock cycles.

Running Existing TEE-kernel: Running a TEE-

kernel on vTZ needs three steps. First, vTZ leverages

Xen’s multi-boot loader to load TEE-kernel’s image, so

we need to add a multi-boot header in the image. Second,

we add a new description file (e.g., platform config.h in

OP-TEE) to describe the memory layout of our guest

TEE. Finally, since vTZ already provides a secure con-

text switch, we remove the context switching logic in

TEE-kernel.

6.1 Micro-benchmark

World Switch Overhead: For the physical TrustZone,

the time of switching between two worlds is about

17,840 cycles on Exynos board and 1,294 cycles on

Hikey board. The cost includes context saving and

restoring in the monitor mode (shown in Table 2). In

vTZ, one switching between guest’s normal world and

guest TEE is about 34,164 cycles on Exynos and 6,837

cycles on Hikey. The overhead is still acceptable since

world switching happens rarely and thus has little effect

on TrustZone-based applications.

Secure Configuration Overhead: A TEE-kernel usu-

ally configures system resource partitioning during ini-

tialization or occasional run-time protection. Table 2

shows the overhead of these configurations in vTZ. The

native value is performing configuration by hardware in

the real secure world. Since HiSilicon, the vender of

hikey’s SoC, does not publish the register mapping of

TZASC or TZPC, the native time of Hikey is not pro-

vided. Same as world switching, secure configuration

operations happen rarely, so the overhead will have lim-

ited effect on the whole system.

Run-Time Integrity Checker: Besides virtualizing

secure devices like vTZASC, vTZPC and virtual GIC

(virtual devices used to perform resource partition),

we also virtualize and use Run-Time Integrity Checker

(RTIC) to evaluate the overhead of vTZ’s virtual secure

devices. RTIC is a commonly used security-related de-

vice which can calculate hash values of at most five dif-

ferent memory regions. TEE-kernel can leverage it to de-

tect whether some memory regions have been tampered

with. We leverage RTIC to perform SHA1 hashing on

five memory regions with sizes from 1K to 128K. Fig-

ure 7(a) shows the overhead of vRTIC (virtual RTIC)

emulated by vTZ in CIEE. It only incurs overhead from

0.3% to 4%.

Table 2: Single operation overhead (unit: cycle). Native means real

TrustZone and vTZ is our system.

Native

(ARMv7)

vTZ

(ARMv7)

Native

(ARMv8)

vTZ

(ARMv8)

World Switching 17840 34164 1294 6837

Memory Partition 5798 10341 n/a 7918

Device Partition 1886 10395 n/a 7289

Interrupt Partition 1073 4031 755 2903
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Figure 6: TEE suspension and resumption: During suspension operation, all V Ms’s memory and CPU states are encrypted in secure world, and

a hash value is computed as well. During resumption operation, such states are decrypted in secure world and SWS will then verify the integrity.

6.2 Application Overhead

Single Guest: We test four real applications (ccrypt,

mcrypt, GnuPG and GoHttp) and compare them with

original Xen on ARMv7 and ARMv8 platform. We use

these applications to encrypt/transfer file about 1KB, and

protect the encryption logic in real secure world/guest

TEE. The application/guest VM is pinned on one phys-

ical core in native environment/virtualization environ-

ment, respectively. Figure 7(b) and Figure 7(c) show the

overhead. Our system has little overhead compared with

original Xen on both ARMv7 and ARMv8 platform.

Multi-Guest: We compare the concurrent perfor-

mance of vTZ with native environment, real TrustZone

and original virtualization environment (Xen). The Go-

Http server is used to do the evaluation, and we protect

its encryption logic in secure world/guest TEE. In native

environment (including protection with TrustZone), each

GoHttp server runs as a normal process. In virtualization

environment (including protected by vTZ), each of them

runs in one guest VM. The client, which sends the https

request, runs in the same guest with the server to bypass

the network overhead. Each client downloads a 20M file

from the server. We do not evaluate more applications

concurrently because the memory on the board limits the

number of VMs. The results are shown in Figure 8.

On ARMv7 platform, which only has one core en-

abled, the virtualization (Xen hypervisor) itself brings

non-negligible (about 40%) performance slowdown.

While on ARMv8 platform, the overhead is remitted with

the benefit of 8 enabled cores. The overhead of virtu-

alization becomes larger compared with the single case

because that the GoHttp server transfers a big file (20

MB) for each request. Such transferring time is larger

than Xen scheduler’s time slices (30ms), and then the

scheduler will influence the performance. Finally, vTZ

has about a 5% performance slowdown compared with

original Xen on ARMv8 implementation, and less than

30% performance slowdown compared with native envi-

ronment.

6.3 Server Application Overhead

We also evaluate two widely used server applications,

MongoDB [5] and Apache [3] on Hikey board. Same as

the multi-guest evaluation, we run applications on four

different environments. Meanwhile, the clients are ex-

ecuted together with the server to bypass the network

overhead. One difference is that the guest has eight vir-

tual cores instead of one.

Figure 9(a) shows the insert operation throughput of

MongoDB. The client continually inserts object to the

server. We evaluate the throughput with different sizes

of objects. The result shows that vTZ has little overhead

compared with virtualization environment. For Apache

(shown in Figure 9(b)), we evaluate the downloading

throughput by downloading a file (size is 100MB) from

the server with https protocol. The result shows that us-

ing virtual TrustZone caused less than 5% overhead in

virtualization environment.

7 Security Analysis

In this section, we assume a strong adversary who can di-

rectly boot a malicious guest (including a malicious guest

TEE) and even compromise the hypervisor.

7.1 Breaking TrustZone Properties

Booting Protection: A compromised hypervisor can

tamper with the system image loaded in guest TEE. The

Secured World Switching (SWS) module will check the

integrity of the image before execution, and only allow

the hypervisor to enter a registered guest TEE. Mean-

while, the attacker may want to boot a guest V Mn before
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Figure 7: Performance evaluation (normalized execution time, lower is better): Figure (a) shows the overhead of vRTIC. Figure (b) and (c) show

the application overhead of vTZ on ARMv7 and ARMv8 respectively. The https server here is GoHttp.
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Figure 9: Throughput of MongoDB and Apache (higher is better):

Figure (a) shows the throughput of MongoDB’s insert operation with

different size of objects. Figure(b) shows the performance of Apache

server, with different TCP buffer sizes.

its guest VMs, and then tries to bypass the security con-

figuration. SWS will defend against it by ensuring that

guest TEE must be executed first.

CPU States Protection: When a guest switches be-

tween its two worlds, a compromised hypervisor may

switch to another malicious world. SWS will check ev-

ery world switch operation issued by guest and ensure

that the target world must be executed thereafter. This

will also forbid the hypervisor to ignore the world switch

operation or to make one guest’s two worlds being exe-

cuted at the same time. During the world switch, the at-

tacker may also try to tamper with the CPU states. Since

SWS is responsible for saving and restoring each VM’s

CPU states and synchronizing general registers between

guest’s two worlds, it will check and refuse the tamper-

ing.

Memory Protection: A compromised hypervisor may

want to map one guest’s secure memory to a compro-

mised VM or the hypervisor itself. Secured Memory

Mapping (SMM) prevents these malicious behaviors by

controlling and checking all the mapping to the physical

address and ensuring that one guest’s secure memory can

only be mapped to its guest TEE.

vTZ allows a guest TEE to dynamically repartition its

memory through a virtual memory configuration device,

which invokes SMM to update the security policy. A

compromised hypervisor may try to configure a guest’s

secure memory to normal memory by sending a faked

request to SMM or the configuration device. In vTZ,

SMM will only handle requests from the virtual configu-

ration device, which can be identified by its CIEE entry

address, and will deny the fake requests from the hyper-

visor. Meanwhile, the configuration device also verifies

whether the request is from one guest TEE.

Peripheral Protection: vTZ enables guest TEE to

configure interrupts as secure or normal. A compromised

hypervisor may try to inject it into a compromised VM.

CFLock ensures all the interrupts will first be handled in

a CIEE which identifies the type of interrupt and injects

it to guest TEE. The interrupt will be later handled by the

hypervisor if it is non-secure. The hypervisor may also

provide some malicious virtual devices to guest TEE.

Guest TEE only trusts the virtual devices provided by

vTZ, and all other devices must be treated as untrusted.

7.2 Hacking vTZ

Tampering with System Code: During system initial-

ization, the attacker may try to modify the code of hyper-
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visor, CIEEs or even the secured modules in real secure

world. The secure boot technology provided by hard-

ware enables vTZ to ensure the integrity of all secured

modules, hypervisor and all CIEEs during system boot.

After that, the SMM will ensure that all codes in hyp

mode are write-protected. Meanwhile, the SMM never

allows mapping any new executable memory in the hyp

mode after system boot to forbid code injection into the

hyp mode. A benign hypervisor also does not need to

load code dynamically.

Code-reuse or Return-to-guest Attacks: Attacker

may try to reuse code of the hypervisor or let the hyper-

visor jump to some code region of a guest VM to execute

critical instructions (e.g., switching translation table) and

bypass the SMM. ARM has several ISAs (e.g., aarch64,

aarch32), the instructions of them are fix-byte aligned.

vTZ ensures there is no key instruction under any ISAs

in the hyp mode’s text section, so that there is no ROP

gadget in the code to reuse. Meanwhile, the SMM en-

sures that only the code of the hypervisor can be mapped

as executable in the hyp mode, thus return-to-guest at-

tack also can be prevented.

DMA Attack: An attacker may try to access guest se-

cure memory or inject code into hypervisor’s memory by

leveraging Direct Memory Access (DMA). vTZ defends

this attack by controlling System Memory Management

Unit (SMMU), which performs address translation for

DMA. SMMU is controlled by certain memory mapped

registers. It is ensured that these memory regions are

only mapped in the secure world. After exclusively con-

trolling the SMMU, we can ensure that all DMAs cannot

access guest’s secure memory, hypervisor’s text section

or CIEE’s memory.

Debugging Attack: The attacker may also want to by-

pass the SWS or CFLock by setting debug checkpoint on

the smc instruction. Then she can perform some opera-

tions before switching to SWS or CFLock works. vTZ

controls the entry points of all limited exception han-

dlers, and the debug procedure is also under control.

Thus, the debug point on smc instruction in the hyp mode

will trigger an infinite iteration, since the first instruction

a debug exception handler executed is also smc. This is

a kind of DoS attack and is not considered in this paper.

Security of CIEEs: While CIEE contains some logic

which provides critical services for guest TEE, e.g., vir-

tualizing TZPC (TrustZone Protection Controller), vTZ

still excludes it from the system TCB. Although there is

work which can verify some small piece of privileged

code (e.g., Jitk [65]), vTZ currently does not formally

verify the code in CIEE. Hence, even all CIEEs are small

and virtuous, they may still contain bugs. For example,

the attacker first compromises the CIEE responsible for

virtualizing memory configuration device. Then she tries

to configure other guest’s memory partition or compro-

mise other CIEEs. vTZ prevents these attacks by con-

straining a CIEE’s abilities. First, SWS can identify cur-

rent guest TEE and SMM will forbid a CIEE to access

any data belonging to other guests. Second, SMM en-

sures that different CIEEs have different memory map-

ping and can only access their own secure objects.

7.3 Security Limitations

As described in the threat model, vTZ does not con-

sider hardware-based attacks, e.g., the cold-boot attack,

or side-channel attacks. Meanwhile, vTZ can not pre-

vent DoS attacks, e.g., a hypervisor may never execute a

guest TEE. But note that vTZ can ensure that if a guest

VM uses smc instruction to switch to its guest TEE, such

switching cannot be ignored.

TEE-kernels may have bugs [61, 62, 24]. Such bugs

enable an attacker to directly get data from a guest TEE

or even to get control of it. Defending against these at-

tacks is not the goal of vTZ, as the real TrustZone also

cannot handle it. However, vTZ does ensure that a com-

promised TEE-kernel can only affect its corresponding

guest while cannot bypass the isolation or attack other

TEE-kernels. In all, vTZ aims to achieve the same secu-

rity level with TrustZone, but no more.

8 Related Work

ARM-based servers are increasingly getting more atten-

tions [50, 51, 25]. It can be expected that virtualization,

as one of the most important enabling technologies in

the cloud, will also be prevalent on ARM-based servers.

There have already been many TrustZone based systems

[55, 59, 54, 21, 32, 14], as mentioned in Section 2.3.

Many of these designs are not specific for mobile de-

vices, which can be used on ARM servers. vTZ paves

the way for the use of TrustZone guarantees in similar

environments.

Virtualization of Security Hardware: Similar as

TrustZone, Trusted Platform Module (TPM) is a hard-

ware extension for security. vTPM [48] makes TPM

functions available to virtual machines by virtualizing

the TPM hardware to multiple virtual vTPM instances,

which supports suspending and resuming operations.

vTZ shares a similar goal with vTPM but is harder since

the interaction between the secure world and the nor-

mal world is much more complex than TPM. fTPM [49]

presents a design and implementation of a TrustZone-

based TPM-2.0, which is a pure software solution with-

out the need of a real TPM chip. It can be seen as an

application of TrustZone, and by using vTZ fTPM can

now inherently support virtualization as well.

Other Hardware-based TEE: Intel’s Software Guard

eXtension (SGX) [10] offers a strongly isolated execu-
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tion environment that can defend against physical at-

tacks. AMD has also announced two security fea-

tures [34] named Secure Memory Encryption (SME) for

defending against physical attack and Secure Encrypted

Virtualization (SEV) for protecting VM against hyper-

visor. Unlike TrustZone, an SGX-TEE does not have

higher privilege and can only run in user mode, which

makes it not suitable for certain scenarios like security

monitoring. Meanwhile, these technologies focus more

on memory isolation while TrustZone can also support

peripheral partitioning (e.g., random number generator,

trust timer, secure co-processors, etc.) Further, currently

on ARM platform there is no extension like SGX or

SME/SEV while TrustZone has already been widely de-

ployed and has various applications.

Software-based TEE: There are many types of TEE

that are based on hypervisor [68, 56, 26, 67, 44, 41, 46],

or based on Linux kernel [31, 22, 27], or based on com-

piler [30, 29], to name a few. These researches are

orthogonal to our work. vTZ does not try to provide a

new abstraction of TEE but aims to virtualize the exist-

ing TrustZone hardware and let all the guests have their

own TEE without trusting a large TCB.

9 Hardware Design Discussion

In this section we discuss how to modify TrustZone hard-

ware to support virtualization. One design choice is

adding virtualization extension (e.g., hyp mode) in the

secure world. After that, software developers can run

a TEE hypervisor inside the secure world to virtualize

multiple TEEs for different guests (similar with Design-

1 in Section 3.2). Although this design simplifies the im-

plementation of the TEE hypervisor, the whole system’s

security still depends on the interaction between two hy-

pervisors.

Another design is to make the hypervisor unware of

the TrustZone. When a virtual machine executes a smc

instruction, it will directly switch from the normal world

to secure world or vice versa, without trapping to the hy-

pervisor. The CPU states are protected by the hardware

as before. Both the secure world and the normal world

share the same guest physical address space, so that the

secure world can still access all the memory of its VM,

but cannot access other VM’s memory. All the hardware

resource partition devices (e.g., TZASC) are virtualized

(e.g., by trap-and-emulate) for multiplexing. For exam-

ple, a vTZASC can only be configured by a VM when

the VM is running in its secure world. In this design,

only one hypervisor is needed. The secure world and

normal world runs as a single VM, which also simplifies

the scheduling of VCPU.

10 Conclusion

This paper described vTZ, a design aiming at virtual-

izing TrustZone in ARM architecture. vTZ provides

each guest with an isolated guest TEE, which has the

same functionalities and security with the physical se-

cure world. vTZ uses a few modules running in the se-

cure world to securely interpose memory mapping, world

switching and device accesses. vTZ further leverages

Constrained Isolated Execution Environments (CIEEs)

in the normal world to virtualize the functionality of

TrustZone. vTZ’s TCB only contains the secured mod-

ules in the secure world together with system’s boot-

loader. The performance overhead incurred by vTZ is

shown to be small.
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Notes

1 Though seL4 is not originally designed for TrustZone, we found

that many TEE-kernels in the market are based on a port of seL4 due

to its provable security.
2E.g., by “MSR TTBR0 EL2, Xt” in 64-bits ARM.
3E.g., by configuring HSCTLR or HCR registers.
4Link register of monitor mode, which contains the address of trap-

ping instruction
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Abstract

Intel has introduced a hardware-based trusted execution
environment, Intel Software Guard Extensions (SGX),
that provides a secure, isolated execution environment,
or enclave, for a user program without trusting any un-
derlying software (e.g., an operating system) or firmware.
Researchers have demonstrated that SGX is vulnerable
to a page-fault-based attack. However, the attack only
reveals page-level memory accesses within an enclave.

In this paper, we explore a new, yet critical, side-
channel attack, branch shadowing, that reveals fine-
grained control flows (branch granularity) in an enclave.
The root cause of this attack is that SGX does not clear
branch history when switching from enclave to non-
enclave mode, leaving fine-grained traces for the outside
world to observe, which gives rise to a branch-prediction
side channel. However, exploiting this channel in practice
is challenging because 1) measuring branch execution
time is too noisy for distinguishing fine-grained control-
flow changes and 2) pausing an enclave right after it has
executed the code block we target requires sophisticated
control. To overcome these challenges, we develop two
novel exploitation techniques: 1) a last branch record
(LBR)-based history-inferring technique and 2) an ad-
vanced programmable interrupt controller (APIC)-based
technique to control the execution of an enclave in a fine-
grained manner. An evaluation against RSA shows that
our attack infers each private key bit with 99.8% accuracy.
Finally, we thoroughly study the feasibility of hardware-
based solutions (i.e., branch history flushing) and propose
a software-based approach that mitigates the attack.

1 Introduction
Establishing a trusted execution environment (TEE) is

one of the most important security requirements, espe-
cially in a hostile computing platform such as a public
cloud or a possibly compromised operating system (OS).
When we want to run security-sensitive applications (e.g.,
processing financial or health data) in the public cloud,

we need either to fully trust the operator, which is prob-
lematic [16], or encrypt all data before uploading them
to the cloud and perform computations directly on the
encrypted data. The latter can be based on fully homomor-
phic encryption, which is still slow [42], or on property-
preserving encryption, which is weak [17, 38, 43]. Even
when we use a private cloud or personal workstation,
similar problems exist because no one can ensure that
the underlying OS is robust against attacks given its huge
code base and high complexity [2,18,23,28,36,54]. Since
the OS, in principle, is a part of the trusted computing
base of a computing platform, by compromising it, an
attacker can fully control any application running on the
platform.

Industry has been actively proposing hardware-based
techniques, such as the Trusted Platform Module
(TPM) [56], ARM TrustZone [4], and Intel Software
Guard Extension (SGX) [24], that support TEEs. Specif-
ically, Intel SGX is receiving significant attention be-
cause of its recent availability and applicability. All Intel
Skylake and Kaby Lake CPUs support Intel SGX, and
processes secured by Intel SGX (i.e., processes running
inside an enclave) can use almost every unprivileged CPU
instruction without restrictions. To the extent that we can
trust the hardware vendors (i.e., if no hardware backdoor
exists [61]), it is believed that hardware-based TEEs are
secure.

Unfortunately, recent studies [50, 60] show that Intel
SGX has a noise-free side channel—a controlled-channel
attack. SGX allows an OS to fully control the page table
of an enclave process; that is, an OS can map or unmap
arbitrary memory pages of the enclave. This ability en-
ables a malicious OS to know exactly which memory
pages a victim enclave attempts to access by monitor-
ing page faults. Unlike previous side channels, such as
cache-timing channels, the page-fault side channel is de-
terministic; that is, it has no measurement noise.

The controlled-channel attack has a limitation: It re-
veals only coarse-grained, page-level access patterns. Fur-
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ther, researchers have recently proposed countermeasures
against the attack such as balanced-execution-based de-
sign [50] and user-space page-fault detection [10, 49, 50].
However, these methods prevent only the page-level at-
tack; hence, a fine-grained side-channel attack, if it exists,
would easily bypass them.

We have thoroughly examined Intel SGX to determine
whether it has a critical side channel that reveals fine-
grained information (i.e., finer than page-level granular-
ity) and is robust against noise. One key observation is
that Intel SGX leaves branch history uncleared during
enclave mode switches. Knowing the branch history (i.e.,
taken or not-taken branches) is critical because it reveals
the fine-grained execution traces of a process in terms of
basic blocks. To avoid such problems, Intel SGX hides
all performance-related events (e.g., branch history and
cache hit/miss) inside an enclave from hardware perfor-
mance counters, including precise event-based sampling
(PEBS), last branch record (LBR), and Intel Processor
Trace (PT), which is known as anti side-channel inter-
ference (ASCI) [24]. Hence, an OS is unable to directly
monitor and manipulate the branch history of enclave
processes. However, since Intel SGX does not clear the
branch history, an attacker who controls the OS can infer
the fine-grained execution traces of the enclave through a
branch-prediction side channel [3, 12, 13].

The branch-prediction side-channel attack aims to rec-
ognize whether the history of a targeted branch instruction
is stored in a CPU-internal branch-prediction buffer, that
is, a branch target buffer (BTB). The BTB is shared be-
tween an enclave and its underlying OS. Taking advantage
of the fact that the BTB uses only the lowest 31 address
bits (§2.2), the attacker can introduce set conflicts by po-
sitioning a shadow branch instruction that maps to the
same BTB entry as a targeted branch instruction (§6.2).
After that, the attacker can probe the shared BTB entry by
executing the shadow branch instruction and determine
whether the targeted branch instruction has been taken
based on the execution time (§3). Several researchers
exploited this side channel to infer cryptographic keys [3],
create a covert channel [12], and break address space
layout randomization (ASLR) [13].

This attack, however, is difficult to conduct in practice
because of the following reasons. First, an attacker cannot
easily guess the address of a branch instruction and manip-
ulate the addresses of its branch targets because of ASLR.
Second, since the capacity of a BTB is limited, entries can
be easily overwritten by other branch instructions before
an attacker probes them. Third, timing measurements of
the branch misprediction penalty suffer from high levels
of noise (§3.3). In summary, an attacker should have 1)
a permission to freely access or manipulate the virtual
address space, 2) access to the BTB anytime before it

is overwritten, and 3) a method that recognizes branch
misprediction with negligible (or no) noise.

In this paper, we present a new branch-prediction side-
channel attack, branch shadowing, that accurately infers
the fine-grained control flows of an enclave without noise
(to identify conditional and indirect branches) or with
negligible noise (to identify unconditional branches). A
malicious OS can easily manipulate the virtual address
space of an enclave process, so that it is easy to create
shadowed branch instructions colliding with target branch
instructions in an enclave. To minimize the measurement
noise, we identify alternative approaches, including In-
tel PT and LBR, that are more precise than using RDTSC
(§3.3). More important, we find that the LBR in a Skylake
CPU allows us to obtain the most accurate information
for branch shadowing because it reports whether each
conditional or indirect branch instruction is correctly pre-
dicted or mispredicted. That is, we can exactly know the
prediction and misprediction of conditional and indirect
branches (§3.3, §3.5). Furthermore, the LBR in a Sky-
lake CPU reports elapsed core cycles between LBR entry
updates, which are very stable according to our measure-
ments (§3.3). By using this information, we can precisely
infer the execution of an unconditional branch (§3.4).

Precise execution control and frequent branch history
probing are other important requirements for branch shad-
owing. To achieve these goals, we manipulate the fre-
quency of the local advanced programmable interrupt
controller (APIC) timer as frequently as possible and
make the timer interrupt code perform branch shadowing.
Further, we selectively disable the CPU cache when a
more precise attack is needed (§3.6).

We evaluated branch shadowing against an RSA im-
plementation in mbed TLS (§4). When attacking sliding-
window RSA-1024 decryption, we successfully inferred
each bit of an RSA private key with 99.8% accuracy. Fur-
ther, the attack recovered 66% of the private key bits by
running the decryption only once, unlike existing cache-
timing attacks, which usually demand several hundreds
to several tens of thousands of iterations [20, 35, 65].

Finally, we suggest hardware- and software-based coun-
termeasures against branch shadowing that flush branch
states during enclave mode switches and utilize indirect
branches with multiple targets, respectively (§5).

The contributions of this paper are as follows:
• Fine-grained attack. We demonstrate that branch

shadowing successfully identifies fine-grained con-
trol flow information inside an enclave in terms of
basic blocks, unlike the state-of-the-art controlled-
channel attack, which reveals only page-level ac-
cesses.

• Precise attack. We make branch shadowing very
precise by 1) exploiting Intel PT and LBR to cor-
rectly identify branch history and 2) adjusting the
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local APIC timer to precisely control the execution
inside an enclave. We can deterministically know
whether a target branch was taken without noise for
conditional and indirect branches and with negligible
noise for unconditional branches.

• Countermeasures. We design proof-of-concept
hardware- and software-based countermeasures
against the attack and evaluate them.

The remainder of this paper is organized as follows. §2
explains SGX and other CPU features our attack exploits.
§3 and §4 describe our attack and evaluate it. §5 proposes
our countermeasures. §6 discusses our attack’s limita-
tions and considers some advanced attacks. §7 introduces
related work and §8 concludes this paper.

2 Background
We explain Intel SGX and two other processor features,

branch prediction and LBR, closely related to our attack.

2.1 Intel SGX
An Intel CPU supports a hardware-based TEE through

a security extension, Intel SGX. SGX provides a set of
instructions to allow an application to instantiate an en-
clave that secures the code and data inside it against privi-
leged software such as an OS or a hypervisor, hardware
firmware, and even hardware units except for the CPU. To
provide such protection, SGX enforces a strict memory
access mechanism: allow only enclave code to access
memory of the same enclave. In addition, SGX leverages
an on-chip memory-encryption engine that encrypts en-
clave content before writing it into physical memory and
decrypts the encrypted content only as it enters the CPU
package during enclave execution or enclave mode.
Enclave context switch. To support context switching
between enclave and non-enclave mode, SGX provides
instructions such as EENTER, which starts enclave exe-
cution, and EEXIT, which terminates enclave execution.
Also, ERESUME resumes enclave execution after an asyn-
chronous enclave exit (AEX) occurs. The causes of an
AEX include exceptions and interrupts. During a context
switch, SGX conducts a series of checks and actions to
ensure security, e.g., flushing the translation lookaside
buffer (TLB). However, we observe that SGX does not
clear all cached system state such as branch history (§3).

2.2 Branch Prediction
Branch prediction is one of the most important features

of modern pipelined processors. At a high level, an in-
struction pipeline consists of four major stages: fetch,
decode, execute, and write-back. At any given time, there
are a number of instructions in-flight in the pipeline. Pro-
cessors exploit instruction-level parallelism and out-of-
order execution to maximize the throughput while still
maintaining in-order retirement of instructions. Branch
instructions can severely reduce instruction throughput
since the processor cannot execute past the branch until

the branch’s target and outcome are determined. Un-
less mitigated, branches would lead to pipeline stalls,
also known as bubbles. Hence, modern processors use a
branch prediction unit (BPU) to predict branch outcomes
and branch targets. While the BPU increases through-
put in general, it is worth noting that in the case of a
misprediction, there is a pretty high penalty because the
processor needs to clear the pipeline and roll back any
speculative execution results. This is why Intel provides
a dedicated hardware feature (the LBR) to profile branch
execution (§2.3).

Branch and branch target prediction. Branch predic-
tion is a procedure to predict the next instruction of a
conditional branch by guessing whether it will be taken.
Branch target prediction is a procedure to predict and
fetch the target instruction of a branch before executing
it. For branch target prediction, modern processors have
the BTB to store the computed target addresses of taken
branch instructions and fetch them when the correspond-
ing branch instructions are predicted as taken.

BTB structure and partial tag hit. The BTB is an
associative structure that resembles a cache. Address
bits are used to compute the set index and tag fields. The
number of bits used for set index is determined by the size
of the BTB. Unlike a cache that uses all the remaining
address bits for the tag, the BTB uses a subset of the
remaining bits for the tag (i.e., a partial tag). For example,
in a 64-bit address space, if ADDR[11:0] is used for index,
instead of using ADDR[63:12] for a tag, only a partial
number of bits such as ADDR[31:12] is used as the tag.
The reasons for this choice are as follows: First, compared
to a data cache, the BTB’s size is very small, and the
overhead of complete tags can be very high. Second, the
higher-order bits typically tend to be the same within a
program. Third, unlike a cache, which needs to maintain
an accurate microarchitectural state, the BTB is just a
predictor. Even if a partial tag hit results in a false BTB
hit, the correct target will be computed at the execution
stage and the pipeline will roll back if the prediction is
wrong (i.e., it affects only performance, not correctness.)

Static and dynamic branch prediction. Static branch
prediction is a default rule for predicting the next in-
struction after a branch instruction when there is no his-
tory [25]. First, the processor predicts that a forward
conditional branch—a conditional branch whose target
address is higher than itself—will not be taken, which
means the next instruction will be directly fetched (i.e.,
a fall-through path). Second, the processor predicts that
a backward conditional branch—a conditional branch
whose target address is lower than itself—will be taken;
that is, the specified target will be fetched. Third, the pro-
cessor predicts that an indirect branch will not be taken,
similar to the forward conditional branch case. Fourth,
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the processor predicts that an unconditional branch will
be taken, similar to the backward conditional branch case.
In contrast, when a branch has a history in the BTB, the
processor will predict the next instruction according to
the history. This procedure is known as dynamic branch
prediction.

In this paper, we exploit these two conditional branch
behaviors to infer the control flow of a victim process
running inside Intel SGX (§3).

2.3 Last Branch Record
The LBR is a new feature in Intel CPUs that logs in-

formation about recently taken branches (i.e., omitting
information about not-taken branches) without any perfor-
mance degradation, as it is separated from the instruction
pipeline [26, 32, 33]. In Skylake CPUs, the LBR stores
the information of up to 32 recent branches, including the
address of a branch instruction (from), the target address
(to), whether the branch direction or branch target was
mispredicted (it does not independently report these two
mispredictions), and the elapsed core cycles between LBR
entry updates (also known as the timed LBR). Without
filtering, the LBR records all kinds of branches, includ-
ing function calls, function returns, indirect branches,
and conditional branches. Also, the LBR can selectively
record branches taken in user space, kernel space, or both.

Since the LBR reveals detailed information of recently
taken branches, an attacker may be able to know the fine-
grained control flows of an enclave process if the attacker
can directly use the LBR against it, though he or she
still needs mechanisms to handle not-taken branches and
the limited capacity of the LBR. Unfortunately for the
attacker and fortunately for the victim, an enclave does
not report its branch executions to the LBR unless it is in
a debug mode [24] to prevent such an attack. However,
in §3, we show how an attacker can indirectly use the
LBR against an enclave process while handling not-taken
branches and overcoming the LBR capacity limitation.

3 Branch Shadowing Attacks
We explain the branch shadowing attack, which can in-

fer the fine-grained control flow information of an enclave.
We first introduce our threat model and depict how we can
attack three types of branches: conditional, unconditional,
and indirect branches. Then, we describe our approach to
synchronizing the victim and the attack code in terms of
execution time and memory address space.

3.1 Threat Model
We explain our threat model, which is based on the

original threat model of Intel SGX and the controlled-
channel attack [60]: an attacker has compromised the
operating system and exploits it to attack a target enclave
program.

First, the attacker knows the possible control flows
of a target enclave program (i.e., a sequence of branch

instructions and their targets) by statically or dynamically
analyzing its source code or binary. This is consistent with
the important use case of running unmodified legacy code
inside enclaves [5,6,51,57]. Unobservable code (e.g., self-
modifying code and code from remote servers) is outside
the scope of our attack. Also, the attacker can map the
target enclave program into specific memory addresses to
designate the locations of each branch instruction and its
target address. Self-paging [22] and live re-randomization
of address-space layout [15] inside an enclave are outside
the scope of our attack.

Second, the attacker infers which portion of code the
target enclave runs via observable events, e.g., calling
functions outside an enclave and page faults. The attacker
uses this information to synchronize the execution of the
target code with the branch shadow code (§3.8).

Third, the attacker interrupts the execution of the target
enclave as frequently as possible to run the branch shadow
code. This can be done by manipulating a local APIC
timer and/or disabling the CPU cache (§3.6).

Fourth, the attacker recognizes the shadow code’s
branch predictions and mispredictions by monitoring
hardware performance counters (e.g., the LBR) or mea-
suring branch misprediction penalty [3, 12, 13].

Last, the attacker prevents the target enclave from ac-
cessing a reliable, high-resolution time source to avoid
the detection of attacks because of slowdown. Probing
the target enclave for every interrupt or page fault slows
the enclave down such that the attacker needs to hide it.
SGX version 1 already satisfies such a requirement, as it
disallows RDTSC. For SGX version 2 (not yet released),
the attacker may need to manipulate model-specific regis-
ters (MSRs) to hook RDTSC. Although the target enclave
could rely on an external time source, it is also unreliable
because of the network delay and overhead. Further, the
attacker can intentionally drop or delay such packets.

3.2 Overview
The branch shadowing attack aims to obtain the fine-

grained control flow of an enclave program by 1) knowing
whether a branch instruction has been taken and 2) infer-
ring the target address of the taken branch. To achieve
this goal, an attacker first needs to analyze the source
code and/or binary of a victim enclave program to find
all branches and their target addresses. Next, the attacker
writes shadow code for a set of branches to probe their
branch history, which is similar to Evtyushkin et al.’s at-
tack using the BTB [13]. Since using the BTB and BPU
alone suffers from significant noise, branch shadowing
exploits the LBR, which allows the attacker to precisely
identify the states of all branch types (§3.3, §3.4, §3.5).
Because of the size limitations of the BTB, BPU, and
LBR, the branch shadowing attack has to synchronize the
execution of the victim code and the shadow code in terms
of execution time and memory address space. We ma-
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1 if (a != 0) {
2 ++b;
3 ...
4 }
5 else {
6 --b;
7 ...
8 }
9 a = b;

10 ...

(a) Victim code executed in-
side an enclave. According to
the value of a, either if-block
or else-block is executed.

1 ⋆ if (c != c) {
2 nop; // never executed
3 ...
4 }
5 ⋆ else {
6 ⋆ nop; // execution
7 ⋆ ...
8 ⋆ }
9 ⋆ nop;

10 ⋆ ...

(b) Shadow code aligned with
(a). The BPU predicts which
block will be executed accord-
ing to the branch history of (a).

Figure 1: Shadow code (b) against a victim’s conditional branch
(a). The execution time (i.e., running [1, 5-10], marked with
⋆ in (b)) of the shadowing instance depends on the branching
result (i.e., taken or not at [1] in (a)) of the victim instance.

nipulate the local APIC timer and the CPU cache (§3.6)
to frequently interrupt an enclave process execution for
synchronization, adjust virtual address space (§3.7), and
run shadow code to find a function the enclave process is
currently running or has just finished running (§3.8).
3.3 Conditional Branch Shadowing

We explain how an attacker can know whether a target
conditional branch inside an enclave has been taken by
shadowing its branch history. For a conditional branch,
we focus on recognizing whether the branch prediction
is correct because it reveals the result of a condition eval-
uation for if statement or loop. Note that, in this and
later sections, we mainly focus on a forward conditional
branch that will be predicted as not taken by a static
branch prediction rule (§2.2). Attacking a backward con-
ditional branch is basically the same such that we skip the
explanation of it in this paper.
Inferring through timing (RDTSC). First, we explain
how we can infer branch mispredictions with RDTSC. Fig-
ure 1 shows an example victim code and its shadow code.
The victim code’s execution depends on the value of a:
if a is not zero, the branch will not be taken such that
the if-block will be executed; otherwise, the branch will
be taken such that the else-block will be executed. In
contrast, we make the shadow code’s branch always be
taken (i.e., the else-block is always executed). Without
the branch history, this branch is always mispredicted be-
cause of the static branch prediction rule (§2.2). To make
a BTB entry collision [13], we align the lower 31 bits of
the shadow code’s address (both the branch instruction
and its target address) with the address of the victim code.

When the victim code has been executed before the
shadow code is executed, the branch prediction or mispre-
diction of the shadow code depends on the execution of
the victim code. If the conditional branch of the victim
code has been taken, i.e., if a was zero, the BPU predicts
that the shadow code will also take the conditional branch,

Correct prediction Misprediction

Mean σ Mean σ

RDTSCP 94.21 13.10 120.61 806.56
Intel PT CYC packets 59.59 14.44 90.64 191.48
LBR elapsed cycle 25.69 9.72 35.04 10.52

Table 1: Measuring branch misprediction penalty with RDTSCP,
Intel PT CYC packet, and LBR elapsed cycle (10,000 times).
We put 120 NOP instructions at the fall-through path. The LBR
elapsed cycle is less noisy than RDTSCP and Intel PT. σ stands
for standard deviation.

which is a correct prediction so that no rollback will oc-
cur. If the conditional branch of the victim code either
has not been taken, i.e., if a was not zero, or has not been
executed, the BPU predicts that the shadow code will not
take the conditional branch. However, this is an incorrect
prediction such that a rollback will occur.

Previous branch-timing attacks try to measure such a
rollback penalty with the RDTSC or RDTSCP instructions.
However, our experiments show (Table 1) that branch
misprediction timings are quite noisy. Thus, it was diffi-
cult to set a clear boundary between correct prediction and
misprediction. This is because the number of instructions
that would be mistakenly executed because of the branch
misprediction is difficult to predict given the highly com-
plicated internal structure of the latest Intel CPUs (e.g.,
out-of-order execution). Therefore, we think that the
RDTSC-based inference is difficult to use in practice and
thus we aim to use the LBR to realize precise attacks,
since it lets us know branch misprediction information,
and its elapsed cycle feature has little noise (Table 1).
Inferring from execution traces (Intel PT). Instead of
using RDTSC, we can use Intel PT to measure a mispre-
diction penalty of a target branch, as it provides precise
elapsed cycles (known as a CYC packet) between each PT
packet. However, CYC packets cannot be used immedi-
ately for our purpose because Intel PT aggregates a series
of conditional and unconditional branches into a single
packet as an optimization. To avoid this problem, we
intentionally insert an indirect branch right after the target
branch, making all branches properly record their elapsed
time in separate CYC packets. Intel PT’s timing infor-
mation about branch misprediction has a much smaller
variance than RDTSCP-based measurements (Table 1).
Precise leakage (LBR). Figure 2 shows a procedure for
conditional branch shadowing with the BTB, BPU, and
LBR. We first explain the case in which a conditional
branch has been taken (Case 1). 1 A conditional branch
of the victim code is taken and the corresponding informa-
tion is stored into the BTB and BPU. This branch taken
occurs inside an enclave such that the LBR does not re-
port this information unless we run the enclave process in
a debug mode. 2 Enclave execution is interrupted and
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...
cmp $0, rax
je 0xc2
inc rbx
...
jmp 0x4c
dec rbx
...
mov rbx, rdx
...

Enclave BTB and BPU
Addr Target

Last Branch Record

❶�Take branch 
and store history

❷ Interrupt

❹�Affect branch prediction 
(will take)...

cmp rax, rax
je 0xc2
nop
...
nop
nop
...

Take
From → To †Predicted

Yes

❺�Disable LBR and
check branch information

Information flow Execution flow Mispredicted flow

Non-enclave

0x004⋯530:

0x004⋯5f4:

0x004⋯620:

0x004⋯5f2:

0xff4⋯530:

0xff4⋯5f4:

0xff4⋯532:

0xff4⋯5f5:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯5f4

↓

...
0x**4⋯530

...

Only for non-enclave

Memory
CPU

(isolated)

0x4⋯5f4

Take?

Yes

incorrect 
target

(a) Case 1: The target conditional branch has been taken.

❺�Disable LBR and
check the branch information

...
cmp $0, rax
je 0xc2
inc rbx
...
jmp 0x4c
dec rbx
...
mov rbx, rdx
...

Enclave BTB and BPU
Addr Target

Last Branch Record

❶�No branch and
delete history

❷�Interrupt

❹�Affect branch prediction 
(will not take)...

cmp rax, rax
je 0xc2
nop
...
nop
nop
...

From → To †Predicted

No
Non-enclave

0x004⋯530:

0x004⋯5f4:

0x004⋯620:

0x004⋯5f2:

0xff4⋯530:

0xff4⋯5f4:

0xff4⋯532:

0xff4⋯5f5:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯5f4

↓

...
n/a0x**4⋯530

...

Only for non-enclave

Memory
CPU

(isolated)

incorrect

Take?

No

Take

(b) Case 2: The target conditional branch has not been taken
(i.e., either not been executed or been executed but not taken).
Figure 2: Branch shadowing attack against a conditional branch
(i.e., Case 1 for taken and Case 2 for non-taken branches) inside
an enclave († LBR records the result of misprediction. For
clarity, we use the result of prediction in this paper.)

the OS takes control. We explain how a malicious OS
can frequently interrupt an enclave process in §3.6. 3
The OS enables the LBR and then executes the shadow
code. 4 The BPU correctly predicts that the shadowed
conditional branch will be taken. At this point, a branch
target prediction will fail because the BTB stores a target
address inside an enclave. However, this target mispre-
diction is orthogonal to the result of a branch prediction
though it will introduce a penalty in CPU cycles (§3.4).
5 Finally, by disabling and retrieving the LBR, we learn
that the shadowed conditional branch has been correctly
predicted—it has been taken as predicted. We think that
this correct prediction is about branch prediction because
the target addresses of the two branch instructions are
different; that is, the target prediction might be failed.
Note that, by default, the LBR reports all the branches
(including function calls) that occurred in user and ker-
nel space. Since our shadow code has no function calls
and is executed in the kernel, we use the LBR’s filtering

mechanism to ignore every function call and all branches
in user space.

Next, we explain the case in which a conditional branch
has not been taken (Case 2). 1 The conditional branch
of the victim code is not taken, so either no information
is stored into the BTB and BPU or the corresponding
old information might be deleted (if there are conflict
missed in the same BTB set.) 2 Enclave execution is
interrupted and the OS takes control. 3 The OS enables
the LBR and then executes the shadow code. 4 The BPU
incorrectly predicts that the shadowed conditional branch
will not been taken, so the execution is rolled back to take
the branch. 5 Finally, by disabling and retrieving the
LBR, we learn that the shadowed conditional branch has
been mispredicted—it has been taken unlike the branch
prediction.

Initializing branch states. When predicting a condi-
tional branch, modern BPUs exploit the branch’s several
previous executions to improve prediction accuracy. For
example, if a branch had been taken several times and then
not taken only once, a BPU would predict that its next
execution would be taken. This would make the shadow
branching infer incorrectly a target branch’s execution
after it has been executed multiple times (e.g., inside a
loop). To solve this problem, after the final step of each
attack iteration, we additionally run the shadow code mul-
tiple times while varying the condition (i.e., interleaving
taken and not-taken branches) to initialize branch states.

3.4 Unconditional Branch Shadowing
We explain how an attacker can know whether a target

unconditional branch inside an enclave has been executed
by shadowing its branch history. This gives us two kinds
of information. First, an attacker can infer where the
instruction pointer (IP) inside an enclave currently points.
Second, an attacker can infer the result of the condition
evaluation of an if-else statement because an if block’s
last instruction is an unconditional branch to skip the
corresponding else block.

Unlike a conditional branch, an unconditional branch
is always taken; i.e., a branch prediction is not needed.
Thus, to recognize its behavior, we need to divert its
target address to observe branch target mispredictions,
not branch mispredictions. Interestingly, we found that
the LBR does not report the branch target misprediction
of an unconditional branch; it always says that each taken
unconditional branch was correctly predicted. Thus, we
use the elapsed cycles of a branch that the LBR reports to
identify the branch target misprediction penalty, which is
less noisy than RDTSC (Table 1).

Attack procedure. Figure 3 shows our procedure for
unconditional branch shadowing. Unlike the conditional
branch shadowing, we make the target of the shadowed
unconditional branch differ from that of the victim uncon-
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❺�Additional branch 
❻�Disable LBR and

check the branch information

...
jmp 0xc2
inc rbx
...
dec rbx
mov rbx, rdx
...

Enclave

BTB and BPU
Addr Target

Last Branch Record

❶�Take branch 
and store history

❷�Interrupt

❹�Affect branch target prediction 
incorrect

target

From → To †Predicted

Yes

Information flow Execution flow Mispredicted flow

Non-enclave

0x004⋯530:

0x004⋯5f4:
0x004⋯5f2:

0xff4⋯530:

0xff4⋯5f4:

0xff4⋯532:

0xff4⋯620:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯620

↓

...
0x**4⋯530

...

Only for non-enclave

Memory CPU

(isolated)

0x004⋯532:

...
jmp 0xee
nop
...
nop
...
nop
jmp 0x4
...
nop
...

0xff4⋯621:

0xff4⋯627: 0xff4⋯621
0xff4⋯627

Yes 35

0

Cycles

0x4⋯5f4

Take?

Yes

Take

Take ↓

(a) Case 3: The target unconditional branch has been taken.
The LBR does not report the misprediction of unconditional
branches, but we can infer it by using the elapsed cycles.

❻�Disable LBR and 
check the branch information

❺�Additional branch

...
jmp 0xc2
inc rbx
...
dec rbx
mov rbx, rdx
...

Enclave

BTB and BPU
Addr Target

Last Branch Record

❶�No execution

❷�Interrupt

❹�Do not affect branch prediction 

From → To †Predicted
Non-enclave

0x004⋯530:

0x004⋯5f4:
0x004⋯5f2:

0xff4⋯530:

0xff4⋯5f4:

0xff4⋯532:

0xff4⋯620:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯620

↓

...
n/a0x**4⋯530

...

Only for non-enclave

Memory CPU

(isolated)

0x004⋯532:

...
jmp 0xee
nop
...
nop
...
nop
jmp 0x4
...
nop
...

0xff4⋯621:

0xff4⋯627: 0xff4⋯621
0xff4⋯627

Yes 25

0

Cycles
Take

Yes

Take?

n/a

Take ↓

(b) Case 4: The target unconditional branch has not been taken.
Figure 3: Branch shadowing attack against an unconditional
branch inside an enclave.

ditional branch to recognize a branch target misprediction.
We first explain the case in which an unconditional branch
has been executed (Case 3). 1 An unconditional branch
of the victim code is executed and the corresponding in-
formation is stored into the BTB and BPU. 2 Enclave
execution is interrupted, and the OS takes control. 3 The
OS enables the LBR and then executes the shadow code.
4 The BPU mispredicts the branch target of the shad-
owed unconditional branch because of the mismatched
branch history, so execution is rolled back to jump to the
correct target. 5 The shadow code executes an additional
branch to measure the elapsed cycles of the mispredicted
branch. 6 Finally, by disabling and retrieving the LBR,
we learn that a branch target misprediction occurred be-
cause of the large number of elapsed cycles.

Next, we explain the case in which an unconditional
branch has not been taken (Case 4). 1 The enclave has
not yet executed the unconditional branch in the victim
code, so the BTB has no information about the branch.

2 Enclave execution is interrupted, and the OS takes
control. 3 The OS enables the LBR and then executes
the shadow code. 4 The BPU correctly predicts the
shadowed unconditional branch’s target, because the tar-
get unconditional branch has never been executed. 5
The shadow code executes an additional branch to mea-
sure the elapsed cycles. 6 By disabling and retrieving
the LBR, we learn that no branch target misprediction
occurred because of the small number of elapsed cycles.

No misprediction of unconditional branch. We found
that the LBR always reports that every taken uncondi-
tional branch has been predicted irrespective of whether
it mispredicted the target (undocumented behavior). We
think that this is because the target of an unconditional
branch is fixed such that, typically, target mispredictions
should not occur. Also, the LBR was for facilitating
branch profiling to reduce mispredictions for optimization.
However, programmers have no way to handle mispre-
dicted unconditional branches that result from the execu-
tion of the kernel or another process—i.e., it does not help
programmers improve their program and just reveals side-
channel information. We believe these are the reasons
the LBR treats every unconditional branch as correctly
predicted.

3.5 Indirect Branch Shadowing
We explain how we can infer whether a target indirect

branch inside an enclave has been executed by shadowing
its branch history. Like an unconditional branch, an indi-
rect branch is always taken when it is executed. However,
unlike an unconditional branch, an indirect branch has
no fixed branch target. If there is no history, the BPU
predicts that the instruction following the indirect branch
instruction will be executed; this is the same as the indi-
rect branch not being taken. To recognize its behavior, we
make a shadowed indirect branch jump to the instruction
immediately following it to monitor a branch target mis-
prediction because of the history. The LBR reports the
mispredictions of indirect branches such that we do not
need to rely on elapsed cycles to attack indirect branches.

Attack procedure. Figure 4 shows a procedure of indi-
rect branch shadowing. We make the shadowed indirect
branch jump to its next instruction to observe whether a
branch misprediction occurs because of the branch history.
We first explain the case in which an indirect branch has
been executed (Case 5). 1 An indirect branch of the vic-
tim code is executed and the corresponding information
is stored into the BTB and BPU. 2 Enclave execution is
interrupted, and the OS takes control. 3 The OS enables
the LBR and then executes the shadow code. 4 The
BPU mispredicts that the shadowed indirect branch will
be taken to an incorrect target address, so the execution
is rolled back to not take the branch. 5 Finally, by dis-
abling and retrieving the LBR, we learn that the shadow
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❺�Disable LBR and
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...
jmpq *rdx
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...
dec rbx
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...

Enclave
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❶�Take branch and 
        store history

❷�Interrupt

❹�Affect branch prediction 
(will take)...

mov 0xff4⋯532,rdx
jmpq *rdx
nop
... From → To †Predicted

No

Information flow Execution flow Mispredicted flow

Non-enclave

0x004⋯530:

0x004⋯5f4:
0x004⋯5f2:

0xff4⋯530:
0xff4⋯532:
0xff4⋯533:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯532

↓

...
0x**4⋯530

...

Only for non-enclave

Memory CPU

(isolated)

0x004⋯532:

0x4⋯5f4

incorrect

Take?

Yes

Does not take

(a) Case 5: The target indirect branch has been taken.
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Non-enclave

0x004⋯530:

0x004⋯5f4:
0x004⋯5f2:

0xff4⋯530:
0xff4⋯532:
0xff4⋯533:

Shadowed
code

Shared by enclave 
and non-enclave

❸�Enable LBR and 
run shadow code

0xff4⋯530
0xff4⋯532

↓

...
0x**4⋯530

...

Only for non-enclave

Memory CPU

(isolated)

0x004⋯532:

Does not take

n/a n/a

Take?

(b) Case 6: The target indirect branch has not been taken
Figure 4: Branch shadowing attack against an indirect branch
inside an enclave.

code’s indirect branch has been incorrectly predicted—it
has not been taken, unlike the branch prediction.

Next, we explain the case in which an indirect branch
has not been taken (Case 6). 1 The enclave does not
execute the indirect branch of the victim code, so that the
BTB has no information about the branch. 2 Enclave
execution is interrupted, and the OS takes control. 3 The
OS enables the LBR and then executes the shadow code.
4 The BPU correctly predicts that the shadowed indirect
branch will not be taken because there is no branch history.
5 Finally, by disabling and retrieving the LBR, we learn
that the shadow code’s indirect branch has been correctly
predicted—it has not been taken, as predicted.

Inferring branch targets. Unlike conditional and un-
conditional branches, an indirect branch can have multiple
targets such that just knowing whether it has been exe-
cuted would be insufficient to know the victim code’s
execution. Since the indirect branch is mostly used for
representing a switch-case statement, it is also related
to a number of unconditional branches (i.e., break) as an
if-else statement does. This implies that an attacker can
identify which case block has been executed by probing
the corresponding unconditional branch. Also, if an at-
tacker can repeatedly execute a victim enclave program
with the same input, he or she can test the same indirect

Branch State BTB/BPU LBR Inferred
Pred. Elapsed Cycl.

Cond. Taken ✓ ✓ - ✓
Not-taken - ✓ - ✓

Uncond. Exec. ✓ - ✓ ✓
Not-exec. - - ✓ ✓

Indirect Exec. ✓ ✓ - ✓
Not-exec. - ✓ - ✓

Table 2: Branch types and states the branch shadowing attack
can infer by using the information of BTB, BPU, and LBR.

branch multiple times while changing candidate target
addresses to eventually know the real target address by
observing a correct branch target prediction.

Table 2 summarizes the branch types and states our
attack can infer and the necessary information.

3.6 Frequent Interrupting and Probing
The branch shadowing attack needs to consider cases

that change (or even remove) BTB entries because they
make the attack miss some branch histories. First, the
size of the BTB is limited such that a BTB entry could
be overwritten by another branch instruction. We empiri-
cally identified that the Skylake’s BTB has 4,096 entries,
where the number of ways is four and the number of sets is
1,024 (§5.1). Because of its well-designed index-hashing
algorithm, we observed that conflicts between two branch
instructions located at different addresses rarely occurred.
But, no matter how, after more than 4,096 different branch
instructions have been taken, the BTB will overflow and
we will lose some branch histories. Second, a BTB entry
for a conditional or an indirect branch can be removed
or changed because of a loop or re-execution of the same
function. For example, a conditional branch has been
taken at its first run and has not been taken at its sec-
ond run because of the changes of the given condition,
removing the corresponding BTB entry. A target of an
indirect branch can also be changed according to condi-
tions, which change the corresponding BTB entry. If the
branch shadowing attack could not check a BTB entry
before it has been changed, it would lose the information.

To solve this problem, we interrupt the enclave process
as frequently as possible and check the branch history by
manipulating the local APIC timer and the CPU cache.
These two approaches slow the execution of a target en-
clave program a lot such that an attacker needs to carefully
use them (i.e., selectively) to avoid detection.

Manipulating the local APIC timer. We manipulate
the frequency of the local APIC timer in a recent version
of Linux (details are in Appendix A.) We measured the
frequency of our manipulated timer interrupts in terms of
how many ADD instructions can be executed between two
timer interrupts. On average, about 48.76 ADD instructions
were executed between two timer interrupts (standard
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deviation: 2.75)1. ADD takes only one cycle in the Skylake
CPU [25] such that our frequent timer can interrupt a
victim enclave per every ∼50 cycles.
Disabling the cache. If we have to attack a branch in-
struction in a short loop taking < 50 cycles, the frequent
timer interrupt is not enough. To interrupt an enclave
process more frequently, we selectively disable the L1
and L2 cache of a CPU core running the victim enclave
process by setting the cache disable (CD) bit of the CR0
control register. With the frequent timer interrupt and
disabled cache, about 4.71 ADD instructions were executed
between two timer interrupts on average (standard devia-
tion: 1.96 with 10,000 iterations). Thus, the highest attack
frequency we could achieve was around five cycles.

3.7 Virtual Address Manipulation
To perform the branch shadowing attack, an attacker

has to manipulate the virtual addresses of a victim enclave
process. Since the attacker has already compromised
the OS, manipulating the page tables to change virtual
addresses is an easy task. For simplicity, we assume the
attacker disables the user-space ASLR and modifies the
Intel SGX driver for Linux (vm_mmap) to change the base
address of an enclave (Appendix B). Also, the attacker
puts an arbitrary number of NOP instructions before the
shadow code to satisfy the alignment.

3.8 Attack Synchronization
Although the branch shadowing probes multiple

branches in each iteration, it is insufficient when a victim
enclave program is large. An approach to overcome this
limitation is to apply the branch shadowing attack at the
function level. Namely, an attacker first infers functions a
victim enclave program either has executed or is currently
executing and then probes branches belonging to these
functions. If these functions contain entry points that can
be invoked from outside (via EENTER) or that rely on ex-
ternal calls, the attacker can easily identify them because
they are controllable and observable by the OS.

However, the attacker needs another strategy to infer
the execution of non-exported functions. The attacker can
create special shadow code consisting of always reachable
branches of target functions (e.g., branches located at the
function prologue). By periodically executing this code,
the attacker can see which of the monitored functions has
been executed. Also, the attacker can use the page-fault
side channel [60] to synchronize attacks in terms of pages.

3.9 Victim Isolation
To minimize noise, we need to ensure that only a victim

enclave program and shadow code will be executed in an
isolated physical core. Each physical core has the BTB
and BPU shared by multiple processes. Thus, if another

1The number of iterations was 10,000. We disabled Hyper-
Threading, SpeedStep, TurboBoost, and C-States to reduce noise.

1 /* Sliding-window exponentiation: X = A^E mod N */
2 int mbedtls_mpi_exp_mod(mbedtls_mpi *X, const mbedtls_mpi *A,
3 const mbedtls_mpi *E, const mbedtls_mpi *N,
4 mbedtls_mpi *_RR) {
5 ...
6 state = 0;
7 while (1) {
8 ...
9 // i-th bit of exponent

10 ei = (E->p[nblimbs] >> bufsize) & 1;
11

12 // cmpq 0x0,-0xc68(%rbp); jne 3f317; ...
13 ⋆ if (ei == 0 && state == 0)
14 continue;
15

16 // cmpq 0x0,-0xc68(%rbp); jne 3f371; ...
17 ⋆ if (ei == 0 && state == 1)
18 + mpi_montmul(X, X, N, mm, &T);
19

20 state = 2; nbits++;
21 wbits |= (ei << (wsize-nbits));
22

23 if (nbits == wsize) {
24 for (i = 0; i < wsize; i++)
25 + mpi_montmul(X, X, N, mm, &T);
26

27 + mpi_montmul(X, &W[wbits], N, mm, &T);
28 state--; nbits = wbits = 0;
29 }
30 }
31 ...
32 }

Figure 5: Sliding-window exponentiation of mbed TLS. Branch
shadowing can infer every bit of the secret exponent.

process runs in the core under the branch shadowing at-
tack, its execution would affect the overall attack results.
To avoid this problem, we use the isolcpus boot parame-
ter to specify an isolated core that will not be scheduled
without certain requests. Then, we use the taskset com-
mand to run a victim enclave with the isolated core.

4 Evaluation
In this section, we demonstrate the branch shadow-

ing attack against an implementation of RSA and also
describe our case studies of various libraries and applica-
tions that are vulnerable to our attack but mostly secure
against the controlled-channel attack [60]. The branch
shadowing attack’s goal is not to overcome countermea-
sures against branch-prediction side-channel attacks, e.g.,
exponent blinding to hide an exponent value, not branch
executions [34]. Thus, we do not try to attack applications
without branch-prediction side channels.

4.1 Attacking RSA Exponentiation
We launch the branch shadowing attack against a pop-

ular TLS library, called mbed TLS (also known as Po-
larSSL). mbed TLS is a popular choice of SGX developers
and researchers because of its lightweight implementation
and portability [47, 49, 62, 63].

Figure 5 shows how mbed TLS implements sliding-
window exponentiation, used by RSA operations. This
function has two conditional branches (jne) marked with
⋆ whose executions depend on each bit (ei) of an expo-
nent. These branches will be taken only when ei is not
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zero (i.e., one). Thus, by shadowing them and checking
their states, we can know the value of ei. Note that the
two branches are always executed no matter how large
the sliding window is. In our system, each loop execution
(Lines 7–30) took about 800 cycles such that a manipu-
lated local APIC timer was enough to interrupt it. Also,
to differentiate each loop execution, we shadow uncondi-
tional branches that jump back to the loop’s beginning.

We evaluated the accuracy of branch shadowing by
attacking RSA-1024 decryption with the default key pair
provided by mbed TLS for testing. By default, mbed
TLS’s RSA implementation uses the Chinese Remainder
Theorem (CRT) technique to speed up computation. Thus,
we observed two executions of mbedtls_mpi_exp_mod
with two different 512-bit CRT exponents in each iter-
ation. The sliding-window size was five.

On average, the branch shadowing attack recovered
approximately 66% of the bits of each of the two CRT
exponents from a single run of the victim (averaged over
1,000 executions). The remaining bits (34%) correspond
to loop iterations in which the two shadowed branches
returned different results (i.e., predicted versus mispre-
dicted). We discarded those measurements, as they were
impacted by platform noise, and marked the correspond-
ing bits as unknown. The remaining 66% of the bits were
inferred correctly with an accuracy of 99.8%, where the
standard deviation was 0.003.

The events that cause the attack to miss about 34% of
the key bits appear to occur at random times. Different
runs reveal different subsets of the key bits. After at
most 10 runs of the victim, the attack recovers virtually
the entire key. This number of runs is small compared
to existing cache-timing attacks, which demand several
hundreds to several tens of thousands of runs to reliably
recover keys [20, 35, 65].
Timing-based branch shadowing. Instead of using
the LBR, we measured how long it takes to execute the
shadow branches using RDTSCP while maintaining other
techniques, including the modified local APIC timer and
victim isolation. When the two target branches were taken,
the shadow branches took 55.51 cycles on average, where
the standard deviation was 48.21 cycles (1,000 iterations).
When the two target branches were not taken, the shadow
branches took 93.89 cycles on average, where the standard
deviation was 188.49 cycles. Because of high variance,
finding a good decision boundary was challenging, so we
built a support vector machine classifier using LIBSVM
(with an RBF kernel and default parameters). Its accuracy
was 0.947 (10-fold cross validation)—i.e., we need to run
this attack at least two times more than the LBR-based
attack to achieve the same level of accuracy.
Controlled-channel attack. We also evaluated the con-
trolled channel attack against Figure 5. We found that
mbedtls_mpi_exp_mod conditionally called mpi_montmul

scan each bit

...

1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul six times (page faults)
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul once
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul once
1 1 0 0 0 0 0 1 1 0 1 0 1 1 0 0 1 ...

call mpi_montmul six times : leaked bits

Figure 6: Controlled-channel attack against sliding-window
exponentiation (window size: 5). It only knows the first bit of
each window (always one) and skipped bits (always zero).

(marked with +) according to the value of ei and both
functions were located on different code pages. Thus, by
carefully unmapping these pages, an attacker can monitor
when mpi_montmul is called. However, as Figure 6 shows,
because of the sliding-window technique, the controlled-
channel attack cannot identify every bit unless it knows
W[wbits]—i.e., this attack can only know the first bit of
each window (always one) and skipped bits (always zero).
The number of recognizable bits completely depends on
how the bits of an exponent are distributed. Against the
default RSA-1024 private key of mbed TLS, this attack
identified 334 bits (32.6%). Thus, we conclude that the
branch shadowing attack is better than the controlled-
channel attack for obtaining fine-grained information.

4.2 Case Study
We also studied other sensitive applications that branch

shadowing can attack. Specifically, we focused on ex-
amples in which the controlled-channel attack cannot
extract any information, e.g., control flows within a sin-
gle page. We attacked three more applications: 1) two
libc functions (strtol and vfprintf) in the Linux SGX
SDK, 2) LibSVM, ported to Intel SGX, and 3) some
Apache modules ported to Intel SGX. We achieved in-
teresting results, such as how long an input number
is (strtol), what the input format string looks like
(vfprintf), and what kind of HTTP request an Apache
server gets (lookup_builtin_method), as summarized in
Table 3. Note that the controlled-channel attack cannot
obtain the same information because those functions do
not call outside functions at least in the target basic blocks.
Detailed analysis with source code is in Appendix C.

5 Countermeasures
We introduce our hardware-based and software-based

countermeasures against the branch shadowing attack.

5.1 Flushing Branch State
A fundamental countermeasure against the branch shad-

owing attack is to flush all branch states generated in-
side an enclave by modifying hardware or updating mi-
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Program/Library Function Description Obtainable information

mbed TLS mbedtls_mpi_exp_mod sliding-window exponentiation ✓each bit of an exponent
mpi_montmul Montgomery multiplication ✓whether a dummy subtraction has performed

libc strtol convert a string into an integer ✓the sign of an input number
✓the length of an input number
✓whether each hexadecimal digit is larger than nine

vfprintf print a formatted string ✓the input format string
✓the type of each input argument (e.g., int, double)

LIBSVM k_function evaluate a kernel function ✓the type of a kernel (e.g., linear, polynomial)
✓the length of a feature vector (i.e., # of features)

Apache lookup_builtin_method parse the method of an HTTP request ✓HTTP request method (e.g., GET, POST)

Table 3: Summary of example sensitive applications and their functions attacked by branch shadowing.
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crocode. Whenever an enclave context switch (via the
EENTER, EEXIT, or ERESUME instructions or AEX) occurs,
the processor needs to flush the BTB and BPU states.
Since the BTB and BPU benefit from local and global

Parameter Value

CPU 4 GHz out of order core, 4 issue width, 256 entry ROB
L1 cache 8 way 32 KB I-cache + 8 way 32 KB D-cache
L2 cache 8 way 128 KB
L3 cache 32 way 8 MB
BTB 4 way 1,024 sets
BPU gshare, branch history length 16

Table 4: MacSim simulation parameters.

branch execution history, there would be a performance
penalty if these states were flushed too frequently.

We estimate the performance overhead of our counter-
measure at different enclave context switching frequen-
cies using a cycle-level out-of-order microarchitecture
simulator, MacSim [30]. To simulate branch history flush-
ing for every enclave context switch, we modified Mac-
Sim to flush BTB and BPU for every 100 to 10 million
cycles; this resembles enclave context switching for every
100 to 10 million cycles. The details of our simulation
parameters are listed in Table 4. The BTB is modeled
after the BTB in Intel Skylake processors. We used a
method similar to that in [1, 58] to reverse engineer the
BTB parameters. From our experiments, we found that
the BTB is organized as a 4-way set associative structure
with a total of 4,096 entries. We model a simple branch
predictor, gshare [37], for the simulation. We use traces
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that are 200 million instructions long from the SPEC06
benchmark suite for simulation.

Figure 7 shows the normalized instructions per cycle
(IPC) for different flush frequencies. We found that if
the flush frequency is higher than 100k cycles, it has
negligible performance overhead. At a flush frequency of
100k cycles, the performance degradation is lower than
2% and at 1 million cycles, it is negligible. Figure 8
shows the BTB hit rate, whereas Figure 9 shows the BPU
correct, incorrect (direction prediction is wrong), and
misfetch (target prediction is wrong) percentages. The
BTB and BPU statistics are also barely distinguishable
beyond a flush frequency of 100k cycles.

According to our measurements with a 4GHz CPU,
about 250 and 1,000 timer interrupts are generated per sec-
ond in Linux (version 4.4) and Windows 10, respectively—
i.e., a timer interrupt is generated for every 4M and 1M
cycles, respectively. Therefore, if there is no I/O device
generating many interrupts and an enclave program gener-
ates less frequent system calls, which would be desired to
avoid the Iago attack [9], flushing branch states for every
enclave context switch will introduce negligible overhead.

5.2 Obfuscating Branch
Branch state flushing can effectively prevent the branch

shadowing attack, but we cannot be sure when and
whether such hardware changes will be realized. Espe-
cially, if such changes cannot be done with micro code
updates, we cannot protect the Intel CPUs already de-
ployed in the markets.

Possible software-based countermeasures against the
branch shadowing attack are to remove branches [39] or to
use the state-of-the-art ORAM technique, Raccoon [44].
Data-oblivious machine learning algorithms et al. [39]
eliminate all branches by using a conditional move in-
struction, CMOV. However, their approach is algorithm-
specific, i.e., it is not applicable to general applications.
Raccoon [44] always executes both paths of a conditional
branch, such that no branch history will be leaked. But,
its performance overhead is high (21.8×).

Zigzagger. We propose a practical, compiler-based mit-
igation against branch shadowing, called Zigzagger. It
obfuscates a set of branch instructions into a single indi-
rect branch, as inferring the state of an indirect branch is
more difficult than inferring those of conditional and un-
conditional branches (§3.5). However, it is not straightfor-
ward to compute the target block of each branch without
relying on conditional jumps because conditional expres-
sions could become complex because of nested branches.
In Zigzagger, we solved this problem by using a CMOV
instruction [39, 44] and introducing a sequence of non-
conditional jump instructions in lieu of each branch.

Figure 10 shows how Zigzagger transforms an exam-
ple code snippet having if, else-if, and else blocks. It

cmp $0, $a
je block2
<code1>
jmp block5
cmp $0, $b
je block4
<code2>
jmp block5
<code3>
<code4>

if (a != 0) {
  <code1>
}
else if (b != 0) {
  <code2>
}
else {
  <code3>
}
 <code4>

block3:

block1:

block2:

block5:

block0:

block4:

(a) An example code snippet. It selectively executes a branch
block according to a and b variables.

mov $block1, r15
cmp $0, $a
cmov $block2, r15
jmp zz1
<code1>
mov $block5, r15
jmp zz2
mov $block3, r15
cmp $0, $b
cmov $block4, r15
jmp zz3
<code2>
mov $block5, r15
jmp zz4
<code3>
<code4>

block0:

block0.j:

block1.j:

block1:

block2.j:

block2:

block3.j:

block3:

block5:
block4:

Zigzagger's trampoline

zz1:jmp block1.j

zz2:jmp block2.j

zz3: jmp block3.j

zz4: jmpq *r15

(b) The protected code snippet by Zigzagger. All branch instruc-
tions are executed regardless of a and b variables. An indirect
branch in the trampoline and CMOVs in the translated code are
used to obfuscate the final target address. r15 is reserved to
store the target address.

Figure 10: An example of Zigzagger transformation.

converts all conditional and unconditional branches into
unconditional branches targeting Zigzagger’s trampoline,
which jumps back-and-forth with the converted branches.
The trampoline finally jumps into the real target address
stored in a reserved register r15. Note that reserving a
register is only for improving performance. We can use
the memory to store the target address when an applica-
tion needs to use a large number of registers. To emulate
conditional execution, the CMOV instructions in Figure 10b
update the target address in r15 only when a or b is zero.
Otherwise, they are treated as NOP instructions. Since all
of the unconditional branches are executed almost simul-
taneously in sequence, recognizing the current instruction
pointer is difficult. Further, since the trampoline now
has five different target addresses, inferring real targets
among them is not straightforward.

Zigzagger’s approach has several benefits: 1) security:
it provides the first line of protection on each branch block
in an enclave program; 2) performance: its overhead is at
most 2.19× (Table 5); 3) practicality: its transformation
demands neither complex analysis of code semantics nor
heavy code changes. However, it does not ensure perfect
security such that we still need ORAM-like techniques to
protect very sensitive functions.

Implementation. We implemented Zigzagger in LLVM
4.0 as an LLVM pass that converts branches in each func-
tion and constructs the required trampoline. We also mod-
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Benchmark Baseline Zigzagger
(iter/s) #Branches (overhead)

2 3 4 5 All

numeric sort 967.25 1.05× 1.11× 1.12× 1.13× 1.15×
string sort 682.31 1.08× 1.15× 1.18× 1.15× 1.27×
bitfield 4.5E+08 1.03× 1.10× 1.14× 1.18× 1.31×
fp emulation 96.204 1.10× 1.21× 1.15× 1.27× 1.35×
fourier 54982 0.99× 0.99× 1.01× 1.01× 1.01×
assignment 35.73 1.36× 1.56× 1.50× 1.55× 1.90×
idea 10,378 2.16× 2.16× 2.18× 2.19× 2.19×
huffman 2478.1 1.59× 1.46× 1.61× 1.63× 1.81×
neural net 16.554 0.75× 0.77× 0.85× 0.86× 0.89×
lu decomposition 1,130 1.04× 1.09× 1.08× 1.11× 1.17×

GEOMEAN 1.17× 1.22× 1.24× 1.26× 1.34×

Table 5: Overhead of the Zigzagger approach according to the
number of branches belonging to each Zigzagger.

ified the LLVM backend to reserve a register. The number
of branches a single trampoline manages affects the over-
all performance, so our implementation provides a knob
to configure it to trade the security for performance.

Our proof-of-concept implementation of Zigzagger,
merging every branch in each function, imposed a 1.34×
performance overhead when evaluating it with the nbench
benchmark suite (Table 5). With optimization (i.e., merg-
ing ≤ 3 branches into a single trampoline), the average
overhead became ≤ 1.22×. Note that reserving a register
resulted in a 4%–50% performance improvement.

6 Discussion
In this section, we explain some limitations of the

branch shadowing attack and discuss possible advanced
attacks.

6.1 Limitations
The branch shadowing attack has limitations. First, it

cannot distinguish a not-taken conditional branch from a
not-executed conditional branch because, in both cases,
the BTB stores no information; the static branch pre-
diction rule is applied. Second, it cannot distinguish an
indirect branch to the next instruction from a not-executed
indirect branch because their predicted branch targets are
the same. Therefore, an attacker has to probe a number
of correlated branches (e.g., unconditional branches in
else-if or case blocks) to overcome these limitations.
Third, as with the controlled-channel attack, the branch
shadowing attack needs repetitions to increase attack ac-
curacy, which can be prohibited by a state continuity solu-
tion [55]. However, this requires persistence storage such
as that provided by a trusted platform module (TPM).

6.2 Advanced Attacks
We consider how branch shadowing can be improved:

hyperthreading and blind approaches.
Hyperthreaded branch shadowing. Since two hyper-
threads simultaneously running in the same physical core
share the BTB and BPU, a malicious hyperthread can

attack a victim enclave hyperthread by using BTB entry
conflicts if a malicious OS gives the address information
of the victim to it. We observed that branch instructions
with the same low 16-bit address were mapped into the
same BTB set. Thus, a malicious hyperthread can mon-
itor a BTB set for evictions by filling the BTB set with
four branch instructions (§5.1). The BTB flushing cannot
prevent this attack because it demands no enclave mode
switch, so disabling hyperthreading or preventing the hy-
perthreads from sharing the BTB and BPU is necessary.

Blind branch shadowing. A blind branch shadowing
attack is an attempt to probe the entire or selected memory
region of a victim enclave process to detect any unknown
branch instructions. This attack would be necessary if a
victim enclave process has self-modifying code or uses
remote code loading, though this is outside the scope
of our threat model (§3.1). In the case of unconditional
branches, blind probing is easy and effective because it
does not need to infer target addresses. However, in the
case of conditional and indirect branches, blind probing
needs to consider branch instructions and their targets
simultaneously such that the search space would be huge.
We plan to consider an effective method to minimize the
search space to know whether this attack is practical.

7 Related Work
Intel SGX. The strong security guarantee provided
by SGX has drawn significant attention from the re-
search community. Several security applications of
SGX are proposed, including secure and distributed data
analysis [7, 11, 39, 46, 66] and secure networking ser-
vice [31, 41, 48]. Also, researchers implemented SGX
layers [5, 6, 51, 57] to run existing applications inside an
enclave without any modifications. The security proper-
ties of SGX itself are also being intensively studied. For
example, Sinha et al. [52, 53] develop tools to verify the
confidentiality of enclave programs.

However, researchers find security attacks against Intel
SGX. Xu et al. [60] and Shinde et al. [50] demonstrate the
first side-channel attack on SGX by leveraging the fact
that SGX relies on an OS for memory resource manage-
ment. The attack is done by intentionally manipulating the
page table to trigger a page fault and using a page-fault
sequence to infer the secret inside an enclave. Weich-
brodt et al. [59] also show how a synchronous bug can
be exploited to attack SGX applications. Further, concur-
rently with our work, Hähnel et al. [21] exploit a frequent
timer in Windows to realize a precise cache side-channel
attack against the Intel SGX simulator.

To address the page-fault-based side-channel attack,
Shinde et al. [50] obfuscate the memory access pattern of
an enclave. Shih et al. [49] propose a compiler-based solu-
tion using Intel TSX to detect suspicious page faults inside
an enclave. Also, Costan et al. [10] propose a new en-
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clave design to prevent both page-fault and cache-timing
side-channel attacks. Finally, Seo et al. [47] enforce fine-
grained ASLR on enclave programs, which can raise the
bar of exploiting any vulnerabilities and inferring control
flow with page-fault sequences. However, all of these
solutions heavily use branch instructions and do not clear
branch states, such that they would be vulnerable to our
attack.

Microarchitectural side channel. Researchers con-
sidered the security problems of microarchitectural side
channels. The most popular and well-studied microar-
chitectural side channel is a CPU cache timing channel
first developed by [29, 34, 40] to break cryptosystems.
This attack is further extended to be conducted in the
public cloud setting to recognize co-residency of virtual
machines [45, 64]. Several researchers further improved
this attack to exploit the last level cache [27, 35] and cre-
ate a low-noise cache storage channel [19]. The CPU
cache is not the sole source of the microarchitectural side
channel. For example, to break kernel ASLR, researchers
exploit a TLB timing channel [23], an Intel TSX instruc-
tion [28], a PREFETCH instruction [18], and a BTB timing
channel [13]. Ge et al. [14] conducted a comprehensive
survey of microarchitectural side channels.

8 Conclusion
A hardware-based TEE such as Intel SGX demands

thorough analysis to ensure its security against hostile
environments. In this paper, we presented and evaluated
the branch shadowing attack, which identifies fine-grained
execution flows inside an SGX enclave. We also proposed
hardware-based countermeasure that clears the branch
history during enclave mode switches and software-based
mitigation that makes branch executions oblivious.

Responsible disclosure. We reported our attack to Intel
and discussed with them to find effective solutions against
it. Also, after having a discussion with us, the authors of
Sanctum [10] revised their eprint paper that coped with
our attack.
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A Manipulating Local APIC Timer
The local APIC is a component of Intel CPUs to config-

ure and handle CPU-specific interrupts [26, §10]. An OS
can program it through memory-mapped registers (e.g.,
device configuration register) or model-specific registers
(MSRs) to adjust the frequency of the local APIC timer,
which generates high-resolution timer interrupts, and de-
liver an interrupt to a CPU core (e.g., inter-processor
interrupt (IPI) and I/O interrupt from the I/O APIC).

Intel CPUs support three local APIC timer modes: pe-
riodic, one-shot, and timestamp counter (TSC)-deadline
modes. The periodic mode lets an OS configure the initial-
count register whose value is copied into the current-count
register the local APIC timer uses. The current-count reg-
ister’s value decreases at the rate of the bus frequency,
and when it becomes zero, a timer interrupt is generated
and the register is re-initialized by using the initial-count
register. The one-shot mode lets an OS configure the
initial-count counter value whenever a timer interrupt is
generated. The TSC-deadline mode is the most advanced
and precise timer mode allowing an OS to specify when
the next timer interrupt will occur in terms of a TSC
value. Our target Linux system (kernel version 4.4) uses
the TSC-deadline mode, so we focus on this mode.

Figure 11 shows how we modified the
lapic_next_deadline() function specifying the next
TSC deadline and the local_apic_timer_interrupt()
function called whenever a timer interrupt
is fired. We made and exported two global
variables and function pointers to manipulate
the behaviors of lapic_next_deadline() and
local_apic_timer_interrupt() with a kernel module:
lapic_next_deadline_delta to change the delta;
lapic_target_cpu to specify a virtual CPU running
a victim enclave process (via a CPU affinity); and
timer_interrupt_hook to specify a function to be called
whenever a timer interrupt is generated. In our evaluation
environment having an Intel Core i7 6700K CPU (4GHz),
we were able to have 1,000 as the minimum delta value;
i.e., it fires a timer interrupt about every 1,000 cycles.
Note that, in our environment, a delta value lower than
1,000 made the entire system freeze because a timer
interrupt was generated before an old timer interrupt was
handled by the interrupt handler.

B Modifying SGX Driver
Figure 12 shows how we modified the Intel SGX driver

for Linux to manipulate the base address of an enclave.
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1 /* linux-4.4.23/arch/x86/kernel/apic/apic.c */
2 ...
3 // manipualte the delta of TSC-deadline mode
4 unsigned int lapic_next_deadline_delta = 0U;
5 EXPORT_SYMBOL_GPL(lapic_next_deadline_delta);
6

7 // specify the virtual core under attack
8 int lapic_target_cpu = -1;
9 EXPORT_SYMBOL_GPL(lapic_target_cpu);

10

11 // a hook to launch branch shadowing attack
12 void (*timer_interrupt_hook)(void*) = NULL;
13 EXPORT_SYMBOL_GPL(timer_interrupt_hook);
14 ...
15 // update the next TSC deadline
16 static int lapic_next_deadline(unsigned long delta,
17 struct clock_event_device *evt) {
18 u64 tsc;
19 tsc = rdtsc();
20 ⋆ if (smp_processor_id() != lapic_target_cpu)
21 wrmsrl(MSR_IA32_TSC_DEADLINE,
22 tsc + (((u64) delta) * TSC_DIVISOR));
23 ⋆ else
24 ⋆ wrmsrl(MSR_IA32_TSC_DEADLINE,
25 ⋆ tsc + lapic_next_deadline_delta); // custom deadline
26 return 0;
27 }
28 ...
29 // handle a timer interrupt
30 static void local_apic_timer_interrupt(void) {
31 int cpu = smp_processor_id();
32 struct clock_event_device *evt = &per_cpu(lapic_events, cpu);
33

34 ⋆ if (cpu == lapic_target_cpu && timer_interrupt_hook)
35 ⋆ timer_interrupt_hook((void*)&cpu); // call attack code
36 ...
37 }

Figure 11: Modified local APIC timer code. We changed
lapic_next_deadline() to manipulate the next TSC deadline
and local_apic_timer_interrupt() to launch attack code.

1 /* isgx_ioctl.c */
2 ...
3 static long isgx_ioctl_enclave_create(struct file *filep,
4 unsigned int cmd, unsigned long arg) {
5 ...
6 struct isgx_create_param *createp =
7 (struct isgx_create_param *) arg;
8 void *secs_la = createp->secs;
9 struct isgx_secs *secs = NULL;

10 // SGX Enclave Control Structure (SECS)
11 long ret;
12 ...
13 secs = kzalloc(sizeof(*secs), GFP_KERNEL);
14 ret = copy_from_user((void *)secs, secs_la, sizeof (*secs));
15 ...
16 ⋆ secs->base = vm_mmap(file, MANIPULATED_BASE_ADDR, secs->size,
17 ⋆ PROT_READ | PROT_WRITE | PROT_EXEC,
18 ⋆ MAP_SHARED, 0);
19 ...
20 }

Figure 12: Modified Intel SGX driver to manipulate the base
address of an enclave

C Case Study in Detail
We study other sensitive applications the branch shad-

owing can attack. Specifically, we focus on examples in
which the controlled-channel attack cannot extract any
information, e.g., control flows within a single page.
mbed TLS. We checked mbed TLS’s another function:
the Montgomery multiplication (mpi_montmul). As shown

1 /* bignum.c */
2 static int mpi_montmul(mbedtls_mpi *A, const mbedtls_mpi *B,
3 const mbedtls_mpi *N, mbedtls_mpi_uint mm,
4 const mbedtls_mpi *T) {
5 size_t i, n, m;
6 mbedtls_mpi_uint u0, u1, *d;
7

8 d = T->p; n = N->n; m = (B->n < n) ? B->n : n;
9

10 for (i = 0; i < n; i++) {
11 u0 = A->p[i];
12 u1 = (d[0] + u0 * B->p[0]) * mm;
13

14 mpi_mul_hlp(m, B->p, d, u0);
15 mpi_mul_hlp(n, N->p, d, u1);
16

17 *d++ = u0; d[n+1] = 0;
18 }
19

20 ⋆ if (mbedtls_mpi_cmp_abs(A, N) >= 0) {
21 ⋆ mpi_sub_hlp(n, N->p, A->p);
22 ⋆ i = 1;
23 ⋆ }
24 ⋆ else { // dummy subtraction to prevent timing attacks
25 ⋆ mpi_sub_hlp(n, N->p, T->p);
26 ⋆ i = 0;
27 ⋆ }
28 return 0;
29 }

Figure 13: Montgomery multiplication (mpi_montmul()) of
mbed TLS. The branch shadowing attack can infer whether
a dummy subtraction has performed or not.

in Figure 13, this function has a dummy subtraction
(Lines 24–27) to prevent the well-known remote timing
attack [8]. The branch shadowing attack was able to de-
tect the execution of this dummy branch. In contrast,
the controlled-channel cannot know whether a dummy
subtraction has happened because both real and dummy
branches execute the same function: mpi_sub_hlp().

Linux SGX SDK. We attacked two libc functions,
strtol() and vfprint(), Linux SGX SDK provides. Fig-
ure 14a shows strtol() converting a string into an inte-
ger. The branch shadowing can infer the sign of an input
number by checking the branches in Lines 7–12. Also,
it infers the length of an input number by checking the
loop branch in Lines 14–24. When an input number was
hexadecimal, we were able to use the branch at Line 16
to know whether each digit was larger than nine.

Figure 14b shows vfprintf() printing a formatted
string. The branch shadowing was able to infer the format
string by checking the switch-case statement in Lines
4–13 and the types of input arguments to this function
according the switch-case statement in Lines 15–23. In
contrast, the controlled-channel attack cannot infer this
information because the functions called by vfprint(),
including ADDSARG() and va_arg(), are inline functions.
No page fault sequence will be observed.

LIBSVM. LIBSVM is a popular library supporting sup-
port vector machine (SVM) classifiers. We ported a classi-
fication logic of LIBSVM to Intel SGX because it would
be a good example of machine learning as a service [39]
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1 /* linux-sgx/sdk/tlibc/stdlib/strtol.c */
2 long strtol(const char *nptr, char **endptr, int base) {
3 ...
4 s = nptr;
5 do { c = (unsigned char) *s++; } while (isspace(c));
6

7 ⋆ if (c == ’-’) {
8 ⋆ neg = 1; c = *s++;
9 ⋆ } else {

10 ⋆ neg = 0;
11 ⋆ if (c == ’+’) c = *s++;
12 ⋆ } // infer the sign of an input number
13

14 ⋆ for (acc = 0, any = 0;; c = (unsigned char) *s++) {
15 ⋆ if(isdigit(c)) c -= ’0’;
16 ⋆ else if (isalpha(c)) c -= isupper(c) ? ’A’-10 : ’a’-10;
17 ⋆ // infer hexademical
18 else break;
19

20 if (!neg) {
21 acc *= base; acc += c;
22 }
23 ...
24 ⋆ } // infer the length of an input number
25 ...
26 }

(a) Simplified strtol(). The branch shadowing attack can infer
the sign and length of an input number.

1 /* linux-sgx/sdk/tlibc/stdio/vfprintf.c */
2 int __vfprintf(FILE *fp, const char *fmt0, __va_list ap) {
3 ...
4 for (;;) {
5 ch = *fmt++;
6 switch (ch) {
7 ...
8 ⋆ case ’d’: case ’i’: ADDSARG(); break;
9 ⋆ case ’p’: ADDTYPE_CHECK(TP_VOID); break;

10 ⋆ case ’X’: case ’x’: ADDUARG(); break;
11 ...
12 }
13 } // infer input format string
14 ...
15 for (n = 1; n <= tablemax; n++) {
16 switch (tyypetable[n]) {
17 ⋆ case T_INT:
18 ⋆ (*argtable)[n].intarg = va_arg(ap, int); break;
19 ⋆ case T_DOUBLE:
20 ⋆ (*argtable)[n].doublearg = va_arg(ap, double); break;
21 ...
22 }
23 ⋆ } // infer the types of input arguments
24 ...
25 }

(b) Simplified vfprintf(). The branch shadowing attack can
infer the format string and variable arguments.

Figure 14: libc functions attacked by the branch shadowing

while hiding the detailed parameters. Figure 15 shows
the LIBSVM’s kernel function code running inside an
enclave. The branch shadowing attack can recognize the
kernel type such as linear, polynomial, and radial basis
function (RBF) because of the switch-case statement in
Lines 4–28. Also, when a victim used an RBF kernel, we
were able to infer the number of features (i.e., the length
of a vector) he or she used (Lines 11–20).

Apache. We ported some modules of Apache to SGX.
Figure 16 shows its lookup function to parse the method
of an HTTP request. Because of its switch-case state-

1 /* svm.cpp */
2 double Kernel::k_function(const svm_node *x,
3 const svm_node *y, const svm_parameter& param) {
4 switch(param.kernel_type) {
5 ⋆ case LINEAR:
6 ⋆ return dot(x,y);
7 ⋆ case POLY:
8 ⋆ return powi(param.gamma*dot(x,y)+param.coef0,
9 param.degree);

10 ⋆ case RBF:
11 double sum = 0;
12 while (x->index != -1 && y->index != -1) {
13 ⋆ if (x->index == y->index) {
14 ⋆ double d = x->value - y->value;
15 ⋆ sum += d*d; ++x; ++y;
16 ⋆ }
17 ⋆ else {
18 ⋆ ...
19 ⋆ }
20 ...
21 ⋆ } // infer the lengths of x and y
22 ⋆ return exp(-param.gamma*sum);
23 ⋆ case SIGMOID:
24 ⋆ return tanh(param.gamma*dot(x,y)+param.coef0);
25 ⋆ case PRECOMPUTED:
26 ⋆ return x[(int)(y->value)].value;
27 default:
28 return 0;
29 ⋆ } // infer the kernel type
30 }

Figure 15: Kernel function of LIBSVM. The branch shadowing
attack can infer the kernel type.

1 /* http_protocol.c */
2 static int lookup_builtin_method(const char *method,
3 apr_size_t len) {
4 ...
5 switch (len) {
6 ⋆ case 3:
7 switch (method[0]) {
8 ⋆ case ’P’: return (method[1] == ’U’ && method[2] == ’T’
9 ⋆ ? M_PUT : UNKNOWN_METHOD);

10 ⋆ case ’G’: return (method[1] == ’E’ && method[2] == ’T’
11 ⋆ ? M_GET : UNKNOWN_METHOD);
12 default: return UNKNOWN_METHOD;
13 }
14 ..
15 ⋆ case 5:
16 switch (method[2]) {
17 ⋆ case ’T’: return (memcmp(method, "PATCH", 5) == 0
18 ⋆ ? M_PATCH : UNKNOWN_METHOD);
19 ⋆ case ’R’: return (memcmp(method, "MERGE", 5) == 0
20 ⋆ ? M_MERGE : UNKNOWN_METHOD);
21 ...
22 }
23 ...
24 ⋆ }
25 }

Figure 16: Apache HTTP method lookup function. The branch
shadowing infers the type of HTTP method sent by clients.

ments, we can easily identify the method of a target HTTP
request, such as GET, POST, DELETE, and PATCH. Since
this function invokes either no function or memcmp(), the
controlled-channel attack has no chance to identify the
method.
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Abstract

Phones are used to confirm some of our most sensi-
tive transactions. From coordination between energy
providers in the power grid to corroboration of high-
value transfers with a financial institution, we rely on
telephony to serve as a trustworthy communications
path. However, such trust is not well placed given the
widespread understanding of telephony’s inability to
provide end-to-end authentication between callers. In
this paper, we address this problem through the Authen-
tiCall system. AuthentiCall not only cryptographically
authenticates both parties on the call, but also provides
strong guarantees of the integrity of conversations made
over traditional phone networks. We achieve these
ends through the use of formally verified protocols that
bind low-bitrate data channels to heterogeneous audio
channels. Unlike previous efforts, we demonstrate that
AuthentiCall can be used to provide strong authentica-
tion before calls are answered, allowing users to ignore
calls claiming a particular Caller ID that are unable or
unwilling to provide proof of that assertion. Moreover,
we detect 99% of tampered call audio with negligible
false positives and only a worst-case 1.4 second call
establishment overhead. In so doing, we argue that
strong and efficient end-to-end authentication for phone
networks is approaching a practical reality.

1 Introduction

Telephones remain of paramount importance to society
since their invention 140 years ago, and they are espe-
cially important for sensitive business communications,
whistleblowers and journalists, and as a reliable fallback
when other communication systems fail. When faced
with critical or anomalous events, the default response
of many organizations and individuals is to rely on the
telephone. For instance, banks receiving requests for
large transfers between parties that do not generally

interact call account owners. Power grid operators
who detect phase synchronization problems requiring
careful remediation speak on the phone with engineers
in adjacent networks. Even the Federal Emergency
Management Agency (FEMA) recommends that citizens
in disaster areas rely on phones to communicate sensitive
identity information (e.g., social security numbers) to
assist in recovery [29]. In all of these cases, participants
depend on telephony networks to help them validate
claims of identity and integrity.

However, these networks were never designed to pro-
vide end-to-end authentication or integrity guarantees.
Adversaries with minimal technical ability regularly
take advantage of this fact by spoofing Caller ID, a vul-
nerability enabling over $7 billion in fraud in 2015 [34].
More capable adversaries can exploit weaknesses in
core network protocols such as SS7 to reroute calls and
modify content [15]. Unlike the web, where mechanisms
such as TLS protect data integrity and allow experts
to reason about the identity of a website, the modern
telephony infrastructure simply provides no means for
anyone to reason about either of these properties.

In this paper, we present AuthentiCall, a system
designed to provide end-to-end guarantees of authen-
tication and call content integrity over modern phone
systems (e.g., landline, cellular, or VoIP). While most
phones have access to some form of data connection,
that connection is often not robust or reliable enough
to support secure VoIP phone calls. AuthentiCall
uses this often low-bitrate data connection to mutually
authenticate both parties of a phone call with strong
cryptography before the call is answered. Even in the
worst case, this authentication adds at most a negligible
1.4 seconds to call establishment. Once a call is estab-
lished, AuthentiCall binds the call audio to the original
authentication using specialized, low-bandwidth digests
of the speech in the call. These digests protect the
integrity of call content and can distinguish legitimate
audio modifications attributable to the network from
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99% of maliciously tampered call audio even while a
typical user would expect to see a false positive only
once every six years. Our system is the first to use these
digests to ensure that received call audio originated from
the legitimate source and has not been tampered with
by an adversary. Most critically, AuthentiCall provides
these guarantees for standard telephone calls without
requiring changes to any core network.

Our work makes the following contributions:
• Designs Channel Binding and Authentication Pro-

tocols: We design protocols that bind identities to
phone numbers, mutually authenticate both parties of
a phone call, and protect call content in transit.

• Evaluates Robust Speech Digests for Security: We
show that proposed constructions for digesting speech
data in systems that degrade audio quality can be made
effective in adversarial settings in real systems.

• Evaluates Call Performance in Real Networks: Our
prototype implementation shows that the techniques
pioneered in AuthentiCall are practical and perfor-
mant, adding at most only 1.4 seconds to phone call
establishment in typical settings.
We are not the first to address this prob-

lem [2, 9, 17, 21, 43, 47, 56, 77]. However, other
approaches have relied upon weak heuristics, fail to
protect phone calls using the public telephone network,
are not available to end users, neglect to protect call
content, are trivially evaded, or add significant delay
to call establishment. AuthentiCall is the only system
that authenticates phone calls and content with strong
cryptography in the global telephone network with neg-
ligible latency and overhead. We compare AuthentiCall
to other existing or proposed systems in Section 9.

The remainder of this paper is organized as follows:
Section 2 provides background information about
the challenges underlying authentication in telephony
networks; Section 3 describes our assumptions about
adversaries and our security model in detail; Section 4
gives a formal specification of the AuthentiCall system;
Section 5 discusses how analog speech digests can be
used to achieve call content integrity; Section 6 provides
details of the implementation of our system; Section 7
shows the results of our experiments; Section 8 offers
additional discussion; Section 9 analyzes related work;
and Section 10 provides concluding remarks.

2 Background

Modern telephony systems are composed of a mix of
technologies. As shown in Figure 1, the path between a
caller and callee may transit through multiple networks
consisting of mobile cores, circuit-switched connections
and packet-switched backbones. While the flow of a
call across multiple network technologies is virtually

Cellular
Carrier

PSTN
Carrier

Intermediary 
Telco Networks

InternetVOIP
Carrier

GG

G

G

G

G

Figure 1: In the modern phone network, calls are often
routed through gateways at network boundaries that re-
move authentication information and modify call audio.

invisible to customers, significant transformations occur
to call audio between source and destination. Whereas
the content of data packets on the Internet should not be
modified between source and destination, call audio is
transcoded by gateways to ensure that it is compatible
with the underlying network. As such, users of the global
telephony infrastructure can only be guaranteed that an
approximate but not bitwise identical representation of
their voice will be delivered to the other end of the call.

Any other data that may be generated by a user or
their home network is not guaranteed to be delivered
or authenticatable end-to-end. That is, because the
underlying technologies are heterogeneous, there is no
assurance that information generated in one system is
passed (much less authenticated) to another. This has
two critical implications. The first is that any proofs of
identity a user may generate to their provider are not sent
to the other end of the call. For instance, a mobile phone
on a 4G LTE connection performs strong cryptographic
operations to prove its identity to its provider. However,
there exists no means to share such proofs with a callee
within this system let alone one in another provider’s
network. Second, claims of identity (e.g., Caller ID) are
sent between providers with no means of verifying said
claims. As evidenced by greater than $7 billion in fraud
in 2015 [34], it is extremely simple for an adversary to
trick a receiver into believing any claim of identity. There
is no simple solution as calls regularly transit multiple in-
termediate networks between the source and destination.

It is increasingly common that modern phones have
simultaneous access to at least low-bitrate data channels.
VoIP phones naturally have a secondary data channel, the
majority of mobile phones allow users to both talk and
use data networks simultaneously, and even some circuit-
switched connections (e.g., ISDN) provide phones with
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a data connection. The presence of these data services
does not mean that all calls can be simply converted to
VoIP. For example, cellular data in many places does not
support the high data-rate or quality of service necessary
for intelligible calls. Moreover, it is unlikely that any
provider will entirely scrap their non-VoIP infrastruc-
ture. Accordingly, we argue that the presence of this
low-bitrate data channel creates opportunities to develop
a uniform means of end-to-end authentication across the
heterogeneous mechanisms for delivering call audio.

3 Security Model

In order to authenticate voice calls and content,
AuthentiCall will face adversaries with a range of
capabilities. The simplest adversary will attempt to
commit phone fraud by spoofing Caller ID when calling
a target [59, 60]. An equivalent form of this attack
may occur by the adversary tricking their target to
call an arbitrary number under their control (e.g., via
spam or phishing) and claiming to represent some other
party (e.g., a financial institution) [46]. Additionally,
this adversary may perform a call forwarding attack,
which forces a target calling a legitimate number to be
redirected to the adversary. Lastly, the adversary may
place a voice call concurrent with other legitimate phone
calls in order to create a race condition to see which call
arrives at the destination first. In all of these cases, the
goal of the adversary is to claim another identity for the
purpose of extracting sensitive information (e.g., bank
account numbers, usernames, and passwords).

A more sophisticated adversary may gain access to
a network core via vulnerabilities in systems such as
SS7 [15], or improperly protected legal wiretapping
infrastructure [74]. This adversary can act as a man-in-
the-middle, and is therefore capable of redirecting calls
to an arbitrary endpoint, acting as an arbitrary endpoint,
hanging up one side of a call at any point in time, and
removing/injecting audio to one or both sides. Such an
adversary is much more likely to require nation-state
level sophistication, but exists nonetheless. Examples of
both classes of adversary are shown in Figure 2.

Given that the bitwise encoding of audio is unlikely
to be the same at each endpoint, end-to-end encryption
is not a viable means of protecting call content or
integrity across the heterogeneous telephony landscape.
Moreover, while we argue that the majority of phones
have access to at least a low-bandwidth data connection,
solutions that demand high-speed data access at all
times (i.e., pure VoIP calls) do not offer solutions for
the vast majority of calls (i.e., cellular calls). Finally,
we claim no ability to make changes throughout the
vast and disparate technologies that make up the core
networks of modern telephony and instead focus strictly

Telephony 
Core

Caller ID Spoofing

Telephony 
Core

Telephony 
Core

HI CC#?

Content Injection

Bank

Figure 2: Broad overview of attacks possible on Caller
ID and call content in current telephony landscape.

on addressing this problem in an end-to-end fashion.
We define four participants: the Caller (R), the Callee

(E), the Server (S), and the Adversary (Adv). Callers
and Callees will register with the AuthentiCall service
as described in the next section and will generate
credentials1 that include a public key. AuthentiCall will
achieve the following security goals in the presence of
the above-described adversaries:
1. (G1) Proof of Number Ownership: During the pro-

cess of registration, R will actively demonstrate own-
ership of its claimed Caller ID to S before it receives
a signed certificate.

2. (G2) Authentication of the Caller: E will be able
to cryptographically verify the identity of R prior to
accepting an incoming call.

3. (G3) Authentication of the Callee: R will be able to
cryptographically verify the identity of E as soon as
the call begins.

4. (G4) Integrity Protection of Call Content: R and
E will be able to verify that the analog voice content
has not been meaningfully altered, or that new content
has not been injected by a man in the middle. Addi-
tionally, both will also be protected against concurrent
call attacks.

5. (G5) Proof of Liveness: Both R and E will be able to
detect if the other party is no longer on the call, per-
haps as the result of a man in the middle attempting
to engage in the call after the initial authentication.
We note that AuthentiCall does not provide confiden-

tiality guarantees. While recent work has shown how to
build systems that support anonymous calling [31], en-
crypting call audio end-to-end in lossy, heterogeneous
telephone networks remains an open problem.

4 Protocol Design and Evaluation

Previously, we saw that AuthentiCall has five security
goals to meet, and this section describes the three proto-
cols that AuthentiCall uses to achieve these goals. These

1The details of which are described in depth in Section 4.
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are the Enrollment, Handshake, and Call Integrity proto-
cols.

These protocols make use of certificates issued to
each client that indicate that a particular client controls
a specific phone number. In prior work we proposed a
full public key infrastructure for telephony [56] called a
“TPKI” that would have as its root the North American
Numbering Plan Administration with licensed carriers
acting as certificate authorities. This PKI would issue
an authoritative certificate that a phone number is owned
by a particular entity, and AuthentiCall could enforce
that calls take place between the entities specified in
those certificates. While AuthentiCall can leverage the
proposed TPKI, a fully-deployed TPKI is not necessary
as AuthentiCall can act as its own certificate authority
(this is discussed further in the enrollment protocol).

All of these protocols make use of a client-server
architecture, where an AuthentiCall server acts as
either an endpoint or intermediary between user clients.
There are several reasons for this design choice. First,
having a centralized relay simplifies the development of
AuthentiCall. Although there are risks of adding a cen-
tralized point on a distributed infrastructure, our design
minimizes them by distributing identity verification to a
certificate authority and only trusting a central server to
act as a meeting point for two callers. Second, it allows
the server to prevent abuses of AuthentiCall like robodi-
aling [71] by a single party by implementing rate limit-
ing. The server can authenticate callers before allowing
the messages to be transmitted, providing a mechanism
for banning misbehaving users. Finally, all protocols
(including handshake and enrollment) implement end-to-
end cryptography. Assuming the integrity of the Authen-
tiCall certificate authority infrastructure and the integrity
of the client, no other entity of the AuthentiCall network
can read or fabricate protocol messages. We also assume
that all communications between clients and servers use
a secure TLS configuration with server authentication.

Our protocols have another goal: no human interac-
tion except for choosing to accept a call. There are two
primary reasons for this. First, it is well established that
ordinary users (and even experts) have difficulty exe-
cuting secure protocols correctly [76]. Second, in other
protocols that rely on human interaction, the human
element has been shown to be the most vulnerable [63].

The following subsections detail the three protocols
in AuthentiCall. First, the enrollment protocol ensures
that a given AuthentiCall user actually controls the
phone number they claim to own (G1). The enrollment
protocol also issues a certificate to the user. Second,
the handshake protocol mutually authenticates two
calling parties at call time (G2 and G3). Finally, the
call integrity protocol ensures the security of the voice
channel and the content it carries (G4 and G5).
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Figure 3: Our enrollment protocol confirms phone
number ownership and issues a certificate.

4.1 Enrollment Protocol
The enrollment protocol ensures that a client controls a
claimed number and establishes a certificate that binds
the identity of the client to a phone number. For our
purposes, “identity” may be a user’s name, organization,
or any other pertinent information. Binding the identity
to a phone number is essential because phone numbers
are used as the principal basis of identity and routing
in phone networks, and they are also used as such with
AuthentiCall. The enrollment protocol is similar to other
certificate issuing protocols but with the addition of a
confirmation of control of the phone number.

Figure 3 shows the details of the enrollment protocol.
The enrollment protocol has two participants: a client C
and an AuthentiCall enrollment server SCA. In message
1, C sends an enrollment request with SCA’s identity, C’s
identity info, C’s phone number, and C’s public key. In
message 2, the server sends a nonce NNet , the identities
of C and SCA and the phone numbers of C and SCA with
a timestamp to ensure freshness, liveness, and to provide
a “token” for this particular authentication session.

In message 3, the server begins to confirm that C
controls the phone number it claims. The number is
confirmed when SCA places a call to C’s claimed phone
number. When the call is answered, SCA transmits a
nonce over the voice channel. Having SCA call C is
a critical detail because intercepting calls is far more
difficult than spoofing a source number.2 Using a voice
call is important because it will work for any phone –
including VoIP devices that may not have SMS access.

In message 4, C sends both NNet and NAudio along with
the IDs of server, clients, a timestamp, and a signature
covering all other fields. This final message concludes
the proof of three things: possession of NNet , the ability

2We will revisit the threat of call interception later in this
subsection.
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to receive a call by providing NAudio and possession by C
of the private key K−C by virtue of signing the message.

In message 5, SCA replies with a signed certificate
issued to C. This completes the enrollment protocol.

We note that this protocol is subject to the same
limitations on certifying identity as every other Internet
certificate authority. In particular, we will require an
out-of-band process to verify identity for high-value
certificates, and will require the ability to authenticate
supporting documentation. AuthentiCall can also use
other authoritative information sources like CNAM3

lookups to verify number ownership in some cases.
While no system or process is perfect, these types of
policies have been largely effective on the Internet.

We also note that this is a trust-on-first-use (TOFU)
protocol. While the protocol is secure in the presence of
passive adversaries on both the data and voice networks,
if an adversary can actively intercept a call addressed to
a victim phone number (and also supply any out-of-band
identity confirmation), they may be able to obtain a cer-
tificate for a number they illicitly control. If a TPKI were
deployed, this attack would not be possible. Even with-
out a TPKI, the likelihood of a successful attack is lim-
ited. Success is limited because the attack would even-
tually be detected by the legitimate owner when they
attempt to register or authenticate using the legitimate
number. To further protect against the prior attack, our
protocol meets an additional goal: human interaction is
not required for enrollment and confirming control of the
claimed phone number. This means that automatic peri-
odic reverification of phone number control is possible.
This is important to prevent long-term effects of a brief
phone number compromise, but also for more mundane
issues like when phone numbers change ownership.

4.2 Handshake Protocol

The handshake protocol takes place when a caller
intends to contact a callee. The caller places a voice call
over the telephone network while simultaneously using
a data connection to conduct the handshake protocol.

The handshake protocol consists of two phases.
The first indicates to the AuthentiCall server and the
calling party that a call is imminent. The second phase
authenticates both parties on the call and establishes
shared secrets. These secrets are only known end-to-end
and are computed in a manner that preserves perfect
forward secrecy. Figure 4 shows the handshake protocol.

Prior to the start of the protocol, we assume that C has

3CNAM is the distributed database maintained by carriers that
maps phone numbers to the names presented in traditional caller ID.
While spoofing a number is trivial, CNAM lookups occur out-of-band
to call signaling and results could only be spoofed by a carrier, not a
calling party.
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Figure 4: Our handshake protocol mutually authenticates
both parties.

connected to S via TLS, meaning S has properly authenti-
cated itself to C. After connecting C authenticates itself
to S, by either presenting a username/password pair or by
signing a challenge with its private key.

The first phase consists of messages 1–3. In message
1, a caller R indicates to an AuthentiCall server S that R
would like to place a call to the callee E. In message 2,
S informs the callee E that an authenticated voice call is
incoming.

In message 3, S informs R whether E is an Authenti-
Call user or not, but does not provide information about
E’s presence or availability. Message 3 has several aims.
The first is to protect the privacy of E. A strawman
mechanism to protect privacy is for AuthentiCall to pro-
vide no information about E until E agrees to accept the
call. However, this presents a problem: if an adversary
tampers or blocks messages from E, it prevents E from
participating in the handshake, and R would have to
assume (in the absence of outside knowledge) that E is
not a participant in AuthentiCall. This would allow an
adversary to evade AuthentiCall. To solve this problem,
S simply indicates to R whether or not R should expect
to complete an AuthentiCall handshake for this call if E
is available and chooses to accept the call. This reveals
only E’s preference to authenticate a phone call, and
nothing about her availability or whether she has even
chosen to accept or reject a call. Protecting this informa-
tion is important because if an unwanted callee knows
that a user is available, they may call repeatedly or use
that information in other undesirable ways (e.g., harass-
ment or telemarketing). If message 3 indicates that E is
not an AuthentiCall user but E does not choose to accept
the call, R must simply wait for the call request to time
out. From R’s perspective, this is no different from dial-
ing and waiting for a busy signal or voicemail and should
add little to no latency to the call. If message 3 indicates
that E is not an AuthentiCall user, the protocol ends at
this step and R is forced to fallback to an insecure call.
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The second handshake phase authenticates R and
E and consists of messages 4A-B and 5A-B. These
messages are indicated by letters A and B because the
messages contain the same fields for caller and callee
respectively. They can be computed independently and
sent in parallel, reducing round trip latencies.

Message 4 contains all information necessary for a
Diffie-Hellman key establishment authenticated with a
signature key defined in the certificate of R or E. It also
contains identity information for R or E, the calling or
called phone number, a timestamp, and a nonce. Each
side also provides a Diffie-Hellman share, and the entire
message is signed with the public key in the certificate
issued by AuthentiCall.

After message 4, both sides combine their Diffie-
Hellman secret with the share they received to generate
the derived secret. Each client then generates keys
using the Diffie-Hellman result, the timestamps of both
parties, and the nonces of both parties. These keys are
used to continue the handshake and to provide keys for
the integrity protocol.

Message 5A and 5B contain an HMAC of messages
4A and 4B along with a string to differentiate message
5A from message 5B. The purpose of this message is to
provide key confirmation that both sides of the exchange
have access to the keys generated after messages 4A and
4B. This message concludes the handshake protocol.

4.3 Call Integrity Protocol
The call integrity protocol binds the handshake con-
ducted over the data network to the voice channel estab-
lished over the telephone network. Part of this protocol
confirms that the voice call has been established and con-
firms when the call ends. The remainder of the messages
in this protocol exchange content authentication informa-
tion for the duration of the call. This content integrity
takes the form of short “digests” of call audio (we discuss
these digests in detail in the following section). These di-
gests are effectively heavily compressed representations
of the call content; they allow for detection of tampered
audio at a low bit rate. Additionally, the digests are ex-
changed by both parties and authenticated with HMACs.

Figure 5 shows the details of the call integrity
protocol. The protocol begins after the voice call is
established. Both caller R and callee E send a message
indicating that the voice call is complete. This message
includes a timestamp, IDs of the communicating parties
and the HMAC of all of these values. The timestamp
is generated using the phone clock which is often
synchronized with the carrier.4 These messages are

4In this setting, loose clock synchronization (approximately one
minute) is sufficient; if necessary, S can also provide a time update at
login.
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Caller (R) Callee (E)
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Figure 5: Our call integrity protocol protects all speech
content.

designed to prevent attacks where a call is redirected
to another phone. One possible attack is an adversary
maliciously configuring call forwarding on a target; the
handshake would be conducted with the target, but the
voice call would be delivered to the adversary. In such
a case, the target would not send a “call established”
message and the attack would fail.

Once the voice call begins, each side will encrypt and
send the other audio digests at a regular interval. It is
important to note that we use unique keys generated
during the handshake for encryption, message authen-
tication codes, and digest calculation. The messages
also guarantee freshness because the index is effectively
a timestamp, and the message authentication codes are
computed under a key unique to this call. Timestamps
in messages 1-N are indexed against the beginning of
the call, negating the need for a synchronized clock. In
order to prevent redirection attacks, the messages are
bound to the identities of the communicating parties by
including the IDs in the HMACs and by using keys for
the HMACs that are unique to the call.

When the voice call ends, each side sends a “call con-
cluded” message containing the client IDs, a timestamp,
and their HMAC. This alerts the end point to expect
no more digests. It also prevents a man-in-the-middle
from continuing a call that the victim has started and
authenticated.

4.4 Evaluation

Our protocols use standard constructions for certificate
establishment, certificate-based authentication, authen-
ticated key establishment, and message authentication.
We therefore believe our protocols are secure based
on inspection. Nevertheless, we used ProVerif [20] to
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further analyze the handshake and enrollment proto-
cols. Our ProVerif code can be found in our technical
report [55]. The analysis verified that our handshake
protocol establishes and never leaks the secret key.
The protocol also provides authentication and perfect
forward secrecy for both the caller and callee. The
enrollment protocol is verified to never leak the private
keys of either party. This property allows us to assert
that both signatures and certificates cannot be forged.

5 Speech Digest Design and Evaluation

The previous section describes how AuthentiCall enrolls
and authenticates users prior to a call. During a call,
AuthentiCall needs a way to summarize speech content
in order to authenticate audio using a low-bandwidth
data connection. To accomplish this goal, we leverage
research from an area of signal processing that produces
techniques that are known as “perceptual hashes” or
“robust hashes.” Robust digests have been developed for
a wide domain of inputs, including music, images, and
speech, but their applicability has remained limited. Un-
like cryptographic hashes, which change drastically with
small changes in input, robust hashes give very similar
outputs for similar inputs. By definition, a robust digest
cannot provide collision resistance (or second preimage
resistance) because collisions are the property that make
them useful. In this paper, we call these techniques
“speech digests” to avoid confusion with cryptographic
hashes. To our knowledge, this work presents one of the
first uses of robust speech digests for security.

A speech digest has two goals. First, it must ac-
curately summarize the content of the call. However,
it is not necessary for this summary to be lossless
or meaningful for human interpretation. We are also
concerned more with semantics (i.e., words spoken) than
we are with speaker voice characteristics (e.g., tone,
identity) or extraneous features like noise. Second, the
digest must be robust to non-semantic changes in audio.

Because of ambient or electronic noise, intermittent
loss, and the use of differing encodings throughout the
phone network, the audio transmitted by a phone will
not be the same as the audio received. In particular,
the audio received is practically guaranteed to not be
identical on a bit level to the audio sent by the phone.
This means that common data digest approaches like
cryptographic hashes will fail.

While the original phone system used analog trans-
mission of voice, it is now common in every telephone
network (landline, VoIP, cellular, etc.) for speech to
be digitized and compressed using an audio codec.
At network boundaries, it is common for audio to be
decoded and recoded into a different codec (known as
transcoding). Codecs used in the phone network are

highly lossy and drastically distort the call audio, and
so have the potential to significantly impact audio digest
performance. Because some phone systems (especially
cellular and VoIP) use lossy networks for transmission,
frames are routinely lost. For example, loss rates of 4%
are considered nominal for cellular voice [12].

These legitimate modifications caused by the phone
network must be distinguished from changes to audio
induced by an adversary. The following subsections
provide a description of the speech digests we use in
AuthentiCall and a thorough analysis of the performance
of these digests for telephone calls.

5.1 Construction and Properties

There are a number of constructions of speech digests,
and they all use the following basic process. First, they
compute derived features of speech. Second, they define
a compression function to turn the real-valued features
into a bit string. We use the construction of Jiao et al. [36]
called RSH. We chose this technique over others because
it provides good performance on speech at a low-bitrate,
among other properties. We note that the original work
did not evaluate the critical case where an adversary can
control the audio being hashed. Our evaluation shows
that RSH maintains audio integrity in this crucial case.
The construction also selects audio probabilistically; we
show in Appendix B that the digest indeed covers all
of the semantic content in the input audio. Finally, to
our knowledge we are the first to use any robust speech
digest for an authentication and integrity scheme.

For space reasons, and because we do not claim the
design of the RSH digest as a research contribution, we
provide a detailed description of the actual computation
of an RSH digest in Appendix A. However, the remainder
of this subsection will provide details necessary for the
rest of this paper. RSH computes a 512-bit digest for each
1 second of audio, and the digest can be thought of as a
heavily compressed version of the audio in the call. The
digest is computed probabilistically using a keyed pseu-
dorandom number generator with a key derived during
the handshake (Section 4.2) in AuthentiCall. The prob-
abilistic nature of the digest ensures that digests of the
same phrase (e.g., “Hello”) differ and cannot simply be
replayed. Digests are computed by the caller and are re-
ceived and verified by the callee. The verifying party
computes the digest of the received audio and the Ham-
ming distance between the calculated and received di-
gests. Because degradation of audio over a phone call is
expected, digests will not match exactly. However, the
Hamming distance between two audio digests (equiva-
lent to the bit error rate (BER)) quantifies the change in
the audio. By setting an appropriate threshold on BER,
maliciously modified audio can be detected.
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5.2 Implementation and Evaluation
Now that we have seen how RSH digests are computed,
we can evaluate properties of RSH digests. This includes
effects of legitimate transformations and the results of
comparing digests of unrelated audio samples (as might
be generated by an adversary). We also describe how we
use digests to detect tampered audio.

We implement RSH using Matlab, and we deploy
it in our AuthentiCall prototype by using the Matlab
Coder toolbox to generate C code that is compiled as
an Android native code library. We use the TIMIT
audio corpus [30] which is a standard test dataset for
speech processing systems. It consists of high-fidelity
recordings of 630 male and female speakers reading 10
English sentences constructed for phonetic diversity.
Because RSH computes hashes of one second of audio,
we split the TIMIT audio data into discrete seconds of
audio corresponding to a unique section of audio from
a speaker and sentence. This resulted in 22,487 seconds
of unique audio.

5.2.1 Robustness

Robustness is one of the most critical aspects of our
speech digests, and it is important to show that these
digests will not significantly change after audio under-
goes any of the normal processes that occur during a
phone call. These include the effects of various audio
encodings, synchronization errors in audio, and noise.
To test robustness, we generate modified audio from
the TIMIT corpus and compare the BER of digests of
standard TIMIT audio to digests of degraded audio. We
first downsample the TIMIT audio to a sample rate of
8kHz, which is standard for most telephone systems.
We used the sox [5] audio utility for downsampling and
adding delay to audio to model synchronization error.
We also used sox to convert the audio to two common
phone codecs, AMR-NB (Adaptive Multi-Rate Narrow
Band) and GSM-FR (Groupe Spécial Mobile Full-Rate).
We used GNU Parallel [67] to quickly compute these
audio files. To model frame loss behavior, we use a
Matlab simulation that implements a Gilbert-Elliot loss
model [32]. Gilbert-Elliot models bursty losses using a
two-state Markov model parameterized by probabilities
of individual and continued losses. We use the standard
practice of setting the probability of an individual loss
(p) and probability of continuing the burst (1− r) to the
desired loss rate of 5% for our experiments. We also use
Matlab’s agwn function to add Gaussian white noise at
a 30 decibel signal to noise ratio.

Figure 6 shows boxplots representing the distribution
of BER rates of each type of degradation tested. All
degradations show a fairly tight BER distribution near
the median with a long tail. We see that of the effects

Figure 6: These box plots show the distribution of
digests bit error rates as a result of various audio
degradations. These error rates are well below the rates
seen by adversarial audio, shown in Figure 7

Figure 7: This graph shows the histogram and kernel
density estimate of digest of adversarial audio on over
250 million pairs of 1-second speech samples. While
the majority of legitimately modified audio has digest
errors less than 35%, adversarial audio has digest BERs
averaging 47.8%.

tested, 10ms delay has the least effect; this is a result of
the fact that the digest windows the audio with a high
overlap. For most digests, addition of white noise also
has little effect; this is because LSF analysis discards
all frequency information except for the most important
frequencies. We see higher error rates caused by the
use of audio codecs like GSM-FR and AMR-NB;
these codecs significantly alter the frequency content
of the audio. We can also see that a 5% loss rate has
negligible effect on the audio digests. Finally, we see
that combining transcoding, loss, delay, and noise has an
additive effect on the resulting digest error — in other
words, the more degradation that takes place, the higher
the bit error. These experiments show that RSH is robust
to common audio modifications.
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5.2.2 Adversarial Audio

While robustness is essential, the ultimate goal of these
digests is to detect maliciously tampered or injected
audio, which we term “adversarial audio.” Such an
analysis has not been previously performed. To validate
the ability of RSH to detect adversarial audio we compute
the BER of digests of every pair of seconds of TIMIT
audio discussed in the previous section. This dataset
includes 252,821,341 pairs of single seconds of audio.
For this test, we use the same key for every hash; this
models the situation where an adversary can cause the
target to receive audio of its choice but not modify the
associated digest.

We find that the mean BER between two distinct audio
pairs is 0.478. A histogram and kernel density estimate
of these values is also shown in Figure 7. This plot
shows that the bit error is normally distributed with a
mean and median of 0.478 and 0.480 (respectively). The
expected bit error for two random bit strings is 50%, and
the mean seen for RSH bit error is close to the optimal,
best possible distance between two adversarial digests.

Because the TIMIT corpus contains speakers speaking
several identical sentences, we can investigate the re-
silience of the digest to more specific adversarial scenar-
ios in two important ways. First, we can look at whether
using different speech from the same speaker can create
a false positive. If so, this would be a serious problem
because an adversary could use recorded words from the
target speaker undetected. Second, we can determine if
a different speaker uttering the same words causes false
positives. This test indicates to what extent the digest is
protecting content instead of speaker characteristics.

We found that digests from the same speaker speaking
different content are accepted at practically the same rate
as audio that differs in speaker and content. At a BER
detection threshold of 0.384 (derived and discussed in
the following subsection), the detection rate for different
content spoken by the same speaker is 0.901482, while
the detection rate for different content spoken by a dif-
ferent speaker is 0.901215. However, identical phrases
spoken by different speakers results in a much higher
rate of collision and a detection rate of 0.680353. This
lower detection rate is not a problem for AuthentiCall
because it is still high enough to detect modified call au-
dio with high probability. More importantly, it indicates
that RSH is highly sensitive to changes in call content.

5.2.3 Threshold selection and performance

Distinguishing legitimate and illegitimate audio requires
choosing a BER threshold to detect tampered audio.
Because the extreme values of these populations overlap,
a tradeoff between detection and false positives must be
made. The tradeoff is best depicted in a ROC curve in

Figure 8: The digest performance ROC graph shows that
digests can easily distinguish between legitimate and
substituted audio, even in the presence of transcoding,
loss, delay, and noise. These results are computed over
digests of a single second. The graph is scaled to show
the extreme upper corner.

Figure 8. This figure shows the true positive/false posi-
tive tradeoff measured on the adversarial audio and two
legitimate modifications – GSM encoding and a combi-
nation of GSM, AMR-NB, 5% frame loss, 10ms delay,
and 30dB of white noise. This combination represents an
approximate “worst case” of legitimate audio. Figure 8
shows excellent performance in terms of distinguishing
audio. For GSM-only audio, we see an area-under-curve
of 0.998, and for the “worst case” audio, we see an
area-under-curve of 0.992. However, because digests
will be used at a high rate (one per second), even with
a very small false positive rate, alerting users for every
individual detection will likely result in warning fatigue.
As a result, the most important metric for evaluating a
threshold is minimizing the user’s likelihood of a false
positive. This problem suggests trading off sensitivity to
short changes in call content for a lower false positive
rate. To reduce overhead and network load, AuthentiCall
sends digests in groups of five. To provide high detection
rates while limiting false positives, AuthentiCall alerts
the user if any 3 out of 5 digests are greater than the
BER threshold. We model true and false performance of
this scheme as a set of five Bernoulli trials — successful
authentication for true positives and successful digest
collision for false positives. Thus, we can compute
3-out-of-5 performance using the binomial distribution.

After this analysis, we selected an individual-digest
BER threshold of 0.384. This corresponds to an in-
dividual adversary audio true positive detection rate of
0.90, while presenting a 0.0058 false positive rate against
our “worst-case” audio and a 0.00089 false positive rate
against clean GSM-FR encoded audio. Using our “three-
out-of-five” alerting scheme, the probability of detecting
3 or more seconds of tampered audio is 0.992. The false
positive rate is drastically reduced: the false positive rate
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is 1.96× 10−6, and for clean GSM-FR audio the false
positive rate is 7.02× 10−9. This corresponds to a false
alert on average every 425.1 hours of talk time for worst
case audio, and for GSM-FR audio one false positive ev-
ery 118,766 hours. The average British mobile phone
user only places 176 minutes per month of outbound
calls [65]; assuming inbound and outbound talk time are
roughly equal, the average user only places 70.4 hours of
calls per year. This means that the average AuthentiCall
user would only see a false alert once every six years.

5.2.4 Limitations

No security solution is perfect, and our use of audio
digests have some limitations. The chief limitation is
that audio digests cannot detect altered audio less than
one second in length. This limitation is simply a result
of the constraints of doing low-bitrate authentication of
mutable and analog data.

While the digests are not perfect, we argue that they
are secure against most adversaries. We note that audio
digests have two purposes: 1) to provide a guarantee that
the voice call established was the one that was negotiated
in the handshake and 2) that the voice content has not sig-
nificantly changed during the call. These two goals deal
with adversaries of different capabilities. In particular,
intercepting and modifying call audio requires far more
advanced access and capability than simply spoofing a
caller ID during a handshake already occurring. Audio
digests will detect the first scenario within five seconds
of audio, and it will also quickly detect changes that
effect any three seconds in five for the second scenario.

In limited circumstances, it may be possible for a
man-in-the-middle adversary to make small modifica-
tions to the received audio. For the second attack to be
successful in the presence of these digests, a number of
conditions must hold: First, the adversary can change
no more than two seconds out of every five seconds of
audio. Second, the adversary must change the audio in a
way that would sound natural to the victim. This would
mean that the changed audio would have to conform to
both the current sentence pattern as well as the speaker’s
voice. While voice modification algorithms exist (e.g.,
Adobe VoCo [10] and Lyrebird [11]), modifying an
existing sentence in an ongoing conversation is beyond
the abilities of current natural-language processing.
Also, since our digests depend on the semantic call
content, changes to the structure of a sentence (and not
necessary audible voice) would alert the user. Finally, in
addition to the substantial difficulty of these limits, the
adversary must also do all of this in soft-real-time.

Additionally, our threat model assumes the adversary
has access to the audio (but not the keys) that generated
the digest and thus second preimage resistance is a rel-

evant property. Note that our security argument rests in
the computational difficulty of finding a series of colli-
sions in real-time using semantically relevant audio. The
protection that RSH would provide for preimage resis-
tance (given an arbitrary digest but no corresponding
audio) depends primarily on the security of the keyed-
pseudorandom selection of audio segments for each di-
gest. Evaluating this property is interesting but not im-
mediately relevant to the security of our system.

Nevertheless, a user is still not defenseless against
such an attack. While we believe such attempts would
likely be noticeable and suspicious to the human ear,
users could also receive prompts from AuthentiCall
when individual digests fail. These prompts could
recommend that the user ask the opposing speaker to
elaborate their prior point or to confirm other details to
force the adversary to respond with enough tampered
audio that the attack could be detected.

6 System Implementation

The previous sections described the protocol design
and characterized our speech digests. In this section,
we describe our AuthentiCall client and server imple-
mentation, and in the following section evaluate its
performance.

Server: Our server was implemented in Java, using
Twilio’s Call API to call clients during the registration
phase to share the audio nonce that confirms control of
a phone number. Google Cloud Messaging (GCM) is
used to generate a push notification to inform clients of
incoming calls.

Client: Our prototype AuthentiCall client consists of
an Android app, though we anticipate that in the fu-
ture AuthentiCall will be available for all telephony plat-
forms, including smartphones, VoIP phones, PBXs, and
even landlines (with additional hardware similar in con-
cept to legacy Caller ID devices that uses a wireless or
wired LAN data connection).

A TLS connection is used to establish a secure
channel between client and server. We implement the
AuthentiCall protocol in Java using the Spongy Castle
library [1]. The audio digests were implemented in
Matlab, compiled to C, and linked into the app as native
code. In our implementation, digest protocol messages
contain five seconds of audio digests.

We use RSA-4096 to as our public key algorithm and
SHA-3 for the underlying hash function for HMACs. To
reduce handshake time, we use a standard set of NIST
Diffie-Hellman parameters hardcoded into the client.
These are NIST 2048-bit MODP group with a 256-bit
prime order subgroup from RFC5114 [41]. We also use
the HMAC-based key derivation algorithm used by TLS
1.2 described in RFC 5869 [39]. Upon registration, the
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Figure 9: Enrollment takes less than 30 seconds and is a
one time process that may be done in the background.

server issues the client an X509 certificate. This consists
of a user’s claimed identity, phone number, validity,
public key and signature of the CA.

Audio Nonces: As described in Section 4, the Au-
thentiCall enrollment protocol sends a nonce through the
voice channel to ensure that an client can receive a voice
call. We use a 128-bit random nonce. In our implemen-
tation, the nonce is encoded as touch-tones (DTMF5).
DTMF tones were used because they are faithfully trans-
mitted through every telephone system and were simple
to send and detect. There are 16 possible touch-tone dig-
its 6, so each tone can represent an encoded hexadecimal
digit. These tones are transmitted for 200ms each with a
100ms pause between tones. This provides a bit rate of
13.3 bits per second for a nonce transmission time of 9.6
seconds. This transmission time comprises the bulk of
the time spent in the enrollment protocol.

7 Results

Our AuthentiCall implementation allows us to test
its performance in enrollment, call handshakes, and
detecting modified call audio in real phone calls.

7.1 Experiment Setup
Before describing individual experiments, we describe
our experiment testbed. The AuthentiCall server was
placed on an Amazon Web Services (AWS) server
located in Northern Virginia. We used the same network
provider, AT&T, and the same cellular devices, Samsung
Galaxy Note II N7100s, across all experiments. The
enrollment and handshake experiments were carried out
20 times over both WiFi and 3G, and digest exchange

5Dual-Tone Multi-Frequency tones are the sounds made by dialing
digits on a touch-tone phone.

6Four DTMF tones are not available on consumer phones but
provide additional functionality in some special phone systems

Figure 10: AuthentiCall adds 1 to 1.41 seconds to
the phone call establishment, making the overhead
effectively unnoticeable to users.

tests were done 10 times using WiFi. Digest exchange
was done over WiFi as this experiment was used to
validate content protection, not delivery speed. In all
experiments, calls used a 3G voice channel.

We evaluate 3G and WiFi because our research phones
do not support 2G-only operation. We note that not
all wireless access is created equal, and actual speeds
depend on many factors including network congestion,
transmission power, and interference.

7.2 Enrollment Protocol
Our first experiments measure the user enrollment time.
We measure the time from the instant a user begins
enrollment to when the user receives the last protocol
message, including all protocol messages and the audio
nonce. For clients, enrollment is a one-time process that
is done before the first call can be placed, analogous to
activating a credit card. Figure 9 shows the average time
of enrollment using 3G and WiFi to exchange protocol
messages. The main contributor to the enrollment time
comes from the transmission of the audio nonce which
is used to establish ownership. Though the enroll-
ment times over 3G and WiFi are 25 and 22 seconds
respectively, this protocol requires no user interaction.

7.3 Handshake Protocol
We next measure the time to complete an entire hand-
shake, including data messages and voice call setup. We
note that voice call setup time is substantial, and requires
many seconds even without AuthentiCall. We believe
the most important performance metric is additional
latency experienced by the end user. As shown in
Figure 10, AuthentiCall only adds 1.07 seconds for WiFi
or 1.41 seconds on 3G data to the total call establishment
time (error bars indicate standard error). We believe that
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this will be unnoticeable to the user for several reasons.
First, call establishment time varies significantly. This
is normal network behavior, not an artifact introduced
by AuthentiCall. In our 3G experiments our additional
handshake time is approximately equal to the standard
error in voice call establishment. We also note that our
test phones were in the same location connected to the
same tower, so the voice call setup time is likely lower
than a typical call. In fact, our measured times are very
close to the published estimates of 6.5 seconds for call
setup by the tower between both phones [4]. Finally, we
note that this is substantially faster than Authloop [56]
which takes nine seconds to perform authentication after
call delivery.

7.4 Speech Digest Performance

Our final experiments evaluate our speech digest accu-
racy over real call audio. In these 10 calls, we play 10
sentences from 10 randomly selected speakers in the
TIMIT corpus through the call, and our AuthentiCall im-
plementation computed the sent and received digests. In
total this represented 360 seconds of audio. For simplic-
ity, a caller sends audio and digests, and a callee receives
the audio and compares the received and locally com-
puted digests. We also compared these 10 legitimate call
digests with an “adversary call” containing different au-
dio from the hashes sent by the legitimate caller. To com-
pare our live call performance to simulated audio from
Section 5, we first discuss our individual-hash accuracy.

Figure 11 shows the cumulative distribution of BER
for digests of legitimate audio calls and audio sent by
an adversary. The dotted line represents our previously
established BER threshold of 0.348.

First, in testing with adversarial audio, we see that
93.4% of the individual fraudulent digests were detected
as fraudulent. Our simulation results saw an individual
digest detection rate of 90%, so this means that our
real calls see an even greater performance. Using our
3-out-of-5 standard for detection, we detected 96.7%.
This test shows that AuthentiCall can effectively detect
tampering in real calls. Next, for legitimate calls, 95.5%
of the digests were properly marked as authentic audio.
Using our 3-out-of-5 standard, we saw no five-second
frames that were marked as tampered.

While our individual hash performance false positive
rate of 4.5% was low, we were surprised that the
performance differed from our earlier evaluation on
simulated degradations. Upon further investigation, we
learned that our audio was being transmitted using the
AMR-NB codec set to the lowest possible quality setting
(4.75kbps); this configuration is typically only used
when reception is exceptionally poor, and we anticipate
this case will be rare in deployment. Nevertheless, there

Figure 11: This figure shows that 93.4% of individual
digests of adversarial audio are correctly detected while
95.5% of individual digests of legitimate audio are
detected as authentic. Using a 3-out-of-5 detection
scheme, 96.7% of adversarial audio is detected.

are several mechanisms that can correct for this. One
option would be to digest audio after compression for
transmission (our prototype uses the raw audio from
the microphone); such a scheme would reduce false
positives partially caused by known-good transforma-
tion of audio. Another option is to simply accept these
individual false positives. Doing so would result in a
false alert on average every 58 minutes, which is still
acceptable as most phone calls last only 1.8 minutes [3].

8 Discussion

We now discuss additional issues related to AuthentiCall.
Applications and Use Cases: AuthentiCall provides

a mechanism to mitigate many open security problems
in telephony. The most obvious problems are attacks
that rely on Caller ID fraud, like the perennial “IRS
scams” in the United States. Another problem is that
many institutions, including banks and utilities, use ex-
tensive and error-prone challenge questions to authenti-
cate their users. These challenges are cumbersome yet
still fail to stop targeted social engineering attacks. Au-
thentiCall offers a strong method to authenticate users
over the phone, increasing security while reducing the
authentication time and effort.

Another valuable use case is emergency services,
which have faced “swatting” calls that endanger the lives
of first responders [73] as well as denial of service attacks
that have made it impossible for legitimate callers to re-
ceive help [8]. AuthentiCall provides a mechanism to al-
low essential services to prioritize authenticated calls in
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Figure 12: Before the call is answered, AuthentiCall
indicates if the call is authenticated or unauthenticated

such a scenario while answering other calls opportunisti-
cally. While such a proposal would need to be reviewed
by public policy experts and stakeholders, we provide a
mitigation to a problem with no clear solution.

Server Deployment: AuthentiCall relies on a central-
ized server infrastructure to facilitate authenticated calls
while minimizing abuse. AuthentiCall, including server
infrastructure, could be provided by a carrier or an in-
dependent organization. While a centralized model is
simplest to test our hypothesis that auxiliary data chan-
nels can be used to authenticate traditional voice calls,
we intend to study decentralized and privacy-preserving
architectures in future work.

Cellular Network Load: Systems that make use of
the cellular network must be careful not to increase sig-
naling load on the network in a harmful way [26,40,62].
We believe that AuthentiCall will not cause network
harm because in modern networks (3G and 4G), data sig-
naling is no longer as expensive as a voice call, and si-
multaneous voice and data usage is now commonplace.

Certificate Management: Any system that relies on
certificates must address certificate revocation and ex-
piration. AuthentiCall’s centralized model allows the
server to deny use of any revoked certificate, drastically
simplifying revocation compared to CRLs or protocols
like OCSP. Similar to Let’s Encrypt [7], AuthentiCall
certificates can have short lifetimes because certificate
renewal using our enrollment protocol is fast and requires
no human interaction. Our certificate authority proposal
is one of many possible designs. As mentioned in Sec-
tion 4, AuthentiCall could also make use of the proposed
Telephony PKI [56]. In this scenario, certificate lifetime
would be determined by the TPKI, which would also is-
sue a certificate revocation list.

Why IP data: We chose IP data over other chan-
nels because it provides reliable and fast data transmis-

sion for most existing devices including smartphones,
VoIP phones, and even landlines if provided with suitable
hardware. As an example, SMS as a transmission carrier
would be impractical. Bandwidth is low, and delivery is
slow and not guaranteed [69]. In particular, the aver-
age time to send one SMS message is 6.4 seconds [53],
meaning that AuthentiCall using SMS would require a
minimum of 38.4 seconds — effectively increasing call
setup time by a factor of 5. If data connections are not
available, users could use a system like Authloop to au-
thenticate their calls. [56]

Why Not Biometrics: Robust speech digests are a su-
perior solution for content integrity than voice biometrics
for several reasons. First, voice authentication is sim-
ply not secure in adversarial settings [38]. Second, voice
biometrics would assume that the call would only con-
sist of a single party (e.g., speakerphones would not be
supported). By contrast, audio digests are speaker inde-
pendent and can be computed locally with no additional
knowledge about the other party.

Denial of Service Adversaries may attempt to break
the security of AuthentiCall by selectively dropping pro-
tocol messages, but AuthentiCall can detect these attacks
and fail to complete a call or end an in-progress call. In
the handshake, the client will not accept a voice call until
the all authentication messages are complete. During the
integrity protocol, the client can enforce tight timeouts
of all messages and alert the user of an attack if expected
messages do not arrive.

User Interface We have developed a complete work-
ing prototype of AuthentiCall for Android, including a
preliminary simple user interface as shown in Figure 12.
Along with previous research [72], this is one of the first
interfaces to indicate secure Caller-ID, our prototype in-
terface is intended to simply and clearly alert the user to
the safety of the call. We note that indicating security in
a user interface requires great care [13, 16], and we in-
tend to formally study interface design for AuthentiCall
in future work.

9 Related Work

Authentication has long been a concern in telephony
networks. Chiefly motivating that concern has been the
need to identify customers to bill for service usage [69].
The strength of such authentication mechanisms have
varied widely, from easily breakable or weak authentica-
tion (e.g., 1G and 2G cellular) [18, 54] and authorization
[42, 70, 75] to strong mutual authentication (e.g., LTE).
However, all of these mechanisms do not provide
authentication end-to-end.

Researchers have attempted to address the problem
through one of two classes of solutions: heuristics or
cryptography. In the case of the former, researchers have
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explored a wide range of solutions: blacklists of phone
numbers [6, 44, 52], call-back verification [47], channel
characterization [57], call data analysis [35, 45, 48, 58],
carrier level ID extraction [68], timing [47], call prove-
nance [17], name registries [22] and biometrics [14, 19,
27, 37]. The difficulty with these is that their defenses
are probabilistic in nature and may be weak in various
adversarial settings. Given the increasing number of
attacks on machine learning algorithms [33,49,50], such
techniques offer uncertain security properties.

As for cryptographic solutions, most have been VoIP-
only (e.g., Zfone and Redphone) [2, 9, 21, 43, 77]. Such
solutions not only require high bandwidth at all times,
but also cannot be extended to the heterogeneous global
telephone network. Additionally, they are susceptible
to man-in-the-middle attacks [28, 63] and are difficult
to use [25, 51, 61, 64]. Tu et al. have described how to
modify SS7, the core telephony signaling protocol, to
support authenticated Caller ID [72]. This protocol is not
end-to-end (so the protocol is vulnerable to malicious
network endpoints like IMSI-catchers [23, 24]), requires
both endpoints to call from an SS7-speaking network,
and most importantly would also require modifying core
network entities throughout every network.

The solution closest to our own is Authloop [56].
Authloop uses a codec agnostic modem and a TLS-
inspired protocol to perform authentication solely over
the audio channel. While Authloop provides end-to-end
authentication for heterogeneous phone calls, it has a
number of limitations compared to AuthentiCall. The
constrained bandwidth of the audio channel means
that the handshakes are slow (requiring 9 seconds
on average), authentication is one-sided, and content
authentication is not possible. While Authloop can
prevent some forms of man-in-the-middle attacks, it
is vulnerable to attacks that replace content. Finally,
because Authloop relies on the audio channel, users
must answer all calls before they can be authenticated.
AuthentiCall overcomes all of these limitations.

10 Conclusion

Telephone networks fail to provide even the most basic
guarantees about identity. AuthentiCall protects voice
calls made over traditional telephone networks by lever-
aging now-common data connections available to call
endpoints. AuthentiCall cryptographically authenticates
both call parties while only adding a worst case 1.4
seconds of overhead to the call setup time. Unlike other
solutions that use voice calls, AuthentiCall also protects
the content of the voice call with high accuracy. In so
doing, AuthentiCall offers a solution to the constant
onslaught of illicit or fraudulent bulk calls plaguing the
telephone network.
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[72] H. Tu, A. Doupé, Z. Zhao, and G.-J. Ahn. Toward
Authenticated Caller ID Transmission: The Need for a
Standardized Authentication Scheme in Q.731.3 Calling
Line Identification Presentation. In Proceedings of the
ITU Kaleidoscope (ITU), Nov. 2016.

[73] D. Tynan. The terror of swatting: how the
law is tracking down high-tech prank callers.
https://www.theguardian.com/technology/

2016/apr/15/swatting-law-teens-anonymous-

prank-call-police, Apr 2016.

[74] Vassilis Prevelakis and Diomidis Spinellis. The Athens
Affair. IEEE Spectrum, June 2007.

[75] X. Wang and R. Zhang. VoIP Security: Vulnerabilities,
Exploits and Defenses. Elsevier Advances in Computers,
March 2011.

[76] A. Whitten and J. D. Tygar. Why Johnny Can’t Encrypt:
A Usability Evaluation of PGP 5.0. In 25th USENIX
Security Symposium (USENIX Security 16), 1999.

[77] P. Zimmermann, A. Johnston, and J. Callas. RFC 6189
ZRTP: Media Path Key Agreement for Unicast Secure
RTP. Internet Engineering Task Force, 2011.

A RSH Digest Construction

In this appendix, we describe the construction of the RSH digest
used by AuthentiCall for channel binding and content integrity.

There are a number of constructions of speech digests, and
they all use the following basic process. First, they compute
derived features of speech. Second, they define a compression
function to turn the real-valued features into a bit string. In
this paper, we use the construction of Jiao et al. [36], which
they call RSH. We chose this technique over others because it
provides good performance on speech at a low-bitrate, among
other properties. We note that the original work did not eval-
uate the critical case where an adversary can control the audio
being hashed. Our evaluation shows that RSH maintains audio
integrity in this crucial case. The construction also selects
audio probabilistically; we show in Appendix B that the digest
indeed protects all of the semantic content in the input audio.
Finally, to our knowledge we are the first to use any robust
speech digest for an authentication and integrity scheme.

Figure 13 illustrates how RSH computes a 512-bit digest for
one second of audio. In the first step of calculating a digest,
RSH computes the Line Spectral Frequencies (LSFs) of the
input audio. LSFs are used in speech compression algorithms
to represent the major frequency components of human voice,
which contain the majority of semantic information in speech.

1 Second of Audio
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Figure 13: This figure illustrates the digest construction
described in Section 5.1. Audio digests summarize call
content by taking one second of speech data, deriving
audio features from the data, and compressing blocks of
those features into a bit string.

That is, LSFs represent phonemes – the individual sound
units present in speech. While pitch is useful for speaker
recognition, LSFs are not a perfect representation of all of
the nuances of human voice. This is one reason why it is
sometimes difficult for humans to confidently recognize voices
over the phone. This means that the digest more accurately
represents semantic content rather than the speaker’s voice
characteristics. This is important because a number of tech-
niques are able to synthesize new speech that evades speaker
recognition from existing voice samples [38,66]. Finally, LSFs
are numerically stable and robust to quantization — meaning
that modest changes in input yield small changes in output. In
RSH, the input audio is grouped into 30ms frames with 25ms
audio overlap between frames, and 10 line spectral frequencies
are computed for each frame to create a matrix L.

The second phase of digest computation involves com-
pressing the large amount of information about the audio into
a digest. Because audio rarely changes on millisecond time
scales, the representation L is highly redundant. To compress
this redundant data, RSH uses the two-dimensional discrete
cosine transform (DCT). The DCT is related to the Fourier
transform, is computationally efficient, and is commonly
used in compression algorithms (e.g., JPEG, MP3). RSH

computes the DCT over different sections of the matrix L
to produce the final digest. RSH only uses first eight DCT
coefficients (corresponding to the highest energy components
and discarding high-frequency information).

The second phase of digest computation – the compression
function – uses the DCT algorithm in the computation of the
bitwise representation of the audio sample. The following
process generates 8 bits of a digest; it is repeated 64 times to
generate a 512-bit digest.

1. Obtain a window size w and two window start indexes l1
and l2 from the output of a keyed pseudorandom function.

2. Select from L two blocks of rows. These blocks B1 and
B2 contain all columns from l1 : l1 + w and l2 : l2 + w
respectively.

3. Compress these individual blocks into eight coefficients
each using the DCT.

4. Set eight digest bits by whether the corresponding coeffi-
cients of the first block (B1) are greater than the coefficients
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of the second block (B2).
We note that sections of audio are selected probabilistically;

we show in Appendix B that the probability that a section of
audio is not used in a digest is negligible.

An important consideration is to note that the digest is
keyed. By using a keyed pseudorandom function, repeated
phrases generate verifiable unique digests. It also has the
advantage that it makes it difficult to compute digests for
audio without knowledge of the key, which in AuthentiCall is
derived during the handshake for each call. In AuthentiCall,
digests themselves are also authenticated using an HMAC to
guarantee digest integrity in transit.

Digests of spoken audio are sent by both parties. The
verifying party computes the digest of the received audio, then
computes the hamming distance between the calculated and
received digests. Because degradation of audio over a phone
call is expected, digests will not match exactly. However, the
Hamming distance between two audio digests — or bit error
rate (BER) — is related to the amount of change in the audio.
By setting an appropriate threshold on BER, legitimate audio
can be distinguished from incorrect audio.

B Probabilistic Analysis of Robust Hash-
ing

AuthentiCall uses the RSH speech digest algorithm [36], which
probabilistically selects sections of audio for inclusion. The
initial research did not establish whether all audio was included
in every hash. In this appendix, we bound the probability that
one or more 5ms sections of audio (which are individual rows
in the matrix L) are not included. The analysis shows that it is
possible for a few milliseconds of audio to be excluded – less
than 25 milliseconds of audio. This is less than an individual
phoneme, could not change semantic meaning of the audio,
and losses of 25 milliseconds or more are common in audio
transmission and typically go unnoticed by users. Accordingly,
the digests effectively cover call content.

Fix an even integer N > 0, and fix a block
width w ∈ [2..N/2]. Let r ∈ [1..N] be a row index of the
matrix L. We begin by computing the probability that in any
particular trial, the r-th row is not covered by at least one of the
two blocks B1,B2 used in the robust hashing algorithm. Recall
that the “top” row of B1 and B2 are randomly selected each trial.
Thus, let `1, `2 be uniform integers in the range [1..N +1−w].

Let X (i)
r be an indicator random variable for the event

that row f is covered by at least one of these blocks in
the i-th trial. Then we observe that X (i)

r = 0 iff the event
r 6∈ [`1..`1 +w−1]∧ r 6∈ [`2..`2 +w−1] occurs. We have

Pr
[

X (i)
r = 0

]
= Pr [r 6∈ [`1..`1 +w−1] ] ·

Pr [r 6∈ [`2..`2 +w−1] ]

= Pr [r 6∈ [`1..`1 +w−1] ]2

since `1, `2 are independent and identically distributed. There
are two cases to consider. When r ∈ [1..w−1] we have

Pr
[

X (i)
r = 0

]
=

(
1− r

N +1−w

)2
≤ e−2r/(N+1−w)

because there are only r values for `1 (resp. `2) that cause
block B1 (resp. B2) to include the r-th row of L. When r ≥ w,
which is the common case when N� w, we have

Pr
[

X (i)
r = 0

]
=

(
1− w

N +1−w

)2
≤ e−2w/(N+1−w) .

To build some intuition for these probabilities, take N = 200
and w = 51 (the average value if w were selected uniformly
from its range), Pr

[
X (i)

1 = 0
]
≤ 0.98, i.e., the first row is

almost certainly not covered in any particular trial. But this
quickly decreases as r grows, and when r = w (and beyond)
we have Pr

[
X (i)

r = 0
]
≤ 0.51. Keep in mind that the robust

hashing algorithm runs t = 64 independent trials, thus, defining
the indicator Xr = 1 iff

∨t
i=1 X (i)

r = 1, we have

Pr [Xr = 0 ]≤
{

e−t(2r)/(N+1−w) when r < w
e−t(2w)/(N+1−w) when r ≥ w

Thus Pr [X1 = 0 ] ≤ (0.98)64 ≈ 0.43, and for r ≥ w we have
Pr [Xr = 0 ] ≤ (0.51)64 ≈ 2−64. It is apparent that the first few
rows of L are unlikely to be covered, but that the remaining
rows are covered in some trial with overwhelming probability.

Continuing, let X = ∑
N
r=1 Xr, i.e., the number of rows

covered across all t trials. Additionally, let W be a uniform
value in [2..N/2]. (Recall that in the robust hashing algorithm,
the parameter w is chosen this way for each trial.) By linearity
of expectation we have

E[X |W = w] =
N

∑
r=1

E[Xr |W = w]

=
N

∑
r=1

Pr [Xr = 1 ]

= N−
N

∑
r=1

Pr [Xr = 0 ]

= N−
(

w−1

∑
r=1

Pr [Xr = 0 ]+
N

∑
r=w

Pr [Xr = 0 ]

)

≥ N−
(

w−1

∑
r=1

e−t(2r)/(N+1−w)

+(N +1−w)e−t(2w)/(N+1−w)

)

Again, when N = 200,w = 51, t = 64, we have
E[X |W = 51]≥ 198.4; on average, the number of rows missed
is less than two. Finally, we define f (w) = E[X |W = w]
and consider E[ f (W )], which is the average number of rows
covered over random choices of block width and block-starting
rows. When N = 200, t = 64 we have E[ f (W )] ≥ 195.4; thus
fewer than five rows are completely missed, on average, across
all trials. With overwhelming probability, it will be the first
few rows that are missed. As we discussed at the beginning of
this section, this audio would could not affect the semantics of
the transmitted speech.

592    26th USENIX Security Symposium USENIX Association



Picking Up My Tab: Understanding and Mitigating Synchronized Token
Lifting and Spending in Mobile Payment

Xiaolong Bai1,∗, Zhe Zhou2,3,∗, XiaoFeng Wang3, Zhou Li4,
Xianghang Mi3, Nan Zhang3, Tongxin Li5, Shi-Min Hu1, Kehuan Zhang2,†

1Tsinghua University, 2The Chinese University of Hong Kong,
3Indiana University Bloomington, 4IEEE Member, 5Peking University

bxl12@mails.tsinghua.edu.cn, {zz113, khzhang}@ie.cuhk.edu.hk, {xw7, xmi, nz3}@indiana.edu,
lzcarl@gmail.com, litongxin@pku.edu.cn, shimin@tsinghua.edu.cn

Abstract

Mobile off-line payment enables purchase over the
counter even in the absence of reliable network connec-
tions. Popular solutions proposed by leading payment
service providers (e.g., Google, Amazon, Samsung, Ap-
ple) rely on direct communication between the payer’s
device and the POS system, through Near-Field Com-
munication (NFC), Magnetic Secure Transaction (MST),
audio and QR code. Although pre-cautions have been
taken to protect the payment transactions through these
channels, their security implications are less understood,
particularly in the presence of unique threats to this new
e-commerce service.

In the paper, we report a new type of over-the-counter
payment frauds on mobile off-line payment, which exploit
the designs of existing schemes that apparently fail to
consider the adversary capable of actively affecting the
payment process. Our attack, called Synchronized Token
Lifting and Spending (STLS), demonstrates that an active
attacker can sniff the payment token, halt the ongoing
transaction through various means and transmit the token
quickly to a colluder to spend it in a different transaction
while the token is still valid. Our research shows that
such STLS attacks pose a realistic threat to popular off-
line payment schemes, particularly those meant to be
backwardly compatible, like Samsung Pay and AliPay.

To mitigate the newly discovered threats, we propose a
new solution called POSAUTH. One fundamental cause of
the STLS risk is the nature of the communication channels
used by the vulnerable mobile off-line payment schemes,
which are easy to sniff and jam, and more importantly,
unable to support a secure mutual challenge-response
protocols since information can only be transmitted in
one-way. POSAUTH addresses this issue by incorporat-
ing one unique ID of the current POS terminal into the
generation of payment tokens by requiring a quick scan-

∗The two lead authors are ordered alphabetically.
†Corresponding author.

ning of QR code printed on the POS terminal. When
combined with a short valid period, POSAUTH can en-
sure that tokens generated for one transaction can only be
used in that transaction.

1 Introduction

The pervasiveness of mobile devices has profoundly
changed the ways commercial activities are conducted.
Particularly, mobile payment, in which a payment trans-
action is carried out between a smartphone and a point of
sale (POS) system, becomes increasingly popular, with
over 1 trillion dollars revenue projected for 2019 [49].
Leading e-commerce providers (e.g., PayPal, Amazon,
Google, Alibaba) and smartphone manufacturers (e.g.,
Samsung, Apple) all come up with their own solutions
and competing with each other for market shares. Most
of these schemes are designed for online use originally,
which requires both the payer and the payee to stay con-
nected to the Internet during a transaction, so both parties
are notified by the payment service provider once the
transaction succeeds. A problem for this approach is that
the payer (who in many cases is a grocery shopper) is
expected to have a decent network connection (or enough
mobile data) whenever she pays. To avoid the delay and
extra cost introduced during this process, recently off-
line payment schemes are gaining traction, which allow a
transaction to go through even when the payer’s network
connection is less reliable. This is achieved by establish-
ing a direct connection between the smartphone and the
POS system through Near-Field Communication (NFC),
Bluetooth, electromagnetic field, 2D-QR code or even
audio signal, and delivering a payment token over this
channel. Already many prominent payment schemes have
offered this off-line support, including PayPal, Google
Wallet, Apple Pay, Samsung Pay and AliPay. What is less
clear, however, is the security guarantee they can provide.
Security of mobile off-line payment. Unlike the on-
line payment, in which the payer and the payee do the
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transaction through the service provider, the off-line ap-
proach relies on the direct communication between the
smartphone and the POS system, and therefore can be
vulnerable to the eavesdropping attack from a bystander.
This is less of an issue for the NFC channel, due to its ex-
tremely short communication distance, making the sniff-
ing difficult. More importantly, both NFC and Bluetooth
allow convenient bidirectional interactions between the
payer (smartphone) and the payee (POS), which helps
strengthen the protection: a typical approach is for the
POS device to challenge the phone with an “unpredictable
number”; the number is then used by the phone to gen-
erate a payment token with a short validity period. This
thwarts the attempt to use the token in a different transac-
tion.

In practice, however, the POS systems armed with NFC
or Bluetooth are expensive and less deployed, and cheaper
and more backwardly compatible alternatives are widely
adopted. For example, Samsung Pay supports Magnetic
Secure Transmission (MST), which can work on those us-
ing magnetic stripes, like credit-card readers. PayPal and
AliPay (an extremely popular Chinese payment service,
with 190 million users) both transmit the token through
QR scanning, an approach widely supported by POS ma-
chines. Also, AliPay and ToneTag [51] utilize audio sig-
nals, a low-cost solution that needs only a sound recorder
on the payee side. A problem here is that all such channels
(electromagnetic field, QR code and audio) are one-way
in nature, making the above challenge-response approach
hard to implement. To address this issue, these schemes
employ one-time payment token, together with a short
valid time, to defend against the eavesdropping attack.
The idea is that once the token is observed, it cannot be
used again and will soon expire, and is therefore useless
to the adversary. The effectiveness of this protection, how-
ever, becomes questionable in the presence of an active
attacker, who is capable of disrupting a transaction to
prevent the token from being spent, which allows him to
use it in a different transaction within the validity period.
This was found to be completely realistic in our study.

Our attacks. In this paper, we report our security anal-
ysis of two leading mobile off-line payment schemes:
Samsung Pay and AliPay. Our study reveals surprising
security vulnerabilities within these high-profile schemes,
affecting hundreds of millions of users around the world:
we found that both approaches are subject to a new type of
over-the-counter payment frauds, called Synchronized To-
ken Lifting and Spending (STLS), in which an adversary
sniffs the payment token, manages to halt the ongoing
transaction and transmits the token to a colluder to spend
it in a different transaction while the token is still valid.
Oftentimes, such an attack can also seamlessly trigger
a retry from the payer to let the original transaction go
through without arousing any suspicion. More specifi-

cally, in Samsung Pay, we show that the attacker can pick
up the magnetic signals 3 meters away using a sensor,
and then automatically jam the wireless signals produced
by a mobile POS (mPOS) using a jammer (a commercial
device), causing a disruption between its communication
with the payment provider. As a result, the payment to-
ken is prevented from being delivered to the provider and
instead, recovered, demodulated and then spent in a dif-
ferent transaction (at a different location). After this is
done, the attacker stops the jamming, which enables a
retry from the shopper to complete the transaction. We
found that this attack can be realistically implemented,
as demonstrated in a video we posted online [1] (Sec-
tion 3.1). A similar attack also succeeds on Alipay, over
the audio channel: we utilized a recorder to capture the
token transferred through sound and again the jammer to
disrupt the payment transaction, before using the token
for another transaction (Section 3.2).

Alipay also supports payment through QR code scan.
In our research, we studied two payment scenarios: peer-
to-peer transfer and pay through POS. In the first case,
the payer uses his phone to scan the payee’s QR code
displayed by her phone. Our study shows that a malicious
payer device or the one infected with an attack app can
not only steal the token from the payee’s screen, which
can later be used for over-the-counter payment (through
POS), but also stealthily force the payee device to refresh
its screen, causing it to generate a new token, therefore
preserving the original one for an unauthorized purchase
(Section 3). When it comes to POS-based payment, we
discovered that a malicious app running on the payer’s
device can stealthily halt the transaction by strategically
covering a few pixels on the screen when it is display-
ing the QR token to the POS machine. In the meantime,
we found that it is feasible to acquire the image of the
code from the reflection on the glass of the QR scanner’s
scan window (captured by the phone’s front camera) (Sec-
tion 3.3). Again, the demos of these attacks are available
online [1].

Mitigation. Our findings highlight the fundamental weak-
nesses of today’s mobile off-line payment schemes: one-
time token is insufficient for defending against an active
adversary capable of stealthily disrupting a payment trans-
action (which is found to be completely realistic); also
given the error-prone nature of the channels (magnetic
field, sound, QR scan) those schemes use, the validity
period of their payment tokens needs to be sufficiently
long to allow multiple retries, which leaves the door open
for the STLS attack. To mitigate the newly discovered
threats and enhance the security protection of the off-line
payment, we designed and implemented a new solution,
called POSAUTH, which authorizes the payer to use a
payment token only at a specific transaction. POSAUTH
is meant to be easily deployed, without changing hard-
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ware of today’s POS systems. More specifically, each
POS terminal presents a QR code carrying its unique ID.
For each transaction, the payer is supposed to scan the
code to generate the payment token, which is bound to
the terminal. This binding, together with the valid period,
ensures that the token can only be used in the current
transaction (see Figure 1).

� Scan QR code on POS

� Get POS’s  
unique id

� Generate 
payment 
token 
with POS id

� Transfer 
payment 

token

� Send  
trans info, 

payment token, 
POS id

Figure 1: The work-flow of POSAUTH

Contributions. The contributions of the paper are out-
lined as follows:
• New findings and understandings. We report the first
study on the STLS threat to mobile off-line payment. Our
research brings to light surprising security vulnerabili-
ties within high-profile payment solutions, which subject
these schemes to the new type of payment frauds. Such
STLS attacks are found to be completely realistic, with
serious consequences, leading to unauthorized spending
of the payer’s token. The findings demonstrate the chal-
lenges in protecting these off-line payment schemes in
the presence of an active adversary.
• New protection. We made a first step towards practi-
cally mitigating these STLS attacks through a new design
that binds the payer’s payment token to a specific POS
terminal, without changing the hardware of existing sys-
tems. We implemented this design, which is found to be
effective and efficient in defending against the threat.
Roadmap. The rest of the paper is organized as follows:
Section 2 provides background information for our study;
Section 3 elaborates the STLS threats on Samsung pay
and Alipay; Section 4 presents our protection mechanism;
Section 5 discusses the limitations of our study and po-
tential future research; Section 6 compares our work with
related prior studies and Section 7 concludes the paper.

2 Background

In this section, we describe how mobile payment works,
the current protection in place and potential security risks.
Further we present the assumptions made in our research.
Mobile off-line payment. Since 1999, when Ericsson
and Telnor Mobil phones were first used to purchase

movie tickets, mobile payment has gained considerable
popularity in the past decades, and is expected to be used
by 90 percent of smartphone users in 2020[42]. Today,
a typical payment transaction through mobile devices in-
cludes three parties: the payer, the payee and the payment
service provider. Depending on the role played by the
provider, a payment transaction can be online or off-line.
Figure 2 illustrates the work-flows of both payment meth-
ods. A prominent example of mobile online payment is
Mobile wallet, a scheme provided by PayPal, Amazon
and Google. A payment process through Mobile wallet
involves registration of a user’s phone number and acqui-
sition of a PIN for authentication. In a transaction, the
user enters the PIN to validate the payment that will be
charged to her account based upon the credit card or other
information (stored in her mobile device) given to the
service provider during the transaction.

trans 
info

***

enter PIN

auth
trans info  
& token

payment 
token

payment service provider payment service provider

payee payer payee payer
(a) online payment (b) off-line payment

Figure 2: The work-flows of online and off-line mobile
payment methods

By comparison, a mobile off-line payment happens di-
rectly between the payer and the payee, with the provider
communicating with only one of these two parties in
the transaction. Oftentimes, the payer is a grocery shop-
per, with a smartphone carrying a shared secret with the
provider and the payee controls a POS device for commu-
nicating with the provider. An off-line transaction starts
when the payee creates a charge request through entering
payment information (e.g., amount, payment method) into
a POS terminal. Then, the payer is supposed to run her
payment app to establish a communication channel with
the POS for transmitting a token. Some of these channels
are described in Table 1. Such a token is generated using
a secret in the payer’s mobile digital wallet, the current
time and the challenge from the payee when it is available,
and other credential data.

Upon receiving the token, the POS terminal forwards
the token as well as other transaction information to the
payment service provider for verification. From the token,
the provider first recovers the owner information and then
verifies its authenticity (whether it is issued by the owner)
and liveness (whether it has been used before and whether
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Figure 3: Mobile off-line payment transaction flow.

Channel Provider Examples
NFC Apple, Google

Bluetooth Bridg[5]
MST Samsung Pay
Audio Alipay, ToneTag

QR code Paypal, Alipay, Wechat

Table 1: Example of off-line payment channels and the
payment service providers using these channels

it is issued recently, within the validity period) of the
token. If so, the provider continues to check the balance of
the owner’s account to determine whether the transaction
can proceed. A transaction approval or denial is then
issued to the POS terminal, depending on whether all
these checks are passed. The process is shown in Figure
3.

Payment security. The security guarantee of an off-line
payment scheme is mainly built upon the protection of
the payment token, which is essentially the proof for a
payment request, typically in the form of a hash-based
message authentication code (HMAC) over its generation
time and other information. The token is delivered to the
provider by the payee through a secure channel. Less
protected here is the direct link between the payer and
the payee, which could be monitored by the adversary
present at the scene of the payment. For the transaction
going through NFC and Bluetooth (see Table 1), a random
number generated by the payee can serve to challenge the
payer and ensure that the token is bound to a specific POS
terminal. For other channels, however, existing payment
schemes do not use this challenge-response approach (due
to the complexity and unreliability of the channels) and
instead, rely on one-time token: a token, once received by
the provider, is recorded to make sure that it will not be
used again. Also, each token is ephemeral, with a short
valid period attached to it, based upon its generation time
specified in its content.

This protection apparently only considers the threat
from a passive adversary, who does nothing to interfere
with the execution of a transaction. The situation can be
very different for an active one. In the case that the trans-
action can actually be disrupted, which stops the delivery
of the token to the provider, the observed one-time token

can then be stolen and used for a different transaction.
Also this attack cannot be prevented by checking the live-
ness of the token, since the validity period often has to
be set sufficiently long to tolerate the errors in a normal
token transmission. As an example, a payer needs 5 -10
seconds to place her phone before the QR code can be
reliably recognized. As a result, often a payment token
has more than one minute of living time, which as shown
in our study (Section 3), is often long enough for success-
fully spending it on a different transaction, with the help
of a colluder in the attack.
Adversary model. In our study on the payment through
electromagnetic field (Samsung Pay) and audio signals,
we consider an adversary who is either physically present
at the payment scene or capable of placing her attack
devices (including sniffer and jammer) there. This is com-
pletely realistic, given the small sizes of the devices, as
illustrated in Figure 7(a). In QR-code based payment, we
no longer require the presence of attack devices. Instead,
we assume that the payer’s phone is infected with an at-
tack app, which does not have system privileges but needs
camera, Bluetooth and network permissions, which are
commonly requested by legitimate apps.

3 STLS Attacks

In this section, we report our security analysis on Sam-
sung Pay as well as the Audio Pay and QR Pay techniques
utilized by other popular mobile off-line payment ser-
vices such as Alipay and Wechat. Our study shows that
they are all subject to the STLS attacks: an adversary
can realistically disrupt payment transactions, steal pay-
ment tokens and spend them without proper authorization.
This security hazard affects hundreds of millions of mo-
bile users worldwide. We contacted all affected service
providers and some of them have already acknowledged
the importance of the findings. We are now helping them
fix the discovered problems and enhance their protection.
Following we elaborate this study.

3.1 Samsung Pay
Samsung Pay is a popular token based mobile payment
service available on the smartphones manufactured by
Samsung Electronics. It is characterized by a unique
POS-device communication technique, when compared
with other payment services like Apple Pay and Android
Pay, called Magnetic Secure Transmission (MST), which
has been acquired from LoopPay in 2015 [44]. In this
paper we focus on the security protection of MST, even
though Samsung Pay also supports NFC.

Samsung Pay features a high compatibility to exist-
ing POS terminals which work with magnetic-stripe card.
Merchants need no modification to their out-dated POS
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terminal to support this kind of innovative mobile phone
payment. A Samsung phone stores a piece of secret key
inside KNOX, a secure container. When the Samsung Pay
user (the payer) is going to pay at a POS, she launches
the app and chooses a card she is going to pay with and
then passes the app’s verification with either password
or fingerprint. Then the app (inside KNOX) immedi-
ately generates a token for the user by HMAC a piece of
message containing the transaction counter, the primary
account number (PAN) 1 using the secret key, assembles
all information in the same format as the magnetic tracks
on conventional credit cards, and starts to broadcast that
information over the MST channel by modulating electric
current passing through a MST antenna. Any POS termi-
nal, if magnetic card is supported, will receive the token
through its magnetic head and then process it in the exact
same way as if the user is swiping a magnetic-stripe credit
card. The track data with token and other information
encapsulated will be passed to the service provider via
POS’s network for further transaction processes includ-
ing token verification, translating to real PAN, balance
verification, and the transaction result will be returned to
the POS terminal to notify the payee if the transaction is
approved or not.
Understanding MST. MST is a patented technique
(US8814046 [20]) that first appears in LoopPay Fob and
LoopPay CardCase and it is compatible with any existing
POS terminal.

The security protection of MST pretty much depends
on the property of electromagnetic field, which is consid-
ered to be a near-field communication channel. Specifi-
cally, the strength of electromagnet signal quickly atten-
uates as the distance to the source r grows, at the rate of
1/r3. On LoopPay’s home page, it is claimed: “Loop-
Pay works within a 3-inch distance from the read head.
The field dissipates rapidly beyond that point, and only
exists during a transmission initiated by the user” [33]. A
similar claim is also made by Samsung Pay: “Due to the
short-range nature of MST, it is difficult to capture the
payment signal” [43].
Eavesdropping MST signal. However, we found in our
research that this distance based protection does not work
as stated by those claims, which has also been reported
by other research [6, 3]. Fundamentally, the distance that
allows electromagnetic field signal sniffing feasible is de-
termined by a signal-noise-ratio (SNR) at that distance
and the capability for the sniffing antenna to pick up the
signal. Our study shows that instead of 3 inches (< 0.08
meters) as claimed by the MST document, a small loop
antenna at the size of a small bag (as illustrated in Fig-
ure 4) can effectively collect the signal at least 2 meters
away from the source. More importantly, the signal cap-

1a virtualized one instead of original credit card number.

Figure 4: Sniffing devices.

tured at this distance still carry enough information for
decoding, in a realistic noise environment. For example,
Figure 5 a) and b) compare the signal received by our loop
antenna (2 meters away from the source) with the theoret-
ically received ones, as discovered in a real-world grocery
store. As we can see here, the signal still largely pre-
served the coding information and can therefore be used
for decoding using our later proposed decoding method.

a) Received Signal

b) Theoretical Received Signal

0 1 1
c) Sent Signal

0

Figure 5: Comparison between original signal and our
received one in 2 meters.

Signal decoding. In our research, we decode such sig-
nal according to impulse polarity changes. Specifically,
MST uses differential Manchester encoding, in which
the polarity flips once for the symbol ’0’ while twice for
the symbol ’1’ (Figure 5 c)). Although our antenna can-
not directly sense the magnetic field, it is able to capture
the polarity flips, because the current generated by the
antenna is the derivative of the magnetic filed (a flip’s
derivative is an impulse, as compared in the Figure 5 b)
and c)).

The captured signal is then decoded using a band pass
filter (BPF), a synchronization detection module and a
symbol judgment module. BPF allows only frequency
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components from 0.3 kHz to 10 kHz to pass, which effec-
tively reduces the out-of-band noise. The synchronization
detection module identifies the start and the end positions
of each symbol. It sequentially enumerates all the sample
points and determines whether a given sample point is an
apex and whether it exceeds a threshold: if so, the point
is chosen as the start point of the first symbol. Then the
module chooses an apex with maximum strength around
its theoretical end position (based upon the symbol dura-
tion) as the end point of the first symbol (also the start
point of the second symbol). The process repeats until the
apex’s strength is under the threshold, which indicates that
the valid signal ends. In this way, all the symbols’ start
and end positions are determined. The symbol judgment
module decides whether a given symbol represents ‘0’ or
‘1’ by comparing the polarities of the start and end point.
If the start point and end point have the same polarity, the
symbol represents ’1’, otherwise, it is ’0’.

SS PAN FS Name ES LRCFS Additional Data 

BCD formatted Data

Figure 6: The track format Samsung Pay uses.

The symbols generated by the symbol judgment can
be easily translated to a text string in accordance with the
ANSI/ISO ALPHA data format (designed for magnetic
card track 1) or the ANSI/ISO BCD data format (for track
2 and 3) [2], as shown in Figure 6.

(a) (b) (c)

Figure 7: A commercial jammer and a mPOS.

mPOS jamming. As mentioned earlier, Samsung Pay
and LoopPay utilize one-time token, which effectively
defends against passive attacks: up to our knowledge,
none of the prior exploit attempts [6, 3] can succeed, be-
cause a used token cannot be used again. A fundamental
issue here, however, is that the protection does not work
against an active adversary and interfering with an ongo-
ing transaction is much more realistic than one thought,
as discovered in our research. Specifically, we found that
mobile POS systems, as shown in Figure 7(b) and Fig-
ure 7(c), with over 3.2 million already installations and a
over 27 million installations in 2021 by expectation [21],
can be easily jammed using a portable commercial device.
For example, the device in Figure 7(a) can easily block
either WiFi or cellular signal or both at a distance of 3

① Sniff

② Abort

③ Spend

Payer

Merchant

Payment
Service Provider

Attacker

Colluder

Figure 8: Attack flow for Samsung Pay.

meters, which causes all mPOS transaction to abort. Such
a jammer simply broadcasts white noise over the same
frequencies as those used by the targeted channels to in-
terfere with legitimate communications. It can be easily
switched on and off to target a specific payment step. Note
that such jamming does not need to be blind: most mPOS
systems are using WiFi, and a temporary disruption of its
service, within a few meters, will not affect other mobile
users, such as those using smartphones through 3G or
4G; even for the mPOS running on cellular networks, the
adversary can jam only their specific cellular formats, e.g.,
Verizon (CDMA format), without interfering with others,
e.g., AT&T users (UMTS format), in a 3-meter peripheral.
Further, given the delay for the POS system to restore its
connection, the adversary can quickly stop jamming: for
example, he can turn on the device for 30 seconds and
then leave, and gives his colluder, who receives the token
from an unblocked channel, at least 1 minute to spend the
token.
The attack. Putting pieces together, the flow for the
whole STLS attack on Samsung Pay is illustrated in Fig-
ure 8. The attacker runs a small antenna (small enough
to be hidden in his backpack) connected to a laptop (also
hidden) to monitor the electromagnetic signal around an
mPOS terminal. Once a customer opens her digital wallet
(on her smartphone) for a payment transaction, the an-
tenna captures the token and in the meantime, the jammer
is switched on (which does not affect the communication
between the wallet and the mPOS) to block the mPOS’s
network. The acquired token is then automatically de-
coded and forwarded through an unjammed channel to a
colluder (who might run an app to alert him to the arrival
of a token that needs to be spent within a time frame2).
Such a token is automatically written to a magnetic stripe
card, which can be used just like a normal credit card, or

2Actually we found that Samsung Pay has a one day time limit for
its token [25].
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to a MagSpoof device (e.g., for a purchase at an automatic
vending machine) to replay the token. The adversary can
stop the jamming and walk away after a short period
of time, which allows the mPOS to restore its network
connection and receive a payment error from the server
(which often comes without details). As a result, the payer
has to retry with an automatically generated new token
to complete the transaction. We are communicating with
Samsung to help them address this threat.

3.2 Audio Pay
Similar to MST-based payment, the schemes based upon
the audio channel are equally vulnerable to the STLS at-
tack. Following we elaborate the attack on these schemes.
Analysis of audio pay. Audio is an emerging channel
for near-field inter-device communication. Compared to
other channels like Bluetooth, Wi-Fi Direct, or NFC, the
audio channel is cheap and easy to use, given the fact that
every phone is equipped with a microphone and a speaker.
The main weakness of this channel is its bandwidth be-
cause of its narrow frequency spectrum. Nevertheless, it
remains an efficient and convenient way to exchange a
small amount of information. In particular, it has been
used by multiple payment schemes, including Alipay and
ToneTag, to transmit a payment token (from the payer’s
device to the payee).

Specifically, the payer is supposed to encode her pay-
ment information into an audio clip using a modulation
scheme like audio frequency-shift keying (AFSK). Dur-
ing the payment transaction, she can play the clip to the
merchant’s POS device. Upon receiving the audio, the
merchant decodes it to recover the payment token from,
and then sends the token as well as transaction informa-
tion to the payment service provider. The provider verifies
the payment token and replies with an acknowledgement
response if successful. This payment process is illustrated
in Figure 9.

verification 
result

payment token,  
trans info

payment audio

payermerchantpayment server

Figure 9: The process of audio pay.

Alipay has widely adopted audio pay on mobile vend-
ing machines. In this scenario, after the payer selects an
item, the vending machine will ask the payer to play her
payment audio. Upon receiving the audio, the machine
decodes the payment token from the audio and sends it to
the payment service provider through cellular network to
proceed the transaction. To produce the payment audio,
Alipay encodes the payment token into a carrier sound by
AFSK. While the carrier sound can be heard by a human

being, the payment token is encoded at the frequency of
17.2kHz - 18.4kHz, which is beyond the absolute thresh-
old of human hearing. But such a modulation scheme also
enables the sniffing attack since there is nearly no noise
at this frequency range, and the token can be broadcast
with low lost. Here, we elaborate our attack to audio pay
as below.
The attack. Again, this payment scheme is vulnerable
to an STLS attack involving audio recording and WiFi
or cellular signal jamming with the device shown in Fig-
ure 7(a). Specifically, before the payment transaction
starts, a nearby attacker turns on a signal jamming device
to block signals and prevents the merchant from communi-
cating with the payment service provider. When the payer
plays her payment sound to the merchant (mobile vending
machine in Alipay), the attacker records the sound within
a proper distance. Since the transaction is aborted by the
signal jamming, the recorded payment token is not spent.
Then the attacker can replay the recorded sound to make
another purchase. The attack is illustrated in Figure 10.

payment audio

payermerchantpayment server
sniffabort

spend

Figure 10: The attack against audio pay.

We implemented this attack against a real-world vend-
ing machine. The attack demo is posted online [1].
In this attack, the attacker uses a free iOS app called
SpectrumView[35] to record the payment audio signal at
a distance of 30cm from the payer’s phone. 3 With such
low cost, the attacker is still able to successfully launch
the STLS attack. Although the the token has a limited
valid period (90 seconds), our attack demonstration shows
that such time window is sufficient for attackers.

3.3 QR Pay

Mobile payment through QR code is quickly gaining pop-
ularity in recent years. A plenty of retailers (like Walmart
and Starbucks), financial organizations (like Chase, Pay-
pal and Alibaba) and social network apps (like WeChat)
have developed or adopted QR payment. So far, three
payment schemes have been proposed to support different
payment scenarios [13]:

3The attack device is small and can be placed stealthily and closely
to merchant device, e.g., within 30cm to a vending machine. Token
recording and transmitting can be fully automated without attacker’s
attendance. Hence, the threat is realistic.
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•Buyer-to-Large retailer transactions (B2L). A QR code
representing the payment token is generated by the payer’s
mobile payment app (like WeChat, ChasePay and AliPay)
and then picked up by payee’s POS scanner and trans-
ferred to service provider (see Figure 11). Since a special
POS scanner has to be deployed by the payee, this scheme
is usually seen in large retailers, like Walmart, Target and
Starbucks.

Trans Info 
Payment Token

Trans 
Result

Figure 11: The work-flow of QR pay.

•Buyer-to-Small business transactions (B2S). The payer
scans the QR code presented by the payee using a mobile
app to get payee’s merchant ID, inputs the right amount
and then authorizes the payment. In this case, the QR
code can be printed on a paper as the merchant ID is
usually permanent.
•Peer-to-Peer transactions (P2P). A user (or payer) with
payment app wants to transfer money to another user (or
payee). The payee generates a QR code to be scanned
by the payer. After the scanning process, the money is
transferred 4.

In this work, we evaluate whether STLS attack can
succeed for the first and third transaction scenario, i.e.,
whether the payment token can be stolen at one place and
spared at another place. We skipped the second scenario,
as no payment token is generated by the user (payment
is sent directly to the service provider). We focus on the
off-line mode, for which the token is generated off-line
and no confirmation by the payer is required when the
token is about to be consumed. We discuss the online
payment option in Section 5.

Security analysis of payment app. Different from the
native payment apps, like Samsung Pay and Apple Pay,
which protect the payment token through hardware means
(e.g., Secure Enclave for Apple Pay and KNOX for Sam-
sung Pay), the third-party payment apps, like WeChat
and Alipay, cannot shield the payment token against the
OS-level attack (e.g., malicious app with root privilege).
Though the OS-level attacks can cause devastating conse-
quences, their victim base is usually small.

As a result, the defense employed by the third-party
apps is largely targeting malicious apps with non-root
permissions. For instance, AliPay claims that it can pre-
vent another app from taking screenshot to steal the QR

4Some payment app reverses the scheme (payer shows QR code to
payee). Our attack is valid for both case.

code 5; its payment token is one-time and short-lived; it is
capable of detecting mobile trojan app and phishing QR
code.
Challenges for STLS attack on QR code. Unlike the
MST and audio channels, QR code is a visual sign, which
cannot be jammed and sniffed by the nearby physical de-
vice. Carrying out STLS attack under this scenario seems
impossible at first sight, but through a set of novel tech-
niques, we show such attack is completely realistic. Our
only assumption is that a malicious app has been installed
on the payer’s mobile device with camera, bluetooth and
network permissions granted. This app plays a similar
role as the nearby physical device used in MST and audio
attack. More importantly, our app is a non-root app and
does not trigger any abnormal behavior vetted by the
payment app (e.g., taking screenshots of QR code). The
key stage of this attack is stealing the payment token while
halting the ongoing transaction, and we elaborate two ap-
proaches for this step, one attacking the QR scanner of
the POS machine and another attacking the payment app
during P2P transactions.

3.3.1 Attack POS-based Payment

Attack overview. Our attack can be launched when a
user shows the payment QR code to the POS scanner.
In particular, the malicious app attempts to steal the QR
code from the glass reflection of the POS scanner when
the payer’s screen is close to it. In the meantime, it dis-
rupts the display of the original QR code to abort the
ongoing transaction, by masking the payer’s screen. The
token (stored in photos captured by the front camera of
payer’s phone ) is exfiltrated to attacker through network
and spent at another store after unmasking, like MST and
audio attack. To avoid arousing payer’s suspicion, the at-
tack app actively profiles the context (e.g., the foreground
app and activity) and the actual attack is initiated when
the context matches the payment context. We elaborate
the four key attack components (sniff, abort, profile and
exfiltration) below. A demo of this attack can be found
in [1].
Sniffing QR code. For the attack app, direct capture of
QR code is not feasible as screen scraping is prevented
by the payment app. However, the reflection of the QR
code on other objects cannot be controlled by the payment
app and we exploit this observation to build this attack
component. It turns out the glass window of the POS
scanner can serve our purpose perfectly. As illustrated
in Figure 12, a typical scanner is composed of a glass
window, a camera and a light source. When the screen of
payer’s phone is close enough to the scanner, the reflection

5For example, an Android app can set a window flag FLAG_SECURE
when initiating an activity window to avoid screen scraping [15]. AliPay
uses this flag to protect its QR code.
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of the QR code will appear on the scanner glass and the
attack app can capture it by taking photos with phone’s
front camera. The scanner glass is an ideal object here
because of its brightness is significantly different from
payer’s screen: mobile payment apps always increase
screen brightness to ease the recognition of the QR code
while the light source of the scanner is much darker to
avoid glare. As such, a “one-way mirror” is constructed
for attack app to pick up the QR code.

glass camera

light source
scan window scan window

light source
camera

glass

Handheld QR scanner Desktop QR scanner

Figure 12: A QR Scanner.

•Assessment of sniffing. Whether QR code can be success-
fully captured by the phone’s front camera depends on
several factors, including the horizontal distance between
the QR code and the front camera (dcq), the side length of
the QR code (lq), the vertical distance between the glass
and the phone screen (dgs), and the front camera’s angle
of view (AOV ). Figure 13 illustrates these factors for the
most common case that the scanner and the phone are
parallel. The ideal approach to assess these factors is to
run experiments by simulating all their possible combina-
tions and check whether the QR code can be recovered,
which cannot be done within reasonable time. Instead, we
compute their theoretical value range for the successful
attack.

QR code α

plane of  
reflection

minimum side length 
of the glass

lq dcq

dgs

front camera

QR scanner

the reflected image of the phone

the real phone

reflected 
QR code

Figure 13: The side view of the phone and the QR scanner
during POS-based payment.

In summary, three conditions have to be satisfied. First,
the scanner glass should be large enough to reflect the
whole QR code. Hence, the minimum side length of the

glass should be dcq/2+ lq−(dcq+ lq)/2, or lq/2. Second,
the horizontal position of the glass should be about the
middle point between the QR code and the front camera.
Third, the glass should be vertically far enough so it would
be within front camera’s AOV. In other words, dgs should
be at least (tan(90−AOV/2)× (lq +dcq))/2.

It turns out all the three conditions can be met for the
normal payment scenario. For the tested mobile phone
(MI 3W), lq is 3.2cm and dcq is 5.8cm. For Alipay on
the tested scanners (Symbol DS-6708SR[50] and NLS-
FR40[10]), their glass side lengths are 2.3cm and 4.3cm
respectively, which are much larger than the minimum
requirement lq/2 (1.6cm). Placing the scanner glass in the
middle point is also natural for the payee (as illustrated
in Figure 15). Assume AOV for the front camera is 60 de-
grees, the minimum dgs would be 7.8cm, which is within
the suggested working range of the scanner [50, 10].

Aborting ongoing transaction. Signal jamming cannot
be used here to disrupt the normal payment process. In-
stead, we instruct the malicious app to mask the QR code
for the disruption.

A QR code has to embed three positioning markings
(or PM) at its three corners. They are used to ensure that
a reader can correctly identify the region and direction of
the QR code. If one of these PMs is not displayed, the QR
code will not be readable. Our attack app is developed to
mask one PM. To this end, the app pops up a floating win-
dow covering one PM only. However, showing floating
window on top of another app requires a system permis-
sion SYSTEM_ALERT_WINDOW since Android 6.0 [17]. So,
we choose a different approach by commanding the attack
app to create an activity which is transparent except the
PM region (filled with white pixels) and overlay it on
top of the payment app. Such design yields the similar
visual effect without asking for any additional permission.
When the reflected QR code is captured, the attack app
will dismiss the transparent activity and bring back the
original QR code window. Figure 14 illustrates an exam-
ple of the original and masked QR. Figure 15 shows how
the masked QR code is scanned and the reflection image
of the masked QR code captured by the malicious app
with front camera.

Inferring payment activity. To keep the sniffing and
jamming process stealthy, our attack app actively infers
the running context and moves to the next stage when
the context is matched. We exploit a set of side-channel
information to learn the context, including the foreground
app, its displayed activity and payer’s action. The details
are described below:

•Foreground app. The attack app needs to know when
the foreground app is identical to the targeted payment
app. The information is not directly available due to the
separation between apps. However, it can be inferred by
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Figure 14: An example of the original and masked QR.

Figure 15: The masked QR code is being scanned and the
reflection image of the masked QR code is captured by
the malicious app with front camera.

reading a public Linux procfile /proc/net/tcp6 which
logs the opened TCP sockets per app 6. As long as the
targeted payment app is activated , TCP sockets to the
servers will be established and the IP addresses expose
the app’s running status.
•Displayed activity. We use the brightness of the screen
to determine if the payment app is displaying QR code.
Our key observation is that mobile payment apps always
increase the screen brightness (say BQR) to the maximum
level when showing the QR code. BQR is even higher
than the maximum brightness that can be configured by
the user. As such, we create a FileObserver [14] to
monitor the file /sys/class/leds/lcd-backlight/
brightness. If the brightness logged within the file
reaches BQR, the targeted activity is recognized.

6We did not use /proc/net/tcp since socket information is no
longer displayed. /proc/net/tcp6 shows both IP v6 sockets and IP
v4 sockets. The IP v4 addresses are mapped to the IP v6 space in the
file.

•Payer’s action. We use onboard sensors, including
accelerometer, gyroscope, and magnetometer, to infer
whether the payer is showing her QR code to the mer-
chant. Usually, such action incurs a drastic change of
rotation angle of the phone, therefore we can measure
the change rate to infer it. In particular, we employ the
algorithm in [22] to compute the angles on all axes com-
pared to a fixed position. We begin to monitor the angles
when prior conditions are satisfied and record the first
observed angle as Ainitial . When the difference between
the current angle and Ainitial exceeds a threshold, the user
is recognized as rotating the phone to show the QR code
to the merchant.
Exfiltrating QR code. In order to increase the success
rate, a series of photos of the reflected QR code are taken
during the scanning process. Recovering the QR code
from the distorted images on the cell phone is time- and
battery-consuming. Therefore, the images are exfiltrated
to attackers’ server through cellular or WiFi network for
further analysis, i.e., mask removal.
Evaluation. We tested our attacks on Alipay (version
10.0.2) and Wechat (version 6.5.4). The testing phone is
MI 3W with Android 4.4. The testing QR scanners are
Symbol DS-6708SR[50] (hand-held) and NLS-FR40[10]
(desktop). And we are able to carry out STLS attack as
shown in the demo [1]. We further examined the success
rate of our attack by asking 14 users to show the masked
QR code (the QR code is masked for 60s) to a desktop
QR scanner (NLS-FR40). Among them, 6 (43%) are suc-
cessfully attacked, suggesting retrieving payment token
from the reflected QR code on the scanner’s glass window
is completely feasible. Some attempts are failed when
the user positioned the phone too close to the scanner.
The average time of the whole attack is 55s. In particular,
the average time to sniff a valid QR code is 16s, and the
average time to exfiltrate QR code is 39s. The time to
transfer photos to remote server is negligible. Actually,
the validity period of a QR code is configured to 90s,
based our examination on Alipay and Wechat. This time
is sufficient for the attacker to launch the attack and spend
the QR code in a different transaction.

Since the attack app does not require any system per-
missions or any unique system features, the attack is ap-
plicable to all Android versions. We are working to imple-
ment this attack on other platforms, e.g., iOS. But several
issues have to be addressed a priori, e.g., how to mask
one PM of the QR code and how to infer the foreground
activity, which might need new design of the attack app.

3.3.2 Attack Peer-to-peer Transfer

Attack overview. A user may be attacked even if her
device is not infected with any malware. In addition
to being used in B2L transaction, a payment QR code
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can also be used in P2P transaction, in which the payee
presents her QR code to the payer. In this scenario, if
there is a malicious app installed on the payer’s phone
and taking pictures during a P2P transaction, the payee’s
QR code can be directly harvested. Then the attacker
can spend the sniffed QR code in the B2L transaction in
another place.

In particular, the malicious app on payer’s phone brings
itself to the foreground and takes picture when it discov-
ers that the payment app on the same phone is in the
QR code scanning mode. The original P2P transaction
is disrupted by the malicious app by initiating a blue-
tooth paring process. The QR code is decoded in the
payer’s phone and transfered to the remote attacker to
be spared (different from the prior attack, the QR code
of the payee is not masked and therefore can be directly
decoded on the phone). We elaborate the steps for activ-
ity inference and transaction disruption below (the other
steps are straightforward or similar to the prior attack).
Figure 16 and Figure 17 illustrate the normal process for
P2P transaction and the attack scenario.

PayerPayee

Figure 16: Work flow of P2P transfer.

Inferring payment activity. The attack app on payer’s
phone needs to learn whether the payment app is on top
and in scanning mode. We use the same methodology to
infer the foreground app. To detect the scanning mode,
our app frequently pings the status of the back camera
by invoking a system API camera.open() at every 100
milliseconds. If the API returns an error code, the back
camera is highly likely occupied by the payment app
and the scanning mode is identified (only this mode uses
camera).
Interfering P2P transaction. Once the scanning mode
is inferred, the attack app will bring an activity (with iden-
tical UI to the payment app) to the foreground by sending
an intent. Different from the prior attack in which we have
no control over the POS scanner, we can block payer’s
app scanner through intent injection. The attack app keeps
scanning QR code until it is successfully decoded. Finally,
the malicious app destroys its scan activity to restore in-

Connect?
Connect?

1.Malicious
app gets a
QR code.

2.Malicious app
connect BT.

3.Malicious app
exit and QR
code refresh.

4. Wallet app gets the
refreshed QR and starts
to transfer.

Payee Payer

Figure 17: Work flow of attack against P2P transfer.

terface of the payment app. Though the payment token
can be obtained by the attacker, it might be invalid to be
spent by the attacker in a B2L transaction as the same
token could be used earlier by the P2P transaction. We
address this problem by forcing the payee’s app to refresh
the payment token. Since the payment app works in off-
line mode, both the old and new payment tokens are valid
(if used within its lifetime, e.g., around 90 seconds for
Alipay). A big challenge here is to alter the behavior of
payer’s phone without being discovered where there is no
attack app installed. In the end, we found that bluetooth
pairing could be used for this purpose.

Specifically, the attack app launches a pairing re-
quest to a nearby bluetooth device (highly likely to be
the payer’s phone) by calling an API createBond().
A window asking the user to confirm the pairing
will be prompted on payee’s phone. The attack app
immediately cancels the pairing process by calling
cancelPairingUserInput() API7. The pairing pro-
cess is interrupted and the confirmation window on the
payee’s phone will disappear. The duration for this step
is very short and it is nearly impossible to be observed by
the user, as shown in our demo[1]. When the pairing con-
firmation window disappears, the payment app is brought
to foreground and it will refresh the UI together with the
token based on its logic.
Evaluation. We successfully launched the attack on a
Samsung GT-S7562 (as payee) and a Galaxy Nexus (as
payer). The total attacking time is 8s, including activ-
ity starting, QR code capturing (5s), bluetooth pairing

7This is a hidden API which can be invoked by java reflection.
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requesting (3s), and activity exiting. During the blue-
tooth pairing, the confirmation window showed less than
1 second. We reported the attack to Alipay, and after that,
they removed the functionality of payment QR code P2P
transfer.

4 Transaction Point Authorization

Our study shows that STLS threat is completely realistic
to mobile off-line payment schemes. The fundamental
problem behind today’s mobile off-line payment schemes
is: one-time token is insufficient to protect against an ac-
tive attacker who is not only able to sniff payment tokens
but also capable of disrupting an ongoing legitimate trans-
action. In addition, our attacks have demonstrated that the
validity period of offline payment tokens is sufficiently
long for the adversary to transmit the token to a colluder
to spend it in a different transaction. To mitigate the STLS
thread and enhance the security of the off-line payment
schemes, we propose a new solution called POSAUTH.
In this section, we elaborate the design and implemen-
tation of POSAUTH, and evaluate its effectiveness and
efficiency.
Design and implementation. The indispensable steps in
a STLS attack include sniffing the payment token, halting
the ongoing transaction, and spending the sniffed token in
a different transaction. If any one of these steps fails, the
STLS attack cannot succeed, which means that we can
defend by undermining any step. Due to the broadcast
nature of audio and MST channels, it is difficult to defend
against sniffing on these channels. Though QR code is
a unicast channel, it is still feasible for an adversary to
sniff in certain scenarios (like in our attacks). As a result,
our defense cannot rely on preventing the payment token
from being sniffed. Similarly, it is difficult to prevent
an active attacker from halting the ongoing transaction
in mobile payment scenes, especially those with mobile
POS systems. The only option left is to prevent a token
from being used in a different transaction other than the
original transaction between the payer and the merchant.

This observation inspires the design of POSAUTH,
which binds a payment token to a specific transaction and
authorizes the payer to use it only in the same transaction.
Actually, we bind the payment token to the POS terminal
on which it is going to be spent by the payer. POSAUTH
is meant to make such binding easily deployable without
changing the hardware. In particular, each POS terminal
is attached with a QR code that contains its unique ID
(PID). Before the payer starts to transmit her payment
token to the POS terminal, she is required to scan the QR
code. Upon receiving the POS terminal’s unique ID, the
payer encodes the PID into her payment token. In this
way, the payment token is indeed bound to the terminal.
As stated in Section 2, the payment token in the mobile

off-line payment schemes is typically in the form of a
HMAC over timestamp and other identity information. To
prevent an attacker from replacing the encoded PID in the
sniffed payment token, we encode the PID by integrating
it within the one-way HMAC computation.

When the POS terminal receives the payment token,
it sends the payment token as well as its PID to the pay-
ment service provider. The provider checks the consis-
tency between the payment token and the PID. If they are
bound, the transaction is allowed. If not, the transaction
is supposed to be halted and the token’s owner (the payer)
should be warned about the risks of token being stolen.
In this way, even if the payment token is stolen, it can
not be spent on another POS terminal. It is unrealistic to
assume that the attacker could pay to the same POS ter-
minal in the mean time when the payer is still paying. We
can further require that, if a payment token is spent, the
payer’s tokens with earlier timestamp should be invalid,
in order to prevent a stolen payment token being spent on
the bound POS terminal in the short period after the payer
finishes payment with a refreshed payment token.

To understand whether POSAUTH can properly pro-
tect current mobile off-line payment schemes, we imple-
mented a prototype of POSAUTH on Alipay QR Pay.
More specifically, in Alipay QR Pay, the payment token
is a string of 18 decimal numbers, consisting of a constant
prefix of 2 digits, a suffix of 6-digit Time-based One-
time Password (TOTP) computed from a pre-configured
seed and the current timestamp, and a middle-10-digit
encrypted identity (EID), which is generated by encrypt-
ing the payer’s unique identity (or account number) in
a customized symmetric encryption algorithm with the
TOTP as its encryption key. In our POSAUTH imple-
mentation, we encode a PID into the QR Pay payment
token by concatenating it with the timestamp in the TOTP
computation. Upon receiving the payment token and PID,
the server computes a set of valid TOTPs with the pre-
configured seed, a set of valid timestamps, and the PID.
And it checks whether the TOTP in the received payment
token belongs to a valid one. If valid, the token is then
bound to the POS terminal.
Evaluation. We mainly evaluate the time overhead dur-
ing each transaction introduced by POSAUTH, because
obviously POSAUTH does not introduce much other over-
head like upgrading costs, power consumption etc.

Comparing with the existing transaction schemes,
POSAUTH adds only one QR scanning step and slightly
modifies the token generation algorithm while the remain-
ing steps are all the same, which brings extra time con-
sumption in 2 steps. For the time consumed by token
generation (modifying algorithms), we consider it negligi-
ble since it is a simple operation to integrate the PID into
a token generation algorithm (e.g., concatenating it with
the timestamp during the TOTP computation in Alipay),

604    26th USENIX Security Symposium USENIX Association



therefore we focus on the extra scanning step. To assess
the extra time overhead introduced by POSAUTH, we
implemented an app to scan a QR code and recorded the
time spent between user clicking the button and QR code
decoding module returning result. We prepared a QR
code containing 18 digits that is enough to accommodate
the POS terminal ID. Then we measure how much time a
scan costs. We scanned 10 times and the average time is
3.8 seconds for a Galaxy Nexus.

For a mobile transaction, this time overhead is small,
comparing to the time the cashier spends on manipulating
the POS terminal, which usually costs 10 or even more
seconds. As a result, we conclude that the POSAUTH is
a practical defense scheme against the STLS attacks.

5 Discussion

Comparison with online scheme. In most online mobile
payment schemes, users are required to confirm the trans-
action with brief transaction detail prompted, by inputing
the password or by pressing their fingerprints. Therefore,
our attacks fail in this scenario since such information is
usually unavailable to a remote attacker.

However, online schemes are recommended for small
business who could not afford a POS terminal. In addition,
it requires decent network connection on payer device.
Comparing to the off-line schemes which are provided by
many large merchants[13] and are able to able to work
regardless of payer’s connection quality, their adoption is
limited so far.
Root Cause. After a careful analysis of all vulnerable
payment schemes having been discovered, we conclude
that the root cause for STLS attack is the missing of bidi-
rectional communication capabilities when transmitting
tokens through near field communication channels. With-
out such capabilities, mobile off-line payment schemes
have to rely on time-restricted one-time token for security,
which, as shown in this work, turns out to be ineffective to
active attackers. The threat could be mitigated by our de-
fense scheme POSAUTH which provides a light-weight
bidirectional communication capability by only requiring
a quick scanning of QR code printed on POS terminal.
Comparison between POSAUTH and B2S. Similar
to POSAUTH, in the B2S scenario, the merchant also
presents a QR code for the payer to scan and pay. The
main difference here is that the QR code in B2S is still
used as a one-way communication channel, which is vul-
nerable in the presence of an active attacker. By replacing
the merchant’s QR code with a malicious one, an attacker
can make unauthorized payment with the payer’s account
[27]. However, POSAUTH is immune to such attacks
since the payment token is indeed bound to the ID of a
POS terminal (via QR code scanning), and any discrep-
ancy between the POS ID and the payment token would

raise an alarm of such attacks to the payment service
providers.

6 Related Work

Samsung Pay security. We studied the security of Sam-
sung Pay and showed that it is vulnerable to our STLS
attack. Before our work, the security aspect of Samsung
Pay was studied by two groups recently as well [6, 3].
These studies showed that sniffing payment token from
the MST channel by a passive attacker is feasible, but the
proposed techniques did not lead to the successful attack
under the real-world settings, as the payment token is one-
time and the payer could spend it ahead of the attacker.
Instead, our STLS attack employs a jamming device to
disrupt the normal transaction to prevent the payment to-
ken from being spent by the payer, which ensures that
an active attacker is able to spend the victim’s payment
token in a different transaction.
Data transfer over audio. Several communication prod-
ucts have realized data transmission through audio chan-
nel [34, 16]. These techniques encode data into audio
signals distinguished by amplitude, frequency, or phase
modulation [4]. Our study is the first to investigate the
usage of the audio communication channel in mobile pay-
ment settings and proposed a realistic attack against such
channel.
QR code security. QR code is one of the earliest chan-
nel for mobile payment and there have been many works
demonstrating how to build a secure payment scheme
on top of it [11, 28, 39, 31, 7, 36]. In these payment
schemes, QR code is used to encode transaction infor-
mation [28, 7] or users’ payment token [11]. And a user
can pay by showing her QR code to the merchant, or
scanning the merchant’s QR code, or both. In the mean
time, attacks [27] have been proposed against QR Pay in
B2S transaction, e.g., replacing the merchant’s QR code
with one associated with the attacker. In this paper, we
mainly focus on the scenarios in which a user shows her
QR code to the merchant or another user (B2L and P2P
transaction). Different from the existing attacks, we are
the first to investigate the STLS threats on these scenarios.

Since QR code can carry different types of data,
whether and how it can be used to deliver malicious con-
tent have been investigated [26, 23]. In fact, an attacker
is able to launch attacks including phishing [53], SQL
injection [46], and even malicious app installation [55],
by encoding malicious content into QR code. In these at-
tacks, an attacker can either use a new malicious QR code
or partially modify an existing QR code [24]. In our attack
against POS-based payment, we also partially modify the
QR code. The difference is that prior attacks still keep
the QR code readable but our attack prevents it from be-
ing read. In the meantime, defense techniques [54] were
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proposed to protect users when scanning an untrusted QR
code. Such techniques can not prevent our attacks since
the modified QR code has no malicious content.

Similar to POSAUTH, QR code has also been
employed to transfer information for authentication
schemes [48, 30, 29], given its high usability and low
deployment cost. In this work, we show that QR code can
be used to protect payment security. Such direction has
not been explored before.
Security on other mobile payment schemes. The secu-
rity of other mobile payment schemes, including contact-
less NFC payment [40, 41] and online mobile wallet pay-
ment [52, 12], has been studied. NFC-based payment has
been adopted by the major phone vendors, like Google
and Apple. Attack [37, 8, 9] and defense [18, 38, 47]
techniques regarding this channel have been investigated,
but none of them are similar to our STLS attack. Due
to its extremely short communication distance and the
challenge-response based bidirectional communication
pattern, NFC payment is not affected here.

Users’ perception of the emerging mobile payment
techniques is also investigated and studied. These studies
show that several factors could impede the adoption of
mobile payment methods, including their security, usabil-
ity, and cost [32, 45, 19].

7 Conclusion

In this paper, we present a new threat called STLS which
can enable adversaries to attack off-line payment schemes
by sniffing payment token, aborting current transaction,
and spending the stolen token at other places. We have
investigated some leading off-line payment systems in
real world and demonstrated that such STLS attacks are
completely realistic. We also carreid out security analysis,
which reveals some major limitations of existing token
protection techniques. Contrary to the closed settings of
traditional payment systems, off-line mobile payment so-
lutions have larger attacking surface. Channels between
smartphone and POS terminal are susceptible to sniffing
attack. Communications between mobile POS and back-
end servers are built on WiFi or 3G/4G network, thus
the ongoing transactions can be disrupted. More impor-
tantly, most token delivering channels are one-way only,
so tokens cannot be bound to the POS terminal of cur-
rent transaction. Meanwhile, shortening the token valid
period only still cannot guarantee adequate payment se-
curity. To mitigate STLS threats, we propose POSAUTH
which forces a payment token to include the unique ID
of current POS terminal and, when combined with short
valid period, is able to confine a token to be used in le-
gitimate transactions only. In the future, we plan to work
with merchants and deploy POSAUTH in real-world POS
systems.
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Abstract
The current state of certificate-based authentication is
messy, with broken authentication in applications and
proxies, along with serious flaws in the CA system. To
solve these problems, we design TrustBase, an architec-
ture that provides certificate-based authentication as an
operating system service, with system administrator con-
trol over authentication policy. TrustBase transparently
enforces best practices for certificate validation on all
applications, while also providing a variety of authentica-
tion services to strengthen the CA system. We describe a
research prototype of TrustBase for Linux, which uses a
loadable kernel module to intercept traffic in the socket
layer, then consults a userspace policy engine to evaluate
certificate validity using a variety of plugins. We evaluate
the security of TrustBase, including a threat analysis, ap-
plication coverage, and hardening of the Linux prototype.
We also describe prototypes of TrustBase for Android
and Windows, illustrating the generality of our approach.
We show that TrustBase has negligible overhead and uni-
versal compatibility with applications. We demonstrate
its utility by describing eight authentication services that
extend CA hardening to all applications.

1 Introduction

Server authentication on the Internet currently relies on
the certificate authority (CA) system to provide assurance
that the client is connected to a legitimate server and not
one controlled by an attacker. Unfortunately, certificate
validation is challenged by significant problems. First, ap-
plications frequently do not properly validate the server’s
certificate [20, 17, 5, 35]. This is caused by failure to
use validation functions, incorrect usage of libraries, and
also developers who disable validation during develop-
ment and forget to enable it upon release. Second, TLS
interception, used by numerous firewall appliances and
software (as well as malware), compromises the integrity

of end-to-end encryption [24, 34], with many firewalls
having significant implementation bugs that break authen-
tication [7, 11]. Third, the CA system itself is vulnerable
to being hijacked even when applications and proxies are
implemented correctly. This is largely due to the fact
that most CAs are able to sign certificates for any host,
reducing the strength of the CA system to that of the weak-
est CA [12]. This weakness was exploited in the 2011
DigiNotar hack [25], and is exacerbated by CAs that do
not follow best practices [31, 10] and by governmental
ownership and access to CAs [13, 40].

Due to these problems, there are a number of recent
proposals to improve or replace the current CA trust
model. These include multi-path probing [31, 41, 1, 23]
or other systems that vouch for the authenticity of a certifi-
cate [15, 2, 3], DNS-based authentication [21], certificate
pinning [16, 32], and audit logs [27, 39, 14, 26]. Unfortu-
nately, the majority of applications have not yet integrated
these improvements. Even relatively simple fixes, such
as certificate revocation, are beset with problems [29].
The result is that there is no de facto standard regarding
where and how certificate validation should occur, and it
is currently spread between applications, TLS libraries,
and interception proxies [11].

Several projects have tried to address these issues, fix-
ing broken authentication in existing applications, while
providing a means to deploy improved authentication ser-
vices. Primary among these is CertShim, which uses the
LD PRELOAD environment variable to replace functions in
dynamically-loaded security libraries [4]. However, this
approach does not provide universal coverage of all exist-
ing applications, does not provide administrators singular
control over certificate authentication practices, does not
protect against several important attacks, and has signifi-
cant maintenance issues. Fahl takes a different approach
that rewrites the library used for authentication by An-
droid applications [18], while also including pluggable
authentication modules. This approach is well-suited for
Android because all applications are written in Java, but
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it is difficult to extend this approach to operating sys-
tems that provide more general programming language
support.

In this paper, we explore a different avenue for fixing
these problems by centralizing authentication as an operat-
ing system (OS) service and giving system administrators
and OS vendors control over authentication policy. These
two motivating principles result in TrustBase, an archi-
tecture for certificate authentication that secures existing
applications, provides simple deployment of improved
authentication services, and overcomes shortcomings of
previous approaches. TrustBase provides universal cov-
erage of existing applications, supports both direct and
opportunistic TLS1, is hardened against unprivileged lo-
cal adversaries, is supported on both mobile and desktop
operating systems, and has negligible overhead.

To centralize authentication as an operating system ser-
vice, TrustBase uses a combination of traffic interception
to harden certificate validation for existing applications
and a validation API to simplify authentication for new
or modified applications. TrustBase intercepts network
traffic between the socket layer and the transport layer,
where it detects the initiation of TLS connections, extracts
handshake information, validates the server’s certificate
using a variety of configurable authentication services,
and then allows or blocks the connection based on the re-
sults of this additional validation. This allows TrustBase
to harden certificate validation in an application-agnostic
fashion, irrespective of what TLS library is employed.
TrustBase also includes a simple certificate validation
API that applications call directly, which extends authen-
tication services to new or modified applications, while
also providing compatibility with TLS 1.3.

To provide system administrator control, TrustBase
provides a policy engine that enables an administrator to
choose how certificate authentication is performed on the
host, with a variety of authentication services that can be
used to harden the CA system. The checks performed by
authentication services are complementary to any exist-
ing certificate validation performed by applications. This
approach both protects against insecure applications and
transparently enables existing applications to be strength-
ened against failures of the CA system. For example, a
browser that validates the extended validation (EV) cer-
tificate of a bank is doing the best it currently can, but it is
still vulnerable to a compromised CA, allowing a man-in-
the-middle (MITM) to present fake but valid certificates.
One possible use of TrustBase is to configure the use of
notaries that check whether hosts across the Internet are
exposed to the same certificate for the bank.2

1Opportunistic TLS is TLS initiated via an optional upgrade from a
plaintext protocol.

2Keys for notaries can be pinned in advance, so they are not vulnera-
ble to the MITM.

TrustBase enables system administrators and OS ven-
dors to enforce a number of policies regarding TLS. For
example, an administrator could require revocation status
checking, disallow weak cipher suites, or mandate that
Certificate Transparency be used to protect against active
man-in-the-middle (MITM) attacks. An OS vendor could
ship TrustBase with strong default protections against
broken applications, such as enforcing best practices for
validating a certificate chain, requiring hostname valida-
tion, and pinning certificates for the most popular web
sites and applications. As TLS becomes more widespread,
TrustBase could easily be extended to provide the capa-
bility to report on the use of all applications that do not
use TLS, so that an organization could better manage or
even block insecure applications. All of these improve-
ments can be made without requiring user interaction or
configuration.

Our contributions include:

• An architecture for certificate validation that pri-
oritizes operating system centralization and sys-
tem administrator control: TrustBase offers stan-
dard certificate validation procedures and option-
ally adds additional authentication services, both
of which are enforced by the operating system and
controlled by the administrator or OS vendor. This
repairs broken validation for poorly-written appli-
cations and can strengthen the validation done by
all applications. TrustBase provides a policy engine
that enables an administrator to use policies that de-
fine how multiple authentication services cooperate,
for example using unanimous consent or threshold
voting.

• A research prototype of TrustBase: We develop a
loadable kernel module that provides general traf-
fic interception and TLS handling for Linux. This
module communicates via the Netlink API to the
policy engine residing in user space for parsing and
validation of certificates. We describe how this same
architecture can be implemented on other operat-
ing systems and give details of our current Android
and Windows versions. We provide source code and
developer documentation for our prototypes, with
licensing for both commercial and non-commercial
purposes.

• A security analysis of TrustBase: We provide a
security analysis of TrustBase, including its central-
ization, application coverage, and the hardening we
have done on the Linux implementation. We de-
scribe a threat analysis and demonstrate how Trust-
Base can thwart attacks that include a hacked CA, a
subverted local root store, and a STARTTLS down-
grade attack. We also demonstrate the ability of
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TrustBase to fix applications that do not validate
hostnames or skip certificate validation altogether.

• An evaluation of TrustBase: We evaluate the Trust-
Base prototype for performance, compatibility, and
utility. (1) We show that TrustBase has negligible
performance overhead, with no measurable impact
on latency. (2) We demonstrate that TrustBase en-
forces correct certificate validation on all popular
Linux libraries and tools and on the most popular
Android applications. (3) We describe eight authen-
tication services that we have developed and report
on how simple and straightforward it was to develop
these services for TrustBase.

2 Related Work

Three systems aim to tackle similar problems as Trust-
Base.

Fahl et al. proposed a new framework for Android
applications that would help developers correctly use
TLS [18]. Their work follows a similar principle to ours—
instead of letting developers implement their own cer-
tificate validation code, validation is a service, and it
incorporates a pluggable framework for authentication
schemes. Fahl’s approach is well-suited to mobile op-
erating systems such as Android, where all applications
are written in Java, but it is difficult to extend this ap-
proach to operating systems that provide more general
programming language support.

Another Android system, MITHYS, was developed to
protect Android applications from MITM attacks [6]. It
first attempts to MITM applications that establish TLS
connections and, if successful, continues using the MITM
and provides certificate validation using a notary service
hosted in the cloud. MITHYS only works for HTTPS
traffic, adds significant delays to all TLS connections that
it protects (one to ten seconds), and only supports the
current CA system.

The most closely related system to TrustBase is
CertShim [4]. Like TrustBase, CertShim is an attempt to
immediately fix TLS problems in existing apps and also
support new authentication services. CertShim works by
utilizing the LD PRELOAD environment variable to replace
functions in dynamically-loaded security libraries with
their own wrappers for those functions. This method has
an advantage over TrustBase in that CertShim does not
need to perform double validation for cases where an
application is already performing certificate validation
correctly. Because TrustBase uses traffic interception to
enforce proper certificate validation, its checks are in addi-
tion to what applications may already do (either correctly
or incorrectly). In addition, CertShim’s wrapping of val-
idation functions means that it can more easily override

the CA system in the case where administrators want an
application to accept alternative certificates, though this
will only work with applications that CertShim supports
and that do not validate against hard-coded certificates or
keys.

TrustBase has advantages that set it apart from
CertShim in several notable ways:

(1) Coverage. TrustBase intercepts all secure traffic
and thus can independently validate certificates for all ap-
plications, regardless of what library they used, how they
were compiled, what user ran them, or how they were
spawned. CertShim does not support browsers, and it
cannot perform validation for applications in all scenarios.
For example, applications using custom or unsupported se-
curity libraries (e.g., BoringSSL, NSS, MatrixSSL, more-
recent GnuTLS, etc.), applications statically linked with
any security library, and applications spawned without
being passed CertShim’s path in the LD PRELOAD envi-
ronment variable (e.g., spawned by execv or spawned
by a user without that environment setting) will not have
their certificates validated by CertShim.

(2) Maintenance. TrustBase only needs to maintain
compatibility with the TLS specification and the signa-
tures of high-level functions of TCP in the Linux ker-
nel. As a datapoint, the latter has had only two minor
changes since Linux 2.2 (released 1999)—one change
was to add a parameter, the other was to remove it. In
contrast, CertShim relies on data structures internal to the
security libraries it supports, and libraries change their in-
ternals with surprising frequency. The current versions of
PolarSSL (now mbed TLS) and GnuTLS were no longer
compatible with CertShim, one year after its release.

(3) Administrator Control. TrustBase ensures that
only system administrators can load, unload, bypass,
or modify its functionality, so that every secure ap-
plication is subject to its configured policies. With
CertShim, guest users and applications can easily opt
out of its security policies by removing CertShim from
their LD PRELOAD environment variable, and developers
can bypass CertShim by statically-linking with security
libraries, using an unsupported TLS library, or spawning
child processes without CertShim in their environment.

(4) Local Adversary Protection. TrustBase uses a
trust model that protects against a local adversary, wherein
a nonprivileged, local, malicious application attempts to
bypass or alter certificate validation. Recent studies of
TLS MITM behavior suggest that local malware acting as
a MITM is more prevalent than remote MITM attackers
[24, 34]. TrustBase protects against this case by using
a protected Netlink protocol, privileged policy engine,
protected files, and kernel module that cannot be removed
by a nonprivileged user. CertShim’s attack model does
not address this case. In fact, malware uses the same
LD PRELOAD mechanism [28].
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(5) Opportunistic TLS Enforcement. TrustBase can
enforce the use of TLS in plaintext protocols that option-
ally allow upgrades to TLS, such as STARTTLS, signifi-
cantly reducing the attack surface for downgrade attacks.
Since CertShim hooks into TLS library calls, it cannot be
invoked if no calls occur.

3 TrustBase

TrustBase is motivated by the need to fix broken authen-
tication in applications and strengthen the CA system,
using the two motivating principles that authentication
should be centralized in the operating system and system
administrators should be in control of authentication poli-
cies on their machines. In this section, we discuss the
threat model, design goals, and architecture of the system.

3.1 Threat Model
In our threat model, an active attacker attempts to imper-
sonate a remote host by providing a fake certificate. Our
attacker includes remote hosts as well as MITM attackers
located anywhere along the path to a remote host. The
goal of the attacker is to establish a secure connection
with the client.

The application under attack may accept the fake cer-
tificate for the following reasons:

• The application employs incorrect certificate valida-
tion procedures (e.g., limited or no validation) and
the attacker exploits his knowledge of this to trick
the application into accepting his fake certificate.

• The attacker or malware managed to place a rogue
certificate authority into the user’s root store (or an-
other trust store used by the application) so that he
has become a trusted certificate authority. The fake
certificate authority’s private key was then used to
generate the fake certificate used in the attack.

• Non-privileged malware has altered or hooked secu-
rity libraries the application uses to force acceptance
of fake certificates (e.g., via malicious OpenSSL
hooks and LD PRELOAD).

• A legitimate certificate authority was compromised
or coerced into issuing the fake certificate to the
attacker.

Local attackers (malware) with root privilege are out-
side the scope of our threat model. In addition, we
consider only certificates from TLS connections directly
made from the local system to a designated host, and
not those that may be present in streams higher up in the
OSI stack or indirectly from other hosts or proxies via
protocols like onion routing.

Figure 1: TrustBase architecture overview

3.2 Design Goals

The design goals for TrustBase are: (1) Secure existing
applications. TrustBase should override incorrect or ab-
sent validation of certificates received via TLS in current
applications. (2) Strengthen the CA system. TrustBase
should provide simple deployment of authentication ser-
vices that strengthen the validation provided by the CA
system. (3) Full application coverage. All incoming
certificates should be validated by TrustBase, including
those provided to both existing applications and future
applications. However, this does not include certificates
from connections not made directly by the system, such as
certificates delivered through onion routing. (4) Univer-
sal deployment. The TrustBase architecture should be
designed to work on any major operating system, includ-
ing both desktop and mobile platforms. (5) Negligible
overhead. TrustBase should have negligible performance
overhead. This includes ensuring that the user experience
for applications is not affected in any way, except when
TrustBase prevents an application from establishing an
insecure connection.

3.3 Architecture

The architecture for TrustBase is given in Figure 1. These
components are described below:

3.3.1 Traffic Interceptor

The traffic interceptor intercepts all network traffic and
delivers it to registered handlers for further processing.
The interceptor is generic, lightweight, and can provide
traffic to any type of handler. Traffic for any specific
stream is intercepted only as long as a handler is interested
in it. Otherwise, traffic is routed normally.

The traffic interceptor is needed to secure existing appli-
cations. If a developer is willing to modify her application
to call TrustBase directly for certificate validation, then
she can use the validation API. Administrators can con-
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figure TrustBase to not intercept traffic from applications
using this API.

3.3.2 Handlers

Handlers are state machines that examine a traffic stream
to isolate data used for authenticating connections and
then pass this data to the policy engine. Data provided to
the policy engine includes everything from the relevant
protocol that is intercepted.3 For example, with TLS
this includes the ClientHello and ServerHello data
in addition to the server certificate chain and the server
hostname. The handler will allow or abort the connection,
based on the policy engine’s response.

TrustBase currently has both a TLS handler and an
opportunistic TLS handler (e.g., STARTTLS), and due to
the design of the traffic interceptor it is easy to add support
for new secure transport protocols as they become popular
(e.g., QUIC, DTLS).

3.3.3 Policy Engine

The policy engine is responsible for using the registered
authentication services to validate the server certificate ex-
tracted by the handler. The policy engine also aggregates
validation responses if there are multiple active authen-
tication plugins. The policy is configured by the system
administrator, with sensible operating system defaults for
ordinary users.

When the policy engine receives a validation request
from a handler, it will query each of the registered authen-
tication services to validate the server’s certificate chain
and host data. Authentication services can respond to this
query in one of four ways: valid, invalid, abstain, or error.
Abstain and error responses are mapped to the valid or
invalid responses, as defined in a configuration file.

To render a decision, the policy engine classifies plu-
gins as either “necessary” or “voting”, as defined in the
configuration file. All plugins in the “necessary” category
must indicate the certificate is valid, otherwise the policy
engine will mark the certificate as invalid. If the nec-
essary plugins validate a certificate, the responses from
the remaining “voting” plugins are tallied. If the aggre-
gation of valid votes is above a preconfigured threshold,
the certificate is deemed valid by the policy engine. A
write-protected configuration file lists the plugins to load,
assigns each plugin to an aggregation group (“necessary”
or “voting”), defines the timeout for plugins, etc.

3.3.4 Plugin API

TrustBase defines a robust plugin API that allows a vari-
ety of authentication services to be used with TrustBase.

3This enables plugins to provide authentication methods that utilize
TLS extensions and cipher suite information.

The policy engine queries each authentication service by
supplying host data and a certificate chain, and the au-
thentication service returns a response. We provide both
an asynchronous plugin API and a synchronous plugin
API to facilitate the needs of different designs.

The synchronous plugin API is intended for use by sim-
ple authentication methodologies. Plugins using this API
may optionally implement initialize and finalize

functions for any setup and cleanup they need to perform.
For example, a plugin may want to store a cache or socket
descriptor for long-term use during runtime. Each plugin
must also implement a query function, which is passed a
data object containing a query ID, hostname, IP address,
port, certificate chain, and other relevant context. The cer-
tificate chain is provided to the plugin DER encoded and
in openssl’s STACK OF(X509) format for convenience.
The query function returns the result of the plugin’s vali-
dation of the query data (valid, invalid, abstain, or error)
back to the policy engine.

The asynchronous plugin API allows for easier integra-
tion with more advanced designs, such as multithreaded
and event-driven architectures. This API supplies a call-
back function through the initialize function that plu-
gins must use to report validation decisions, using the
query ID supplied by the data supplied to query. Thus
the initialize function is required so that plugins may
obtain the callback pointer (the finalize function is
still optional). Asynchronous plugins also implement
the query function, but return a status code from this
function immediately and instead report their validation
decision using the supplied callback.

3.3.5 Validation API

The validation API provides a direct interface to the policy
engine for certificate validation. New or modified applica-
tions can use this API to simplify validation, avoid com-
mon developer mistakes, and take advantage of TrustBase
authentication services. Applications can use the API to
validate certificates or request pinning for a self-signed
certificate. The API also allows the application to receive
validation error messages from TrustBase, allowing it
to display errors directly in the application (TrustBase
displays notifications through the operating system).

3.4 Addressing Certificate Pinning

Some applications have implemented certificate pinning
to provide greater security in cases where the hosts that the
application visits are static and known, rather than using
the CA system for certificate validation. TrustBase wants
to avoid the situation where its authentication services
declare a certificate to be invalid when the application has
validated it with pinning, but should also adhere to its core
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tenant that the system administrator should have ultimate
control over how certificates are validated. Our measure-
ments indicate that this circumstance is rare and affects
relatively few applications, since the problem only arises
when a certificate offered by a host does not also validate
by the CA system (e.g., a self-signed certificate). In the
short term, TrustBase solves this problem by using the
configuration file to allow whitelisting of programs that
should bypass TrustBase’s default policies. In the long
term, this problem is solved by applications migrating to
the validation API.

3.5 TLS 1.3 and Overriding the CA System

There are two situations where TrustBase cannot use de-
fault traffic interception to accomplish its primary goals.
First, when an application uses TLS 1.3, the certificates
that are exchanged are encrypted, preventing TrustBase
from using passive traffic interception to independently
validate certificates. Second, in some cases a system ad-
ministrator may want to distrust the CA system entirely
and rely solely on alternative authentication services. For
example, the administrator may want to force applications
currently using CA validation to accept self-signed certifi-
cates that have been validated using a notary system such
as Convergence[31], or she may want to use DANE[21]
with trust anchors that differ from those shipped with the
system. When this occurs, TrustBase will use the new au-
thentication service and determine the certificate is valid
and allow a connection as configured by the administra-
tor, but applications using the CA system may reject the
certificate and terminate the connection. We stress that
such a policy would not be intended to override strong
certificate checks done by a browser (e.g., when commu-
nicating with a bank), but to provide a path for migrating
away from the CA system as stronger alternatives emerge.

To handle both TLS 1.3 and overriding the CA system,
TrustBase provides two options. The preferred option is
to modify applications to rely on TrustBase for certificate
validation, rather than performing their own checks. This
is facilitated by the validation API described above. This
enables new or modified applications to use the full set of
authentication services provided by TrustBase in a natural
manner.

A second option is to employ a local TLS proxy that can
coerce existing applications that rely on the CA system
to use new authentication services instead. The use of
a proxy also allows TrustBase plaintext access to the
server’s certificate under TLS 1.3. TrustBase gives the
administrator the option of running such a proxy, but it is
activated only in those cases where it is needed, namely
when the policy engine determines a certificate is valid
but the CA system would reject it. The proxy employed
is a modified fork of sslsplit [38] and has shown itself

to be scalable and performant in our experimentation.
Note that in most cases this is not needed—for example,
under Convergence, the certificates validated by notaries
would likely also be validated by the CA system unless
the certificate was self-signed, which is a situation likely
to exist until CA alternatives gain significant traction.
Given the vulnerabilities noted recently with proxies [11]
administrators should exercise caution using this feature.
Due to the features of the Windows root store, TrustBase
on Windows can override the CA system without the use
of a local proxy, as explained in Section 6.4.

3.6 Operating System Support

We designed the TrustBase architecture so that it could
be implemented on additional operating systems. The
main component that may need to be customized for each
operating system is the traffic interception module. We
are optimistic that this is possible because the TCP/IP
networking stack and sockets are used by most operating
systems.

Our Linux implementation is described in the following
section. We also have a working prototype of TrustBase
for Windows, which uses the Windows Filtering Platform
API.

Mac OSX provides a native interface for traffic inter-
ception between the TCP and socket levels of the oper-
ating system. Apple’s Network Kernel Extensions suite
provides a “Socket Filter” API that could be used as the
traffic interceptor.

For iOS, Apple provides a Network Extension frame-
work that includes a variety of APIs for different kinds of
traffic interception. The App Proxy Provider API allows
developers to create a custom transparent proxy that cap-
tures application network data. Also available is the Filter
Data Provider API that allows examination of network
data with built-in “pass/block” functionality.

Because Android uses a variant of the Linux kernel,
we believe our Linux implementation could be ported
to Android with relative ease. We have a prototype of
TrustBase on Android that instead uses the VPNService
to intercept traffic.

4 Linux Implementation

We have designed and built a research prototype of
TrustBase for Linux. The source code is available at
owntrust.org.

We have developed a loadable kernel module (LKM)
to intercept traffic at the socket layer, as data transits be-
tween the application and TCP handling kernel code. No
modification of native kernel code is required, and the
LKM can be loaded and unloaded at runtime. Similarly to
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Figure 2: Linux Traffic Interceptor simplified flowchart. Grey boxes correspond to hooks for handlers, white boxes are
native system calls and kernel functions

how Netfilter operates at the IP layer, TrustBase can inter-
cept traffic at the socket layer, before data is delivered for
TCP handling, and pass it to application-level programs,
where it can be (optionally) modified and then passed
back to the native kernel code for delivery to the original
TCP functionality. Likewise, interception can occur after
data finishes TCP processing and before it is delivered
to the application. This enables TrustBase to efficiently
intercept TLS connections in the operating system and
validate certificates in the application layer.

The following discussion highlights the salient features
of our implementation.

4.1 Traffic Interceptor
TrustBase provides generic traffic interception by captur-
ing traffic between sockets and the TCP protocol. This is
done by hooking several kernel functions and wrapping
them to add traffic interception as needed. An overview
of which functions are hooked and how they are modified
is given in Figure 2. Items in white boxes on the left side
of the figure are system calls. Items in white boxes on the
right side of the figure are the wrapped kernel functions.
The additional logic added to the native flow of the kernel
is shown by the arrows and gray boxes in Figure 2.

When the TrustBase LKM is loaded, it hooks into the
native TCP kernel functions whose pointers are stored
in the global kernel structures tcp prot (for IPv4) and
tcpv6 prot (for IPv6). When a user program invokes
a system call to create a socket, the function pointers
within the corresponding protocol structure are copied
into the newly-created kernel socket structure, allowing
different protocols (TCP, UDP, TCP over IPv6, etc.) to be

invoked by the same common socket API. The function
pointers in the protocol structures correspond to basic
socket operations such as sending and receiving data, and
creating and closing connections. Application calls to
read, write, sendmsg, and other system calls on that
socket then use those protocol functions to carry out their
operations within the kernel. Note that within the kernel,
all socket-reading system calls (read, recv, recvmsg,
and recvmmsg) eventually call the recvmsg function pro-
vided by the protocol structure. The same is true for the
corresponding socket write system calls, as each result in
calling the kernel sendmsg function. When the LKM is
unloaded, the original TCP functionality is restored in a
safe manner.

From top to bottom in Figure 2, the functionality of the
traffic interceptor is as follows. First, a call to connect in-
forms the handler that a new connection has been created,
and the handler can choose to intercept its traffic.

Second, when an application makes a system call to
send data on the socket, the interceptor checks with the
handler to determine if it is tracking that connection. If
so, it forwards the data to the handler for analysis, and
the handler chooses what data (potentially modified by
the handler), if any, to relay to native TCP-sending code.
After attempting to send data, the interceptor informs the
handler how much of that data was successfully placed
into the kernel’s send buffer and provides notification of
any errors that occurred. At this point the interceptor
allows the handler to send additional data, if desired. This
process continues until the handler indicates it no longer
wishes to send data. The interceptor then queries the
handler for the return values it wishes to report to the
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application (such as how many bytes were successfully
sent or an error value) and these values are returned to the
application.

Third, a similar, reversed process is followed for the
reception of data from the network. If the interceptor is
tracking the connection it can choose whether to receive
data processed by TCP handling. Any data received is re-
ported to the handler, which can choose whether to report
a different value to the application. Note that handlers are
allowed to report arbitrary values to applications for the
amount of data sent or received, including false values,
to allow greater flexibility in connection handling, or to
maintain application integrity when injecting additional
bytes into a stream. For example, to provide more time
to obtain and parse a message, a handler may indicate
to an application that zero bytes have been received on a
nonblocking socket, even though some or all of the data
may have already been received. After the handler has
completed its operation it can report to a subsequent re-
ceive call from the application that bytes were received,
and fill the application’s provided buffer with relevant
data. As another example, if a handler wishes to append
data to a message successfully transferred to the OS by an
application using the send system call, it should enforce
that the return value of this function be the number of
bytes the application expects to have been sent, rather
than a higher number that includes the added bytes.

Finally, a call to close (on the last remaining socket
descriptor for a connection) or shutdown informs the
handler that the connection is closed. Note that the han-
dler may also choose to abandon tracking of connections
before this point.

Handlers for various network observation and modifica-
tion can be constructed by implementing a small number
of functions, which will be invoked by the traffic inter-
ceptor at runtime. These functions roughly correspond to
the grey boxes in Figure 2. For example, handlers must
implement functions to send and receive data, indicate
whether to continue or cease tracking of a connection,
etc. The traffic interceptor calls these functions to provide
the handler with data, receive data from the handler to be
forwarded to applications or remote hosts, and other tasks.
Such an architecture allows developers to implement arbi-
trary protocol handlers as simple finite state machines, as
demonstrated by the TLS handler and opportunistic TLS
handlers described in the following subsections.

Another option for implementing traffic interception
would have been to use the Netfilter framework, but this
is not an optimal approach. TrustBase relies on pars-
ing traffic at the application layer, but Netfilter intercepts
traffic at the IP layer. For TrustBase to be implemented
using Netfilter, TrustBase would need to transform IP
packets into application payloads. This could be done
either by implementing significant portions of TCP, in-

Figure 3: Simplified view of TLS handler

cluding out-of-order handling and associated buffers, or
passing traffic through the network stack twice, once to
parse the IP packets for TrustBase and once for forward-
ing the traffic to the application. Both of these options
are problematic, creating development and performance
overhead, respectively.

4.2 TLS Handler
TrustBase includes a handler for the traffic interceptor
dubbed the “TLS handler”. The TLS handler extracts
certificates from TLS network flows and forwards them
to the policy engine for validation.

Figure 3 provides a high-level overview of how this
handler operates. When a new socket is created, the
handler creates state to track the connection, which the
handler will have access to for all subsequent interactions
with the interceptor. The destination IP address and port
of the connection and PID of the application owning the
connection are provided to the handler during connection
establishment by the interceptor. Since the handler is
implemented in a LKM, the PID of the socket can be used
to obtain any further information about the application
such as the command used to run it, its location, and even
memory contents.

When data is sent on the socket, the handler checks
state data to determine whether the connection has initi-
ated a TLS handshake. If so, then it expects to receive
a ClientHello; the handler saves this message for the
policy engine so that it can obtain the hostname of the
desired remote host, if the message contains a Server
Name Indication (SNI) extension. If SNI is not used, a
log of applications’ DNS lookups can be used to infer the
intended host,4 similar to work by Bates et al. [4]

When data is received on the socket, the TLS handler
waits until it has received the full certificate chain, then

4Our experimentation showed that all popular TLS implementations
and libraries now use SNI, and Akamai reports HTTPS SNI global usage
at over 98% [33], so this fallback mechanism is almost never needed.
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it sends this chain and other data to the policy engine for
parsing and validation.

Note, the TLS handler understands the TLS record and
handshake protocols but does not perform interpretations
of contained data. This minimizes additions to kernel-
level code and allows ASN.1 and other parsing to be done
in userspace by the policy engine.

4.3 Opportunistic TLS Handler

We have also implemented an opportunistic TLS handler,
which provides TrustBase support for plaintext protocols
that may choose to upgrade to TLS opportunistically, such
as STARTTLS. This handler performs passive monitor-
ing of plaintext protocols (e.g., SMTP), allowing network
data to be fast-tracked to and from the application and
does not store or aggressively process any transiting data.
If at some point the application requests to initiate a TLS
connection with the server (e.g., via a STARTTLS mes-
sage), the handler processes acknowledgments from the
server and then delivers control of the connection to the
normal TLS handler, which is free to handle the connec-
tion as if it were conducting regular TLS.

It should be noted that the use of opportunistic TLS
protocols by applications is subject to active attackers
who perform stripping attacks to make the client believe
the server does not support TLS upgrades, an existing
vulnerability well documented by recent work [9, 19, 22].
TrustBase can prevent this type of attack, as discussed in
Section 5.

4.4 Policy Engine

The policy engine receives raw certificate data from the
TLS handler and then validates the certificates using the
configured authentication services. To avoid vulnerabili-
ties that may arise from performing parsing and modifi-
cation of certificates in the kernel, all such operations are
carried out in user space by the policy engine.

Communication between TrustBase kernel space and
user space components is conducted via Netlink, a robust
and efficient method of transferring data between kernel
and user space, provided natively by the Linux kernel.
The policy engine asynchronously handles requests from
the kernel module, freeing up the kernel threads to handle
other connections while a response is constructed.

Native plugins must be written in either C or C++ and
compiled as a shared object for use by the policy engine.
However, in addition to the plugin API, TrustBase sup-
ports an addon API that allows plugins to be written in
additional languages. Addons provide the code needed to
interface between the native C of the policy engine and
the target language it supports. We have implemented an

addon to support the Python language and have created
several Python plugins.

5 Security Analysis

The TrustBase architecture, prototype implementation,
and sample plugins have many implications for system
security. In this section we provide a security analysis
of the centralized system design, application coverage,
protection of applications from attackers, and protection
of TrustBase itself from attackers.

5.1 Centralization
Concentrating certificate validation in an operating system
service has some risks and benefits. Any vulnerability
in the service has the potential to impact all applications
on the system. An exploit that grants an attacker root
permission leads to compromise of the host. An exploit
that causes a certificate to be rejected when it should be
accepted is a type of denial-of-service attack. We note
that if an attacker is able to get TrustBase to accept a
certificate when it should not, any application that does its
own certificate authentication correctly will be unaffected.
If the application is broken, the TrustBase failure will not
make the situation any worse than it already was. The net
effect is a lost opportunity to make it better.

The risks of centralization are common to any operating
system service. However, centralization also has a com-
pelling upside. For instance, all of our collective effort
can be centered on making the design and implementa-
tion correct, and all applications can benefit.5 Securing a
single service is more scalable than requiring developers
to secure each application or library independently. It
also enforces an administrator’s preferences regardless of
application behavior. Additionally, when a protocol flaw
is discovered, it can be more rapidly tested and patched,
compared to having to patch a large number of applica-
tions.

5.2 Coverage
Since one of the goals of TrustBase is to enforce proper
certificate validation on all applications on a system, the
traffic interceptor is designed to stand between the trans-
port and application layers of the OS so that it can in-
tercept and access all TLS flows from local applications.
The handlers associated with the traffic interception com-
ponent are made aware of a connection when a connect
call is issued and can associate that connection with all
data flowing through it. Applications that utilize their own

5All applications would likewise benefit from caching among au-
thentication services.
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custom TCP/IP stack must utilize raw sockets, which re-
quire administrator privileges and are therefore implicitly
trusted by TrustBase.

To obtain complete coverage of TLS, our handlers need
only monitor initial TLS handshakes (standard TLS) and
the brief data preceding them (STARTTLS). The charac-
teristics of TLS renegotiation and session termination are
compatible with our approach.

In TLS renegotiation, subsequent handshakes use key
material derived using the master secret of the first hand-
shake. Thus if the policy engine correctly authenticates
and validates the first handshake, TLS renegotiations are
implicitly verified as well. Attackers who obtained suf-
ficient secrets to trigger a renegotiation, through some
other attack on the TLS protocol or implementation (out-
side our threat model), have no need to take advantage
of renegotiation as they have complete control over the
connection already. We also note that renegotiation is rare
and typically used for client authentication for an already
authenticated server, and has become less relevant for
SGC or refreshing keys [37].

Session termination policies for TLS allow us to asso-
ciate each TLS session with only one TCP connection.
In TLS, a close notify must be immediately succeeded
by a responding close notification and a close down of
the connection [8]. Subsequent reconnects to the target
host for additional TLS communication are detected by
the TrustBase traffic interceptor and presented to the han-
dlers. We have found that TLS libraries and applications
do indeed terminate a TCP session when ending a TLS
session, although many of them fail to send an explicit
TLS close notification and rely solely on TCP termination
to notify the remote host of the session termination.

5.3 Threat Analysis
The coverage of TrustBase enables it to enforce both
proper and additional certificate validation procedures on
TLS-using applications. There are a variety of ways that
attackers may try perform a TLS MITM against these
applications. A selection of these methods and discussion
of how TrustBase can protect against them follows. For
each, we verified our solution utilizing an “attacker” ma-
chine acting as a MITM using sslsplit [38], and a target
“victim” machine running TrustBase. For some scenarios,
the victim machine was implanted with our own CA in
the distribution’s shipped trust store or the store of a local
user or application. Applications tested utilize the tools
and libraries mentioned in section 6.2.

• Hacked or coerced certificate authorities: Attack-
ers who have received a valid certificate through
coercion, deception, or compromise of CAs are able
to subvert even proper CA validation. Under Trust-
Base, administrators can choose to deploy pinning

or notary plugins, which can detect the mismatch
between the original and forged certificate, prevent-
ing the attacker from initiating a connection. We
have developed plugins that perform these actions
and verified that they prevent such attacks.

• Local malicious root: Attackers utilizing certifi-
cates that have been installed into an application or
user trusted store will be trusted by many target appli-
cations. Even Google Chrome will ignore certificate
pins in the presence of a certificate that links back
to a locally-installed root certificate. TrustBase can
protect against this by utilizing similar plugins to the
preceding scenario.

• Absence of status checking: Many applications
still do not check OCSP or Certificate Revoca-
tion Lists to determine if a received certificate is
valid [29]. In these cases, attackers utilizing stolen
certificates that have been reported can still perform
a MITM. Administrators who want to prevent this
from happening can add an OCSP or CRL plugin to
the policy engine and ensure these checks for all ap-
plications on the machine. We have developed both
OCSP and CRLSet plugins and verified that they per-
form status checks where applicable. For example,
the OSCP plugin can be used to check certificates
received by the Chrome browser, which does not do
this natively.

• Failure to validate hostnames: Some applications
properly validate signatures from a certificate back
to a trusted root but do not verify that the hostname
matches the one contained in the leaf certificate. This
allows attackers to utilize any valid certificate, in-
cluding those for hosts they legitimately control, to
intercept traffic [20]. The TrustBase policy engine
strictly validates the common name and all alternate
names in a valid certificate against the intended host-
name of the target host to eliminate this problem.

• Lack of validation: For applications that blindly
accept all certificates, attackers need only send a self-
signed certificate they generate on their own, or any
other for which they have the private key, to MITM
a connection. TrustBase prohibits this by default,
as the policy engine ensures the certificate has a
proper chain of signatures back to a trust anchor on
the machine and performs the hostname validation
described previously.

• STARTTLS downgrade attack: Opportunistic
TLS begins with a plaintext connection. A down-
grade attack occurs when an active attacker sup-
presses STARTTLS-related messages, tricking the
endpoints into thinking one or the other does not
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support STARTTLS. The net result is a continuation
of the plaintext connection and possible sending of
sensitive data (e.g., email) in the clear. TrustBase
mitigates this attack by an option to enforce START-
TLS use. When STARTTLS is used to communicate
with a given service, TrustBase records the host in-
formation. Future connections to that host are then
required to upgrade via STARTTLS. If the host omits
STARTTLS and prohibits its use, the connection is
severed by TrustBase to prevent leaking sensitive
information to a potential attacker.6 TrustBase also
allows the system administrator to configure a strict
TLS policy, which disallows plaintext connections
even if it has no prior data about whether a remote
host supports STARTTLS.

5.4 Hardening

The following design principles strengthen the security of
a TrustBase implementation. First, the traffic interceptor
and handler components run in kernel space. Their small
code size and limited functionality—handlers are simple
finite state machines—make it more likely that formal
methods and source code auditing will provide greater
assurance that an implementation is correct. Second, the
policy engine and plugins run in user space. This is where
error-prone tasks such as certificate parsing and validation
occur. The use of privilege separation [36] and sandbox-
ing [30] techniques can limit the potential harm when
any of these components is compromised. Third, plugins
can only be installed and configured by an administra-
tor, which prohibits unprivileged adversaries and malware
from installing malicious authentication services. Finally,
communications between the handlers, policy engine, and
plugins are authenticated to prevent local malware from
spoofing a certificate validation result.

TrustBase is designed to prevent a local, nonprivileged
user from inadvertently or intentionally compromising
the system. (1) Only privileged users can insert and re-
move the TrustBase kernel module, prohibiting an at-
tacker from simply removing the module to bypass it.
The same is true for plugins. (2) The communication
between the kernel module component of TrustBase and
the user space policy engine is performed via a custom
Generic Netlink protocol that protects against nonprivi-
leged users sending messages to the kernel. The protocol
definition takes advantage of the Generic Netlink flag
GENL ADMIN PERM, which enforces that selected opera-
tions associated with the custom protocol can only be
invoked by processes that have administrative privileges

6This could be further strengthened by checking DANE records to
determine if the server supports STARTTLS. We are likewise interested
in pursuing whether this technique can be used to protect against other
types of downgrade attacks.

for networking (the capability mapped to CAP NET ADMIN

in Linux systems). This prevents a local attacker from
using a local Netlink-utilizing process to masquerade as
the policy engine to the kernel. (3) The policy engine
runs as a nonroot, CAP NET ADMIN process that can be
invoked only by a privileged user. (4) The configura-
tion files, plugin directories, and binaries for TrustBase
are write-protected to prevent unauthorized modifications
from nonprivileged users. This protects against weaken-
ing of the configuration, disabling of plugins, shutting
down or replacing the policy engine, or enabling of bogus
plugins.

TrustBase stops traffic interception for a given flow
as soon as it is identified as a non-TLS connection. Ex-
perimental results show that TrustBase has negligible
overhead with respect to memory and time while tracking
connections. Thus it is unlikely that an attacker could
perform a denial-of-service attack on the machine by cre-
ating multiple network connections, TLS or otherwise,
any easier than in the non-TrustBase scenario. Such an
attack is more closely associated with firewall policies.

An attacker may seek to compromise TrustBase by
crafting an artificial TLS handshake that results in some
type of TrustBase failure, hoping to cause some kind of
application error or termination. We reduce this attack
surface by performing no parsing in the kernel except for
TLS handshake records, which involves just the message
type, length, and version headers. ASN.1 and other data
sent to the policy engine are evaluated and parsed by stan-
dard openssl functions, which have undergone widespread
scrutiny and use for many years. The TrustBase code has
been made publicly available, and we invite others to au-
dit the code. We note that, in the absence of the local
proxy, TrustBase will not coerce an application to accept
a certificate that the application would normally reject.

6 Evaluation

We evaluated the prototype of TrustBase to measure its
performance, ensure compatibility with applications, and
test its utility for deploying authentication services that
can harden certificate validation.

6.1 Performance
To measure the overhead incurred by TrustBase, we instru-
mented our implementation to record the time required to
establish a TCP connection, establish a TLS connection,
and transfer a file of varying size (2MB - 500 GB). We
tested TrustBase with two plugins, CA Validation and
Certificate Pinning (see Section 6.5). The target host for
these connections was a computer on the same local net-
work as the client machine, to reduce the effect of latency
and network noise. The host presented a valid certificate
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Figure 4: Handshake Timings for TCP (left) and TLS
(right) handshakes with and without TrustBase running.

chain that also employed an intermediate authority, rep-
resenting a realistic circumstance for web browsing and
forcing plugins to execute all of their validity checks. Our
testing used a modern PC running Fedora 21 and averaged
across 1,000 trials.

Figure 4 shows boxplots that characterize the timing
of TCP and TLS handshakes, with and without Trust-
Base active. There is no discernible difference for TCP
handshake timings and the average difference is less than
10 microseconds, with neither configuration consistently
beating the other in subsequent experiments. This is
expected behavior because the traffic interceptor is ex-
tremely light-weight for TCP connections. Average TLS
handshake times with and without TrustBase also have
no discernible difference, with average handshake times
for this experiment of 5.9 ms and 6.0 ms, respectively.
Successive experiments showed again that neither average
consistently beat the other. This means that the inherent
fluctuations in system and network conditions account
for more time than the additional control paths TrustBase
introduces. This is also expected, as the brevity of TLS
handling code, its place in the kernel, the use of efficient
Netlink transport and other design choices were made
with performance in mind.

Our experimentation with varying file sizes also exhib-
ited no difference between native and TrustBase cases.
Note that the TrustBase timings for the TLS handshake
may increase if a particular plugin is installed that requires
more processing time or relies on Internet queries to func-
tion, and that this overhead is inherent to that service and
not the TrustBase core.

The memory footprint in our Linux prototype is also
negligible. For each network connection, TrustBase tem-
porarily stores less than 300 bytes of data, plus the length
of any TLS handshake messages encountered. Connec-
tions not using TLS use even less memory than this and

carry a zero-byte memory overhead once their nature has
been determined and TrustBase ceases to monitor them.

6.2 Compatibility
One goal of TrustBase is to strengthen certificate authenti-
cation for existing, unmodified applications and to provide
additional authentication services that strengthen the CA
system. To meet this goal, TrustBase must be able to
enforce proper authentication behavior by applications,
as defined by the system administrator’s configuration.

There are three possible cases for the policy engine
to consider. (1) If a certificate has been deemed valid
by both TrustBase and the application, the policy engine
allows the original certificate data to be forwarded on to
the application, where it is accepted naturally. (2) In the
case where the application wishes to block a connection,
regardless of the decision by TrustBase, the policy engine
allows this to occur, since the application may have a valid
reason to do so. We discuss in Section 3.5, the special
case when a new authentication service is deployed that
wishes to accept a certificate that the CA system normally
would not. (3) In the case where validation with TrustBase
fails, but the application would have allowed the connec-
tion to proceed, the policy engine blocks the connection
by forwarding an intentionally invalid certificate to the
application, which triggers any SSL application valida-
tion errors an application supports, and then subsequently
terminates the connection.

We tested TrustBase with 34 popular applications and
libraries and tools, shown in Table 1.7 TrustBase success-
fully intercepted and validated certificates for all of them.
For each library tested, and where applicable, we created
sample applications that performed no validation and im-
proper validation (bad checking of signatures, hostnames,
and validity dates). We then verified that TrustBase cor-
rectly forced these applications to reject false certificates
despite those vulnerabilities in each case. In addition, we
observed that TrustBase caused no adverse behavior, such
as timeouts, crashes, or unexpected errors.

6.3 Android Prototype
To verify that the TrustBase approach works on mobile
platforms and is compatible with mobile applications, we
built a prototype for Android. Source code can be found
at owntrust.org.

Our Android implementation uses the VPNService so
that it can be installed on an unaltered OS and without
root permissions. The drawback of this choice is that only
one VPN service can be active on the Android at a time.
In the long-term, adding socket-level interception to the
Android kernel would be the right architectural choice,

7These are a superset of the tools and libraries tested with CertShim
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Library Tool

C++ gnutls-cli
libcurl curl
libgnutls sslscan
libssl openssl s client
libnss openssl s time

JAVA lynx
SSLSocketFactory fetchmail

PERL firefox
socket::ssl chrome/chromium

PHP mpop
fsockopen w3m
php curl ncat

PYTHON wget
httplib steam
httplib2 thunderbird
pycurl kmail
pyOpenSSL pidgin
python ssl
urllib, urllib2, urllib3
requests

Table 1: Common Linux libraries and tools compatible
with TrustBase

and then TrustBase could use similar traffic interception
techniques as with the Linux implementation.

The primary engineering consequence of using the
VPNService on Android is that TrustBase must inter-
cept IP packets from applications but emit TCP (or UDP)
packets to the network. If it could use raw sockets, then
TrustBase could merely transfer IP packets between the
VPNService and the remote server. Unfortunately, the
lowest level socket endpoint an Android developer can
create is the Java Socket or DatagramSocket, which
encapsulate TCP and UDP payloads respectively. There-
fore, we must emulate IP, UDP and TCP to facilitate
communication between the VPNService and the sock-
ets used to communicate with remote hosts. For TCP, this
involves maintaining connection state, emulating reliabil-
ity, and setting appropriate flags (SYN, ACK, etc.) for
TCP traffic.

To verify compatibility with mobile applications, we
tested 16 of the most popular Android applications:
Chrome, YouTube, Pandora, Gmail, Pinterest, Instagram,
Facebook, Google Play Store, Twitter, Snapchat, Amazon
Shopping, Kik, Netflix, Google Photos, Opera, and Dol-
phin. TrustBase on Android successfully intercepted and
strengthened certificate validation for all of them.

6.4 Windows Prototype

To demonstrate that the TrustBase approach works on
Windows, we also built a prototype for Windows 10.
Source code can be found at owntrust.org.

The traffic interceptor component of TrustBase on Win-

dows is implemented utilizing the native Windows Filter-
ing Platform (WFP) API, acting as a kernel-mode driver.
Reliance on the WFP reduced the code necessary to pro-
vide traffic interception capabilities and also made them
easy to maintain, given that the Windows kernel code is
not open source. As on Linux, this kernel code is event-
driven, collects connection information, and transmits it
to a userspace policy engine for processing and decision
making. The policy engine is patterned after its Linux
counterpart, supports both Python and C plugins, and uses
native Windows libraries where possible (e.g., Microsoft’s
CryptoAPI and native threading APIs).

The nature of the Windows root certificate store allows
TrustBase to avoid utilizing a TLS Proxy in cases where
overriding the CA system is desired (see Section 3.5).
Windows has the ability to dynamically alter the root cer-
tificate store during runtime, and applications using the
CA system will be immediately subject to those changes.
This allows TrustBase to dynamically add self-signed cer-
tificates to the root store when the policy engine deems
them trustworthy. Through this mechanism TrustBase
can override the CA system by placing a validated certifi-
cate in the root store before the application obtains and
validates it against the root store. TrustBase maintains
identifying hashes of all the certificates added to the root
store and removes them when the connections using them
are terminated. As on Linux, applications that use their
own private certificate stores cannot have their validation
rejections overridden using this methodology.

6.5 Utility

To validate the utility of TrustBase, we implemented eight
useful authentication services. Table 2 describes each
of these services. These services illustrate the types of
control that TrustBase can provide to an administrator in
securing TLS on a system. The CA validation plugin en-
sures that all applications on the system perform appropri-
ate checks when validating certificates received through
TLS (hostname, basic constraints, expiration, etc.). The
whitelist represents a more manual, customized approach
to validation, likely to be used in conjunction with other
services to handle edge cases. Our certificate pinning
and certificate revocation services enforce more advanced
checks that are usually reserved for individual applica-
tions but can now be deployed system-wide. Note that
this includes the deployment of Google’s CRLSets checks,
which are normally reserved for Chromium browsers only.
This addresses the limitation noted by [11] concerning
the isolation of newer validation technologies in browser
code. The Notary and DANE services can be leveraged
to trust additional channels of information aside from
CA signatures and revocation lists. Finally, our cipher
suite auditor service allows system administrators to pre-
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CA Validation Enforces standard certificate validation using openssl functions and standard practices
for validating hostnames, Basic Constraints, dates, etc.

Whitelist Stores a set of certificates that are always considered valid for their respective hosts, such
as self-signed certificates.

Certificate Pinning Uses Trust On First Use to pin certificates for any host; expired certificates are replaced
by the next certificate received by a connection to that domain.

Certificate Revocation Checks OCSP to determine whether the certificate has been revoked.

CRLSet Blocking Checks Google’s CRLSet to determine whether the certificate has been blocked, extending
Chrome’s protection to all apps.

DANE Uses the DNS system to distribute public keys in a TLSA record [21].

Notary Based on ideas presented by Perspectives [41] and Convergence [31], it connects securely
to one or more notary servers to validate the certificate received by the client is the same
one that is seen by the notaries.

Cipher Suite Auditor Uses Client Hello and Server Hello information, along with a configuration with secure
defaults, to disallow weak cipher suites. It can also require that certain TLS extensions be
employed (e.g., TACK[32]).

Table 2: Authentication and Security services implemented with TrustBase

vent connections that attempt to utilize weak cipher suites
and signing algorithms, using the additional handshake
information provided to all plugins.

7 Future Work

TrustBase explores the benefits and drawbacks of pro-
viding authentication as an operating system service and
giving administrators control over how all authentication
decisions on their machines are made. In doing so, a
step has been taken toward empowering administrators to
control secure connections on their machines. However,
some drawbacks have been noted, such as the reliance
on a local proxy to support TLS 1.3 interception and
CA overriding in some cases on Linux. These issues
are caused by applications dictating the security of the
machine’s connections, using their own (or third party)
security features and keys, reducing operating system and
administrator control.

We are currently investigating further steps into this
territory to provide great administrator control of security
without some of these drawbacks. One such step is pro-
viding TLS as an operating system service, meaning that
the operating system provides encryption for applications,
not just authentication. Current TLS libraries are a burden
on application developers, who are often not security ex-
perts. In addition, developers do not necessarily share the
same security goals as the vendors or administrators who
configure the systems upon which applications run. By
providing TLS as an operating system service, application
developers are relieved of this burden and the OS can in-

voke the TrustBase validation API natively. This removes
the need for developers to explicitly invoke the validation
API, and provides the OS with visibility and control over
all TLS data, including TLS 1.3 handshakes, as the OS
becomes the de facto TLS client. Such a measure enables
system-wide deployment of security measures, such as
cipher suite customization, TLS extension deployment,
and responses to CVEs. This also allows OS vendors
and system administrators an easier upgrade path for TLS
versions.

Since network application developers are already fa-
miliar with the POSIX socket API, we are working on
providing TLS as a protocol type in the socket API, the
same way the OS provides TCP and UDP protocols as
a service. In contrast to using a userspace library, this
approach allows network application developers unfamil-
iar with security to operate in a well-known environment,
utilizes an existing OS API that can be shared by many
different platform implementations, and allows strict con-
figuration and control by administrators. By creating a
socket using a new IPPROTO TLS parameter (as opposed
to IPPROTO TCP), developers can use the bind, connect,
send, recv, and other socket API calls with which thy
are already familiar, focusing solely on application data
and letting the OS handle all TLS functionality. The gen-
eralized setsockopt and getsockopt are available to
specify remote hostnames and additional options to the
OS TLS service without violating the existing socket API.

622    26th USENIX Security Symposium USENIX Association



8 Conclusion

We have explored how to fix broken authentication in ex-
isting applications, while also providing a platform for im-
proved authentication services. To solve these problems
we used two guiding principles—centralizing authenti-
cation as an operating system service and giving system
administrators control over authentication policy. Fol-
lowing these two principles, we designed the TrustBase
architecture for certificate authentication, meeting our
design goals of securing existing applications, strengthen-
ing the CA system, providing full application coverage,
enabling universal deployment, and imposing negligible
overhead. We have presented a research prototype for
TrustBase on Linux, discussed how we hardened this
implementation, provided a security analysis, and evalu-
ated its performance. We have provided source code for
Linux, Android, and Windows prototypes. Finally, we
have written eight authentication services to demonstrate
the utility of this approach, extending CA hardening to
all applications.

9 Acknowledgments

The authors thank the anonymous reviewers for their help-
ful feedback. This material is based upon work supported
by the National Science Foundation under Grant No.
CNS-1528022 and research sponsored by the Department
of Homeland Security (DHS) Science and Technology
Directorate, Cyber Security Division (DHS S&T/CSD)
via contract number HHSP233201600046C. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing
the official policies or endorsements, either expressed or
implied, of the Department of Homeland Security. Also,
this work was supported by Sandia National Laborato-
ries, a multimission laboratory managed and operated
by National Technology and Engineering Solutions of
Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s
National Nuclear Security Administration under contract
DE-NA-0003525.

References
[1] ALICHERRY, M., AND KEROMYTIS, A. D. Doublecheck: Multi-

path verification against man-in-the-middle attacks. In Symposium
on Computers and Communications (ISCC) (2009), IEEE, pp. 557–
563.

[2] AMANN, B., VALLENTIN, M., HALL, S., AND SOMMER, R.
Extracting certificates from live traffic: A near real-time SSL
notary service. Tech. rep., TR-12-014, ICSI Nov. 2012, 2012.

[3] AMANN, B., VALLENTIN, M., HALL, S., AND SOMMER, R.
Revisiting SSL: A large-scale study of the internet’s most trusted
protocol. Tech. rep., TR-12-015, ICSI Dec. 2012, 2012.

[4] BATES, A., PLETCHER, J., NICHOLS, T., HOLLEMBAEK, B.,
TIAN, D., BUTLER, K. R., AND ALKHELAIFI, A. Securing SSL
certificate verification through dynamic linking. In Conference on
Computer and Communications Security (CCS) (2014), ACM.

[5] BRUBAKER, C., JANA, S., RAY, B., KHURSHID, S., AND
SHMATIKOV, V. Using frankencerts for automated adversarial
testing of certificate validation in SSL/TLS implementations. In
Symposium on Security and Privacy (SP) (2014), IEEE.

[6] CONTI, M., DRAGONI, N., AND GOTTARDO, S. MITHYS: Mind
the hand you shake-protecting mobile devices from SSL usage
vulnerabilities. In Security and Trust Management. Springer, 2013,
pp. 65–81.

[7] DE CARNAVALET, X. D. C., AND MANNAN, M. Killed by proxy:
Analyzing client-end TLS interception software. In Network and
Distributed System Security Symposium (NDSS) (2016), Internet
Society.

[8] DIERKS, T., AND RESCORLA, E. The Transport Layer Security
(TLS) Protocol Version 1.2. RFC 5246 (Proposed Standard),
August 2008.

[9] DURUMERIC, Z., ADRIAN, D., MIRIAN, A., KASTEN, J.,
BURSZTEIN, E., LIDZBORSKI, N., THOMAS, K., ERANTI, V.,
BAILEY, M., AND HALDERMAN, J. A. Neither snow nor rain
nor MITM. . . : An empirical analysis of email delivery security.
In Internet Measurement Conference (IMC) (2015), ACM.

[10] DURUMERIC, Z., KASTEN, J., BAILEY, M., AND HALDERMAN,
J. A. Analysis of the HTTPS certificate ecosystem. In Internet
Measurement Conference (IMC) (2013), ACM.

[11] DURUMERIC, Z., MA, Z., SPRINGALL, D., BARNES, R., SUL-
LIVAN, N., BURSZTEIN, E., BAILEY, M., HALDERMAN, J. A.,
AND PAXSON, V. The security impact of HTTPS interception.
In Network and Distributed System Security Symposium (NDSS)
(2017), Internet Society.

[12] ECKERSLEY, P., AND BURNS, J. An observatory for the SSLi-
verse. http://www.eff.org/files/DefconSSLiverse.pdf,
2010.

[13] ECKERSLEY, P., AND BURNS, J. The (decentralized) SSL obser-
vatory. In USENIX Security Symposium (2011).

[14] (EFF), E. F. F. The Sovereign Keys Project. http:

/www.eff.org/sovereign-keys/, 2011.

[15] ENGERT, K. MECAI - mutually endorsing CA infrastructure.
http://kuix.de/mecai. Accessed: March 2013.

[16] EVANS, C., AND PALMER, C. Certificate pinning extension
for HSTS. http://tools.ietf.org/html/draft-evans-
palmer-hsts-pinning-00. Accessed: 22 March, 2013.

[17] FAHL, S., HARBACH, M., MUDERS, T., BAUMGÄRTNER, L.,
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Abstract
Building machine learning models of malware behav-
ior is widely accepted as a panacea towards effective
malware classification. A crucial requirement for build-
ing sustainable learning models, though, is to train on a
wide variety of malware samples. Unfortunately, mal-
ware evolves rapidly and it thus becomes hard—if not
impossible—to generalize learning models to reflect fu-
ture, previously-unseen behaviors. Consequently, most
malware classifiers become unsustainable in the long
run, becoming rapidly antiquated as malware contin-
ues to evolve. In this work, we propose Transcend, a
framework to identify aging classification models in vivo
during deployment, much before the machine learning
model’s performance starts to degrade. This is a signifi-
cant departure from conventional approaches that retrain
aging models retrospectively when poor performance is
observed. Our approach uses a statistical comparison
of samples seen during deployment with those used to
train the model, thereby building metrics for prediction
quality. We show how Transcend can be used to iden-
tify concept drift based on two separate case studies on
Android and Windows malware, raising a red flag before
the model starts making consistently poor decisions due
to out-of-date training.

1 Introduction

Building sustainable classification models for classify-
ing malware is hard. Malware is mercurial and mod-
eling its behavior is difficult. Codebases of commer-
cial significance, such as Android, are frequently patched
against vulnerabilities and malware attacking such sys-
tems evolve rapidly to exploit new attack surfaces. Con-
sequently, models that are built through training on older
malware often make poor and ambiguous decisions when

∗Research carried out entirely while Post-Doctoral Researchers at
Royal Holloway, University of London.

faced with modern malware—a phenomenon commonly
known as concept drift. In order to build sustainable
models for malware classification, it is important to iden-
tify when the model shows signs of aging whereby it fails
to recognize new malware.

Existing solutions [12, 15, 23] aim to periodically re-
train the model. However, if the model is retrained too
frequently, there will be little novelty in the information
obtained to enrich the classifier. On the other hand, a
loose retraining frequency leads to periods of time where
the model performance cannot be trusted. Regardless,
the retraining process requires manual labeling of all the
processed samples, which is constrained by available re-
sources. Once the label is acquired, traditional metrics
such as precision and recall are used to retrospectively
indicate the model performance. However, these metrics
do not assess the decision of the classifier. For exam-
ple, hyperplane-based learning models (e.g., SVM) only
check the side of the hyperplane where the object lies
while ignoring its distance from the hyperplane. This is
a crucial piece of evidence to assess non-stationary test
objects that eventually lead to concept drift.

A well known approach for qualitative assessment of
decisions of a learning model is the probability of fit of
test object in a candidate class. Previous work has re-
lied on using fixed probability thresholds to identify best
matches [19]. Standard algorithms compute the proba-
bility of a sample fitting into a class as a by-product of the
classification process. However, since probabilities need
to sum up to 1.0, it is likely that for previously unseen
test objects which do not belong to any of the classes,
the probability may be artificially skewed. To mitigate
this issue, Deo et al. propose ad-hoc metrics derived from
the two probabilities output by Venn-Abers Predictors
(VAP) [5], one of which is perfectly calibrated. Although
promising, the approach is unfortunately still in its in-
fancy and does not reliably identify drifting objects (as
further elaborated in § 6).

The machine learning community has developed tech-
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niques that look at objects statistically rather than prob-
abilistically. For example, Conformal Predictor [20]
makes predictions with statistical evidence. However, as
discussed by Fern and Dietterich1, this method is not tai-
lored to be used in presence of concept drift.

Nevertheless, statistical assessments seem to over-
come the limitations of probabilistic approaches, as out-
lined in § 2. Still, there are two key issues that need to
be addressed before statistical assessments can be used
to detect concept drift. First, the assessments have to
be agnostic to the algorithm used to build the learn-
ing model. This is non-trivial as different algorithms
can have different underlying classification mechanisms.
Any assessment has to abstract away from the algorithm
and identify a universal criteria that treats the underly-
ing algorithm as a black box. Second, and more impor-
tantly, auto-computation of thresholds to identify an ag-
ing model from an abstract assessment criteria requires a
brute force search among scores for the training objects.

In this work, we address both these issues by propos-
ing both meaningful and sufficiently abstract assessment
metrics as well as an assessment criteria for interpret-
ing the metrics in an automated fashion. We propose
Transcend—a fully parametric statistical framework for
assessing decisions made by the classifier to identify con-
cept drift. Central to our contribution, is the translation
of the decision assessment problem to a constraint opti-
mization problem which enables Transcend to be para-
metric with diverse operational goals. It can be boot-
strapped with pre-specified parameters that tune its sen-
sitivity to varying levels of concept drift. For example,
in applications of critical importance, Transcend can be
pre-configured to adopt a strict filtering policy for poor
and unreliable classification decisions. While previous
work has looked at decision assessment [4, 19], this is
the first work that looks at identifying untrustworthy pre-
dictions using decision assessment techniques. Thereby,
Transcend can be deployed in existing detection systems
with the aim of identifying aging models and ameliorat-
ing performance in the face of concept drift.

In a nutshell, we make the following contributions:

• We propose conformal evaluator (CE), an evalua-
tion framework to assess the quality of machine
learning tasks (§ 2). At the core of CE is the def-
inition of non-conformity measure derived from the
ML algorithm under evaluation (AUE) and feature
set (§ 2.1). This measure builds statistical metrics
to quantify the AUE quality and statistically support
goodness of fit of a data point into a class according
to the AUE (§ 2.4).

1A. Fern and T. Dietterich. “Toward Explainable Uncertainty”.
https://intelligence.org/files/csrbai/fern-slides-1.pdf

• We build assessments on top of CE’s statistical met-
rics to evaluate the AUE design and understand sta-
tistical distribution of data to better capture AUE’s
generalization and class separations (§ 3).

• We present Transcend, a fully tunable classification
system that can be tailored to be resilient against
concept drift to varying degrees depending on user
specifications. This versatility enables Transcend to
be used in a wide variety of deployment environ-
ments where the cost of manual analysis is central
to classification strategies. (§ 3.3)

• We show how CE’s assessments facilitate
Transcend to identify suitable statistical thresholds
to detect decay of ML performance in realistic
settings (§ 4). In particular, we support our
findings with two case studies that show how
Transcend identifies concept drift in binary (§ 4.1)
and multi-class classification (§ 4.2) tasks.

2 Statistical Assessment: Why and How?

In this section we discuss the significance of statistical
techniques for decision assessment, which form the core
of conformal evaluator. A statistical approach to deci-
sion assessment considers each decision in the context of
previously made decisions. This is different to a proba-
bilistic assessment where the metric is indicative of how
likely a test object is to belong to a class. In contrast,
statistical techniques answer the question: how likely is
the test object to belong to a class compared to all of its
other members? The contextual evidence produced by
statistical evidence is a step beyond standard probabilis-
tic evidence and typically gives stronger guarantees on
the quality of the assessment. Our work dissects Con-
formal Predictor (CP) [24] and extracts its sound statisti-
cal foundations to build conformal evaluator (CE). In the
following section, we provide further details, while we
forward the reader to § 6 for a full comparison between
CP and CE.

2.1 Non-conformity Measure
Classification is usually based on a scoring function
which, given a test object z∗, outputs a prediction score
FD(l,z∗), where D is the dataset of training objects and
l is a label from the set of possible object labels L .

The scoring function can be used to measure the differ-
ence between a group of objects belonging to the same
class (e.g., malware belonging to the same family) and
a new object (i.e., a sample). In Transcend, the non-
conformity measure (NCM) is computed directly from
the scoring function of the algorithm. Thus, conformal
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(a) Elements above the threshold
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(d) Performance of elements below the threshold

Figure 1: Performance comparison between p-value and probability for the objects above and below the threshold used
to accept the algorithm’s decision. The p-values are given by CE with SVM as non-conformity measure, the probabil-
ities are given directly by SVM. As we can see from the graph, p-values tend to contribute to a higher performance of
the classifier, identifying those (drifting) objects that would have been erroneously classified.

evaluation is agnostic to the algorithm, making it versa-
tile and compatible with multiple ML algorithms; it can
be applied on top of any classification or clustering algo-
rithm that uses a score for prediction.

We note that some algorithms already have built-in
quality measures (e.g., the distance of a sample from the
hyperplane in SVM). However, these are algorithm spe-
cific and cannot be directly compared with other algo-
rithms. On the other hand, Transcend unifies such quality
measures through uniform treatment of non-conformity
in an algorithm-agnostic manner.

2.2 P-values as a Similarity Metric

At the heart of conformal evaluation is the non-
conformity measure—a real-valued function AD(C\z,z),
which tells how different an object z is from a set C. The
set C is a subset of the data space of object D . Due to the
real-valued range of non-conformity measure, conformal
evaluator can be readily used with a variety of machine
learning methods such as support-vector machines, neu-
ral networks, decision trees and Bayesian prediction [20]
and others that use real-valued numbers (i.e., a similarity
function) to distinguish objects. Such flexibility enables
Transcend to assess a wide range of algorithms.

Conformal evaluation computes a notion of similarity
through p-values. For a set of objects K , the p-value
pC

z∗ for an object z∗ is the proportion of objects in class
K that are at least as dissimilar to other objects in C as
z∗. There are two standard techniques to compute the
p-values from K : Non-Label-Conditional (employed by
decision and alpha assessments outlined in § 3.1 and
§ 3.2), where K is equal to D , and Label-Conditional
(employed by the concept drift detection described in
§ 3.3), where K is the set of objects C with the same
label. The calculations for the non-conformity measures
for the test object and the set of objects in K is shown
in equation 1 and 2 respectively. The computation of p-
value for the test object is shown in equation 3.

αz∗ = AD(C,z∗) (1)
∀i ∈K .αi = AD(C \ zi,zi) (2)

pC
z∗ =

|{ j : α j ≥ αz∗}|
|K |

(3)

P-values compute an algorithm’s credibility and con-
fidence, crucial for decision assessments (§ 2.4).
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2.3 P-values vs. Probabilities

One might question the utility of p-value over probability
of a test object belonging to a particular class. Probabil-
ities are computed by most learning algorithms as quali-
tative feedback for a decision. SVM uses Platt’s scaling
to compute probability scores of an object belonging to
a class while a random forest averages the decision of
individual trees to reach a final prediction [3]. In this
section, we discuss the shortcomings of using probabili-
ties for decision assessment as shown in §4.1.1 and §4.2.
Additionally, we also provide empirical evidence in favor
of p-values as a building block for decision assessment.

P-values offer a significant advantage over probabil-
ities when used for decision assessment. Let us as-
sume that the test object z∗ has p-values of p1

z∗ , p2
z∗ · · · pk

z∗

and probability of r1
z∗ ,r

2
z∗ · · ·rk

z∗ of belonging to classes
l1, l2 · · · lk (which is the set of all classes in L). In the
case of probabilities, Σiri

z∗ must sum to 1.0. Now, lets
consider a 2-class problem. If z∗ does not belong to either
of the classes, and the algorithm computes a low proba-
bility score r1

z∗ ∼ 0.0, then r2
z∗ would artificially tend to

1.0. In other words, if we use probabilities for decision
assessment it is likely that we might reach an incorrect
conclusion for previously unseen samples. P-values on
the other hand are not constrained by such limitations.
It is possible for both p1

z∗ and p2
z∗ to be a low value for

the case of a previously unseen sample. This is true also
when p-values are built using probability as NCM. To
calculate the probability of a test sample, only informa-
tion belonging to the test samples are used (e.g., distance
to the hyperplane in the case SVM or ratio of decisions
for one class in the case of random forest). Instead, a
p-value is computed comparing the scores of all the sam-
ples in a class (see equation 1 and 2).

We further elaborate on this by training an SVM clas-
sifier with Android malware objects from the Drebin
dataset [2] and by testing it using objects from a drifted
dataset (the Marvin dataset [14], see § 4 for details).
Then, we apply a threshold to accept the decision of the
classifier only if a certain level of certainty is achieved.
Figure 1 shows the average of F1-score for malicious and
benign classes after the application of the threshold for
the objects that fall above (Figure 1b) and below it (Fig-
ure 1d). Figure 1 also shows the ratio of objects retained
(Figure 1a) and rejected (Figure 1c). Figure 1b shows
that the use of p-values produces better performance as it
identifies more objects to reject than probabilities (Fig-
ure 1a). Here, filtering out a high number of objects
is correct as they are drifting from the trained model.
Keeping them would degrade the performance of the al-
gorithm (Figures 1c and 1d). The threshold is applied
to the testing objects; we present case studies in § 4.1,
which show how to derive it from the training dataset.

2.4 Statistical Decision Assessment

This section introduces and discusses CE metrics used
to assess the classification decisions. The techniques for
interpreting these metrics are discussed in § 3.

Algorithm Credibility. The first evaluation metric for
assessing classification decision on a test object is algo-
rithm credibility. ACred(z∗) is defined as the p-value for
the test object z∗ corresponding to the label chosen by the
algorithm under analysis. As discussed, the p-value mea-
sures the fraction of objects within K , that are at least as
different from the set of objects C as the new object z∗.
A high credibility value means that z∗ is very similar to
the objects in the class chosen by the classifier. Although
credibility is a useful measure of classification quality, it
only tells a partial story. There may potentially be high
p-values for multiple labels indicating multiple matching
labels for the test object which the classification algo-
rithm has ignored. On the other hand, a low credibility
value is an indicator of either z∗ being very different from
the objects in the class chosen by the classifier or the
object being poorly identified. These two observations
show that credibility alone is not sufficient for reliable
decision assessment. Hence, we introduce another mea-
sure to gauge the non-performance of the classification
algorithm—algorithm confidence.

Algorithm Confidence. For a given choice (e.g., assign-
ing z to a class li), confidence tells how certain or how
committed the evaluated algorithm is to the choice. For-
mally, it measures how distinguishable is the new ob-
ject z∗ ∈ li from other classes l j with j 6= i. We define
the algorithm confidence as 1.0 minus the maximum p-
value among all p-values except the p-value chosen by
the algorithm (i.e., algorithm credibility): ACon f (z∗) =
1−max(P(z∗)\ACred(z∗)) where, P(z∗) = {pli

z∗ : li ∈ L}
P(z∗) is the set of p-values associated to the possible

choices for the new object z∗. The highest value of con-
fidence is reached when the algorithm credibility is the
highest p-value. It may happen that the choice made
by the algorithm is not attached to the highest p-value,
suggesting that the confidence is sub-optimal. Results in
§ 4 show that this provides valuable insights, especially
when the method under assessment makes choices with
low values of confidence and credibility. Low algorithm
confidence indicates that the given object is similar to
other classes as well. Depending on the algorithm cred-
ibility, this indication may imply that the decision algo-
rithm is not able to uniquely identify the classes or, that
the new object looks similar to two or more classes.

Finally, we note that algorithm confidence and credi-
bility are not biased by the number of classes in a dataset
as popular measures, such as precision and recall [13].
Thus CE’s findings are more robust to dataset changes.
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3 Framework Description

Previous section introduced conformal evaluation along
with the two metrics that we use for decision assess-
ment: algorithm confidence and algorithm credibility.
Transcend uses two techniques to evaluate the quality
of an algorithm employed on a given dataset: (i) De-
cision assessment—evaluates the robustness of the pre-
dictions made by the algorithm; and (ii) Alpha assess-
ment—evaluates the quality of the non-conformity mea-
sure. We combine these assessments to enable the detec-
tion of concept drift (§3.3).

3.1 Decision Assessment

Conformal evaluator qualitatively assesses an algo-
rithm’s decision by assigning a class l ∈ L as predicted
by the algorithm to each new object z∗ and computing its
algorithm credibility and confidence.

Hence, four possible scenarios unfold: (i) High algo-
rithm confidence, high algorithm credibility—the best
situation, the algorithm is able to correctly identify a
sample towards one class and one class only. (ii) High
algorithm confidence, low algorithm credibility—the al-
gorithm is not able to correctly associate the sample to
any of the classes present in the dataset. (iii) Low al-
gorithm confidence, low algorithm credibility—the algo-
rithm gives a label to the sample but it seems to be more
similar to another label. (iv) Low algorithm confidence,
high algorithm credibility—according to the algorithm, it
seems that the sample is similar to two or more classes.

The measures are then grouped into two sets —correct
or wrong— which represents values for correctly and
wrongly classified objects. Subsequently, values are av-
eraged and their standard deviation is also computed, this
is done for every class l ∈ L , to study whether the algo-
rithm works consistently for all classes or if there are dif-
ficult classes that the algorithm has trouble dealing with.
This assessment, performed during the design phase of
the algorithm, helps us to decide the cutoff threshold for
a deployed scenario to separate the samples with enough
statistical evidence of correctness.

Comparing the results obtained for correct and wrong
choices produces interesting results. For correct choices
it would be desirable to have high credibility and confi-
dence. Conversely, for wrong choices it would be desir-
able to have low credibility and high confidence. The di-
vergence from these scenarios helps understand whether
the algorithm takes strong decisions, meaning that there
is a strong statistical evidence to confirm its decisions,
or, in contrast, if the decisions taken are easily modified
with a minimal modification of the underlying data.

By looking at the outcome of decision assessment, it
is possible to understand whether the choices made by an

algorithm are supported with statistical evidence. Other-
wise, it is possible to get an indication where to look for
possible errors or improvements, i.e., which classes are
troublesome, and whether further analysis is needed, e.g.
by resorting to the alpha assessment.

3.2 Alpha Assessment

In addition to the decision assessment, which evaluates
the output of a similarity-based classification/clustering
algorithm, another important step in understanding the
inner workings and subtleties of the algorithm includes
analyzing the data distribution of the algorithm under
evaluation. Owing mainly to practical reasons, malware
similarity-based algorithms are developed around a spe-
cific dataset. Hence there is often the possibility of the
algorithm to over-fit its predictions to the dataset. Over-
fitting results in poor performance when the algorithm
analyses new or unknown datasets [13]. Despite em-
ploying techniques to avoid over-fitting, the best way to
answer this question is to try the algorithm against as
many datasets as possible. We show that conformal eval-
uator can help solve this problem, when no more than
one dataset is available.

The alpha assessment analysis takes into account how
appropriate is the similarity-based algorithm when ap-
plied to a dataset. It can detect if the final algorithm re-
sults still suffer from over-fitting issues despite the ef-
forts of minimizing it using common and well known
techniques (e.g., cross validation).

Furthermore, the assessment enables us to get insights
on classes (e.g., malware families), highlighting how
the similarity-based method works against them. Re-
searchers may gather new insights on the peculiarities of
each class, which may eventually help to improve feature
engineering and the algorithm’s performance, overall.

First, for each object z j ∈D, where l j is z j’s true class,
we compute its p-values against every possible l ∈L . We
then plot the boxplot [10], containing the p-values for
each decision. By aligning these boxplots and grouping
them by class/cluster, we can see how much an element
of class/cluster j resembles that of another one, allowing
for reasoning about the similarity-based algorithm itself.

In § 4 we present case studies where we statistically
evaluate the quality behind performances of algorithms
within the conformal evaluator framework.

3.3 Concept Drift

We now describe the core of Transcend’s concept drift
detection and object filtering mechanism. It must be
stressed here that we look at concept drift from the per-
spective of a malware analysis team. Consequently, the
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severity of the drift is a subjective issue. For critical ap-
plications, even a few misclassifications can cause major
issues. Consequently, the malware analysis team would
have a high standard for abandoning an aging classifi-
cation model. Therefore, we make the concept drift de-
tection in Transcend parametric in two dimensions: the
desired performance level (ω) and the proportion of sam-
ples in an epoch that the malware analysis team is willing
to manually investigate (δ). The analyst selects ω and δ

as degrees of freedom and Transcend will detect the cor-
responding concept drift point constrained by the chosen
parameters. The goal is to find thresholds that best sep-
arate the correct decisions from the incorrect ones based
on the quality metrics introduced by our analysis. These
thresholds are computed on the training dataset but are
enforced on predictions during deployment (for which
we do not have labels). The rationale is very simple: pre-
dictions with p-values above such thresholds would iden-
tify objects that likely fit (from a statistical perspective)
in the model; such classifications should be trusted. Con-
versely, objects out of predictions with p-values smaller
than such thresholds should not be trusted as there is lack
of statistical evidence to support their fit in the model.

What happens to untrustworthy predictions (and re-
lated test—likely drifted—objects) is out of the scope
of this work. It is reasonable to envision a pipeline that
would label drifted objects to retrain the machine learn-
ing model, eventually. While this raises several chal-
lenges (e.g., how many objects need to be labeled, how
much resources can be invested in the process), we would
like to remark the fact that is only possible once con-
cept drift is detected: the goal of this research. Not only,
Transcend plays a fundamental role in the identification
of drifting objects and thus in the understanding of when
a prediction should be trusted or not, but its metrics can
also aid in selecting what drifted objects should be la-
beled first (e.g., those with low p-values as are the one
that have drifted the most from the trained model).

The following discussion assumes two classes of data,
malicious and benign, but it is straightforward to extend
it to a multiclass scenario.

We define the function f : B×M→Ω×∆ that maps a
pair of thresholds in the benign and malicious class and
outputs the performance achieved and the number of de-
cisions accepted. Here, the number of decisions accepted
refers to the percentage of the algorithm outputs with a
p-value (for benign or malicious classes, depending on
the output itself) greater than the corresponding thresh-
old; performance means the percentage of correct deci-
sions amongst the accepted ones. B, M, Ω and ∆ are
the domains of the possible thresholds on benign sam-
ples, malicious samples, desired performance and classi-
fication decisions accepted, respectively. During train-
ing of our classifier, we iterate over all values of the

benign threshold t ′b and the malicious threshold t ′m, at
a pre-specified level of granularity, in the domain of B
and M, respectively. Let us assume f gives the output
f : f (t ′b, t

′
m) = (ω′,δ′)

To detect concept drift during deployment with a pre-
specified threshold of either ω or δ, we need to define
an inverse of f which we call f−1 : Λ→ B×M where
Λ = Ω ∪ ∆. When supplied with either ω or δ, f−1

would give us two thresholds tb and tm which would help
Transcend decide when to accept the classifier’s decision
and when to ignore it. Notice that with a conjoined do-
main Λ, which only accepts either ω or δ, it is not trivial
to reconstruct the values of tb and tm. For every value
of ω, there could be multiple values for δ. Therefore, we
adopt a simple heuristic to compute tb and tm whereby we
maximize the second degree of freedom given the first.
For example, given ω, we find tb and tm for every possi-
ble value of δ and pick the tb and tm that maximizes δ.
The formulation is exactly the same when δ is used as an
input. The formal equations for the inverse functions are:

Γ = {x : x ∈ ∀t ′b∀t ′m. f (t ′b, t ′m))}
f−1(ω) = {(tb, tm) : δ ∈ f (tb, tm) = max(∀δ′ ∈ Γ)}
f−1(δ) = {(tb, tm) : ω ∈ f (tb, tm) = max(∀ω′ ∈ Γ)}

Comparison with Probability. The algorithm used as
inner non-conformity measure (NCM) in CE may have
a pre-defined quality metric to support its own decision-
making process (e.g., probability). Hence, we also com-
pare the ability of detecting concept drift of the algo-
rithm’s internal metric with CE metrics. The thresholds
are extracted from the true positive samples, because we
expect the misclassified samples to have a lower value of
the quality metric: it seems rather appropriate to select
a higher threshold to highlight decisions the algorithm
would likely make wrong. We compare our metrics with
probability metrics derived from two different algorithms
for our case studies. In the first case study (see, § 4.1),
we compare our metrics with SVM probabilities derived
from Platt’s scaling [17]; on the other hand, the second
case study (see, § 4.2) uses the probabilities extracted
from a random forest [3] model. This comparison shows
the general unsuitability of the probability metric to de-
tect concept drift. For example, the threshold obtained
from the first quartile of the true positive p-value distri-
bution is compared with that of the first quartile of the
true positive probability distribution, and so forth.

The reasoning outlined above still holds when a given
algorithm, adapted to represent the non-conformity mea-
sure, uses raw score as its decision-making criteria. For
instance, the transformation of a raw score to a proba-
bility value is often achieved through a monotonic trans-
formation (e.g., Platt’s scaling, for SVM) that does not
affect the p-value calculation. Such algorithms do not
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provide a raw score for representing the likelihood of an
alternative hypothesis (e.g., that the test object does not
belong to any of the classes seen in the training). More-
over, a threshold built from a raw score lacks context
and meaning; conversely, combining raw scores to com-
pute p-values provides a clear statistical meaning, able
of quantifying the observed drift in a normalized scale
(from 0.0 to 1.0), even across different algorithms.

CE can also provide quality evaluation that allows
switching the underlying ML-based process to a more
computationally intensive one on classes with poor con-
fidence [4]. Our work details the CE metrics used by
Dash et al. [4] and extends it to identify concept drift.

4 Evaluation

To evaluate the effectiveness of Transcend, we introduce
two case studies: a binary classification to detect mali-
cious Android apps [2], and a multi-class classification
to classify malicious Windows binaries in their respec-
tive family [1]. The case studies were chosen to be rep-
resentative of common supervised learning settings (i.e.,
binary and multi-class classification), easy to reproduce2,
and of high quality3.

Binary Classification Case Study. In [2], Arp et al.
present a learning-based technique to detect malicious
Android apps. The approach, dubbed Drebin, relies on
statically extracting features, such as permissions, In-
tents, APIs, strings and IP addresses, from Android ap-
plications to fuel a linear SVM. Hold-out validation re-
sults (66-33% split in training-testing averaged over ten
runs) reported TPR of 94% at 1% FPR. The Drebin
dataset was collected from 2010 to 2012 and the authors
released the feature set to foster research in the field.

To properly evaluate a drifting scenario in such set-
tings, we also use Marvin [14], a dataset that includes
benign and malicious Android apps collected from 2010
and 2014. The rationale is to include samples drawn
from a timeline that overlaps with Drebin as well as
newer samples that are likely to drift from it (duplicated
samples were removed from the Marvin dataset to avoid
biasing the results of the classifier). Table 1 provides de-
tails of the datasets.

Section 4.1 outlines this experiment in detail; however,
without any loss of generality, we can say models are
trained using the Drebin dataset and tested against the
Marvin one. In addition, the non-conformity measure we

2The work in [2] released feature sets and details on the learning
algorithm, while we reached out to the authors of [1], which shared
datasets and the learning algorithm’s implementation with us.

3The work in [2] was published in a top-tier venue, while the work
in [1] scored similar to the winner of the Kaggle’s Microsoft Malware
Classification Challenge [11].

instantiate CE with is the distance of testing objects from
the SVM hyperplane, as further elaborated in § 4.1.1.

Multiclass Classification Case Study. Ahmadi et al. [1]
present a learning-based technique to classify Windows
malware in corresponding family of threats. The ap-
proach builds features out of machine instructions’ op-
codes of Windows binaries as provided by Microsoft and
released through the Microsoft Malware Classification
Challenge competition on Kaggle [11]—a well-known
platform that hosts a wide range of machine learning-
related challenges. Ahmadi et al. rely on eXtreme Gra-
dient Boosting (XGBoost) [21] for classification. It
is based on gradient boosting [18] and, like any other
boosting technique, it combines different weak predic-
tion models to create a stronger one. In particular, the
authors use XGBoost with decision trees.

Table 2 provides details of the Microsoft Windows
Malware Classification Challenge dataset. To properly
evaluate a drifting scenario we omit the family Tracur
from the training dataset, as further elaborated in § 4.2.
In this setting, a reasonable conformity measure that cap-
tures the likelihood of a test object o to belong to a given
family l ∈ L is represented by the probability p that o
belongs to l ∈ L , as provided by decision trees. We ini-
tialize conformal evaluator with −p as non-conformity
measure, because it captures the dissimilarities. Please
note we do not interpret −p as a probability anymore
(probability ranges from 0 to 1), but rather as a (non-
conformity) score CE builds p-values from (see § 2).

We would like to remark that these case studies are
chosen because they are general enough to show how
concept drift affects the performance of the models. This
is not a critique against the work presented in [1, 2].
Rather, we show that even models that perform well in
closed world settings (e.g., k-fold cross validation), even-
tually decay in the presence of non-stationary data (con-
cept drift). Transcend identifies when this happens in op-
erational settings, and provides indicators that allow to
establish whether one should trust a classifier decision or
not. In absence of retraining, which requires samples re-
labeling, the ideal net effect would then translate to hav-
ing high performance on non-drifting objects (i.e., those
that fit well into the trained model), and low performance
on drifting ones.

In a nutshell, our experiments aim to answer the fol-
lowing research questions:

RQ1: What insights do CE statistical metrics provide?
Intuitively, such metrics provide a quantifiable level of
quality of the predictions of a classifier.

RQ2: How can CE statistical metrics detect concept
drift in binary and multiclass classification? Intuitively,
we can interpret quality metrics as thresholds: predic-
tions of tested objects whose quality fall below such
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DREBIN DATASET MARVIN DATASET

Type Samples Type Samples

Benign 123 435 Benign 9 592
Malware 5 560 Malware 9 179

Table 1: Binary classification case study datasets [2].

MICROSOFT MALWARE CLASSIFICATION CHALLENGE DATASET

Malware Samples Malware Samples

Ramnit 1 541 Obfuscator.ACY 1 228
Lollipop 2 478 Gatak 1 013

Kelihos˙ver3 2 942 Kelihos˙ver1 398
Vundo 4 75 Tracur 751

Table 2: Multiclass classification case study datasets [1].

thresholds should be marked as untrustworthy, as they
drift away from the trained model (see §3.3).

We elaborate this further in § 4.1 and § 4.2 for binary
and multiclass classification tasks, respectively.

4.1 Binary Classification Case Study

This section assesses the quality of the predictions of
Drebin4, the learning algorithm presented in [2]. We
reimplemented Drebin and achieved results in line with
those reported by Arp et al. in absence of concept
drift (0.95 precision and 0.92 recall, and 0.99 precision
and 0.99 recall for malicious and benign classes, re-
spectively on hold out validation with 66-33% training-
testing Drebin dataset split averaged on ten runs).

Figure 2a shows how CE’s decision assessment sup-
ports such results. In particular, the average algorithm
credibility and confidence for the correct choices are 0.5
and 0.9, respectively. This reflects a high prediction qual-
ity: correctly classified objects are very different (from
a statistical perspective) to the other class (and an aver-
age p-value of 0.5 as algorithm credibility is expected
due to mathematical properties of the conformal evalua-
tor). Similar reasoning applies for incorrect predictions,
which are affected by a poor statistical support (average
algorithm credibility of 0.2).

Figure 2b shows CE’s alpha assessment of Drebin. We
plot this assessment as a boxplot to show details of the p-
value distribution. The plot shows that the p-value distri-
bution for the wrong predictions (i.e., second and third
column) is concentrated in the lower part of the scale
(less than 0.1), with few outliers; this means that, on av-
erage, the p-value of the class which is not the correct
one, is much lower than the p-value of the correct predic-
tions. Benign samples (third and fourth columns) seem
more stable to data variation as the p-values for benign
and malicious classes are well separated. Conversely, the
p-value distribution of malicious samples (first and sec-
ond columns) is skewed towards the bottom of the plot;
this implies that the decision boundary is loosely defined,
which may affect the classifier results in the presence of
concept drift. A direct evaluation of the confusion matrix

4Unless otherwise stated, we refer to Drebin as both the learning
algorithm and the dataset outlined in [2].

and associated metrics does not provide the ability to see
decision boundaries nor predictions (statistical) quality.

4.1.1 Detecting Concept Drift

This section presents a number of experiments to show
how Transcend identifies concept drift and correctly
marks as untrustworthy the decisions the NCM-based
classifier predicts erroneously.

We first show how the performance of the learning
model introduced in [2] decays in the presence of con-
cept drift. To this end, we train a model with the Drebin
dataset [2] and we test it against 9,000 randomly selected
malicious and benign Android apps (with equal split)
drawn from the Marvin dataset [14]. The confusion ma-
trix in Table 3a clearly shows how the model is affected
by concept drift as it reports low precision and recall for
the positive class representing malicious objects5. This
is further outlined in Figure 3a, which shows how the p-
value distribution of malicious objects is pushed towards
low values (poor prediction quality).

Table 3b shows how enforcing cut-off quality thresh-
olds affect—by improving—the performance of the
same learning algorithm. For this experiment, we di-
vided the Drebin dataset in training and calibration sets
with a 90-10% averaged over 10 rounds. This ensures
that each object in the dataset has a p-value. We then
asked Transcend to identify suitable quality thresholds
(cfr § 3.3) with the aim to maximize the F1-score as de-
rived by the calibration dataset, subject to a minimum
F1-score of 0.99 and a minimum percentage of kept el-
ement of 0.766. It is worth noting that such thresholds
are derived from the calibration dataset but are enforced
to detect concept drift on a testing dataset. Results show
how flagging predictions of testing objects with p-values
below the cut-off thresholds as unreliable improves pre-
cision and recall for the positive (malicious) class, from
0.61 to 0.89 and from 0.36 to 0.76, respectively.

5Drebin spans the years 2010–2012 while Marvin covers from 2010
to 2014. Most of the Drebin’s features capture information (e.g., string
and IP addresses) that is likely to change over time, affecting the ability
of the classifier to identify non-stationary data.

6In [2], Arp et al. report a TPR of 94% at a FPR of 1%. Such
metrics do not rule out the possibility of having 0.99 as F1-score; if
that is a plausible constraint, Transcend’s parametric framework will
find a suitable solution.
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Correct choices Incorrect choices0.0
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Average algorithm credibility for correct choice
Average algorithm confidence for correct choice
Average algorithm credibility for incorrect choice
Average algorithm confidence for incorrect choice

(a) Decision assessment for the binary classification case study
(Drebin [2]) with the original dataset. Correct predictions are
supported by a high average algorithm credibility and confi-
dence, while incorrect ones have a low and a high algorithm
credibility and confidence, respectively. Overall, positive results
supported by a strong statistical evidence.

Given label: malicious Given label: benign
0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: p-value malicious

Given label malicious: p-value benign

Given label benign: p-values malicious

Given label benign: p-values benign

(b) Alpha assessment for the binary classification case study
(Drebin [2]) with the original dataset. Benign samples are well
separated from malicious ones, especially when the assigned la-
bel is benign; this provides a clear statistical support that posi-
tively affect the quality of predictions.

Figure 2: Binary Classification Case Study (Drebin [2]): Decision assessment and Alpha assessment.

Assigned label

Sample Benign Malicious Recall

Benign 4 498 2 1
Malicious 2 890 1 610 0.36

Precision 0.61 1

(a)

Assigned label

Sample Benign Malicious Recall

Benign 4 257 2 1
Malicious 504 1 610 0.76

Precision 0.89 1

(b)

Assigned label

Sample Benign Malicious Recall

Benign 4 413 87 0.98
Malicious 255 4 245 0.94

Precision 0.96 0.98

(c)

Table 3: Binary classification case study ([2]). Table 3a: confusion matrix when the model is trained on Drebin and
tested on Marvin. Table 3b: confusion matrix when the model is trained on Drebin and tested on Marvin with p-value-
driven threshold filtering. Table 3c: retraining simulation with training samples of Drebin as well as the filtered out
element of Marvin of Table 3b (2386 malicious samples and 241 benign) and testing samples coming from another
batch of Marvin samples (4500 malicious and 4500 benign samples). The fate of the drifting objects is out of scope
of this paper as that would require to solve a number of challenges that arise once concept drift is identified (e.g.,
randomly sampling untrustworthy samples according to their p-values, effort of relabeling depending on available
resources, model retraining). We nonetheless report the result of a realistic scenario in which objects drifting from a
given model, correctly identified by Transcend, represent important information to retrain the model and increase its
performance (assuming a proper labeling as briefly sketched above).

TPR FPR TPR FPR MALICIOUS BENIGN
of kept elements of kept elements of discarded elements of discarded elements kept elements kept elements

p-value probability p-value probability p-value probability p-value probability p-value probability p-value probability

1st quartile 0.9045 0.6654 0.0007 0.0 0.0000 0.3176 0.0000 0.0013 0.3956 0.1156 0.6480 0.6673
Median 0.8737 0.8061 0.0000 0.0 0.3080 0.3300 0.0008 0.0008 0.0880 0.0584 0.4136 0.4304
Mean 0.8737 0.4352 0.0000 0.0 0.3080 0.3433 0.0008 0.0018 0.0880 0.1578 0.4136 0.7513
3rd quartile 0.8723 0.6327 0.0000 0.0 0.3411 0.3548 0.0005 0.0005 0.0313 0.0109 0.1573 0.1629

Table 4: Binary classification case study ([2]): examples of thresholds. From the results we can see that increasing the
threshold will lead to keep only the sample where the algorithm is sure about. The number of discarded samples is
very subjective to the severity of the shift in the dataset, together with the performance of those sample it is clear the
advantage of the p-value metric compared to the probability one.
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(c)

Given label: malicious Given label: benign0.0

0.2

0.4

0.6

0.8

1.0

Given label malicious: probability malicious
Given label malicious: probability benign
Given label benign: probability malicious
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(d)

Figure 3: Binary Classification Case Study: p-value and probability distribution for true malicious and benign samples
when the model is trained on Drebin dataset and tested on Marvin. Graph (a): p-value distribution for true malicious
samples. Graph (b): p-value distribution of true benign samples. Graph (c): probability distribution of true malicious
samples. Graph (d): probability distribution of true benign samples.

We would like to remark that drifting objects are still
given a label as the output of a classifier prediction;
Transcend flags such predictions as untrustworthy, de-
facto limiting the mistakes the classifier would likely
make in the presence of concept drift. It is clear that one
needs to deal with such objects, eventually. Ideally, they
would represent an additional dataset that, once labeled
properly, would help retraining the classifier to predict
similar objects. This opens a number of challenges that
are out of the scope of this work; however, one could still
rely on CE’s metrics to prioritize objects that should be
labeled (e.g., those with low p-values as they are the one
the drift the most from the model). This might require
to randomly sample drifting objects once enough data is
available as well as understanding how much resources
one can rely on for data labeling. It is important to note
that Transcend plays a fundamental role in this pipeline:
it identifies concept drift (and, thus, untrustworthy pre-
dictions), which gives the possibility of start reasoning
on the open problems outlined above.

The previous paragraphs show the flexibility of the
parametric framework we outlined in § 3.3, on an arbi-
trary yet meaningful example, where statistical cut-off
thresholds are identified based on an objective function
to optimize, subject to specific constraints. Such goals
are however driven by business requirements (e.g., TPR
vs FPR) and resource availability (e.g., malware ana-
lysts available vs number of likely drifting samples—
either benign or malicious—for which we should not
trust a classifier decision) thus providing numerical ex-
ample might be challenging. To better outline the suit-
ability of CE’s statistical metrics (p-values) in detecting
concept drift, we provide a full comparison between p-
values and probabilities as produced by Platt’s scaling
applied to SVM. We summarize a similar argument (with
probabilities derived from decision trees) for multiclass
classification tasks in § 4.2.

Comparison with Probability. In the following, we
compare the distributions of p-values, as derived from
CE, and probabilities, as derived from Platt’s scaling for
SVM, in the context of [2] under the presence of con-
cept drift (i.e., training on Drebin, testing on Marvin as
outlined). The goal of this comparison is to understand
which metric is better-suited to identify concept drift.

Figure 3a shows the alpha assessment of the classifi-
cations shown in Table 3a. The figure shows the distribu-
tion of p-values when the true label of the samples is ma-
licious. Correct predictions (first and second columns),
reports p-values (first column) that are are slightly higher
than those corresponding to incorrect ones (second col-
umn), with a marginal yet well-marked separation as
compared to the values they have for the incorrect class
(third and fourth columns). Thus, when wrong predic-
tions refer to the benign class, the p-values are low and
show a poor fit to both classes. Regardless of the classi-
fier outcome, the p-value for each sample is very low, a
likely indication of concept drift.

Figure 3b depicts the distribution of p-values when
true label of the samples is benign. Wrong predictions
(first and second columns) report p-values representing
benign (second column) and malicious (first column)
classes to be low. Conversely, correct predictions (third
and fourth columns) represent correct decisions (fourth
column) and have high p-values, much higher compared
to the p-values of the incorrect class (third column). This
is unsurprising as benign samples have data distributions
that do not drift with respect to malicious ones.

A similar reasoning can be followed for Figures 3c
and 3d. Contrary to the distribution of p-values, prob-
abilities are constrained to sum up to 1.0 across all the
classes; what we observe is that probabilities tend to be
skewed towards high values even when predictions are
wrong. Intuitively, we expect to have poor quality on
all the classes of predictions in the presence of a drifting
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scenario: while probabilities tend to be skewed, CE’s sta-
tistical metrics (p-values) seem better-suited at this task.

So far, we have seen how Transcend produces statisti-
cal thresholds to detect concept drift driven by predefined
goals under specific constraints. In addition, the analy-
sis of p-value and probability distributions highlighted
how the former seem to be better-suited than probabili-
ties to identify concept drift. In the following paragraphs,
we show how CE’s statistical metrics provide thresholds
that always outperform probabilities in detecting concept
drift. Figure 6 in Appendix 7 provides a thorough com-
parison. For simplicity, here, we focus the attention on
the 1st and 3rd quartile, the median and the average of
the distribution of p-values and probabilities as potential
cut-off thresholds, as shown in Table 4.

Intuitively speaking, a successful technique not only
would achieve high performances on correct predictions,
but it would also report poor performances on drifting
objects. This is evident from Table 4, where a cut-off
threshold at the 1st quartile reports a high performance
for the objects that fit the trained model (0.9045 TPR at
0.0007 FPR), and a poor performance for those drifting
away (0 TPR and 0 FPR); this means that at this thresh-
old, CE’s statistical metrics suggest to consider as un-
trustworthy only objects the classifier would have pre-
dicted incorrectly. Conversely, probabilities also tend
to be skewed when predictions are wrong, affecting the
ability to rely on such metrics to correctly identify con-
cept drift. Table 4 shows 0.6654 TPR and 0 FPR for
objects whose quality fall above the 1st quartile of the
probability distribution, and 0.3176 TPR and 0.0013 FPR
for those who fall below; this means that probabilities
marked as unreliable also make predictions that would
have been classified correctly.

As we move up towards more conservative thresh-
olds, CE’s statistical metrics start discarding objects that
would have been classified correctly. This is unsurpris-
ing as we have defined a threshold that is more selec-
tive of the desired quality. Regardless, at each point
p-values still outperform probabilities (higher TPR and
FPR of objects with a quality higher than the cut-off,
and lower for those below the threshold). These results
further show how relying on detecting concept drift is a
challenging problem that cannot be easily addressed by
relying on a prefixed 50% threshold [19].

Note that the number of untrustworthy predictions on
the testing dataset is a function of the number of drift-
ing objects. If the entire dataset drifts, we would expect
Transcend to flag as untrustworthy all (or most of) the
predicted objects that do not fit the trained model.

Adapting to Concept Drift. Once drifting objects are
identified, the next step would require data relabeling and
model retraining, as outlined throughout the paper. Ta-
ble 3c shows the results of these steps, which take preci-

sion for benign samples to 0.89 and recall for malicious
ones to 0.76. We would like to remark that this work fo-
cuses on the construction of statistical metrics to identify
concept drift as outlined so far. While relabeling is out
of scope for this work, it is clear that an approach that
identifies drifting objects is well-suited to address such a
challenge in the pipeline as resources can be focused on
analyzing samples that do not fit in the trained model.

4.2 Multiclass Classification Case Study
In this section we evaluate the algorithm proposed by
Ahmadi et al. [1] as a solution to Kaggle’s Microsoft
Malware Classification Challenge; the underlying ratio-
nale is similar to that outlined in the previous section,
thus, we only report insightful information and take-
aways. In this evaluation, we train the classifier with
seven out of eight available malware families; Trucur, the
excluded family, represents our drifting testing dataset.

The confusion matrix reports a perfect diagonal7; in
this case, the decision assessment gives us no additional
information because we cannot analyze the distribution
of p-values of incorrect choices. From a quality per-
spective, drawing upon the alpha assessment of Figure 4,
two families, Vundo and Ramnit, have significant differ-
ences. The Ramnit family has p-values that are much
higher than those of the interfering families. However,
for Vundo the p-values of interfering families are closer
to the correct ones. These details can be only be observed
through the alpha assessment, suggesting that the iden-
tification of the Ramnit samples would be more robust
when the data distribution changes.
Family Discovery. Below, we show how we identify a
new family based on CE’s statistical metrics.

The testing samples coming from Tracur are classified
as follows: 5 as Lollipop, 6 as Kelihos ver3, 358 as Vundo
and 140 as Kelihos ver1. Looking at the distribution of
probabilities and p-values it is easy to relate to the case
of binary classification, i.e., for each family there is only
one class with high p-values corresponding to the class of
the true label. For the test objects of Tracur, we observe
that the p-values for all the classes are close to 0. This
is a clear pattern which shows that the samples are com-
ing from an unknown distribution. In a scenario chang-
ing gradually, we will observe an initial concept drift (as
shown in the binary classification case study in § 4.1.1),
characterized by a gradual decrease of the p-values for
all the classes, which ends up in a situation where we
have p-values very close to 0 as observed here. These
results clearly show that even in multiclass classifica-
tion settings, CE provides metrics that are better-suited

7We reached out to the authors who provided us with the dataset
and the implementation of the learning algorithm to replicate the results
presented in [1].
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to identify concept drift than probabilities8. The com-
parison between p-values and probabilities is reported in
Figures 7 to 10 in Appendix 7 and follow a reasoning
similar to that of the binary classification case study.

5 Discussion

Security community has grappled with the challenge of
concept drift for some time now [12, 23, 25]. The prob-
lem commonly manifests itself in most malware detec-
tion/classification algorithm tasks and models perform
poorly as they become dated. Literature [12, 15, 16]
recommends retraining the model periodically (see § 6)
to get around this. However, retraining periodicity is
loosely defined and is an expensive process that leads
to sub-optimal results. Consequently, there are periods
where the model performance cannot be trusted. The
problem is further exacerbated as concept drift is hard
to identify without manual intervention. If the model
is retrained too frequently, there will be little novelty
in information obtained through retraining to enrich the
model. Regardless of the periodicity, the retraining pro-
cess requires manual labeling of all the processed ob-
jects. Transcend selectively identifies the drifted ob-
jects with statistical significance9, thus is able to restrict

8The algorithm in [1] relies on probabilities (decision trees).
9The p-value for an object o with label l is the statistical support

of the null hypothesis H0, i.e., that o belongs to l. Transcend finds the
significance level (the per-class threshold) to reject H0 for the alterna-
tive hypothesis Ha, i.e., that o does not belong l (p-values for wrong
hypotheses are smaller than those for correct ones, e.g., Figure 2b).

the manual labeling process to the objects that are sub-
stantially different than the ones in the trained model
(see §3.3 and §4.1.1).

Adversarial ML and Model Fortification. Our work
aims to detect concept drift as it occurs in an existing
model. Concept drift can occur due to various reasons.
Common causes being malware polymorphism or eva-
sion but adversarial data manipulation (adversarial drift)
can also be a reason. Approaches have been proposed
to fortify models against drift [12, 15, 23], however such
solutions deal with specific domains and do not provide
a generalized solution. Transcend is agnostic to the ma-
chine learning algorithm under consideration. This let
us leverage the strength of the algorithm while detecting
concept drift. Therefore, if the algorithm is more resilient
to concept drift, drift will be detected later on in time. If
it is less resilient, drift will be detected as sooner.

Comparison with Probability. Probabilities have been
known to work well in some scenarios but as demon-
strated in § 4.1.1 and § 4.2 they are not as effective as
compared to p-values which are more versatile, espe-
cially in the presence of concept drift. When probabil-
ities are reported to be low it is difficult to understand if
the sample does not belong to any class or if the sam-
ple is actually just difficult to classify while still belong-
ing to one of the known classes. In other words, the
p-value metric offers a natural null option when the p-
values calculated for all the classes are low. Instead, as
shown in the case of SVM (see, § 4.1.1), the probabil-
ity metric is bounded to one of the options in the model.
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Figure 4: Multiclass Classification Case Study: Alpha assessment for the Microsoft classification challenge showing
the quality of the decision taken by the algorithm. Although, perfect results are observed on the confusion matrix , the
quality of those results vary a lot across different families.
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It does not matter if the probabilities are well calibrated
or not, the limitation is inherent to the metric. As dis-
cussed, the work by Rieck et al. [19] faces similar chal-
lenges when choosing the probability threshold. More-
over, the p-value metric provided by our framework, can
be calculated from algorithms that do not provide proba-
bilities, e.g., custom algorithms like [22], thus extending
the range of algorithms that can benefit from a statistical
evaluation.

Performance. Calculation of p-values is a computation-
ally intensive process—for each sample z in a class c∈C,
the calculation of a p-value requires computation of a
non-conformity measure for every element in the dataset.
This can be further exacerbated by non-conformity mea-
sures that rely on distances that are complex to compute.
The computational complexity in relation to the number
of the times that the non-conformity measure needs to be
computed is O(C ·N2), where N represents the total num-
ber of samples and C represent the number of classes.
Calculations can be sped up by computing a whole set of
non-conformity scores in one single algorithm run. For
example, SVM used in Drebin [2] can directly supply
the total non-conformity scores for the calculation of one
p-value in only one run of the algorithm, thus reducing
the complexity to O(C ·N). Further optimizations can
be made for algorithms that treat each class separately;
in such a scenario we can run the algorithm just for the
class under analysis.

6 Related Work

Solutions to detect concept drift, specific to security do-
mains, have been proposed [12, 15, 23], in contrast our
framework provides a generic solution which is algo-
rithm agnostic. On the other hand, solutions [6, 7] devel-
oped by the ML community have constrains that are not
suitable for security applications (e.g., retrospective de-
tection of concept drift when the classification decision
has already been made).

Thomas et al. [23] present Monarch a real-time system
that crawls URLs as they are submitted to web services
and determines whether the URLs direct to spam. The
system uses machine-learning to classify URLs as mali-
cious or benign. The authors suggest training the model
continuously to keep classification error low as the na-
ture of malicious URLs keeps evolving. Kantchelian et
al. [12] propose fusing human operators with the un-
derlying machine-learning based security system to ad-
dress concept drift in adversarial scenarios. Maggi et
al. [15] present a machine-learning based system to clas-
sify malicious web applications. They use techniques
specific to web application to detect concept drift and
thus retrain their model to reduce false positives. Mari-

conti et al. [16] show how models decay over time and
propose ways to resist longer. Our model unifies these
techniques as it generalizes to both the area of appli-
cation and machine-learning algorithm used. The pre-
sented model can not only accurately predict when to
retrain a model but also provides a quality estimate of
the decisions made. These results can reduce human in-
tervention and make it more meaningful thus decreasing
the cost of operation. Transcend can be plugged on top of
any such approach to provide a clear separation between
non-drifting and drifting objects.

Deo et al. [5] propose using Venn-Abers predictors
for assessing the quality of binary classification tasks
and identifying concept drift. The Venn-Abers predic-
tors offer automatically well calibrated and probabilistic
guidance to detect change in distribution of underlying
samples. Although useful, the approach has limitations
and cannot draw concrete conclusions on sample clusters
which are outliers. Also, Venn-Abers outputs multiple
probabilities of which one is perfectly calibrated but it
is not possible to know which. Our approach provides
a simple mechanism to compare predictions through p-
values and does not suffer from the discussed shortcom-
ings. CE also works on multi-class prediction tasks,
while this is not currently supported by Venn-Abers pre-
dictors.

Other works try to detect change point detection when
the underlying distribution of data samples changes sig-
nificantly, e.g., in case of evolving malware which is ob-
served as a disruption in ex-changeability [25]. Martin-
gales have often been used to detect drift of multidimen-
sional data sequences using ex-changeability [8, 9]. Prior
works [6, 7] use conformal prediction to detect deviation
of the data sequence from independent and identically
distributed (iid) assumption which could be caused by
concept drift. The drift is measured by creating a martin-
gale function. If the data is not iid, then the conformal
predictor outputs an invalid result. Some p-values as-
signed to the true hypotheses about data labels are too
small (or have another deviation from uniformity), and
this leads to high values of the martingale. However,
this martingale approach does not use p-values assigned
to wrong hypotheses, which is another cause of wrong
classification, e.g., malicious samples being classified as
benign. We consider this information to be important be-
cause in the case of malware evolution, malicious sam-
ples are often specially designed to be indistinguishable
from benign samples, therefore they tend to get high p-
values assigned to wrong hypotheses. Additionally, the
martingale approach uses true labels to study the drift of
data without making any predictions, in contrast our ap-
proach does not have access to true labels and analyses
the predictions made by a given model.

Comparison with Conformal Predictor. Although
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conformal evaluator is built on top of conformal predic-
tor (CP), it does not share the same weaknesses as that of
other solutions based on it [6, 7]. Fern and Dietterich10

also show that CP is not suited for anomaly detection as
it outputs a set of labels and hence needs to be modified
to predict quality of predictions. We further highlight the
differences between CP and CE that makes CE better-
suited to the concept drift detection task.

Conformal Predictor [24] (CP) is a machine learning
classification algorithm. It relies on a non-conformity
measure (NCM) to compute p-values in a way similar to
CE. For each classification task, CP builds on such p-
values to introduce credibility—the class, in a classifica-
tion problem, with the highest p-value and confidence—
defined as one minus the class with the second highest
p-value (these metrics are different from CE metrics, see
§ 2.4). The CP algorithm then outputs either a single
class prediction with the identified credibility and con-
fidence, or, given a fixed confidence level 1− ε (where
ε represents the significance level), a prediction set that
includes classes that are above it. This set is proven to
cover the true class with probability not lower than 1−ε.

CE dissects CP metrics and to extract its p-values cal-
culation. The p-values are used together with the out-
put labels provided by the algorithm under evaluation,
to build CE metrics. CP ignores these labels as it tries
to predict them. Conversely, CE uses this information to
provide quality metrics to assess the quality of the encap-
sulated algorithm. This change is of paramount impor-
tance to derive the thresholds (computed by Transcend)
used to accept or reject a prediction.

The posterior use of the labels is a key feature that en-
ables CE to detect concept drift. On the contrary, CP is
designed as a predictive tool making only use of prior in-
formation. Since labels are important pieces of informa-
tion, CE uses them to build its metrics and assessments
(see, § 2.4 and § 3). The labels used by CE are the ones
of the training samples and not the labels of the testing
samples that are unavailable at the time of classification.

7 Conclusions

We presented Transcend—a fully tunable tool for sta-
tistically assessing the performance of a classifier and
filtering out unreliable classification decisions. At the
heart of Transcend, CE’s statistical confidence provides
evidence for better understanding model generalization
and class separation; for instance, CE has been suc-
cessfully adopted to selectively invoke computationally
expensive learning-based algorithms when predictions
choose classes with low confidence [4], trading off per-

10A. Fern and T. Dietterich. “Toward Explainable Uncertainty”.
https://intelligence.org/files/csrbai/fern-slides-1.pdf

formance for accuracy. Our work details the CE metrics
used in [4] and extend it to facilitate the identification of
concept drift, thus bridging a fundamental research gap
when dealing with evolving malicious software.

We present two case studies as representative use cases
of Transcend. Our approach provides sound results for
both binary and multi-class classification scenarios on
different datasets and algorithms using proper training,
calibration and validation, and testing datasets. The di-
versity of case studies presents compelling evidence in
favor of our framework being generalizable.

Availability

We encourage the adoption of Transcend in machine
learning-based security research and deployments; fur-
ther information is available at:

https://s2lab.isg.rhul.ac.uk/projects/ce

Acknowledgments

This research has been partially supported by the
UK EPSRC grants EP/K033344/1, EP/L022710/1 and
EP/K006266/1. We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of the
Tesla K40 GPU used for this research. We are equally
thankful to the anonymous reviewers’ comments and
Roberto Perdisci, our shepherd, for their invaluable com-
ments and suggestions to improve the paper. Also,
we thanks Technology Integrated Health Management
(TIHM) project awarded to the School of Mathematics
and Information Security at Royal Holloway as part of
an initiative by NHS England supported by Innovate UK.
We also thank the authors of [2], for their public dataset
used in our evaluation, and Mansour Ahmadi for provid-
ing us the algorithm used in [1].

References
[1] AHMADI, M., ULYANOV, D., SEMENOV, S., TROFIMOV, M.,

AND GIACINTO, G. Novel feature extraction, selection and fu-
sion for effective malware family classification. In Proceedings
of the Sixth ACM Conference on Data and Application Security
and Privacy (New York, NY, USA, 2016), CODASPY ’16, ACM,
pp. 183–194.

[2] ARP, D., SPREITZENBARTH, M., HUBNER, M., GASCON, H.,
AND RIECK, K. DREBIN: effective and explainable detection
of android malware in your pocket. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San Diego,
California, USA, February 23-26, 2014 (2014).

[3] BREIMAN, L. Random Forests. Machine Learning 45, 1 (2001),
5–32.

[4] DASH, S. K., SUAREZ-TANGIL, G., KHAN, S. J., TAM, K.,
AHMADI, M., KINDER, J., AND CAVALLARO, L. Droidscribe:

638    26th USENIX Security Symposium USENIX Association



Classifying android malware based on runtime behavior. In 2016
IEEE Security and Privacy Workshops, SP Workshops 2016, San
Jose, CA, USA, May 22-26, 2016 (2016), pp. 252–261.

[5] DEO, A., DASH, S. K., SUAREZ-TANGIL, G., VOVK, V., AND
CAVALLARO, L. Prescience: Probabilistic guidance on the re-
training conundrum for malware detection. In Proceedings of the
2016 ACM Workshop on Artificial Intelligence and Security (New
York, NY, USA, 2016), AISec ’16, ACM, pp. 71–82.

[6] FEDOROVA, V., GAMMERMAN, A. J., NOURETDINOV, I., AND
VOVK, V. Plug-in martingales for testing exchangeability on-
line. In Proceedings of the 29th International Conference on Ma-
chine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 -
July 1, 2012 (2012).

[7] HO, S. A martingale framework for concept change detection in
time-varying data streams. In Machine Learning, Proceedings of
the Twenty-Second International Conference (ICML 2005), Bonn,
Germany, August 7-11, 2005 (2005), pp. 321–327.

[8] HO, S., AND WECHSLER, H. Query by transduction. IEEE
Trans. Pattern Anal. Mach. Intell. 30, 9 (2008), 1557–1571.

[9] HO, S., AND WECHSLER, H. A martingale framework for de-
tecting changes in data streams by testing exchangeability. IEEE
Trans. Pattern Anal. Mach. Intell. 32, 12 (2010), 2113–2127.

[10] HUBERT, M., AND VANDERVIEREN, E. An adjusted boxplot for
skewed distributions. Computational Statistics and Data Analysis
52, 12 (2008), 5186 – 5201.

[11] KAGGLE INC. Microsoft Malware Classification Chal-
lenge (BIG 2015). https://www.kaggle.com/c/
malware-classification, 2015.

[12] KANTCHELIAN, A., AFROZ, S., HUANG, L., ISLAM, A. C.,
MILLER, B., TSCHANTZ, M. C., GREENSTADT, R., JOSEPH,
A. D., AND TYGAR, J. D. Approaches to adversarial drift.
In AISec’13, Proceedings of the 2013 ACM Workshop on Artifi-
cial Intelligence and Security, Co-located with CCS 2013, Berlin,
Germany, November 4, 2013 (2013), pp. 99–110.

[13] LI, P., LIU, L., GAO, D., AND REITER, M. K. On challenges in
evaluating malware clustering. In Recent Advances in Intrusion
Detection, 13th International Symposium, RAID 2010, Ottawa,
Ontario, Canada, September 15-17, 2010. Proceedings (2010),
pp. 238–255.

[14] LINDORFER, M., NEUGSCHWANDTNER, M., AND PLATZER,
C. MARVIN: efficient and comprehensive mobile app classifi-
cation through static and dynamic analysis. In 39th IEEE An-
nual Computer Software and Applications Conference, COMP-
SAC 2015, Taichung, Taiwan, July 1-5, 2015. Volume 2 (2015),
pp. 422–433.

[15] MAGGI, F., ROBERTSON, W. K., KRÜGEL, C., AND VIGNA,
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Figure 5: Multiclass Classification Case Study: Element
kept during the test of the new class. The test elements
belong to a new class so every samples kept will be miss-
classified. The net separation between good and bed per-
formance comes from the perfect classification of train-
ing samples used to derived the thresholds.
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Figure 6: Binary Classification Case Study [2]: complete comparison between p-value and probability metrics. Across
all the threshold range we can see that the p-value based thresholding is providing better performance than the proba-
bility one, discarding the samples that would have been incorrectly classified if kept.
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Figure 7: Multiclass Classification Case Study [1]: P-value distribution for samples of Tracur family omitted from the
training dataset; as expected, the values are all close to zero.
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Figure 8: Multiclass Classification Case Study [1]: probability distribution for samples of Tracur family omitted from
the training dataset. Probabilities are higher then zero and not equally distributed across all the families, making the
classification difficult. It is worth noting some probabilities are skewed towards large values (i.e., greater than 0.5)
further hindering a correct classification result.
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each sample, there is only one family with high p-value.
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Figure 10: Multiclass Classification Case Study [1]: probability distribution for samples of families included in the
training dataset. High probabilities support the algorithm classification choice.
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Abstract

Current state-of-the-art deobfuscation approaches operate
on instruction traces and use a mixed approach of sym-
bolic execution and taint analysis; two techniques that
require precise analysis of the underlying code. However,
recent research has shown that both techniques can easily
be thwarted by specific transformations.

As program synthesis can synthesize code of arbitrary
code complexity, it is only limited by the complexity of
the underlying code’s semantic. In our work, we propose
a generic approach for automated code deobfuscation
using program synthesis guided by Monte Carlo Tree
Search (MCTS). Specifically, our prototype implementa-
tion, Syntia, simplifies execution traces by dividing them
into distinct trace windows whose semantics are then
“learned” by the synthesis. To demonstrate the practical
feasibility of our approach, we automatically learn the se-
mantics of 489 out of 500 random expressions obfuscated
via Mixed Boolean-Arithmetic. Furthermore, we synthe-
size the semantics of arithmetic instruction handlers in
two state-of-the art commercial virtualization-based ob-
fuscators (VMProtect and Themida) with a success rate
of more than 94%. Finally, to substantiate our claim that
the approach is generic and applicable to different use
cases, we show that Syntia can also automatically learn
the semantics of ROP gadgets.

1 Introduction

Code obfuscation describes the process of applying an
obfuscating transformation to an input program to obtain
an obfuscated copy of the program. Said copy should be
more complex than the input program such that an analyst
cannot easily reason about it. An obfuscating transfor-
mation is further desired to be semantics-preserving, i. e.,
it must not change observable program behavior [12].
Code obfuscation can be leveraged in many application
domains, for example in software protection solutions

to prevent illegal copies, or in malicious software to im-
pede the analysis process. In practice, different kinds of
obfuscation techniques are used to hinder the analysis
process. Most notably, industry-grade obfuscation solu-
tions are typically based on Virtual Machine (VM)-based
transformations [38, 55, 57, 58], which are considered one
of the strongest obfuscating transformations available [2].
While these protections are not perfect and in fact are
broken regularly, attacking them is still a time-consuming
task that requires highly specific domain knowledge of
the individual Virtual Machine implementation. Conse-
quently, for example, this gives game publishers a head-
start in which enough revenue can be generated to stay
profitable. On the other hand, obfuscated malware stays
under the radar for a longer time, until concrete analysis
results can be used to effectively defend against it.

To deal with this problem, prior research has explored
many different approaches to enable deobfuscation of
obfuscated code. For example, Rolles proposes static
analysis to aid in deobfuscation of VM-based obfuscation
schemes [44]. However, it incorporates specific imple-
mentation details an attacker has to know a priori. Further,
static analysis of obfuscated code is notoriously known
to be intractable in the general case [12]. Hence, recent
deobfuscation proposals have shifted more towards dy-
namic analysis [13, 61, 62]. Commonly, they produce
an execution trace and use techniques such as (dynamic)
taint analysis or symbolic execution to distinguish input-
dependent instructions. Based on their results, the pro-
gram code can be reduced to only include relevant, input-
dependent instructions. This effectively strips the obfus-
cation layer. Even though such deobfuscation approaches
sound promising, recent work proposes several ways to
effectively thwart underlying techniques, such as sym-
bolic execution [2]. For this reason, it suggests itself to
explore distinct techniques that may be leveraged for code
deobfuscation.

In this paper, we propose an approach orthogonal to
prior work on approximating the underlying semantics
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of obfuscated code. Instead of manually analyzing the
instruction handlers used in virtualization-based (VM) ob-
fuscation schemes in a complex and tedious manner [44]
or learning merely the bytecode decoding (not the seman-
tics) of these instruction handlers [53], we aim at learning
the semantics of VM-based instruction handlers in an auto-
mated way. Furthermore, our goal is to develop a generic
framework that can deal with different use cases. Natu-
rally, this includes constructs close to obfuscation, such
as Mixed Boolean-Arithmetic (MBA), different kinds of
VM-based obfuscation schemes, or even analysis of code
chunks (so called gadgets) used in Return-oriented Pro-
gramming (ROP) exploits.

To this extend, we explore how program synthesis can
be leveraged to tackle this problem. Broadly speaking,
program synthesis describes the task of automatically con-
structing programs for a given specification. While there
exists a variety of program synthesis approaches [21], we
focus on SMT-based and stochastic program synthesis in
the following, given its proven applicability to problem
domains close to trace simplification and deobfuscation.
SMT-based program synthesis constructs a loop-free pro-
gram based on first-order logic constraints whose satisfia-
bility is checked by an SMT solver. For component-based
synthesis, components are described that build the instruc-
tion set of a synthesized program; for instance, compo-
nents may be bitwise addition or arithmetic shifts. The
characteristics of a well-formed program such as the inter-
connectivity of components are defined and the semantics
of the program are described as a logical formula. Then,
an SMT solver returns a permutation of the components
that forms a well-encoded program following the previ-
ously specified intent [22,24], if it is satisfiable, i. e., such
a permutation does exist.

Instead of relying on a logical specification of program
intent, oracle-guided program synthesis uses an input-
output (I/O) oracle. Given the outputs of an I/O oracle
for arbitrary program inputs, program synthesis learns
the oracle’s semantics based on a finite set of I/O sam-
ples. The oracle is iteratively queried with distinguishing
inputs that are provided by an SMT solver. Locating
distinguishing inputs is the most expensive task in this ap-
proach. The resulting synthesized program has the same
input-output behavior as the I/O oracle [24]. Contrary to
SMT-based approaches that only construct semantically
correct programs, stochastic synthesis approximates pro-
gram equivalence and thus remains faster. In addition, it
can also find partial correct programs. Program synthesis
is modeled as heuristic optimization problem, where the
search is guided by a cost function. It determines, for
instance, output similarity of the synthesized expression
and the I/O oracle for same inputs [50].

As program synthesis is indifferent to code complex-
ity, it can synthesize arbitrarily obfuscated code and is

only limited by the underlying code’s semantic complex-
ity. We demonstrate that a stochastic program synthesis
algorithm based on Monte Carlo Tree Search (MCTS)
achieves this in a scalable manner. To show feasibility
of our approach, we automatically learned the semantics
of 489 out of 500 MBA-obfuscated random expressions.
Furthermore, we synthesize the semantics of arithmetic
instruction handlers in two state-of-the art commercial
virtualization-based obfuscators with a success rate of
more than 94%. Finally, to show applicability to areas
more focused on security aspects, we further automati-
cally learn the semantics of ROP gadgets.

Contributions In summary, we make the following
contributions in this paper:

• We introduce a generic approach for trace simpli-
fication based on program synthesis to obtain the
semantics of different kinds of obfuscated code. We
demonstrate how Monte Carlo Tree Search (MCTS)
can be utilized in program synthesis to achieve a
scalable and generic approach.

• We implement a prototype of our method in a tool
called Syntia. Based on I/O samples from assembly
code as input, Syntia can apply MCTS-based pro-
gram synthesis to compute a simplified expression
that represents a deobfuscated version of the input.

• We demonstrate that Syntia can be applied in sev-
eral different application domains such as simplify-
ing MBA expressions by learning their semantics,
learning the semantics of arithmetic VM instruction
handlers and synthesizing the semantics of ROP gad-
gets.

2 Technical Background

Before presenting our approach to utilize program syn-
thesis for recovering the semantics of obfuscated code,
we first review several concepts and techniques we use
throughout the rest of the paper.

2.1 Obfuscation
In the following, we discuss several techniques that
qualify as an obfuscating transformation, namely
virtualization-based obfuscation, Return-oriented Pro-
gramming and Mixed Boolean-Arithmetic.

2.1.1 Virtualization-based Obfuscation

Contemporary software protection solutions such as VM-
Protect [58], Themida [38], and major game copy protec-
tions such as SecuROM base their security on the concept
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Figure 1: The Fetch–Decode–Execute cycle of a Virtual
Machine. Native code calls into the VM, upon which
startup code is executed (VM entry). It performs the con-
text switch from native to VM context. Then, the next
instruction is fetched from the bytecode stream, mapped
to the corresponding handler using the handler table (de-
coding) and, finally, the handler is executed. The process
repeats for subsequent VM instructions in the bytecode
until the exit handler is executed, which returns back to
native code.

of Virtual Machine-based obfuscation (also known as
virtualization-based obfuscation [44]).

Similar to system-level Virtual Machines (VMs) that
emulate a whole system platform, process-level VMs em-
ulate a foreign instruction set architecture (ISA). The
core idea is to translate parts of a program, e. g., a func-
tion f containing intellectual property, from its native
architecture—say, Intel x86—into a custom VM-ISA. The
obfuscator then embeds both the bytecode of the virtual-
ized function (its instructions encoded for the VM-ISA)
along with an interpreter for the new architecture into
the target binary whilst removing the function’s origi-
nal, native code. Every call to f is then replaced with
an invocation of the interpreter. This effectively thwarts
any naive reverse engineering tool operating on the native
instruction set and forces an adversary to analyze the inter-
preter and re-translate the interpreted bytecode back into
native instructions. Commonly, the interpreter is heavily
obfuscated itself. As VM-ISAs can be arbitrarily complex
and generated uniquely upon protection time, this process
is highly time-consuming [44].

Components. The (VM) context holds internal vari-
ables of the VM-ISA such as general-purpose registers or
the virtual instruction pointer. It is initialized by sequence
called VM entry, which handles the context switch from
native code to bytecode.

After initialization, the VM dispatcher fetches and de-
codes the next instruction and invokes the corresponding

handler function by looking it up in a global handler table
(depicted in Figure 1). The latter maps indices, obtained
from the instruction’s bytecode in the decoding step, to
handlers addresses. In its most simple implementation,
all handler functions return to a central dispatching loop
which then dispatches the next handler. Eventually, exe-
cution flow reaches a designated handler, VM exit, which
performs the context switch back to the native processor
context and transfers control back to native code.

Custom ISA. The design of the target VM-ISA is en-
tirely up to the VM designer. Still, to maximize the
amount of handlers an analyst has to reverse engineer,
VMs often opt for reduced complexity for the individual
handlers, akin to the RISC design principle. To exemplify,
consider the following Intel x86 code:

1 mov eax , dword ptr [0 x401000 + ebx * 4]
2 pop dword ptr [eax]

This might get translated into VM-ISA as follows:

1 vm_mov T0, vm_context.real_ebx
2 vm_mov T1, 4
3 vm_mul T2, T0, T1
4 vm_mov T3, 0x401000
5 vm_add T4, T2, T3
6 vm_load T5 , dword(T4)
7 vm_mov vm_context.real_eax , T5
8 vm_mov T6, T5
9 vm_mov T7, vm_context.real_esp

10 vm_add T8, T7, T1
11 vm_mov vm_context.real_esp , T8
12 vm_load T9, dword(T7)
13 vm_store dword(T6), T9

It favors many small, simple handlers over fewer more
complicated ones.

Bytecode Blinding. In order to prevent global analysis
of instructions, the bytecode bc of each VM instruction is
blinded based on its instruction type, i. e., its correspond-
ing handler h, at protection time. Likewise, each han-
dler unblinds the bytecode before decoding its operands:
(bc,vm_key)← unblindh(blinded_bc,vm_key).

The routine is parameterized for each handler h and
updates a global key register in the VM context. Conse-
quently, instruction decoding can be flow-sensitive: An
adversary is unable to patch a single VM instruction with-
out re-blinding all subsequent instructions. This, in turn,
requires her to extract the unblinding routines from ev-
ery handler involved. The individual unblinding routines
commonly consist of a combination of arithmetic and
logical operations.

Handler Duplication. In order to easily increase anal-
ysis complexity, common VMs duplicate handlers such
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that the same virtual instruction can be dispatched by mul-
tiple handlers. In presence of bytecode blinding, these
handlers’ semantics only differ in the way they unblind
the bytecode, but perform the same operation on the VM
context.

Architectures. In his paper about interpretation tech-
niques, Klint denotes the aforementioned concept using
a central decoding loop as the “classical interpretation
method” [28]. An alternative is proposed by Bell with
Threaded Code (TC) [4]: He suggests inlining the dis-
patcher routine into the individual handler functions such
that handlers execute in a chained manner, instead of
returning to a central dispatcher. Nevertheless, the dis-
patcher still indexes a global handler table.

In Klint’s paper, however, he describes an extension of
TC, Direct Threaded Code (DTC). As in the TC approach,
the dispatcher is appended to each handler. The handler
table, though, is inlined into the bytecode of the instruc-
tion. Each instruction now directly specifies the address
of its corresponding handler. This way, in presence of
bytecode blinding, not all handler addresses are exposed
immediately, but only those used on a certain path in the
bytecode.

Attacks. Several academic works have been published
that propose novel attacks on virtualization-based obfus-
cators [13, 44]. Section 6.3 discusses and classifies them.
In addition, it draws a comparison to our approach.

2.1.2 Return-oriented Programming

In Return-oriented Programming (ROP) [30, 52], shell-
code is expressed as a so-called ROP chain, a list of
references to gadgets and parameters for those. In the
preliminary step of an attack, the adversary makes esp
point to the start of the chain, effectively triggering the
chain upon function return. Gadgets are small, general
instruction sequences ending on a ret instruction; other
flavors propose equivalent instructions. Concrete values
are taken from the ROP chain on the stack. As an example,
consider the gadget pop eax; ret: It takes the value on
top of the stack, places it in eax and, using the ret instruc-
tion, dispatches the next gadget in the chain. By placing
an arbitrary immediate value imm32 next to this gadget’s
address in the chain, an attacker effectively encodes the
instruction mov eax, imm32 in her ROP shellcode. De-
pending on the gadget space available to the attacker, this
technique allows for arbitrary computations [39, 51].

Automated analysis of ROP exploits is a desirable goal.
However, its unique structure poses various challenges
compared to traditional shellcode detection. In their pa-
per, Graziano et al. outline them and propose an analysis
framework for code-reuse attacks [19]. Amongst others,

they mention challenges such as verbosity of the gadgets,
stack-based chaining, lack of immediates, and the distinc-
tion of function calls and regular control flow. Further,
they stress how an accurate emulation of gadgets is im-
portant for addressing these challenges. Considering the
aforementioned challenges, at its core, Return-oriented
Programming can be seen as an albeit weaker flavor of
obfuscated code. In particular, the chained invocation of
gadgets is reminiscent of handlers in VM-based obfusca-
tion schemes following the threaded code principle.

In addition to its application to exploitation, ROP has
seen other fields of applications such as rootkit devel-
opment [59], software watermarking [34], steganogra-
phy [33], and code integrity verification [1], which rein-
forces the importance of automatic ROP chain analysis.

2.1.3 Mixed Boolean-Arithmetic

Zhou et al. propose transformations over Boolean-
arithmetic algebras to hide constants by turning them
into more complex, but semantically equivalent expres-
sions, so called MBA expressions [14, 63]. In Section 6.2,
we provide details on their proposal of MBA expressions
and show how our approach is still able to simplify them.

2.2 Trace Simplification

Due to the complexity of static analysis of obfuscated
code, many deobfuscation approaches proposed recently
make use of dynamic analysis [13,19,19,53,62]. Notably,
they operate on execution traces that record instruction
addresses and accompanying metadata, e. g., register con-
tent, along a concrete execution path of a program. Sub-
sequently, trace simplification is performed to strip the
obfuscation layer and simplify the underlying code. De-
pending on the approach, multiple traces are used for sim-
plification or one single trace is reduced independently.

Coogan et al. [13] propose value-based dependence
analysis of a trace in order to track the flow of values
into system calls using an equational reasoning system.
This allows them to reduce the trace to those instructions
relevant to the previously mentioned value flow.

Graziano et al. [19] mainly apply standard compiler
transformations such as dead code elimination or arith-
metic simplifications to reduce the trace.

Yadegari et al. [62] use bit-level taint analysis to iden-
tify instructions relevant to the computation of outputs.
For subsequent simplification, they introduce the notion
of quasi-invariant locations with respect to an execution.
These are locations that hold the same value at every use
in the trace and can be considered constants when per-
forming constant propagation. Similarly, they use several
other compiler optimizations and adapt them to make use
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Figure 2: Illustration of a single MCTS round (taken from
Browne et al. [5]).

of information about quasi-invariance to prevent over-
simplification.

2.3 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a stochastic, best-
first tree search algorithm that directs the search towards
an optimal decision, without requiring much domain
knowledge. The algorithm builds a search tree through
reinforcement learning by performing random simula-
tions that estimate the quality of a node [5]. Hence,
the tree grows asymmetrically. MCTS has had sig-
nificant impact in artificial intelligence for computer
games [16, 35, 49, 56], especially in the context of Com-
puter Go [17, 54].

In an MCTS tree, each node represents a game state; a
directed link from a parent node to its child node repre-
sents a move in the game’s domain. The core algorithm
iteratively builds the decision tree in four main steps that
are also illustrated in Figure 2: (1) The selection step
starts at the root node and successively selects the most-
promising child node, until an expandable leaf (i. e., a
non-terminal node that has unvisited children) is reached.
(2) Following, one or more unvisited child nodes are
added to the tree in the expansion step. (3) In the sim-
ulation step, node rewards are determined for the new
nodes through random playouts. For this, consecutive
game states are randomly derived until a terminal state
(i. e., the end of the game) is reached; the game’s outcome
is represented by a reward. (4) Finally, the node rewards
are propagated backwards through the selected nodes to
the root in the backpropagation step. The algorithm ter-
minates if either a specified time/iteration limit is reached
or an optimal solution is found [5, 8].

Selecting the most-promising child node can be treated
as a so called multi-armed bandit problem, in which a
gambler tries to maximize the sum of rewards by choosing
one out of many slot machines with an unknown probabil-
ity distribution. Applied to MCTS, the Upper Confidence

Bound for Trees (UCT) [5,17,29] provides a good balance
between exploration and exploitation. It is obtained by

X j +C

√
lnn
n j

, (1)

where X j represents the average reward of the child
node j, n the current node’s number of visits, n j the visits
of the child node and C the exploration constant. The
average reward is referred to as exploitation parameter:
if C is decreased, the search is directed towards nodes
with a higher reward. Increasing C, instead, leads to an
intensified exploration of nodes with few simulations.

2.4 Simulated Annealing
Simulated Annealing is a stochastic search algorithm that
has been used to effectively solve NP-hard combinatorial
problems [27]. The main idea of Simulated Annealing is
to approximate a global optimum by iteratively improving
an initial candidate and exploring the local neighborhood.
To avoid a convergence to local optima, the search is
guided by a falling temperature T that decreases the prob-
ability of accepting worse candidates over time [25]; in
the following, we assume that a falling temperature de-
pends on a decreasing loop counter.

Figure 3: Simulated Annealing approximates a global
optimum (the darkest area in the map).

Figure 3 illustrates this process on the example of find-
ing the darkest area in a given map. Starting in an initial
state (s0), the algorithm always accepts a candidate that
has a better score than the current one (green arrows). If
the score is worse, we accept the worse candidate with
some probability (the red arrow from s2 to s3) that de-
pends on the temperature (loop counter) and how much
worse the candidate is. The higher the temperature, the
more likely the algorithm accepts a significantly worse
candidate solution. Otherwise, the candidate is discarded
(e. g., the crossed out red arrow at s4); in this case, we pick
another one in the local neighborhood. This allows the
algorithm to escape from local optima while the tempera-
ture is high; for low temperatures (loop counters closer to
0), it mainly accepts better candidate solutions. The algo-
rithm terminates after a specified number of iterations.
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Figure 4: Dissecting a given trace (a) into several trace
windows (b). The trace windows can be used to recon-
struct a (possibly disconnected) control-flow graph (c).

3 Approach

Given an instruction trace, we dissect the instruction trace
into trace windows (i. e., subtraces) and aim at learning
their high-level semantics which can be used later on
for further analysis. In the following, we describe our
approach which is divided into three distinct parts:

1. Trace Dissection. The instruction trace is partitioned
into unique sequences of assembly instructions in a
(semi-)automated manner.

2. Random Sampling. We derive random input-output
pairs for each trace window. These pairs describe
the trace window’s semantics.

3. Program Synthesis. Expressions that map all pro-
vided inputs to their corresponding outputs are syn-
thesized.

3.1 Trace Dissection

The choice of trace window boundaries highly impacts
later analysis stages. Most notably, it affects synthesis
results: if a trace window ends at an intermediary com-
putation step, the synthesized formula is not necessarily
succinct or meaningful at all, as it includes spurious se-
mantics.

Yet, we note how trace dissection of ROP chains and
VM handlers lends itself to a simple heuristic. Namely,
we split traces at indirect branches. In the ROP case, this
describes the transition between two gadgets (commonly,
on a ret instruction), whereas for VM handlers it distin-
guishes the invocation of the next handler (cf. Section 6.3).
Figure 4 illustrates the approach. Given concrete trace
window boundaries, we can reconstruct a control-flow
graph consisting of multiple connected components. A
trace window then describes a particular path through a
connected component.

3.2 Random Sampling
The goal of random sampling is to derive input-output
relations that describe the semantics of a trace window.
This happens in two steps: First, we determine the inputs
and outputs of the trace window. Then, we replace the
inputs with random values and obverse the outputs.

Generally speaking, we consider register and memory
reads as inputs and register and memory writes as outputs.
For inputs, we apply a read-before-write principle: inputs
are only registers/memory locations that are read before
they have been written; for outputs, we consider the last
writes of a register/memory location as output.

1 mov rax , [rbp + 0x8]
2 add rax , rcx
3 mov [rbp + 0x8], rax
4 add [rbp + 0x8], rdx

Following this principle, the code above has three in-
puts and two outputs: The inputs are the memory read M0
in line 1, rcx (line 2) and rdx (line 4). The two outputs
are o0 (line 2) and o1 (line 4).

In the next step, we generate random values and ob-
verse the I/O relationship. For instance, we obtain the
outputs (7,14) for the input tuple (2,5,7); for the inputs
(1,7,10), we obtain (8,18).

By default, we use register locations as well as memory
locations as inputs and outputs. However, we support the
option to reduce the inputs and outputs to either register or
memory locations. For instance, if we know that registers
are only used for intermediate results, we may ignore
them since it reduces the complexity for the synthesis.

3.3 Synthesis
This section demonstrates how we synthesize the seman-
tics of assembly code; we discuss the inner workings of
our synthesis approach in the next section.

After we obtained the I/O samples, we combine the
different samples and synthesize each output separately.
These synthesis instances are mutually independent and
can be completely parallelized.

To exemplify, for the I/O pairs above, we search an
expression that transforms (2,5,7) to 7 and (1,7,10) to 8
for o0; for o1, the expression has to map (2,5,7) to 14 and
(1,7,10) to 18. Then, the synthesizer finds o0 =M0+rcx
and o1 = M0 +rcx+ rdx.

4 Program Synthesis

In the last section, we demonstrated how we obtain I/O
samples from assembly code and apply program synthesis
to that context. This section describes our algorithm in
detail; we show how we find an expression that maps
all inputs to their corresponding outputs for all observed
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samples. We use Monte Carlo Tree Search, since it has
been proven to be very effective when working on infinite
decision trees without requiring much domain knowledge.

We consider program synthesis as a single-player game
whose purpose is to synthesize an expression whose input-
output behavior is as close as possible to given I/O sam-
ples. In essence, we define a context-free grammar that
consists of terminal and non-terminal symbols. (Partially)
derived words of the grammar are game states; the gram-
mar’s production rules represent the moves of the game.
Terminal nodes are expressions that contain only terminal
symbols; these are end states of the game.

Given a maximum number of iterations and I/O sam-
ples, we iteratively apply the four MCTS steps (cf. Sec-
tion 2.3), until we find a solution or we reach the timeout.
Starting with a non-terminal expression as root node, we
select the most-promising expandable node. A node is
expandable, if there still exist production rules that have
not been applied to this node. We choose a production
rule randomly and expand the selected node. To evaluate
the quality of the new node, we perform a random play-
out: First, we randomly derive a terminal expression by
successively applying random production rules. Then, we
evaluate the expressions based on the inputs from the I/O
pairs and compare the output similarity. The similarity
score is the node reward. A reward of 1 ends the synthe-
sis, since the input-output behavior is the same for the
provided samples. Finally, we propagate the reward back
to the root.

In the following, we give details on node selection, our
grammar, random playouts and backpropagation. Finally,
we discuss the algorithm configuration and parameter
tuning. To demonstrate the different steps of our approach,
we use the following running example throughout this
section:

Example 1 (I/O relationship). Working with bit-vectors of
size 3 (i. e., modulo 23), we observe for an expression with
two inputs and one output the I/O relations: (2,2)→ 4
and (4,5)→ 1. A synthesized expression that maps the
inputs to the corresponding outputs is f (a,b) = a+b.

4.1 Node Selection
Since we have an infinite search space for program syn-
thesis, node selection must be a trade-off between ex-
ploration and exploitation. The algorithm has to ex-
plore different nodes such that several promising and
non-promising candidates are known. On the other hand,
it has to follow more promising candidates to find deeper
expressions. As described in Section 2.3, the UCT (cf.
Equation 1) provides a good balance between exploitation
and exploration for many MCTS applications.

However, we observed that it does not work for our use
case: if we set the exploration constant C to a higher value

(focus on exploration), it does not find deeper expressions;
if we set C to a lower value, MCTS gets lost in deep
expressions. To solve this problem, we use an adaption
of UCT that is known as Simulated Annealing UCT (SA-
UCT) [47]. The main idea of SA-UCT is to use the
characteristics of Simulated Annealing (cf. Section 2.4)
and apply it to UCT. SA-UCT is obtained by replacing
the exploration constant C by a variable T with

T =C
N− i

N
, (2)

where N is the maximum number of MCTS iterations
and i the current iteration. Then, SA-UCT is defined as

X j +T

√
lnn
n j

. (3)

T decreases over time, since N−i
N converges to 0 for

increasing values of i. As a result, MCTS places the
emphasis on exploration in the beginning; the more T
decreases, the more the focus shifts to exploitation.

4.2 Grammar
Game states are represented by sentential forms of a
context-free grammar that describes valid expressions
of our high-level abstraction. We introduce a terminal
symbol for each input (which corresponds to a variable
that stores this input) and each valid operator (e. g., ad-
dition or multiplication). For every data type that can be
computed we introduce one non-terminal symbol (in our
running example, we only use a single non-terminal value
U that represents an unsigned integer). The production
rules describe how we can derive expressions in our high-
level description. Since the sentential forms represent
partial expressions, we will use the term expression to
denote the (partial) expression that is represented by a
given sentential form. Sentences of the grammar are final
states in the game since they do not allow any further
moves (derivations). They represent expressions that can
be evaluated. We represent expressions in Reverse Polish
Notation (RPN).

Example 2. The grammar in our previous example has
two input symbols V = {a,b}, since each I/O sample has
two inputs. If the grammar supports addition and mul-
tiplication O = {+,∗}, there are four production rules:
R = {U →U U + |U U ∗ | a | b}. An unsigned integer
expression U can be mapped to an addition or multipli-
cation of two such expressions or a variable. The final
grammar is ({U},Σ =V ∪O,R,U).

Synthesis Grammar. Our grammar is designed
to synthesize expressions that represent the se-
mantics of bit-vector arithmetic, especially for
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Figure 5: An MCTS tree for program synthesis that grows
towards the most-promising node b a +, the right-most
leaf in layer 3.

the x86 architecture. For every data type (U8,
U16, U32 and U64), we define the set of operations
as O = {+,−,∗,/s,/,%s,%,∧,∨,⊕,�,�,�a,−1,¬,
sign_ext, zero_ext, extract, ++, 1}, where the
operations are binary addition, subtraction, multiplication,
signed/unsigned division, signed/unsigned remainder,
bitwise and/or/xor, logical left shift, logical/arithmetic
right shift as well as unary minus and complement.
The unary operations sign_ext and zero_ext extend
smaller data types to signed/unsigned larger data types.
Conversely, the unary operator extract transforms
larger data types into smaller data types by extracting the
respective least significant bits. Since the x86 architecture
allows register concatenation (e. g., for division), we
employ the binary operator ++ to concatenate two
expressions of the same data type. Finally, to synthesize
expressions such as increment and decrement, we use the
constant 1 as niladic operator. The input set V consists
of |V | = n variables, where n represents the number of
inputs.

Tree Structure. The sentential form U is the root node
of the MCTS tree. Its child nodes are other expressions
that are produced by applying the production rules to a
single non-terminal symbol of the parent. The expression
depth (referred to as layer) is equivalent to the number of
derivation steps, as depicted in Figure 5.

Example 3. The root node U is an expression of layer 0.
Its children are a, b, U U +, and U U ∗, where a and b are
terminal expressions of layer 1. Assuming that the right-
most U in an expression is replaced, the children of U U +
are U b+, U a+, U U U + +, and U U U ∗ +. To obtain
the layer 3 expression b a +, the following derivation
steps are applied: U ⇒U U +⇒U a +⇒ b a +.

To direct the search towards outer expressions, we re-
place the top-most-right-most non-terminal. If we, in-

+

U3*

U2U1

Figure 6: The left-most U in U3 U2 U1 ∗ + is the top-
most-right-most non-terminal in the abstract syntax tree.
(The indices are provided for illustrative purposes only.)

stead, substitute always the right-most non-terminal only,
then the search would be guided towards most-promising
subexpressions. If the expression is too nested, the syn-
thesizer would find the partial subexpression but not the
whole expression. The top-most-right-most derivation is
illustrated in Figure 6, which shows the abstract syntax
tree (AST) of an expression.

Example 4. The expression (U +(U ∗U)) is represented
as U U U ∗ +. If we successively replace the right-most
U, the algorithm is unlikely to find expressions such as
((a+b)+(b∗ (b∗a))), since it is directed into the subex-
pression with the multiplication. Instead, replacing the
top-most-right-most non-terminal directs the search to the
top-most addition and then explores the subexpressions.

4.3 Random Playout
One of the key concepts of MCTS are random playouts.
They are used to determine the outcome of a node; this
outcome is represented by a reward. In the first step,
we randomly apply production rules to the current node,
until we obtain a terminal expression. To avoid infinite
derivations, we set a maximum playout depth. This max-
imum playout depth defines how often a non-terminal
symbol can be mapped to rules that contain non-terminal
symbols; at the latest we reached the maximum, we map
non-terminals only to terminal expressions. This happens
in a top-most-right-most manner. Afterwards, we evaluate
the expression for all inputs from the I/O samples.

Example 5. Assuming a maximum playout depth of 2
and the expression U U ∗, the first top-most-right-most U
is randomly substituted with U U ∗, the second one with
U U +. After that, the remaining non-terminal symbols
are randomly replaced with variables: U U ∗⇒U U U ∗
∗⇒U U + U U ∗ ∗⇒ ·· · ⇒ a a + b a ∗ ∗. A random
playout for U U + is a b b + +.

For the I/O sample (2,2)→ 4, we evaluate g(2,2) = 0
for g(a,b) = ((a+a)∗(b∗a)) mod (28) and h(2,2) = 6
for h(a,b) = (a+(b+b)) mod 28.

We set terminal nodes to inactive after their evaluation,
since they already are end states of the game; there is
no possibility to improve the node’s reward by random
playouts. As a result, MCTS will not take these nodes
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into account in further iterations. The node’s reward is
the similarity of the evaluated expressions and the out-
puts from the I/O samples. We describe in the following
section how to measure the similarity to the outputs.

4.4 Measuring Similarity of Outputs
To measure the similarity of two outputs, we compare val-
ues with different metrics: arithmetic distance, Hamming
distance, count leading zeros, count trailing zeros, count
leading ones and count trailing ones. While the numeric
distance is a reliable metric for arithmetic operations, it
does not work well with overflows and bitwise operations
(e. g., xor and shifts). In turn, the Hamming distance ad-
dresses these operations since it states in how many bits
two values differ. Finally, the leading/trailing zeros/ones
are strong indicators that two values are in the same range.
We scale each result between a value of 0 and 1. Since the
different metrics compensate each other, we set the total
similarity reward to the average reward of all metrics.

Example 6. Considering I/O pair (2,2)→ 4, the out-
put similarities for g and h (as defined in Example 5)
are similarity(4,0) and similarity(4,6). Limiting to the
metrics of Hamming distance and count leading ze-
ros (clz), we obtain hamming(4,0) = hamming(4,6) =
0.67, clz(4,0) = 0 and clz(4,6) = 1.0. Therefore, the
average similarities are similarity(4,0) = 0.335 and
similarity(4,6) = 0.835. Related to the random play-
outs, the evaluated node U U + has a higher reward
than U U ∗.

During a random playout, we calculate the similarity
for all I/O samples. The final node reward is the average
score of all similarity rewards. A reward of 1 finishes pro-
gram synthesis, since the evaluated expression produces
exactly the outputs from the I/O samples.

4.5 Backpropagation
After obtaining a score by random playout, we do the
following for the selected node and all its parents, up to
the root: (1) We update the node’s average reward. This
reward is averaged based on the node’s and its successors’
total number of random playouts. (2) If the node is fully
expanded and its children are all inactive, we set the node
to inactive. (3) Finally, we set the current node to its
parent node.

4.6 Expression Simplification
Since MCTS performs a stochastic search, synthesized ex-
pressions are not necessary in their shortest form. There-
fore, we apply some basic standard expression simplifi-
cation rules. For example, if the synthesizer constructs

integer values as ((1� 1)� (1 + (1� 1))), we can
reduce them to the value 16.

4.7 Algorithm Configuration

Two main factors define the algorithm’s success that can-
not be influenced by the user: the number of input vari-
ables and the complexity (e. g., depth) of the expression
to synthesize. Contrary, there exist four parameters that
can be configured by a user to improve the effectiveness
and speed: the initial SA-UCT value, the number of I/O
samples, the maximum number of MCTS iterations and
the maximum playout depth.

The SA-UCT parameter T configures the trade-off be-
tween exploration and exploitation and depends on the
maximum number of MCTS iterations; if the maximum
number of MCTS iterations is low, the algorithm focuses
on exploiting promising candidates within a small period
of time. The same holds for small initial values of T .

A large number of variables or a higher expression
depth requires more MCTS iterations. Besides the maxi-
mum number of MCTS iterations, the maximum playout
depth provides more accuracy since it is more probable
to hit deeper expressions or more influencing variables
with deeper playouts. On the other hands, deeper playouts
have an impact on the execution time.

Since random playouts are performed for every node
and for every I/O pair, the number of I/O samples has a
significant impact on the execution time. In addition, it
effects the number of false positives, since there are less
expressions that have the same I/O behavior for a larger
number of I/O samples. Finally, the MCTS synthesis is
more precise since the different node rewards are expected
to be informative.

Since the search space for finding good algorithm con-
figurations for different complexity classes is large, we
approximate an optimal solution by Simulated Annealing.
We present the details and results in Section 6.1.

5 Implementation

We implemented a prototype implementation of our ap-
proach in our tool Syntia, which is written in Python. For
trace generation and random sampling, we use the Uni-
corn Engine [43], a CPU emulator framework. To analyze
assembly code (e. g., trace dissection), we utilize the dis-
assembler framework Capstone [42]. Furthermore, we
use the SMT solver Z3 [36] for expression simplification.

Initially, Syntia expects a memory dump, a start and
an end address as input. Then, it emulates the program
and outputs the instruction trace. Then, the user has the
opportunity to define its own rules for trace dissection;
otherwise, Syntia dissects the trace at indirect control
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Table 1: Initial Simulated Annealing configuration and
the parameter’s lower/upper bounds.

parameter initial lower bound upper bound

SA-UCT 1.0 0.7 2.0
# MCTS iterations 2,000 500 50,000
# I/O samples 30 10 60
playout depth 1 0 2

transfers. Additionally, the user has to decide if regis-
ter and/or memory locations are used as inputs/outputs
and how many I/O pairs shall be sampled. Syntia traces
register and memory modifications in each trace window,
derives the inputs and outputs and generates I/O pairs by
random sampling. The last step can be parallelized for
each trace window. Finally, the user defines the synthe-
sis parameters. Syntia creates a synthesis tasks for each
(trace window, output) pair. The synthesis tasks are per-
formed in parallel. The synthesis results are simplified by
Z3’s term-rewriting engine.

6 Experimental Evaluation

In the following, we evaluate our approach in three areas
of application. The experiments have been evaluated on a
machine with two Intel Xeon E5-2667 CPUs (in total, 12
cores and 24 threads) and 96 GiB of memory. However,
we never have used more than 32 GiB of memory even
though parallel I/O sampling for many trace windows can
be memory intensive; synthesis itself never used more
than 6 GiB of memory.

6.1 Parameter Choice
As described in Section 4.7, we approximate an optimal
algorithm configuration with Simulated Annealing. To
compute preferably representative results, we generate a
set of 1,200 randomly generated expressions. We divide
this set into three classes with 400 expressions each; to
prevent overfitting the parameters on a fixed set of inputs,
the experiments of each class are performed with distinct
input samples.

In each iteration, Simulated Annealing synthesizes the
1,200 expressions under the same configuration. We set a
timeout of 120 seconds for each synthesis task and prune
non-successful tasks by a constant factor of the timeout.
As a result, Simulated Annealing optimizes towards a high
success rate for synthesis tasks and a minimal average
time. Table 1 lists the initial algorithm configuration and
the parameter boundaries.

We aim at determining optimal parameters for different
complexity classes. Classes are distinguished by the num-
ber of variables and by the expression’s layer. Table 2
illustrates the final configurations for 12 different com-

plexity classes after 50 Simulated Annealing iterations.
While the I/O samples and the playout depth are mostly in
a similar range (0 and 20), there is a larger scope for the
SA-UCT parameter and the maximum number of MCTS
iterations. Especially for higher complexity classes, this
is due to the optimization towards a high success rate
within 120 seconds. The latter parameters strive towards
larger values without this timeout.

Generally, the parameter configurations set a focus on
exploration instead of exploitation. We follow this obser-
vation and adapt the configuration based on our problem
statements. To describe a configuration, we provide a
configuration vector of the form (SA-UCT, #iter, #I/O,
PD).

6.2 Mixed Boolean-Arithmetic

Zhou et al. proposed the concept of MBA expressions [63].
By transforming simpler expressions and constants into
MBA expressions over Boolean-arithmetic algebras, they
can generate semantically-equivalent, but much more
complex code which is arguably hard to reverse engi-
neer. Effectively, this obfuscating transformation allows
them to hide formulas and constants in plain code. In
their paper, they define a Boolean-arithmetic algebra as
follows:

Definition 1 (Boolean-arithmetic algebra [63]). With
n a positive integer and B = {0,1}, the algebraic
system (Bn,∧,∨,⊕,¬,≤,≥,>,<,≤s,≥s,>s,<s, 6=,=,
�s,�,�,+,−, ·), where �,� denote left and right
shifts, · (or juxtaposition) denotes multiply, and signed
compares and arithmetic right shift are indicated by s, is
a Boolean-arithmetic algebra (BA-algebra), BA[n]. n is
the dimension of the algebra.

Specifically, they highlight how BA[n] includes,
amongst others, the Boolean algebra (Bn,∧,∨,¬) as well
as the integer modular ring Z/(2n). As a consequence,
Mixed Boolean-Arithmetic (MBA) expressions over Bn

are hard to simplify in practice. In general, we note that
reducing a complex expression to an equivalent, but sim-
pler one by, e. g., removing redundancies, is considered
NP-hard [31].

Zhou et al. represent MBA expressions as polynomials
over BA[n]. While polynomial MBA expressions are
conceptually not restricted in terms of complexity, Zhou
et al. define linear MBA expressions as those polynomials
with degree 1. In particular, f (x,y) = x− (x⊕ y)−2(x∨
y)+12564 is a linear MBA expression, whereas f (x,y) =
x+9(x∨ y)yx3 is not.

Implementation in Tigress. In practice, MBA expres-
sions are used in the Tigress C Diversifier/Obfuscator by
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Table 2: Parameter choices for different complexity classes that depend on the expression layer and the number of
variables. The parameters are the SA-UCT parameter (SA), the maximum number of MCTS iterations (# iter), the
number of I/O samples (# I/O) and the playout depth (PD).

# variables

2 5 10 20

layer SA # iter # I/O PD SA # iter # I/O PD SA # iter # I/O PD SA # iter # I/O PD

3 1.42 40,569 20 0 1.55 32,375 17 0 1.74 42,397 20 1 1.38 28,089 18 1
5 1.84 35,399 14 0 1.11 28,792 23 0 1.29 27,365 23 0 0.92 34,050 12 0
7 1.25 28,363 20 0 1.01 30,838 23 0 1.23 15,285 22 0 1.42 11,086 22 0

Collberg et al. [9] which uses the technique to encode inte-
ger variables and expressions in which they are used [11].
Further, Tigress also supports common arithmetic encod-
ings to increase an expression’s complexity, albeit not
based on MBAs [10].

For example, the rather simple expression x+ y+ z is
transformed into the layer 23 expression (((x⊕y)+((x∧
y)� 1))∨ z)+ (((x⊕ y)+ ((x∧ y)� 1))∧ z) using its
arithmetic encoding option. In a second transformation
step, Tigress encodes it into a linear MBA expression of
layer 383 (omitted due to complexity). Such expressions
are hard to simplify symbolically.

Evaluation Results. We evaluated our approach to sim-
plify MBA expressions using Syntia. As a testbed, we
built a C program which calls 500 randomly generated
functions. Each of these random functions takes 5 in-
put variables and returns an expression of layer 3 to 5.
Then, we applied the arithmetic encoding provided by
Tigress, followed by the linear MBA encoding. The re-
sulting program contained expressions of up to 2,821
layers, the average layer being 156. The arithmetic encod-
ing is applied to highlight that our approach is invariant
to the code’s increased symbolic complexity and is only
concerned with semantical complexity.

Based on a concrete execution trace it can be observed
that the 500 functions use, on average, 5 memory inputs
(as parameters are passed on the stack) and one register
output (the register containing the return value). Table 3
shows statistics for the analysis run using the configura-
tion vector (1.5,50000,50,0). The first two components
indicate a strong focus on exploration in favor of exploita-
tion; due to the small number of synthesis tasks, we used
50 I/O samples to obtain more precise results.

The sampling phases completed in less than two min-
utes. Overall, the 500 synthesis tasks were finished
in about 34 minutes, i. e., in 4.0 seconds per expres-
sion. We were able to synthesize 448 out of 500 expres-
sions (89.6%). The remaining expressions are not found
due to the probabilistic nature of our algorithm; after 4
subsequent runs, we synthesized 489 expressions (97.8%)
in total.

Table 3: Trace window statistics and synthesis perfor-
mance for Tigress (MBA), VMProtect (VMP), Themida
(flavor Tiger White, TM), and ROP gadgets.

MBA VMP TM ROP

#trace windows 500 12,577 2,448 78
#unique windows 500 449 106 78
#instructions per window 116 49 258 3
#inputs per window 5 2 15 3
#outputs per window 1 2 10 2
#synthesis tasks 500 1,123 1,092 178

I/O sampling time (s) 110 118 60 17
overall synthesis time (s) 2,020 4,160 9,946 829
synthesis time per task (s) 4.0 3.7 9.1 4.7

To get a better feeling for this probabilistic behavior, we
compared the cumulative numbers of synthesized MBA
expressions for 10 subsequent runs. Figure 7 shows the
results averaged over 15 separate experiments. On aver-
age, the first run synthesizes 89.6% (448 expressions) of
the 500 expressions. A second run yields 22 new expres-
sions (94.0%), while a third run reveals 10 more expres-
sions (96.0%). While converging to 500, the number of
newly synthesized expressions decreases in subsequent
runs. Comparing the fifth and the eighth run, we only
found 5 new expressions (from 489 to 494). After the
ninth run, Syntia synthesized 495 (99.0%) of the MBA
expressions.

6.3 VM Instruction Handler
As introduced in Section 2.1.1, an instruction handler of
a Virtual Machine implements the effects of an atomic in-
struction according to the custom VM-ISA. It operates on
the VM context and can perform arbitrarily complex tasks.
As handlers are heavily obfuscated, manual analysis of a
handler’s semantics is a time-consuming task.

Attacking VMs. When faced with virtualization-based
obfuscations, an attacker typically has two options. For
one, she can analyze the interpreter and, for each han-
dler, extract all information required to re-translate the
bytecode back to native instruction. Especially in face of
handler duplication and bytecode blinding, this requires
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Figure 7: Subsequent synthesis runs increase the number
of synthesized MBA expressions. Each point represents
the average cumulative number of synthesized expres-
sions from 15 separate experiments.

her to precisely capture all effects produced by the han-
dlers. This includes both the high-level semantics with
regard to input and output variables as well as the indi-
vidual unblinding routines. In his paper, Rolles discusses
how this type of attack requires complete understanding
of the VM and therefore has to be repeated for each virtu-
alization obfuscator [44]. Thus, we note that this attack
does not lend itself easily to full automation. Another ap-
proach is to perform analyses on the bytecode level. The
idea is that while an attacker cannot learn the full seman-
tics of the original code, the analysis of the interaction
of handlers itself reveals enough information about the
underlying code. This allows the attacker to skip details
like bytecode blinding as she only requires the high-level
semantics of a handler. Sharif et al. successfully mounted
such an attack to recover the CFG of the virtualized func-
tion [53], but do not take semantics other than virtual
instruction pointer updates into account.

We recognize the latter approach as promising and note
how Syntia allows us to automatically extract the high-
level semantics of arithmetical and logical instruction
handlers. This is achieved by operating on an execution
trace through the interpreter and simplify its individual
handlers—as distinguished by trace window boundaries—
using program synthesis. Especially, we highlight how ob-
taining the semantics of one handler automatically yields
information about the underlying native code at all points
of the trace where this specific handler is used to encode
equivalent virtualized semantics.

Evaluation Setup. We evaluated Syntia to learn the
semantics of arithmetic and logical VM instruction han-
dlers in recent versions of VMProtect [58] (v3.0.9) and
Themida [38] (v2.4.5.0). To this end, we built a program
that covers bit-vector arithmetic for operand widths of 8,
16, 32, and 64 bit. Since we are interested in analyzing ef-
fects of the VM itself, using a synthetic program does not

distort our results. For verification, we manually reverse
engineered the VM layouts of VMProtect and Themida.
Note that the commercial versions of both protection sys-
tems have been used to obfuscate the program. These are
known to provide better obfuscation strength compared
to the evaluation versions.

We argue that our evaluation program is representative
of any program obfuscated with the respective VM-based
obfuscating scheme. As seen in Section 2.1.1, common
instructions map to a plethora of VM handlers. Conse-
quently, if we succeed in recovering the semantics of these
integral building blocks, we are at the same time able to
recover other variations of native instructions using these
handlers as well.

This motivates the design of our evaluation program,
which aims to have a wide coverage of all possible arith-
metic and logical operations. We note that this may not be
the case for real-world test cases, which may not trigger
all interesting VM handlers. To this extent, our evalua-
tion program is, in fact, more representative than, e. g.,
malware samples.

6.3.1 VMProtect

In its current version, VMProtect follows the Direct
Threaded Code design principle (cf. Section 2.1.1). Each
handler directly invokes the next handler based on the
address encoded directly in the instruction’s bytecode.
Hence, reconstructing the handlers requires an instruction
trace. Also, this impacts trace dissection: since VM han-
dlers dispatch the next handler, they end with an indirect
jump. Unsurprisingly, Syntia could automatically dissect
the instruction trace into trace windows that represent a
single VM handler. As evident from Table 3, there are
449 unique trace windows out of a total of 12,577 in the
instruction trace.

Further, VMProtect employs handler duplication. For
example, the 449 instruction handlers contain 12 instances
performing 8-bit addition, 11 instances for each of addi-
tion (for each flavor of 16-, 32-, 64-bit), nor (8-, 64-bit),
left and right shift (32-, 64-bit); amongst multiple others.
If Syntia is able to learn one instance in each group, it is
safe to assume that it will successfully synthesize the full
group, as supported by our results.

Similarly, the execution trace is made up of all possible
handlers and some of them occur multiple times. Hence,
if we correctly synthesize semantics for, e. g., a 64-bit
addition, this immediately yields semantics for 772 trace
windows (6.2% of the full trace, 32.0% of all arithmetic
and logical trace windows in the trace). Equivalent rea-
soning applies to 16-bit nor operations in our trace (3.6%
of the full trace, 18.8% of all arithmetic and logical trace
windows). In total, our results reveal semantics for 19.7%
of the full execution trace (2,482 out of 12,577 trace win-
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dows). Manual analysis suggests that the remaining trace
semantics mostly consists of control-flow handling and
stack operations. These are especially used when switch-
ing from the native to the VM context and amount for a
large part of the execution trace.

On average, an individual instruction handler consists
of 49 instructions. As VMProtect’s VM is stack-based,
binary arithmetic handlers pop two arguments from the
stack and push the result onto the stack. This tremen-
dously eases identification of inputs and outputs. There-
fore, we mark memory operands as inputs and outputs
and use the configuration vector (1.5,30000,20,0) for the
synthesis. The sampling phase finished in less than two
minutes. Overall, the 1,123 synthesis tasks completed
in less than an hour, which amounts to merely 3.7 sec-
onds per task. In total, in our first run, we automatically
identified 190 out of 196 arithmetical and logical han-
dlers (96.9%). The remaining 6 handlers implement 8-bit
divisions and shifts. Due to their representation in x86
assembly code, Syntia needs to synthesize more complex
expressions with nested data type conversions. As the
analysis is probabilistic in nature, we scheduled five more
runs which yielded 4 new handlers. Thus, we are able to
automatically pinpoint 98.9% of all arithmetic and logical
instruction handlers in VMProtect.

6.3.2 Themida

The protection solution Themida supports three basic VM
flavors, namely, Tiger, Fish, and Dolphin. Each flavor
can further be customized to use one of three obfuscation
levels, in increasing complexity: White, Red, and Black.
We note that related work on deobfuscation does not di-
rectly mention the exact configuration used for Themida.
In hopes to be comparable, we opted to use the default
flavor Tiger, using level White, in our evaluation. Unlike
VMProtect, Tiger White uses an explicit handler table
while inlining the dispatcher routine; i. e., it follows the
Threaded Code design principle (cf. Section 2.1.1). Con-
sequently, trace dissection again yields one trace window
per instruction handler. Even though the central handler
table lists 1,111 handlers, we identified 106 unique trace
windows along the concrete execution trace.

Themida implements a register-based architecture and
stores intermediate computations in one of many register
available in the VM context. This, in turn, affects the
identification of input and output variables. While in the
case of VMProtect, inputs and outputs are directly taken
from two slots on the stack, Themida has a significantly
higher number of potential inputs and outputs (i. e., all
virtual registers in the VM context, 10 to 15 in our case).

Tiger White supports handlers for addition, subtraction,
multiplication, logical left and right shift, bitwise oper-
ations and unary subtraction; each for different operand

widths. In contrast to VMProtect, handlers are neither
duplicated nor do they occur multiple times in the execu-
tion trace. Hence, the trace itself is much more compact,
spanning 2,448 trace windows in total; roughly 5 times
shorter than VMProtect’s. Still, Themida’s handlers are
much longer, with 258 instructions on average.

We ran the analysis using the configuration vector
(1.8,50000,20,0). Due to the higher number of in-
puts, this configuration—in comparison to the previous
section—sets a much higher focus on exploration as indi-
cated by higher values chosen for the first two parameters.
Sampling finished in one minute, whereas the synthesis
phase took around 166 minutes. At 1,092 synthesis tasks,
this amounts to roughly 9.1 seconds per task. Eventually,
we automatically learned the semantics of 34 out of 36
arithmetic and logical handlers (94.4%). The remaining
handlers (8-bit subtraction and logical or) were not found
as we were unable to complete the sampling phase due to
crashes in Unicorn engine.

6.4 ROP Gadget Analysis

We further evaluated Syntia on ROP gadgets, specifically,
on four samples that were thankfully provided by De-
bray [62]. They implement bubble sort, factorials, Fi-
bonacci, and matrix multiplication in ROP. To have a
larger set of samples, we also used a CTF challenge [41]
that has been generated by the ROP compiler Q [51] and
another Fibonacci implementation that has been generated
with ROPC [39].

Syntia automatically dissected the instruction traces
into 156 individual gadgets. Since many gadgets use
exactly the same instructions, we unified them into 78
unique gadgets. On average, a gadget consists of 3 instruc-
tions with 3 inputs and 2 outputs (register and memory
locations).

Due to the small numbers of inputs and synthesis tasks,
we chose the configuration vector (1.5,100000,50,0) that
sets a very strong focus on exploration while accepting
a higher running time. Especially, we experienced both
effects for the maximum number of MCTS iterations.

Syntia synthesized partial semantics for 97.4% of the
gadgets in less than 14 minutes; in total, we were suc-
cessful in 163 out of the 178 (91.5%) synthesis tasks.
Our synthesis results include 58 assignments, 17 binary
additions, 5 ternary additions, 4 unary minus, 4 binary
subtractions, 4 register increments/decrements, 2 binary
multiplications and 1 bitwise and. In addition, we found
68 stack pointer increments due to ret statements. The
results do not include larger constants or operations such
as ror as they are not part of our grammar.
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7 Discussion

In the following, we discuss different aspects of program
synthesis for trace simplification and MCTS-based pro-
gram synthesis. Furthermore, we point out limitations of
our approach as well as future work.

Program Synthesis for Trace Simplification. Current
research on deobfuscation [13, 53, 61, 62] operates on
instruction traces and uses a mixed approach consisting
of symbolic execution [61] and taint analysis [60]; two
approaches that require a precise analysis of the under-
lying code. While techniques exist that defeat taint anal-
ysis [6, 48], recent work shows that symbolic execution
can similarly be attacked [2].

Program synthesis is an orthogonal approach that oper-
ates on a purely semantical level as opposed to (binary)
code analysis; it is oblivious to the underlying code con-
structs. As a result, syntactical aspects of code complexity
such as obfuscation or instruction count do not influence
program synthesis negatively. It is merely concerned with
the complexity of the code’s semantics. The only excep-
tion where code-level artifacts matter is the generation
of I/O samples; however, this can be realized with small
overhead compared to regular execution time using dy-
namic binary instrumentation [37, 40].

Commonly, instruction traces contain repetitions of
unique trace windows that can be caused by loops or
repeated function calls to the same function. By synthe-
sizing these trace windows, the synthesized semantics
pertain for all appearances on the instruction trace; the
more frequently these trace windows occur in the trace,
the higher the percentage of known semantics in the in-
struction trace. We stress how VM-based obfuscation
schemes do this to the extreme: a relatively small number
of unique trace windows are used over the whole trace.

In general, the synthesis results may not be precise se-
mantics since we approximate them based on I/O samples.
If these do not reflect the full semantics, the synthesis
misses edge cases. For instance, we sometimes cannot
distinguish between an arithmetic and a logical right shift
if the random inputs are no distinguishing inputs. We
point out that this is not necessarily a limitation, since a
human analyst might still get valuable insights from the
approximated semantics.

As future work, we consider improving trace simplifi-
cation by a stratified synthesis approach [23]. The main
idea is to incrementally synthesize larger parts of the in-
struction trace based on previous results and successively
approximate high-level semantics of the entire trace. Fur-
ther, we note that the work by Sharif et al. [53] is comple-
mentary to our synthesis approach and would also allow
us to identify control flow. Likewise, extending the gram-

mar by control-flow operations is another viable approach
to tackle this limitation.

MCTS-based Program Synthesis. Compared to SMT-
based program synthesis, we obtain candidate solutions,
even if the synthesizer does not find an exact result. This
is particularly beneficial for applications such as deob-
fuscation, since a human analyst can sometimes infer the
full semantics. We decided to utilize MCTS for program
synthesis since it has been proven very effective when
operating on large search trees without domain knowl-
edge. However, our approach is not limited to MCTS,
other stochastic algorithms are also applicable.

Drawn from the observations made in Section 6, we
infer that the MCTS approach is much more effective
with a configuration that focuses on exploration instead of
exploitation. The SA-UCT parameter ensures that paths
with a higher reward are explored in-depth in later stages
of the algorithm. We still try to improve exploration
strategies, for instance with Nested Monte Carlo Tree
Search [35] and Monte Carlo Beam Search [7].

Limitations. In general, limits of program synthesis
apply to our approach as well. Non-determinism and point
functions—Boolean functions that return 1 for exactly one
input out of a large input domain—cannot be synthesized
practically. This also holds for semantics that have strong
confusion and diffusion properties, such as cryptographic
algorithms. These are inherently very complex, non-linear
expressions with a deep nesting level. Our approach is
also limited by the choice of trace window boundaries;
ending a trace window in intermediate computation steps
may produce formulas that are not meaningful at all.

8 Related Work

We now review related work for program synthesis, Monte
Carlo Tree Search and deobfuscation. Furthermore, we
describe how our work fits into these research areas.

Program Synthesis. Gulwani et al. [22] introduced an
SMT-based program synthesis approach for loop-free pro-
grams that requires a logical specification of the desired
program behavior. Building on this, Jha et al. [24] re-
placed the specification with an I/O oracle. Upon gener-
ation of multiple valid program candidates, they derive
distinguishing inputs that are used for subsequent oracle
queries. They demonstrated their use case by simplifying
a string obfuscation routine of MyDoom. Godfroid and
Taly [18] used an SMT-based approach to learn the formal
semantics of CPU instruction sets; for this, they use the
CPU as I/O oracle.
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Schkufza et al. [50] proved that stochastic program
synthesis often outperforms SMT-based approaches. This
is mostly due to the fact that common SMT-based ap-
proaches effectively enumerate all programs of a given
size or prove their non-existence. On the other hand,
stochastic approaches focus on promising parts of the
search space without searching exhaustively. Schkufza
et al. use this technique for stochastic superoptimization
on the basis of their tool STOKE. Recent work by Heule
et al. [23] demonstrates a stratified approach to learn the
semantics of the x86-64 instruction set, based on STOKE.
Their main idea is to re-use synthesis results to synthe-
size more complex instructions in an iterative manner.
To the best of our knowledge, STOKE is the only other
stochastic synthesis tool that is able to synthesize low-
level semantics. By design, their code only produces Intel
x86 code.

In our case, stochastic techniques have additional prop-
erties that are not achieved by previous tools: we obtain
partial results that are often already “close” to a real solu-
tion and might be helpful for a human analyst who tries
to understand obfuscated code. Furthermore, we can en-
code arbitrary complex function symbols in our grammar
(e. g., complex encoding schemes or hash functions); a
characteristic that is not easily reproduced by SMT-based
approaches.

In the context of non-academic work, Rolles applied
some of the above mentioned SMT-based approaches to
reverse engineering and deobfuscation [45]. Amongst
others, he learned obfuscation rules by adapting peephole
superoptimization techniques [3] and extracted metamor-
phic code using an oracle-guided approach. In his recent
work, he performs SMT-based shellcode synthesis [46].

Monte Carlo Tree Search. MCTS has been widely
studied in the area of AI in games [16, 35, 49, 56]. Ruijl
et al. [47] combine Simulated Annealing and MCTS by
introducing SA-UCT for expression simplification. Lim
and Yoo [32] describe an early exploration on how MCTS
can be used for program synthesis and note that it shows
comparable performance to genetic programming. We
extend the research of MCTS-based program synthesis by
applying SA-UCT and introducing node pruning. For our
synthesis approach, we designed a context-free grammar
that learns the semantics of Intel x86 code.

Deobfuscation. Rolles provides an academic analysis
of a VM-based obfuscator and outlines a possible attack
on such schemes in general [44]. He proposes using
static analysis to re-translate the VM’s bytecode back into
native instructions. This, however, requires minute analy-
sis of each obfuscator and hence is time-consuming and
prone to minor modifications of the scheme. Kinder is

also concerned with (static) analysis of VMs [26]. Specif-
ically, he lifts a location-sensitive analysis to be usable
in presence of virtualization-based obfuscation schemes.
His work highlights how the execution trace of a VM,
while performing various computations, always exhibits
a recurring set of addresses. As seen in Section 6, our ap-
proach actually benefits from this side effect. In contrast,
Sharif et al. [53] analyze VMs in a dynamic manner and
record execution traces. In contrast to the work of Rolles,
their goal is not to re-translate, but to directly analyze the
bytecode itself. Specifically, they aim to reconstruct parts
of the underlying code’s control flow from the bytecode.
This approach is closest to our work as we are, in turn,
mostly concerned with arithmetic and logical semantics
of a handler.

More recent results include work by Coogan et al. [13]
as well as Yadegari et al. [62]. Both approaches seek to de-
obfuscate code based on execution traces by further mak-
ing use of symbolic execution and taint tracking. The for-
mer approach is focused on the value flow to system calls
to reduce a trace whereas Yadegari et al. propose a more
general approach and aim to produce fully deobfuscated
code. However, to counteract symbolic execution-based
deobfuscation approaches, Banescu et al. propose novel
obfuscating transformations that specifically target their
deficiencies [2]. For one, they propose a construct akin
to random opaque predicates [12] that deliberately ex-
plodes the number of paths through a function. A second
technique preserves program behavior of the obfuscated
program for specific input invariants only, effectively in-
creasing the input domains and thus the search space for
symbolic executors.

Guinet et al. present arybo, a framework to simplify
MBA expressions [20]. In essence, they perform bit-
blasting and use a Boolean expression solver that tries
to simplify the expression symbolically. Eyrolles [15]
describes a symbolic approach that uses pattern matching.
Furthermore, she suggests improvements of current MBA-
obfuscated implementations that impede these symbolic
deobfuscation techniques [14]. To this effect, we also
argue that symbolic simplification is inherently limited
by the complexity of the input expression. However, we
demonstrated that a synthesis-based approach allows fine-
tuned simplification, irrespective of syntactical complex-
ity, while producing approximate intermediate results.

9 Conclusion

With our prototype implementation of Syntia we have
shown that program synthesis can aid in deobfuscation
of real-world obfuscated code. In general, our approach
is vastly different in nature compared to proposed deob-
fuscation techniques and hence may succeed in scenarios
where approaches requiring precise code semantics fail.
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Abstract

Software obfuscation transforms code such that it is more

difficult to reverse engineer. However, it is known that

given enough resources, an attacker will successfully re-

verse engineer an obfuscated program. Therefore, an

open challenge for software obfuscation is estimating the

time an obfuscated program is able to withstand a given

reverse engineering attack. This paper proposes a gen-

eral framework for choosing the most relevant software

features to estimate the effort of automated attacks. Our

framework uses these software features to build regres-

sion models that can predict the resilience of different

software protection transformations against automated

attacks. To evaluate the effectiveness of our approach,

we instantiate it in a case-study about predicting the time

needed to deobfuscate a set of C programs, using an at-

tack based on symbolic execution. To train regression

models our system requires a large set of programs as

input. We have therefore implemented a code genera-

tor that can generate large numbers of arbitrarily com-

plex random C functions. Our results show that features

such as the number of community structures in the graph-

representation of symbolic path-constraints, are far more

relevant for predicting deobfuscation time than other fea-

tures generally used to measure the potency of control-

flow obfuscation (e.g. cyclomatic complexity). Our best

model is able to predict the number of seconds of sym-

bolic execution-based deobfuscation attacks with over

90% accuracy for 80% of the programs in our dataset,

which also includes several realistic hash functions.

1 Introduction

Software developers often protect premium features and

content using cryptography, if secure key storage is pos-

sible. However, there are some risks regarding the use

of cryptography in this context, i.e. code and data must

be decrypted in order to be executable, respectively con-

sumable by the end-user device. If end-users are mali-

cious, then they can get access to the unencrypted code

or data, e.g. by dumping the memory of the device on

which the client software is running. Malicious end-

users are called man-at-the-end (MATE) attackers and

their capabilities include everything from static analy-

sis to dynamic modification of the executable code and

memory (e.g. debugging, tampering with code and data

values, probing any hardware data bus, etc.).

In order to raise the bar against MATE attackers, ob-

fuscation tools use code transformations to modify the

original code such that it is harder to analyze and tamper

with, while preserving the functionality of the program.

Provably secure code obfuscation has been proposed in

the literature, however, it is still impractical [3, 6, 7]. On

the other hand, dozens of practical obfuscation transfor-

mations have been proposed since the early 1990s [14],

however, their security guarantees are unclear.

Researchers and practitioners alike have struggled

with evaluating the strength of different obfuscating code

transformations. Many approaches have been proposed

(see Section 2), however, despite the numerous efforts in

this area, a recent survey on common obfuscating trans-

formations and deobfuscation attacks indicates that after

more than two decades of research, we are still lacking

reliable concepts for evaluating the resilience of code ob-

fuscation against attacks [42].

This paper makes the following contributions:

• A general framework for selecting program features

which are relevant for predicting the resilience of

software protection against automated attacks.

• A free C program generator, which was used to cre-

ate a dataset of over 4500 different programs in or-

der to benchmark our approach.

• A case study involving over 23000 obfuscated pro-

grams, where we build and test regression models

to predict the resilience of the obfuscated programs

against symbolic execution attacks.
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• A set of highly relevant features for predicting the

effort of attacks based on symbolic execution.

• A model that can predict the resilience of several

code obfuscating techniques against an attack based

on symbolic execution, with over 90% accuracy for

80% of the programs in our dataset.

The remainder of this paper is organized as follows.

Section 2 describes related work. Section 3 describes

our framework and the C program generator. Section 4

describes the case-study. Section 5 presents conclusions

and future work. Acknowledgements are expressed in

Section 6. Details regarding the availability our dataset

and software tools are given in Section 7.

2 Related Work

Collberg et al. [15] proposed a general taxonomy for

evaluating the quality of obfuscating transformations.

This taxonomy states that code obfuscation should be

evaluated with respect to: potency against human-

assisted attacks, resilience against automated attacks,

cost (in terms of performance overhead) added by the

obfuscating transformation and stealth, which measures

the difficulty of identifying parts of obfuscated code in

a given program. Collberg et al. [15] also proposed us-

ing several existing software features to evaluate potency,

namely: program length, cyclomatic complexity, nesting

complexity, data flow complexity, fan-in/-out complex-

ity, data structure complexity and object oriented design

metrics. However, in their empirical studies Ceccato et

al. [11] have found that potency does not always corre-

late with the previous software metrics. Dalla Preda [17]

proposes using abstract interpretation to model attackers,

which can either break a certain obfuscation transfor-

mation or not. However, they do not propose any fine-

grained features for measuring resilience. On the other

hand, there have also been works that propose measures

for resilience. Udupa et al. [46] propose using the edit

distance between control flow graphs of the original code

and deobfuscated code. Mohsen and Pinto [33] propose

using Kolmogorov complexity. Banescu et al. [5] pro-

pose using the effort needed to run a deobfuscation at-

tack. However, they do not attempt to predict the effort

needed for deobfuscation, which has been identified as a

gap in this field [45]. In this paper we focus on predicting

the effort needed by an automated deobfuscation attack.

Our work is complementary to the Obfuscation Exec-

utive (OE) proposed by Heffner and Collberg [23]. The

OE uses software complexity metrics and performance

measurements to choose a sequence of obfuscating trans-

formations, that should be applied to a program in order

to increase its potency, while our paper is solely con-

cerned with resilience. Moreover, the OE also proposes

restrictions regarding which obfuscating transformations

can follow each other. Our work focuses on prediction of

resilience, which is something that the OE does not do.

However, our approach could be integrated into the OE to

improve the decision making process (see Section 4.4).

Karnick et al. [26] proposed to measure the quality of

Java obfuscators by summing up potency and resilience

and subtracting cost of memory consumption, file stor-

age size and execution time from the sum. They mea-

sure potency with a subset of the features proposed by

Collberg et al. [15]. They measure resilience by us-

ing concrete implementations of deobfuscators, measur-

ing whether they were successful or if they encountered

errors and averaging the measurements across the total

number of deobfuscators. We acknowledge that using

multiple concrete implementations of a deobfuscation at-

tack (e.g. disassembly, CFG simplification) is important

to weed out any issues specific to a particular implemen-

tation. However, in this work we aim to provide a more

fine-grained measure of deobfuscation effort, instead of

a categorical classification such as succeeded or failed

for each deobfuscation attack implementation, as done in

[26]. Moreover, we also predict this fine-grained effort.

Anckaert et al. [2] propose applying concrete software

complexity metrics on four program properties (i.e. in-

structions, control flow, data flow and data), to mea-

sure resilience. Similarly to our work, Anckaert et

al. measure resilience of different obfuscating transfor-

mations against concrete implementations of deobfusca-

tion attacks. However, they apply deobfuscation attacks

which are specific to different obfuscating transforma-

tions, while we use a general deobfuscation attack (based

on symbolic execution) on all obfuscating transforma-

tions. Moreover, they disregard the effort needed for de-

obfuscation and measure the effect of different obfuscat-

ing transformations on software complexity metrics and

the subsequent effect of deobfuscation on these metrics.

In this paper we are chiefly concerned with predicting the

effort needed to run a successful deobfuscation attack.

Wu et al. [48] propose using a linear regression model

over a fixed set of features, for measuring the potency

of obfuscating transformations. In contrast to our work,

they do not provide any evaluation of their approach.

They suggest obtaining the ground truth for training and

testing a linear regression model, from security experts

who manually deobfuscate the obfuscated programs and

indicate the effort required for each program, which is far

more expensive compared to our approach of using auto-

mated attacks. We obtain our ground truth by running an

automated attack and recording the effort (measured in

execution time), needed to deobfuscate programs. More-

over, we also propose a way of selecting which features

to use for building a regression model.

In sum, Collberg’s taxonomy [15] proposes evaluating
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obfuscation using four dimensions. Most of the related

work focuses on simply measuring potency, resilience

and cost. Wu et al. [48] discuss estimating potency.

Zhuang and Freiling [50] propose using a naive Bayes

algorithm to estimate the optimal sequence of obfuscat-

ing transformations, from a performance point of view.

Kanzaki et al. [25] propose code artificiality as a measure

to estimate stealth. However, there is a gap in estimating

resilience, which we fill in this work.

3 Approach

Resilience is defined as a function of deobfuscator ef-

fort1 and programmer effort (i.e. the time spent building

the deobfuscator) [15]. However, in many cases we can

consider the effort needed to build the deobfuscator to

be negligible, because an attacker needs to invest the ef-

fort to build a deobfuscator only once and can then reuse

it or share it with others. Our general approach is il-

lustrated as a work-flow in Figure 1, where ovals depict

inputs and outputs of the software tools, which are rep-

resented by rectangles. The work-flow requires a dataset

of original (un-obfuscated) programs to be able to start

(step 0 in Figure 1). To generate these programs we have

developed a C code generator presented in Section 3.1.

Afterwards, an obfuscation tool is then used to generate

multiple obfuscated (protected) versions of each of the

original programs (step 1 in Figure 1). Subsequently, an

implementation of a deobfuscation attack (e.g. control-

flow simplification [49], secret extraction [5], etc.) is ex-

ecuted on all of the obfuscated programs, and the time

needed to successfully complete the attack for each of

the obfuscated programs is recorded (step 2 in Figure 1).

In parallel, feature values (e.g. source code metrics) are

extracted from the obfuscated programs.

Once the attack times are recorded and software fea-

tures are extracted from all programs, one could directly

use this information to build a regression model for pre-

dicting the time needed for deobfuscation. However,

some features could be irrelevant to the deobfuscation

attack and/or they could be expensive to compute. More-

over, for most regression algorithms the resource usage

during the training phase grows linearly or even expo-

nentially with the number of different features used as

predictors. Therefore, we add an extra step to our ap-

proach, namely a Feature Selection Algorithm, which se-

lects only the subset of features which are most relevant

to the attack (step 3 in Figure 1). Feature selection can be

performed in many ways. Section 3.2 briefly describes

how we approached feature selection. After the relevant

1In this paper we quantify deobfuscator effort via the time it takes to

run a successful attack on a certain hardware platform; however, note

that we could easily map time to CPU cycles, to provide a hardware

independent measure of attack effort.

Figure 1: General attack time prediction framework.

features are selected, the framework uses this subset of

features to build a regression model via a machine learn-

ing algorithm (step 4 in Figure 1).

Note that the proposed approach is not limited to ob-

fuscation and deobfuscation. One can substitute the ob-

fuscation tool in Figure 1, with any kind of software

protection mechanism (e.g. code layout randomization

[38]) and the deobfuscation tool by any known attack

implementation corresponding to that software protec-

tion mechanism (e.g. ROPeme [27]). This way the set

of relevant features and the output prediction model will

estimate the strength of the chosen protection mechanism

against the chosen attack implementation.

3.1 C Program Generator

One important challenge of the proposed approach is ob-

taining a dataset of unobfuscated (original) programs for

the input to the framework. This dataset should be large

enough to serve as a training set for the regression model

in the last step of the framework, because the quality of

the model depends on the training set. Ideally, we would

have access to a large corpus of open source programs

that contain a security check (such as a license check)

that needed to be protected against discovery and tam-

pering, as presented in [4]. For example, we could select

a collection of such programs from popular code sharing

sites such as GitHub. Unfortunately, open source pro-

grams tend not to contain the sorts of security checks

required by our study. To mitigate this we could manu-
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1 void f(int *in , int *out) {
2 long s[2], local1 = 0;
3 // Expansion phase
4 s[0] = in[0] + 762;
5 s[1] = in[0] | (9 << (s[0] % 16 | 1));
6 // Mixing phase
7 while (local1 < 2) {
8 s[1] |= (s[0] & 15) << 3;
9 s[( local1 + 1) % 2] = s[local1 ];

10 local1 += 1;
11 }
12 if (s[0] > s[1]) {
13 s[0] |= (s[1] & 31) << 3;
14 } else {
15 s[1] |= (s[0] & 15) << 3;
16 }
17 s[0] = s[1];
18 // Compression phase
19 out [0] = (s[0] << (s[1] % 8 | 1));
20 }
21 void main(int ac , char* av[]) {
22 int out;
23 f(av[1], &out);
24 if (out == 0xa199abd8)
25 printf("You win!");
26 }

Figure 2: Randomly generated program example.

ally insert a security check into a few carefully chosen

open source programs. While this would have the ad-

vantage of using real code for the study, it does not scale

for a large enough dataset. Moreover, we have noticed

that in capture the flag (CTF) competitions, attackers al-

ways seem to locate the license checking code via pat-

tern recognition or taint analysis [41], in order to reduce

the part of the code which needs to be symbolically ex-

ecuted. Afterwards, they apply symbolic execution on

the license checking code snippet, not on the whole ex-

ecutable code (e.g. built from a GitHub project), which

removes the utility of using open source projects in the

first place. Since we only want to focus on the second

part of this attack (i.e. symbolically executing the license

checking code snippet), our C program generator pro-

duces a large number of simple programs with diverse

license checking algorithms, having a variety of control-

and data-flows.

The code generator operates at the function level.

Each generated function takes an array of primitive type

(e.g. char, int) as input (i.e. in) and outputs another ar-

ray of primitive type (i.e. out), as shown in Figure 2.

Each function first expands the input array into a (typ-

ically larger) state array via a sequence of assignment

statements containing operations (e.g. arithmetic, bit-

wise, etc.) involving the inputs (lines 3-5). After input

expansion, the values in the state array are processed via

control flow statements containing various operations on

the state variables (lines 6-17). Finally, the state array is

compressed into the (typically smaller) output array via

assignment statements (lines 18-19). These three phases

represent a generic way to map data from an input do-

main to an output domain, as a license check would do.

Figure 3: RandomFunsControlStructures grammar

We implemented this approach as the RandomFuns

transformation as part of the Tigress C Diversifier/Obfus-

cator [13]. This transformation offers multiple options2

that can be tuned by the end user in order to control the

set of generated programs. However, here we only pro-

vide a description of those options which have been used

to generate the dataset of programs used in the experi-

ments from Section 4, i.e.:

• RandomFunsTypes indicates the data type of the in-

put, output and state arrays. The current implemen-

tation supports the following primitive types: char,

short, int, long, float and double.

• RandomFunsForBound indicates the type of upper

bound in a for loop. The possible types are: (1) a

constant value, (2) a value from the input array and

(3) a value from the input array modulo a constant.

• RandomFunsOperators indicates the allowable

operators in the body of the function. Possible val-

ues include: arithmetic operators (addition PlusA,

subtraction MinusA, multiplication Mult, division

Div and modulo Mod), left shift Shiftlt, right

shift Shiftrt, comparison operators (less than Lt,

greater than Gt, less or equal Le, greater or equal

Ge, equal Eq, different Ne) and bitwise operators

(and BAnd, or BOr and xor BXor).

• RandomFunsControlStructures indicates the

control structure of the function. If this option is not

set, a random structure will be chosen. The value of

this option is a string, which follows a simple gram-

mar depicted in Figure 3, where (bb n) specifies that

the structure should be a basic block with n state-

ments, where n is an integer. Note that the branch

conditions are implicit and randomly generated.

• RandomFunsPointTest adds an if -statement in the

main function, immediately after the call to the ran-

dom function (lines 24-25 in Figure 2). This if state-

ment compares the output of the random function

with a constant. If the two values are equal then

“You win!” is printed on standard output, indicating

that the random function was given an input which

led it to execute the true branch of the if -statement.

Few inputs of the random function take this path,

hence, finding such an input is equivalent to finding

a valid license key.

2For a full list of options and features visit the web-

page of RandomFuns at http://tigress.cs.arizona.edu/

transformPage/docs/randomFuns.

664    26th USENIX Security Symposium USENIX Association



The reason why we chose to implement these features is

that we suspect them to be relevant for the deobfuscation

attack presented in [5], which is used in our case study

presented in Section 4. An important limitation of the C

code generator is that it does not add system calls inside

the generated code. We plan to add this feature in future

work.

3.2 Selecting Relevant Features

Given a set of several software features (e.g. complexity

metrics), it is unclear which software features one should

aim to change (by applying various obfuscating transfor-

mations), such that the resulting obfuscated program is

more resilient against certain automated deobfuscation

attacks. A conservative approach would be to simply use

all available software features in order to build a pre-

diction model. However, this approach does not scale

for several regression algorithms, because of the large

amount of hardware resources needed and also the time

needed to train the model. There are several approaches

for feature selection published in the literature, e.g. using

genetic algorithms [8] or simulated annealing [29]. From

our experiments we noticed that such feature extraction

algorithms are time-consuming, i.e. even with datasets of

the order of tens of thousands of entries and a few dozen

features it takes weeks of computation time. We have ex-

perimented also with principal component analysis [40],

however, this approach did not yield better results for

our dataset. Therefore, in this section we describe a

few light-weight approaches for selecting a subset of fea-

tures, which are most relevant for a particular deobfusca-

tion attack. The first approach is based on computing

correlations and the second approach is based on vari-

able importance in regression models. In Section 4 we

compare these approaches by building regression mod-

els using the features selected by each approach.

3.2.1 First approach: Pearson Correlation

One intuitive way to select relevant features, first pro-

posed by Hall [22], is by computing the Pearson correla-

tion [39] between each of the software features and the

attack time. The Pearson correlation is a value in the

range [−1,1]. A positive value means that both the time

needed for deobfuscation and the software feature tend

to have the same increasing trend, while a negative value

indicates that the deobfuscation time decreases as the

software feature increases. If the absolute value of this

correlation is in the range [0.8,1] the variables are said

to be very strongly correlated. Furthermore, the range

[0.6,0.8) corresponds to strong correlation, [0.4, 0.6) to

moderate correlation, [0.2,0.4) to weak correlation, and

(0,0.2) to very weak correlation. Finally, a value of 0 in-

dicates the absence of correlation. After computing the

correlation, we sort the features by their absolute corre-

lation values in descending order and store them in a list

L. The caveat in selecting the top ten features with the

highest correlation is that several of those top ten fea-

tures may contain couples which are highly correlated

with each other. This means that we could discard one of

them and still obtain about the same prediction accuracy.

To avoid this issue, for each pair of highly correlated fea-

tures in L, we remove the one with a lower correlation to

the deobfuscation attack time. Afterwards, we select the

remaining features with the highest correlations.

3.2.2 Second approach: Variable Importance

Another way of selecting relevant features from a large

set of features is to first build a regression model (e.g. via

random forest, support vector machines, neural net-

works, etc.), using all available features and record the

prediction error. Concretely, we would:

1. Check the importance of each variable (i.e. feature)

using the technique described in [9], i.e. add random

noise by permuting values for the i-th variable and

average the difference between the prediction error

after randomization and before.

2. Repeat this for all i = {1, . . . ,n}, where n is the total

number of variables.

3. Rank the variables according to their average dif-

ference in prediction error, i.e. the higher the pre-

diction error, the more important the variable is for

the accuracy of the regression model.

Similarly, to the previous approach based on Pearson

correlation, we select those features which have the high-

est importance. In order to reduce over-fitting the re-

gression model to our specific dataset, we employ 10-

fold-cross-validation, i.e. the dataset is partitioned into

10 equally sized subsets, training is performed on 9 sub-

sets and testing is performed on the remaining subset,

for each combination of 9 subsets. Variable importance

is averaged over all of these 10 regression models. Then

the features are ranked according to their average impor-

tance, i.e. difference in prediction error when the values

of that variable are permuted. This procedure is called

recursive feature elimination [21].

4 Case-Study

This section presents a case-study in which we evaluate

the approach proposed in Section 3. We are interested in

answering the following research questions:
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RQ1 Which features are most relevant for predicting

the time needed to successfully run the symbolic-

execution attack presented in [5]?

RQ2 Which regression algorithms generate models that

can predict the attack effort with the lowest error?

Due to space constraints, in this paper we will focus

on the deobfuscation attack based on symbolic execution

presented in [5], which is equivalent to extracting a secret

license key hidden inside the code of the program via ob-

fuscation. However, in future work we plan to apply the

approach proposed in Section 3, to other types of auto-

mated attacks, such as control-flow simplification [49].

Note that even for other attacks the work-flow from Fig-

ure 1 remains unchanged. However, the attack imple-

mentation and the software features will change.

4.1 Experimental Setup

All steps of the experiment were executed on a physical

machine with a 64-bit version of Ubuntu 14.04, an In-

tel Xeon CPU having 3.5GHz frequency and 64 GB of

RAM. Subsequently we describe the tools that we have

used and how we have used them. The following subsec-

tions correspond to the steps from 0 to 4 in Figure 1.

4.1.1 Dataset of Original Programs

We have used the code generator described in Section 3.1

to generate a dataset of 4608 unobfuscated C programs.

The following is a list of parameters and their corre-

sponding values we used to generate this dataset:

• The random seed value: Seed ∈ {1,2,4} (3 values).

• The data type of variables: RandomFunsTypes ∈
{char, short, int, long} (4 values).

• The bounds of for-loops: RandomFunsForBound ∈
{constant, input, boundedInput} (3 values).

• The operators allowed in expressions: Random-

FunsOperators presented in Table 1 (4 values),

which also describes each parameter value.

• The control structures: RandomFunsControl-

Structures presented in Table 2 (16 values),

which also shows the depth of the control flow.

• The number of statements per basic block was

changed via the value of n ∈ {1,2} from Table 2.

The total number of combinations is therefore: 3 ×
4 × 3 × 4 × 16 × 2 = 4608. All other parameters

were kept to their default values, except for the

RandomFunsPointTest, which was set to true, mean-

ing that the return value of the randomly generated func-

tion is checked against a constant value and if they are

equal the program prints a distinctive message, i.e. “You

RandomFunsOperators Parameter Value Description

PlusA, MinusA, Lt, Gt, Le, Ge, Eq,

Ne

Simple arithmetic and compar-

ison operators

PlusA, MinusA, Mult, Div, Mod, Lt,

Gt, Le, Ge, Eq, Ne

Harder arithmetic and compar-

ison operators

Shiftlt, Shiftrt, BAnd, BXor, BOr,

Lt, Gt, Le, Ge, Eq, Ne

Shift, bitwise and comparison

operators

PlusA, MinusA, Mult, Div, Mod,

Lt, Gt, Le, Ge, Eq, Ne, Shiftlt,

Shiftrt, BAnd, BXor, BOr

Harder arithmetic, shift, bit-

wise and comparison operators

Table 1: Operator parameter values given to C code gen-

erator used for generating dataset.

RandomFunsControlStructures Parameter Value (see

grammar in Figure 3)

Ctrl-

flow

depth

Num.

of if -

stmts

Num.

of

Loops

(if (bb n) (bb n)) 1 1 0

(if (bb n))(if (bb n)) 1 2 0

(if (bb n))(if (bb n))(if (bb n)) 1 3 0

(if (if (bb n) (bb n)) (bb n)) 2 2 0

(if (if (bb n) (bb n)) (if (bb n) (bb n))) 2 3 0

(if (if (if (bb n) (bb n)) (bb n)) (bb n)) 3 3 0

(if (if (if (bb n) (bb n)) (if (bb n) (bb n))) (bb n)) 3 4 0

(if (if (if (bb n) (bb n)) (if (bb n) (bb n))) (if (bb n) (bb n))) 3 5 0

(for (bb n)) 1 0 1

(for (if (bb n) (bb n))) 2 1 1

(for (bb n))(for (bb n)) 1 0 2

(for (for (bb n))) 2 0 2

(for (if (if (bb n) (bb n)) (bb n))) 3 2 1

(for (if (bb n) (bb n))(if (bb n) (bb n))) 2 2 1

(for (if (if (bb n) (bb n)) (if (bb n) (bb n)))) 3 3 1

(for (for (if (bb n) (bb n)))) 3 1 2

Table 2: Control structure parameter values given to C

code generator used for generating dataset.

win!” to standard output. We have set this constant value

to be equal to the output of the randomly generated func-

tion when its input is equal to “12345”. Therefore, all of

the 4608 programs will print “You win!” on the standard

output if their input argument is “12345”. The reason for

doing this will become clear when we explain the deob-

fuscation attack in Section 4.1.3.

Since this set of 4608 programs might seem too homo-

geneous for building a regression model, we used another

set of 11 non-cryptographic hash functions3 in our exper-

iments. Similarly to the randomly generated functions,

these hash functions, process the input string passed as

an argument to the program and it compares the result

to a fixed value. In the case of the hash functions we

print a distinctive message on standard output whenever

the input argument is equal to “my license key”. Ta-

ble 3 shows the minimum, median, average and maxi-

mum values of various code metrics of only the origi-

nal (un-obfuscated) set of programs, as computed by the

Unified Code Counter (UCC) tool [37] and the total num-

ber of lines of code (LOC). Each metric was computed on

the entire C file of each program, which includes the ran-

domly generated function and the main function. Note

that by summing up the metrics on the first 6 rows we

obtain the total number of lines of code in our C pro-

grams. The important thing to note from Table 3 is that

3http://www.partow.net/programming/hashfunctions/
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Code Metric Min Med Avg Max

Calculations 10.00 27.00 34.64 152.00

Conditionals 7.00 10.00 10.02 16.00

Logical 4.00 9.00 12.17 69.00

Assignment 9.00 17.00 18.13 46.00

L1.Loops 2.00 3.00 2.85 4.00

L2.Loops 0.00 0.00 0.19 1.00

Total LOC 32.00 66.00 78.00 288.00

Average CC 2.67 3.33 3.21 4.00

Table 3: Overview of un-obfuscated randomly generated

programs.

these 4608 programs vary in size and complexity, as was

intended, in order to capture a representative range of li-

cense checking algorithms.

To increase the number of programs in this set, we

generated 275 different variants for each of the non-

cryptographic hashes using combinations of multiple ob-

fuscation transformations. The point which we aim to

show here is that even if we add a small heterogeneous

subset to our larger homogeneous set of programs, the

smaller subset is going to be predicted with the same ac-

curacy as the programs from the larger set. Table 4 shows

the minimum, median, average and maximum values of

various code metrics of only the original (un-obfuscated)

non-cryptographic hash functions, as computed by the

UCC tool and the total number of lines of code (LOC).

Each metric was computed on the entire C file of each

program, which includes the hash function and the main

function, but no comment lines or empty lines.

4.1.2 Obfuscation Tool

We have used five obfuscating transformations offered

by Tigress [13], in order to generate five obfuscated ver-

sions of each of the 4608 programs generated by our code

generator and the 11 non-cryptographic hash functions.

The obfuscating transformations we have used are:

• Opaque predicates: introduce branch conditions in

the original code, which are either always true or

always false for any possible program input. How-

ever, their truth value is difficult to learn statically.

• Literal encoding: replaces integer/string constants

by code that generates their value dynamically.

• Arithmetic encoding: replaces integer arithmetic

with more complex expressions, equivalent to the

original ones.

• Flattening: replaces the entire control-flow struc-

ture by a flat structure of basic blocks, such that it is

unclear which basic block follows which.

• Virtualization: replaces the entire code with byte-

code that has the same functional semantics and an

emulator which is able to interpret the bytecode.

Code Metric Min Med Avg Max

Calculations 4.00 6.00 6.45 12.00

Conditionals 3.00 3.00 3.27 4.00

Logical 2.00 6.00 5.36 11.00

Assignment 8.00 9.00 9.91 16.00

L1.Loops 1.00 1.00 1.00 1.00

L2.Loops 0.00 0.00 0.00 0.00

Total LOC 18.00 25.00 25.99 44.00

Average CC 2.00 2.00 2.14 2.50

Table 4: Overview of un-obfuscated simple hash pro-

grams.

We obfuscated each of the generated programs us-

ing these transformations with all the default settings

(except for opaque predicates where we set the number

of inserted predicates to 16), we obtained 5 × 4608 =
23040 obfuscated programs4. We obfuscated each of

the non-cryptographic hash functions with every possible

pair of these 5 obfuscation transformations and obtained

25×11 = 275 obfuscated programs.

Table 5 and Table 6 show the minimum, median,

average and maximum values of various code metrics

of the obfuscated set of randomly generated programs,

respectively the obfuscated programs involving simple

hash functions, as computed by the UCC tool. Each

metric was computed on the entire C file of each pro-

gram, which includes the randomly generated function,

the main function and other functions generated by the

obfuscating transformation which is applied. For in-

stance, the encode literals transformation generates an-

other function which dynamically computes the values

of constants in the code using a switch statement with

a branch for each constant. Due to this reason we also

notice that after applying the encode literals transfor-

mation to a program, its average cyclomatic complexity

(CC) is slightly reduced because this function has CC=1

and it is averaged with two other functions with higher

CCs. Comparing the numbers in these two table with

those from Tables 3 and 4, it is important to note that the

size and complexity of the obfuscated programs have in-

creased by one order of magnitude on average, w.r.t. un-

obfuscated programs.

4.1.3 Deobfuscation Tool

Since all of the original programs print a distinctive mes-

sage (i.e. “You win!”) when a particular input value

is entered, we can define the deobfuscation attack goal

as: finding an input value that leads the obfuscated pro-

gram to output “You win!”, without tampering with the

4Tigress transforms have multiple options that affect the generated

code, and makes it more or less amenable to analysis. For this study,

we avoid transformations and options that would generate obfuscated

code not analyzable by KLEE, which we use as our deobfuscation tool.
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Code Metric Min Med Avg Max

Calculations 22.00 98.00 183.36 870.00

Conditionals 4.00 21.00 105.41 504.00

Logical 4.00 14.00 63.75 458.00

Assignment 10.00 32.00 222.88 1078.00

L1.Loops 2.00 3.00 2.99 10.00

L2.Loops 0.00 0.00 0.25 12.00

Total LOC 42.00 168.00 578.64 2932.00

Average CC 1.80 5.25 15.73 66.75

Table 5: Overview of obfuscated randomly generated

programs.

Code Metric Min Med Avg Max

Calculations 18.00 27.00 127.70 350.00

Conditionals 3.00 10.00 100.81 444.00

Logical 2.00 6.00 54.45 240.00

Assignment 11.00 17.00 217.36 963.00

L1.Loops 1.00 1.00 1.02 2.00

L2.Loops 0.00 0.00 0.36 3.00

Total LOC 35.00 61.00 501.70 2002.00

Average CC 1.50 3.33 18.80 76.00

Table 6: Overview of obfuscated simple hash programs.

program. As presented in [4], this deobfuscation goal

is equivalent to finding a hidden secret key and can be

achieved by employing an automated test case genera-

tor. A state of the art approach for test case generation

is called dynamic symbolic execution (often it is simply

called symbolic execution). Such an approach is imple-

mented by several free and open source software tools

such as KLEE [10], angr [44], etc. The first step of

symbolic execution is to mark a subset of program data

(e.g. variables) as symbolic, which means that they can

take any value in the range of its type. Afterwards, the

program is interpreted and whenever a symbolic value

is involved in an instruction, its range is constrained ac-

cordingly. Whenever a branch based on a symbolic value

is encountered, symbolic execution forks the state of the

program into two different states corresponding to each

of the two possible truth values of the branch. The ranges

of the symbolic variable in these two forked states are

disjoint. This leads to different constraints on symbolic

variables for different program paths. The symbolic ex-

ecution engine sends these constraints to an SMT solver,

which tries to find a concrete set of values (for the sym-

bolic variables), which satisfy the constraints. Giving the

output of the SMT solver as input to the program will

lead the execution to the path corresponding to that con-

straint.

Since we have the C source code for the obfuscated

programs, we chose to use KLEE as a test case genera-

tor in this study. We ran KLEE with a symbolic argu-

ment length of 5 characters, on all of the un-obfuscated

and obfuscated programs generated by our code gen-

erator, for 10 times each. All of the symbolic execu-

tions successfully generated a test case where the in-

put was “12345”, which is the input needed to achieve

the attacker goal. Similarly we ran KLEE with a sym-

bolic argument length of 16 characters, on all of the un-

obfuscated and obfuscated non-cryptographic hash func-

tions, for 10 times each. Again the correct test cases were

generated on all symbolic executions, but this time the

input was “my license key”. Note that this is only one

way to attack an obfuscated program, and that it does not

produce a simplified version of the obfuscated code as in

[49]. Rather, it extracts a hidden license key value from

the obfuscated code. We computed the mean (M) and the

standard deviation (SD) of the reported times across all

the 10 runs of KLEE and obtained that 83% of the pro-

grams have a relative standard deviation (RSD = SD/M)

under 0.25 and 94% have RSD ≤ 0.50. This means that

the difference between multiple runs of KLEE on the

same program is small.

4.1.4 Software Feature Extraction Tools

Many papers [32, 43, 1, 4] suggest that the complexity of

branch conditions is a program characteristic with high

impact on symbolic execution. However, these papers

do not clearly indicate how this complexity should be

measured. One way to do this is by first converting the

C program into a boolean satisfiability problem (SAT in-

stance), and then extracting features from this SAT in-

stance. There are several tools that can convert a C pro-

gram into a SAT instance, e.g. the C bounded model

checker (CBMC) [12] or the low-level bounded model

checker (LLBMC) [31], etc. However, the drawback of

these tools is that the generated SAT instances may be as

large as 1GBs even for programs containing under 1000

lines of code, because they are not optimized. Hence, for

our dataset, the generated SAT instances would require

somewhere in the order of 10TBs of data and several

weeks of computational power, which is prohibitively ex-

pensive.

Instead, we took a faster alternative approach for ob-

taining an optimized SAT instance from a C program,

which we describe next. KLEE generates a satisfiability

modulo theories (SMT) instance for each execution path

of the C program. We selected the SMT instance cor-

responding to the difficult execution path that prints out

the distinctive message on standard output5. These SMT

5Note that it is not necessary to execute KLEE to obtain the SMT

instance corresponding to the difficult execution path. The developer

knows the correct license key, therefore s/he can give the correct license

key and record the instruction trace of the execution. Afterwards, the

developer can substitute the constant input argument in the trace, with

a symbolic input and then extract the path constraint by combining all

expressions in the trace. This path constraint does not need to be solved

by the SMT solver, but simply converted to SAT.
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instances (corresponding to the difficult path), were the

most time-consuming to solve by KLEE’s SMT solver,

STP [19]. Many SMT solvers, including Microsoft’s

Z3 [18], internally convert SMT instances to SAT in-

stances in order to solve them faster. Therefore, we mod-

ified the source code of Z3 to output the internal SAT

instance, which we saved in separate files for each of

the programs in our dataset. For extracting features from

these SAT instances we used SATGraf [36], which com-

putes graph metrics for SAT instances, where each node

represents a variable and there is an edge between vari-

ables if they appear in the same clause. SATGraf com-

putes features such as the number of community struc-

tures in the graph, their modularity (Q value), and also

the minimum, maximum, mean and standard deviation

of nodes and edges, inside and between communities.

Such features have been shown to be correlated with

the difficulty of solving SAT instances [35]. Therefore,

since symbolic execution includes many queries to an

SMT/SAT solver, as shown in [4], these features are ex-

pected to be good predictors of the time needed for a

symbolic execution based deobfuscation attack. In sum,

we transform the path that corresponds to a successful

deobfuscation attack into a SAT instance (via an SMT

instance), and then compute characteristics of this for-

mula, to be used as features for predicting the effort of

deobfuscating the program.

For computing source code features often used in soft-

ware engineering, on both the original and obfuscated

programs, we used the Unified Code Counter (UCC)

tool [37]. This tool outputs a variety of code metrics in-

cluding three variations of the McCabe cyclomatic com-

plexity, their average and the number of: calculations,

conditional operations, assignments, logical operations,

loops at three different nesting levels, pointer opera-

tions, mathematical operations, logarithmic operations

and trigonometric operations. For the programs in our

dataset the last four metrics are all zeros, therefore, in

our experiments we only used the other eleven metrics.

Additionally, we also propose using four other program

features, namely: the execution time of the program, the

maximum RAM usage of the program, the compiled pro-

gram file size and the type of obfuscating transformation.

In total we have 64 features out of which 49 are SAT

features which characterize the complexity of the con-

straints on symbolic variables and 15 are program fea-

tures which characterize the structure and size of the

code. In the following we show that not all of these fea-

tures are needed for good prediction results.
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Figure 4: RF models with different feature subsets.

4.1.5 Regression Algorithms

For the purpose of regression we have used the R soft-

ware environment6 for statistical computing. R provides

several software packages for regression algorithms out

of which we used e1071, randomForest, rgp and h2o:

• The “e1071” package for regression via the support

vector machine (SVM) algorithm.

• The “randomForest” package for regression via the

random forest (RF) algorithm.

• The “rgp” package for regression via genetic pro-

gramming (GP).

• The “h2o” package for regression via neural net-

works (NNs).

4.2 Feature Selection Results

This section presents the results for the Feature Selection

Algorithms presented in Section 3.2. However, before se-

lecting the most relevant features, we identify how many

features (predictor variables) are needed to get good pre-

diction results. For this purpose we performed a 10-fold-

cross validation with linear and random forest (RF) re-

gression models using all combinations of 5, 10 and 15

metrics, as well as a model with all metrics. The results

in Figure 4 show that using 15 variables is enough to ob-

tain an RF model with root-mean-squared-error (RMSE)

values which are as good as those from RF models built

using all variables. Similar results were obtained for lin-

ear models, except that the overall RMSE was higher

w.r.t. that of the RF models. Therefore, in the experi-

ments presented in the following sections, we will only

select the top best 15 features in both of the two ap-

proaches described in Section 3.2.

4.2.1 First approach: Pearson Correlation

After employing the algorithm described in Sec-

tion 3.2.1, we were left with a set of 25 features,

with their Pearson correlation coefficients ranging from

6https://www.r-project.org/
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Figure 5: Top 15 features via first approach.

0.4523 to -0.0302. The top 15 metrics in this range

are shown in Figure 5. The strongest Pearson correla-

tion of the time needed for running the deobfuscation

attack is with the average size of clauses in the SAT in-

stance (mean clause), followed by: the average number

of times any one variable is used (meanvar), the stan-

dard deviation of the ratio of inter to intra community

edges (sdedgeratio), the average number of intra com-

munity edges (meanintra), the average number of times

a clause with the same variable (but different literals)

is repeated (mean reused), the average community size

(meancom), the number of unique edges (unique edges),

the number of variables (vars), the standard deviation

of the number of inter community edges (sdinter), the

maximum number of distinct communities any one com-

munity links to (max community), the number of com-

munities detected with the online community detection

algorithm (ol coms), the maximum ratio of inter to in-

tra community edges within any community (maxedger-

atio), the maximum number of inter community edges

(maxinter), the maximum number of edges in a commu-

nity (max total) and finally the type of obfuscation trans-

formation employed.

None of the previous features are very strongly cor-

related to deobfuscation time. The first three features

are moderately correlated, the following ten features are

weakly correlated and finally the last two features are

very weakly correlated. However, notice that the top

fourteen features are all SAT features, and none are code

metrics from the UCC tool or program features such as

execution time, memory usage or file size.

4.2.2 Second approach: Variable Importance

To rank our features according to variable importance

we performed recursive feature elimination via random

forests, as indicated in Section 3.2.2. Figure 6 shows

the top 15 features sorted by their variable importance.
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Figure 6: Top 15 features via second approach.

The features selected using this approach are quite dif-

ferent from those selected in Section 4.2.1. The com-

mon features between these two approaches are: sdinter,

ol coms, sdedgeratio, meancom and meanintra. The first

two common features are ranked 2nd and 3rd according

to variable importance, however, the most important fea-

ture w.r.t. variable importance is the weight of the graph

(weight), computed as the sum of positive literals mi-

nus the sum of negative literals. The 4th most important

variable in Figure 6 is the average number of inter com-

munity edges (meaninter), followed by: sdedgeratio,

meancom, meanintra (see descriptions of these 3 features

in Section 4.2.1), the standard deviation of community

sizes (sdcom), the standard deviation of intra community

edges (sdintra), the modularity of the SAT graph struc-

ture (ol q), the overall ratio of inter to intra community

edges (edgeratio), the category of the McCabe cyclo-

matic complexity [30] (Risk), the number of outer-loops

(L1.Loops), the size of the longest clause (max clause)

and the number of communities that have the maximum

number of inter community edges (num max inter).

Similarly, to the first approach, the majority of se-

lected features are SAT features. The only two features

which are not SAT features are Risk and L1.Loops which

are computed by the UCC tool. The number of loops was

indeed indicated also in [4] as being an important fea-

ture. The Risk has four possible values depending on the

value of the cyclomatic complexity (CC), i.e. low if CC

∈ [1,10], moderate if CC ∈ [11,20], high if CC ∈ [21,50]
and very high if CC is above 50. CC gives a measure

of the complexity of the branching structure in programs

(including if-statements, loops and jumps). However, it

is remarkable that the CC value was ranked lower than

the Risk.
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Figure 7: Graph representation of SAT instance corre-

sponding to an MD5 hash with 27 rounds. Solving this

instance takes approximately 25 seconds on our testbed.

Figure 8: Graph representation of SAT instance corre-

sponding to a program whose symbolic execution time is

under 1 second.

4.2.3 Insights from Feature Selection Results

SAT features are important for symbolic execution, be-

cause most of the time of the attack is spent waiting for

the SAT solver to find solutions for path constraints [4].

Taking a closer look at the common SAT features of both

feature selection approaches, we can characterize those

SAT instances, which are harder to solve. The graph

representation of such an instance has a large number of

balanced community structures, i.e. a similar number of

intra- and inter-community edges. On the other hand,

easy to solve instances tend to have established com-

munity structures, i.e. many more intra-community, than

inter-community edges. To check this observation, we

downloaded the Mironov-Zhang [32] and the Li-Ye [28]

benchmark suites for SAT solvers, containing solvable

versions of more realistic hash functions such as MD5

and SHA. All of these instances had balanced commu-

nity structures. For example, Figure 7 illustrates the

graph representation of the SAT instance7 of the MD5-

27-4 hash function of the Li-Ye benchmark suite[28]

proposed during the 2014 SAT Competition. It is visi-

ble – from the number of yellow dots – that this graph

has a high number of variables. More importantly it

is also visible that one cannot easily distinguish graph

community structures, because they are relatively small

and well connected with other communities. This kind

of structure is hard to solve, because each assignment of

a variable has a large number of connections and there-

fore ramifications inside the graph at the time when unit

propagation is performed by the SAT solver. However,

note that if the graph is fully connected, then it is easy to

solve. Therefore, there is a fine line between having too

many connections and too few, where the difficulty of

SAT instances increases dramatically. This last observa-

tion is similar to the constrainedness of search employed

by Gent et al. [20], when analyzing the likelihood of find-

ing solutions to different instances of the same search

problem. This makes sense since a SAT solver is execut-

ing a search when it is trying to solve a SAT instance.

On the other hand, many of our randomly generated

C programs which were fast to deobfuscate, had estab-

lished community structures. For example, Figure 8 il-

lustrates the graph representation of a program generated

using our C code generator. This program was generated

with the following parameter values:

• RandomFunsTypes was set to int.

• RandomFunsForBound was set to a constant value.

• RandomFunsOperators was set to Shiftlt,

Shiftrt, Lt, Gt, Le, Ge, Eq, Ne, BAnd, BOr and

BXor.

• RandomFunsControlStructures was set to (if (if

(if (bb n) (bb n)) (if (bb n) (bb n))) (if (bb n) (bb n))).

• n = 1.

• RandomFunsPointTest was set to true.

Given these parameter values, this instance is expected

to be fast to solve, because it does not involve any loops

dependent on symbolic inputs and it only involves logical

and bitwise operators.

7These graph representations were generated using the SATGraf

tool [36].
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Figure 9: Graph representation of SAT instance corre-

sponding to a non-cryptographic hash function which is

solved in about 7.5 seconds.

Figure 10: Graph representation of SAT instance corre-

sponding to same non-cryptographic hash function from

Figure 9, after being obfuscated with virtualization and

subsequently control-flow flattening. This instance is

solved in about 438 seconds.

In this context of representing SAT instances as

graphs, it is interesting to note the effect of obfuscation

transformations on SAT instances. For instance, Figure 9

illustrates the SAT instance of a non-obfuscated, non-

cryptographic hash function from our dataset. The com-

munity structures of this hash function are established,

hence, the instance can be solved in about 7.5 seconds.

However, after applying two layers of obfuscation, first

using the virtualization and then the flattening, trans-

forms the SAT instance of this program into the one illus-

trated in Figure 10. This instance, has a balanced com-

munity structure, hence, slower to solve (438 seconds)

and shares a resemblance to the MD5 instance from Fig-

ure 7. We have also noticed that the arithmetic encoding

transformation has this effect on SAT instances. How-

ever, the opaque predicate and literal encoding alone do

not have such an effect.

As a conclusion of this section we observe that bal-

anced community structures translate to a high diffusion

of the symbolic input to output bits, i.e. affecting any bit

of the input license key will affect the result of the output.

This is the case for collision-resistant hash functions, as

well as the effect of obfuscation transformations like vir-

tualization, flattening and arithmetic encoding.

4.3 Regression Results

For each of the regression algorithms presented next,

we have used several different configuration parameters.

Due to space limitations, we only present the configu-

ration parameters which gave the best results. We ran-

domly shuffled the programs in our 2 datasets of pro-

grams into one single dataset and performed 10-fold

cross-validation for each experiment. To interpret the

root-mean-squared-error (RMSE) we normalize it by the

range between the fastest and slowest times needed to

run the deobfuscation attack on any program from our

dataset. Since our dataset contains outliers (i.e. either

very high and very low deobfuscation times), the nor-

malized RMSE (NRMSE) values are very low for all al-

gorithms, regardless of the selected feature subsets, as

shown in Table 7. This could be misinterpreted as ex-

tremely good prediction accuracy regardless of the re-

gression algorithm and feature set. However, we pro-

vide a clearer picture of the accuracy of each regression

model by computing the NRMSEs after removing 2%

and 5% of outliers from both the highest and the lowest

deobfuscation times in the dataset. This means that in

total we remove 4%, respectively 10% of outliers. In-

stead of showing just the numeric values of the NRMSE

for each these three cases (0%, 4% and 10% of outliers

removed), we show cumulative distribution functions of

the relative (normalized) error in the form of line plots,

e.g. Figure 11. These line plots show the maximum and

the median errors for all the three cases, where the x-

axis represents the percentage of programs for which the

relative error (indicated on the y-axis) is lower than the

plotted value.

Note that in addition to the following regression al-

gorithms we have also employed both linear models and

generalized linear models [34]. However, the results of

the models generated by these algorithms were either

much worse compared to the models presented in the fol-

lowing, or the models did not converge after 24 hours.
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SVM RF GP NN

UCC (11 features) 0.019 0.016 0.018 0.018

Pearson (15 features) 0.017 0.013 0.015 0.015

Var. Importance (15 features) 0.019 0.013 0.015 0.015

Table 7: The NRMSE between model prediction and

ground truth (average over NRMSE of 10 models)
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Figure 11: Relative prediction error of RF model.

4.3.1 Random Forests (RFs)

Random forests (RFs) were proposed by Breiman [9] as

an extension of random feature extraction, by including

the idea of “bagging”, i.e. computing a mean of the pre-

diction of all random decision trees. In our experiments

we constructed a RF containing 500 decision trees.

Figure 11 shows the maximum and median relative er-

rors for 0%, 4% and 10% of outliers removed. As more

outliers are removed the relative error increases due to

a decrease in the range of deobfuscation times in the

dataset. However, even when 10% of outliers are re-

moved, the maximum error is under 17% and the median

error is less than 4% for 90% of the programs, which

seems acceptable for most use cases.

Note that the model in Figure 11 was built using the

15 features selected via variable importance, presented

in Section 4.2.2. We chose to show the results from the

model built using these features because, they are better

than those produced by models built using other subsets

of features. As we can see from Figure 12, the relative er-

ror values when building models with UCC metrics only

and with the Pearson correlation approach, give worse re-

sults in terms of both maximum and median error rates.

4.3.2 Support Vector Machines (SVMs)

Support vector machines (SVMs) were proposed by

Cortes and Vapnik [16] to classify datasets having a high

number of dimensions, which are not linearly separable.

Figure 13 shows the relative errors for the SVM model

built using the features selected via the second approach

(see Section 4.2.2). The accuracy of this model is lower

than the RF model from Figure 11, i.e. the maximum rel-

R
e
la

ti
ve

 e
rr

o
r

Percentage of programs

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

Type of error

Maximum error with UCC metrics

Maximum error with Pearson correlation metrics

Maximum error with variable importance metrics

Median error with UCC metrics

Median error with Pearson correlation metrics

Median error with variable importance metrics

Figure 12: RF models with different feature sets.
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Figure 13: Relative prediction error of SVM model.

ative error is just below 35% for 90% of the programs,

when we remove 10% of the outliers. However, the me-

dian error is less than 7% in the same circumstances. The

reason why SVM performs worse than RF is due to the

bagging technique applied by RF, whereas SVM uses a

single non-linear function.

Again we chose to show the SVM model built us-

ing the features selected via variable importance in Fig-

ure 13, because, as we can see from Figure 14, the

maximum and median error rates for this model are

much lower than the SVM models built using only UCC

metrics or the features selected via Pearson correlation.

However, note that the maximum error of the model built

using variable importance surpasses that of the other two

models around the 90% mark on the horizontal axis. This

means that for 10% of the programs the maximum error

of the model built using the features selected by variable

importance, is higher that the error of the other two mod-

els. However, note that the median error is around 10%

lower in the same circumstances.

4.3.3 Genetic Programming (GP)

Given the set of all code features as a set of input vari-

ables, GP [24] searches for models that combine the in-

put variables using a given set of functions used to pro-

cess and combine these variables, i.e. addition, multipli-

cation, subtraction, logarithm, sinus and tangent in our

experiments. GP aims to optimize the models such that a
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Figure 14: SVM models with different feature sets.
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Figure 15: Relative prediction error of GP model.

given fitness function is minimized. For our experiments,

we used the root-mean-square error (RMSE) between

the actual time needed for deobfuscation and the time

predicted by the model, as a fitness function. The output

of GP is one of the generated models with the best fitness

value. In our case this member is a function of the code

features, which has the smallest error in predicting the

time needed to execute the deobfuscation attack on every

program. For instance, the best GP model built using the

features selected via variable importance is presented in

equation 1:

time = (edgeratio+ cos(ol coms)

+ cos(cos(sdcom+num max inter)+L1.Loops))

∗ (sdinter∗ (sdedgeratio− sin(meanintra∗−1.27)))

∗ (sdedgeratio− sin(meanintra∗−1.27))

∗ (1.03− sin(0.04∗ sdinter))

∗ sdedgeratio+10.2

(1)

Note that only seven distinct features were selected by

the GP algorithm for this model, from the subset of 15

features. Figure 15 shows the maximum and median

error values for the GP model from equation 1. Note

that the maximum and median error levels for the dataset

where 10% of outliers are removed, are 55%, respec-

tively 19% for 90% of the programs. This error rate is

much higher than both RFs and SVMs and is due to the

fact that the GP model is a single equation.
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Figure 16: Relative prediction error of NN model.

4.3.4 Neural Networks (NNs)

Multi-layer neural networks (NNs) were introduced by

Werbos [47] in the 1970s. Recently, the interest in NNs

has been revived due to the increase in computational re-

sources available in the cloud and in graphical processing

units. A neural network has three characteristics. Firstly,

the architecture which describes the number of neuron

layers, the size of each layer and connection between the

neuron layers. In our experiments we used a NN with five

hidden layers each containing 200 neurons. The input

layer consists of the set of code features and the output

of the NN is a single value that predicts the time needed

to run the deobfuscation attack on a program. Secondly,

the activation function which is applied to the weighted

inputs of each neuron. This function can be as simple as

a binary function, however it can also be continuous such

as a Sigmoid function or a hyperbolic tangent. In our ex-

periments we use a ramp function. Thirdly, the learning

rule which indicates how the weights of a neuron’s input

connections are updated. In our experiment we used the

Nesterov Accelerated Gradient as a learning rule.

Figure 16 shows the maximum and median error of

the NN model built using all metrics. Note that in the

case of NNs it is feasible to use all metrics without incur-

ring large memory usage penalties such as is the case for

SVMs. The performance of this model is better than the

SVM and GP models, but not better than the RF model.

4.4 Summary of Results

Based on the results presented above, we answer the re-

search questions elicited in the beginning of Section 4.

Firstly, in Figure 4 we have seen that given our large set

of 64 program features, using only 15 is enough to obtain

regression models with RMSEs as low as the regression

models where all the features are used. From Figures 5

and 6 we have seen that both approaches to feature selec-

tion ranked SAT features above code metrics commonly

used to measure resilience, namely cyclomatic complex-

ity or the size of the program. This means that the most
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periments we have found that the size of the program

is very weakly correlated with the time needed to run

the deobfuscation attack based on symbolic execution.

We show that the prediction accuracy of our best RF

model (from Figure 11) is high even when including a

small non-artificial dataset of programs containing non-

cryptographic hash functions. Figure 19 shows the pre-

diction error of our best RF model (trained using 10-fold-

cross-validation on both datasets), for the samples in the

smaller dataset alone, has similar levels to the prediction

error of the entire dataset.

We also performed a reality check, i.e. we verified that

the SAT features we identified are also relevant for the re-

alistic hash functions from the Mironov-Zhang [32] and

the Li-Ye [28] benchmark suites for SAT solvers. We

selected the top 10 SAT metrics from Section 4.2 and

trained a random forest (RF) model using the SAT in-

stances corresponding to the C programs in our obfus-

cated dataset of randomly generated programs and non-

cryptographic hash functions. Afterwards, we applied

this RF model to a set of more realistic hash functions

from the Mironov-Zhang [32] and the Li-Ye [28] bench-

mark suites for SAT solvers, containing solvable versions

of more realistic hash functions such as MD5 and SHA.

Table 8 shows the results obtained from applying the RF

model to the hash functions, which were solvable by the

minisat solver used by STP (KLEE’s SMT solver), on

our machine. Note that the Li-Ye [28], suite contains

many other instances of MD5 with more rounds, how-

ever, those could not be solved within a 10 hour time

limit on our test machine. The last column of Table 8

gives the ratio between the predicted and the actual time

needed to solve each instance. Except for the mizh-md5-

47-4 and mizh-md5-47-5 SAT instances, which are the

most over- and respectively under-estimated, the rest of

the predictions are quite encouraging, given that we have

not trained the RF model with any such realistic SAT in-

stances. Therefore, we obtained encouraging results with

a median prediction error of 52%, which is quite remark-

able given the fact that our model was not trained using

these realistic instances.

5 Conclusions

This paper presents a general approach towards build-

ing prediction models that can estimate the effort needed

by an automated deobfuscation attack. We evaluated our

approach using a dataset of programs produced by our C

code generator. For programs that our generated dataset

is representative, features such as the complexity of path

constraints (measured via SAT features), are more im-

portant than cyclomatic complexity, size of the program,

number of conditional operations, etc. With a median er-

ror of 4% our best model can accurately predict the time

Instance Name Solver(s) Predicted(s) Predicted
Solver

MD5-27-4 25.37 71.56 2.82

mizh-md5-47-3 681.29 950.43 1.39

mizh-md5-47-4 235.53 1069.19 4.53

mizh-md5-47-5 1832.96 437.98 0.23

mizh-md5-48-2 445.19 523.70 1.17

mizh-md5-48-5 227.05 644.38 2.83

mizh-sha0-35-2 330.48 158.57 0.47

mizh-sha0-35-3 139.93 213.03 1.52

mizh-sha0-35-4 97.62 214.61 2.19

mizh-sha0-35-5 164.71 193.49 1.17

mizh-sha0-36-2 85.44 222.07 2.59

Table 8: Prediction results of realistic hash functions via

RF model trained with SAT features from Section 4.2.

The solver and predicted time are given in seconds.

it takes to deobfuscate a program using a symbolic exe-

cution based attack, for programs in our dataset. More-

over, we have also obtained encouraging results with re-

alistic hash functions such as MD5 and SHA instances

used in SAT competitions.

Note however, that our framework is not specific to

symbolic execution and can be used for other attacks,

other programs and other obfuscators. Finally, we com-

pared different regression algorithms both in terms of

prediction error and memory consumption and conclude

that the choice of regression algorithm is less important

than the choice of features when it comes to predicting

the effort needed by the attack. However, we obtained

the lowest maximum error using a random forest model,

built with features selected using variable importance. In

terms of memory usage genetic algorithms and neural

networks have a lower memory footprint, however their

training times may be much higher.

In future work we plan to use datasets consisting

of real-world programs, additional obfuscation tools

and deobfuscation attacks. We believe that obtain-

ing representative datasets of programs would also be

of paramount importance for benchmarking both new

and existing obfuscation and deobfuscation techniques.

Therefore, we believe this area of research needs much

more work, since it could be a driving factor for the field

of software protection.

Another avenue for future work is to employ other ma-

chine learning techniques in order to derive better pre-

diction models for deobfuscation attacks. An interesting

idea in this direction is deriving attack resilience features

using deep neural networks. However, such a task would

also require a set of representative un-obfuscated pro-

grams, which stresses the importance of future work in

this direction.
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7 Availability

Our code generator is part of the Tigress C Diversi-

fier/Obfuscator tool. Binaries are freely available at:

http://tigress.cs.arizona.edu/

transformPage/docs/randomFuns

Source code is available to researchers on request. Our

dataset of original (unobfuscated) programs, as well as

all scripts and auxiliary software used to run our experi-

ments, are available at:

https://github.com/tum-i22/

obfuscation-benchmarks/
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Abstract

All major web browsers support browser extensions to
add new features and extend their functionalities. Never-
theless, browser extensions have been the target of sev-
eral attacks due to their tight relation with the browser
environment. As a consequence, extensions have been
abused in the past for malicious tasks such as private in-
formation gathering, browsing history retrieval, or pass-
words theft — leading to a number of severe targeted
attacks.

Even though no protection techniques existed in the
past to secure extensions, all browsers now implement
defensive countermeasures that, in theory, protect ex-
tensions and their resources from third party access. In
this paper, we present two attacks that bypass these con-
trol techniques in every major browser family, enabling
enumeration attacks against the list of installed exten-
sions. In particular, we present a timing side-channel
attack against the access control settings and an attack
that takes advantage of poor programming practice, af-
fecting a large number of Safari extensions. Due to the
harmful nature of our findings, we also discuss possible
countermeasures against our own attacks and reported
our findings and countermeasures to the different actors
involved. We believe that our study can help secure cur-
rent implementations and help developers to avoid simi-
lar attacks in the future.

1 Introduction

Browser extensions are the most popular technique cur-
rently available to extend the functionalities of modern
web browsers. Extensions exist for most of the browser
families, including major web browsers such as Firefox,
Chrome, Safari, and Opera. They can be easily down-
loaded and installed by users from a central repository
(such as the Chrome Web Store [15] or the Firefox Add
Ons [26]).

Unfortunately, extensions are also prone to misuse. In
fact, due to their close relationship to the browser envi-
ronment, they can be abused by an adversary in order
to gather a wide range of private information — such
as cookies, browsing history, system-level data, or even
user passwords [7]. Due to this raising concern, the
amount of research studying the security implications
and vulnerabilities of browser extensions has rapidly in-
creased in the last years [3, 4, 8, 10, 18, 21, 25].

When browser extensions were first introduced, web-
sites were able to access all their local resources. As a
consequence, malicious actors started to use that freely-
accessible data to enumerate the extensions a user has
installed in her system, or even to exploit vulnerabilities
within installed extensions [23]. To mitigate this increas-
ing threat, Firefox introduced the contentaccessible

flag and Chrome a new manifest version [16] to imple-
ment some form of access control over the extension re-
sources. In the rest of the paper we will refer to these
security measures as access control settings. Developers
of Safari decided to adopt a different mechanism, which
consists in randomizing at runtime part of the extension
URI [2]. We will refer to this second class of protection
technique as URI randomization.

Information of the web browser has been used for a
number of malicious or “questionable” purposes. For
example, Panopticlick [12] creates a unique browser fin-
gerprint using the installed fonts, among other features.
PluginDetect [14] retrieves instead the list of plugins in-
stalled in the browser. Even worse, this technique has
recently been used in two reported fingerprinting-driven
malware campaigns [33, 37].

Thanks to the existing browser security countermea-
sures described above, so far extensions were protected
against these fingerprinting techniques. Two very simple
enumeration attacks were recently proposed to retrieve a
small number of installed extensions in the browsers that
adopted access control settings [6,20]. These techniques
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took advantage of accessible resources of the extensions
present in Chrome and Firefox to identify a small num-
ber of popular extensions. In addition, XHOUND [34]
was also recently proposed to enumerate extensions and
perform fingerprinting, by measuring the changes in the
DOM of the website.

In this paper we present the first in-depth security
study of all the extensions resource control policies
used by modern browsers. Our analysis show that all
browsers families that currently support extensions are
vulnerable to some form of enumeration attack. In par-
ticular, while the two design choices (i.e., access control
settings or URI randomization) are both secure from a
theoretical point of view, their practical implementation
suffers from many different problems.

We discuss two offensive techniques to subvert these
control policies, one based on a timing side-channel at-
tack and one based on an involuntary leakage of the ran-
dom URI token that affects many extensions. At the time
of writing, these attacks undermine the extension secu-
rity of all browsers. We also discuss a set of attacks based
on these techniques, which allow third-parties to perform
precise user fingerprinting, or to perform various types
of targeted attacks, performing proof-of-concept tests of
some of them.

We already reported the discovered problems to the
involved browsers and extensions developers and we are
currently discussing with them about possible fixes.

In summary, this paper makes the following contribu-
tions:

• We propose the first time-based extension enumer-
ation attack that can retrieve the complete list of ex-
tensions installed in browsers that use access con-
trol settings. This method largely outperforms any
previous extension fingerprinting methodology pre-
sented to date.

• We design a static analysis tool for Safari exten-
sions, and use it to flag hundreds of potentially
vulnerable cases in which the developers leaked
the random extension URI. Through an exhaustive
manual code analysis on a subset of the extensions,
we confirm that this is indeed a very widespread
problem affecting a large fraction of all Safari ex-
tensions.

• We show that browsers extension resources control
policies are very difficult to properly design and im-
plement, and they are prone to subtle errors that
undermine their security. Our research led to nu-
merous discussions with the developers of all major
browsers and extensions, including the ones vulner-
able to our attacks and the ones that are still in the

design or testing phase. As a result, our study is
helping to secure all browsers against these com-
mon errors.

The remainder of this paper is organized as follows.
§2 provides the background on extension control meth-
ods. §3 describes the problems and two different attacks
to subvert them. §4 describes the impact of the prob-
lems in a broad set of scenarios. We then discuss possi-
ble countermeasures and summarize the outcome of our
research in §5. Finally, §6 discusses related work and §7
concludes the paper.

2 Background

All browsers that support extensions implement some
form of protection to prevent arbitrary websites from
enumerating the installed extensions and freely accessing
their resources. After an extensive survey of several tra-
ditional and mobile browser families, we identified two
main classes of protection mechanisms currently in use:
access control settings (§2.1), and URI randomization
(§2.2).

2.1 Access Control Settings
The most popular approach to protect extension re-
sources from unauthorized accesses consists in letting
the extensions themselves specify which resources they
need to be kept private and which can be made publicly
available. All browsers that adopt this solution rely on
a set of configuration options included in a manifest file
that is shipped with each extension. For security rea-
sons, by default all the resources are considered private.
However, developers can specify in the manifest a list of
accessible resources.

This solution is currently used by all browsers based
on Chromium, all the ones based on Firefox and Mi-
crosoft Edge.

Chromium family
The Chromium family includes all versions of
Chromium (such as Google Chrome), and all browsers
based on the Chromium engine (e.g., Opera, Comodo
Dragon, and the Yandex browser).

Extensions in this family are written using a combi-
nation of HTML, CSS, and JavaScript [17]. They are
not required to use any form of native code, as it is in-
stead the case for plugins or other forms of browser ex-
tensions. Each Chromium extension includes a JSON
file called manifest.json that defines a set of proper-
ties such as the extension name, description, and version
number (see Figure 1 for an example of manifest). The

680    26th USENIX Security Symposium USENIX Association



"name": "description",

"example": "Example extension",

"version": "1.0",

"browser_action": {

"default_icon": "icon.png",

"default_popup": "popup.html"},

"permissions": [

"activeTab",

"https://ajax.googleapis.com/"],

"web_accessible_resources": [

"images/*.png",

"style/double-rainbow.css",

"script/double-rainbow.js",

"script/main.js",

"templates/*"], ...

Figure 1: Snippet of a Chrome Extension
manifest.json file.

manifest is used by the browser to know the functionality
offered by the extension and the permissions required to
perform those actions [16].

In the first version of the manifest, there was no re-
striction over the resources of the extensions accessi-
ble from third-party websites. Because of that, different
tools were released to take advantage of this weakness
to enumerate user extensions and exploit their vulnera-
bilities [23]. To mitigate this threat, Google decided to
introduce dedicated access control settings in the second
version of the manifest file. This extension uses a pa-
rameter (web accessible resources) to specify the
paths of packaged resources that can be used in the con-
text of a website. Resources are available through the
URL chrome-extension://[extID]/[path]. How-
ever, any navigation access to an extension or its re-
sources is blocked by the browser, unless the extension
resource has been previously listed as accessible in its
manifest.json. This solution was explicitly designed
to minimize the attack surface while protecting users’
privacy.

Firefox family

Firefox family extensions (or Add-ons, as they are called
in the Mozilla jargon) can add new functions to the web
browser, change its behavior, extend the GUI, or in-
teract with the content of websites. Add-ons have ac-
cess to a powerful API called XPCOM [30], that en-
ables the use of several built-in services and applications
through the XPConnect interface. In the Firefox family
(which includes for example Firefox Mobile, Iceweasel
and Pale Moon), extensions are written in a combina-
tion of JavaScript and XML User Interface Language

(XUL). Extensions are also allowed to use functionality
from third-party binaries or create their own binary com-
ponents. Recently, Mozilla changed its extension devel-
opment framework, introducing the Add-on SDK of the
JetPack project [28]. This development kit provides a
high-level API, easing the development process and ad-
dressing some of the security issues of previous Firefox
extensions.

The registration and allocation of the different exten-
sions is performed through the Chrome Registry [27]
which is also in charge of customizing user interface ele-
ments of the application window that are not in the win-
dows content area (such as toolbars, menu bars, progress
bars, or windows title bars). Each extension contains a
chrome.manifest file that specifies options related to
three main categories — content, locale, and skin — as
exemplified in the following snippet:

content ext src/content/

skin ext classic src/skin/

locale ext en-US src/locale/en-US/

content pck chrome/ext/pck contentaccessible=yes

As it was the case for Chromium extensions, origi-
nally there was no control performed to prevent exter-
nal websites from accessing the different resources of
an extension. And also in this case, developers de-
cided to solve the problem by including a new option
in the chrome.manifest (called contentaccessible

and depicted in the last line of the previous example) that
specifies which resources can be publicly shared. How-
ever, resources have a restricted access by default, unless
contentaccessible=yes is specified in the manifest.

Firefox is now developing a new way of handling Add-
ons called WebExtensions [29]. This technology is de-
signed mainly for cross-browser compatibility, support-
ing the extension API of Chromium. Porting extensions
between the two platforms will require few changes in
the code of the Add-on. The new extensions will also
use a manifest.json, including some extra data spe-
cific for Firefox (see Figure 2). In order to access the
different resources of the extension, Firefox will use the
moz-extension:// schema.

As WebExtensions are currently in an early stage we
are not including them in our tests, but we notified their
developers and we will discuss more about them in §5.

Microsoft Edge

Edge will be the first Microsoft browser to fully support
extensions. It will follow a Chrome-compatible exten-
sion model based on HTML, JavaScript and CSS. This
means that the migration process to Microsoft Edge for
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"applications": {

"gecko": {

"id": "{the-addon-id}",

"strict_min_version": "40.0.0",

"strict_max_version": "50.*"

"update_url": "https://foo/bar"

}

} ...

Figure 2: Snippet of a Firefox WebExtension manifest’s
new data.

Chrome extension developers will require minimal ef-
fort.

Beside the general web APIs, a special exten-
sion API will provide a deeper integration with the
browser, making possible to access features such as
tab and window manipulation. The manifest will
be named manifest.json and will use the same
JSON-formatted structure and general properties of
the Chromium implementation. The URL to access
the extension resources follows the ms-browser-ex-

tension://[extID]/[path] schema.
As the design is in its preliminary stages and it is not

yet fully working, we are not including it in our analysis.

2.2 URI Randomization
As Safari was one of the last major browsers to adopt ex-
tensions, its developers implemented a resource control
from the beginning to avoid enumeration or vulnerabil-
ity exploitations of installed extensions. Instead of re-
lying on settings included in a manifest file like all the
other major browsers, Apple developers adopted a URI
randomization approach. In this solution there is no dis-
tinction between private or public resources, but instead
the base URI of the extension is randomly re-generated
in each session.

Safari extensions are coded using a combination of
HTML, CSS, and JavaScript. To interact with the web
browser and the page content, a JavaScript API is pro-
vided and each extension runs within its own “sand-
box” [1]. To develop an extension, a developer has to
provide: (i) the global HTML page code, (ii) the content
(HTML, CSS, JavaScript media), (iii) the menu items
(label and images), (iv) the code of the injected scripts,
(v) the stylesheets, and (vi) the required icons.

These components are grouped into two categories:
the first including the global page and the menu items,
and the second including the content, and the injected
scripts and stylesheets. This second group cannot ac-
cess any resource within the extension folder using rel-
ative URLs as the first group does. Instead, these
extension components are required to use JavaScript

1 <script type = "text/javascript">

2 var myImage = safari.extension.baseURI +

3 "Images/paper.jpg";

4 document.body.style.cssText =

5 "background -image: url(" +myImage+ ")";

6 </script >

Figure 3: Example of background image load in CSS
using absolute URLs in Safari extension.

Request
Extension

installed?

Path 

accessible?

Case A

Send data

x time y time

x+y time

Case B

yes

yes

no

no

Figure 4: Resource accessibility control schema.

to access the randomized URI that changes each time
Safari is launched. Absolute URIs are stored in the
safari.extension.baseURI field, as shown in Fig-
ure 3.

3 Security Analysis

In the previous section we presented the two complemen-
tary approaches adopted by all major browser families to
protect the access to extension resources. The first so-
lution relies on a public resource URI, whose access is
protected by a centralized code in the browser accord-
ing to settings specified by the extension developers in a
manifest file. The second solution replaces the central-
ized check by randomizing the base URI at every execu-
tion. In this case, the extension needs to access its own
resources by using a dedicated Javascript API.

While their design is completely different, both solu-
tions provide the same security guarantees, preventing an
attacker from enumerating the installed extensions and
accessing their resources. We now examine those two
approaches in more detail and discuss two severe limita-
tions that often undermine their security. It is important
to note that these attacks can also be used in any type of
device with a browser with extension capability, such as
smartphones or smartTVs.

3.1 Timing Side-Channel on Access Con-
trol Settings Validation

As already mentioned, the vast majority of browsers
adopt a centralized method to prevent third parties from
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Figure 5: Comparison between number of iterations and errors with different CPU usages (%), .

accessing any resource of the extensions that have not
been explicitly marked as public. Therefore, when a
website tries to load a resource not present in the list of
accessible resources, the browser will block the request.
Despite the fact that, from a design point of view, this so-
lution may seem secure, we discovered that all their im-
plementations suffer from a serious problem that derives
from the fact that these browsers are required to perform
two different checks: (i) to verify if a certain extension is
installed and (ii) to access their control settings to iden-
tify if the requested resource is publicly available (see
Figure 4 for a simple logic workflow for the enforcement
process). When this two-step validation is not properly
implemented, it is prone to a timing side-channel attack
that an adversary can use to identify the actual reasons
behind a request denial: the extension is not present or
its resources are kept private. To this end, we used the
User Timing API1, implemented in every major browser,
in order to measure the performance of web applications.

As an example, an attacker can code few lines of
Javascript to measure the response time when invoking
a fake extension (refer to case A in Figure 4). For in-
stance, in Chromium the requested URI could look like
this:

chrome-extension://[fakeExtID]/[fakePath]

Then, the attacker can generate a second request to
measure the response time when requesting an exten-
sion that actually exists, but using a non-existent resource
path (case B in Figure 4):

chrome-extension://[realExtID]/[fakePath]

By comparing the two timestamps, the attacker can
easily determine whether an extension is installed or not
in the browser. Similar response times mean that the cen-
tral validation code followed the same execution path on

1https://www.w3.org/TR/user-timing/

the two requests and, therefore, the extension is not in-
stalled in the browser. Otherwise, significantly different
execution times mean that only the second test failed and,
therefore, that the requested extension is present in the
browser.

We performed an experiment in order to empirically
tune the time difference threshold and the number of cor-
rect requests required to ensure the correctness of our at-
tack. In particular, the following configuration was used:

• We configured 5 different CPU usages: 0%, 25%,
50%, 75%, and 100%. The experiment was exe-
cuted on a 2.4GHz Intel Core 2 Duo with 4 GB
RAM commodity computer.

• The attack was configured to be repeated from 1 to
10 iterations. Note that each iteration performs two
calls to the browser: one that asks for the fake ex-
tension and one that asks for the actual extension
with a fake path.

• We repeated each attack testing 500 times to avoid
any bias. In this way, we performed: 2 calls × 10
iteration configurations × 500 times × 5 CPU us-
ages, resulting in a total number of 275,000 calls.

We observed that, when the execution paths were dif-
ferent, the response times differed by more than 5%. It
is important to remark that our method exploits the pro-
portional timing difference between two different calls
rather than using a pre-computed time for a specific de-
vice. Figure 5 shows the precision across different CPU
loads and different numbers of iterations. Five iterations
were sufficient enough to achieve a 100% success rate
even under a 100% CPU usage.

Affected Browsers

We tested our timing side-channel attack on the two
browser families (Chromium-based and Firefox-based)
that use extensions access control settings.
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Table 1: Percentage extension detected by previous
methods.

Chrome Firefox Total

# Extensions Tested 10,620 10,620 21,240
% Previous Approaches 12.73% 8.17% 10.45%

% Our Approach 100.00% 100.00% 100.00%

Our experiments confirm that all versions of
Chromium are affected by this vulnerability. Browsers
such as Chrome, Opera, the browser of Yandex (largest
search engine in Russia) and the browser of Comodo
(largest issuer of SSL certificates) are included in this
group. As aforementioned, we are not including Edge
and Firefox WebExtensions because they are still in early
stages of development. However, as they follow the same
extension control mechanism as Chromium, they are also
likely to be vulnerable to our timing side-channel attack.

Surprisingly, non-WebExtensions in Firefox suffer
from a different bug that makes even easier to detect the
installed extensions. The browser raises an exception if a
webpage requests a resource for non-installed extension
(case A in Figure 4), but not in the case when the re-
source path does not exist (case B in Figure 4). While the
exception does not cause any visible effect in the page,
an attacker can simply encapsulate the invocation in a
try-catch block to distinguish between the two execu-
tion paths and reliably test for the presence of a given
extension.

Extensions Enumeration

By telling apart the two centralized checks that are part
of the extension settings validation (either because of the
side-channel or because of the different exception behav-
iors), it is possible to completely enumerate all the in-
stalled extensions. It is sufficient for an attacker to sim-
ply probe in a loop all existing extensions to precisely
enumerate the ones installed in the system.

In comparison, previous bypassing techniques [6, 20]
were only able to detect a small subset of the exist-
ing extensions. In order to precisely assess the accu-
racy improvement over these previous techniques, we
conducted an experiment on a set of 21,240 extensions.
For this test, we decided to focus on the two browsers
with the highest number of available extensions: Chrome
and Firefox (Opera also has its own extension store, but
the number of popular extensions is very low compared
with the other browsers). In the case of Chrome, exten-
sions are divided in three different groups: extensions,
apps, and games. Although one of the groups is ex-
plicitly called extensions, all of them are installed as a
chrome-extension and follow the same access control

settings model.
At the time of writing, the number of recommended

extensions in the games category (the smallest of the
three) was 3,540. To keep a balanced dataset, we there-
fore selected also the top 3,540 of the remaining two
categories, resulting in a balanced dataset of the 10,620
most recommended extensions.

For Firefox, the selection process was easier because
its store makes no distinction among different categories.
Therefore, we selected the 10,620 most popular Firefox
extensions to keep our complete dataset equally balanced
between the two browsers.

To measure the coverage of previous bypassing meth-
ods and compare it with the full coverage of our bypass
technique, we combined the methods described in [6,20].
These methods are, to the best of our knowledge, the
only ones that exist capable of enumerating extensions
by subverting access control settings. These methods are
based on checking the existence of externally accessible
resources in extensions. To test them, we analyzed the
manifest files of all extensions we downloaded, looking
for any accessible resources.

Table 1 shows the obtained coverage using previous
methods. Chrome extensions were easier to enumerate
than the ones in the Firefox store. However, the coverage
of these old methods is very low compared to the full
coverage achieved by our method.

3.2 URI Leakage

Even if URI randomization control is completely central-
ized, it strongly depends on developers to keep resources
away from any third-party access. In fact, extensions
are often used to inject additional content, controls, or
simply alert panels into a website. This newly gener-
ated content can unintentionally leak the random exten-
sion URI, thus bypassing the security control measures
and opening access to all the extension resources to any
other code running in the same page. In addition, the
leaked random URI may be used by third-parties to un-
equivocally identify the user while browsing during the
same session.

A simple example taken from the Web of Trust2 ex-
tension is shown in Figure 6. The code snippet creates
a new iframe (line #11), sets its src attribute to the
baseURI random address of the extension (line #14), and
adds the frame to the document body (line #19). As a re-
sult, any other JavaScript code running in the same page
(and therefore potentially under control of an attacker)
can retrieve the address of the injected iframe and use
it to access any resource of the extension. In fact, once
the random token is known, the browser offers no other

2https://www.mywot.com/
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1 wot.rating = {

2 toggleframe: function(id, file , style){

3 try {

4 var frame = document.getElementById(

id);

5 if (frame) {

6 frame.parentNode.removeChild(frame);

7 return true;

8 } else {

9 var body = document.

getElementsByTagName("body");

10 if (body && body.length) {

11 frame = document.createElement("

iframe");

12 if (frame) {

13 frame.src = safari.extension.

baseURI+file;

14 frame.setAttribute("id", id);

15 frame.setAttribute("style", style)

;

16 if (body [0]. appendChild(frame))

17 {return true;}

18 }

19 }

20 }

21 } catch (e) {

22 console.log("failed with"+e+"\n");}

23 return false;

24 }

Figure 6: Web Of Trust Safari extension function that
creates an iframe in the website with the baseURI ran-
dom variable as source.

security mechanism to protect the access to an extension
resources.

While this may seem like a simple bug in the extension
development, our experiments show that it is instead a
very widespread phenomenon. The entire security of the
extension access control in Safari relies on the secrecy of
the randomly generated token. However, the token is part
of the extension URI which is often used by the exten-
sions to reference public resources injected in the page.
As a result, we believe that this design choice makes it
very easy for developers to unintentionally leak the se-
cret token.

Estimating the Scale of the Problem

The Web-of-Trust example discussed above consists of a
single function of 30 lines of code, but not all the cases
are so obvious to identify without a complex static anal-
ysis of the extension.

To estimate how prevalent the problem is, we imple-
mented a prototype analyzer that reports candidate cases
of URI leakage in all Safari extensions. Our tool is based
on Esprima3 to perform a static analysis based on the Ab-

3https://github.com/jquery/esprima

file_B
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file_C

(function_C)

file_A

(function_A)

baseURI

file_D

(function_D)

injection

calls
calls

calls

Figure 7: Simplified example schema of an extension
that leaks the baseURI.

stract Syntax Trees (ASTs) of all the different JavaScript
components of the extension under analysis. Source and
sinks are located by just looking for the specific code in
the nodes of the tree, while the information flow is com-
puted by following the different pieces of code that actu-
ally have access to the data along the different execution
paths. In particular, the analysis is performed in three
steps:

1. In the first step, the tool identifies the source loca-
tions where the code accesses the random extension
URI (looking for calls to the baseURI method).

2. The tool then separately analyzes all the compo-
nents that can use the retrieved value. Following the
information flow (i.e., functions that are are called
or are calling), this process is performed recursively
until no more connections are found.

3. For every identified components, the tool locates the
sinks, i.e., the location where new content is injected
in the webpage (e.g., through the createElement

and appendChild methods). If there is a connec-
tion between the baseURI access and the injec-
tion of an element in the website, the extension is
flagged as suspicious and reported for further anal-
ysis.

The schema in Figure 7 shows a simplified example of
an extension that leaks the baseURI using function A

of file A to obtain the value, function B of file B

as an intermediate phase, and function D of file D to
finally make the injection on the website.

This technique is designed to act as a screening filter
and NOT as a precise detection method. Indeed, the fact
that an extension retrieves the baseURI and then uses
it to create some content is not sufficient to identify if
the full information is actually leaked. For instance, we
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Table 2: Percentage of potential baseURI leakage in sa-
fari extensions.

Category # Total Ext. # P. Leak
Shopping 95 57.89%
Email 13 53.85%
Security 84 52.38%
News 20 45.00%
Photos 25 44.00%
Bookmarking 61 42.62%
Productivity 147 40.82%
RSStools 5 40.00%
Entertainment 37 37.84%
Translation 8 37.50%
Social 80 30.00%
Developer 57 29.82%
Other 42 26.19%
Search 42 21.43%
urlshorteners 5 0.00%
Total 721 40.50%

found an extension that used the baseURI to retrieve its
version number and then injected an iframe with the
version number included directly as part of its URL, but
without leaking the complete baseURI.

To evaluate our tool, we downloaded and analyzed
all the available extensions within the Safari Extension
Gallery4. The 718 extensions belonged to 15 differ-
ent categories (e.g., security, shopping, news, social net-
working, and search tools).

Table 2 shows the obtained results. In general, more
than 40% of the Safari Extension Gallery were poten-
tially vulnerable to our enumeration technique. We de-
cided to manually analyze some of the results to deter-
mine whether the reported extensions actually performed
the leak or not. Since the security category is among the
ones with the highest percentage of extensions with a po-
tential leak and it is also particularly sensitive due to the
type of information these extensions usually deal with
(such as user passwords), we decided to manually verify
all the results for the extensions in this category.

With a considerable effort, we performed an exhaus-
tive manual code review of all the security extensions, se-
lecting those that were completely functional, excluding
the ones that required payment for their services. Among
the 68 extensions in this group, 29 were flagged as sus-
picious of making the leakage and 39 were not leak-
ing it. From the suspicious ones, 20 out of 29 actually
leaked the secret baseURI. In addition, we only iden-
tified one false negative that leaked the information but
was not identified by our static analysis tool. In partic-
ular, this extension obtained the complete URL, includ-
ing baseURI, but stored it locally. Within the extensions
that are vulnerable to our attack, we found popular pro-

4https://extensions.apple.com/

tection extensions such as Adblock5, Ghostery6, Web Of
Trust7, and Adguard8. The list also includes password
managers, such as LastPass9, Dashline10, Keeper11, and
TeedyID12 and combinations of the two functionalities
(e.g., Blur from Abine13).

In summary, a relevant number of Safari extensions
are vulnerable to our technique, including several impor-
tant and very popular security-related extensions. As ex-
plained in §5, we are now in the process of validating all
the results and contacting the developers of the affected
extensions to fix their code.

4 Impact

In the previous section we discussed the security of
access control settings and URI randomization, and
we showed how every mechanism adopted by current
browsers can be easily bypassed in practice. There are
several possible consequences of abusing the informa-
tion provided by our two techniques.

4.1 Fingerprinting & Analytics
The most accurate and controversial form of fingerprint-
ing aims at building a unique identifier for each user de-
vice, such as Panopticlick [12]. It is considered a state-
less technique, because in order to build and share the
unique identifier, these techniques do not require to store
anything on the user machine (in contrast with stateful
techniques such as Cookies). To build a unique iden-
tifier, several features are retrieved from the user’s ma-
chine and combined in a unique fingerprint. This pro-
cess can be repeated across multiple websites and the
identifier will always be the same for the same machine,
allowing trackers to determine users’ browsing history,
among other tasks. Using the set of installed extensions
can increase the uniqueness of the resulting fingerprint.
To measure the exact fingerprinting ability of extension
enumerations, a study should be performed to measure
the discriminatory power of the most popular extensions
available for each browser. To this end, we have con-
ducted a preliminary study of this type of analysis in
§4.3.

The techniques proposed in this paper can also be
used to perform a completely accurate browser finger-

5https://getadblock.com/
6https://www.ghostery.com/
7https://www.mywot.com/
8https://adguard.com/
9https://lastpass.com/

10https://www.dashlane.com
11https://keepersecurity.com/
12https://www.teddyid.com/
13https://dnt.abine.com
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printing without checking the User-Agent. To this end,
our method can be used to check for built-in extensions.
These extensions are pre-installed and present in nearly
every major web browser and there is no possibility for
the user to uninstall them. Therefore, if we configure our
techniques to check one of these built-in extensions that
does not exist in other browsers, a website can precisely
identify the browser family with 100% accuracy.

The installed extensions enumeration combined with
the aforementioned browser identification can be used to
determine users’ demographics. The extensions that a
particular user utilizes can be easily discovered by web-
sites or third-party services. Installed extensions provide
information about a particular user’s interests, concerns,
and browsing habits. For example, users with security
and privacy extensions installed in their browsers such as
Ghostery or PrivacyBadger are potentially more aware
about their privacy than other users. The same happens
with personalizing extensions, games, or any possible
combinations of other extensions categories. In order to
measure the feasibility of performing analytics through
extensions, we have conducted a proof-concept test de-
scribed in §4.3.

4.2 Malicious Applications
The information retrieved from the installed extensions
can also be used for malicious purposes, as the informa-
tion gathering phase about potential victims is usually
the first step to perform a targeted attack. For instance,
attackers can inject the extension enumeration code in a
compromised website and search for users with shopping
management extensions and password managers to nar-
row down their attack surface to only those users whose
credit card information has a higher likelihood to be
stolen. Another possibility would be to identify the pres-
ence of a major antivirus vendor extension to personalize
an exploit kit or to decide whether the malicious payload
should be delivered or not to a certain user.

In addition to the attacks already presented, in a re-
cent work, Buyukkayhan et al. [7] presented CrossFire,
a technique that allows attacker to perform malicious ac-
tions using legitimate extensions. The part that was left
unanswered by the paper is how the attacker can identify
a set of installed extensions to use for her purpose. By
using our enumeration technique, an attacker can create
completely functional malicious extensions by knowing
all installed victim’s extensions in beforehand.

Due to the variability of possible extensions, the infor-
mation of a particular user can be exploited in different
social-driven attacks (automated or not). For example, a
malicious website can exploit the information about par-
ticular extensions being installed to impersonate and fake

Table 3: Top 10 most Popular Extension Categories in
the Chrome Store.

Category % Usage

productivity 29.90
fun 10.45
communication 9.76
web development 7.74
accessibility 4.65
search tools 4.44
shopping 3.46
photos 3.12
news 2.40
sports 1.80

legitimate messages about that extensions, with the in-
tention of deceiving the user and leading her to install
malicious software. As an example, if a malicious web-
site discovers that the user is using a concrete password
management extension, it can create a fake window to
ask the user to re-type her password. This attack is partic-
ularly severe in the case of Safari, since the attacker can
actually access all the resources of an extension that leaks
its baseURI. Hence, even a careful user who decides to
analyze the website source cannot easily understand if a
certain window or frame is created by an installed exten-
sion or by the site reusing the extension resources.

While the URI randomization control bypass does not
provide a complete enumeration capability, when an ex-
tension leaks its random token it opens all its internal re-
sources to the attacker. This is potentially very harmful
as it increases the attack surface, allowing the attacker to
access and exploit any vulnerability in one of the inter-
nal extension components. For example, Kotowicz and
Osborn [23] presented a Chrome extension exploitation
framework14 that could be used when it was still possible
to access all the different extension resources.

4.3 Viability Study
We have studied the viability of the estimated impact
for several of the cases discussed before. In particular,
we have analyzed their potential for performing analyt-
ics as well as the fingerprinting capability of extensions.
We have omitted the malicious case studies due to their
inherent ethical concerns. In addition, we believe that
their implementations are more straightforward than in
the proof-of-concept cases we tested and evaluated.

Analytics
In the case of the analytics capability of extensions, we
have computed the popularity of the different categories

14https://github.com/koto/xsschef
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Figure 8: Distribution of anonymity set sizes regarding
extensions.

established in the Chrome Web Store for each of the ex-
tensions that we previously analyzed in §3.1. In particu-
lar, we analyzed the 63 categories present in the 10,620
most popular Chrome extensions (Table 3 shows the 10
most popular categories).

The most popular category was “productivity” with
29.90% usage. Nevertheless, the definition of this cate-
gory is not clear because it includes a wide-range of types
of extensions such as ad blockers, schedulers, or office-
related tools. Anyhow, a possible sub-categorization may
be possible by means of the available description of each
extension. The rest of the 10 most popular are more pre-
cise and may be helpful in order to perform analytics re-
lated tasks such as targeted advertisement or website per-
sonalization. For instance, the number of visitors with
“shopping”, “web development”, or “sports” extensions,
may help the website owner to personalize her content or
ads accordingly, thus improving her number of visitors
or ad revenues.

However, not only the most popular extensions may
help the website owner to get a better understanding of
her visitors and act accordingly. Indeed, less popular ex-
tensions, because their higher power of discrimination
among users, can also be used for this task. For example,
the usage of extensions from the “creative tools” cate-
gory indicates that the visitor is prone to create content,
the presence of extensions within “academic resources”
category would likely indicate that the visitor is near the
academic environment, “teacher tools” may imply that
the visitor deliver at least some lectures, and “blogging”
implies that the visitor is a blogger.

In summary, we believe that extensions are a power-
ful tool to perform fine-grained user analytics because of
their diversity. Moreover, the information derived from
the installed extensions of a web visitor, combined with
the classical analytics information may lead to a better
user analytics for website owners.

Device Fingerprinting

In order to understand and measure the capability of
extensions for device fingerprinting, we implemented a
page that checks the users’ installed extensions among

Table 4: Comparison between Extensions with other Fin-
gerprinting Attributes.

Method Entropy

Extensions 0.869

List of Plugins 0.718
List of Fonts 0.548
User Agent 0.550
Canvas 0.475
Content Language 0.344
Screen Resolution 0.263

the top 1,000 most popular from the Chrome Web Store
and the Add-ons Firefox websites, using the timing side-
channel extension enumeration attack described in §3.1.
Since our study involved the enumeration of several
users’ installed extensions, we informed the users about
the procedure including the information gathered. Only
after the user agrees to perform the experiment and share
the collected information, the enumeration of her exten-
sions is conducted. We also set a cookie on the user
browser to prevent multiple resubmissions from the same
user. In addition, to protect the user privacy, we only col-
lected anonymous data.

We disseminate the URL of the page through social
networks and friends, asking them to participate in the
study and further re-disseminate the link among their
contacts. This way we collected the list of installed ex-
tensions from 204 participants from 16 different coun-
tries. Even though this number is smaller than in previ-
ous studies, we would like to remark that fingerprinting
is not the actual goal of the paper but just a possible ap-
plication of our attacks. In fact, this analysis is simply
designed to determine the viability of our technique for
device fingerprinting, either as a method by itself or by
complementing other existing fingerprinting techniques.

Following the standard adopted in previous works [12,
24], we analyzed the extension anonymity sets of the
fingerprinted users, which is defined as the number of
users with the same fingerprint i.e., same extension set
(the distribution of anonymity sets is shown in Figure 8).
Overall, from the 204 users that participated in our study,
116 users presented a unique set of installed extensions,
which means that 56.86% of the participants are uniquely
identifiable just by using their set of extensions.

In addition, we also compare the discriminatory level
of this proof-of-concept fingerprinting technique by
computing its normalized Shannon Entropy [24] and
comparing it with other fingerprinting attributes pro-
posed in previous studies. In particular, Table 4 com-
pares the different entropy values of the top six finger-
printing methods or attributes measured in the work by
Laperdrix et al. [24] with our extensions-based finger-
printing method. We can notice that extensions pre-
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Table 5: Current Browsers affected by our attacks. The
last two lines refer to Extensions still under development.

Browser Extensions Resource
Enumeration Access

Chromium Family X
– Chrome X
– Opera X
– Yandex X

. . . X

Firefox Family X
– Firefox Mobile X
– Iceweasel X
– Pale Moon X

. . . X

Safari ≤ 40% ≤ 40%

Microsoft Edge in discussion
Firefox WebExtensions in discussion

sented the highest entropy of the analyzed fingerprinting
attributes — making them more precise than using the
list of fonts or canvas-based techniques.

5 Vulnerability Disclosure and
Countermeasures

5.1 Attack Coverage & Effects

In this paper we presented two different classes of attacks
against the resource control policies adopted by all fam-
ilies of browsers on the market. Table 5 summarizes the
overall impact of our methods.

As already mentioned, the coverage of our enumer-
ation attack is complete in the case of the timing side-
channel attack to access-control-based browser families
(i.e., Chromium and Firefox Families) while approxi-
mately around 40% in URL randomization browsers (Sa-
fari).

Effects of Private Mode

“Incognito” or private mode is present in most of the
modern browsers and it protects and restricts several ac-
cesses to the browser resources such as cookies or brows-
ing history. Therefore, we decided to analyze if our at-
tacks can enumerate extensions even when this mode is
activated.

We discovered that all of our attacks accurately identi-
fied the list of installed extensions also within the private
mode. This fact is due to several reasons. In the case of
Chromium family browser, the browser checks for exten-
sions in incognito mode, even though extensions are not
allowed to access the websites [9]. Firefox and Safari did

1 GetFlagsFromPackage(const nsCString&

aPackage ,uint32_t* aFlags){

2 PackageEntry* entry;

3 if (! mPackagesHash.Get(aPackage , &

entry))

4 return NS_ERROR_FILE_NOT_FOUND;

5 *aFlags = entry ->flags;

6 return NS_OK;

7 }

8
9 GetSubstitutionInternal(const nsACString

& root , nsIURI ** result){

10 nsAutoCString uri;

11 if (! ResolveSpecialCases(root ,

NS_LITERAL_CSTRING("/"), uri)) {

12 return NS_ERROR_NOT_AVAILABLE ;}

13 return NS_NewURI(result , uri);

14 }

Figure 9: Firefox functions that cause the difference be-
tween existing and not existing extensions.

3 const Extension* extension=

RendererExtensionRegistry ::Get()->

GetExtensionOrAppByURL(resource_url)

;

4 if (! extension) {

5 return true;

6 }

Figure 10: Snip of Resource Request Policy function of
Chromium that causes the difference between existing
and not existing extensions (see Appendix for full code).

not include any check for extensions and, therefore, both
websites and extensions are able to access each other.

5.2 Timing Side-Channel Attack
The first class of attacks is the consequence of a poor
implementation of the browser access control settings:
Firefox-family browsers usage of extensions can be ex-
ploited to recognize the reason behind a failed resolution,
and Chromium family timing-side channel allows an at-
tacker to precisely tell apart the two individual checks
performed by the browser engine.

The consequence, in both cases, is a perfect technique
to enumerate all the extensions installed by the user.
Given the open-source nature of these two browsers, we
manually identified the functions responsible of the prob-
lem and indicated how to fix each of them.

Chromium family
We contacted the Chromium team to report the timing
problem. The developers were quite surprised about the
attack, because they believed that the time differences in
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the checking phase were not significant enough to allow
this type of timing side-channel attack. By inspecting
the function responsible of checking the accessibility of
a concrete extension path (see Figure 10), the two dif-
ferent steps described in section 3 can be clearly identi-
fied. First, the browser tests the existence of the exten-
sion (line #4) and finishes if the extension does not exist.
If the extension does exist, it performs different checks
to make sure that the path is accessible, returning a error
message if it is not. These checks are the ones that permit
the timing difference exploited in the attack.

We suggested a possible way to fix the code to avoid
the time measurement by modifying the extension con-
trol mechanism to combine the internal extension verifi-
cation and the resource check together in a single atomic
operation (i.e., by modifying the extension existence
check of line #4). This requires to replace the extension
list with a hashtable containing the extensions and the
full path of their resources.

While it may seem simple to fix the problem by mak-
ing the check atomic, the problem remains if the attack
is performed with real extension paths (easily obtainable)
instead of fake paths. The timing difference would be the
same as the one presented in Figure 4, with the only dif-
ference that the first check would validate the full path
and not just the extension. At the time of writing, as it is
a design-related problem, it is still not fixed.

In addition, as the new Firefox WebExtensions and
Microsoft Edge (both currently in their early stages)
use the same extension control mechanisms proposed by
Chromium, we also notified their developers to make
them aware of the issue described in this paper. We hope
that our effort will help these two new versions to inte-
grate by-design the necessary countermeasures to avoid
these security problems since the beginning.

Firefox family

We also responsibly reported the Firefox non-
WebExtensions problem that makes our enumeration
attack possible to its developers, who acknowledged
the issue and are currently discussing how to proceed.
Specifically, Figure 9 show the function that causes the
response difference regarding the extension existence.

The error returned when the resource path does not ex-
ist (line #4 and line #12 in Figure 9) does not raise any
exception. Therefore, the solution is straightforward: re-
turn a NS ERROR DOM BAD URI error (i.e., the same one
that is thrown when extension is not installed). This
fix will not cause any issue to websites using extension
paths, maintaining the functionality intact.

Regarding WebExtensions, the Firefox developers re-
cently changed the way extensions are accessed in
order to solve the timing side-channel and other re-

lated attacks. In particular, they changed the ini-
tial scheme (moz-extension://[extID]/[path]) to
moz-extension://[random-UUID]/[path]. Unfor-
tunately, while this change makes indeed more difficult
to enumerate user extensions, it introduces a far more
dangerous problem. In fact, the random-UUID token can
now be used to precisely fingerprint users if it is leaked
by an extensions. A website can retrieve this UUID and
use it to uniquely identify the user, as once it is generated
the random ID never changes. We reported this design-
related bug to Firefox developers as well.

5.3 URI Leakage
The second class of attacks presented in the paper is
quite different. In fact, the method that Safari’s exten-
sion control employs to assure the proper accessibility
of resources is, in principle, correct. However, Safari
delegates to the extension developers the responsibility
to keep the random URI secret. We believe that this is a
very risky decision because most of the developers lack a
proper understanding of the problem. As a consequence,
our experiments confirm that a relevant number (40% in
our preliminary experiments) of the extensions are likely
to leak the baseURI, undermining the entire security so-
lution. In particular, we discovered that important secu-
rity extensions such as multiple password managers or
advertisement blockers suffer from this baseURI leak-
age vulnerability and, hence, they are vulnerable to this
attack. In the case of security extensions, this is particu-
larly worrying due to the type of information they man-
age is usually very sensitive.

In this case the problem is even harder to solve, be-
cause it is not a consequence of an error in the extension
control but of hundreds of errors spread over different ex-
tensions. Reaching out and training all the extension de-
velopers is a difficult task but Apple should provide more
information on the proper way to handle the baseURI

and about the security implications of this process.
In addition, we believe that Safari could benefit from

adopting a lightweight static analysis solution (similar
to the one we discuss in §3) to analyze the extensions
in their market and flag those that leak the random to-
ken. This would allow to immediately identify poten-
tially leaking extensions that may need a more accurate
manual verification. In the meantime, we started report-
ing the problem to some security extensions we already
manually confirmed, to help them solve their URI leak-
age problem.

5.4 Extension Security Proposal
In order to improve the security and privacy of browser
extensions, we propose a solution that solves all the dif-

690    26th USENIX Security Symposium USENIX Association



ferent problems presented in this paper.

1. All browsers should follow an extension schema
that includes a random generated value in the URL:
X-extension://[randomValue]/[path]. This
random value should be modified across and dur-
ing the same session and should be independent for
each extension installed. For example, the browser
should change it in every extension in every access.
In this way, the random value cannot be used to fin-
gerprint users.

2. Browsers should also implement an access control
(such as web accessible resource) to avoid any
undesirable access to all extensions resources even
when the random value is unintentionally leaked.

3. Extensions should be analyzed for possible leakages
before making them public to the users. Moreover,
developer manuals should specifically discuss the
problems that can cause the leakage of any random
value generated.

6 Related Work

Security of Browser Extensions
The research community has made a large number
of contributions analyzing the security properties of
browsers extensions. A number of recent studies have
focused on monitoring the runtime execution of browser
extensions. Louw et al. [35, 36] proposed an integrity
checker and a policy enforcement for Firefox legacy ex-
tensions. A more recent framework, Sentinel [31, 32],
provided a fine-grained control to the users over legacy
extensions, allowing them to define custom security poli-
cies while blocking common attacks to these extensions.

Other approaches have focused on providing security
analysis of browsers extensions in order to discover se-
curity flaws. On the static analysis side, IBEX [18] is
a framework to analyze security properties by means of
a static methodology and it also allows developers to
create a fine-grained access control and data-flow poli-
cies. VEX [3] is instead a static analyzer for Firefox
JavaScript extensions that applies information flow anal-
ysis to identify browser extension vulnerabilities.

Dynamic extensions analysis includes the work of
Djeric et al. [11], in which the authors proposed the use
of dynamic analysis to track data inside the browser and
detect malicious extensions. Dhawan et al. [10] pro-
posed a similar approach to detect extensions that com-
promised the browser environment. In a similar vein,
Wang et al. [39] used an instrumented browser to ana-
lyze Firefox Extensions. Hulk [21] is a dynamic analysis
framework that controlled the activity of the browsing

extensions, employing fuzzing techniques and Honey-
Pages adapted to the extensions. Hulk was used to an-
alyze more than 48,000 Chrome extensions, discovering
several malicious ones.

Despite the fact that these approaches are useful to de-
tect malicious or compromised extensions, they are un-
fortunately useless against external attacks or informa-
tion leakages. Our analysis has lead to the most com-
plete set of attacks against resource accessibility control
and baseURI randomization, allowing in both cases ex-
tension enumeration attacks that can be used as part of
larger threats.

Similar to our own work, XHOUND [34] recently
showed that the changes extensions perform on the DOM
are enough to enumerate extensions. Using this tech-
nique, the authors also developed a new device finger-
printing technique and measured its impact. However,
this approach has a much more limited applicability. In
comparison, our techniques achieve a larger coverage,
successfully enumerating 100% of the extensions for ac-
cess control browsers and around 40% for those using
URI randomization.

Web Timing Attacks

Web Timing attacks have been used for many different
purposes, both in the client side and server side. Felten
and Schneider [13] introduced this type of attacks as a
tool to compromise users’ private data and, specifically,
their web-browsing history. In this way, a malicious at-
tacker might obtain this information by leveraging the
different forms of web browser cache techniques. By
measuring the time needed to access certain data from
an unrelated website, the researchers could determine if
that specific data was cached or not, indicating a previous
access.

Later, Bortz et al. [5] organized timing attacks in two
different types of attacks: (i) direct timing, consisting in
measuring the time difference in HTTP requests to web-
sites and (ii) cross-site timing, which allows to obtain
data from the client-side. The first type could expose
website data that may be used to prove the validity of a
username in certain secure website. The second type of
attacks follow the same line of work of previous work
by Felten and Schneider. They also performed some ex-
periments that suggested that these timing vulnerabilities
were more common than expected. In addition, Kotcher
et al. [22] discovered that besides from the attacks pre-
vious discussed, the usage of CSS filters made possible
the revelation of sensitive information such as text tokens
exploiting time differences to render various DOM trees.

Two recent studies show that these attacks are far
from being solved. Jia et al. [19] analyzed the possi-
bility of determining the geo-locations of users thanks
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to the customization of services performed by websites.
Location-sensitive content is cached the same way as
any other content. Therefore, a malicious actor can de-
termine the victim’s location by checking this concrete
data and without relying in any other technique. Be-
sides, Van Goethem et al. [38] proposed new timing tech-
niques based on estimating the size of cross-origin re-
sources. Since the measurement starts after the resources
are downloaded, it does not suffer from unfavorable net-
work conditions. The study also shows that these attacks
could be used in various platforms, increasing the attack
surface and the number of potential victims.

However, none of these timing techniques have been
previously used to identify components of the web
browser itself. Our new timing side-channel attacks are
the first attacks capable of determining with 100% accu-
racy which extensions are installed in the browser, inde-
pendently of the CPU usage.

7 Conclusions

Many different threats against the users security and pri-
vacy can benefit from a precise fingerprint of the exten-
sions installed in the browser.

In this paper, we show that the current countermea-
sures adopted by all browser families are insufficient or
erroneously implemented. In particular, we present a
novel time side-channel attack against the access con-
trol settings used by the Chromium browser family. This
technique is capable of correctly identifying any installed
extension. Firefox WebExtensions and Microsoft Edge
(early states) follow the same API and design, indicating
that they may be prone to be vulnerable to the attack.

We also discuss a URI leakage technique that subverts
the URI randomization mechanism implemented in Sa-
fari, that emerges from inappropriate extension imple-
mentations that leak the value of a random token. We
implemented a new method to identify extensions with
this potential leakage and we found out that up to 40%
of Safari extensions could be vulnerable to this problem.
After a manual inspection of security-related extensions,
we discovered that many popular extensions are vulner-
able to this attack. In addition, in the case of this attack,
not only the extension is identified but also its resources
can be accessed, posing as a more dangerous threat.

We also presented applications for our extension enu-
meration attacks. First, we propose different fingerprint-
ing and user analytics techniques, demonstrating their
feasibility in a real-world scenario. Second, we also pro-
posed technique to use our enumeration techniques for
malicious applications such as targeted malware, social
engineering, or vulnerable extension exploitation.

We responsibly disclosed all our findings and we are
now discussing with the developers of several browsers

and extensions to propose the correct countermeasures to
mitigate these attacks in both current and future versions.

Acknowledgments

This work is partially supported by the Basque Gov-
ernment under a pre-doctoral grant given to Iskander
Sanchez-Rola.

References
[1] APPLE. Accessing Resources Within Your

Extension Folder. https://developer.

apple.com/library/safari/documentation/

Tools/Conceptual/SafariExtensionGuide/

AccessingResourcesWithinYourExtensionFolder/

AccessingResourcesWithinYourExtensionFolder.html.

[2] APPLE. Safari Extensions Development Guide.
https://developer.apple.com/library/

safari/documentation/Tools/Conceptual/

SafariExtensionGuide.

[3] BANDHAKAVI, S., TIKU, N., PITTMAN, W., KING, S. T.,
MADHUSUDAN, P., AND WINSLETT, M. Vetting browser ex-
tensions for security vulnerabilities with vex. Communications
of the ACM 54, 9 (2011), 91–99.

[4] BARTH, A., FELT, A. P., SAXENA, P., AND BOODMAN, A.
Protecting Browsers from Extension Vulnerabilities. In Proceed-
ings of the Network and Distributed Systems Security Symposium
(NDSS) (2010).

[5] BORTZ, A., AND BONEH, D. Exposing private information by
timing web applications. In Proceedings of the 16th international
conference on World Wide Web (WWW) (2007), ACM, pp. 621–
628.

[6] BRYANT, M. Dirty browser enumeration tricks – us-
ing chrome:// and about: to detect firefox & addons.
https://thehackerblog.com/dirty-browser-

enumeration-tricks-using-chrome-and-about-to-

detect-firefox-plugins/index.html.

[7] BUYUKKAYHAN, A. S., ONARLIOGLU, K., ROBERTSON, W.,
AND KIRDA, E. CrossFire: An Analysis of Firefox Extension-
Reuse Vulnerabilities. In Proceedings of the Network and Dis-
tributed System Security (NDSS) (2016).

[8] CARLINI, N., FELT, A. P., AND WAGNER, D. An evaluation of
the google chrome extension security architecture. In Proceed-
ings of the USENIX Security Symposium (SEC) (2012).

[9] CHROMIUM. Extension in incognito. https:

//blog.chromium.org/2010/06/extensions-in-

incognito.html.

[10] DHAWAN, M., AND GANAPATHY, V. Analyzing information
flow in JavaScript-based browser extensions. In Proceedings of
the Annual Computer Security Applications Conference (ACSAC)
(2009).

[11] DJERIC, V., AND GOEL, A. Securing script-based extensibility
in web browsers. In Proceedings of the USENIX Security Sympo-
sium (SEC) (2010).

[12] ECKERSLEY, P. How unique is your web browser? In Proceed-
ings of the Privacy Enhancing Technologies (PETS) (2010).

[13] FELTEN, E. W., AND SCHNEIDER, M. A. Timing attacks on
web privacy. In Proceedings of the 7th ACM conference on Com-
puter and communications security (2000), ACM, pp. 25–32.

692    26th USENIX Security Symposium USENIX Association

https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide/AccessingResourcesWithinYourExtensionFolder/AccessingResourcesWithinYourExtensionFolder.html
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide
https://developer.apple.com/library/safari/documentation/Tools/Conceptual/SafariExtensionGuide
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://thehackerblog.com/dirty-browser-enumeration-tricks-using-chrome-and-about-to-detect-firefox-plugins/index.html
https://blog.chromium.org/2010/06/extensions-in-incognito.html
https://blog.chromium.org/2010/06/extensions-in-incognito.html
https://blog.chromium.org/2010/06/extensions-in-incognito.html


[14] GERDS, E. Plugindetect. http://www.pinlady.net/

PluginDetect/.

[15] GOOGLE. Chrome Web Store. https://www.google.es/

chrome/webstore/.

[16] GOOGLE. Manifest - web accessible resources. https:

//developer.chrome.com/extensions/manifest/web_

accessible_resources.

[17] GOOGLE. What are extensions? https://developer.

chrome.com/extensions.

[18] GUHA, A., FREDRIKSON, M., LIVSHITS, B., AND SWAMY, N.
Verified security for browser extensions. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland) (2011).

[19] JIA, Y., DONG, X., LIANG, Z., AND SAXENA, P. I know where
you’ve been: Geo-inference attacks via the browser cache. IEEE
Internet Computing 19, 1 (2015), 44–53.

[20] K. KOTOWICZ. Intro to chrome add-ons hacking.
http://blog.otowicz.net/2012/02/intro-to-chrome-

addons-hacking.html.

[21] KAPRAVELOS, A., GRIER, C., CHACHRA, N., KRUEGEL, C.,
VIGNA, G., AND PAXSON, V. Hulk: Eliciting malicious behav-
ior in browser extensions. In Proceedings of the USENIX Security
Symposium (SEC) (2014).

[22] KOTCHER, R., PEI, Y., JUMDE, P., AND JACKSON, C. Cross-
origin pixel stealing: timing attacks using css filters. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 1055–1062.

[23] KOTOWICZ, K., AND OSBORNAND, K. Advanced chrome ex-
tension exploitation. leveraging api powers for better evil. Black
Hat USA (2012).

[24] LAPERDRIX, P., RUDAMETKIN, W., AND BAUDRY, B. Beauty
and the beast: Diverting modern web browsers to build unique
browser fingerprints. In Proceedings of the IEEE Symposium on
Security and Privacy (Oakland) (2016).

[25] LIU, L., ZHANG, X., YAN, G., AND CHEN, S. Chrome Ex-
tensions: Threat Analysis and Countermeasures. In Proceed-
ings of the Network and Distributed Systems Security Symposium
(NDSS) (2012).

[26] MOZILLA. Add-ons for Firefox. https://addons.mozilla.

org/es/firefox/.

[27] MOZILLA. Chrome registration. https://developer.

mozilla.org/en-US/docs/Chrome_Registration.

[28] MOZILLA. JetPack Project. https://wiki.mozilla.org/

Jetpack.

[29] MOZILLA. WebExtension Add-ons. https://developer.

mozilla.org/en-US/Add-ons/WebExtensions.

[30] MOZILLA. XPCOM Reference. https://developer.

mozilla.org/en/docs/Mozilla/Tech/XPCOM/Reference.

[31] ONARLIOGLU, K., BATTAL, M., ROBERTSON, W., AND
KIRDA, E. Securing legacy firefox extensions with SENTINEL.
In Proceedings of the Conference on Detection of Intrusions and
Malware and Vulnerability Assessment (DIMVA) (2013).

[32] ONARLIOGLU, K., BUYUKKAYHAN, A. S., ROBERTSON, W.,
AND KIRDA, E. Sentinel: Securing legacy firefox extensions.
Computers & Security 49 (2015), 147–161.

[33] SECURITY RESPONSE, SYMANTEC. The Waterbug attack
group. http://www.symantec.com/content/en/us/

enterprise/media/security_response/whitepapers/

waterbug-attack-group.pdf, 2015.

[34] STAROV, O., AND NIKIFORAKIS, N. Xhound: Quantifying the
fingerprintability of browser extensions. In Proceedings of the
IEEE Symposium on Security and Privacy (Oakland) (2017).

[35] TER LOUW, M., LIM, J. S., AND VENKATAKRISHNAN, V. Ex-
tensible web browser security. In Proceedings of the Conference
on Detection of Intrusions and Malware and Vulnerability As-
sessment (DIMVA) (2007).

[36] TER LOUW, M., LIM, J. S., AND VENKATAKRISHNAN, V. En-
hancing web browser security against malware extensions. Jour-
nal in Computer Virology 4, 3 (2008), 179–195.

[37] THREAT INTELLIGENCE, FIREEYE. Pinpointing Targets:
Exploiting Web Analytics to Ensnare Victims. https:

//www2.fireeye.com/rs/848-DID-242/images/rpt-

witchcoven.pdf, 2015.

[38] VAN GOETHEM, T., JOOSEN, W., AND NIKIFORAKIS, N. The
clock is still ticking: Timing attacks in the modern web. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (2015), ACM, pp. 1382–1393.

[39] WANG, L., XIANG, J., JING, J., AND ZHANG, L. Towards fine-
grained access control on browser extensions. In Proceedings
of the International Conference on Information Security Practice
and Experience (2012).

USENIX Association 26th USENIX Security Symposium    693

http://www.pinlady.net/PluginDetect/
http://www.pinlady.net/PluginDetect/
https://www.google.es/chrome/webstore/
https://www.google.es/chrome/webstore/
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions/manifest/web_accessible_resources
https://developer.chrome.com/extensions
https://developer.chrome.com/extensions
http://blog.otowicz.net/2012/02/intro-to-chrome-addons-hacking.html
http://blog.otowicz.net/2012/02/intro-to-chrome-addons-hacking.html
https://addons.mozilla.org/es/firefox/
https://addons.mozilla.org/es/firefox/
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://developer.mozilla.org/en-US/docs/Chrome_Registration
https://wiki.mozilla.org/Jetpack
https://wiki.mozilla.org/Jetpack
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en-US/Add-ons/WebExtensions
https://developer.mozilla.org/en/docs/Mozilla/Tech/XPCOM/Reference
https://developer.mozilla.org/en/docs/Mozilla/Tech/XPCOM/Reference
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/waterbug-attack-group.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf
https://www2.fireeye.com/rs/848-DID-242/images/rpt-witchcoven.pdf


Appendix

1 bool ResourceRequestPolicy ::

CanRequestResource( const GURL&

resource_url , blink:: WebFrame* frame

, ui:: PageTransition transition_type

) {

2 CHECK(resource_url.SchemeIs(

kExtensionScheme));

3 const Extension* extension =

RendererExtensionRegistry ::Get()->

GetExtensionOrAppByURL(

resource_url);

4 if (! extension) {

5 return true;

6 }

7 std:: string

resource_root_relative_path =

8 resource_url.path().empty() ? std

:: string ()

9 : resource_url.path().substr (1);

10 if (extension ->is_hosted_app () && !

IconsInfo :: GetIcons(extension).

ContainsPath(

resource_root_relative_path)) {

11 LOG(ERROR) << "Denying load of " <<

resource_url.spec() << " from "

<< "hosted app.";

12 return false;

13 }

14 if (! WebAccessibleResourcesInfo ::

IsResourceWebAccessible(extension ,

resource_url.path()) && !

WebviewInfo ::

IsResourceWebviewAccessible(

extension , dispatcher_ ->

webview_partition_id (),

resource_url.path())) {

15 GURL frame_url = frame ->document ().

url();

16 GURL page_origin = ablink ::

WebStringToGURL(frame ->top()->

getSecurityOrigin ().toString ());

Figure 11: Resource Request Policy function of
Chromium that causes the difference between existing
and not existing extensions (part 1)

17 bool is_empty_origin = frame_url.

is_empty ();

18 bool is_own_resource = frame_url.

GetOrigin () == extension ->url()

|| page_origin == extension ->url

();

19 bool is_dev_tools = page_origin.

SchemeIs(content ::

kChromeDevToolsScheme) && !

chrome_manifest_urls ::

GetDevToolsPage(extension).

is_empty ();

20 bool transition_allowed = !ui::

PageTransitionIsWebTriggerable(

transition_type);

21 bool is_error_page = frame_url ==

GURL(content ::

kUnreachableWebDataURL);

22
23 if (! is_empty_origin && !

is_own_resource && !is_dev_tools

&& !transition_allowed && !

is_error_page) {

24 std:: string message = base::

StringPrintf("Denying load of

%s. Resources must be listed

in the

web_accessible_resources

manifest key in order to be

loaded by pages outside the

extension.", resource_url.spec

().c_str ());

25 frame ->addMessageToConsole(

26 blink:: WebConsoleMessage(blink ::

WebConsoleMessage ::LevelError ,

blink:: WebString :: fromUTF8(

message)));

27 return false;

28 }

29 }

30 return true;

31 }

Figure 12: Resource Request Policy function of
Chromium that causes the difference between existing
and not existing extensions (part 2)
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Abstract

Content Security Policy (CSP) is a W3C standard de-
signed to prevent and mitigate the impact of content in-
jection vulnerabilities on websites by means of browser-
enforced security policies. Though CSP is gaining a lot
of popularity in the wild, previous research questioned
one of its key design choices, namely the use of static
white-lists to define legitimate content inclusions. In this
paper we present Compositional CSP (CCSP), an exten-
sion of CSP based on runtime policy composition. CCSP
is designed to overcome the limitations arising from the
use of static white-lists, while avoiding a major overhaul
of CSP and the logic underlying policy writing. We per-
form an extensive evaluation of the design of CCSP by
focusing on the general security guarantees it provides,
its backward compatibility and its deployment cost. We
then assess the potential impact of CCSP on the web and
we implement a prototype of our proposal, which we test
on major websites. In the end, we conclude that the de-
ployment of CCSP can be done with limited efforts and
would lead to significant benefits for the large majority
of the websites.

1 Introduction

Content Security Policy (CSP) is a W3C standard intro-
duced to prevent and mitigate the impact of content in-
jection vulnerabilities on websites [11]. It is currently
supported by all modern commercial web browsers and
deployed on a number of popular websites, which justi-
fied a recently growing interest by the research commu-
nity [20, 5, 13, 1, 18, 10].

A content security policy is a list of directives supplied
in the HTTP headers of a web page, specifying browser-
enforced restrictions on content inclusion. Roughly, the
directives associate different content types to lists of
sources (web origins) from which the CSP-protected web
page can load contents of that specific type. For instance,

the following policy:

script-src https://example.com;

img-src *;

default-src ’none’

specifies these restrictions: scripts can only be loaded
from https://example.com, images can be loaded
from any web origin, and contents of different type, e.g.,
stylesheets, cannot be included. Moreover, CSP prevents
by default the execution of inline scripts and bans a few
dangerous JavaScript functions, like eval; these restric-
tions can be explicitly deactivated by policy writers to
simplify deployment, although they are critical for the
security of CSP.

Simple as it looks, however, CSP is typically hard to
deploy correctly on real websites [19, 20, 1, 18] and there
are several, diverse reasons for this:

1. an effective content security policy must not relax
the default restrictions which forbid inline scripts
and eval-like functions. However, removing inline
scripts from existing websites proved to require a
significant effort [19, 20], hence relaxing the default
restrictions of CSP is a common routine even for
major websites [18, 1];

2. white-lists are hard to get right. On the one hand,
if a white-list is too liberal, it can open the way
to security breaches by allowing the communica-
tion with JSONP endpoints or the inclusion of li-
braries for symbolic execution, which would enable
the injection of arbitrary malicious scripts [18]. On
the other hand, if a white-list is too restrictive, it
can break the intended functionality of the protected
web page [1]. The right equilibrium is difficult to
achieve, most notably because it is hard for policy
writers to predict what needs to be included by ac-
tive contents (scripts, stylesheets, etc.) loaded by
their web pages;
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3. many web contents have a dynamic nature, which
is not easily accommodated by means of the static
white-lists available in CSP. For instance, writing
appropriate content security policies may be hard
when using CDNs for load balancing, when includ-
ing advertisement libraries based on real-time bid-
ding, or in presence of HTTP redirects [20, 1].

The industry was relatively quick in realizing that the
pervasive presence of inline scripts is a serious obstacle
to the widespread adoption of CSP and more recent ver-
sions of the standard introduced controlled mechanisms
based on hashes and nonces to white-list individual inline
scripts [15]. This is an interesting approach to deal with
the first problem we mentioned: by selectively enabling
only a few known inline scripts, web developers can sig-
nificantly improve the security of their websites against
script injection, while avoiding a major overhaul of their
code base by moving inline scripts to external files.

However, the other two problems which hinder a wider
and more effective deployment of CSP are still largely
unsolved, since they both stem from the inherent com-
plexity of accurately predicting the capabilities dynami-
cally needed by real, content-rich web applications. The
recent Strict CSP proposal [4] based on CSP Level 3 [16]
may help in dealing with these challenges in some practi-
cal cases, but unfortunately it only provides a very partial
solution to them (see Section 2 for a discussion).

1.1 Goals and Contributions
The goal of the present paper is proposing a simple ex-
tension of CSP which naturally and elegantly solves the
delicate issues discussed above. The most important de-
sign goal of our proposal is to avoid both a major over-
haul of the existing CSP specification and a dramatic
change to the logic behind policy writing, so as to sim-
plify its practical adoption by web developers who are
already familiar with CSP.

Our proposal builds on the pragmatic observation that
static white-lists are inherently complex to write down
for modern web applications and do not really fit the
dynamic nature of common web interactions, so we de-
vise Compositional CSP (CCSP), an extension of CSP
based on runtime policy composition. In CCSP an ini-
tial, simple content security policy is incrementally re-
laxed via the interactions between the protected page and
its content providers. More precisely, content providers
can loosen up the policy of the protected page to accom-
modate behaviours which were not originally admitted
by the latter, although the protected page reserves itself
the last word on its security by specifying suitable upper
bounds for policy relaxation. Notably, by introducing
a dynamic dimension to CSP and by delegating part of
the policy specification efforts to the content providers,

it is possible to come up with white-lists which are much
more precise than those which could be realistically writ-
ten by the developers of the protected page alone, since
they often lack an in-depth understanding of the exter-
nally included contents and their dependencies.

Concretely, we make the following contributions:

1. we provide a precise specification of CCSP and we
discuss two realistic use cases which may benefit
from this extension of the CSP standard. We show
CCSP policies for these use cases and we discuss
how the enforcement model of CCSP supports de-
sirable security guarantees (Section 3);

2. we perform an extensive evaluation of the design of
CCSP by focusing on the general security guaran-
tees it provides, its backward compatibility and its
deployment cost (Section 4);

3. we assess the potential impact of CCSP in the wild
by building and analysing a dataset of CSP vi-
olations found on the Alexa Top 100k websites.
Specifically, we show that violations are pervasive
and mostly caused by behaviours which are hard to
accommodate in CSP, which confirms the need for a
more expressive mechanism like CCSP. We also es-
tablish that only a few selected players need to em-
brace CCSP to provide a significant benefit to the
majority of the websites (Section 5);

4. we develop a proof-of-concept implementation of
CCSP as a Chromium extension and we test it by
manually writing CCSP policies for a few popu-
lar websites which normally trigger CSP violations.
Our experiments show that CCSP is easy to deploy
and fully supports the intended functionality of the
tested websites (Section 6).

2 Motivations

2.1 Example
Consider a web page w including the following script tag
in its HTML contents:

<script src="https://a.com/stats.js"/>

The stats.js script, in turn, is implemented as follows:

// load dependency.js from https://b.com

var s = document.createElement(’script’);

s.src = ’https://b.com/dependency.js’;

document.head.appendChild(s);

...

// load banner.jpg from https://c.com

var i = document.createElement(’img’);

i.src = ’https://c.com/banner.jpg’;

document.body.appendChild(i);
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This script includes another script from https://b.com

and an image from https://c.com and all these con-
tents must be allowed by the content security policy of w
to let the web page work correctly.

CSP 1.0 and CSP Level 2. Both CSP 1.0 [14] and CSP
Level 2 [15] restrict the inclusion of external contents
purely by means of a white-listing approach. This means
that the content security policy of w must not only white-
list https://a.com as a valid source for script inclu-
sion to load stats.js, but it must also white-list all the
dependencies of stats.js with their correct type. An
appropriate content security policy for w would thus be:

script-src https://a.com https://b.com;

img-src https://c.com

This approach has two significant problems. First, the
definition of the policy is complex, since it requires one
to carefully identify all the dependencies of the scripts
included by w, including those recursively loaded, like
dependency.js. Second, the policy above is brittle: if
the developers of stats.js or dependency.js change
the implementation of their scripts, for instance to in-
clude additional libraries from other sources, the policy
of w must correspondingly be updated to white-list them.

In principle, these limitations pay off in terms of secu-
rity, since the developers of w have full control on which
contents can be included by scripts loaded by their page.
Unfortunately, previous research showed that web devel-
opers typically write an overly liberal white-list to avoid
issues with their websites, for instance by allowing the
inclusion of scripts from any domain [20, 1, 18].

CSP Level 3 (Strict CSP). Recently, the CSP commu-
nity realized that the white-list approach advocated by
CSP 1.0 and CSP Level 2 is often inconvenient to use,
because it may be hard to write white-lists which are nei-
ther too liberal, nor too restrictive. The latest version of
the standard, called CSP Level 3 [16], thus added new
mechanisms which support a different policy specifica-
tion style, known as Strict CSP [4]. Strict CSP drives
away from the complexities of white-lists and simplifies
the process of recursive script inclusion by transitively
propagating trust. Concretely, the example web page w
must be changed to bind a randomly generated nonce to
its script tag as follows:

<script src="https://a.com/stats.js"

nonce="ab3f5k"/>

Correspondingly, its content security policy is adapted as
follows:

script-src ’nonce-ab3f5k’ ’strict-dynamic’;

img-src https://c.com

Under this policy, only those scripts whose tag includes
the nonce ab3f5k are allowed to be loaded, irrespec-
tive of the web origin where they are hosted. Since
the nonce value is random and unpredictable, an at-
tacker cannot inject malicious scripts with a valid nonce
on w. Since nonce-checking may break benign scripts
which are dynamically inserted without a valid nonce,
the ’strict-dynamic’ source expression is included in
the policy: this ensures that any script request triggered
by a non-parser-inserted script element like stats.js is
also allowed by CSP [16].

Besides making policy specification simpler, nonces
also make the resulting policies stronger against script
injection attacks. Since a valid nonce is only bound to
the script tag loading https://a.com/stats.js, other
dangerous contents hosted on https://a.com cannot
be unexpectedly loaded and abused by an attacker. More-
over, the use of ’strict-dynamic’ simplifies the def-
inition of policies when recursive script inclusion is
needed. In our example, the script dependency.js can
be relocated from https://b.com to https://d.com

without any need of updating the content security pol-
icy of w. Also, both stats.js and dependency.js can
include new libraries without violating the policy of w,
again thanks to the presence of ’strict-dynamic’.

2.2 Criticisms to Strict CSP
Limited Scope. The ’strict-dynamic’ source ex-
pression only targets the problem of recursive script in-
clusion, but it does not solve similar issues for other con-
tent types. In our example, if the script stats.js is
updated to load its image from https://d.com rather
than from https://c.com, or if the script is left un-
changed but the image is relocated to https://d.com

by means of a HTTP redirect, the content security policy
of w must also be updated to ensure a correct rendering
of the website. This means that the developers of w must
change their content security policy to deal with some-
thing which is unpredictable and not under their control.

Generalizing ’strict-dynamic’ to deal with these
cases would have a negative “snowball effect” on the ef-
fectiveness of CSP, since basically all the content restric-
tions put in place by the policy would need to be ignored.

Poor Granularity. The ’strict-dynamic’ source
expression uniformly applies to all the scripts loaded by
a web page, thus offering an all-or-nothing relaxation
mechanism. We believe there are two sound motivations
underlying this design: ease of policy specification and
the fact that the main security goal of Strict CSP is pro-
tecting against XSS. The key observation justifying the
design of ’strict-dynamic’ is that, if a script loaded
by a web page is malicious, it can already attack the page,
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without any need of abusing ’strict-dynamic’ to load
other malicious scripts from external domains.

However, it is worth noticing that the design of
’strict-dynamic’ does not support the principle of
least privilege, since it gives all scripts with a valid nonce
the ability of putting arbitrary relaxations on script inclu-
sion, even though not every script requires this capabil-
ity. As a matter of fact, most scripts included in a trusted
website are not actually malicious, but they may have
bugs or be developed by programmers who are not se-
curity experts, and there is no way for a benign script to
declare that it only needs limited policy relaxation capa-
bilities to perform its intended functionalities, thus limit-
ing the room for unintended harmful behaviours.

Use of Nonces. Nonces are a convenient specification
tool, but they also have severe drawbacks. First, the secu-
rity of nonces is questionable: it is now recognized that
the protection offered by their use can be sidestepped,
most notably because nonces are still included in the
DOM. This leaves room for attacks, for instance when
script injection happens in the scope of a valid nonce1

or when nonces are exfiltrated by means of scriptless at-
tacks2; also other attacks have been found recently3.

Moreover, the use of nonces makes the security review
of a page deploying CSP much harder to carry out: one
cannot just inspect the content security policy of the page
to understand which security restrictions are put in place,
but she must also check the code of the page to detect
which scripts are bound to a valid nonce. (In fact, the use
of nonces makes particularly troublesome to compare the
permissiveness of two content security policies, which
instead is a fundamental building block of the upcoming
CSP Embedded Enforcement mechanism [17].) Finally,
nonces are not easily assigned to dynamically generated
script tags in legacy code: ’strict-dynamic’ is just
one way to circumvent this issue, but it comes with the
limitations we previously discussed.

Discussion. Strict CSP provides significant improve-
ments over CSP 1.0 and CSP Level 2 in terms of both
security and ease of deployment, and there is pragmatic
evidence about the effectiveness of ’strict-dynamic’
at major websites [18]. Nevertheless, we discussed prac-
tical cases where ’strict-dynamic’ is not expressive
enough to fix CSP violations and web developers still
need to account for these behaviors by means of exten-
sive white-listing. This complicates policy specification
and maintenance, because policy changes may be dic-
tated by elements which are not under the direct control

1http://blog.innerht.ml/csp-2015/
2http://sirdarckcat.blogspot.com/2016/12/

how-to-bypass-csp-nonces-with-dom-xss.html
3http://sebastian-lekies.de/csp/bypasses.php

of the policy writers, such as script dependencies and
HTTP redirects. We confirm the existence of these ex-
pressiveness issues of Strict CSP in the wild in Section 5.

CCSP complements Strict CSP with more flexible
tools for policy specification, while supporting the prin-
ciple of least privilege and removing security-relevant in-
formation from the page body, thus simplifying policy
auditing and preventing subtle security bypasses. More-
over, its design is backward compatible to ensure a seam-
less integration with the existing CSP deployment.

3 Compositional CSP (CCSP)

3.1 Overview
In our view, web developers should be able to keep their
content security policies as simple as possible by focus-
ing only on the direct dependencies required by their web
pages, largely ignoring other dependencies needed by the
contents they include. In CCSP, direct dependencies are
specified by means of fine-grained white-lists reminis-
cent of CSP 1.0 and CSP Level 2, since these dependen-
cies are relatively easy to identify for web developers and
it is feasible to come up with reasonably strict and se-
cure white-lists for them. Indirect dependencies, instead,
are dealt with by dynamically composing the policy of
the protected web page with additional content security
policies which define the dependencies of the included
contents. These policies are written and served by the
content providers, who are the only ones who can accu-
rately know the dependencies of the contents they serve
and keep them constantly updated. Ideally, only the least
set of dependencies required to work correctly should be
white-listed to respect the principle of least privilege and
avoid weakening protection unnecessarily. To keep un-
der control the power on policy specification delegated to
external content providers, CCSP grants web developers
the ability of putting additional restrictions on the policy
relaxation mechanism.

Concretely, let us move back to our example. In our
proposal, the web page w would send to the browser the
following headers:

CSP-Compose

script-src https://a.com/stats.js;

CSP-Intersect

scope https://a.com/stats.js;

script-src https://*;

img-src *;

default-src ’none’

The CSP-Compose header contains the initial content se-
curity policy of the protected page: in this case, it speci-
fies that only the script https://a.com/stats.js can
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be included in the page. The CSP-Intersect header, in-
stead, tracks that the script https://a.com/stats.js
is entitled to relax the content security policy of w up to
the specified upper bound, expressed again in terms of
CSP. For instance, in this case the script can relax the
content security policy of the protected page to white-list
any HTTPS script and any image, but nothing more. Dif-
ferent scripts can be assigned different upper bounds on
policy relaxation.

When delivering stats.js, the script provider can at-
tach it the following header:

CSP-Union

script-src https://b.com/dependency.js;

img-src https://c.com

The CSP-Union header includes what stats.js needs
to operate correctly. In this case, the additional script
dependency is white-listed very precisely, while there is
much more liberality on images, since any image from
https://c.com is white-listed by the policy.

A CCSP-compliant web browser would join together
the original policy of the page and the policy supplied by
the script provider before including stats.js, while en-
forcing the upper bounds on policy relaxation specified
by the developers of the protected page. In this case, the
policy supplied by the script provider is compliant with
said upper bounds, hence the browser would update the
content security policy of the page as follows:

script-src https://a.com/stats.js

https://b.com/dependency.js;

img-src https://c.com

This policy is reminiscent of the policy we would write
using CSP 1.0 or CSP Level 2, but it is assembled dy-
namically by interacting with the content providers. This
significantly simplifies the specification of the original
policy for the page developers and makes it naturally ro-
bust to changes in the included contents, as long as the
capabilities required by the updated contents still comply
with the original upper bounds on policy relaxation spec-
ified by the page developers. This flexibility is crucial
to appropriately deal with highly dynamic web contents,
which can hardly be accommodated by static white-lists,
and with complex chains of dependencies, which may be
difficult to predict for page developers.

It is also worth noticing that, since the burden of policy
specification is now split between page developers and
content providers, CCSP makes it feasible in practice to
white-list individual contents rather than entire domains,
which makes the resulting policy stricter and more se-
cure. In the end, the resulting policy can realistically be
as strict and precise as a nonce-based policy, but all the
security information is available in the HTTP headers,
thus overcoming the typical limitations associated with

the use of nonces. Finally, observe that the dynamically
enforced policy is much tighter than the upper bound for
policy relaxation specified by the protected web page.
Though the page developers could deploy a standard CSP
policy which is as liberal as the upper bound, that policy
would be significantly more permissive than the enforced
CCSP policy built at runtime.

3.2 Example Use Cases
We discussed how our proposal overcomes some impor-
tant limitations of CSP, but we now observe that these
improvements come with a cost on the content providers,
which in our proposal become actively involved in the
policy specification process. We believe that many ma-
jor content providers would be happy to contribute to this
process, because mismatches between the capabilities re-
quired by their contents and the content security policies
of their customers may lead to functionality issues re-
sulting in economic losses, like in the case of broken ad-
vertisement. To further exemplify the benefits of CCSP,
however, we discuss now two concrete use cases.

As a first use case, we pick a provider of JavaScript
APIs, for example Facebook. The lead developer of
the Facebook APIs may stipulate that all the develop-
ers in her team are allowed to use external libraries in
the scripts they write, but only if they are hosted on
https://connect.facebook.net, because libraries
which are put there are always updated, subject to a care-
ful security scrutiny and delivered over a secure channel.
The lead developer can thus ensure that the following
header is attached to all the available JavaScript APIs:

CSP-Union

script-src https://connect.facebook.net

This way, Facebook can make its customers aware of the
fact that the API code only needs to access internal con-
tents to operate correctly, which may increase its level
of trust and simplify a security auditing. If a Facebook
API contained a bug or was developed by an uncaring
developer who did not respect the indications of the lead
developer, a sufficiently strong content security policy on
the pages using the API may still prevent the unintended
inclusion of dangerous contents.

As a second use case, we consider an advertisement
library. Web advertisement may involve delicate trust re-
lationships: it is not uncommon for web trackers to col-
laborate and share information about their visitors4. For
instance, an advertisement library developed by a.com

may actually import an external advertisement library by
b.com. Developers at a.com may want to mitigate the
impact of vulnerabilities in the b.com library, since the

4https://blog.simeonov.com/2013/04/17/

anatomy-of-an-online-ad/
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end user of the advertisement library may be unaware
of the inclusion of external contents and just blame the
developers of a.com for any security issue introduced
by the advertisement system. The a.com developers can
thus attach the following headers to their library:

CSP-Union

script-src https://b.com/adv.js;

CSP-Intersect

scope https://b.com/adv.js;

img-src *://b.com;

default-src ’none’

This way, the developers at a.com declare their need of
including a script by b.com, but they only grant it enough
capabilities to relax the content security policy of the em-
bedding page to white-list more images from its own do-
main (using any protocol) and nothing more. This signif-
icantly reduces the impact of bugs in the script by b.com,
as long as the page using the advertisement library de-
ploys a reasonably strong content security policy in the
first place.

3.3 Specification
Preliminaries. We start by reviewing some terminol-
ogy from the original CSP specification. A content secu-
rity policy is a list of directives, defining content restric-
tions on protected resources (web pages or iframes) by
means of a white-listing mechanism. White-lists are de-
fined by binding different content types (images, scripts,
etc.) to lists of source expressions, noted as ~se, which are
a sort of regular expressions used to succinctly express
sets of URLs. The inclusion of a content of type t from
a protected resource r is only allowed if the URL u of
the content matches any of the source expressions bound
to the type t in the content security policy of r. We ab-
stract from the details of the matching algorithm of CSP
and we just write matches(u,~se) if u matches any of the
source expressions in the list ~se.

We let P stand for the set of the content security poli-
cies and we let p range over it. We let v stand for the bi-
nary relation between content security policies such that
p1 v p2 if and only if all the content inclusions allowed
by p1 are also allowed by p2. It can be proved that (P,v)
is a bounded lattice and there exist algorithmic ways to
compute the join t and the meet u of any two content se-
curity policies. The join t allows a content inclusion if
and only if it is allowed by at least one of the two policies
(union of the rights), while the meet u allows a content
inclusion if and only if it is allowed by both policies (in-
tersection of the rights). We let> and⊥ stand for the top
and the bottom elements of the lattice respectively. In the
following, we do not discuss how the join and the meet

of two policies are actually computed, but we provide an
abstract specification of CCSP which uses these opera-
tions as a black box. The formal metatheory is presented
in Appendix A for the sake of completeness.

Security Headers. The CCSP specification is based on
three new security headers:

1. CSP-Compose: only used by the web developers of
the protected resource. It includes a content security
policy specifying the initial content restrictions to
be applied to the protected resource;

2. CSP-Union: only used by the content providers. It
includes a content security policy which should be
joined with the content security policy of the pro-
tected resource to accommodate the intended func-
tionality of the supplied contents;

3. CSP-Intersect: (optionally) used by both the web
developers of the protected resource and the content
providers. It includes a list of bindings between a
source expression list (a scope) and a content secu-
rity policy, expressing that contents retrieved from
a URL matching a given scope are entitled to relax
the policy of the protected resource only up to the
specified upper bound.

The next paragraph makes these intuitions more precise.

Enforcement Model. Conceptually, each protected re-
source needs to keep track of two elements: the enforced
content security policy p and the upper bounds on policy
relaxation R = {(~se1, p1), . . . ,(~sen, pn)} collected via the
CSP-Intersect headers. We call R a relaxation policy
and we refer to the pair (p,R) as the protection state of
the protected resource.

In the protection state (p,R), a content inclusion is al-
lowed if and only if it is allowed by the content security
policy p, whose weakening is subject to the relaxation
policy R. Initially, the protection state is set so that p is
the policy delivered with the CSP-Compose header of the
protected resource and R = {(~se1, p1), . . . ,(~sen, pn)} is
the CSP-Intersect header originally attached to it. The
protection state can be dynamically updated when the
protected resource includes contents with a CSP-Union

header. To formalise the update of the protection state,
it is convenient to introduce a few auxiliary definitions.
First, we define the set of the upper bounds for policy
relaxation given to the URL u by the relaxation policy R.

Definition 1 (Specified Upper Bounds). Given a URL u
and a relaxation policy R, we define the specified upper
bounds for u under R as:

bnds(u,R) = {p | ∃~se : (~se, p) ∈ R∧matches(u,~se)}.
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Using this auxiliary definition, we can define the upper
bound for policy relaxation as follows:

Definition 2 (Upper Bound). Given a URL u and a re-
laxation policy R, we define the upper bound for u under
R as:

ub(u,R) =


p1t . . .t pn if bnds(u,R) = {p1, . . . , pn}

with n > 0
⊥ if bnds(u,R) = /0

Though simple, this definition is subtle. If no upper
bound for a given URL u is defined in a relaxation policy
R, then ub(u,R) =⊥ and no policy relaxation is possible
when processing a response from u. However, if mul-
tiple upper bounds are specified for u, then their join is
returned. This means that, if multiple content providers
specify different, possibly conflicting upper bounds on
policy relaxation, then all of them will be honored, which
is the most liberal behaviour. This design choice is cru-
cial to ensure the functionality of the protected resource,
as we extensively discuss in Section 4.

We are now ready to explain how the protection state
of a resource gets updated. Let (p,R) be the current pro-
tection state and assume that a content is loaded from
the URL u. Assume also that the corresponding HTTP
response attaches the following headers: a CSP-Union

header including the content security policy p′ and a
CSP-Intersect header defining the relaxation policy
R′. Then, the protection state (p,R) is updated to:

(pt (p′uub(u,R)),

R∪{(~sei, piuub(u,R)) | (~sei, pi) ∈ R′}).
(1)

In words, the protection state of the protected resource is
updated as follows:

1. the content security policy p is relaxed to allow all
the content inclusions allowed by p′ which are com-
patible with the restrictions ub(u,R) enforced on u
by the relaxation policy R. This means that all the
content inclusions allowed by p′ are also allowed to
the protected resource, unless the relaxation policy
R specifies a tighter upper bound for u;

2. the relaxation policy R is extended to allow all
the behaviours allowed by R′ which are compatible
with the restrictions ub(u,R) enforced on u by the
relaxation policy R. This prevents trivial bypasses
of the relaxation policy R, where u specifies a more
liberal upper bound than ub(u,R) for other contents
recursively loaded by itself.

Observe that CCSP gives web developers the possibil-
ity of granting different capabilities on policy relaxation
to different content providers, but content security poli-
cies are still enforced per-resource (web page or iframe),

rather than per-content. Though certainly useful in prin-
ciple, enforcing different content security policies on
different contents is not possible without deep browser
changes, whose practical feasibility and backward com-
patibility are unclear.

3.4 Example
To exemplify the enforcement model of CCSP, we show
our proposal at work on the advertisement library exam-
ple of Section 2. Recall the example focuses on a library
developed by a.com and importing an external library
from b.com. Since the users of the a.com library are
not necessarily aware of the inclusion of contents from
b.com, the developers at a.com are careful in limiting
the capabilities granted to the imported library. In par-
ticular, they deploy the following CCSP policy declaring
the need of importing a script from b.com, which in turn
should only be allowed to load images from the same
domain, using any protocol:

CSP-Union

script-src https://b.com/adv.js;

CSP-Intersect

scope https://b.com/adv.js;

img-src *://b.com;

default-src ’none’

A user of the a.com library may not know exactly what
the library needs to work correctly. However, since she
trusts the provider of the library, she may deploy the fol-
lowing CCSP policy on her homepage:

CSP-Compose

script-src https://a.com/lib.js;

CSP-Intersect

scope https://a.com/lib.js;

script-src https://*;

img-src https://*;

default-src ’none’

Hence, in the initial protection state, the page is only al-
lowed to load the a.com library, but the library is also
granted the capability of relaxing the content security
policy of the page to include more scripts and images
over HTTPS. After loading the a.com library and pro-
cessing its CCSP headers, the content security policy of
the protected page is updated as follows:

script-src https://a.com/lib.js

https://b.com/adv.js;

This allows the inclusion of the external script from
b.com. What is more interesting, however, is how the
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relaxation policy of the homepage is updated after pro-
cessing the response from a.com. Specifically, the re-
laxation policy will include a new entry for b.com of the
following format:

scope https://b.com/adv.js;

img-src https://b.com;

default-src ’none’

This entry models the combined requirement that the im-
ported script from b.com can only relax the content se-
curity policy of the protected page to load images from
its own domain (as desired by a.com), but only using
the HTTPS protocol (as desired by the protected resource
and originally enforced on the importer at a.com).

Assume now that the script from b.com sends the fol-
lowing CCSP header:

CSP-Union

img-src *

When processing the response from b.com, the page will
further relax its content security policy as follows:

script-src https://a.com/lib.js

https://b.com/adv.js;

img-src https://b.com

Hence, even though b.com asked for the ability of load-
ing arbitrary images from the web, the restrictions put in
place by a.com actually ensured that the content security
policy of the protected page was only relaxed to load im-
ages from b.com. At the same time, the protected page
successfully enforced that these images are only loaded
over HTTPS.

4 Design Evaluation

4.1 Security Analysis
Threat Model. CCSP is designed to assist honest con-
tent providers in making their end users aware of the ca-
pabilities needed by the contents they make available and
simplify their robust integration with the content security
policy of the embedding resource. As such, CCSP aims
at mitigating the impact of accidental security vulnera-
bilities, whose threats can be prevented by the mismatch
between the unintended harmful behaviours and the ex-
pected capabilities requested in the CCSP headers. If we
assume that both the initial content security policy of the
protected resource and the following relaxations (by hon-
est content providers) comply with the principle of the
least privilege, imported contents can only recursively
load additional contents served from sources which were
white-listed to implement a necessary functionality: this
greatly reduces the room for dangerous behaviours.

However, CCSP is not designed to protect against ma-
licious content providers. If a protected resource imports
malicious contents, the current CSP standard offers little
to no protection against data exfiltration and serious in-
tegrity threats [13]. Since CCSP ultimately relies on CSP
to implement protection, the same limitations apply to it,
though attackers who are not aware of the deployment of
(C)CSP on the protected resource may see their attacks
thwarted by the security policy.

Policy Upper Bounds. In CCSP, the initial protection
state (p,R) is entirely controlled by the developers of the
protected resource. If R = /0, no policy relaxation is pos-
sible and the security guarantees offered to the protected
resource are simply those provided by the initial content
security policy p. Observe that no policy relaxation is
allowed even if a content provider at u sends its own re-
laxation policy R′ 6= /0, since all the relaxation bounds in
R′ will be set to ub(u,R) =⊥ when updating the protec-
tion state, thanks to the use of the meet operator in Equa-
tion 1. Otherwise, let R = {(~se1, p1), . . . ,(~sen, pn)} with
n > 0 be the initial relaxation policy. In this case, the
most liberal content security policy eventually enforced
on the protected resource can be pt p1 t . . .t pn, again
because the initial upper bounds on policy relaxation can
never be weakened when the protection state is updated,
due to the use of the meet operator in Equation 1. Re-
markably, this bound implies that the developers of the
protected resource still have control over the most liberal
content security policy enforced on it and may reliably
use CCSP to rule out undesired behaviours, e.g., loading
images over HTTP, just by writing an appropriate initial
policy and upper bounds on policy relaxation.

Notice that the upper bounds defined by the initial re-
laxation policy may be way more permissive than the ac-
tual policy enforced on the protected resource, since the
policy relaxation process happens dynamically and de-
pends on the responses of the different content providers.
In particular, if all the content providers are honest and
prudent, they should comply with the principle of the
least privilege, hence the enforced policy will realisti-
cally be much tighter than the original upper bounds.

4.2 Compatibility Analysis
Legacy Browsers. Legacy browsers lacking support
for CCSP will not recognise the new security headers
defined by our proposal, hence these headers will just be
ignored by them. If we stipulate that CCSP-compliant
browsers should only enforce standard content security
policies in absence of CCSP policies, which is a rea-
sonable requirement being CCSP an extension of CSP,
developers of protected resources can provide support
for legacy browsers just by sending both a CCSP policy
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(enforced by CCSP-compliant browsers) and a standard
content security policy (enforced by legacy browsers).

Clearly, the latter policy would need to white-list all
the legitimate content inclusions, though, as we said,
these are often hard to predict correctly. Luckily, there
is a simple way to build a working content security pol-
icy from a CCSP policy, which is including all the upper
bounds specified by the relaxation policy directly in the
content security policy. This can be done automatically
by a server-side proxy and it will produce a policy which
is typically more liberal than necessary, yet permissive
enough to make the protected resource work correctly
(and not necessarily weaker than the policy the average
web developer would realistically write using CSP).

Legacy Content Providers. Legacy content providers
will not attach any CSP-Union header to the contents
they serve, although developers of resources protected by
CCSP may expect them to supply this information to re-
lax their policies. There are two alternative ways to deal
with the absence of a CSP-Union header, both of which
are plausible and worth discussing:

1. perform no policy relaxation: this conservative be-
haviour can break the functionality of protected re-
sources, but it ensures that, whenever policy relax-
ation happens, both the developers of the protected
resource and the content providers agreed on the
need of performing such a sensitive operation;

2. relax the policy to the upper bound specified for the
content provider: this alternative choice privileges
a correct rendering of contents served by legacy
content providers, at the cost of enforcing a policy
which may be more permissive than necessary. No-
tice, however, that this still takes into account the
(worst case) expectations of the developers of the
protected resource.

Though both choices are sensible, we slightly prefer the
first option as the default in CCSP, most notably because
it is consistent with a similar design choice taken in the
latest draft of CSP Embedded Enforcement [17], where
the lack of an expected header on an embedded content
triggers a security violation on the embedding resource.
We do not exclude, however, that it could be useful to
extend CCSP to give developers a way to express which
of these two choices should be privileged.

Compatibility Issues from Security Enforcement. In
CCSP, the content security policy of the protected re-
source can never be restricted by an interaction with a
content provider, but it can only be made more liberal,
hence it can never happen that a content provider forbids
a content inclusion which is needed and allowed by the

protected resource. It is also important to remark that
different content providers can specify different, possi-
bly conflicting upper bounds for policy relaxation with
the same scope, but conflicts cannot lead to compatibility
issues in practice, because all bounds are joined together
(see Definition 2) and taken into account upon policy re-
laxation. This choice privileges the correct rendering of
contents over security, but the opposite choice of taking
the meet of the upper bounds would make the integra-
tion of contents from different providers too difficult to
be practical, because these providers are not necessar-
ily aware of the presence of each other in the same pro-
tected resource and may disagree on the relaxation needs.
Moreover, taking the meet of the upper bounds would
open the room to “denial of service” scenarios, where
two competitor content providers could maliciously put
unduly restrictions on each other.

If the content security policy of the protected resource
is not liberal enough to let a content be rendered cor-
rectly, there are only two possibilities:

1. the original content security policy of the protected
resource was not permissive enough in the first
place and was never appropriately relaxed;

2. the content was loaded by a provider enforcing
overly tight restrictions on policy relaxation for con-
tents recursively loaded by another provider.

The first possibility may already occur in CSP and it is
inherent to the nature of any whitelist-based protection
mechanism. The second possibility, instead, is specific to
CCSP, but it is not really a compatibility issue, because
providers are not forced to put restrictions on policy re-
laxation and they are assumed to behave rationally, i.e.,
they do not deliberately put restrictions to break contents
which are recursively loaded from other providers as part
of their intended functionality.

4.3 Deployment Considerations
Deployment on Websites. Two actors must comply
with CCSP to benefit of its protection: developers of pro-
tected resources and content providers. Assuming a rea-
sonably large deployment of CCSP by content providers,
developers who are willing to deploy a standard content
security policy on their websites would have a much sim-
pler life if they decided to run CCSP instead, because the
policies written in the CSP-Compose headers are a subset
of the policies which would need to be written using the
standard CSP; moreover, the direct dependencies of the
protected resource are much simpler to identify than the
indirect ones. Writing accurate CSP-Intersect headers
for controlled policy relaxation might be more complex
for the average web developer, but quite liberal policies
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would be easy to write and still appropriate for content
providers with a high level of trust.

Content providers, instead, would need to detect the
(direct) dependencies of the contents they serve and write
appropriate CSP-Union headers. We think this a much
simpler task for them rather than for the end users of their
contents, because they have a better understanding of
their implementation. We also believe that pushing part
of the policy specification effort on the content providers
is beneficial to a wide deployment of CCSP, because in
practice few selected providers supply a lot of contents
to the large majority of the websites. Configuring cor-
rectly the CSP-Union headers of these providers would
thus provide benefits to a significant fraction of the web,
which is a much more sensible practice than hoping that
most web developers are able to identify correctly the de-
pendencies of the contents they include. We substantiate
these claims with the experiments in Section 5.

Deployment in Browsers. CCSP does not advocate
any major change to the CSP specification and uses it
as a black box, because the content restrictions applied
to a CCSP-protected page follow exactly the semantics
of a standard content security policy. The only differ-
ence with respect to CSP is that the protection state of
the protected resource is not static, but can change dy-
namically, so that different content security policies are
applied on the same protected resource at different points
in time. This means that CCSP should be rather easy to
deploy on existing browsers, because the implementation
of CSP available therein could be directly reused.

Incremental Deployment. Given that CCSP is an ex-
tension of CSP, it naturally supports the coexistence
of CCSP-compliant and legacy content providers in the
same policy. Developers of protected resources can write
CSP-Intersect headers for CCSP-compliant providers
and trust that they provide appropriate CSP-Union head-
ers for their contents; at the same time, however, devel-
opers can also include the dependencies of legacy con-
tent providers directly in the CSP-Compose header. This
allows an incremental deployment of CCSP on the web,
which is particularly important because not all content
providers may be willing to deploy CCSP.

4.4 Criticisms to CCSP
CCSP is more expressive than Strict CSP, because it
extends the possibility of relaxing the white-listed con-
tent inclusions beyond what is allowed by the use of
’strict-dynamic’. In this section, we argued for the
security, the backward compatibility and the ease of de-
ployment of CCSP. Still, there are a few potential criti-
cisms to CCSP that we would like to discuss.

Practical Adoption. A first criticism to CCSP is fun-
damental to its design: achieving the benefits of CCSP
requires adoption by third-party content providers. One
may argue that it is difficult enough to get first parties to
adopt CSP, let alone convince third parties to write CCSP
policies. Two observations are in order here.

First, as anticipated, content providers typically have
an economic interest on the correct integration between
the contents they supply and the CSP policies of the em-
bedding pages, such as in the case of advertisements,
hence content providers often do not need further con-
vincing arguments to deploy CCSP. Moreover, one may
argue that the challenges faced by the first-party adop-
tion of CSP may actually depend on the lack of third-
party support for policy deployment, which proved to
be difficult for web developers [9, 20, 1, 18]. If con-
tent providers could provide the correct policies for the
content they supply, then also the first parties might be
more willing to adopt CCSP, because they will encounter
significantly less challenges upon deployment. Major
content providers supporting CSP, such as Google, could
play an important role in pushing the adoption of CCSP.

Increased Complexity. We acknowledge that CCSP is
more complex than CSP and its enforcement model is
subtle, because it aims at reconciling security, flexibil-
ity and backward compatibility. Complexity may be a
concern for the practical adoption of CCSP, though one
may argue that the simplicity of CSP bears limits of ex-
pressiveness which may actually complicate its deploy-
ment when ’strict-dynamic’ is not enough, e.g., in
the presence of complex script dependencies or HTTP
redirects.

That said, we designed CCSP as an extension of CSP
exactly to ensure that web developers who do not need
the additional expressive power of CCSP can ignore its
increased complexity. On the contrary, web developers
who need more flexibility in policy writing can find in
CCSP useful tools to accommodate their needs.

Complex Debugging. A peculiarity of CCSP is that
the enforced security policy changes dynamically, which
can make policy debugging more complex than for CSP.
This is a legitimate concern: even if content providers
write appropriate CSP-Union headers for their resources,
policy violations may arise due to some additional re-
strictions enforced by the CSP-Intersect headers sent
by the protected resource.

We propose to make these conflicts apparent by ex-
tending the monitoring facilities of CCSP so that all the
policy relaxations performed by a protected resource are
reported to web developers. However, we acknowledge
that designing a robust reporting system for CCSP is a
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complex and delicate problem, which we plan to investi-
gate further as future work.

5 Impact of CCSP

To evaluate the benefits offered by CCSP, we built and
extensively analyzed a dataset of CSP violations col-
lected in the wild, finding a number of cases which are
difficult to accommodate in CSP (and, indeed, were not
correctly supported by policy writers). Our investigation
confirms the need for a more expressive mechanism like
CCSP. We then quantitatively assess that only few con-
tent providers need to deploy CCSP to fix most of the
policy violations on the websites we visited, which sub-
stantiates the practical importance of our proposal.

5.1 Methodology
We developed a simple Chromium extension which inter-
cepts the CSP headers of incoming HTTP(S) responses
and changes them to report the detected CSP violations
to a web server run by us (we do this by leveraging the
report-uri directive available in CSP). We then used
Selenium to guide Chromium into accessing the home-
pages of the 1,352 websites from the Alexa Top 100k
running CSP5. This way, we were able to collect a dataset
of CSP violations from existing websites. Notice that this
is only a subset of all the CSP violations which may be
triggered on these websites, since our crawler does not
exercise any website functionality besides page loading.

We then performed a breakdown of the collected CSP
violations. In particular, we focused on two categories
of violations which are difficult to fix robustly in CSP,
but are simple to address with CCSP: (i) violations trig-
gered by the recursive inclusion of contents by any of
the scripts loaded on the website, and (ii) violations trig-
gered by HTTP redirects towards URLs which are not
white-listed in the content security policy of the website.
Both these scenarios are common, but challenging for
CSP, since they involve elements which are not under the
direct control of the developers of the websites.

To detect the violations in the first category, we re-
lied on the structure of the collected violation reports,
which includes both the URI of the website (named
document-uri) and the URI of the element triggering
the violation (named source-file); if there is a mis-
match between the two, we put the violation into the first
category. As to the second category of violations, we
kept track of the detected HTTP redirects using our ex-
tension, storing the content of their Location header,

5We only focus on websites running CSP in enforcement mode.
There are way more websites running CSP in report-only mode, but we
excluded them from our analysis, because their policies are not neces-
sarily accurate and intended to be eventually enforced [1].

and we performed a cross-check between this informa-
tion and the dataset of violations: if there is a violation
due to the inclusion of a content located at a URL found
in a Location header, we put the violation in the second
category. Violations can belong to both categories.

5.2 Results
Overall, we found 959 CSP violations in 154 websites.
We assigned 231 violations from 51 websites to the first
category and 199 violations from 73 websites to the sec-
ond category; we found only 7 violations belonging to
both categories.

Table 1 provides the breakdown of the 231 violations
due to script dependencies with respect to the violated
CSP directive. One can readily observe that scripts of-
ten need to recursively include other scripts as expected,
but they also typically load a bunch of other contents of
different nature, most notably fonts, frames and images.
The use of ’strict-dynamic’ can fix the 96 violations
related to the script-src directive, which however rep-
resent only the 41.6% of the total number of violations in
this category. To properly fix the other 135 cases in CSP,
one would need to identify the missing dependencies of
the included scripts and adapt the content security policy
of the website accordingly, but this is not always easy for
web developers, as testified by the fact that these viola-
tions occurred on popular websites.

Violated Directive Violations Sites
script-src 96 30
font-src 72 3
frame-src 32 25
img-src 17 5
connect-src 12 6
style-src 2 2

Table 1: Violations triggered by script dependencies

Table 2 reports the top 10 script providers by number
of violations produced by the scripts they serve, as well
as the number of websites where these violations are trig-
gered. An interesting observation here is that, by writing
appropriate CCSP headers for these 10 providers, one
could fix 88 violations, which amount to the 38.1% of
all the violations due to script dependencies we observed
in the wild. Remarkably, this would fix violations in 37
websites, which amount to the 72.5% of all the websites
which presented a violation in the first category. This
suggests that the use of CCSP by the top script providers
could provide a benefit to the majority of the websites.

As to the 199 violations due to HTTP redirects, we
noticed that they were caused by redirectors from 46 dif-
ferent domains. Table 3 shows the top 10 redirectors by
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Script Provider Violations Sites
www.googletagmanager.com 26 9
apis.google.com 13 13
pagead2.googlesyndication.com 11 2
api.dmp.jimdo-server.com 8 4
assets.jimstatic.com 7 4
vogorana.ru 7 2
www.googleadservices.com 7 6
www.googletagservices.com 4 2
s.adroll.com 3 3
js-agent.newrelic.com 2 2

Table 2: Top script providers by number of violations

number of violations, as well as the number of websites
where these violations are triggered. It is worth notic-
ing that, by writing appropriate CCSP headers for these
10 redirectors, one could already prevent 136 violations,
which amount to the 68.3% of all the violations due to
redirects. This would fix violations in 61 websites, which
amount to the 83.6% of all the websites which presented
a violation in the second category. This confirms again
that a limited deployment of CCSP at major services
could have a significant impact on the entire Web.

Redirector Violations Sites
www.google.com 47 38
www.ingbank.pl 20 2
www.google-analytics.com 14 13
d.adroll.com 12 3
ads.stickyadstv.com 9 1
mc.yandex.ru 9 1
www.clearslide.com 8 2
cnfm.ad.dotandad.com 6 1
stats.g.doubleclick.net 6 6
ssl.google-analytics.com 5 5

Table 3: Top redirectors by number of violations

6 Implementation and Testing

6.1 Prototype Implementation
We developed a proof-of-concept implementation of
CCSP as a Chromium extension. The extension essen-
tially works as a proxy based on the webRequest API6. It
inspects all the incoming HTTP(S) responses looking for
CCSP headers: if they are present, the extension parses

6https://developer.chrome.com/extensions/

webRequest

them following the syntax described in the present pa-
per and then strips away standard CSP headers (if any)
to avoid conflicts. The extension internally keeps track
of the protection state of all the open pages, closely fol-
lowing the CCSP enforcement model described in Sec-
tion 3.3. Outgoing requests are then inspected to check
whether they are allowed by the content security policy
enforced in the current protection state of the page send-
ing them: if this is not the case, the request is blocked.

Our prototype does not support any source expres-
sion which does not deal with outgoing requests, like
’unsafe-inline’, since they are not trivial to handle
via a browser extension (assuming it is even possible).
The goal of the prototype is just providing a way to get
hands-on experience with CCSP on existing websites and
testify that it is possible to write accurate CCSP policies
for them. On the long run, we would like to implement a
more mature prototype of CCSP directly in Chromium:
this should be relatively easy to do, because CCSP can
use the existing CSP implementation as a black box.

6.2 Testing in the Wild

In our experiments, we fixed CSP violations found on
two popular websites by using CCSP. We started by
stipulating that their CSP-Compose headers should con-
tain exactly the original content security policy and we
then wrote appropriate CSP-Union and CSP-Intersect
headers to fix the observed CSP violations. We finally
injected these CCSP headers in the appropriate HTTP(S)
responses via a local proxy.

Twitter. On Jan 13th 2017 we found that the con-
tent security policy of twitter.com was broken by the
inclusion of a script from https://cdn5.userzoom.

com, loaded by a script from https://abs.twimg.com.
Since twimg.com is controlled by Twitter, we decided

to assume a high level of trust for all its sub-domains and
we wrote the following CSP-Intersect header for the
homepage of twitter.com:

CSP-Intersect:

scope *.twimg.com;

script-src https://*;

default-src ’none’;

This gives contents hosted on twimg.com the ability of
relaxing the content security policy of Twitter to load
arbitrary scripts over HTTPS. This is a very liberal be-
haviour, but it may be a realistic possibility if the team
working at abs.twimg.com develops products indepen-
dently from their final users at Twitter.

We then injected the following CSP-Union header in
the script provided by abs.twimg.com:

706    26th USENIX Security Symposium USENIX Association



CSP-Union:

script-src https://cdn5.userzoom.com;

In this specific case, we cannot white-list the exact script,
QzI2OVQxNDQg.js, as its name is taken from the DOM
and cannot be known by the server. However, the do-
main https://cdn5.userzoom.com is hard-coded in
the script at abs.twimg.com, so we can reliably use that
information for white-listing.

These two CCSP headers fixed the policy violation we
found and allowed the script from abs.twimg.com to
change its imported scripts without any intervention from
the Twitter developers, as long as it correctly updates its
CSP-Union header.

Orange. On Jan 23rd 2017 we detected three CSP vi-
olations at www.orange.sk, a national website of the
popular telecommunication provider Orange.

The first violation was due to a script imported from
static.hotjar.com, which was trying to create an
iframe including contents from vars.hotjar.com. We
fixed it by writing the following CSP-Intersect header
for the homepage of www.orange.sk:

CSP-Intersect:

scope static.hotjar.com;

frame-src *.hotjar.com;

default-src ’none’;

We then attached the following CSP-Union header to
the script from vars.hotjar.com:

CSP-Union:

frame-src https://vars.hotjar.com/rcj-b2

c1bce0a548059f409c021a46ea2224.html

Notice that this time we were able to white-list exactly
the required contents, since the whole URL is readily
available in the script code.

The other two violations were triggered by two images
imported from www.google.com for tracking purposes,
which were redirected to a national Google website not
included in the content security policy. The web develop-
ers at www.orange.sk probably noticed these violations
and tried to fix them by adding www.google.sk to the
img-src directive, but since we were visiting the web-
site from Italy, we got redirected to www.google.it and
this domain was not included in the content security pol-
icy of www.orange.sk.

We then fixed these issues by adding the following in-
formation to the headers sent by www.orange.sk:

CSP-Intersect:

scope www.google.com;

img-src *;

default-src ’none’;

and by including the following headers to the redirect
sent from www.google.com:

CSP-Union:

img-src www.google.it

Notice that the correct top-level domain is known to
the server, because it is also issuing the redirect request.

Other Websites. We discussed two practical examples
of CCSP deployment, but one may wonder how difficult
it is to write CCSP headers for other websites. To get a
rough estimate about the challenges of the CCSP deploy-
ment more in general, we inspected our dataset of CSP
violations and we collected for the top 10 script providers
(by number of violations) the following information: the
number of scripts they serve, the number of CSP vio-
lations triggered by these scripts, and the type of these
violations. The results are in Table 4.

We think that the perspective offered by the table is
pretty encouraging, because it suggests that even popular
script providers only serve a small number of scripts to
their customers, which means that the number of CCSP
headers to write for them is typically limited. Moreover,
scripts often load a very limited number of resources and
only few of them need to load contents of variegate type.
These two factors combined suggest that writing policies
for scripts should be relatively easy on average, because
these policies would have limited size and complexity.

7 Related Work

Several studies analysed the extent and the effectiveness
of the CSP deployment in the wild and highlighted that
web developers have troubles at configuring CSP cor-
rectly [9, 20, 1, 18]. Indeed, there have been a num-
ber of complementary proposals, with different level of
complexity, on how to automatically generate content se-
curity policies for existing websites [2, 3, 7, 8]. The ef-
fectiveness of these proposals is still unclear, since au-
tomatically generating content security policies which
are at the same time accurate and secure turned out to
be extremely challenging, requiring a combination of
static analysis, runtime monitoring and code rewriting.
However, even a perfect policy generation algorithm can
still lead to functionality problems upon content inclu-
sion, due to unanticipated changes in the behaviour of
included contents due to, e.g., the use of HTTP redirects
or the relocation of script dependencies. CCSP was de-
signed to support these behaviours under the assumption
that most content providers are not actually malicious. It
is also worth mentioning that CCSP is naturally effective
at simplifying the policy specification process for web
developers, assuming that content providers are willing
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Script Provider Scripts Violations Types of Violations
www.googletagmanager.com 9 1 script
apis.google.com 13 1 frame
pagead2.googlesyndication.com 3 5 script, img
api.dmp.jimdo-server.com 4 4 connect, img
assets.jimstatic.com 2 2 script, img
vogorana.ru 3 6 script, frame, connect
www.googleadservices.com 6 2 frame
www.googletagservices.com 3 3 script
s.adroll.com 3 2 script
js-agent.newrelic.com 1 2 script

Table 4: Types of violations for popular script providers

to dedicate some efforts to foster the integration between
their contents and the content security policies of the em-
bedding resources.

The idea of dynamically changing the enforced CSP
policy advocated in CCSP is also present in the design of
COWL, a confinement system for JavaScript code [12].
COWL assigns information flow labels to contexts (e.g.,
pages and iframes) and restricts their communication
based on runtime label checks. Labels are allowed to
change dynamically using meet and join operators, and
implemented on top of CSP, which makes runtime pol-
icy composition part of COWL. However, COWL targets
more ambitious security goals than (C)CSP by enforcing
non-interference on labeled contexts and, as such, it is
less flexible and harder to retrofit on existing websites.
For these reasons, we believe that COWL and (C)CSP
are complementary: one system may be better than the
other one, depending on the desired security properties.

CSP Embedded Enforcement is a draft specification
by the W3C which allows a protected resource to em-
bed an iframe only if the latter accepts to enforce upon
itself an embedder-specified set of restrictions expressed
in terms of CSP [17]. The embedder advertises the re-
strictions using a new Embedding-CSP header includ-
ing a content security policy, while the embedded con-
tent must attach a Content-Security-Policy header
including a policy with at least the same restrictions to
declare its compliance. It is worth noticing that CSP Em-
bedded Enforcement is a first step towards making the
CSP enforcement depend upon an interaction between
the protected resource and the content providers, though
the problems it addresses are orthogonal to CCSP. Simi-
larly to CSP, CSP Embedded Enforcement asks web de-
velopers to get a thorough understanding of the contents
they include to write a content security policy for them.

Other papers on CSP studied additional shortcomings
of the standard, touching on a number of different issues:
ineffectiveness against data exfiltration [13], difficult in-

tegration with browser extensions [5], unexpected bad
interactions with the Same Origin Policy [10] and sub-
optimal protection against code injection [6].

8 Conclusion

We proposed CCSP, an extension of CSP based on run-
time policy composition. By shifting part of the policy
specification process to content providers and by adding
a dynamic dimension to CSP, CCSP reconciles the pro-
tection offered by fine-grained white-listing with a rea-
sonable policy specification effort for web developers
and a robust support for the highly dynamic nature of
common web interactions. We analysed CCSP from dif-
ferent perspectives: security, backward compatibility and
deployment cost. Moreover, we assessed its potential im-
pact on the current web and we implemented a working
prototype, which we tested on major websites. Our ex-
periments show that popular content providers can de-
ploy CCSP with limited efforts, leading to significant
benefits for the large majority of the web.

As future work, we plan to implement CCSP directly
in Chromium and carry out a large-scale analysis of its
effectiveness, including a performance evaluation. We
would also like to investigate automated ways to generate
CCSP policies for both websites and content providers:
since CCSP splits policy specification concerns between
these two parties, we hope there is room for simplifying
the automated policy generation process and making it
more effective than for CSP. Finally, we would like to
investigate the problem of supporting robust debugging
facilities for CCSP in web browsers.
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A Theory

Our theory of joins and meets is based on a core frag-
ment of CSP called CoreCSP. This fragment captures the
essential ingredients of the standard and defines their (de-
notational) semantics, while removing uninspiring low-
level details.

A.1 CoreCSP

We presuppose a denumerable set of strings, ranged over
by str. The syntax of policies is shown in Table 5, where
we use dots (. . .) to denote additional omitted elements
of a syntactic category (we assume the existence of an
arbitrary but finite number of these elements).

This a rather direct counterpart of the syntax of CSP.
The most notable points to mention are the following:
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Content types t ::= script | style | . . .
Schemes sc ::= http | https | data

| blob | filesys | il
| . . .

Policies p ::= ~d | p+ p
Directives d ::= t-src v

| default-src v
Directive values v ::= {se1, . . . ,sen}
Source expressions se ::= h | unsafe-inline

| inline(str)
Hosts (sc 6= il) h ::= self | sc | he | (sc,he)
Host expressions he ::= ∗ | ∗ .str | str

Table 5: Syntax of CoreCSP

1. we assume the existence of a distinguished scheme
il, used to identify inline scripts and stylesheets.
This scheme cannot occur inside policies, but it is
convenient to define their formal semantics;

2. we do not discriminate between hashes and nonces
in source expressions, since this is unimportant at
our level of abstraction. Rather, we uniformly repre-
sent them using the source expression inline(str),
where str is a string which uniquely identifies the
white-listed inline script or stylesheet;

3. we define directive values as sets of source expres-
sions, rather than lists of source expressions. This
difference is uninteresting in practice, since source
expression lists are always parsed as sets;

4. for simplicity, we do not model ports and paths in
the syntax of source expressions.

To simplify the formalization, we only consider well-
formed policies, according to the following definition.

Assumption 1 (Well-formed Policies). We assume that
policies are well-formed, i.e., for each directive value v
occurring therein, we have that unsafe-inline ∈ v im-
plies inline(str) 6∈ v.

The syntax of CSP is more liberal, because it al-
lows one to write policies violating the constraint above.
However, there is no loss of generality in focusing only
on well-formed policies, since if both unsafe-inline

and inline(str) occur in the same directive, only one
of them is enforced: browsers supporting CSP 1.0 would
ignore inline(str), while browsers implementing more
recent versions of CSP would ignore unsafe-inline.

The definition of the semantics of CoreCSP is based
on three main entities: locations are uniquely identified

sources of contents; subjects are HTTP(S) web pages en-
forcing a CSP policy; and objects are contents available
for inclusion by subjects.

Definition 3 (Locations). A location is a pair l =
(sc,str). We let L stand for a denumerable set of lo-
cations and we let L range over subsets of L .

Definition 4 (Subjects). A subject is a pair s = (l,str)
where l = (sc,str′) with sc ∈ {http,https}.

Definition 5 (Objects). An object is a pair o = (l,str).
We let O stand for a denumerable set of objects and we
let O range over subsets of O .

We use the projection functions π1(·) and π2(·) to ex-
tract the components of a pair (location, subject or ob-
ject). We also make the following typing assumption.

Assumption 2 (Typing of Objects). We assume that ob-
jects are typed. Formally, this means that O is partitioned
into the subsets Ot1 , . . . ,Otn , where t1, . . . , tn are the avail-
able content types. We also assume that, for all objects
o = ((il,str′),str), we have o ∈ Oscript∪Ostyle.

The judgement se  s L defines the semantics of
source expressions. It reads as: the source expression se
allows the subject s to include contents from the locations
L. The formal definition is given in Table 6, where we let
B be the smallest reflexive relation on schemes such that
httpBhttps. The judgement generalizes to values by
having: v s {l | ∃se ∈ v,∃L⊆L : se s L∧ l ∈ L}.

self s {π1(s)} sc s {l | π1(l) = sc}

∗ s {l | π1(l) 6∈ {data,blob,filesys,il}}

str s {l | π1(s)Bπ1(l)∧π2(l) = str}

∗.str s {l | π1(s)Bπ1(l)∧∃str′ : π2(l) = str′.str}

(sc,str) s {(sc,str)}

(sc,∗.str) s {l | π1(l) = sc∧∃str′ : π2(l) = str′.str}

(sc,∗) s {l | π1(l) = sc}

unsafe-inline s {l | π1(l) = il}

inline(str) s {(il,str)}

Table 6: Semantics of Source Expressions (se s L)

We then define operators to get the value bound to a
directive in a policy. Given a list of directives ~d and a
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content type t, we define ~d ↓ t as the value bound to the
first t-src directive, if any; otherwise, the value bound
to the first default-src directive, if any; and in absence
of both, we let it be the wildcard {∗}.

Definition 6 (Lookup). Given a list of directives ~d and a
content type t, we define ~d.t as follows:

~d.t =


v if ~d = ~d1, t-src v, ~d2∧

∀d ∈ {~d1} : d 6= t-src v′

⊥ otherwise

We then define the lookup operator ~d ↓ t as follows:

~d ↓ t =


~d.t if ~d.t 6=⊥
v if d.t =⊥∧ ~d = ~d1,default-src v, ~d2∧

∀d ∈ {~d1} : d 6= default-src v′

{∗} otherwise

The judgement p ` s�t O defines the semantics of
policies. It reads as: the policy p allows the subject s to
include as contents of type t the objects O. The formal
definition is given in Table 7.

(D-VAL)
~d ↓ t = v v s L

~d ` s�t {o ∈ Ot | π1(o) ∈ L}

(D-CONJ)
p1 ` s�t O1 p2 ` s�t O2

p1 + p2 ` s�t O1∩O2

Table 7: Semantics of Policies (p ` s�t O)

The semantics of a CSP policy depends on the subject
restricted by the policy. This makes reasoning on CSP
policies quite complicated, hence we introduce a class of
policies, called normal policies, whose semantics does
not depend on a specific subject. The restriction to nor-
mal policies does not bring any loss of generality in prac-
tice, since any policy can be translated into an equivalent
normal policy by using a subject-directed compilation.

The syntax of normal policies is obtained by replacing
the occurrences of h in Table 5 with h, where:

h ::= sc | ∗ | (sc,he).

We define normal source expressions and normal direc-
tive values accordingly.

Definition 7 (Normalization). Given a source expression
se and a subject s, we define the normalization of se un-

der s, written 〈se〉s, as follows:

〈se〉s =


{π1(s)} if se = self

{(sc,str) | π1(s)B sc} if se = str
{(sc,∗.str) | π1(s)B sc} if se = ∗.str
{se} otherwise

The normalization of a directive value v under s is de-
fined as 〈v〉s =

⋃
se∈v〈se〉s. The normalization of a policy

p under s, written 〈p〉s, is obtained by normalizing under
s each directive value occurring in p.

Lemma 1 (Properties of Normalization). The following
properties hold true:

1. for all policies p and subjects s, 〈p〉s is normal;

2. for all policies p, subjects s and content types t, we
have p ` s�t O if and only if 〈p〉s ` s�t O;

3. for all normal policies p, subjects s1,s2 and content
types t, we have that p` s1�t O1 and p` s2�t O2
imply O1 = O2.

A.2 Technical Preliminaries
We now introduce the technical ingredients needed to
implement our proposal. We start by defining a binary
relation vsrc on normal source expressions. Intuitively,
we have se1 vsrc se2 if and only if se1 denotes no more
locations than se2 (for all subjects).

Definition 8 (vsrc Relation). We let vsrc be the least re-
flexive relation on normal source expressions defined by
the following rules:

sc 6∈ {data,blob,filesys,il}
scvsrc ∗

sc 6∈ {data,blob,filesys,il}
(sc,he)vsrc ∗

scvsrc (sc,∗)

(sc,he)vsrc sc (sc,str)vsrc (sc,∗)

(sc,∗.str)vsrc (sc,∗) (sc,str′.str)vsrc (sc,∗.str)

inline(str)vsrc unsafe-inline

To compare policy permissiveness, however, there are
a couple of issues left to be addressed:

1. a policy p may enforce multiple restrictions on the
same content type t, specifically when p = p1 + p2
for some p1, p2. In this case, multiple directive
values must be taken into account when reasoning
about the inclusion of contents of type t;
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2. a policy p may enforce restrictions on the inclusion
of contents of type t by using directives of two dif-
ferent formats, namely t-src v or default-src v′.
One has then to ensure that the appropriate directive
value is chosen when reasoning about the inclusion
of contents of type t.

We address these issues by defining a smart lookup op-
erator p ⇓ t which, given a policy p and a content type
t, returns a directive value which captures all the restric-
tions put in place by p on t. This operator is based on the
following definition of meet of directive values.

Definition 9 (Meet of Values). Given two normal direc-
tive values v1,v2, we define their meet v1 ./ v2 as follows:

v1 ./ v2 = {se ∈ v1 | ∃se′ ∈ v2 : sevsrc se′}
∪ {se ∈ v2 | ∃se′ ∈ v1 : sevsrc se′}.

Lemma 2 (Correctness of Meet). For all normal direc-
tive values v1,v2 and subjects s, we have v1  s L1 and
v2 s L2 if and only if v1 ./ v2 s L1∩L2.

Definition 10 (Smart Lookup). Given a normal policy p
and a content type t, we define p ⇓ t as follows:

p ⇓ t =

{
~d ↓ t if p = ~d
(p1 ⇓ t) ./ (p2 ⇓ t) if p = p1 + p2

Lemma 3 (Correctness of Smart Lookup). For all nor-
mal policies p, subjects s and content types t, we have:

p ` s�t {o ∈ Ot | ∃L⊆L : p ⇓ t s L∧π1(o) ∈ L}.

A.3 Join and Meet
The join of two policies allows a subject to include some
content if and only if at least one of the two policies does.

Definition 11 (Join of Policies). Given two policies
p1, p2 and a subject s, we define the join p1 ts p2 as the
least policy s.t. (p1ts p2).t = (〈p1〉s ⇓ t)∪ (〈p2〉s ⇓ t).

Theorem 1 (Correctness of Join). p1 ` s�t O1 and p2 `
s�t O2 iff p1ts p2 ` s�t O1∪O2.

Proof. Let p1 ` s�t O1, p2 ` s�t O2 and p1 ts p2 `
s�t O, we show that O = O1∪O2 by proving O⊆O1∪
O2 and O⊇ O1∪O2:

(⊆) Let o∈O, then there exists v such that (p1ts p2).t =
v and v s L for some L such that π1(o)∈ L. By def-
inition, this means that there exists se ∈ v such that
se s L′ for some L′ such that π1(o) ∈ L′. By defi-
nition of join, we have v = (〈p1〉s ⇓ t)∪ (〈p2〉s ⇓ t).
Hence, we have either se ∈ 〈p1〉s ⇓ t or se ∈ 〈p2〉s ⇓
t. Assume that se ∈ 〈p1〉s ⇓ t, then o ∈ O1 by us-
ing Lemma 3 and the observation that normalization
does not change the semantics of policies. The case
se ∈ 〈p2〉s ⇓ t is symmetric;

(⊇) Let o ∈ O1∪O2, then either o ∈ O1 or o ∈ O2. As-
sume that o ∈ O1, the other case is symmetric. By
using Lemma 3 and the observation that normaliza-
tion does not change the semantics of policies, there
exists v such that 〈p1〉s ⇓ t = v and v s L for some
L such that π1(o)∈ L. By definition of join, we have
(p1ts p2).t = v′ for some v′ such that v′ s L′ with
L⊆ L′. This implies o ∈ O.

The meet of two policies allows a subject to include
some content if and only if both policies do. Defining
the meet is more complicated in CSP, because not all
browsers correctly handle the conjunction of two poli-
cies [1]. The key idea of the definition is to reuse
the meet operator ./ defined for directive values, since
we proved that v1  s L1 and v2  s L2 if and only if
v1 ./ v2 v L1∩L2 (see Lemma 2).

Definition 12 (Meet of Policies). Given two policies
p1, p2 and a subject s, we define the meet p1us p2 as the
least policy s.t. (p1us p2).t = (〈p1〉s ⇓ t) ./ (〈p2〉s ⇓ t).

Theorem 2 (Correctness of Meet). p1 ` s�t O1 and
p2 ` s�t O2 iff p1us p2 ` s�t O1∩O2.

Proof. Let p1 ` s�t O1, p2 ` s�t O2 and p1 us p2 `
s�t O, we show that O = O1∩O2 by proving O⊆O1∩
O2 and O⊇ O1∩O2:

(⊆) Let o∈O, then there exists v such that (p1us p2).t =
v and v s L for some L such that π1(o)∈ L. By def-
inition of meet, we have v = (〈p1〉s ⇓ t) ./ (〈p2〉s ⇓
t). Let 〈p1〉s s L1 and 〈p1〉s s L2, then π1(o) ∈
L1 ∩L2 by Lemma 2. This implies π1(o) ∈ L1 and
π1(o) ∈ L2 by definition of intersection. Hence, we
have o ∈ O1 and o ∈ O2 by using Lemma 3 and the
observation that normalization does not change the
semantics of policies;

(⊇) Let o ∈ O1 ∩O2, then o ∈ O1 and o ∈ O2. By us-
ing Lemma 3 and the observation that normalization
does not change the semantics of policies, there ex-
ist v1,v2 such that 〈p1〉s ⇓ t = v1, 〈p2〉s ⇓ t = v2,
v1  s L1 for some L1 such that π1(o) ∈ L1, and
v2  s L2 for some L2 such that π1(o) ∈ L2. This
implies that π1(o) ∈ L1∩L2. By definition of meet,
we have (p1 us p2).t = v1 ./ v2 and we know that
v1 ./ v2 s L1∩L2 by Lemma 2, hence o ∈ O.

Observe that both the definitions of join and meet are
parametric with respect to a subject. In the case of nor-
mal policies, however, this subject can be dropped. Since
all policies can be transformed into equivalent normal
policies (Lemma 1), in the body of the paper we just
write t and u for simplicity.
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Abstract
The term Same-Origin Policy (SOP) is used to denote a
complex set of rules which governs the interaction of dif-
ferent Web Origins within a web application. A subset of
these SOP rules controls the interaction between the host
document and an embedded document, and this subset
is the target of our research (SOP-DOM). In contrast to
other important concepts like Web Origins (RFC 6454)
or the Document Object Model (DOM), there is no for-
mal specification of the SOP-DOM.

In an empirical study, we ran 544 different test cases
on each of the 10 major web browsers. We show that in
addition to Web Origins, access rights granted by SOP-
DOM depend on at least three attributes: the type of the
embedding element (EE), the sandbox, and CORS at-
tributes. We also show that due to the lack of a formal
specification, different browser behaviors could be de-
tected in approximately 23% of our test cases. The is-
sues discovered in Internet Explorer and Edge are also
acknowledged by Microsoft (MSRC Case 32703). We
discuss our findings in terms of read, write, and execute
rights in different access control models.

1 Introduction

The Same-Origin Policy (SOP) is perhaps the most im-
portant security mechanism for protecting web applica-
tions, and receives high attention from developers and
browser vendors.

Complex Set of SOP Rules. Today there is no for-
mal definition of the SOP itself. Web Origins as de-
scribed in RFC 6454 are the basis for the SOP, but they
do not formally define the SOP. Documentation pro-
vided by standardization bodies [1] or browser vendors
[2] is still incomplete. Our evaluation of related work
has shown that the SOP does not have a consistent de-
scription – both in the academic and non-academic world

(e.g., [15, 16, 5]). Therefore, recurrent browser bugs en-
abling SOP bypasses are not surprising.

SOP rules can roughly be classified according to the
problem areas which they were designed to solve (cf. Ta-
ble 1). It is impossible to cover all these subsets in a sin-
gle research paper and even may be impossible to find a
“unifying formula” which covers all subsets.1 However,
it is possible to cover single subsets, as previous work on
HTTP cookies has shown [12]. Thus, we restricted our
attention to the following research questions:

I How is SOP for DOM access (SOP-DOM) imple-
mented in modern browsers?

I Which parts of the HTML markup influences SOP-
DOM?

I How does the detected behavior match known ac-
cess control policies?

More precisely, we concentrate on a subset of SOP
rules according to the following criteria:

I Web Origins. We use RFC 6454 as a foundation.

I Browser Interactions. We concentrate on the inter-
action of web objects once they have been loaded.

It is a difficult task to select a test set for SOP-DOM that
has constantly evolved over nearly two decades. The
SOP-DOM has been adapted several times to include
new features (e.g., CORS) and to prevent new attacks.
15 out of 142 HTML elements have a URL attribute and
may thus have a different Web Origin [17]. Additionally,
sandbox and CORS attributes also modify SOP-DOM.

The Need for Testing. Amongst web security re-
searchers, SOP-DOM is partially common knowledge,
but not thoroughly documented. Although this means

1For example, the SOP rules for DOM access and HTTP cookies
are inconsistent, because their concept of “origin” differs.
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SOP Subset Description Related Work
DOM access
(this paper)

This subset describes if JavaScript code loaded into one “execution context” may access
web objects in another “execution context”. This includes modifications of the standard
behavior by changing the Web Origin, for example, using document.domain.

[1], [2], [3],
[4], [5] , [6]

Local storage
and session
storage

This subset defines which locally stored web object ([name,value] pairs) may be accessed
from a JavaScript execution context.

[7], [8]

XMLHttpRequest This subset imposes restrictions on cross-origin HTTP network access. It contains many
ad-hoc rules and its main concepts have been standardized in CORS.

[9], [7], [8],
[10]

Pseudo-
protocols

Browsers may use Pseudo-protocols like about:, javascript: and data: to de-
note locally generated content. A complex set of rules applies for the definition of Web
Origins here.

[8], [10]

Plugins Many plugins like Java, Flash, Silverlight, PDF come with their own variants of a SOP. [11], [8]
Window/Tab Cross-window communication functions and properties: window.opener, open()

and showModalDialogue().
[8], [10]

HTTP Cookies This subset, with an extension of the Web Origin concept (path), defines to which URLs
HTTP cookies will be sent. This defines their accessibility in the DOM for non-httpOnly
cookies.

[12], [13], [14]

Table 1: Different subsets of SOP rules.

that most researches are familiar with many edge cases in
SOP-DOM, especially those relating to attacks and coun-
termeasures, it is likely that some of those edge cases will
not be covered in this paper. Additionally, each individ-
ual researcher will be unaware of other edge cases, which
may include novel vulnerabilities. For example, it is well
known that JavaScript code from a different web origin
has full read and write access to the host document; nev-
ertheless, recently Lekies et al. [5] pointed our that there
is also read access from the host document to JavaScript
code, which may constitute a privacy problem.

Additionally, HTML5 has brought greater diversity to
seemingly well-known HTML elements. For instance,
the term “authority” used in RFC 6454 [18] may not be
sufficient any more if we compare the power of SVG im-
ages [19] with the following quote from RFC 6454: “an
image is passive content and, therefore, carries no au-
thority, meaning the image has no access to the objects
and resources available to its origin”. Our evaluation
shows that this statement is true for all image types if
they are embedded via <img>. This statement does not
hold if SVG images are embedded via <iframe> or <
object>. Novel standards like Cross-Origin Resource
Sharing (CORS, [9]) also influence access rights granted
by the SOP. To be able to keep the implementation of
the SOP consistent through all these extensions, a formal
model is needed.

Our Approach. The aim of this paper is to develop
a comprehensive testing framework for SOP-DOM (see
Figure 1). The SOP restricts access of active content like
JavaScript on other components of a web page. We also
apply it to CSS code by interpreting the style changes

Embedding	
Element	(EE)

Embedded	
Document	(ED)

SOP
read?

write?

read?

write?

Host	Document (HD)

Web	
Object

Subject:	
JavaScriptallow	script	execution?

Web	Origin	ED

{ee,sandbox,cors}

Web	Origin	HD

Subject:	
JavaScript

Web	
Object

Figure 1: Setup for our test cases for SOP DOM access.
The embedding element (EE) itself belongs to the host
document (HD).

imposed by CSS code as write access on certain DOM
elements.

We define “comprehensive” by meaning the coverage
of all interesting edge cases. We thus do not cover all 15
elements with URI attributes but only a selected subset
according to importance and interesting properties. In-
stead, we include “URL-attribute-like” constructions in
the <canvas> element. We also do not restrict the test
set to full DOM read or write access (which easily could
have been automated to cover more test cases) but in-
stead, also concentrate on the more interesting cases of
partial read and write access.

Our tests thus cover only a representative sample of
SOP-DOM, but this sample was chosen to cover each
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known edge case of SOP-DOM. To cover these edge
cases, many of the 544 test cases were designed man-
ually. We use these representative test results to dis-
cuss if classical access control models like DAC, RBAC
and ABAC are applicable to SOP-DOM. We reformulate
access restrictions in terms of read, write, and execute
rights granted to an embedded document (ED) contained
in the HD and vice versa. We thus highlight the impor-
tance of the EE in defining the access rules of the SOP.

Testbed. We show the applicability of our test method-
ology for SOP implementations in current web browsers
by providing a testbed at www.your-sop.com, where
proof-of-concept HTML, JavaScript, and CSS code is
given for each test case. Our tool consists of more than
10,000 lines of code covering 544 test cases with five
types of ED and ten types of EE. The tests are created
in a semi-automatic manner. For each EE to be tested,
we automatically load the ED with possible CORS/sand-
box attributes successively. We did not choose a fully-
automatic test creation because this would lead to an
overwhelming number of errors. Combining each EE
with all possible attributes would lead to errors; for
example, neither <img data=".."> nor <object
src="..."> are semantically correct. In addition,

there is no universal access from HD to ED and vice versa;
for example, accessing the SVG ED can be achieved with
a dedicated getSVGDocument() method.

Limitations. We describe a subset of the SOP for
the interaction of web objects that are loaded into the
browser. Zalweski describes other contexts such as
cookie, local storage, Flash, XMLHttpRequest, Java, Sil-
verlight, and Gears [8]. For each of them a different SOP
is used. For example, Zheng et al. [12] have analyzed
the SOP for HTTP cookies in-depth; here the SOP takes
the path contained in an URI into account, which is an
extension of the Web Origin concept. An in-depth dis-
cussion of the limitations of our approach can be found
in Section 5.

Contributions. We make the following contributions:

I We systematically test edge cases of the SOP that
have not been previously documented like the influ-
ence of the embedding element, and the CORS and
sandbox attributes.

I We provide a testbed where the SOP implementa-
tion of a browser can be automatically tested and
visualized.

I We used this testbed to extensively evaluate our
model in 544 test cases on 10 modern browsers.

More than 23% of the test cases revealed differ-
ent SOP-DOM access rights implemented in at least
one of the tested browsers. Our ABAC model pro-
vides a systematic way to describe these differ-
ences.

I We prove that a better understanding of SOP-DOM
is useful by describing a novel CSS-based login or-
acle attack for IE and Edge, which we found using
the ABAC rules for cross-origin access to CSS.

I We critically discuss the applicability of standard
access control models like DAC, RBAC, and ABAC
to SOP-DOM.

2 Foundations

Document Object Model (DOM). DOM is the stan-
dardized application programming interface (API) for
scripts running in a browser to interact with the HTML
document. It defines the “environment” in which a script
operates. The first standard (DOM Level 1) was pub-
lished in 1998 and the latest published version is DOM
Level 3 (2004). The DOM standard is now a “living stan-
dard” since it has to be adapted to each new HTML5 fea-
ture, resulting the DOM Level 4 to remain in the “work
in progress” stage.2

A browser’s DOM includes more objects and proper-
ties than just the pure HTML markup, as shown in Fig-
ure 2. These objects can be accessed through a variety
of different methods. For example, the iFrame element
can be accessed through predefined selector methods
like document.getElementByID("ID1"). The
DOM structure does not necessarily match the markup
structure. Although the <iframe> element from Fig-
ure 2 is a child element of the HTML document, there is
no property document.frames[0]; instead, there is
only window.frames[0].

window 

document 
<html>	  

e.g.,	  main	  HTML	  document	   e.g.,	  iFrame	  

head 
<head>	  

body 
<body>	  

<img	  src="URL3"	  name="bear">	  

<iframe	  src="URL2"	  
id="ID1">	  

document 
<html>	  

doctype 
XHTML	  

head 
<head>	  

<script	  src="URL1">	  

window. 
frames[0] 

doctype 
HTML	  5	  

body 
<body>	  

<link	  src="URL4">	  

img.src=URL3	  

id=ID1 

Figure 2: Small extract from the DOM.

2https://dom.spec.whatwg.org/
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To access and modify the DOM, JavaScript code can
be used. Each JavaScript script runs in a specific DOM
execution context. Consider Listing 1 as an example.
If this small HTML file is opened in a web browser,
first the <iframe> element will be parsed. After that
the iFrame’s source code from Listing 2 will be loaded
and the alert function contained therein will be exe-
cuted. The <script> element will then be parsed and
the (second) alert function will be executed.

1 <html><head><title>a.html</title></head>
2 <body><iframe src="b.html" />
3 <script>alert(document.location)</script>
4 </body></html>

Listing 1: Code of http://a.org/a.html

The two alert pop-up windows, triggered by
the two script elements, will display different
URLs because they are acting in different DOMs.
The alert window called in Listing 1 will display
the URL http://a.org/a.html, whereas the
alert window in Listing 2 will display the URL
http://a.org/b.html.

1 <html><head><title>b.html</title></head>
2 <body><script>alert(document.location)</

script>
3 </body></html>

Listing 2: Code of http://a.org/b.html

Cross-Origin Resource Sharing (CORS). Using
XMLHttpRequest, a web page may send arbitrary HTTP
requests to any webserver. This is different from just
opening an URL or submitting an HTML form since with
XMLHttpRequest the web page has full control over all
HTTP headers. To restrict such potentially dangerous
queries, XMLHttpRequest is restricted by default to the
domain from which the calling document was loaded
(same-domain). To enable controlled cross-domain
requests, the CORS standard [9] was developed. It
works as follows: a) in a preflight request,3 the browser
sends an origin header (Origin: http://a.com)
to the target web service requesting CORS privileges.
b) the target server may now answer with an error
message (access denied) or with a CORS header,
such as Access-Control-Allow-Origin:
http://a.com, to grant the access. Instead of a
domain name, the CORS header may contain a wildcard
(*) to grants access from arbitrary domains.4 Although
CORS is designed to relax the Same-Origin Policy
(SOP) in a secure manner, there are many cross-origin
resources used in the web (e.g., scripts, stylesheets,

3The preflight request can be skipped in simple cases
4This additionally denies the use credentials such as cookies in a

CORS request.

images, iFrames) that can be loaded without CORS
and without XMLHttpRequest. However, in HTML5
some elements (e.g., <img>) may have crossorigin
attributes which invoke CORS and subsequently modify
the SOP access controls.

3 Methodology

3.1 SOP-DOM Attributes

The Same-Origin Policy for DOM Access (SOP-DOM)
controls the access of a subject – typically JavaScript
code – to a web object (e.g., an HTML form). The sub-
ject may be located directly in the HD or in an ED. The
element that loads the ED is called the EE (cf. Figure 1).
Both HD and ED have a Web Origin. The Web Origin
of ED is defined by src or similar attributes of EE (e.g,
dynsrc, lowsrc, and srcset).

SOP-DOM is often described as a boolean switch
which either allows interaction between HD and ED in
the same-origin case or blocks access in case of different
web origins (e.g., Karlof et al. [15]). In reality, SOP-
DOM is more complex; some EEs like <img> block
almost all access even in the same-origin case, some
EEs like <script> allow full read and write access
(in one direction) even in the case of different origins,
and some EEs like <iframe> (in the cross-origin case)
only grant partial access. Furthermore, access decisions
may be influenced by additional attributes like CORS or
sandbox.

In our investigations, we have used five values as our
test attributes, two of which contribute to the definition
of Web Origin. These attributes are summarized in Ta-
ble 2.

Notation. In this paper and in our testbed, we use HD
and ED to denote that HD and ED share the same Web
Origin, and HD and ED if the origin differs. If cross-
origin and same-origin behavior are identical we, use HD
and ED to save space.

Coverage and Restrictions. The SOP-DOM is very
complex, because with each newly considered attribute,
the number of test cases may grow by a factor propor-
tional to the number of possible attribute values. Thus,
it should be clear that it is nearly impossible to test and
describe the whole SOP-DOM in one research paper.

Since Web Origins are well understood and have
been covered in numerous other publications, we have
only covered two different origins with the same
protocol (HTTP) and two different domains with dif-
ferent domain values. Our focus is on ee, where
we considered HTML elements with URI attributes and
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Attribute Description S/O/E HD/ED

protocol protocol of URL,
value of
location.
protocol

S,O HD+ED

domain domain/hostname of
URL, value of
location.
hostname

S,O HD+ED

ee type of EE S,O ED
cors value of the CORS at-

tribute of the ee, i.e.,
ee.crossOrigin

O ED

sandbox value of sandbox S,O,E ED

Table 2: SOP-DOM Attributes. S denotes subject at-
tributes, O object attributes, and E denotes attributes
which may also be set independent of the markup (e.g.,
through a HTTP security policy like Content Security
Policy (CSP)).

properties. By systematically analyzing the provided
list of the W3C [20] and the WHATWG [21], we
picked the representative HTML elements <script>,
<img>, <canvas>, <link>, <iframe>, <object
>, <embed>, and <link>. We have also examined
CORS (the value of the crossorigin attribute) and
sandbox, as a proof-of-concept, to show that these at-
tributes do have an influence on the SOP-DOM. More
limitations of our approach are discussed in Section 5.

3.2 Access Control Test Cases

Web Object Structure. Web objects may have an in-
ternal DOM structure, as it is the case with iFrames or
SVG images. In this case, we can use standard DOM
selector methods to test for read and write access.

Other web objects do not have a DOM structure (e.g.,
JPEG and PNG images). In this case, we define the type
of access for each such web object separately (e.g., single
pixel access for JPEG) and use adapted code examples.

Distinguishing Full and Partial Access. In case that
the object has an internal DOM structure, we define
full access if we can access arbitrary parts of the DOM
by standard selectors like getElementbyID(). We
define partial access as only being able to read, or
only being able to write some specific properties (e.g.,
window.top.location).

If the web object does not have an internal DOM, we
always specify exactly what we can read or write. To
name one example, single pixels in images or the source
code of scripts.

Full Read and Full Write Access. Supposing that
JavaScript code has DOM read access, it typically
also has write access using some DOM methods (e.g.,
innerHTML). We have tested this by first writing into a
particular DOM property, and then by reading the same
property to verify whether it contains the newly written
value. For full DOM access, we successfully verified that
any DOM property which can be read, can also be writ-
ten. In our proof-of-concept implementation, a script
contained in the ED tries to read DOM properties from
HD and vice versa. To test full DOM access, we inter
alia use the code depicted in Listings 3 and 4.

1 <html>
2 <head>HD from HD.org</head>
3 <body>
4 <script>
5 ED=document.getElementById("EE").

contentDocument;
6 HD2ED=ED.getElementById("ID2");
7 read_success = (HD2ED.textContent == "

Text in ED");
8 </script>
9 <element id="ID1">Text in HD</element>

10 <EE id="EE" src="ED.org/ED.mime"></EE>
11 </body>
12 </html>

Listing 3: Host document (HD) verifying full read
access.

1 <html>
2 <head>ED from ED.org</head>
3 <body>
4 <ED><element id="ID2">Text in ED</element

></ED>
5 <script>
6 var ED2HD;
7 ED2HD=parent.getElementById("ID1");
8 read_success = (ED2HD.textContent == "

Text in HD");
9 </script>

10 </body>
11 </html>

Listing 4: Embedded Document (ED) for verifying full
read access.

Partial Access. Many partial access rules have been
added to browser implementations over the years in order
to implement new features, or to defend against new at-
tacks. The best-known examples are certainly the DOM
properties of an iFrame’s top frame that are used to build
JavaScript framebusters to defend against UI Redress-
ing [22].

Partial access cannot be tested systematically. Instead,
we relied on our knowledge from pentesting, blog posts
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of security researchers, and – in some cases – on intu-
ition. Please note that our goal was not to give a full list
of partial access rules, but only to document the variety
of such rules.

Partial Read: Examples. An example for partial
read (and write) access is the pixel-based manipula-
tion of images with the help of CANVAS (e.g., via
context.getImageData).

Lekies et al. [5] underlined that every script executed
within the same web document is able to read global vari-
ables created by another script. However, local variables
inside a function cannot be accessed unless their values
are not explicitly returned by the function. This illus-
trates clearly that we have partial read access.

As an edge case example for partial read access, CSS
in combination with browser features like plain HTML
and inactive SVG files can be used to extract some values
from the SOP-DOM [23].

Partial Write: Examples. Partially writable are prop-
erties like parent.location.path and parent.
location.hash. In the past location.hash was
used to share data cross-origin. Nowadays, this feature
can be replaced by using PostMessage or CORS and
write access to parent.location can be restricted
in iFrames by using the sandbox attribute.

Execute. Current sandboxing concepts consider block-
ing JavaScript execution but not CSS execution. To be
consistent with this view, we say that an EE grants ex-
ecute rights to an ED when JavaScript code contained
in the ED can be executed. For example, when EE=<
iframe sandbox>, then the execution of JavaScript
is blocked. We verified this by using script execution to
send a PostMessageAPI message to HD.

4 Evaluation

We implemented a testbed as a web application which
automatically evaluates the SOP implementation of the
currently used browsers. Additionally, it displays the re-
sults of 10 tested browsers from six different vendors and
highlights the differences between them. Our testbed is
publicly available at www.your-sop.com.

4.1 Experiment Setup
We evaluated the following elements with src attributes
and determined their Alexa 500 rank through an analysis
of the Alexa Top–500 start pages. The results are (rank;
domains; occurrences): <script> (3; 460; 12,625), <
link> (8; 453; 5,197), <img> (11; 439; 24,015), and

<iframe> (21; 261; 1,406). To name an example, the
script-element was the third most common element
listed on 453 out of 500 domains with a total of 12,625
findings. The elements <object> or <embed> are not
listed under the TOP-30 elements.

Our testbed executes all tests on a single website so
that tests can be easily repeated with different browsers.
It uses one of the previously mentioned EEs and loads
an external ED via its dedicated attributes. For ex-
ample, the <img> elements uses the src attribute;
however, the <object> elements uses the data at-
tribute. If the element supports CORS, we created a
test as follows; we used the three attribute cases, (1.) no
crossorigin attribute is set, (2.) crossorigin
="use-credentials", and (3.) crossorigin=
"anonymous". For each attribute, we created a
test that receives an HTTP response header Access
-Control-Cross-Origin (1.) set to a specific
domain your-sop.com or other-domain.org,
(2.) set to the wildcard *, (3.) or not set at all. In ad-
dition, the HTTP response header Use-Credentials
is once set for each test to (1.) to yes, to (2.) no, (3.) and
not set. The immense number of combinations lead to a
significant number of test cases if CORS is supported.

Each test loads an external resource (ED), first from
the same domain (your-sop.com), and then from a
different one (other-domain.org). When retrieved
through any browser, the SOP decisions of the currently
used browser are presented in different overview tables.
Since the exact method to access specific objects from
ED to HD – and vice versa – differs with each test, its
source code can be inspected by hovering on the result
field in the table on the testbed website (cf. Figure 3).

Figure 3: Screenshot of our your-sop.com testbed.

Using the testbed, we evaluated the SOP of ten differ-
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ent browsers, including Google Chrome, Mozilla Fire-
fox, Internet Explorer, Edge and Safari. We added a fea-
ture to export all test results in a JSON file. We then
used this feature to add a comparison table of different
browser behaviors. It displays all test cases and SOP de-
cisions of all browsers at once or can only highlight the
differences. Figure 4 shows a small part of the compari-
son of different SOP implementations.

4.2 Results
In the following, we describe the general outcome of our
testbed. The results are structured by the type of the em-
bedding element (EE).

Images. An <img> element acts like a sandboxed
iFrame; read and write access is blocked in both direc-
tions, even in the same-origin case. Script execution is
blocked in the ED; even if the ED is an SVG containing
some JavaScript code, the script is not executed. This
behavior holds for both the same-origin and cross-origin
case.

If we use <canvas> as the embedding element EE5,
we can get read access to pixels in JPG, PNG and SVG
images if loaded from the same origin. This allows
reading out the color of each pixel and it may be crit-
ical in some security contexts like JPG- or PNG-based
CAPTCHAs. Here, an attacker could use CANVAS to
automatically read out the displayed token.6

SVG files are basically XML-based vector graphics.
Please note, that unlike <img>, the <svg> element does
not support a src attribute to load an external SVG file.
If embedded into a website with <img> or <canvas>,
they behave as if they were bitmaps; thus, we can only
read pixels. It is also possible to include SVGs in EEs
like <iframe>, <object>, and <embed>. Then the
DOM of the SVG is mounted into the HD and we can
access it fully, and additionally read all SVG vector in-
structions.

Scripts. Cross-origin loaded JavaScript code via <
script src="..."> is a well-known special case in
the SOP; it is treated as if it had been loaded from the
same origin. Technically, a script loaded by the src at-
tribute is appended to the document.scripts array
in the HD’s DOM, independent of the domain on which
the script is hosted. In the <script> case, no access
restrictions are imposed by the SOP: we have full read-
/write access from the ED to the HD, and execution rights
from HD to ED.

5See the example on https://developer.mozilla.org/
en-US/docs/Web/API/Canvas_API/Tutorial/Pixel_
manipulation_with_canvas

6http://ejohn.org/blog/ocr-and-neural-nets-in-javascript/

For the read/write access from the HD (subject) to the
ED (JavaScript, object), this is less well-known. It is
clear that we cannot change the content of the external
file (write), but we can overwrite functions defined in
this external file, and thus change the functionality of the
loaded code. We are able to read variable values and the
source code of defined functions7. However, there are
some exceptions: we cannot read var cnt = 2+5;
but we can read the cnt’s value 7. We can also read
the complete line of code if it is contained in a function
(cf. [5]). Thus, we have partial read/write access from
the HD to the ED.

Style Sheets. External CSS code can be loaded via the
embedding element <link>. In the case where the CSS
code is loaded from the same origin, we can read the
complete source code. If the CSS file is loaded cross-
origin, we can only read the source code if proper CORS
values are set. An exception is MS IE/Edge, which al-
lows read access in every case (see Section 4.3 for de-
tails).

Write access for CSS code is defined by the ability of
CSS to change the visual display of a web object. Since
this is the desired behavior, write access from the ED to
the HD is independent of the web origin.

Frames. For <iframe> (without sandox attribute)
we have full read/write access in both directions in the
same-origin case, and partial read/write access in the
cross-origin case.

The cross-origin case from ED (subject) to HD (ob-
ject) is of special interest; we have partial read/write
access. Some properties that can be read are: top
.length (number of frames/iFrames in HD), top.
closed (boolean value if HD is closed), top.opener
(reference to opener HD in the event of a popup). Al-
though this is a very limited read access, we have a side-
channel allowing us to read some cross-origin informa-
tion. Especially the first property is noteworthy; it allows
to get the number of frames/iFrames that are contained in
the HD. We also have partial write access in this case; for
example, to the top.location property (a property
that we can only write, but are unable to read).

Similar results hold for the other direction (subject HD
to object ED) in the cross origin case. In this case, the
properties are accessed via the window.frames[] ar-
ray (instead of top).

Sandboxed Frames. The origins of the SOP-DOM lie
in the necessity of a clear separation of two HTML doc-
uments, shown by several attacks over the last ten years

7For example, by using Object.getOwnPropertyNames(
window), we can read all properties defined in the window object
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Figure 4: Evaluation result by comparing 10 different browsers.

[24, 25, 26]. However, a complete separation between
two HTML documents is often not possible; for example,
to allow UI redressing countermeasures with JavaScript
frame-busters [22].

To allow a better separation between the iFrame ED
and the HD, sandboxed iframes were introduced [27].
We limited our evaluation to the attribute values
that directly affect our read, write, and execute re-
sults: allow-scripts, allow-same-origin,
allow-top-navigation.

The sandbox attribute is a special case that is dis-
cussed in Section 7.

Recommendations for Browser Vendors. From the
perspective of a browser vendor, it is interesting to know
how the results of our tool can be used to identify bugs
and therefore potential vulnerabilities. In our analysis,
we have automatically compared each SOP-DOM differ-
ence with the behavior of all other browsers. In case that
at least one browser grants SOP-DOM access that the
other browsers restrict, a browser vendor should have a
closer look on this test case. We recommend to adjust
the SOP-DOM behavior to the majority of other browser
behaviors for reasons of clarity. For each test, our web-
site recommends a result, which is based on the major-
ity of all ten tested browsers (see Figure 4). Because
our testbed includes browsers of different vendors (e.g.,
Apple, Google, Mozilla, Microsoft), we believe that this
might be a representative SOP-DOM result.

4.3 Different Browser Behaviors
We implemented 544 test cases and 129 of these cases
differ across ten tested browsers (23.71%).8 We identi-
fied three subsets of different browser behaviors.

First, more than 35% of the identified differences
could be attributed to <canvas> and PNG/SVG. In
contrast to the other seven browser tests that allow par-
tial read access with the help CORS from HD to ED

8http://www.your-sop.com/stats.php

cross-origin, FF, IE, and Edge do not allow read ac-
cess in the following CORS cases of <canvas> with
SVG and PNG: Access-Control-Allow-Origin
: your-sop.com (ED sets the domain of HD) and
Use-Credentials: true. Irrespective of CORS,
<canvas> and SVG have 44 differences that are based
on a denied access in IE 11.9

Second, over 12% of the test cases show differences
between Safari 9 and the other browsers by looking on <
object> and <embed> elements that load SVG files.
Safari 9 does not show an SVG if it is loaded by code
like <object data="image.svg"></object>.
Therefore, JavaScript code contained in the SVG file
cannot be executed. It needs an additional type attribute
with the value image/svg+xml such that JavaScript
execution is allowed. Since Safari 10.1 Apple has
changed their implementation and both elements behave
similar to the other browsers. The attribute type="
image/svg+xml" is no more required.

Third, over 51% of the test cases show different behav-
iors because of <link>. Nearly all the cases have dif-
ferent CORS implementations. CORS thus shows that a
relatively new and complex technology leads to different
interpretations of “well-known” web concepts like SOP.

Similarly to Chromium’s testbed that have been ap-
plied to other browsers to find bugs, our testbed could
be used and extended by browser vendors and security
researchers to identify browser differences leading to ex-
ploits.10

4.4 Cross-Origin Login Oracle Attack.

We have detected one browser difference due to IE/Edge,
which does not need CORS. In this case, IE/Edge allows
us to read CSS rules cross-origin while other browsers
do not allow such access.

9We have communicated these differences to Microsoft and it seems
that they have fixed them in the newest browser versions.

10https://github.com/thomaspatzke/
BrowserCrasher
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By using the difference that was detected in case of
<link>, we show that dynamically generated CSS files
can be abused to attack the user’s privacy. In case of CSS
code from different origins, IE/Edge behaves differently
from GC and FF; it does not set DOM properties like
cssRules to null. Therefore, an attacker is always
allowed to read the CSS code regardless of its origin.
This allows us to build a novel login oracle:

I Suppose a webserver delivers different CSS files,
depending on whether the user is logged in or not.

I The attacker’s website consists of the EE <link>
loading the victim’s CSS code (ED).

I Though HD has another origin than ED, the at-
tacker’s JavaScript code in HD automatically reads
all CSS rules. By comparing the CSS code with
CSS code of a logged out user, the attacker can de-
termine the logged in state.

We verified our login oracle with the startpage service
start.me (ED); an attacker is clearly able to decide
whether a user is logged in or not. This attack is sim-
ilar to [5]. We have informed the website administra-
tors about this vulnerability. Microsoft (Research Center,
MSRC) acknowledged this bug (Case 32703) and the fix
will be incorporated into a future version of IE/Edge.

5 Limitations

Even if we restrict our attention to SOP-DOM, the Same-
Origin Policy has a very large scope. We have 15 HTML
elements with src attributes, and several more with a
similar functionality (e.g. <canvas>). There are six
different sandbox attributes, and they (e.g., the CORS at-
tribute) may be influenced by HTTP-based security poli-
cies like CSP. There are many different ways how to em-
bed a document of a given MIME type into a webpage
(e.g., SVG via <img> or <iframe>), and there are
many different MIME types with and without a DOM
structure to consider. There are pseudoprotocols like
data: and about:, which have different Web Origin
definitions. There is also a large number of DOM prop-
erties which could be tested for partial access.

Covering all interactions within this scope would re-
sult in an exponential number of test cases, which can-
not be covered in one research paper. For example, Zal-
weski [28] lists four classes of common URL schemes
(e.g., document-fetching and third-party) consisting of
different subclasses (e.g., browser specific schemes like
vbscript, firefoxurl, and cf). Moreover, it is
possible to register self-defined handlers for particular
schemes via registerProtocolHandler. In this
section, we therefore discuss several technologies that

we excluded from our research and give a rationale for
these decisions.

Link. One technical limitation of our evaluation frame-
work is that we used the <link> element only to
load CSS. We did not consider, for example, HTML
imports via <link rel="import"href="data.
html">. An interesting novel technology that is
highly under development are Service Workers [29].
They can, for example, be loaded using <link rel=
"serviceworker"href="worker.js">. How-
ever, it is currently “an experimental technology” ac-
cording to Mozilla [30], although they are used by many
websites (e.g., Google and Twitter). Our evaluation does
not cover Web Workers [31]. This technology allows
running a JavaScript in different context; for example,
there is no window object reference. For this reason,
we excluded it.

SVG. We only covered <svg> as an EDwhich directly
embeds the JavaScript code for testing read/write access.
It is also possible, to use <svg> as a HD; for example,
an external JavaScript can be loaded by using <svg><
script xlink:href=".."></svg>. Our testbed
always uses an HTML document as HD.

JavaScript. We only cover a small, but hopefully rep-
resentative, set of DOM properties. Our testbed only
covers the location property, but sub-properties such
as location.hash or location.path were not
analyzed. The same holds for the window.name prop-
erty, which is well-known to be writable across origins.

A design decision for our testbed was to be able to
easily execute all test simultaneously. Therefore, only
one index.html is capable to run all 544 tests with only
one click by the user. For this reason, we excluded pop-
ups and the corresponding window.opener property.

Other Mime Types. Our testbed is limited to HTML,
JavaScript, CSS, and SVG. For example, it would be
interesting to investigate PDF, which can also include
JavaScript code. There are many more active MIME
types, such as Flash or ActiveX, which should be ad-
dressed in further research.

Pseudoprotocols. We excluded pseudo protocols (e.g.,
about:, chrome:) and Data and JavaScript-URIs
from our tests, because in a (possibly outdated) overview,
Zalewski [28] already pointed out that there are different
Web Origin assignments in different browser implemen-
tations. However, extending the testbed to selected pseu-
doprotocols is future work.

USENIX Association 26th USENIX Security Symposium    721

start.me


6 Related Work

Different SOP Contexts. Jackson and Barth [32] dis-
cussed different SOP contexts, and showed vulnerabil-
ities introduced by the interaction of these contexts.
Zheng et al. [12] describe in detail the SOP for HTTP
cookies. They also presented bypasses based on sub-
domains. Session integrity problems resulting from the
cookie context SOP are discussed by Bortz et al. [13].
Karlof et al. [15] and Masone et al. [14] describe refined
origins for the cookie SOP: they replaced the domain
name with a server’s X.509 certificate and public keys.
Thus, they are able to use different cookies for different
servers on the same domain. Singh et al. [7] analyzed
in-coherencies in web browser access control policies by
showing that there are different definitions of Web Ori-
gins; there are web-origins for DOM objects, localStor-
age, and XMLHttpRequest, as well as other definitions
for cookies (domain, path) and the clipboard (user).

SOP Enhancements. Wang et al. [33] proposed their
secure browser Gazelle with a multi-principal OS ar-
chitecture and showed how to implement extended ac-
cess control policies. Chen et al. [34] analyzed browser
domain-isolation bugs and attacks. They proposed
“script accenting” as a defense mechanism so that frames
cannot communicate if they have different accents.

SOP Bypasses. Ways to bypass SOP restrictions are
regularly published in the academic and non-academic
areas. Jackson et al. [35] and Johns et al. [36] dis-
cuss DNS rebinding attacks (which manipulate Web Ori-
gins and thus disable the SOP) and proposed mitiga-
tion techniques. Oren and Keromytis [16] used Hybrid
Broadcast-Broadband Televisio (HbbTV) to bypass the
SOP. In contrast to websites, HbbTV data does not have
a origin. This characteristic allows an attacker to inject
malicious code of his choice into any website, which are
loaded via the HbbTV data stream. Lekies et al. [5] are
using dynamically generated JavaScript files to attack the
privacy of a victim. Singh et al. [7] describe major access
control flaws in browsers. Complicated side-channels
have been abused to read DOM properties in [23].

Various non-academic publications describe ways to
bypass the SOP. Jain [37] states that Safari v6.0.2 does
not have SOP restrictions in case the file protocol
is used. In 2010, Stone [38] showed that UI redress-
ing can be used to bypass the SOP. Even if the SOP
is restricting access on the script level, copy-and-paste
as well as drag-and-drop actions are not restricted. In
2012, Heyes [39] showed that the location of a window
can be accessed cross-origin in FF; however, this should
not be allowed. Three years later, Bentkowski demon-
strated with CVE-2015-7188 that FF’s ≤42 SOP can

be bypassed by adding whitespace characters to IP ad-
dress strings.11 In 2016, Ormandy [40] showed that Co-
modo’s browser Chromodo disables, at least partially, the
SOP and thus Chromodo “actually disables all web secu-
rity”. There are also SOP bypasses via Java applets [41],
Adobe Reader [42], Adobe Flash [11], and inter alia Mi-
crosoft Silverlight [10].

Formal approaches to Web Security. Yang et al. [6]
propose to describe the SOP in terms of Information
Flow Control. Akhawe et al. [43] have a much broader
scope and describes the backbone of a formal model for
the Web itself.

Other Approaches. Crites et al. [44] proposed the ab-
straction and access control model OMash, as a replace-
ment of SOP. Barth et al. [45] proposed a browser exten-
sion system for protecting browsers from extension vul-
nerabilities. They reused the SOP to isolate extensions
from attacks, which needs inter alia access to browser
internals and web page data. Chen et al. [46] described
an opt-in app isolation mechanism that acts like the user
is executing different browsers. Even if the attacker is
able to act in the same origin, the users credentials might
only be available in a logged-in state which is isolated.
Stamm et al. [47] proposed CSP, which is implemented
in all modern browsers. In CSP, code injection attacks
are mitigated through restrictions imposed on code ori-
gins (whitelisting of allowed origins), and through aban-
doning inline code. Jackson and Wang [48] introduced
Subspace as a cross-domain communication primitive al-
lowing communication across domains.

7 Access Control Policies

Since SOP-DOM restricts access of subjects (mainly
JavaScript code) to web objects, we think that an appro-
priate formal model could be found amongst the class of
access control policies. Access control policies restrict
the access of subjects from a set S (humans, machines
or code) to objects from a set O. In the following, we
discuss how well the three main classes fit our findings.

SOP-DOM is a global access control policy regulating
access between websites throughout the Internet; how-
ever, decisions through the SOP-DOM can only be made
on that which is locally available. This data includes
the web origins of the different subjects and objects, the
HTML markup (elements and attributes), and more re-
cently, security policies communicated through HTTP
headers like CORS, CSP, X-Frame-Options, and others.

11https://www.mozilla.org/en-US/security/
advisories/mfsa2015-122/
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In SOP-DOM, the set O of objects may contain any
element or property of the local DOM of the web page.
Typically, access rights granted to two objects o1 and o2
should only differ if the Web Origins of these two objects
differ. The set S of subjects could be defined as S = O;
however, this would only result in numerous “inactive”
subjects which do not need any access rights since they
never access any other objects (e.g., text nodes). We
therefore restrict the set S to “active” objects, where the
definition of “active” still awaits a mathematically pre-
cise definition. We include all script objects in S and all
CSS code; however, since the discovery of scriptless at-
tacks [23], there may be a need to extend this definition.

7.1 Discretionary Access Control (DAC)

DAC access control is well-known from operating sys-
tems (OSs); each user has a login name and the OS de-
cides if this particular user has access to a certain re-
source (e.g., a data file or network printer). Each resource
also has a unique name; therefore, S and O contain the
names of users and resources. Another example is email
encryption in which read access is granted on the basis
of the RFC 822 email addresses of the recipients.

Definition 1 In DAC, access rights are directly assigned
to subjects: the policy set P is a subset of S×O, and
subject s has access to object o if (s,o) ∈ P.

In the WWW, each subject from S and each object
from O can be assigned a unique name, which is the URL
at which it can be found. Thus, this part would fit in the
DAC model. However, there is no global “web operating
system” which keeps track of all possible pairs in S×O.
Instead SOP-DOM uses only a part of this name in its
access decisions, namely the Web Origin.

Some sources trivialize RFC 6454 in the sense that
they state that read and write access are only possible
if the Web Origins of the subject and object are identical.
If this was true, it would be a perfect fit for DAC and a
very simple global DAC policy could be formulated as
follows:

(s,o) ∈ P ⇐⇒ origin(s) = origin(o).

This however is simply incorrect, since in many cases
(s,o) ∈ P even if origin(s) 6= origin(o), for example, in
case a script s was embedded via a <script> element,
or if s is contained in a sandboxed iFrame with top-level
frame access.

Unfortunately, the elegant DAC-based definition of
SOP-DOM via web origins does not fit.

7.2 Role-Based Access Control (RBAC)
RBAC is often used in distributed environments as an ab-
straction to improve the manageability of access control
rules. By means of example, the role system adminis-
trator may be assigned to different subjects over time or
even periodically, and this role has many important ac-
cess rights. Instead of assigning, revoking, and reassign-
ing these access rights periodically to individual subjects,
the access rights are assigned to the role “system admin-
istrator”, and this single role is assigned, revoked and
reassigned over time.

Definition 2 In RBAC, subjects are assigned to roles
from a set R, and access rights are assigned to roles:
P1 ⊆ S×R,P2 ⊆ R×O, and s has access to o if there
exists a role r such that (s,r) ∈ P1 and (r,o) ∈ P2.

In typical RBAC installations, access rights to individ-
ual resources are assigned manually by the system ad-
ministrator. This is problematic for SOP-DOM, since
access policies must be created automatically. We dis-
cuss the following variant of RBAC where roles are as-
signed to both subjects and objects, and access decisions
are based on both roles only.

Definition 3 In enhanced RBAC (eRBAC), subjects are
assigned subject roles from a set RS, objects are assigned
object roles from a set RO, i.e. PS ⊆ S×RS,PO ⊆O×RO.
Access rights are assigned between roles: P ⊆ RS×RO.
So subject s has access to object o if there exists roles
rs ∈ RS and ro ∈ RO such that (s,rs) ∈ PS,(o,ro) ∈ PO
and (rs,ro) ∈ P.

Since we have identified the important influence of the
embedding element EE on the access decisions in SOP-
DOM, we may use EE to assign a “role” to subjects and
objects. So in SOP-DOM, PS and PO would be computed
locally from the HTML markup and additional security
policies, and P would be the global SOP-DOM rules im-
plemented in each browser.

For example, to specify that both external and inline
scripts have full cross-origin read and write access rsco

rw
we may formulate:

(s,rsco
rw) ∈ PS ⇐⇒ EE(s) = <script>

∨EE(s) = HD.
(1)

Access to objects is again mainly defined by the em-
bedding element. An image embedded via <img> is,
for example, inaccessible at all, whereas the same image
embedded via <canvas> is partially readable. So we
could define a role roso

r with the following equation:

(o,roso
r ) ∈ PO ⇐⇒ EE(o) /∈ {< img>,...} (2)
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Web origins could be taken into account in P by stat-
ing that for all values X , (rsso

X ,roso
X ) ∈ P (subject role

has same-origin access to object role), (rsco
X ,roco

X ) ∈ P
(subject role has cross-origin access to object role), and
(rsco

X ,roso
X ) ∈ P (if subject role has cross-origin access to

object role, then it also has same-origin access).
This shows that eRBAC seems to be a feasible model,

however, the rules to assign roles to subjects and objects
could become quite complicated because in addition to
the EE, we have identified at least two attribute values
(cors and sandbox) which may influence the assignment
of such roles. This complexity will be increased if we
extend the scope to HTTP security policies such as CSP
and pseudo-URIs like data:, which are not covered by
our current analysis.

7.3 Attribute-Based Access Control
Attribute-Based Access Control (ABAC) [49] is a flex-
ible access control mechanism used in, for example,
XACML [50]. It may also be used to implement RBAC:
roles can be modeled as role attributes assigned to both
subject and object. The policy decision in ABAC may
depend on other subject, object and environment at-
tributes as well.

Definition 4 Let Ai = {NULL,value1
i , ...,valueki

i } be the
set of different values of attribute i. Let S A = A1× ...×
Al , OA = Al+1 × ...× Am and E A = Am+1 × ...× An
be the cartesian products of all subject, object and en-
vironment attribute values. Let R be the set of all ac-
cess rights. Then an ABAC policy P is defined as
P ⊆S A ×OA ×E A ×R.

Now let ~sa be the array of subject attributes of subject
s, ~oa the array of object attributes of object o, and ~ea
the actual array of environment attributes. Then subject
s has access r ∈ R to object o if the array ~a, formed
by concatenating ~sa, ~oa, ~ea, and r, is contained in P:
~a ∈P .

ABAC could be suitable for SOP-DOM because we
can model any parameter that influences the access deci-
sions as an attribute. This allows to give a unified treat-
ment to some well-known concepts.

Extended Web Origins. Both subject and object have
attributes from which their Web Origin can be com-
puted. In the classical definition of Web Origins
in RFC6454 these are protocol (location.
protocol), domain (location.hostname)
and port (location.port).

I We can, for example, extend this definition to
take the legacy document.domain decla-
ration into account (see below). We define

an additional variable dd and assign the value
of document.domain to it. All these vari-
ables are both subject and object variables (cf.
Section 7), and are present for both HD and ED
(cf. Table 2).

I The assignment of random Web Origins to
sandboxed iFrames can be specified by stat-
ing that origin(o) = $RAND if sandbox(o) =
T RUE.

Embedding Element. The important role of the embed-
ding element EE is modeled as a variable ee, appli-
cable to both subject and object, but set only for the
embedded document ED. The value of ee is set to
the type of the embedding element. It modifies both
same-origin and cross-origin access decisions sig-
nificantly.

Additional Attributes. Similar to the ee attribute, the
cors and sandbox attributes are only defined for
the embedded document ED. For cors, our tests
revealed that this attribute modifies access rights to
a web object and therefore, it is only an object at-
tribute.

Attributes not fixed by the HTML source code. The
ABAC model also defines environment attributes,
which may not depend on subject or object alone
but rather on the execution environment. The only
attribute we could qualify to be in E A during our
tests is sandbox, since it may be set interactively
by using a suitable directive of Content Security
Policy.

Extended Web Origin. The ABAC model for SOP-
DOM can be presented as the set P but this does not
give any insights into the structure of SOP-DOM. How-
ever, four of the seven variables can be combined into a
very elegant description of an extended Web Origin. This
shows that the ABAC model can also be used to simplify
the description of SOP-DOM.

1 Read(protocol,domain,port,dd);
2 if dd=NULL or (dd is not a

superdomain)
3 then wo:=(protocol,domain,port)
4 else wo:=(protocol,dd,NULL)

Listing 5: Computation of extended Web Origin.

Listing 5 shows how an extended web origin is com-
puted from the four given ABAC variables. Please note
that the else branch of this algorithm has been veri-
fied by our testbed but different descriptions exist in the
literature. In contrast to previous descriptions of the in-
teraction of Web Origins and the document.domain
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declaration, the novel ABAC based concept of extended
Web Origin is both simpler ans less error-prone.

7.4 Summary
The requirements on an access control model for SOP-
DOM can be formulated as follows: the general rules
of SOP-DOM must be expressible without reference to
the URL or the HTML context of a web subject or ob-
ject, and to apply the SOP-DOM rules, URL and HTML
context of each web object must be transformed into an
abstracted description which then will serve as an input
to the general SOP-DOM rules.

This rules out DAC as a model, since DAC rules would
simply consist of a large global matrix, where each web
object worldwide has a row, and each subject a column.

eRBAC and ABAC both seem promising candidates,
since they fit the general requirements. A tentative for-
malization of the test results presented in this paper in
both models could lead to new test cases which could
help to decide which of the two approaches, if any, is
better suited to formalize SOP-DOM.

8 Conclusions & Future Work

Our analysis highlights the importance to evaluate ev-
ery single possibility of browser interactions in the SOP-
DOM. Different browser data sets can be used to identify
inconsistencies across implementations, which can lead
to security vulnerabilities. Although edge cases (CORS,
sandbox attribute) are mainly responsible for the detected
browser behaviors in our evaluation, commonly known
cases can also have differences and even vulnerabilities.
Consequently, browser vendors have to compare their
own implementation with those of other vendors.

Our discussion on access control policies as a model
to describe the SOP-DOM helps for a better understand-
ing. Browser implementations can use our insights to de-
scribe the SOP-DOM implementation more formally and
thus preemptively prevent SOP bypasses. We strongly
believe that a more formal SOP-DOM definition will
help the scientific as well as the pentesting community
to find more severe vulnerabilities. Our test results of the
ten tested browsers are available on the testbed website.

Future Work. To extend the coverage, future work
may address the following areas: (1.) local storage/ses-
sion storage or even new data types like Flash or PDF;
(2.) different protocols, including pseudo-protocols like
about: and data:; (3.) other elements with URL at-
tributes or properties; (4.) additional HTML attributes.

To generate novel insights into SOP-DOM, the path
taken by integrating the document.domain declara-
tion could be extended to other attributes like ee; for

sandboxed iFrames, for example, a random Web Origin
should be generated according to the specification. This
is however only possible if other EEs imposing similar
restrictions (e.g., the <img> element) also use random
Web Origins. This remains to be tested.
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Abstract
Protocols satisfying Local Differential Privacy (LDP) en-
able parties to collect aggregate information about a pop-
ulation while protecting each user’s privacy, without re-
lying on a trusted third party. LDP protocols (such as
Google’s RAPPOR) have been deployed in real-world
scenarios. In these protocols, a user encodes his pri-
vate information and perturbs the encoded value locally
before sending it to an aggregator, who combines val-
ues that users contribute to infer statistics about the pop-
ulation. In this paper, we introduce a framework that
generalizes several LDP protocols proposed in the liter-
ature. Our framework yields a simple and fast aggre-
gation algorithm, whose accuracy can be precisely ana-
lyzed. Our in-depth analysis enables us to choose opti-
mal parameters, resulting in two new protocols (i.e., Op-
timized Unary Encoding and Optimized Local Hashing)
that provide better utility than protocols previously pro-
posed. We present precise conditions for when each pro-
posed protocol should be used, and perform experiments
that demonstrate the advantage of our proposed proto-
cols.

1 Introduction

Differential privacy [10, 11] has been increasingly ac-
cepted as the de facto standard for data privacy in the
research community. While many differentially private
algorithms have been developed for data publishing and
analysis [12, 19], there have been few deployments of
such techniques. Recently, techniques for satisfying dif-
ferential privacy (DP) in the local setting, which we
call LDP, have been deployed. Such techniques enable
gathering of statistics while preserving privacy of every
user, without relying on trust in a single data curator.
For example, researchers from Google developed RAP-
POR [13, 16], which is included as part of Chrome. It
enables Google to collect users’ answers to questions

such as the default homepage of the browser, the default
search engine, and so on, to understand the unwanted
or malicious hijacking of user settings. Apple [1] also
uses similar methods to help with predictions of spelling
and other things, but the details of the algorithm are not
public yet. Samsung proposed a similar system [21]
which enables collection of not only categorical answers
(e.g., screen resolution) but also numerical answers (e.g.,
time of usage, battery volume), although it is not clear
whether this has been deployed by Samsung.

A basic goal in the LDP setting is frequency estima-
tion. A protocol for doing this can be broken down
into following steps: For each question, each user en-
codes his or her answer (called input) into a specific for-
mat, randomizes the encoded value to get an output, and
then sends the output to the aggregator, who then aggre-
gates and decodes the reported values to obtain, for each
value of interest, an estimate of how many users have that
value. With improvement on the basic task of frequency
estimation, solutions to more complex problems that rely
on it, such as heavy hitter identification, frequent itemset
mining, can also be improved.

We introduce a framework for what we call “pure”
LDP protocols, which has a nice symmetric property.
We introduce a simple, generic aggregation and decod-
ing technique that works for all pure LDP protocols, and
prove that this technique results in an unbiased estimate.
We also present a formula for the variance of the esti-
mate. Most existing protocols fit our proposed frame-
work. The framework also enables us to precisely ana-
lyze and compare the accuracy of different protocols, and
generalize and optimize them. For example, we show
that the Basic RAPPOR protocol [13], which essentially
uses unary encoding of input, chooses sub-optimal pa-
rameters for the randomization step. Optimizing the pa-
rameters results in what we call the Optimized Unary
Encoding (OUE) protocol, which has significantly bet-
ter accuracy.

Protocols based on unary encoding require Θ(d) com-
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munication cost, where d is the number of possible in-
put values, and can be very large (or even unbounded)
for some applications. The RAPPOR protocol uses a
Bloom filter encoding to reduce the communication cost;
however, this comes with a cost of decreasing accuracy
as well as increasing computation cost for aggregation
and decoding. The random matrix projection-based ap-
proach introduced in [6] has Θ(logn) communication
cost (where n is the number of users); however, its accu-
racy is unsatisfactory. We observe that in our framework
this protocol can be interpreted as binary local hash-
ing. Generalizing this and optimizing the parameters re-
sults in a new Optimized Local Hashing (OLH) protocol,
which provides much better accuracy while still requir-
ing Θ(logn) communication cost. The variance of OLH
is orders of magnitude smaller than the previous meth-
ods, for ε values used in RAPPOR’s implementation. In-
terestingly, OLH has the same error variance as OUE;
thus it reduces communication cost at no cost of utility.

With LDP, it is possible to collect data that was in-
accessible because of privacy issues. Moreover, the in-
creased amount of data will significantly improve the
performance of some learning tasks. Understanding cus-
tomer statistics help cloud server and software platform
operators to better understand the needs of populations
and offer more effective and reliable services. Such
privacy-preserving crowd-sourced statistics are also use-
ful for providing better security while maintaining a level
of privacy. For example, in [13], it is demonstrated
that such techniques can be applied to collecting win-
dows process names and Chrome homepages to discover
malware processes and unexpected default homepages
(which could be malicious).

Our paper makes the following contributions:

• We introduce a framework for “pure” LDP proto-
cols, and develop a simple, generic aggregation and
decoding technique that works for all such proto-
cols. This framework enables us to analyze, gener-
alize, and optimize different LDP protocols.

• We introduce the Optimized Local Hashing (OLH)
protocol, which has low communication cost and
provides much better accuracy than existing proto-
cols. For ε ≈ 4, which was used in the RAPPOR
implementation, the variance of OLH’s estimation
is 1/2 that of RAPPOR, and close to 1/14 that of
Random Matrix Projection [6]. Systems using LDP
as a primitive could benefit significantly by adopt-
ing improved LDP protocols like OLH.

Roadmap. In Section 2, we describe existing proto-
cols from [13, 6]. We then present our framework for
pure LDP protocols in Section 3, apply it to study LDP
protocols in Section 4, and compare different LDP proto-
cols in Section 5. We show experimental results in Sec-

tion 6. We review related work in Section 7, discuss in
Section 8, and conclude in Section 9.

2 Background and Existing Protocols

The notion of differential privacy was originally intro-
duced for the setting where there is a trusted data cu-
rator, who gathers data from individual users, processes
the data in a way that satisfies DP, and then publishes the
results. Intuitively, the DP notion requires that any sin-
gle element in a dataset has only a limited impact on the
output.

Definition 1 (Differential Privacy) An algorithm A
satisfies ε-differential privacy (ε-DP), where ε ≥ 0, if
and only if for any datasets D and D′ that differ in one
element, we have

∀t∈Range(A) : Pr [A(D) = t]≤ eε Pr
[
A(D′) = t

]
,

where Range(A) denotes the set of all possible outputs
of the algorithm A.

2.1 Local Differential Privacy Protocols

In the local setting, there is no trusted third party. An ag-
gregator wants to gather information from users. Users
are willing to help the aggregator, but do not fully trust
the aggregator for privacy. For the sake of privacy, each
user perturbs her own data before sending it to the aggre-
gator (via a secure channel). For this paper, we consider
that each user has a single value v, which can be viewed
as the user’s answer to a given question. The aggrega-
tor aims to find out the frequencies of values among the
population. Such a data collection protocol consists of
the following algorithms:
• Encode is executed by each user. The algorithm

takes an input value v and outputs an encoded value
x.

• Perturb, which takes an encoded value x and out-
puts y. Each user with value v reports y =
Perturb(Encode(v)). For compactness, we use
PE(·) to denote the composition of the encod-
ing and perturbation algorithms, i.e., PE(·) =
Perturb(Encode(·)). PE(·) should satisfy ε-local
differential privacy, as defined below.

• Aggregate is executed by the aggregator; it takes all
the reported values, and outputs aggregated infor-
mation.

Definition 2 (Local Differential Privacy) An algo-
rithm A satisfies ε-local differential privacy (ε-LDP),
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where ε ≥ 0, if and only if for any input v1 and v2, we
have

∀y ∈ Range(A) : Pr [A(v1) = y]≤ eε Pr [A(v2) = y] ,

where Range(A) denotes the set of all possible outputs
of the algorithm A.

This notion is related to randomized response [24],
which is a decades-old technique in social science to col-
lect statistical information about embarrassing or illegal
behavior. To report a single bit by random response, one
reports the true value with probability p and the flip of the
true value with probability 1− p. This satisfies

(
ln p

1−p

)
-

LDP.
Comparing to the setting that requires a trusted data

curator, the local setting offers a stronger level of pro-
tection, because the aggregator sees only perturbed data.
Even if the aggregator is malicious and colludes with all
other participants, one individual’s private data is still
protected according to the guarantee of LDP.

Problem Definition and Notations. There are n users.
Each user j has one value v j and reports once. We use d
to denote the size of the domain of the values the users
have, and [d] to denote the set {1,2, . . . ,d}. Without loss
of generality, we assume the input domain is [d]. The
most basic goal of Aggregate is frequency estimation,
i.e., estimate, for a given value i ∈ [d], how many users
have the value i. Other goals have also been considered
in the literature. One goal is, when d is very large, iden-
tify values in [d] that are frequent, without going through
every value in [d] [16, 6]. In this paper, we focus on fre-
quency estimation. This is the most basic primitive and is
a necessary building block for all other goals. Improving
this will improve effectiveness of other protocols.

2.2 Basic RAPPOR

RAPPOR [13] is designed to enable longitudinal collec-
tions, where the collection happens multiple times. In-
deed, Chrome’s implementation of RAPPOR [3] collects
answers to some questions once every 30 minutes. Two
protocols, Basic RAPPOR and RAPPOR, are proposed
in [13]. We first describe Basic RAPPOR.

Encoding. Encode(v) = B0, where B0 is a length-d bi-
nary vector such that B0[v] = 1 and B0[i] = 0 for i ̸= v.
We call this Unary Encoding.

Perturbation. Perturb(B0) consists of two steps:
Step 1: Permanent randomized response: Generate B1
such that:

Pr [B1[i] = 1] =
{

1− 1
2 f , if B0[i] = 1,

1
2 f , if B0[i] = 0.

RAPPOR’s implementation uses f = 1/2 and f = 1/4.
Note that this randomization is symmetric in the sense
that Pr [B1[i] = 1|B0[i] = 1] = Pr [B1[i] = 0|B0[i] = 0] =
1− 1

2 f ; that is, the probability that a bit of 1 is preserved
equals the probability that a bit of 0 is preserved. This
step is carried out only once for each value v that the
user has.
Step 2: Instantaneous randomized response: Report B2
such that:

Pr [B2[i] = 1] =
{

p, if B1[i] = 1,
q, if B1[i] = 0.

This step is carried out each time a user reports the value.
That is, B1 will be perturbed to generate different B2’s for
each reporting. RAPPOR’s implementation [5] uses p =
0.75 and q = 0.25, and is hence also symmetric because
p+q = 1.

We note that as both steps are symmetric, their com-
bined effect can also be modeled by a symmetric ran-
domization. Moreover, we study the problem where each
user only reports once. Thus without loss of generality,
we ignore the instantaneous randomized response step
and consider only the permanent randomized response
when trying to identify effective protocols.

Aggregation. Let B j be the reported vector of the j-th
user. Ignoring the Instantaneous randomized response
step, to estimate the number of times i occurs, the aggre-
gator computes:

c̃(i) =
∑ j1{i|B j [i]=1}(i)− 1

2 f n

1− f

That is, the aggregator first counts how many time i is re-
ported by computing ∑ j1{i|B j [i]=1}(i), which counts how
many reported vectors have the i’th bit being 1, and then
corrects for the effect of randomization. We use 1X (i) to
denote the indicator function such that:

1X (i) =
{

1, if i ∈ X ,
0, if i /∈ X .

Cost. The communication and computing cost is Θ(d)
for each user, and Θ(nd) for the aggregator.

Privacy. Against an adversary who may observe
multiple transmissions, this achieves ε-LDP for ε =

ln

((
1− 1

2 f
1
2 f

)2
)

, which is ln9 for f = 1/2 and ln49 for

f = 1/4.

2.3 RAPPOR
Basic RAPPOR uses unary encoding, and does not scale
when d is large. To address this problem, RAPPOR uses
Bloom filters [7]. While Bloom filters are typically used

USENIX Association 26th USENIX Security Symposium    731



to encode a set for membership testing, in RAPPOR it is
used to encode a single element.

Encoding. Encoding uses a set of m hash functions
H = {H1,H2, . . . ,Hm}, each of which outputs an integer
in [k] = {0,1, . . . ,k−1}. Encode(v) = B0, which is k-bit
binary vector such that

B0[i] =
{

1, if ∃H ∈H,s.t.,H(v) = i,
0, otherwise.

Perturbation. The perturbation process is identical to
that of Basic RAPPOR.

Aggregation. The use of shared hashing creates chal-
lenges due to potential collisions. If two values happen
to be hashed to the same set of indices, it becomes im-
possible to distinguish them. To deal with this problem,
RAPPOR introduces the concept of cohorts. The users
are divided into a number of cohorts. Each cohort uses a
different set of hash functions, so that the effect of col-
lisions is limited to within one cohort. However, par-
tial collisions, i.e., two values are hashed to overlapping
(though not identical) sets of indices, can still occur and
interfere with estimation. These complexities make the
aggregation algorithm more complicated. RAPPOR uses
LASSO and linear regression to estimate frequencies of
values.

Cost. The communication and computing cost is Θ(k)
for each user. The aggregator’s computation cost is
higher than Basic RAPPOR due to the usage of LASSO
and regression.

Privacy. RAPPOR achieves ε-LDP for ε =

ln

((
1− 1

2 f
1
2 f

)2m
)

. The RAPPOR implementation

uses m = 2; thus this is ln81 ≈ 4.39 for f = 1/2 and
ln74 ≈ 7.78 for f = 1/4.

2.4 Random Matrix Projection

Bassily and Smith [6] proposed a protocol that uses ran-
dom matrix projection. This protocol has an additional
Setup step.

Setup. The aggregator generates a public matrix Φ ∈
{− 1√

m ,
1√
m}

m×d uniformly at random. Here m is a pa-
rameter determined by the error bound, where the “error”
is defined as the maximal distance between the estima-
tion and true frequency of any domain.

Encoding. Encode(v) = ⟨r,x⟩, where r is selected uni-
formly at random from [m], and x is the v’s element of

the r’s row of Φ, i.e., x = Φ[r,v].

Perturbation. Perturb(⟨r,x⟩) = ⟨r, b · c ·m · x⟩, where

b =

{
1 with probability p = eε

eε+1 ,

−1 with probability q = 1
eε+1 ,

c = (eε +1)/(eε −1).

Aggregation. Given reports ⟨r j,y j⟩’s, the estimate for
i ∈ [d] is given by

c̃(i) = ∑
j

y j ·Φ[r j, i].

The effect is that each user with input value i contributes
c to c̃(i) with probability p, and −c with probability q;
thus the expected contribution is

(p−q) · c =
(

eε

eε +1
− 1

eε +1

)
· e

ε +1
eε −1

= 1.

Because of the randomness in Φ, each user with value ̸= i
contributes to c̃(i) either c or −c, each with probability
1/2; thus the expected contribution from all such users
is 0. Note that each row in the matrix is essentially a
random hashing function mapping each value in [d] to a
single bit. Each user selects such a hash function, uses it
to hash her value into one bit, and then perturbs this bit
using random response.

Cost. A straightforward implementation of the protocol
is expensive. However, the public random matrix Φ does
not need to be explicitly computed. For example, using
a common pseudo-random number generator, each user
can randomly choose a seed to generate a row in the ma-
trix and send the seed in her report. With this technique,
the communication cost is Θ(logm) for each user, and
the computation cost is O(d) for computing one row of
the Φ. The aggregator needs Θ(dm) to generate Φ, and
Θ(md) to compute the estimations.

3 A Framework for LDP Protocols

Multiple protocols have been proposed for estimating
frequencies under LDP, and one can envision other pro-
tocols. A natural research question is how do they com-
pare with each other? Under the same level of privacy,
which protocol provides better accuracy in aggregation,
with lower cost? Can we come up with even better ones?
To answer these questions, we define a class of LDP pro-
tocols that we call “pure”.

For a protocol to be pure, we require the specifica-
tion of an additional function Support, which maps each
possible output y to a set of input values that y “sup-
ports”. For example, in the basic RAPPOR protocol, an
output binary vector B is interpreted as supporting each
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input whose corresponding bit is 1, i.e., Support(B) =
{i | B[i] = 1}.

Definition 3 (Pure LDP Protocols) A protocol given by
PE and Support is pure if and only if there exist two prob-
ability values p∗ > q∗ such that for all v1,

Pr [PE(v1) ∈ {y | v1 ∈ Support(y)}] = p∗,

∀v2 ̸=v1Pr [PE(v2) ∈ {y | v1 ∈ Support(y)}] = q∗.

A pure protocol is in some sense “pure and simple”. For
each input v1, the set {y | v1 ∈ Support(y)} identifies all
outputs y that “support” v1, and can be called the support
set of v1. A pure protocol requires the probability that
any value v1 is mapped to its own support set be the same
for all values. We use p∗ to denote this probability. In
order to satisfy LDP, it must be possible for a value v2 ̸=
v1 to be mapped to v1’s support set. It is required that
this probability, which we use q∗ to denote, must be the
same for all pairs of v1 and v2. Intuitively, we want p∗ to
be as large as possible, and q∗ to be as small as possible.
However, satisfying ε-LDP requires that p∗

q∗ ≤ eε .

Basic RAPPOR is pure with p∗ = 1− f
2 and q∗ = f

2 .
RAPPOR is not pure because there does not exist a suit-
able q∗ due to collisions in mapping values to bit vec-
tors. Assuming the use of two hash functions, if v1 is
mapped to [1,1,0,0], v2 is mapped to [1,0,1,0], and v3 is
mapped to [0,0,1,1], then because [1,1,0,0] differs from
[1,0,1,0] by only two bits, and from [0,0,1,1] by four
bits, the probability that v2 is mapped to v1’s support set
is higher than that of v3 being mapped to v1’s support set.

For a pure protocol, let y j denote the submitted value
by user j, a simple aggregation technique to estimate the
number of times that i occurs is as follows:

c̃(i) =
∑ j1Support(y j)(i)−nq∗

p∗−q∗
(1)

The intuition is that each output that supports i gives an
count of 1 for i. However, this needs to be normalized,
because even if every input is i, we only expect to see
n · p∗ outputs that support i, and even if input i never
occurs, we expect to see n · q∗ supports for it. Thus the
original range of 0 to n is “compressed” into an expected
range of nq∗ to np∗. The linear transformation in (1)
corrects this effect.

Theorem 1 For a pure LDP protocol PE and Support,
(1) is unbiased, i.e., ∀iE [ c̃(i) ] = n fi, where fi is the frac-
tion of times that the value i occurs.

Proof 1

E [ c̃(i) ] =E

⎡⎣
(

∑ j1Support(y j)(i)
)
−nq∗

p∗−q∗

⎤⎦

=
n fi p∗+n(1− fi)q∗−nq∗

p∗−q∗

=n · fi p∗+q∗− fiq∗−q∗

p∗−q∗

=n fi

The variance of the estimator in 1 is a valuable indi-
cator of an LDP protocol’s accuracy:

Theorem 2 For a pure LDP protocol PE and Support,
the variance of the estimation c̃(i) in (1) is:

Var[c̃(i)] =
nq∗(1−q∗)
(p∗−q∗)2 +

n fi(1− p∗−q∗)
p∗−q∗

(2)

Proof 2 The random variable c̃(i) is the (scaled) sum-
mation of n independent random variables drawn from
the Bernoulli distribution. More specifically, n fi (resp.
(1− fi)n) of these random variables are drawn from
the Bernoulli distribution with parameter p∗ (resp. q∗).
Thus,

Var[c̃(i)] = Var

⎡⎣
(

∑ j 1Support(y j)(i)
)
−nq∗

p∗−q∗

⎤⎦
=

∑ j Var[1Support(y j)(i)]

(p∗−q∗)2

=
n fi p∗(1− p∗)+n(1− fi)q∗(1−q∗)

(p∗−q∗)2

=
nq∗(1−q∗)
(p∗−q∗)2 +

n fi(1− p∗−q∗)
p∗−q∗

(3)

In many application domains, the vast majority of val-
ues appear very infrequently, and one wants to identify
the more frequent ones. The key to avoid having lots of
false positives is to have low estimation variances for the
infrequent values. When fi is small, the variance in (2) is
dominated by the first term. We use Var∗ to denote this
approximation of the variance, that is:

Var∗[c̃(i)] =
nq∗(1−q∗)
(p∗−q∗)2 (4)

We also note that some protocols have the property that
p∗+q∗ = 1, in which case Var∗ = Var.

As the estimation c̃(i) is the sum of many independent
random variables, its distribution is very close to a nor-
mal distribution. Thus, the mean and variance of c̃(i)
fully characterizes the distribution of c̃(i) for all prac-
tical purposes. When comparing different methods, we
observe that fixing ε , the differences are reflected in the
constants for the variance, which is where we focus our
attention.
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4 Optimizing LDP Protocols

We now cast many protocols that have been proposed
into our framework of “pure” LDP protocols. Casting
these protocols into the framework of pure protocols en-
ables us to derive their variances and understand how
each method’s accuracy is affected by parameters such
as domain size, ε , etc. This also enables us to general-
ize and optimize these protocols and propose two new
protocols that improve upon existing ones. More specifi-
cally, we will consider the following protocols, which we
organize by their encoding methods.

• Direct Encoding (DE). There is no encoding. It is a
generalization of the Random Response technique.

• Histogram Encoding (HE). An input v is encoded
as a histogram for the d possible values. The pertur-
bation step adds noise from the Laplace distribution
to each number in the histogram. We consider two
aggregation techniques, SHE and THE.

– Summation with Histogram Encoding
(SHE) simply sums up the reported noisy
histograms from all users.

– Thresholding with Histogram Encoding
(THE) is parameterized by a value θ ; it inter-
prets each noisy count above a threshold θ as
a 1, and each count below θ as a 0.

• Unary Encoding (UE). An input v is encoded as a
length-d bit vector, with only the bit corresponding
to v set to 1. Here two key parameters in perturba-
tion are p, the probability that 1 remains 1 after per-
turbation, and q, the probability that 0 is perturbed
into 1. Depending on their choices, we have two
protocols, SUE and OUE.

– Symmetric Unary Encoding (SUE) uses p+
q = 1; this is the Basic RAPPOR proto-
col [13].

– Optimized Unary Encoding (OUE) uses op-
timized choices of p and q; this is newly pro-
posed in this paper.

• Local Hashing (LH). An input v is encoded by
choosing at random H from a universal hash func-
tion family H, and then outputting (H,H(v)). This
is called Local Hashing because each user chooses
independently the hash function to use. Here a key
parameter is the range of these hash functions. De-
pending on this range, we have two protocols, BLH
and OLH.

– Binary Local Hashing (BLH) uses hash func-
tions that outputs a single bit. This is equiva-
lent to the random matrix projection technique
in [6].

– Optimized Local Hashing (OLH) uses opti-
mized choices for the range of hash functions;
this is newly proposed in this paper.

4.1 Direct Encoding (DE)
One natural method is to extend the binary response
method to the case where the number of input values is
more than 2. This is used in [23].

Encoding and Perturbing. EncodeDE(v) = v, and
Perturb is defined as follows.

Pr [PerturbDE(x) = i] =

{
p = eε

eε+d−1 , if i = x
q = 1−p

d−1 = 1
eε+d−1 , if i ̸= x

Theorem 3 (Privacy of DE) The Direct Encoding (DE)
Protocol satisfies ε-LDP.

Proof 3 For any inputs v1,v2 and output y, we have:

Pr [PEDE(v1) = y]
Pr [PEDE(v2) = y]

≤ p
q
=

eε/(eε +d−1)
1/(eε +d−1)

= eε

Aggregation. Let the Support function for DE be
SupportDE(i) = {i}, i.e., each output value i supports
the input i. Then this protocol is pure, with p∗ = p and
q∗ = q. Plugging these values into (4), we have

Var∗[c̃DE(i)] = n · d−2+ eε

(eε −1)2

Note that the variance given above is linear in nd. As d
increases, the accuracy of DE suffers. This is because,
as d increases, p = eε

eε+d−1 , the probability that a value
is transmitted correctly, becomes smaller. For example,
when eε = 49 and d = 216, we have p= 49

65584 ≈ 0.00075.

4.2 Histogram Encoding (HE)
In Histogram Encoding (HE), an input x ∈ [d] is encoded
using a length-d histogram.

Encoding. EncodeHE(v) = [0.0,0.0, · · · ,1.0, · · · ,0.0],
where only the v-th component is 1.0. Two different in-
put v values will result in two vectors that have L1 dis-
tance of 2.0.

Perturbing. PerturbHE(B) outputs B′ such that B′[i] =
B[i]+Lap

( 2
ε

)
, where Lap(β ) is the Laplace distribution

where Pr [Lap(β ) = x] = 1
2β

e−|x|/β .

Theorem 4 (Privacy of HE) The Histogram Encoding
protocol satisfies ε-LDP.

Proof 4 For any inputs v1,v2, and output B, we have

Pr[B|v1]
Pr[B|v2]

=
∏i∈[d]Pr[B[i]|v1]

∏i∈[d]Pr[B[i]|v2]
= Pr[B[v1]|v1]Pr[B[v2]|v1]

Pr[B[v1]|v2]Pr[B[v2]|v2]

≤ eε/2 · eε/2 = eε
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Aggregation: Summation with Histogram Encoding
(SHE) works as follows: For each value, sum the noisy
counts for that value reported by all users. That is,
c̃SHE(i) = ∑ j B j[i], where B j is the noisy histogram re-
ceived from user j. This aggregation method does not
provide a Support function and is not pure. We prove its
property as follows.

Theorem 5 In SHE, the estimation c̃SHE is unbiased.
Furthermore, the variance is

Var [ c̃SHE(i) ] = n
8
ε2

Proof 5 Since the added noise is 0-mean; the expected
value of the sum of all noisy counts is the true count.

The Lap(β ) distribution has variance 2
β 2 , since β = ε

2

for each B j[i], then the variance of each such variable
is 8

ε2 , and the sum of n such independent variables have
variance n 8

ε2 .

Aggregation: Thresholding with Histogram Encod-
ing (THE) interprets a vector of noisy counts discretely
by defining

SupportTHE(B) = {v | B[v]> θ}

That is, each noise count that is > θ supports the corre-
sponding value. This thresholding step can be performed
either by the user or by the aggregator. It does not ac-
cess the original value, and thus does not affect the pri-
vacy guarantee. Using thresholding to provide a Support
function makes the protocol pure. The probability p∗ and
q∗ are given by

p∗ = 1−F(θ −1); q∗ = 1−F(θ),

where F(x) =
{ 1

2 e
ε
2 x, if x < 0

1− 1
2 e−

ε
2 x, if x≥ 0

Here, F(·) is the cumulative distribution function of
Laplace distribution. If 0≤ θ ≤ 1, then we have

p∗ = 1− 1
2

e
ε
2 (θ−1); q∗ =

1
2

e−
ε
2 θ .

Plugging these values into (4), we have

Var∗[c̃HET(i)] = n · 2eεθ/2−1
(1+ eε(θ−1/2)−2eεθ/2)2

Comparing SHE and THE. Fixing ε , one can choose
a θ value to minimize the variance. Numerical analy-
sis shows that the optimal θ is in ( 1

2 ,1), and depends on
ε . When ε is large, θ → 1. Furthermore, Var[c̃THE] <
Var[c̃SHE] is always true. This means that by thresh-
olding, one improves upon directly summing up noisy
counts, likely because thresholding limits the impact of
noises of large magnitude. In Section 5, we illustrate the
differences between them using actual numbers.

4.3 Unary Encoding (UE)
Basic RAPPOR, which we described in Section 2.2,
takes the approach of directly perturbing a bit vector. We
now explore this method further.

Encoding. Encode(v) = [0, · · · ,0,1,0, · · · ,0], a length-d
binary vector where only the v-th position is 1.

Perturbing. Perturb(B) outputs B′ as follows:

Pr
[
B′[i] = 1

]
=

{
p, if B[i] = 1
q, if B[i] = 0

Theorem 6 (Privacy of UE) The Unary Encoding pro-
tocol satisfies ε-LDP for

ε = ln
(

p(1−q)
(1− p)q

)
(5)

Proof 6 For any inputs v1,v2, and output B, we have

Pr [B|v1]

Pr [B|v2]
=

∏i∈[d]Pr [B[i]|v1]

∏i∈[d]Pr [B[i]|v2]
(6)

≤Pr [B[v1] = 1|v1]Pr [B[v2] = 0|v1]

Pr [B[v1] = 1|v2]Pr [B[v2] = 0|v2]
(7)

=
p
q
· 1−q

1− p
= eε

(6) is because each bit is flipped independently, and (7) is
because v1 and v2 result in bit vectors that differ only in
locations v1 and v2, and a vector with position v1 being
1 and position v2 being 0 maximizes the ratio.

Aggregation. A reported bit vector is viewed as support-
ing an input i if B[i] = 1, i.e., SupportUE(B) = {i | B[i] =
1}. This yields p∗ = p and q∗ = q. Interestingly, (5)
does not fully determine the values of p and q for a fixed
ε . Plugging (5) into (4), we have

Var∗[c̃UE(i)] =
nq(1−q)
(p−q)2 =

nq(1−q)

( eε q
1−q+eε q −q)2

= n · ((e
ε −1)q+1)2

(eε −1)2(1−q)q
. (8)

Symmetric UE (SUE). RAPPOR’s implementation
chooses p and q such that p+ q = 1; making the treat-
ment of 1 and 0 symmetric. Combining this with (5), we
have

p =
eε/2

eε/2 +1
, q =

1
eε/2 +1

Plugging these into (8), we have

Var∗[c̃SUE(i)] = n · eε/2

(eε/2−1)2
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Optimized UE (OUE). Instead of making p and q sym-
metric, we can choose them to minimize (8). Take the
partial derivative of (8) with respect to q, and solving q
to make the result 0, we get:

∂

[
((eε−1)q+1)2

(eε−1)2(1−q)q

]
∂q

=
∂

[
1

(eε−1)2 ·
(
(eε−1)2q

1−q +
2(eε−1)

1−q + 1
q(1−q)

)]
∂q

=
∂

[
1

(eε−1)2 ·
(
−(eε −1)2 + e2ε

1−q +
1
q

)]
∂q

=
1

(eε −1)2

(
e2ε

(1−q)2 −
1
q2

)
= 0

=⇒ 1−q
q

= eε , i.e.,q =
1

eε +1
and p =

1
2

Plugging p = 1
2 and q = 1

eε+1 into (8), we get

Var∗[c̃OUE(i)] = n
4eε

(eε −1)2 (9)

The reason why setting p = 1
2 and q = 1

eε+1 is opti-
mal when the true frequencies are small may be unclear
at first glance; however, there is an intuition behind it.
When the true frequencies are small, d is large. Recall
that eε = p

1−p
1−q

q . Setting p and q can be viewed as

splitting ε into ε1+ε2 such that p
1−p = eε1 and 1−q

q = eε2 .
That is, ε1 is the privacy budget for transmitting the 1 bit,
and ε2 is the privacy budget for transmitting each 0 bit.
Since there are many 0 bits and a single 1 bit, it is better
to allocate as much privacy budget for transmitting the 0
bits as possible. In the extreme, setting ε1 = 0 and ε2 = ε

means that setting p = 1
2 .

4.4 Binary Local Hashing (BLH)
Both HE and UE use unary encoding and have Θ(d)
communication cost, which is too large for some appli-
cations. To reduce the communication cost, a natural
idea is to first hash the input value into a domain of size
k < d, and then apply the UE method to the hashed value.
This is the basic idea underlying the RAPPOR method.
However, a problem with this approach is that two val-
ues may be hashed to the same output, making them in-
distinguishable from each other during decoding. RAP-
POR tries to address this in several ways. One is to use
more than one hash functions; this reduces the chance of
a collision. The other is to use cohorts, so that differ-
ent cohorts use different sets of hash functions. These
remedies, however, do not fully eliminate the potential
effect of collisions. Using more than one hash functions
also means that every individual bit needs to be perturbed
more to satisfy ε-LDP for the same ε .

A better approach is to make each user belong to a co-
hort by herself. We call this the local hashing approach.

The random matrix-base protocol in [6] (described in
Section 2.4), in its very essence, uses a local hashing en-
coding that maps an input value to a single bit, which is
then transmitted using randomized response. Below is
the Binary Local Hashing (BLH) protocol, which is log-
ically equivalent to the one in Section 2.4, but is simpler
and, we hope, better illustrates the essence of the idea.

Let H be a universal hash function family, such that
each hash function H ∈H hashes an input in [d] into one
bit. The universal property requires that

∀x,y ∈ [d],x ̸= y : Pr
H∈H

[H(x) = H(y)]≤ 1
2
.

Encoding. EncodeBLH(v) = ⟨H,b⟩, where H ←R H is
chosen uniformly at random from H, and b=H(v). Note
that the hash function H can be encoded using an index
for the family H and takes only O(logn) bits.

Perturbing. PerturbBLH(⟨H,b⟩) = ⟨H,b′⟩ such that

Pr
[
b′ = 1

]
=

{
p = eε

eε+1 , if b = 1
q = 1

eε+1 , if b = 0

Aggregation. SupportBLH(⟨H,b⟩) = {v | H(v) = b},
that is, each reported ⟨H,b⟩ supports all values that are
hashed by H to b, which are half of the input values. Us-
ing this Support function makes the protocol pure, with
p∗ = p and q∗ = 1

2 p+ 1
2 q = 1

2 . Plugging the values of p∗

and q∗ into (4), we have

Var∗[c̃BLH(i)] = n · (e
ε +1)2

(eε −1)2 .

4.5 Optimal Local Hashing (OLH)

Once the random matrix projection protocol is cast as
binary local hashing, we can clearly see that the encoding
step loses information because the output is just one bit.
Even if that bit is transmitted correctly, we can get only
one bit of information about the input, i.e., to which half
of the input domain does the value belong. When ε is
large, the amount of information loss in the encoding step
dominates that of the random response step. Based on
this insight, we generalize Binary Local Hashing so that
each input value is hashed into a value in [g], where g≥
2. A larger g value means that more information is being
preserved in the encoding step. This is done, however, at
a cost of more information loss in the random response
step. As in our analysis of the Direct Encoding method,
a large domain results in more information loss.

Let H be a universal hash function family such that
each H ∈H outputs a value in [g].

Encoding. Encode(v) = ⟨H,x⟩, where H ∈ H is chosen
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uniformly at random, and x = H(v).

Perturbing. Perturb(⟨H,x⟩) = (⟨H,y⟩), where

∀i∈[g] Pr [y = i] =

{
p = eε

eε+g−1 , if x = i
q = 1

eε+g−1 , if x ̸= i

Theorem 7 (Privacy of LH) The Local Hashing (LH)
Protocol satisfies ε-LDP

Proof 7 For any two possible input values v1,v2 and any
output ⟨H,y⟩, we have,

Pr [⟨H,y⟩|v1]

Pr [⟨H,y⟩|v2]
=

Pr [Perturb(H(v1)) = y]
Pr [Perturb(H(v2)) = y]

≤ p
q
= eε

Aggregation. Let SupportLH(⟨H,y⟩) = {i | H(i) = y},
i.e., the set of values that are hashed into the reported
value. This gives rise to a pure protocol with

p∗ = p and q∗ =
1
g

p+
g−1

g
q =

1
g
.

Plugging these values into (4), we have the

Var∗[c̃LP(i)] = n · (eε −1+g)2

(eε −1)2(g−1)
. (10)

Optimized LH (OLH) Now we find the optimal g
value, by taking the partial derivative of (10) with respect
to g.

∂

[
(eε−1+g)2

(eε−1)2(g−1)

]
∂g

=
∂

[
g−1

(eε−1)2 +
1

g−1 ·
e2ε

(eε−1)2 +
2eε

(eε−1)2

]
∂g

=
1

(eε −1)2 −
1

(g−1)2 ·
e2ε

(eε −1)2 = 0

=⇒ g = eε +1

When g = eε + 1, we have p∗ = eε

eε+g−1 = 1
2 , q∗ = 1

g =
1

eε+1 into (8), and

Var∗[c̃OLH(i)] = n · 4eε

(eε −1)2 . (11)

Comparing OLH with OUE. It is interesting to observe
that the variance we derived for optimized local hashing
(OLH), i.e., (11) is exactly that we have for optimized
unary encoding (OUE), i.e., (9). Furthermore, the proba-
bility values p∗ and q∗ are also exactly the same. This il-
lustrates that OLH and OUE are in fact deeply connected.
OLH can be viewed as a compact way of implementing
OUE. Compared with OUE, OLH has communication
cost O(logn) instead of O(d).

The fact that optimizing two apparently different en-
coding approaches, namely, unary encoding and lo-
cal hashing, results in conceptually equivalent protocol,
seems to suggest that this may be optimal (at least when
d is large). However, whether this is the best possible
protocol remains an interesting open question.

5 Which Protocol to Use

We have cast most of the LDP protocols proposed in the
literature into our framework of pure LDP protocols. Do-
ing so also enables us to generalize and optimize exist-
ing protocols. Now we are able to answer the question:
Which LDP protocol should one use in a given setting?

Guideline. Table 1 lists the major parameters for the dif-
ferent protocols. Histogram encoding and unary encod-
ing requires Θ(d) communication cost, and is expensive
when d is large. Direct encoding and local hashing re-
quire Θ(logd) or Θ(logn) communication cost, which
amounts to a constant in practice. All protocols other
than DE have O(n · d) computation cost to estimate fre-
quency of all values.

Numerical values of the approximate variances using
(4) for all protocols are given in Table 2 and Figure 1 (n=
10,000). Our analysis gives the following guidelines for
choosing protocols.
• When d is small, more precisely, when d < 3eε +2,

DE is the best among all approaches.

• When d > 3eε + 2, and the communication cost
Θ(d) is acceptable, one should use OUE. (OUE has
the same variance as OLH, but is easier to imple-
ment and faster because no hash functions is used.)

• When d is so large that the communication cost
Θ(d) is too large, we should use OLH. It offers
the same accuracy as OUE, but has communication
cost O(logd) instead of O(d).

Discussion. In addition to the guidelines, we make the
following observations. Adding Laplacian noises to a
histogram is typically used in a setting with a trusted
data curator, who first computes the histogram from all
users’ data and then adds the noise. SHE applies it to
each user’s data. Intuitively, this should perform poorly
relative to other protocols specifically designed for the
local setting. However, SHE performs very similarly to
BLH, which was specifically designed for the local set-
ting. In fact, when ε > 2.5, SHE performs better than
BLH.

While all protocols’ variances depend on ε , the rela-
tionships are different. BLH is least sensitive to change
in ε because binary hashing loses too much information.
Indeed, while all other protocols have variance goes to
0 when ε goes to infinity, BLH has variance goes to n.
SHE is slightly more sensitive to change in ε . DE is
most sensitive to change in ε; however, when d is large,
its variance is very high. OLH and OUE are able to better
benefit from an increase in ε , without suffering the poor
performance for small ε values.

Another interesting finding is that when d = 2, the
variance of DE is eε

(eε−1)2 , which is exactly 1
4 of that of
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DE SHE THE (θ = 1) SUE OUE BLH OLH
Communication Cost O(logd) O(d) O(d) O(d) O(d) O(logn) O(logn)

Var[c̃(i)]/n d−2+eε

(eε−1)2
8
ε2

2eε/2−1
(eε/2−1)2

eε/2

(eε/2−1)2
4eε

(eε−1)2
(eε+1)2

(eε−1)2
4eε

(eε−1)2

Table 1: Comparison of communication cost and variances for different methods.

DE (d = 2) DE (d = 32) DE (d = 210) SHE THE (θ = 1) SUE OUE BLH OLH
ε = 0.5 3.92 75.20 2432.40 32.00 19.44 15.92 15.67 16.67 15.67
ε = 1.0 0.92 11.08 347.07 8.00 5.46 3.92 3.68 4.68 3.68
ε = 2.0 0.18 0.92 25.22 2.00 1.50 0.92 0.72 1.72 0.72
ε = 4.0 0.02 0.03 0.37 0.50 0.34 0.18 0.08 1.08 0.08

Table 2: Numerical values of Var[c̃(i)]/n for different methods.

10
2

10
3

10
4

10
5

10
6

10
7

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

V
a
r

ε

DE(d=2)
DE(d=4)

DE(d=16)

DE(d=128)
DE(d=2048)

OUE

(a) Vary ε

10
2

10
3

10
4

10
5

10
6

10
7

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

V
a
r

ε

DE
SHE

SUE
OUE

BLH
OLH

(b) Vary ε (fixing d = 210)

Figure 1: Numerical values of Var[c̃(i)] for different methods.

OUE and OLH, whose variances do not depend on d. In-
tuitively, it is easier to transmit a piece of information
when it is binary, i.e., d = 2. As d increases, one needs
to “pay” for this increase in source entropy by having
higher variance. However, it seems that there is a cap on
the “price” one must pay no matter how large d is, i.e.,
OLH’s variance does not depend on d and is always 4
times that of DE with d = 2. There may exist a deeper
reason for this rooted in information theory. Exploring
these questions is beyond the scope of this paper.

6 Experimental Evaluation

We empirically evaluate these protocols on both syn-
thetic and real-world datasets. All experiments are per-
formed ten times and we plot the mean and standard de-
viation.

6.1 Verifying Correctness of Analysis

The conclusions we drew above are based on analyti-
cal variances. We now show that our analytical results

of variances match the empirically measured squared er-
rors. For the empirical data, we issue queries using the
protocols and measure the average of the squared errors,
namely, 1

d ∑i∈[d] [c̃(i)−n fi]
2, where fi is the fraction of

users taking value i. We run queries for all i values and
repeat for ten times. We then plot the average and stan-
dard deviation of the squared error. We use synthetic data
generated by following the Zipf’s distribution (with dis-
tribution parameter s = 1.1 and n = 10,000 users), simi-
lar to experiments in [13].

Figure 2 gives the empirical and analytical results for
all methods. In Figures 2(a) and 2(b), we fix ε = 4
and vary the domain size. For sufficiently large d (e.g.,
d ≥ 26), the empirical results match very well with the
analytical results. When d < 26, the analytical variance
tends to underestimate the variance, because in (4) we
ignore the fi terms. Standard deviation of the measured
squared error from different runs also decreases when the
domain size increases. In Figures 2(c) and 2(d), we fix
the domain size to d = 210 and vary the privacy budget.
We can see that the analytical results match the empirical
results for all ε values and all methods.

In practice, since the group size g of OLH can only be
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Figure 2: Comparing empirical and analytical variance.

integers, we round g = eε +1 to the nearest integer.

6.2 Towards Real-world Estimation

We run OLH, BLH, together with RAPPOR, on real
datasets. The goal is to understand how does each pro-
tocol perform in real world scenarios and how to inter-
pret the result. Note that RAPPOR does not fall into
the pure framework of LDP protocols so we cannot use
Theorem 2 to obtain the variance analytically. Instead,
we run experiments to examine its performance empiri-
cally. Following the setting of Erlingsson et al. [13], we
use a 128-bit Bloom filter, 2 hash functions and 8/16 co-
horts in RAPPOR. In order to vary ε , we tweak the f
value. The instantaneous randomization process is omit-
ted. We implement RAPPOR in Python. The regression
part, which RAPPOR introduces to handle the collisions
in the Bloom filter, is implemented using Scikit-learn li-
brary [4].

Datasets. We use the Kosarak dataset [2], which con-
tains the click stream of a Hungarian news website.
There are around 8 million click events for 41,270 dif-
ferent pages. The goal is to estimate the popularity of
each page, assuming all events are reported.

6.2.1 Accuracy on Frequent Values

One goal of estimating a distribution is to find out the fre-
quent values and accurately estimate them. We run dif-
ferent methods to estimate the distribution of the Kosarak
dataset. After the estimation, we issue queries for the
30 most frequent values in the original dataset. We then
calculate the average squared error of the 30 estimations
produced by different methods. Figure 3 shows the re-
sult. We try RAPPOR with both 8 cohorts (RAP(8)) and
16 cohorts (RAP(16)). It can be seen that when ε > 1,
OLH starts to show its advantage. Moreover, variance
of OLH decreases fastest among the four. Due to the
internal collision caused by Bloom filters, the accuracy
of RAPPOR does not benefit from larger ε . We also per-
form this experiment on different datasets, and the results
are similar.

6.2.2 Distinguish True Counts from Noise

Although there are noises, infrequent values are still un-
likely to be estimated to be frequent. Statistically, the fre-
quent estimates are more reliable, because the probabil-
ity it is generated from an infrequent value is quite low.
However, for the infrequent estimates, we don’t know
whether it comes from an originally infrequent value or
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significance threshold. The dashed line corresponds to
the average number of items identified.

a zero-count value. Therefore, after getting the estima-
tion, we need to choose which estimate to use, and which
to discard.

Significance Threshold. In [13], the authors propose
to use the significance threshold. After the estimation,
all estimations above the threshold are kept, and those
below the threshold Ts are discarded.

Ts = Φ
−1
(

1− α

d

)√
Var∗,

where d is the domain size, Φ−1 is the inverse of the
cumulative density function of standard normal distri-
bution, and the term inside the square root is the vari-
ance of the protocol. Roughly speaking, the parame-
ter α controls the number of values that originally have
low frequencies but estimated to have frequencies above
the threshold (also known as false positives). We use
α = 0.05 in our experiment.

For the values whose estimations are discarded, we
don’t know for sure whether they have low or zero fre-
quencies. Thus, a common approach is to assign the re-
maining probability to each of them uniformly.

Recall Var∗ is the term we are trying to minimize. So a
protocol with a smaller variance will have a lower thresh-

old; thus more values can be detected reliably.

Number of Reliable Estimation. We run different pro-
tocols using the significance threshold Ts on the Kosarak
dataset. Note that Ts will change as ε changes. We define
a true (false) positive as a value that has frequency above
(below) the threshold, and is estimated to have frequency
above the threshold. In Figure 4, we show the number of
true positives versus ε . As ε increases, the number of
true positives increases. When ε = 4, RAPPOR can out-
put 75 true positives, BLH can only output 36 true posi-
tives, but OLH can output nearly 200 true positives. We
also notice that the output sizes are similar for RAPPOR
and OLH, which indicates that OLH gives out very few
false positives compared to RAPPOR. The cohort size
does not affect much in this setting.

6.2.3 On Information Quality

Now we test both the number of true positives and false
positives, varying the threshold. We run OLH, BLH and
RAPPOR on the Kosarak dataset.

As we can see in Figure 5(a), fixing a threshold, OLH
and BLH performs similarly in identifying true positives,
which is as expected, because frequent values are rare,
and variance does not change much the probability it is
identified. RAPPOR performs slightly worse because of
the Bloom filter collision.

As for the false positives, as shown in Figure 5(b), dif-
ferent protocols perform quite differently in eliminating
false positives. When fixing Ts to be 5,000, OLH pro-
duces tens of false positives, but BLH will produce thou-
sands of false positives. The reason behind this is that,
for the majority of infrequent values, their estimations
are directly related to the variance of the protocol. A
protocol with a high variance means that more infrequent
values will become frequent during estimation. As a re-
sult, because of its smallest Var∗, OLH produces the least
false positives while generating the most true positives.

7 Related Work

The notion of differential privacy and the technique of
adding noises sampled from the Laplace distribution
were introduced in [11]. Many algorithms for the central-
ized setting have been proposed. See [12] for a theoreti-
cal treatment of these techniques, and [19] for a treatment
from a more practical perspective. It appears that only
algorithms for the LDP settings have seen real world de-
ployment. Google deployed RAPPOR [13] in Chrome,
and Apple [1] also uses similar methods to help with pre-
dictions of spelling and other things.

State of the art protocols for frequency estimation un-
der LDP are RAPPOR by Erlingsson et al. [13] and Ran-
dom Matrix Projection (BLH) by Bassily and Smith [6],
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Figure 5: Results on Kosarak dataset. The y axes are the number of identified hash values that is true/false positive.
The x axes are the threshold. We assume ε = 4.

which we have presented in Section 2 and compared with
in detail in the paper. These protocols use ideas from
earlier work [20, 9]. Our proposed Optimized Unary
Encoding (OUE) protocol builds upon the Basic RAP-
POR protocol in [13]; and our proposed Optimized Lo-
cal Hashing (OLH) protocol is inspired by BLH in [6].
Wang et al. [23] uses both generalized random response
(Section 4.1) and Basic RAPPOR for learning weighted
histogram. Some researchers use existing frequency esti-
mation protocols as primitives to solve other problems in
LDP setting. For example, Chen et al. [8] uses BLH [6]
to learn location information about users. Qin et al. [22]
use RAPPOR [13] and BLH [6] to estimate frequent
items where each user has a set of items to report. These
can benefit from the introduction of OUE and OLH in
this paper.

There are other interesting problems in the LDP set-
ting beyond frequency estimation. In this paper we do
not study them. One problem is to identify frequent val-
ues when the domain of possible input values is very
large or even unbounded, so that one cannot simply ob-
tain estimations for all values to identify which ones are
frequent. This problem is studied in [17, 6, 16]. Another
problem is estimating frequencies of itemsets [14, 15].
Nguyên et al. [21] studied how to report numerical an-
swers (e.g., time of usage, battery volume) under LDP.
When these protocols use frequency estimation as a
building block (such as in [16]), they can directly ben-
efit from results in this paper. Applying insights gained
in our paper to better solve these problems is interesting
future work.

Kairouz et al. [18] study the problem of finding the
optimal LDP protocol for two goals: (1) hypothesis test-
ing, i.e., telling whether the users’ inputs are drawn from
distribution P0 or P1, and (2) maximize mutual informa-
tion between input and output. We note that these goals
are different from ours. Hypothesis testing does not re-

flect dependency on d. Mutual information considers
only a single user’s encoding, and not aggregation ac-
curacy. For example, both global and local hashing have
exactly the same mutual information characteristics, but
they have very different accuracy for frequency estima-
tion, because of collisions in global hashing. Neverthe-
less, it is found that for very large ε’s, Direct Encoding
is optimal, and for very small ε’s, BLH is optimal. This
is consistent with our findings. However, analysis in [18]
did not lead to generalization and optimization of binary
local hashing, nor does it provide concrete suggestion on
which method to use for a given ε and d value.

8 Discussion

On answering multiple questions. In the setting of tra-
ditional DP, the privacy budget is split when answering
multiple queries. In the local setting, previous work fol-
low this tradition and let the users split privacy budget
evenly and report on multiple questions. Instead, we sug-
gest partitioning the users randomly into groups, and let-
ting each group of users answer a separate question. Now
we compare the utilities by these approaches.

Suppose there are Q≥ 2 questions. We calculate vari-
ances on one question. Since there are different number
of users in the two cases (n versus n/Q), we normalize
the estimations into the range from 0 to 1. In OLH, the
variance is σ2 = Var∗[c̃OLH(i)/n] = 4eε

(eε−1)2·n
.

When partitioning the users, n/Q users answer one
question, rendering σ2

1 = 4Qeε

(eε−1)2·n
; when privacy bud-

get is split, ε/Q is used for one question, we have σ2
2 =

4eε/Q

(eε/Q−1)
2·n

. We want to show σ2
1 < σ2

2 :

σ
2
2 −σ

2
1
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=
4
n

(
eε/Q(

eε/Q−1
)2 −

Qeε

(eε −1)2

)

=
4eε/Q

n
(
eε/Q−1

)2
(eε −1)2

·
[
(eε −1)2−Qeε−ε/Q

(
eε/Q−1

)2
]

The first term is always greater than zero since ε > 0. For
the second term, we define eε/Q = z, and write it as:

(zQ−1)2−QzQ−1(z−1)2

=(z−1)2 ·
[
(zQ−1 + zQ−2 + . . .+1)2−QzQ−1]> 0

Therefore, σ2
1 is always smaller than σ2

2 . Thus utility
of partitioning users is better than splitting privacy bud-
get.

Limitations. The current work only considers the frame-
work of pure LDP protocols. It is not known whether a
protocol that is not pure will produce more accurate re-
sult or not. Moreover, current protocols can only handle
the case where the domain is limited, or a dictionary is
available. Other techniques are needed when the domain
size is very big.

9 Conclusion

In this paper, we study frequency estimation in the Local
Differential Privacy (LDP) setting. We have introduced a
framework of pure LDP protocols together with a simple
and generic aggregation and decoding technique. This
framework enables us to analyze, compare, generalize,
and optimize different protocols, significantly improving
our understanding of LDP protocols. More concretely,
we have introduced the Optimized Local Hashing (OLH)
protocol, which has much better accuracy than previous
frequency estimation protocols satisfying LDP. We pro-
vide a guideline as to which protocol to choose in differ-
ent scenarios. Finally we demonstrate the advantage of
the OLH in both synthetic and real-world datasets.
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A Additional Evaluation

This section provides additional experimental evaluation
results. We first try to measure average squared variance
on other datasets. Although RAPPOR did not specify a
particular optimal setting, we vary the number of cohorts
and find differences. In the end, we evaluate different
methods on the Rockyou dataset.

A.1 Effect of Cohort Size
In [13], the authors did not identify the best cohort size
to use. Intuitively, if there are too few cohorts, many val-
ues will be hashed to be the same in the Bloom filter,
making it difficult to distinguish these values. If there
are more cohorts, each cohort cannot convey enough use-
ful information. Here we try to test what cohort size we
should use. We generate 10 million values following the
Zipf’s distribution (with parameter 1.5), but only use the
first 128 most frequent values because of memory limita-
tion caused by regression part of RAPPOR. We then run
RAPPOR using 8, 16, 32, and 64, and 128 cohorts. We
measure the average squared errors of queries about the
top 10 values, and the results are shown in Figure 7. As
we can see, more cohorts does not necessarily help lower
the squared error because the reduced probability of col-
lision within each cohort. But it also has the disadvan-
tage that each cohort may have insufficient information.
It can be seen OLH still performs best.

A.2 Performance on Synthetic Datasets
In Figure 6, we test performance of different methods on
synthetic datasets. We generate 10 million points follow-
ing a normal distribution (rounded to integers, with mean
500 and standard deviation 10) and a Zipf’s distribution
(with parameter 1.5). The values range from 0 to 1000.
We then test the average squared errors on the most fre-
quent 100 values. It can be seen that different methods
perform similarly in different distributions. RAPPOR us-
ing 16 cohorts performs better than BLH. This is be-
cause when the number of cohort is enough, each user in
a sense has his own hash functions. This can be viewed
as a kind of local hashing function. When we only test
the top 10 values instead of top 50, RAP(16) and BLH
perform similarly. Note that OLH performs best among
all distributions.

A.3 Performance on Rockyou Dataset
We run experiments on the Rockyou dataset, which con-
tains 21 million users’ password in plaintext. We first
hash the plaintext into 20 bits, and use OLH, BLH, and
Basic RAPPOR (also known as SUE in our framework)
to test all hashed values. It can be seen that OLH per-
forms best in all settings, and basic RAPPOR outper-
forms BLH consistently. When ε = 4, and threshold is
6000, OLH can recover around 50 true frequent hashes
and 10 of false positives, which is 4 and 2 magnitudes
smaller than BLH and basic RAPPOR, respectively. The
advantage is not significant when ε is small, since the
variance difference is small.
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Figure 6: Average squared errors on estimating a distribution of 10 million points. RAPPOR is used with 128-bit
long Bloom filter and 2 hash functions.
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Abstract
We propose a hybrid model of differential privacy
that considers a combination of regular and opt-in
users who desire the differential privacy guarantees
of the local privacy model and the trusted curator
model, respectively. We demonstrate that within
this model, it is possible to design a new type of
blended algorithm for the task of privately comput-
ing the most popular records of a web search log.
This blended approach provides significant improve-
ments in the utility of obtained data compared to
related work while providing users with their desired
privacy guarantees. Specifically, on two large search
click data sets comprising 4.8 million and 13.2 mil-
lion unique queries respectively, our approach at-
tains NDCG values exceeding 95% across a range
of commonly used privacy budget values.

1 Introduction

Now more than ever we are confronted with the ten-
sion between collecting mass-scale user data and the
ability to release or share this data in a way that pre-
serves the privacy of individual users. Today, an or-
ganization that needs user data to improve the qual-
ity of service they provide often has no choice but
to perform the data collection themselves. However,
the users may not want to share their data with the
organization, especially if they consider the data to
be sensitive or private. Similarly, the organization
assumes liability by collecting sensitive user data:
private information may be directly leaked through
security breaches or subpoenas, or indirectly leaked
by the output of computations done on the data.
Thus, both organizations and users would benefit
not only from strong, rigorous privacy guarantees
regarding the data collection process, but also from
the organization collecting the minimum amount of
data necessary to achieve their goal. Some of the

philosophy behind our work stems from a desire to
enable privacy-preserving decentralized data collec-
tion that aggregates data from multiple entities into
high quality datasets.

1.1 Differential Privacy and Curator Models

In the last decade, we have witnessed scores of ad-
hoc approaches that have turned out to be inade-
quate for protecting privacy [33, 23]. The problem
stems from the impossibility of foreseeing all attacks
of adversaries capable of utilizing outside knowledge.
Differential privacy [10, 9, 11], which has become
the gold standard privacy guarantee in the academic
literature, and is gaining traction in industry and
government [13, 17, 28], overcomes the prior issues
by focusing on the privatization algorithm applied
to the data, requiring that it preserves privacy in a
mathematically rigorous sense under an assumption
of an omnipotent adversary.

There are two primary models in the differential
privacy framework that define how data is to be han-
dled by the users and data collectors: the trusted
curator model and the local model.

Trusted curator model: Most differentially pri-
vate algorithms developed to date operate in the
trusted curator model: all users’ data is collected
by the curator before privatization techniques are
applied to it. In this model, although users are guar-
anteed that the released data set protects their pri-
vacy, they must be willing to share their private,
unperturbed data with the curator and trust that
the curator properly performs a privacy-preserving
perturbation.

Local model: As was most recently argued by Ap-
ple [17], users may not trust the data collector with
their data, and may prefer privatization to occur be-
fore their data reaches the collector. Since privati-
zation occurs locally, this is known as the local dif-
ferential privacy (LDP) model, or local model. Over
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the last several years, we have seen some examples
of the local model beginning to be used for data col-
lection in practice, most notably in the context of
the Chrome web browser [13] and Apple’s data col-
lection [17].

In the LDP model, a data collector such as Google
or Apple obtains insights into the data without ob-
serving the exact values of user’s private data. This
is achieved by applying a privacy-preserving pertur-
bation to each user’s private data before it leaves
the user’s device. Since most people do not trust
web companies with maintaining the privacy and se-
curity of their data [29], the minimal trust required
of users towards the data collector is a very attrac-
tive property of the LDP model. This approach pro-
tects not only the individual users, but also the data
collector from the possible privacy breaches. For
these reasons, the local model directly embodies the
“data minimization”principle described in the White
House’s 2012 consumer data privacy report [41].

Although it may seem counter-intuitive, it is pos-
sible to obtain useful insights even when the data
collector does not have access to the original data
and receives only data that has already been locally
privatized. Suppose a data collector wants to deter-
mine the proportion of the population that is HIV-
positive. The local privatization algorithm works
as follows: each person contributing data secretly
flips a coin. If the coin lands heads, they report
their true HIV status; otherwise, they report a sta-
tus at random. This algorithm, known as random-
ized response [40], guarantees each person plausible
deniability and is differentially private. Since the
randomness is incorporated into the algorithm in a
precisely specified way, the data collector is able to
recover an accurate estimate of the true proportion
of HIV-positive people if enough people contribute
their locally privatized data.

Differential privacy: Formally, an algorithm A
is (ε, δ)-differentially private [11] if and only if for
all neighboring databases D and D′ differing in pre-
cisely one user’s data, the following inequality is sat-
isfied for all possible sets of outputs Y ⊆ Range(A):

Pr[A(D) ∈ Y ] ≤ eε Pr[A(D′) ∈ Y ] + δ.

The definition of what it means for an algorithm
to preserve differential privacy is the same for both
the trusted curator model and the local model. The
only distinction is in the timing of when the pri-
vacy perturbation needs to be applied – in the lo-
cal model, the data needs to undergo a privacy-
preserving perturbation before it is sent to the ag-
gregator, whereas in the trusted curator model the
aggregator may first collect all the data, and then

apply a privacy-preserving perturbation. The timing
distinction leads to differences in what is meant by
“neighboring databases” in the definition and which
algorithms are analyzed. In the local model, D rep-
resents data of a single user and D′ represents data
of the same user, with possibly changed values. In
the trusted curator model, D represents data of all
users and D′ represents data of all users, except val-
ues of one of the user’s data may be altered.

Current differential privacy literature
considers the trusted curator model
and the local model entirely indepen-
dently. Our goal is to show that there
is much to be gained by combining
the two.

Hybrid model: Much of the contribution in this
paper stems from our observation that the two mod-
els can co-exist. As others have observed [2, 1,
7], people’s attitudes toward privacy vary widely.
Specifically, some users may be comfortable with
sharing their data with a trusted curator.

Many companies rely on a group of beta testers
with whom they have higher levels of mutual trust.
It is not uncommon for such beta testers to vol-
untarily opt-in to a less privacy-preserving model
than that of an average end-user [32]. For exam-
ple, Mozilla warns potential beta users of its Fire-
fox browser that “Pre-release versions automatically
send Telemetry data to Mozilla to help us improve
Firefox1”; Google has a similar provision for the beta
testers of the Canary build of the Chrome browser2.

For the users who have higher trust in the com-
pany — we call them the opt-in group, the trusted
curator privacy model is a natural match. For all
other users — we call them clients, the local pri-
vacy model is appropriate. Our goal is to demon-
strate that by separating the user pool into these
two groups, according to their trust (or lack thereof)
in the data aggregator, we can improve the utility of
the collected data. We dub this new model the hy-
brid differential privacy model.

1.2 Applications

Heavy hitter discovery and estimation is a well-
studied problem in the context of information re-
trieval, and is one of the canonical problems in
privacy-preserving data analysis [6, 27]. Moreover,
recent work in the LDP model is focused on pre-
cisely that problem [13, 34] or very closely related
ones of histogram computations [5, 21]. However,
current privacy-preserving approaches in the LDP
model lead to utility losses that are quite signifi-
cant, sometimes to the point where results are no
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longer usable. Clearly, if the privacy-preserving per-
turbation makes the data deviate too far from the
original, the approach will not be widely adopted.
This is especially true in the context of search tasks,
where users have been conditioned for years to ex-
pect high-quality results.

We consider two specific applications in the space
of heavy hitter estimation: local search and search
trend computation.

Local search: Much of the work in this paper is
motivated by local search, an application of heavy
hitter estimation. Local search revolves around the
problem of how a browser maker can collect informa-
tion about users’ clicks as they interact with search
engines in order to create the head of the search, i.e.,
the collection of the most popular queries and their
corresponding URLs, and make it available to users
locally, i.e., on their devices. Specifically, it involves
computing on query-URL pairs, where the URLs are
those clicked as a result of submitting the query and
receiving a set of answers.

A browser maker may choose to combine the re-
sults obtained from user interactions that stem from
several search engines depending on the context or
surface results obtained from Baidu and not Bing
depending on the user’s current geographic location.

With proper privacy measures in place, this data
set can be deployed in the end-user browser to serve
the most common queries with a very low latency
or in situations when the user is disconnected from
the network. Local search can be thought of as a
form of caching, where many queries are answered
in a manner that does not require a round trip to
the server. Such caching of the most frequently used
queries locally has a disproportionately positive im-
pact on the expected query latency [36, 3] as queries
to a search engine follow a power-law distribution [4].
Furthermore, it would not be unusual or require a
significantly novel infrastructure, as plenty of data is
delivered to the browser today, such as SafeBrowsing
malware databases in Chrome and Firefox, Microsoft
SmartScreen data in Internet Explorer, blocking lists
for extensions such as AdBlock Plus, etc.

Trend computation: Search trend computation is
a typical example of heavy hitter estimation. This
problem entails finding the most popular queries and
sorting them in order of popularity; think about it as
the top-10 computation based on local search obser-
vations. An example of this is the Google trends ser-
vice3, which has an always up-to-date list of trending
topics and queries.

Although trend computation is interesting, local
search is a great deal harder to do well on while
preserving most of the utility. Luckily, in the domain

of search quality, there are established metrics to
numerically assess the quality of search results; one
of such metrics is NDCG, and we rely on it heavily in
assessing the performance of our proposed system.

1.3 Contributions

Our paper makes the following contributions:

• We introduce and utilize a more realistic, hy-
brid trust model, which removes the need for
all users to trust a central curator.

• We propose Blender, an algorithm that oper-
ates with the hybrid differential privacy model
for computing heavy hitters. Blender blends
the data of opt-in and all other users in order
to improve the resulting utility.

• We test Blender on two common applications:
search trend computation and local search and
find that it preserves high levels of utility while
maintaining differential privacy for reasonable
privacy parameter values.

• As part of Blender, we propose an approach
for automatically balancing the data obtained
from participation of opt-in users with that of
other users to maximize the eventual utility.

• We perform a comprehensive utility evaluation
of Blender on two large web search data sets,
comprising 4.8 million and 13.2 million queries,
demonstrating that Blender maintains very
high level of utility (i.e., NDCG values in ex-
cess of 95% across a range of parameters).

2 System Overview

We now discuss the high-level overview of our pro-
posed system, Blender, that coordinates the pri-
vatization, collection, and aggregation of data in the
hybrid model, as well as some of the specific choices
we make in this system. We use the task of enabling
local search based on user histories while preserving
differential privacy throughout, but, as will become
clear from the discussion, our model and system can
also be applied to other frequency-based estimation
tasks. As discussed in Section 1, we consider two
groups of users: the opt-in group, who are comfort-
able with privacy as ensured by the trusted curator
model, and the clients, who desire the privacy guar-
antees of the local model.

2.1 Outline of Our Approach

The core of our innovation is to take advantage of
the privatized information obtained from the opt-in
group in order to create a more efficient (in terms
of utility) algorithm for data collection from the
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Figure 1: Architectural diagram of Blender’s processing steps.

clients. Furthermore, the privatized results obtained
from the opt-in group and from the clients are then
“blended” in a way that takes into account the pri-
vatization algorithms used for each group, and thus,
again, achieving an improved utility over a less-
informed combination of data from the two groups.

The problem of enabling privacy-preserving lo-
cal search using past search histories can be viewed
as the task of identifying the most frequent search
records among the population of users, and estimat-
ing their underlying probabilities (both in a differen-
tial privacy-preserving manner). In this context, we
call the data collected from the users search records,
where each search record is a pair of strings of the
form 〈query, URL〉, representing a query that a user
posed followed by the URL that the user subse-
quently clicked. We denote by p〈q,u〉 the true under-
lying probability of the search record 〈q, u〉 in the
population. We assume that our system receives a
sample of users from the population, each holding
their own collection of private data drawn indepen-
dently and identically from the distribution over all
records p. Its goal is to output an estimate p̂ of prob-
abilities of the most frequent search records, while
preserving differential privacy (in the trusted curator
model) for the opt-in users and (in the local model)
for the clients.

Informal Overview of Blender: Figure 1
presents an architectural diagram of Blender.

Blender serves as the trusted curator for the opt-
in group of users, and begins by aggregating data
from them. Using a portion of the data, it con-
structs a candidate head list of records in a differ-

entially private manner that approximates the most
common search records in the population. It addi-
tionally includes a single “wildcard” record, 〈?, ?〉,
which represents all records in the population that
weren’t previously included in the candidate head
list. It then uses the remainder of the opt-in data to
estimate the probability of each record in the candi-
date head list in a differentially private manner, and
(optionally) trims the candidate head list down to
create the final head list. The result of this compo-
nent of Blender is the privatized trimmed head list
of search records and their corresponding probabil-
ity and variance estimates, which can be shared with
each user in the client group, and with the world.

Each member of the client group receives the pri-
vatized head list obtained from the opt-in group.
Each client then uses the head list to apply a differ-
ential privacy-preserving perturbation to their data,
subsequently reporting their perturbed results to
Blender. Blender then aggregates all the clients’
reports and, using a statistical denoising procedure,
estimates both the probability for each record in the
head list as well as the variance of each of the esti-
mated probabilities based on the clients’ data.

For each record, Blender combines the record’s
probability estimates obtained from the two groups.
It does so by taking a convex combination of the
groups’ probability estimates for each record, care-
fully weighted based on the record’s variance esti-
mate in each group. The combined result under
this weighting scheme yields a better probability es-
timate than either group is able to achieve individu-
ally. Finally, Blender outputs the obtained records
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and their combined probability estimates, which can
be used to drive local search, determine trends, etc.

A Formal Overview of Blender: Figure 2
presents the precise algorithmic overview of each
step, including key parameters. Lines 1-3 of
Blender describe the treatment of data from opt-in
users, line 4 – the treatment of clients, and line 5 –
the process for combining the probability estimates
obtained from the two groups. The only distinction
between opt-in users and clients in terms of privacy
guarantees provided is the curator model – trusted
curator and local model, respectively. Other than
that, both types of users are assumed to desire the
same level of (ε, δ)-differential privacy.

We will detail our choices for the privatization
sub-algorithms and discuss their privacy proper-
ties next. A key feature of Blender, however,
is that its privacy properties do not depend on
the specific choices of the sub-algorithms. That
is, as long as CreateHeadList, EstimateOptin-
Probabilities, and EstimateClientProbabili-
ties each satisfy (ε, δ)-differential privacy in its re-
spective curator model, then so does Blender. This
allows changing the sub-algorithms if better versions
(utility-wise or implementation-wise) are discovered
in the future. Among the parameters of Blender,
the first four (the privacy parameters and the sets
of opt-in and client users) can be viewed as given
externally, whereas the following five (the number of
records collected from each user and the distribution
of the privacy budget among the sub-algorithms’
sub-components) can be viewed as knobs the de-
signer of Blender is at liberty to tweak in order
to improve the overall utility of Blender’s results.

2.2 Overview of Blender Sub-Algorithms

We now present the specific choices we made for the
sub-algorithms in Blender. Detailed technical dis-
cussions of their properties follow in Section 3.

Algorithms for Head List Creation and Prob-
ability Estimation Based on Opt-in User Data
(Figures 3, 4): The opt-in users are partitioned
into two sets – S, whose data will be used for initial
head list creation, and T , whose data will be used to
estimate the probabilities and variances of records
from the formed initial head list.

The initial head list creation algorithm, described
in Figure 3, constructs the list in a differentially pri-
vate manner using search record data from group S.
The goal of the algorithm is to approximate the true
set of most frequently searched and clicked search
records as closely as possible, while ensuring differ-
ential privacy. The algorithm follows the strategy
introduced in [26] by aggregating the records of the

Blender (ε, δ, O,C,mO,mC , fO, fC ,M)

Parameters:

• ε, δ: the differential privacy parameters.

• O,C: the set of opt-in users and clients, re-
spectively.

• mO,mC : the max number of records to collect
from each opt-in / client user, respectively.

• fO: the fraction of the opt-in users to use in
head list creation (the remainder are used to
estimate the record probabilities).

• fC : the fraction of the clients’ privacy budget
to allocate to queries (as opposed to URLs).

• M : the maximum size of the finalized head list.

Variables:

• HLS , HL: a map from each query to its corre-
sponding set of URLs.

• p̂O, σ̂2
O, p̂C , σ̂

2
C : vectors indexed by records in

HL (and, overloaded to be indexed by queries
in HL as well) containing the probability es-
timates and variance estimates for each record
(and query).

Body
1: Arbitrarily partition O into S and T = O \ S, such

that |S| = fO|O| and |T | = (1− fO)|O|.
2: let HLS = CreateHeadList(ε, δ, S,mO) be the

initial head list of records computed based on opt-in
users’ data.

3: let 〈HL, p̂O, σ̂2
O〉 = EstimateOptinProbabili-

ties(ε, δ, T,mO, HLS ,M) be the refined head list
of records, their estimated probabilities, and esti-
mated variances based on opt-in users’ data.

4: let 〈p̂C , σ̂2
C〉 = EstimateClientProbabili-

ties(ε, δ, C,mC , fC , HL) be the estimated record
probabilities and estimated variances based on
client reports.

5: let p̂ = BlendProbabilities(p̂O, σ̂
2
O, p̂C , σ̂

2
C , HL)

be the combined estimate of record probabilities.
6: return HL, p̂.

Figure 2: Blender, the server algorithm that coordinates the
privatization, collection, and aggregation of data from all users.

opt-in users from S, and including in the head list
those records whose noisy count exceeds a thresh-
old. The noise to add to the true counts and the
threshold to use are calibrated to ensure differential
privacy, using [24].

Our algorithm differs from previous work in two
ways: 1) it replaces the collection and threshold-
ing of queries with the collection and thresholding
of records (i.e., query - URL pairs) and 2) its defi-
nition of neighboring databases is that of databases
differing in values of one user’s records, rather than
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CreateHeadList(ε, δ, S,mO)

Parameters:

• ε, δ: the differential privacy parameters.

• S: a set of opt-in users.

• mO: the maximum number of records to collect
from each opt-in user.

Body
1: let N(r,D) = number of times an arbitrary record

r appears in the given dataset D.
2: for each user i ∈ S do
3: let DS,i be the database aggregating at most

mO arbitrary records from i.

4: let DS be the concatenation of all DS,i databases.
5: let HLS be an empty map.
6: bS = 2mO

ε
.

7: τ = bs ·
(
ln(exp( ε

2
) +mO − 1)− ln(δ)

)
.

8: Assert τ ≥ 1.
9: for each distinct 〈q, u〉 ∈ DS do

10: let Y be an independent draw from Lap(bS), i.e.,
Laplace distribution with scale bS centered at 0.

11: if N(〈q, u〉, DS) + Y > τ then
12: Add q to HLS if q 6∈ HLS .
13: Append u to HLS [q].

14: Add 〈?, ?〉 to HLS .
15: return HLS .

Figure 3: Algorithm for creating the head list from a portion
opt-in users in a privacy-preserving way.

in the addition or removal of records of one user.
These necessitate the choice of mO = 1, as well as
higher values for noise and threshold than in [24].

We introduce a wildcard record 〈?, ?〉 to represent
records not included in the head list, for the subse-
quent task of estimating their aggregate probability.

For each record included in the initial head list,
the algorithm described in Figure 4 uses the remain-
ing opt-in users’ data (from set T ) to differentially
privately estimate their probabilities, denoted by p̂O.
This algorithm is the standard Laplace mechanism
from the differential privacy literature [10], with
scale of noise calibrated to output sensitivity due to
our definition of neighboring datasets. Our imple-
mentation ensures (ε, 0)-differential privacy, which
is a more stringent privacy guarantee than for any
non-zero δ. We need to set mO = 1 for the pri-
vacy guarantees to hold, because we treat data at
the search record rather than query level.

We form the final head list from the M most
frequent records in p̂O. Finally, the head list is
passed to the client group, and the head list and
its probability and variance estimates are passed to
the BlendProbabilities step of Blender.

The choice of how to split opt-in users into the
sub-groups of S and T and the choice of M are un-

EstimateOptinProbabilities(ε, δ, T,mO, HLS ,M)

Parameters:

• ε, δ: the differential privacy parameters. In
fact, this algorithm achieves (ε, 0)-differential
privacy, which is a stricter privacy guarantee
than (ε, δ)-differential privacy, for all δ > 0.

• T : a set of opt-in users.

• mO: the maximum number of records to collect
from each opt-in user.

• HLS : the initial head list of records whose
probabilities are to be estimated.

• M : the maximum size of the finalized head list.

Body
1: let N(r,D) = number of times an arbitrary record

r appears in the given dataset D.
2: for each user i ∈ T do
3: let DT,i be the database aggregating at most

mO arbitrary records from i.

4: let DT be the concatenation of all DT,i databases.
5: Transform any record 〈q, u〉 ∈ DT that doesn’t ap-

pear in HLS into 〈?, ?〉.
6: let p̂O be a vector indexed by records in HLS con-

taining the respective probability estimates.
7: let σ̂2

O be a vector indexed by records in HLS con-
taining variance estimates of the respective proba-
bility estimate.

8: Denote |DT | as the total number of records in DT .

9: let bT = 2mO
ε

.
10: for each 〈q, u〉 ∈ HLS do
11: let Y be an independent draw from Lap(bT ).
12: p̂O,〈q,u〉 = 1

|DT |
(N(〈q, u〉, DT ) + Y ).

13: σ̂2
O,〈q,u〉 =

p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |−1
+

2b2T
|DT |·(|DT |−1)

.

14: let HL map the M queries with the highest esti-
mated marginal probabilities (according to p̂O) to
their respective sets of URLs.

15: For the records not retained in HL, accumulate
their estimated probabilities into p̂O,〈?,?〉 and up-

date σ̂2
O,〈?,?〉 as in line 13.

16: return HL, p̂O, σ̂
2
O.

Figure 4: Algorithm for privacy-preserving estimation of prob-
abilities of records in the head list from a portion of opt-in users.

related to privacy constraints, and can be made by
Blender’s developer to optimize utility goals, as
will be discussed in Section 4.2.1.

The technical discussions of the algorithms’ pri-
vacy properties and variance estimate computations
follow in Section 3.1 and Section 3.3.

Algorithms for client data collection (Fig-
ures 5, 6): For privatization of client data, the
records are no longer treated as a single entity, but
rather in a two-stage process: first privatizing the
query, then privatizing the URL. This choice is in-
tended to benefit utility as the number of queries is
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EstimateClientProbabilities(ε, δ, C,mC , fC , HL)

Parameters:

• ε, δ: the differential privacy parameters.

• C: the set of clients.

• mC : the number of records to collect from the
client.

• fC : the fraction of the privacy budget to allo-
cate to reporting queries.

• HL: a map from each query to its correspond-
ing set of URLs.

Body
1: Append query q = ? to HL.
2: for each query q ∈ HL do
3: Append URL u = ? to HL[q].

4: for each client i ∈ C do
5: let DC,i = LocalAlg(ε, δ,mC , fC , HL) be the

reports from i’s local execution of LocalAlg.

6: let DC be the concatenation of all reported client
datasets, DC,i.

7: Denote |DC | as the total number of records in DC .
8: let variables ε′Q, ε

′
U , δ
′
Q, δ
′
U , k, t, kq , tq(∀q ∈ HL) be

defined as in lines 2–4 of LocalAlg.
9: let r̂C , p̂C , σ̂

2
C be vectors indexed by records in HL

(and overloading its use, also indexed by queries).
10: for q ∈ HL do
11: let r̂C,q be the fraction of queries q in DC .

12: p̂C,q =
r̂C,q−

1−t
k−1

t− 1−t
k−1

13: σ̂2
C,q = 1(

t− 1−t
k−1

)2 r̂C,q(1−r̂C,q)

|DC |−1

14: for u ∈ HL[q] do
15: let r̂C,〈q,u〉 be the fraction of records which

are 〈q, u〉 in DC .

16: p̂C,〈q,u〉 =
r̂C,〈q,u〉−

(1−tq)tp̂C,q
kq−1

−
(1−t)(1−p̂C,q)

(k−1)kq

t(tq−
1−tq
kq−1

)

17: σ̂2
C,〈q,u〉 =

(
r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉+(

1−t
(k−1)kq

− t−ttq
kq−1

)2
σ̂2
C,q

)
· 1

t2
(
tq−

1−tq
kq−1

)2
18: return p̂C , σ̂

2
C .

Figure 5: Algorithm for estimating probabilities of records in the
head list from the locally privatized reports of the client users.

significantly larger than the number of URLs asso-
ciated with any query, and hence allocating a larger
portion of the privacy budget to the query-reporting
stage is a prudent choice.

The process of local privatization of each client’s
value (Figure 6) follows the strategy of the Exponen-
tial mechanism introduced by [30]. The privatiza-
tion algorithm reports the true value with a certain
bounded probability, and otherwise, randomizes the
answer uniformly among all the other feasible values.

The fact that the head list (approximating the set

LocalAlg(ε, δ,mC , fC , HL)

Parameters:

• ε, δ: the differential privacy parameters.

• mC : the number of records to collect from the
client.

• fC : the fraction of the privacy budget to allo-
cate to reporting queries.

• HL: the head list, represented as a map keyed
by queries {q1, . . . , qk, ?}. The value for each
q ∈ HL is defined as HL[q] = {u1, . . . , ul, ?},
representing all URLs in the head list associ-
ated with q.

Body
1: let DC,i be the database aggregating at most mC

records from current client i.
2: ε′ = ε/mC , and δ′ = δ/mC .
3: ε′Q = fCε

′, ε′U = ε′ − ε′Q and δ′Q = fCδ
′, δ′U =

δ′ − δ′Q.

4: k = |HL|, and t =
exp(ε′Q)+(δ′Q/2)(k−1)

exp(ε′
Q
)+k−1

.

5: for each q ∈ HL do:

6: kq = |HL[q]|, and tq =
exp(ε′U )+(δ′U/2)(kq−1)

exp(ε′
U
)+kq−1

.

7: for each 〈q, u〉 ∈ DC,i do
8: if q 6∈ HL then
9: Set q = ?.

10: if u 6∈ HL[q] then
11: Set u = ?.
12: With probability (1− t),
13: let q′ be a unif. random query from HL \ q.
14: let u′ be a unif. random URL from HL[q′].
15: report 〈q′, u′〉.
16: continue
17: With probability (1− tq),
18: let u′ be a unif. random URL from HL[q]\u.
19: report 〈q, u′〉.
20: continue
21: report 〈q, u〉.

Figure 6: Algorithm executed by each client for privately re-
porting their records.

of the most frequent records) is available to each
client plays a crucial role in improving the utility
of the data produced by this privatization algorithm
compared to the previously known algorithms oper-
ating in the local privacy model. Knowledge of the
head list allows dedicating the entire privacy budget
to report the true value, rather than having to allo-
cate some of it for estimating an analogue of the head
list, as done in [15, 34]. Another distinction from the
Exponential mechanism designed to improve utility
is utilization of δ.

The choices of mC and fC are not related to pri-
vacy constraints, and can be made by Blender’s
developer to optimize utility goals, as will be dis-
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cussed in Section 4.2.1.

The local nature of the privatization algorith, i.e.,
the use of a randomization procedure that can re-
port any record with some probability, induces a pre-
dictable bias to the distribution of reported records.
The removal of this bias, which we refer to as denois-
ing (discussed further in Section 3.2), results in the
proper probability estimates p̂C (Figure 5). These
probability estimates along with the variance esti-
mates are then passed to the BlendProbabilities
part of Blender.

The technical discussion of the algorithm’s privacy
properties, the denoising procedure and variance es-
timate computations follow in Sections 3.2 and 3.3.

Algorithm for Blending (Figure 7): The blend-
ing portion of Blender combines the estimates pro-
duced by the opt-in and client probability-estimation
algorithms by taking into account the sizes of the
groups and the amount of noise each sub-algorithm
added. This produces a blended probability esti-
mate p̂ which, in expectation, is more accurate than
either group produced individually. The procedure
for blending is not subject to privacy constraints, as
it operates on the data whose privacy has already
been ensured by previous steps of Blender. The
motivation and technical discussion of blending fol-
lows in Section 3.3.

BlendProbabilities(p̂O, σ̂
2
O, p̂C , σ̂

2
C , HL)

Parameters:

• p̂O, p̂C : the probability estimates from the opt-in
and client algorithms.

• σ̂O, σ̂C : the variance estimates from the opt-in and
client algorithms.

• HL: the head list of records.

Body
1: let p̂ be a vector indexed by records in HL.
2: for 〈q, u〉 ∈ HL do

3: w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

.

4: p̂〈q,u〉 = w〈q,u〉 · p̂O,〈q,u〉+(1−w〈q,u〉) · p̂C,〈q,u〉.
5: Optional: Project p̂ onto probability simplex (e.g.,

see [39]).
6: return p̂.

Figure 7: Algorithm for combining record probability estimates
from opt-in and client estimates.

3 Technical Detail Summary

We now present further technical details related
to the instantiations of the sub-algorithms for

Blender, such as statements of privacy properties
and the motivation for BlendProbabilities.

3.1 Opt-in Data Algorithms

Differential privacy of the algorithms handling opt-
in client data follows directly from previous work.

Theorem 1. ([24]) CreateHeadList guarantees
(ε, δ)-differential privacy if mO = 1, ε > ln(2), and
τ ≥ 1.

Theorem 2. ([10]) EstimateOptinProbabili-
ties guarantees (ε, 0)-differential privacy if mO = 1.

3.2 Client Data Algorithms

LocalAlg is responsible for the privacy-preserving
perturbation of each client’s data before it gets sent
to the server, and EstimateClientProbabilities
is responsible for aggregating the received privatized
data into a meaningful statistic. We present the
privacy statement and explain the logic behind the
aggregation procedure next and prove them in Ap-
pendix A.

Theorem 3. LocalAlg is (ε, δ)-differentially pri-
vate.

Denoising: The reports aggregated by the client
mechanism form an empirical distribution over the
records (and queries). Relative to the true under-
lying record distribution, this distribution is biased
in an explicit and publicly-known way, as described
by the reporting process. Thus, we seek to obtain
an unbiased estimate of the true record distribution
from this reported distribution. Concretely, we re-
fer to this as denoising the reported empirical dis-
tribution r̂C to obtain the final estimate from the
client algorithm, p̂C . The denoising procedure relies
only on the publicly-known reporting process as well
as the already-privatized reports. Thus, this can be
considered a post-processing step, which has no nega-
tive impact on the differential privacy guarantee [11]
yet significantly improves utility.

Observation 1. p̂C gives the unbiased estimate
of record and query probabilities under Estimate-
ClientProbabilities.

3.3 Blending

The opt-in algorithm and the client algorithm both
output independent estimates p̂O and p̂C of the
record distribution p. The question we address now
is how to best combine these estimates using the in-
formation available.

A standard way to measure the quality of an esti-
mate is by its variance. Although it may seem natu-
ral to choose the estimate with lower variance as the
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final estimate p̂, it is possible to achieve a better esti-
mate by jointly utilizing the information provided by
both algorithms. This is because the errors in these
algorithms’ estimates come from different, indepen-
dent sources. The error in the estimates obtained
from the opt-in algorithm is due to the addition of
noise, whereas the error in the estimates obtained
from the client algorithm is due to randomization of
the reports over the set of records in the head list.
Thus, if we determine the variances of the estimates
obtained from the two algorithms, we can use these
variances to blend the estimates in the best way.

More formally, for each record 〈q, u〉 let σ2
O,〈q,u〉

and σ2
C,〈q,u〉 be the variances of the opt-in and client

algorithm’s estimates of p̂O,〈q,u〉 and p̂C,〈q,u〉 respec-
tively. Since these variances depend on the underly-
ing distribution, which is unknown a priori, we will
compute sample variances σ̂2

O,〈q,u〉 and σ̂2
O,〈q,u〉 in-

stead. For each record 〈q, u〉, we will weigh the esti-
mate from the opt-algorithm by w〈q,u〉 and the esti-
mate from the client algorithm by (1−w〈q,u〉), where
w〈q,u〉 is defined as in line 3 of BlendProbabili-
ties. The optional step of projecting the blended
estimates (e.g., as in [39]) ensures that the estimates
sum to 1 and are non-negative.

Theorem 4 presents our computation of the sam-
ple variance of EstimateOptinProbabilities,
Theorem 5 presents our computation of the sample
variance of EstimateClientProbabilities, and
Theorem 6 motivates the weighting scheme used in
BlendProbabilities. Their proofs are presented
in Appendix B.

For the variance derivations, we make an explicit
assumption that each piece of reported data is drawn
independently and identically from the same under-
lying distribution. This is reasonable when compar-
ing data across users. By setting mO = mC = 1,
we remove the need to assume iid data within each
user’s own data, while simplifying our variance com-
putations. We show in Section 4 that Blender
achieves high utility even when mO = mC = 1.

Theorem 4. When mO = 1 the unbi-
ased variance estimate for EstimateOpt-
inProbabilities can be computed as:

σ̂2
O,〈q,u〉 =

|DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |
+ 2

(
bT
|DT |

)2)
.

Theorem 5. When mC = 1 the un-
biased variance estimate for Estimate-
ClientProbabilities can be computed as:
σ̂2
C,〈q,u〉 = 1

t2
(
tq−

1−tq
kq−1

)2 ·( r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+
(

1−t
(k−1)kq

−

t−ttq
kq−1

)2
σ̂2
C,q +

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉

)
.

Theorem 6 (Sample Variance Optimal Weight-
ing). If σ̂2

O,〈q,u〉 and σ̂2
C,〈q,u〉 are sample vari-

ances of p̂O,〈q,u〉 and p̂C,〈q,u〉 respectively, then

w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

is the sample variance op-

timal weighting.

4 Experimental Evaluation

We designed Blender with an eye toward preserv-
ing the utility of the eventual results in the two appli-
cations we explore in this paper: trend computation
and local search, as described in Section 1.2. We
use two established domain-specific utility metrics
to assess the utility, the L1 metric and NDCG.

L1: L1 is the Manhattan distance between the esti-
mate and actual probability vectors, in other words,
L1 =

∑
i |p̂i − pi|. The smaller the L1, the better.

NDCG: NDCG is a standard measure of search
quality [20, 38] that explicitly takes the ordering of
the items in a results list into account. This mea-
sure uses a relevance score for each item: given a
list of items and their true frequencies, we define
the relevance or gain of the ith most frequent item
as rel i = ni∑

j nj
, where nj is the number of oc-

currences of the jth most frequent item. The dis-
counted cumulative gain for the top k items in an
estimated list (that is, a list that estimates the top
k items and their frequencies) is typically computed

as DCGk =
∑k
i=1

2reli−1
log2(i+1) . Here, the log2(i + 1)

factor diminishes the contribution of items later in
the list, hence the notion of discounting. In particu-
lar, getting the ordering correct for higher-relevance
items early in the list yields a higher DCGk value.

The magnitude of the DCGk value doesn’t mean
much on its own. For better interpretability, it is
usually normalized by the Ideal DCG (IDCGk),
which is the DCGk value if the estimated list
had the exact same ordering as the actual list.
Thus, the normalized discounted cumulative gain
(NDCGk), which ranges between 0 and 1, is defined
as NDCGk = DCGk/IDCGk.

While NDCG is traditionally defined for lists,
Blender outputs a list-of-lists: there is a URL list
corresponding to each query, and the queries them-
selves form a list. Thus, we introduce a general-
ization of the traditional NDCG measure. Specifi-
cally, for each query q, we first compute the NDCG
as described above of q’s URL list, NDCGqk. We

then define the DCG of the query list as DCGQk =∑k
i=1

2reli−1
log2(i+1) ·NDCG

i
k. This is analogous to the

typical DCG computation, except that each query’s
contribution is being further discounted by how well
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AOL Yandex

Data set on disk 1.75 GB 16 GB
Unique queries 4,811,646 13,171,961
Unique clients 519,371 4,970,073
Unique URLs 1,620,064 12,702,350

Figure 8: Data set statistics.

its URL list was estimated. The DCG value for the
query list as a whole is then normalized by the anal-
ogous Ideal DCG (IDCGQk ) – the DCGQk if the esti-
mated query list had the exact same ordering as the
actual query list.

Compared to the traditional NDCG definition,
the additional discounting within DCGQk makes it
even harder to attain high NDCG values than in
the query-only case. Contrasted with the L1 mea-
sure, this formulation takes both the ranking and
probabilities from the data set into account. Since
changes to the probabilities may not result in rank-
ing changes, L1 is an even less forgiving measure
than NDCG.

Since the purpose of Blender is to estimate prob-
abilities of the top records, we discard the artificially
added ? queries and URLs and rescale reli prior to
L1 and NDCG computations. However, since we
use the method of [39] in BlendProbabilities, the
probability estimates involving ? have a minor im-
plicit effect on the L1 and NDCG scores.

4.1 Experimental Setup

Data sets: For our experiments, we use the
AOL search logs, first released in 2006 and an or-
der of magnitude bigger Yandex search data set4,
from 2013. Figure 8 compares their characteristics.

Data analysis: To familiarize the reader with the
approach we used for assessing result quality, Fig-
ure 9 shows the top-10 most frequent queries in the
AOL data set, with the estimates given by the dif-
ferent “ingredients” of Blender.

The table is sorted by column 2, which contains
the non-private, empirical probabilities pq for each
query q from the AOL data set with 1 random record
sampled from each user. We consider this as the
baseline for the true, underlying probability of that
query. Column 3 contains the final query probability
estimates outputted by Blender, p̂q, after combin-
ing the estimates from the opt-in group and clients.
The remaining columns show the estimates that are
produced by the sub-components of Blender that
are eventually combined to form the estimates in
column 3. As the opt-in and client sub-components
compute probability estimates over the records in
the head list, we obtain query probability estimates
by aggregating the probabilities associated with each

AOL data Blender Opt-in Client Client

Query prob. estimate estimate estimate estimate

pq p̂q
∑

u p̂O,〈q,u〉 p̂C,q
∑

u p̂C,〈q,u〉

? 0.9108 0.9103 0.9199 0.9100 0.1468

google 0.0213 0.0216 0.0213 0.0217 0.0216

yahoo 0.0067 0.0070 0.0046 0.0073 0.0325

google.com 0.0067 0.0056 0.0023 0.0061 0.0194

myspace.com 0.0057 0.0052 0.0022 0.0057 0.0258

mapquest 0.0054 0.0051 0.0062 0.0053 0.0192

yahoo.com 0.0043 0.0043 0.0021 0.0048 0.0192

www.google.com 0.0034 0.0004 0.0004 0.0032 0.0098

myspace 0.0033 0.0034 0.0042 0.0035 0.0255

ebay 0.0028 0.0026 0.0028 0.0028 0.0254

Figure 9: Top-10 most popular queries in the AOL dataset, their
empirical probabilities pq in the first numeric column, Blender’s
probability estimates p̂q in the next column, and the various
sub-components’ estimates in the remaining columns. Parame-
ter choices are shown in Figure 10.

URL for a given query (columns 4 and 6). The sam-
ple variance of these aggregated probabilities, used
for blending, is naively computed as in Theorem 4.
In addition to estimating the record probabilities,
the client algorithm estimates query probabilities di-
rectly, which are shown in column 5. Regressions,
i.e., estimates that appear out of order relative to
column 2, are shown in red.

Takeaways: The biggest takeaway is that the num-
bers in columns 2 and 3 are similar to each other,
with only one regression after Blender’s usage.
Blender compensates for the weaknesses of both
the opt-in and the client estimates. Despite the sub-
components having several regressions, their combi-
nation has only one.

The table also provides intuition for the usefulness
of a two-stage reporting process in the client algo-
rithm (first report a query and then the URL), thus
allowing for separate estimates of query and record
probabilities. Specifically, despite the high number
of regressions for the client algorithm’s aggregated
record probability estimates (column 6), its query
probability estimates (column 5) have only one.

4.2 Experimental Results

We formulate questions for our evaluation as fol-
lows: how to choose Blender’s parameters (Sec-
tion 4.2.1), how does Blender perform compared
to alternatives (Section 4.2.2), and how robust are
our findings (Section 4.2.3)?

4.2.1 Algorithmic and Parameter Choices

Blender has a handful of parameters, some of
which can be viewed as given externally (by the laws
of nature, so to speak), and others whose choice is
purely up to the entity that’s utilizing Blender.
We now describe and, whenever possible, motivate,
our choices for these.

Privacy parameters, ε and δ: Academic liter-
ature on differential privacy views the selection of
the ε parameter as a “social question” [9] and thus
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uses ε in the range of 0.01 to 10 for evaluating al-
gorithm performance (see Table 1 in [18]). The two
known industry deployments of differential privacy
(by Google [13] and Apple [17]) do not explicitly re-
veal the parameters used. [25, 37] found via reverse-
engineering of Apple’s differential privacy implemen-
tation that Apple uses ε = 1 or ε = 2 per item sub-
mitted, but allows submission of several dozen items
per day from one device. A typical user might ex-
perience an ε of 4 – 6 per day, but ε = 20 per day
has also been observed [37]. The work most simi-
lar to ours, [34], performs evaluations using ε in the
range [1, 10]. We use ε = 4, unless otherwise stated.
Similarly, a range of δs has been used for evaluations
(e.g., 10−6, 10−5, 10−4 in [26] and 0.05 in [6]). We
use δ = 10−5 for AOL and δ = 10−7 for Yandex
data sets, with the smaller δ choice for the latter
reflecting the larger number of users in the data set.

We use the same ε and δ values for the opt-in
and client users. From a behavioral perspective, this
reduces a user’s opt-in decision down to one purely
of trust towards the curator.

Opt-in and client group sizes, |O| and |C|: The
relative sizes of opt-in group and client group, |O|
and |C|, respectively, can be viewed as exogenous
variables which are dictated by the trust that users
place in the search engine. We choose 5% and 2.5%
for the fraction of opt-in users as compared to total
users as these seem reasonable for representing the
fraction of“early adopters”who are willing to supply
their data for the improvement of products and allow
us to demonstrate the utility benefits of algorithms
designed to operate in the hybrid privacy model.

The number of records to collect from each
opt-in user, mO = 1: This is mandated by the pri-
vacy constraints of CreateHeadList algorithm. If
mO > 1 is desired, one should modify the algorithm.

Remaining parameter choices (mC , fC , fO,M) are
driven purely by utility considerations.

The number of records to collect from each
client, mC = 1: Across a range of experimental val-
ues, collecting 1 record per user always yielded great-
est utility, motivating this parameter choice. Apple
makes an analogous choice in their implementation
– they (temporarily) store all relevant items on a
client’s device, and then choose 1 item of each type
to transmit at random each day [37].

How to split the privacy budget between
query and url reporting for clients, fC = 0.85:
Figure 11 shows the effects of the budget split on
both the L1 and NDCG metrics. Unsurprisingly,
Figure 11a shows that the larger the fraction of
client algorithm’s budget dedicated to query estima-

tion as opposed to URL estimation, the better the
L1 score for the client and Blender results. The
NDCG metric in Figure 11b shows a trade-off that
emerges as we assign more budget to the queries,
de-emphasizing the URLs; before and after 0.85, we
start seeing a drop in NDCG values for the client
algorithm. The orange opt-in line in Figure 11b is
constant, as the opt-in group is not affected by the
budget split. Somewhat surprisingly with this pa-
rameter setting, the NDCG for Blender result is
also consistently high (nearly equal to and hidden
by the opt-in line) and is unaffected by the budget
split, unlike the L1 metric.

What fraction of opt-in data to use for cre-
ating the headlist, fO = 0.95: Our goal is to
build a large candidate head list, and unless we al-
locate most of the opt-in user data to building such
a head list (algorithm CreateHeadList), our sub-
sequent results may be accurate but apply only to
a small number of records. Since our opt-in group’s
size is small relative to our client group size, and it
is difficult to generate a head list in the local pri-
vacy model – it makes sense to utilize most of the
opt-in group’s data for the task that is most difficult
in the local model. Through experiment we observe
that increasing fO past 95% gives diminishing re-
turns for increasing the head list size; on the other
hand, there is a significant utility gain (NDCG and
L1) from the use of a small fraction of opt-in users
for estimating probabilities of the head list. Thus,
rather than using the entire opt-in group for head
list generation (i.e., fO = 1), we reserve 5% of the
opt-in data for probability estimation.

What should be the final size of the set for
which we provide probability estimates, M :
The choice of M is influenced by competing con-
siderations. The larger the head list for which we
provide the probability estimates, the more effective
the local search application (subject to those proba-
bility estimates being accurate). However, as desired
head list size increases, the accuracy of our estimates
drops (most notably due to client data privatiza-
tion). We want to strike a balance that allows us
to get a sensibly large record set with reasonably ac-
curate probability estimates it. We choose M = 50
and M = 500 for the AOL and Yandex datasets, to
reflect their differing sizes.

Subsequently, we use the parameters shown in Fig-
ure 10 unless explicitly stated.

4.2.2 Utility Comparison to Alternatives

The closest related work is a recent paper by
Qin et al. [34] for heavy hitter estimation with local
differential privacy, in which they provide a utility
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Parameter AOL Yandex
ε 4 4

δ 10−5 10−7

|O|
|O|+|C| 5% 2.5%

mO 1 1
mC 1 1
fO 0.95 0.95
fC 0.85 0.85
M 50 500

Figure 10: Experimental parameters.

evaluation of their algorithm on the AOL data set
for the head list size of 10. We perform a direct
comparison of their NDCG results with Blender’s
across ε values in the range of 1–5, which we plot
in Figure 12. Across the entire range of the pri-
vacy parameter, our NDCG values are above 95%,
whereas the reported NDCG values for Qin et al. are
in the 30% range, at best. We believe that given the
intense focus on search optimization in the field of
information retrieval, NDCG values as low as those
of Qin et al. are generally unusable, especially for
such a small head list size. Overall, Blender signif-
icantly outperforms what we believe to be the closest
related research project.

A caveat to these findings is that Qin et al. [34]
and this work use slightly different scoring func-
tions. The former’s relevance score is based on the
rank of queries in the original AOL data set, which
results in penalizing mis-ranked queries regardless
of how similar their underlying probabilities may
be. Blender’s relevance score relies on the under-
lying probabilities, so mis-ranked items with simi-
lar underlying probabilities have only a small nega-
tive impact on the overall NDCG score; we believe
this choice is justified. Although it yields increased
NDCG scores, Blender operates on records (rather
than queries, as Qin et al. does). Because of this, the
generalized NDCG score used to evaluate Blender
(Section 4) is a strictly less forgiving metric than
the traditional NDCG score. Thus, although simul-
taneously compensating for both differences would
yield the ideal comparison, the one in Figure 12 is
reasonable.

4.2.3 Robustness

We now discuss how the size of the opt-in group and
the choice of ε affect Blender’s utility.

Evaluation of trend computation: Figure 13
shows the L1 values as a function of the opt-in per-
centage ranging between 1% and 10%. We see slight
differences in the two data sets and across the var-
ious head list sizes. Some of the differences might
be due to the fact that given the relatively small
size of the AOL data set, we need to consider higher
opt-in percentages to get reasonably sized head lists
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Figure 11: Comparing AOL data set results across a range of
budget splits for client, opt-in, and blended results.
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Figure 12: Comparing to the results in the CCS’16 paper by
Qin et al. across a range of ε values; head list size=10.

and L1 values. In fact, when we increase the opt-
in percentage to 10% for the AOL data set, we see
a decline in L1 values similar to what is observed
in Figure 13b for the Yandex data set. If our goal
is to have head lists of 500+, we see that with the
larger Yandex data set, an opt-in percentage as small
as 2.5% is sufficient to achieve high utility. On the
other hand, portions of lines do not appear on figures
if the desired head list size was not reached; e.g., in
Figure 13a, the line for a head list of size 50 does
not begin until 4.5% because that size head list was
not created with a smaller opt-in percentage.
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Figure 13: L1 statistics as a function of the opt-in percentage
for select head list sizes.

Figure 15 shows the L1 values as a function of ε,
ranging from 1 to 5. For both data sets, we see a
steady decline in the L1 metric, despite aggregating
L1 values over longer estimate vectors. With more
data in the Yandex data set, we are able to hit small
values of L1 (under 0.1) with ε ≥ 1. Similar to the
case with small opt-in percentages, having too small
an ε makes it difficult to achieve head lists of their
target size; e.g., in Figure 15a, the line for a head
list of size 50 does not begin until ε = 3 because that
size head list was not created with a smaller ε value.

Evaluation of local search computation: Fig-
ure 14 shows the NDCG measurements as a func-
tion of the opt-in percentage ranging between 1%
and 10%. The results are quite encouraging; for the
smaller AOL data set, for instance, we need to have
an opt-in level of ≈5% to achieve an NDCG level
of 95%, which we regard as acceptable. However, for
the larger Yandex data set, we hit that NDCG level
even sooner: the NDCG value for 1.5% is above 95%
for all but the largest head list size.

Figure 16 shows how the NDCG values vary across
the two data sets for a range of head list sizes and
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Figure 14: NDCG statistics as a function of the opt-in percent-
age for select head list sizes.

ε values. We see a clear trend toward higher NDCG
values for Yandex, which is not surprising given the
sheer volume of data. For the Yandex data set, we
can keep ε as low as 1 and still achieve NDCG values
of 95% and above for all but the two largest head
list sizes. For those, we must increase ε in order to
generate larger head lists from the opt-in users.

5 Related Work

Algorithms for the trusted curator model:
Researchers have developed numerous differentially
private algorithms operating in the trusted curator
model that result in useful data for a variety of ap-
plications. For example, [24, 26, 16, 31] address the
problem of publishing a subset of the data contained
in a search log with differential privacy guarantees;
[27] and [6] propose approaches for frequent item
identification; [14] propose an approach for monitor-
ing aggregated web browsing activities; and so on.

Algorithms for the local model: Although the
demand for privacy-preserving algorithms operating
in the local model has increased in recent years, par-
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Figure 15: L1 statistics for AOL and Yandex data sets as a
function of ε for select head list sizes.

ticularly among practitioners [17, 35], fewer such al-
gorithms are known [40, 19, 8, 13, 5]. Furthermore,
the utility of the resulting data obtained through
these algorithms is significantly limited compared to
what is possible in the trusted curator model, as
shown experimentally [15, 21] and theoretically [22].

The recent work of [34] also takes a two-stage ap-
proach: first, spend some part of the privacy budget
to learn a candidate head list and then use the re-
maining privacy budget to refine the probability esti-
mates of the candidates. However, that’s where the
similarities with Blender end, as [34] focuses en-
tirely on the local model (and thus has to use entirely
different algorithms from ours for each stage) and
addresses the problem of estimating probabilities of
queries, rather than the more challenging problem
of estimating probabilities of query-URL pairs.

Our contribution: Our work significantly im-
proves upon the known results by developing
application-specific local privatization algorithms
that work in combination with the trusted curator
model algorithms. Specifically, our insight of pro-
viding all users with differential privacy guarantees
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Figure 16: NDCG statistics for AOL and Yandex data sets as a
function of ε for select head list sizes.

but achieving it differently depending on whether
or not they trust the data curator, enables an effi-
cient privacy-preserving head list construction. The
subsequent usage of this head list in the algorithm
operating in the local model helps overcome one of
the main challenges to utility of privacy-preserving
algorithms in the local model [15]. Moreover, the
weighted aggregation of probability estimates ob-
tained from algorithms operating in the two models
(that explicitly factors in the amount of noise each
contributed), enabled remarkable utility gains com-
pared to usage of one algorithm’s estimates. As dis-
cussed in Section 4.2.2, we significantly outperform
the most recently introduced local algorithm of [34]
on metrics of utility in the search context.

6 Discussion

Operating in the hybrid model is most beneficial
utility-wise if the opt-in user records and client user
records come from the same distribution – i.e., the
two groups have fairly similar observed search be-
havior. If that is not the case, the differential privacy
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guarantees still hold, but the accuracy of Blender’s
estimates may decrease.

Improvement in utility over what can be achieved
in the local model comes from two sources: the hy-
brid privacy model lets us develop a better algorithm
for client data collection and the analysis of algo-
rithms’ variances lets us smartly combine the results.

In practice, a system for local search or trend com-
putation would be run at regular intervals in order
to refresh the data as well as accommodate for users
being added to, removed from, or moving between
the opt-in and the client groups. We have focused on
the problem of obtaining local search or trend com-
putation results for a single execution of the system.
While one could simply re-run Blender at regular
intervals to obtain new results (with potentially dif-
ferent opt-in and client groups), this comes at a cost
to privacy. We leave the task of improving the tem-
poral aspect of Blender beyond what is achievable
with standard composition techniques of differential
privacy [11] to future work.

7 Conclusions

We proposed a hybrid privacy model and a blended
approach that operates within it that combines the
upsides of two common models of differential pri-
vacy: the local model and the trusted curator model.
Using local search as a motivating application, we
demonstrated that our proposed approach leads to
a significant improvement in terms of utility, bridg-
ing the gap between theory and practicality.

Future work: We plan to continue this work in two
directions: first, to address any systems and engi-
neering challenges to Blender’s adoption in prac-
tice, including those that arise due to data chang-
ing over time; and second, to develop algorithms for
other settings where the hybrid privacy model is ap-
propriate, thus facilitating adoption of differential
privacy in practice by minimizing the utility impact
of privacy-preserving data collection.
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Appendices

A Client Data Algorithm

A.1 Privacy

Theorem 3. LocalAlg is (ε, δ)-differentially pri-
vate.

Proof. We show this by proving that each itera-
tion of the for loop in line 7 of LocalAlg is
(ε′, δ′)-differentially private, where ε′ = ε/mC and
δ′ = δ/mC . Since there are at most mC iterations of
this loop for each client, composition of differentially
private mechanisms [12] guarantees that LocalAlg
ensures (ε, δ)-differential privacy for each client.

Denote each iteration of the for loop in line 7
of LocalAlg by L; it takes as input a record
〈q, u〉 ∈ D, and returns a record, which we denote
L(〈q, u〉). If q is not in HL or u is not in HL[q],
then they immediately get transformed into a default
value (?) that is in the head list. Since L outputs
only values that exist in the head list, to confirm
differential privacy we need to prove that for any ar-
bitrary neighboring data sets 〈q, u〉 and 〈q′, u′〉,
Pr
[
L(〈q, u〉) ∈ Y

]
≤ eε′ Pr

[
L(〈q′, u′〉) ∈ Y

]
+δ′ holds

for all sets of head list records Y .
Whenever k = 1 or kq = 1, the only query (or

URL for a specific query) is ?, which will be out-
put with probability 1. Thus, differential privacy
trivially holds, since the reported values then do
not rely on the client’s data. Thus, we’ll assume
k ≥ 2 and kq ≥ 2. Note that there is a single de-
cision point where it is determined whether q will
be reported truthfully or not. Thus, we can split
the privacy analysis into two parts: 1) Usage of
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the fC fraction of the privacy budget to report a
query, and 2) Usage of the remainder of the pri-
vacy budget to report a URL (given the reported
query). This decomposes a simultaneous two-item
(ε′, δ′) reporting problem into two single-item re-
porting problems with (ε′Q, δ

′
Q) and (ε′U , δ

′
U ) respec-

tively, where ε′Q = fε′, δ′Q = fδ′, ε′U = (1 − fC)ε′,
and δ′U = (1− fC)δ′.

1. Privacy of Query Reporting:
Consider the query-reporting case first. Overload-

ing our use of L, let L(q) be the portion of L that
makes use of q. We first ensure that

Pr[L(q) = qHL] ≤ exp(ε′Q) Pr[L(q′) = qHL] +
δ′Q

2
(1)

holds for all q, q′, and qHL ∈ HL. This trivially
holds when qHL = q = q′ or qHL 6∈ {q, q′}. The
remaining scenarios to consider are: 1) q 6= qHL, q

′ =
qHL and 2) q = qHL, q

′ 6= qHL. By the design of the
algorithm, Pr[L(qHL) = qHL] = t and Pr[L(q̄HL) =
qHL] = (1−t)( 1

k−1 ), where q̄HL represents any query

not equal to qHL. With t =
exp(ε′Q)+(δ′Q/2)(k−1)

exp(ε′Q)+k−1 , it is

simple to verify that inequality (1) holds.
Consider an arbitrary set of head list queries Y .

Pr[L(q) ∈ Y ] =
∑

qHL∈Y
Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}
Pr[L(q) = qHL] +

∑
qHL∈Y ∩{q,q′}

Pr[L(q) = qHL]

=
∑

qHL∈Y \{q,q′}
Pr[L(q′) = qHL] +

∑
qHL∈Y ∩q,q′

Pr[L(q) = qHL] (2)

≤
∑

qHL∈Y \{q,q′}
Pr[L(q′) = qHL] +

∑
qHL∈Y ∩{q,q′}

(
eε
′
Q Pr[L(q′) = qHL] +

δ′Q

2

)
(3)

≤ eε
′
Q

∑
qHL∈Y

Pr[L(q′) = qHL] + 2 ·
δ′Q

2

= eε
′
Q Pr[L(q′) ∈ Y ] + δ′Q,

Equality (2) stems from the fact that the probability
of reporting a false query is independent of the user’s
true query. The inequality (3) is a direct application
of inequality (1). Thus, L is (ε′Q, δ

′
Q)-differentially

private for query-reporting.
2. Privacy of URL Reporting:

With tq defined as tq =
exp(ε′U )+0.5δ′U (kq−1)

exp(ε′U )+kq−1 ,

an analogous argument shows that the (ε′U , δ
′
U )-

differential privacy constraints hold if the original
q is kept. On the other hand, if it is replaced with
a random query, then they trivially hold as the al-
gorithm reports a random element in the URL list
of the reported query, without taking into consider-
ation the client’s true URL u.

By composition [12], each of the at most mC itera-
tions of L is (ε′Q+ε′U , δ

′
Q+δ′U ) = (ε′, δ′)-differentially

private.

A.2 Denoising

Observation 1. p̂C gives the unbiased estimate
of record and query probabilities under Estimate-
ClientProbabilities.

Proof. Reporting records is a two-stage process
(first, decide which query to report, then report
a record); similarly, denoising is also done in two
stages.

Denoising of query probability estimates: Let
rC,q denote the probability that the algorithm has
received query q as a report, and let pq be the true
probability of a user having query q. We want to
learn pq based on rC,q. By the design of our al-
gorithm, rC,q = t · pq +

∑
q′ 6=q pq′(1 − t) 1

k−1 =

t · pq + 1−t
k−1

∑
q′ 6=q pq′ = t · pq + 1−t

k−1 (1− pq).
Solving for pq in terms of rC,q yields pq =

rC,q− 1−t
k−1

t− 1−t
k−1

. Using the obtained data for the query r̂C,q,

we estimate pC,q as p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

.

Denoising of record probability estimates:
Analogously, denote by rC,〈q,u〉 the probability that
the algorithm has received a record 〈q, u〉 as a report,
and recall p〈q,u〉 is the record’s true probability in the

data set. Then rC,〈q,u〉 = t · tq · p〈q,u〉+
(
t

1−tq
kq−1

)
(pq −

p〈q,u〉) +
(

1−t
k−1

1
kq

)
(1 − pq), recalling from the algo-

rithm that kq is the number of URLs associated with
query q and tq is the probability of truthfully report-
ing u given that query q was reported. Solving for

p〈q,u〉 yields p〈q,u〉 =
rC,〈q,u〉−

(
t
1−tq
kq−1pq+

(1−t)(1−pq)

(k−1)kq

)
t(tq−

1−tq
kq−1 )

.

Using the obtained data for the empirical re-
port estimate r̂C,〈q,u〉 together with the query es-
timate p̂C,q, we estimate p〈q,u〉 as p̂C,〈q,u〉 =

r̂C,〈q,u〉−
(
t
1−tq
kq−1 p̂C,q+

(1−t)(1−p̂C,q)

(k−1)kq

)
t(tq−

1−tq
kq−1 )

.

B Blending

Theorem 4. When mO = 1 the unbi-
ased variance estimate for EstimateOpt-
inProbabilities can be computed as:

σ̂2
O,〈q,u〉 =

|DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |
+ 2

(
bT
|DT |

)2)
.

Proof. Given the head list, the distribution of Es-
timateOptinProbabilities’ estimate for a record
〈q, u〉 is given by rO,〈q,u〉 = p〈q,u〉+

Y
|DT | , where Y ∼

Laplace(bT ) where bT is the scale parameter and
|DT | is the total number of records from the opt-in
users used to estimate probabilities. The empirical

estimator for rO,〈q,u〉 is r̂O,〈q,u〉 = 1
|DT |

∑|DT |
j=1 Xj +

Y , where Xj ∼ Bernoulli(p〈q,u〉) is the random vari-
able indicating whether report j was record 〈q, u〉.
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The expectation of this estimator is given by
E[r̂O,〈q,u〉] = p〈q,u〉. Thus, r̂O,〈q,u〉 is an unbiased
estimator for p〈q,u〉. We denote p̂O,〈q,u〉 = r̂O,〈q,u〉 to
explicitly reference it as the estimator of p〈q,u〉. The
variance for this estimator is

σ2
O,〈q,u〉 = V [p̂O,〈q,u〉] = V

[ 1

|DT |
(|DT |∑
j=1

Xj + Y
)]

=
1

|DT |2
(
V
[|DT |∑
j=1

Xj
]

+ V [Y ]
)

(4)

=
1

|DT |2
(|DT |∑
j=1

V [Xj ] + V [Y ]
)

(5)

=
1

|DT |2
(
|DT | · p〈q,u〉(1− p〈q,u〉)

)
+ 2
( bT

|DT |

)2
=
p〈q,u〉(1− p〈q,u〉)

|DT |
+ 2
( bT

|DT |

)2
.

Equality 4 comes from the independence between
Y and all Xj . Equality 5 relies on an assumption
of independence between Xj , Xk for all j 6= k (i.e.,
the iid assumption discussed prior to the theorem
statements in Section 3.3).

To actually compute this variance, we need to
use the data in place of the unknown p〈q,u〉. Using

p̂O,〈q,u〉 directly in place of p〈q,u〉 requires a |DT |
|DT |−1

factor correction (known as“Bessel’s correction5”) to
generate an unbiased estimate. Thus, the variance of
each opt-in record probability estimate is: σ̂2

O,〈q,u〉 =

|DT |
|DT |−1

(
p̂O,〈q,u〉(1−p̂O,〈q,u〉)

|DT |
+ 2

(
bT
|DT |

)2)
.

Note that in line 15 of EstimateOptinProba-
bilities, the use of this sample variance expression
in re-computing σ̂2

O,〈?,?〉 is not statistically valid, so
our computation of p̂O,〈?,?〉 and p̂〈?,?〉 is sub-optimal.
Despite that, our overall utility, which does not in-
clude ?, is good (see Section 4).

Theorem 5. When mC = 1 the un-
biased variance estimate for Estimate-
ClientProbabilities can be computed as:
σ̂2
C,〈q,u〉 = 1

t2
(
tq−

1−tq
kq−1

)2 ·( r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+
(

1−t
(k−1)kq

−

t−ttq
kq−1

)2
σ̂2
C,q +

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉

)
.

Proof. From Section 3.2 on denoising, the distribu-
tion of the reported query q from the client mecha-
nism is given by rC,q = t · pq + 1−t

k−1 (1 − pq), and
so the true probability of query q is distributed

as pq =
rC,q− 1−t

k−1

t− 1−t
k−1

. The empirical estimator for

pq is p̂C,q =
r̂C,q− 1−t

k−1

t− 1−t
k−1

, where r̂C,q is the empiri-

cal estimator of rC,q defined explicitly as r̂C,q =
1
|DC |

∑|DC |
j=1 Xj , where Xj ∼ Bernoulli(rC,q) is the

random variable indicating whether report j was

query q and |DC | is the total number of records from
the client users.

The variance of r̂C,q is

V [r̂C,q ] = V
[ 1

|DC |

|DC |∑
j=1

Xj

]

=
( 1

|DC |

)2 |DC |∑
j=1

V [Xj ] (6)

=
( 1

|DC |
)2(|DC | · rC,q(1− rC,q)) =

rC,q(1− rC,q)
|DC |

,

where equality 6 relies on an assumption of indepen-
dence between Xj , Xk for all j 6= k (i.e., the iid as-
sumption discussed prior to the theorem statements
in Section 3.3).

Then, the variance of p̂C,q is

σ2
C,q = V [p̂C,q ] = V

[ r̂C,q − 1−t
k−1

t− 1−t
k−1

]
=

rC,q(1− rC,q)
|DC |

(
t− 1−t

k−1

)2 .
To actually compute this variance, we need to

use the data in place of the unknown rC,q. Us-
ing r̂C,q directly in place of rC,q requires including

Bessel’s |DC |
|DC |−1 factor correction to yield an unbi-

ased estimate. Thus, the variance of the query prob-
ability estimates by the client algorithm is: σ̂2

C,q =(
1

t− 1−t
k−1

)2
r̂C,q(1−r̂C,q)

|DC |−1
.

Using a similar procedure for records
we obtain the unbiased variance es-
timate as σ̂2

C,〈q,u〉 = 1

t2
(
tq−

1−tq
kq−1

)2 ·(
r̂C,〈q,u〉(1−r̂C,〈q,u〉)

|DC |−1
+

(
1−t

(k−1)kq
− t−ttq

kq−1

)2
σ̂2
C,q +

2|DC |
|DC |−1

(
1−t

(k−1)kq
− t−ttq

kq−1

)(
k−2+t
kt−1

)
r̂C,〈q,u〉

)
.

Theorem 6. If σ̂2
O,〈q,u〉 and σ̂2

C,〈q,u〉 are sample
variances of p̂O,〈q,u〉 and p̂C,〈q,u〉 respectively, then

w〈q,u〉 =
σ̂2
C,〈q,u〉

σ̂2
O,〈q,u〉+σ̂

2
C,〈q,u〉

is the sample variance op-

timal weighting.

Proof. With the variance estimates for each algo-
rithm fully computed, a blended estimate of p〈q,u〉 is
given by p̂〈q,u〉 = w〈q,u〉·p̂O,〈q,u〉+(1−w〈q,u〉)·p̂C,〈q,u〉,
which has sample variance σ̂2

〈q,u〉 = w2
〈q,u〉 · σ̂

2
O,〈q,u〉+

(1−w〈q,u〉)2 · σ̂2
C,〈q,u〉. Minimizing σ̂2

〈q,u〉 with respect
to w〈q,u〉 yields the desired.

Notes

1https://www.mozilla.org/en-US/privacy/firefox/
2https://www.chromium.org/getting-involved/

dev-channel
3https://www.google.com/trends/
4https://www.kaggle.com/c/

yandex-personalized-web-search-challenge/data
5https://en.wikipedia.org/wiki/Bessel’s_correction
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Abstract
The rapid improvement in DNA sequencing has

sparked a big data revolution in genomic sciences, which
has in turn led to a proliferation of bioinformatics tools.
To date, these tools have encountered little adversarial
pressure. This paper evaluates the robustness of such
tools if (or when) adversarial attacks manifest. We
demonstrate, for the first time, the synthesis of DNA
which — when sequenced and processed — gives an at-
tacker arbitrary remote code execution. To study the
feasibility of creating and synthesizing a DNA-based
exploit, we performed our attack on a modified down-
stream sequencing utility with a deliberately introduced
vulnerability. After sequencing, we observed informa-
tion leakage in our data due to sample bleeding. While
this phenomena is known to the sequencing community,
we provide the first discussion of how this leakage chan-
nel could be used adversarially to inject data or reveal
sensitive information. We then evaluate the general se-
curity hygiene of common DNA processing programs,
and unfortunately, find concrete evidence of poor secu-
rity practices used throughout the field. Informed by our
experiments and results, we develop a broad framework
and guidelines to safeguard security and privacy in DNA
synthesis, sequencing, and processing.

1 Introduction
DNA sequencing costs have dropped exponentially, out-
stripping Moore’s Law since 2008, primarily driven by
advances in next-generation sequencing (NGS) technolo-
gies. For example, Illumina’s cost to sequence the hu-
man genome dropped from around $100,000 in 2009 to
just $1,000 in 2014 [39]. These advances have revolu-
tionized genomic sciences, accelerating the pace of new
discoveries in areas such as cancer biology and epidemi-
ology.

Our research suggests that DNA sequencing and anal-
ysis have not to date received significant — if any — ad-
versarial pressure. The key question that motivates our

research then, is the following: How robust will the DNA
sequencing and processing pipeline be if or when adver-
sarial pressures manifest? This line of inquiry raises re-
lated questions, such as: Are DNA-based attacks pos-
sible? What potential consequences could occur if an
adversary compromises a component of the DNA pro-
cessing pipeline? How serious might those consequences
be? Since DNA sequencing is rapidly progressing into
new domains, such as forensics and DNA data stor-
age [2, 9, 10, 15, 17], we believe it is prudent to under-
stand current security challenges in the DNA sequencing
pipeline before mass adoption.

The modern DNA sequencing and analysis pipeline is
large, complicated, and computationally-intensive. DNA
is pre-processed in a wet lab and analyzed with a high-
throughput sequencer (itself a computer) that performs
image analysis. It is then common to conduct a wide
range of computational tasks with the raw output from
the sequencer using many software utilities. We seek to
assess the overall state of this pipeline in general, and
to experimentally explore key aspects that are not repre-
sented in traditional computing systems: DNA samples.

Exploiting Computer Programs with DNA. The
DNA processing pipeline begins with DNA strands in
a test tube. Hence, we start our security explorations
from this point. Namely, we first experimentally evaluate
whether it is possible to compromise a computer program
using physical DNA.

Our exploration of this question lead us to synthesize
DNA strands that, after sequencing and post-processing,
generated a file; when used as input into a vulnerable pro-
gram, this file yielded an open socket for remote control.
We elaborate on specifics in Section 3.

To the best of our knowledge, ours is the first exam-
ple of compromising a computer system using biological
or synthetic DNA samples. Our exploit did not target a
program used by biologists in the field; rather it targeted
one that we modified to contain a known vulnerability.
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Our use of such a trojaned program was consistent with
the primary focus of the first research phase to under-
stand — and overcome — challenges posed by creating
an exploit at a physical level. For example, our initial ex-
ploit contained too few C and G nucleotides (we review
DNA background in Section 2) to synthesize the DNA
strand; therefore, we modified our exploit to overcome
this challenge. Our key finding is that it is possible to en-
code a computer exploit into synthesized DNA strands.

Side-Effect — Information Leakage. Although not a
goal, our efforts to experimentally evaluate the ability
to synthesize adversarial DNA resulted in our observ-
ing an information leakage channel. Standard practice
multiplexes different samples on the same sequencing
machine. The methods to multiplex (and later demul-
tiplex) DNA samples can leak information between sam-
ples during sequencing. Our exploit sample was se-
quenced and multiplexed in this manner alongside sam-
ples from another research team. We noticed that our se-
quencing results contained DNA sequences derived from
their samples.

Other biologists have observed these effects [16, 19,
25, 27, 33], but their concerns focused on experimental
accuracy, not on security or information leakage. From
our perspective we use these unanticipated results to
guide a security discussion of information leakage inher-
ent in the DNA sequencing pipeline.

Software Security Awareness Throughout the
Pipeline. Having demonstrated the ability to exploit a
computer program with synthesized DNA, we next eval-
uated the computer security properties of downstream
DNA analysis tools. We analyzed the security of 13
commonly used, open source programs. We selected
these programs methodically, choosing ones written
in C/C++. We then evaluated the programs’ software
security practices and compared them to a baseline of
programs known to receive adversarial pressure (e.g.,
web servers and remote shells).

We found that existing biological analysis programs
have a much higher frequency of insecure C runtime li-
brary function calls (e.g., strcpy). This suggests that
DNA processing software has not incorporated modern
software security best practices. However, rather than
rely solely on heuristics, we took the next step and de-
termined whether we could target static buffers to cause
program crashes. We readily found three buffer overflow
vulnerabilities. Given the prevalence of poor software
security practices and the well-known fact that program
crashes can often be converted to exploits, we chose not
to convert each program crash into a working exploit.

Threat Model and Guidelines. When exploring a
technology domain new to computer security, any indi-
vidual study lacks the breadth to address the entire do-

main. For example, early work on the attack surface of
modern automobiles considered only one vehicle and a
few example attacks [7, 20]. However, as the first work
to explore a domain, an important contribution can in-
volve drawing inferences from concrete results and do-
main knowledge to define broader lessons and extrapo-
late threat models for the entire domain, as others did
for the modern automobile [7]. Leveraging our tech-
nical results and multidisciplinary backgrounds (com-
puter security, synthetic biology, and the design and use
of the DNA processing pipeline), we drew inferences
to present a threat model and recommendations for the
DNA sequencing and processing pipeline and the associ-
ated community.

Summary. To our knowledge, our research is the first
to consider computer security implications of the modern
DNA sequencing pipeline. Our four key contributions
include:

• We demonstrate, for the first time, the ability to
compromise a computer program with sequenced
DNA. In so doing, we encountered challenges when
synthesizing DNA strands containing exploits and
developed methods to overcome those challenges.
• We observe a side channel resulting from funda-

mental properties of DNA sequencing technologies,
and we pioneer the exploration of how one might
exploit this side channel for adversarial purposes.
• We evaluate the software security in a wide set of

DNA processing programs and find that they do not
adhere to modern security best practices (e.g., they
frequently use insecure function calls and contain
buffer overflow vulnerabilities).
• We derive a threat model for the DNA sequencing

pipeline and present recommendations to offset po-
tential attacks.

2 Biology and DNA Sequencing: Back-
ground

Our work strives to apply computer security principles
and perspectives to a new field: genomic sciences, and
specifically, DNA synthesis, sequencing, and analysis.
To do so, we offer a basic review of the biological, chem-
ical, and computational processes in this field.

2.1 DNA

Deoxyribonucleic acid (DNA) is the carrier of genetic in-
formation for all known living organisms. It is composed
of an alternating sugar-phosphate backbone to which
a sequence of four possible nucleotides (also called
bases) are linearly attached. These nucleotides — ade-
nine, thymine, cytosine, and guanine — are commonly
abbreviated as A, T, C, and G, respectively. Each nu-
cleotide bonds with its complement — A with T, and C
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with G. Sequencing is the process of reconstructing the
original order of nucleotides in a DNA sample.

While DNA can form many structures, the most
common is double-stranded DNA (dsDNA), where two
strands with complementary base sequences bond to
form the well-known double helix structure. DNA’s
sugar-phosphate backbone causes its strand ends to be
asymmetric: The phosphate end, called the 5′ end, and
the sugar end, called the 3′ end. By convention, nu-
cleotide sequences are read from the 5′ to the 3′ end.

Many traditional lab protocols require DNA strands to
be replicated (also called amplification). Amplification
uses a technique called polymerase chain reaction, or
PCR. dsDNA is first melted at high temperatures to sep-
arate its two strands. The temperature is then lowered,
and primers (synthesized strands typically 20 nucleotides
long) anneal (reattach) to the complimentary ends of the
DNA strands. At slightly higher temperatures, DNA
polymerase (an enzyme that synthesizes DNA), attaches
to these end regions where the primer has annealed and
produces a complimentary copy of the original strand.
This process is repeated as needed to exponentially am-
plify DNA.

2.2 Next-Generation DNA Sequencing

Next-generation sequencing (NGS) systems differ from
prior sequencing methods in that they read relatively
short sequences, called reads, but in a massively par-
allel fashion. Longer DNA strands are sequenced by
randomly cleaving DNA into shorter sequences, reading
these sequences in parallel, and reconstructing the orig-
inal, longer sequence. Several different types of NGS
systems do this work; among the most popular are the
various Illumina sequencers, which are based on a tech-
nique known as sequencing by synthesis.

Before sequencing a typical genomic DNA sample
with an Illumina sequencer, the DNA sample must be
manually processed in the lab. It is cleaved into short
sequences of a few hundred bases and amplified using
PCR. Special DNA adapter sequences are then attached
to both ends of the amplified DNA. This double-stranded
DNA sample is separated into single-stranded DNA and
applied to a glass flow cell. The adapter sequences at-
tached to the sample fragments bind to complementary
fragments on the flow cell surface. The bound sequences
locally replicate to produce clusters of identical DNA,
called clonal clusters.

The DNA in each clonal cluster is sequenced in rounds
(called cycles) by appending a complementary fluores-
cently labeled nucleotide to the single-stranded DNA in
each clonal cluster. Each time a new fluorescent base is
added to the strand, it emits a particular color specific to
each base (e.g., A, C, G, and T). The cluster sequence is
obtained by imaging the flow cell in each cycle and not-

ing the fluorescent color each cluster emits. The number
of cycles determines the length of resulting reads (often
between 150-300 bases). These identified bases added in
each cycle, called base calls, are written out to per-cycle
base call files. A separate utility then takes these files
and converts the reads into a standard text-based format
called FASTQ.

FASTQ files are the de facto standard for exchang-
ing next-generation sequencing results. Their structure
is simple: each read has an ASCII header identifying the
read source, followed by a line with the sequence written
as an ASCII A, C, G, or T. Reads additionally contain a
separator line, followed by a line with ASCII characters
encoding the quality or confidence of each base call.

2.3 Downstream Processing

The raw FASTQ files that come directly from the se-
quencer are rarely useful by themselves, and exten-
sive downstream processing and analysis is usually per-
formed after sequencing. This processing is typically
done in phases by dedicated programs; the output from a
program in one stage is sent to a program in a later pro-
cessing stage. This section describes some commonly
used downstream processing steps, which we explore for
security vulnerabilities in Section 6.

Before analyzing the sequence reads, an initial pre-
processing phase occurs where by the reads (stored in
a FASTQ files) are cleaned up to remove undesired ones.
The last base calls in a read often have lower quality
scores, so it is common to truncate the reads to a fixed
length when the score drops below a defined thresh-
old. DNA sequences from unintended sources — like the
adapters used to bind sample DNA to the flow cell or
control sequences used to verify sequencing accuracy —
need to be removed from the sequence file. Other pre-
processing steps merge paired-end reads if there is over-
lap, convert different quality score file formats, or com-
press FASTQ files for archival purposes.

Direct output from a sequencer contains only short
chunks of reads derived from the full sequence, and in no
particular order. These unordered reads can be merged
by aligning them to a reference sequence (e.g., the hu-
man genome) if one exists, or they can be merged from
scratch, using overlaps in the reads to stitch them to-
gether in a method called de novo assembly. When us-
ing a reference sequence, the alignment of each read in
relation to the reference is stored in a text based for-
mat (SAM) or a compressed representation (BAM). Both
methods, especially de novo assembly, are computation-
ally and memory intensive and may be run on computer
clusters if the size of the sample to reconstruct is suffi-
ciently large (e.g., a mammalian genome).

After the sequence has been aligned or assembled
more work may remain, and the following are but a
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Figure 1: Our synthesized DNA exploit

few examples of the widely varied analysis methods
commonly used. It is customary to look for variations
between the sample and some reference for biologi-
cally meaningful differences (e.g., genetic variations that
cause disease). Specific variations in the sequenced sam-
ple are usually stored in a plain text file (VCF) so re-
dundant sequencing information can be discarded. NGS
techniques are also used in more complicated biologi-
cal assays to analyze RNA (RNA-seq) or protein-DNA
interactions (ChIP-seq). In these cases, the samples’ se-
quence are not only valuable, but the number and precise
location of its reads in relation to a reference sequence
are also meaningful.

2.4 DNA Synthesis

Synthetic DNA, commercially produced via phospho-
ramidite chemistry, is characterized by nucleotides at-
tached to one another with specific reagents to form spec-
ified sequences. The resulting length, quality, and cost
varies greatly depending on the method of reagent de-
livery, the substrate on which DNA is synthesized, and
consumer specifications. For example, Integrated DNA
Technologies (IDT) synthesis of a custom gene utilizes
their “gBlock” service, which differs in capabilities and
constraints from their “custom oligo” service designed
for shorter strands (oligos or oligonucleotides are short
DNA sequences commonly used in genetics). The cost
for these two services varies significantly depending on
the length of the strand ordered, the degree to which
DNA must be washed, or whether there are DNA modi-
fications (e.g., fluorescent tags).

3 Compromising a Computer with DNA
DNA, in its most basic form, stores data. Conceptually,
if DNA were used as input to a computer system, an
open issue is the possibility that it could be used to com-

promise that system. As one might predict, significant
unknowns exist. Can DNA itself compromise a com-
puter system, or does something in the DNA sequenc-
ing pipeline make such attacks impossible? Prior to our
work, to the best of our knowledge, there has never been
a demonstrated DNA-based exploit of a computer sys-
tem. Indeed, without concrete, experimental evidence,
it is impossible to know whether DNA-based computer
compromises are purely hypothetical or a real possibil-
ity. We therefore seek to experimentally answer the pre-
viously unexplored question:

Can DNA be used to compromise a com-
puter?

To answer this question, we seek an end-to-end ex-
perimental evaluation of an exploit. Namely, we seek to
mimic an adversary and (1) synthesize a real, biologi-
cal DNA sequence with a malicious, embedded exploit.
We then seek to experimentally evaluate the impact of
that exploit DNA on a victim by having the victim (2)
sequence that DNA using standard sequencing methods
and (3) post-process the DNA sequence with a realistic
program — a program that a scientist might use to ana-
lyze the resulting DNA sequence. If the exploit is suc-
cessful, step (3) should result in arbitrary code execution
on the victim computer.

This section explores the biological nature of this at-
tack pipeline — how to encode an exploit into DNA such
that, when sequenced, will hijack execution when pro-
cessed by the victim program. We therefore intentionally
chose to create our own vulnerable program for step (3),
i.e., a program inspired by actual bioinformatics tools
but with an obvious vulnerability. In Section 6, we con-
sider the security of the sequencing pipeline in general.
Our results suggest that while our exploited program in
this section is vulnerable to a basic buffer overflow ex-
ploit, the security hygiene of the overall DNA sequenc-
ing pipeline is not much better.

Despite challenges, this section demonstrates that it is
possible to create DNA that, when sequenced and pro-
cessed, compromises a victim system. See Figure 1 for
a photo of our DNA exploit. In conducting this work,
we identified and overcame multiple challenges, which
we describe — along with methods for overcoming them
and the resulting lessons — below.

3.1 Target Program

The FASTQ compression utility, fqzcomp, is designed to
compress DNA sequences. For experimental purposes,
we inserted a vulnerability into this utility. To do so,
we first copied fqzcomp from https://sourceforge.

net/projects/fqzcomp/ and inserted a vulnerability
into version 4.6 of its source code; a function that pro-
cesses and compresses DNA reads individually, using
a fixed-size buffer to store the compressed data. This
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start:

        jmp    callsite

callback:

        popq   %rsi

        movq   %rsi,0x8(%rsi)

        xorl   %eax,%eax

        movb   %al,0x7(%rsi)

        movq   %rax,0x10(%rsi)

        movb   $59,%al

        movq   %rsi,%rdi

        leaq   0x10(%rsi),%rdx

        leaq   0x8(%rsi),%rsi

        syscall

        xorq   %rbx,%rbx

        movq   %rbx,%rax

        inc    %rax

        syscall

callsite:

        call   callback

        .string "/bin/sh"

90 90 90 90 90 90 90

90 90 90 90 90 .....

EB 28 5E 48 89 76 08 

31 C0 88 46 07 48 89

46 10 B0 3B 48 89 F7

48 8D 56 10 48 8D 76

08 0F 05 48 31 DB 48

89 DB 48 FF C0 0F 05

E8 D3 FF FF FF 2F 62

69 6E 2F 73 68 00 ..

EF BE AD DE EF BE AD

DE EF BE AD DE .....

85 E0 FF FF FF 7F 00

00

GCAAGCAAGCAAGCAAGCAAG

CAAGCAAGCAAGCAAGCAATG

GTAGGACCTGCAGAGAGCCTC

GAAGAATACTAAAGAGACACG

AACTCAGAGAGCCACGACAAG

TAAATGTCAGAGAGCTTCTCA

GAGATCCCCGACAACAGAGAT

CCTCGAAGAAATTAACCCAGA

ATACTCGTCAGAGAGCTCGAC

AGATTTTTAAAAATTAACCTG

GATCATTTTTTTTTTTTTAGT

TCGAGCGGCCGTGAGTTCTAT

CGGATGTTGTTGGGTCTCTGT

GTTGTTGGGTCTCTGTGTTGT

TGGGTCTCTGTGTTGTTGGGT

CTCTGTGTTGTTGGGTCTCTG

TGTTGTTGGGTCTCTGGACCT

GAATTTTTTTTTTTTCTTT

a) Shellcode b) Binary Exploit c) DNA-Encoded Exploit d) Failed Synthesis Constraints

Figure 2: Our initial, unsuccessful exploit attempt

modification lets us perform a buffer overflow with a
longer than expected DNA read in order to hijack con-
trol flow. While the use of such a fixed-size buffer is
an obvious vulnerability, we note that fqzcomp already
contains over two dozen static buffers. Our modifications
added 54 lines of C++ code and deleted 127 lines from
fqzcomp.

Our modified fqzcomp version used a simple 2-bit
DNA encoding scheme. The four nucleotides were en-
coded as two bits — A as 00, C as 01, G as 10, and T as
11 — packing bits into bytes starting with the most sig-
nificant bits.

We ran the target program in a simplified comput-
ing environment and disabled common security features.
Specifically, we disabled stack canaries and ASLR, and
we marked the stack as executable.

We stress that our target modified program has a
known, and in some sense trivial, vulnerability. We also
stress that its environment is in many ways the “best pos-
sible” environment for an adversary. For experimental
purposes, however, we believe that these conditions are
acceptable for the following reasons. First, our primary
goal is to understand the issues unique to DNA-encoded
exploits. Second, as we relate in Section 6, we find that
the general security hygiene of bioinformatics programs
is very low, with prevalent usage of fixed-size buffers,
strcpy, and so on. Finally, we note that genome se-
quencing processes are rapidly improving: since early
NGS machines read sequences on the order of 50-100
bases, a fixed-size buffer in that range may have been
acceptable years ago. Today, any fixed-size buffer would
likely be vulnerable, as new longer read sequencing tech-
nologies can produce reads that are upwards of 60,000
bases [30]. These newer sequencers lack the throughput
of short-read counterparts and are not at present com-
monly used; Illumina short-read sequencers now have
over 90% market share [18]. Future technological im-
provements will likely make long-read sequencers more
viable in the future.

3.2 Creating and Synthesizing an Exploit

We now turn to our design of a DNA strand that, when
sequenced, exploits the vulnerable target program. Our
key goal was to identify potential challenges. Our efforts
here were successful in two regards. First, we identified
several challenges, including limitations on the exploit’s
size and type and problems inherent in the DNA syn-
thesis process that constrained the sequences we could
generate. Second, by overcoming these challenges, we
found that it was possible to create a DNA sequence that
could in fact compromise a program.

Our process was iterative. We created exploits that
we thought would work, surfaced challenges, and then
iterated on improved exploits.

We initially encoded one of the most straight-forward
exploits, i.e., overwriting the return instruction pointer
on the stack to point back into shellcode from Aleph
One’s “Smashing the Stack for Fun and Profit” [26]. We
made minor modifications to port the shellcode to the 64-
bit Linux syscall interface. To simplify exploit testing,
we used a stripped-down version of the vulnerable pro-
gram that simply compressed a single DNA read into a
fixed-size buffer. Our shellcode was 55 bytes long, with
another 39 bytes of padding needed for cache line align-
ment and saved registers. We filled this space with NOPs
and bogus saved register values (0xdeadbeef). The re-
sulting exploit, 94 bytes long, was encoded as 376 nu-
cleotides. Figure 2 shows this process.

We submitted this sequence to the IDT gBlocks syn-
thesis service, which creates synthetic gene fragments up
to 3,000 bases long. Unfortunately, at this step we faced
our first challenges. Our sequence contained many issues
that prevented IDT from being able to synthesize our or-
der:

• The NOP sled produced a repetitive sequence
(GCAA) near the start of our sequence, which con-
tributed to more than 69% of the sequence. Repet-
itive sequences can cause difficulties in sequencing
and may cause the physical strand to fold in on it-
self or form other secondary structures because of
DNA’s complementary nature.
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sh>&/dev/tcp/degdeg.com/9 0>&1

CTATCGGAATTGAGCGAGTTC

GCACGCCCTCGAGTTCTCACG

ATCTAAAGTTCGCACGCCCGC

TCGCACGCCCGCTAGTGCGAT

CGTTCGTCAGTTATGCAGAAA

TAAATTGAGCGATACAAAACA

AAAGGCTAGGTTCTAAGACCA

AAGTGTTAGGGTACTTCCAGC

TTCGTTCG

@NB501203:50:HHNT7AFXX:1:11101:2573:1030 1:N:0:GCCAAT

CTATCGGAATTGAGCGAGTTCGCACGCCCTCGAGTTCTCACGATCTAAAGTTC

GCACGCCCGCTCGCACGCCCGCTAGTGCGATCGTTCGTCAGTTATGCAGAAAT

AAATTGAGCGATACAAAACAAAAGGCTAGGTTCTAAGACCAAAGTGTTAGGGT

ACTTCCAGCTTCGTTCGA

+

AAAAAEEEEEEEAEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE<EEEEEE<EEEEEAEAAEE

EEEAEE<EEEEAEEEEEEEEEAEEEE<EEE<EEEEAE<E<EE<E<EE/<E/EA

E<EEEEEEEAA<EE6AAE

...

a) Shellcode

c) Synthesized Exploit d) DNA Sequencing

e) FASTQ File

b) DNA-Encoded Exploit

f ) Exploited Utility

g) Reverse Shell Callback

Figure 3: Our working exploit pipeline

• The negative offset JMP created a run of 13 con-
secutive Ts. Long runs of the same base, called ho-
mopolymers, can be difficult to accurately synthe-
size. The gBlocks service limits homopolymers to
no more than nine As or Ts and five Gs or Cs.
• The repeated 0xdeadbeef bytes produced a long

(40+ base pair) repetitive sequence.
• The NOP sled resulted in low GC-content near the

beginning of the sequence. Cs and Gs physically
bind together more tightly than As and Ts and thus
add stability to the DNA strand. Typically, each
20-base window must have 25 to 75 percent GC-
content. The first and last 20 bases of a sequence
are even more constrained since they must have 40
to 60 percent GC-content to be synthesized.
• A 20 base pair window containing the 13 base

pair homopolymer did not meet the minimum GC-
content threshold.

Another challenge we faced was the length of our ex-
ploit. Our Illumina NextSeq sequencer is rated for a
maximum of 300 base pair reads, while the Illumina
MiSeq is rated for a maximum of 600 base pair reads.

We addressed these challenges by making our target
program and exploit designs more sophisticated. To min-
imize the number of homopolymers introduced by large
pointers and offsets, we switched to targeting the 32-bit
x86 instruction set architecture (ISA). We also reduced
the buffer size in our target program to minimize the re-
quired size of our sequence. Since our ultimate goal was
arbitrary remote code execution, we investigated swap-
ping out Aleph One’s simple shellcode, which simply
spawns a local shell, with one that provided a reverse
shell over TCP. We explored the shell-storm.org

archive for a suitable example; however, even the most
compact shellcode was too long to fit inside a sequence
that could be reasonably sequenced by the NextSeq se-
quencer.

Our second exploit attempt uses an obscure feature
of bash, which exposes virtual /dev/tcp devices that
create TCP/IP connections. We use this feature to redi-
rect stdin and stdout of /bin/sh to a TCP/IP socket,
which connects back to our server. We combined this

tactic with a return-to-libc attack that calls system(), re-
sulting in a 43-byte exploit, shown in Figure 3. We used
a short, fully qualified domain name we controlled as
well as a single digit port number to keep exploit length
as short as possible. While we considered obtaining a
smaller FQDN (e.g., r.sh) to keep our exploit size as
small as possible, we hypothesized that we could suc-
cessfully sequence our 176-base1 DNA strand with our
Illumina NextSeq despite exceeding its recommended
single-ended read size.

Since the bulk of this exploit consists of lowercase let-
ters, whose two most significant bits were 01 in ASCII —
or encoded as a nucleotide, C — we got an acceptable
level of GC-content throughout the exploit. The one ex-
ception was near the original port number — 3 (encoded
as ATAT) — which we changed to 9 (encoded as ATGC) to
maintain a minimum level of GC-content. This sequence
was accepted by the IDT gBlocks service with no errors
or warnings. IDT’s retail cost to synthesize of up to 500
base pairs was $89 USD.

As is standard for NGS runs, our sample was tagged
and extended with a unique index (GCCAAT, in our
case) and co-sequenced with other experiments. The se-
quencer was configured to perform 177 non-index read
cycles; this is the typical configuration used by another
research group that manages the sequencing machine and
was sufficiently long to contain the 176 base pair exploit
sequence within a single read.

The sample was sequenced on all four lanes (physi-
cally separate portions) of the flow cell. After demulti-
plexing by indices, there were four separate FASTQ files
(one for each lane) together containing 811,118 reads.

We processed the four FASTQ files separately, which
is done to account for lane-specific errors. We filtered out
low-quality reads that did not identify one or more bases;
these bases appear as Ns (representing an unknown base)
in the FASTQ file. We provided the filtered FASTQ file
from the first lane to our modified fqzcomp program,
which immediately called back to our server, giving us

1A bug in our DNA encoding program repeated the final byte, which
unnecessarily extended our exploit by four bases, but otherwise did not
affect our results.
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arbitrary remote code execution via a bash shell.

3.3 Exploit Reliability

The exploit was not robust to errors in sequencing; a sin-
gle miscalled base would break the exploit. In this exper-
iment, 76.2% of the reads were sequenced with no error.
Another issue arose because DNA strands are randomly
sequenced in the forward or reverse direction. Reverse
sequenced reads will have the reverse complement se-
quence of the exploit, which is not functional code (see
Section 4.2 for a possible solution to this problem). Of
the remaining, error free reads, 49.1% were sequenced in
the forward direction. Therefore, 37.4% of all reads con-
tained working exploit code (i.e., in the forward direction
with no sequencing errors).

The modified fqzcomp program contained a buffer
too small for the 177 base pair read length, so it would
overflow after processing the first read. Therefore, the
first read in the file must be the exploit sequence for the
exploit to work. With reads randomly appearing in a
FASTQ file, we would expect the modified program to
be exploited 37.4% of the time. Assuming all four lane
files were processed, an attacker would be successful at
least once 84.5% of the time. In our case, only the file
from the first lane was a successful exploit.

4 Challenges in Encoding Malicious DNA
Informed by our evaluation of the feasibility of manu-
facturing synthetic DNA capable of exploiting computer
systems, we next consider some challenges in crafting
arbitrary exploits against other programs and identify di-
rections for future research. In particular, while it is con-
venient to think of DNA as a simple storage mechanism,
our results in Section 3 show that in practice there are
several physical and computational constraints that limit
the design space of DNA-based exploits.

4.1 Physical Constraints

Any DNA-based exploit must be physically instantiable
in DNA. Therefore, any difficulties in the synthesis or
amplification of DNA will constrain the sequences at-
tacker can easily synthesize.

Primers. As previously mentioned, it is necessary to
amplify the exploit sequence to increase its yield before
sequencing. A simple way to do so is to use PCR, which
requires a pair of primers to initiate replication. These
primers, single stranded DNA sequences usually 18-22
bases long, are complementary to the ends of the target
sequence being amplified. PCR primers used together
must have similar melting point temperatures to main-
tain high amplification efficiency. They must also have a
high enough annealing temperature to bind only to their
complementary locations without mis-pairing to similar
sequences. Other parameters also influence primer de-

sign such as the amplification region specificity desired,
and the GC-content of the primer regions to be amplified.

Primer designing utilities, like Primer3, take these
parameters into account to design optimal primer se-
quences [37]. Since the primers must be complemen-
tary to the ends of the exploit sequence, any restrictions
in their design will necessarily constrain the ends of the
exploit sequence.

Synthesis. DNA synthesis has its own physical con-
straints that vary across synthesis companies. In Sec-
tion 3.2 we described constraints imposed by IDT’s
gBlock gene fragment service, a relatively low cost syn-
thesis method. They required 25 to 75 percent GC-
content per 20 base window, A/T and G/C runs no greater
than 9 and 6 base pairs, respectively, and sequences
that avoided secondary structures (created when differ-
ent portions of the same strand are complementary to one
another).

These synthesis constraints are common but not uni-
versal. Different synthesis methods and services can vary
in their precise requirements — for example, IDT’s cus-
tom gene service can tolerate longer homopolymers than
gBlock, which may make it easier to synthesize 64-bit
addresses. In cases where the exploit cannot be synthe-
sized by any de novo synthesis service, it may be possible
to synthesize sub-sequences and recombine them manu-
ally in a wet lab.

DNA synthesis services also follow strict guidelines to
ensure that biologically malicious sequences are not syn-
thesized and spliced into organisms that potentially cre-
ate pathogens, toxins, or various other harmful products.
The shipping, receiving, or purchase of all synthesized
sequences must follow guidelines including, but not lim-
ited to, those described in the current U.S. Department
of Health and Human Services (HHS) and U.S. Depart-
ment of Agriculture (USDA) Select Agents and Toxins
regulations [4–6].

4.2 Sequencing Randomness

Being a biochemical process, DNA sequencing is inher-
ently noisy and random; long DNA strands are randomly
cleaved into smaller ones and strands are sequenced in no
particular order. This randomness makes DNA-based ex-
ploits probabilistic in nature, as discussed in Section 4.2.
Robustness against random variations depends on fac-
tors like the vulnerability type and what stage in the
pipeline is attacked. In general, analysis further along
the sequencing pipeline works with more structured data,
which will reduce the initial randomness from the se-
quencer. For example, variant calling programs return
processed data in the same order as the reference se-
quence regardless of the initial read order.

Another source of randomness is that reads will be se-
quenced in both the forward and reverse direction, which
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causes problems because most exploit sequences will
be functional only if read in one direction. One solu-
tion is to synthesize strands that generate the same reads
when sequenced from either end. These can be cre-
ated by concatenating the forward exploit sequence to
its reverse complement (e.g., ACCTG becomes ACCT-
GCAGGT). Since DNA is always read from 5′ to 3′, the
same read will appear, regardless of whether the DNA
was sequenced in the forward or reverse direction.

These palindrome like sequences are difficult to syn-
thesize directly because the two halves will bind to each
other and create secondary structures. Instead, the two
halves could be synthesized separately and conjoined
manually in a wet lab.

4.3 Encoding Exploits

Exploits typically contain up to three components: point-
ers, either to functions or data, instructions in the tar-
get instruction set architecture (ISA), and an encoded
and/or obfuscated payload. DNA-based exploits intro-
duce unique constraints on each of these components.

Pointers. Bioinformatics programs vary in how they
encode DNA data. Some perform a straightforward map-
ping, encoding each base as two bits and packing these
bits together, like our target program in Section 3. How-
ever, sequences often have non-standard bases, such as
Ns to encode unknown nucelotides or Rs to indicate ei-
ther an A or G. To support these non-standard bases,
some tools use four-bit encodings, or even 8-bit ASCII.
Since we can synthesize only standard bases, these alter-
native encodings will constrain the pointers that we can
encode.

Another issue concerns sequencing accuracy and how
that will affect the resulting sequence of pointers. Some
pointers, such as those to libc or ROP gadgets, are intol-
erant of any errors. Others, such as pointers to attacker-
controlled buffers, can be made somewhat tolerant to er-
rors in the least-significant bits — for example, it could
point to a large NOP sled.

Pointers often contain long runs of identical bits and
therefore generate homopolymers. For example, with-
out ASLR enabled, 64-bit Linux places user stacks at
0x00007fffffffffff, which contains a run of 47 con-
secutive 1s. Using two-bit encoding, this results in a
homopolymer of 23 bases. As previously described, a
solution is to use a synthesis service more tolerant to ho-
mopolymers.

Code. Executable sequences of target ISA instructions
can encode malicious operations more compactly than
equivalent ROP chains and are easier to develop, which
makes them desirable to attackers. However, encod-
ing ISA instructions in DNA presents a number of chal-
lenges.

As with pointers, the target program’s DNA encoding
may restrict the bytes that can be represented. Depending
on the encoding and ISA, this could also limit the set of
instructions that are available.

The regular structure of most ISAs produces repeated
base sequences when encoded into DNA, which again,
are difficult to synthesize. Semantically-equivalent in-
structions and semantic NOPs can be used to break up
repetitive sequences to make exploits easier to synthe-
size.

Another issue to consider is read length. All but the
most trivial exploits exceed the read length of most high-
throughput sequencers, and thus, the exploit will be ran-
domly cleaved. Depending on which part of the pipeline
is being exploited (i.e., whether the target program pro-
cesses raw reads or fully aligned sequences), this could
decode in the middle of a multi-byte instruction, or even
in the middle of a byte. Therefore, for robustness,
an exploit should encode instructions that are tolerant
to such shifts. Prior work demonstrates techniques to
generate these types of resynchronizing instruction se-
quences [22]. Long read sequencers may mitigate these
challenges in the future but are currently less accurate
than high-throughput sequencers.

Finally, we must consider the effects of sequencing er-
rors. One way to address these errors is to encode re-
dundant instructions that become semantic NOPs with
random bit flips.

Payloads. To make payloads more robust to errors in-
troduced by synthesis and sequencing, one may fortify
payloads with error-correcting codes. Compression may
be used to offset the increase in payload size and cause
the sequence to be more equally distributed across the
four nucleotides, avoiding issues of too much or too little
GC-content.

5 Side Channel: Sample Bleeding
It is common to multiplex samples in NGS runs on mod-
ern Illumina sequencers to make better use of sequencing
resources and increase throughput. This is accomplished
by adding a 6-8 nucleotide index to each sample before
sequencing, which is later used to demultiplex the sam-
ples. However, the demultiplexing process is not perfect.
The sequence of each read is derived by sequencing a
cluster of DNA on a flow cell. If clusters overlap, are
seeded from multiple distinct strands, or if errors exist
in sequencing the index, then the sequence of a cluster
may be misassigned to an incorrect index [16]. A read
assigned incorrectly will be associated with either an un-
used index and discarded or assigned to the index of a
different sample. In the latter case, it is called sample
bleeding or index cross-talk.

Illumina reports that sample bleeding occurs at a rate
of 0.1%-0.2% with the type of flow cell used in this
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study [24], though this continues to a topic of discus-
sion in the sequencing community. The amount of sam-
ple bleeding depends on many factors, like index de-
sign, cluster density, sample diversity, and the underly-
ing sequencing technology [25, 27, 33]. This situation
is known to create a problem with the detection of rare
genetic variants, like genetic markers for cancer [19].

The rise in outsourced sequencing at external facili-
ties, which multiplex samples from different, untrusted
sources creates opportunities for side channel attacks that
are — to date — previously unconsidered by the genomic
sciences. Since sample bleeding is bidirectional, an at-
tacker could gather reads from other indices to reveal
sensitive information or send data to other indices to cor-
rupt or modify their results.

Evaluation of Data Leakage. We can leverage our se-
quencing results from Section 3 to better understand the
security impact and amount of data leakage caused by
sample bleeding. When the exploit was sequenced, it
was multiplexed with seven other samples. One of these
samples contained 1.5 million unique sequences, each
150 base pairs long; this sample is denoted as the tar-
get sample. With permission, we obtained the FASTQ
file associated with the target sample’s index after the
sequences were demultiplexed. Using the two FASTQ
files, one from the target sample and the other from the
exploit, we sought a rough estimate of side channel ef-
fects. We note that all samples were sequenced using
6 nucleotide indices, so the sample bleeding rate may
be higher than other configurations, like 8 nucleotide in-
dices.

We assume that only the exploit sequence is attacker
controlled and that attackers receive only demultiplexed
results from the index of the exploit sample. To analyze
their ability to pull information from other indices, we
examined misassigned reads associated with the target
sample in the exploit FASTQ file. There were 112 reads
that aligned to sequences that came from the target sam-
ple. Two of them originated from the same sequence,
so a total of 111 unique, 150 base pair sequences were
leaked into the exploit FASTQ file. The quality of these
reads was high; 68 of them were a perfect match (60.7%),
and 103 had an edit distance of less than 2 (92.0%). Of
the 235 million bases represented in the target sample,
16,521 were recoverable in the exploit FASTQ file — for
context, the human genome contains around 3.2 billion
bases — and, in total, 0.007% of the data was recover-
able from the target sample.

If we now consider the sample bleeding side channel
in the reverse direction, an attacker could modify the re-
sults that appear in other demultiplexed samples. The
exploit sample contains many copies of the same short
sequence. Thus, any sample bleeding from the exploit
sample into the target sample resembles an attacker try-

ing to inject a single sequence into the target FASTQ file.
The exploit sequence was found 37 times in the target
FASTQ file (30 times with no errors).

Hypothetical Attacks. Now that we have established
sample bleeding as a source of information leakage, we
propose attacks that leverage this side channel.

An attacker could use sample bleeding to inject spe-
cific DNA sequence reads into concurrently sequenced
samples. These reads could contain malicious code or be
used to confuse subsequent downstream analysis (e.g.,
variant calling).

Any reads which bleed from other samples into the at-
tacker’s sample could reveal sensitive information, like
the identity of those samples. Even low levels of only a
few reads could identify the species of a sample, which
could be commercially sensitive in domains like drug
discovery.

Another risk of multiplexing, similar to sample bleed-
ing, is that an attacker may be able to sabotage an en-
tire sequencing run. Most next-generation sequencers
are calibrated to sequence biological DNA; they expect
to see close to a 1:1:1:1 ratio of A:C:G:T. If one of the
samples has low-diversity (a homogenous DNA sample),
the read quality will suffer for all samples, and in ex-
treme cases, the run could fail altogether. This could be
induced with a high-concentration of the same sequence.
Previous experiments by this group showed that if iden-
tical sequences compose more than roughly 25% of the
total DNA, run quality deteriorated.

Summary. The read errors we encountered while de-
veloping the exploit in Section 3 caused us to reflect
upon their origin, meaning, and implications. While the
genome sciences community has measured rough esti-
mates of sample bleeding, ours may be the first research
to consider bleedover from an adversarial perspective
and ask, for example, how much information is leaked
and whether it is possible to push specific data into an-
other party’s sequencing files.

6 Software Security Analysis
Having evaluated the potential security threats for mali-
ciously crafted synthetic DNA in Sections 3-4, as well as
information leakage channels in Section 5, we now eval-
uate the software security practices of the larger bioin-
formatics pipeline. Specifically, we evaluate the secu-
rity practices of common NGS programs to better under-
stand the risks of DNA-based or other exploits in the real
analysis pipeline. Although used broadly by biology re-
searchers, many of these programs are written by small
research groups and thus have likely not been subjected
to serious adversarial pressure. We therefore hypothesize
that the rate of serious vulnerabilities will be higher here
than in more mature software (e.g., Internet services).
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Category Program Version Lines of Code Normalized Count (Total Count)
strcat strcpy sprintf vsprintf gets static buffers

NGS Analysis

Preprocessing
fastx-toolkit 0.0.14 3,189 0.314 (1) 0.314 (1) 0 (0) 0 (0) 0 (0) 14.425 (46)

fqzcomp 4.6 2,066 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 23.233 (48)

Alignment

bowtie2 2.2.9 58,377 0 (0) 0 (0) 0 (0) 0 (0) 0.017 (1) 3.272 (191)
bwa 0.7.15 13,496 1.926 (26) 2.223 (30) 0.222 (3) 0 (0) 0 (0) 10.966 (148)

hisat2 2.0.5 80,930 0 (0) 0 (0) 0 (0) 0 (0) 0.012 (1) 2.508 (203)
STAR 2.5.2b 14,760 0 (0) 0.136 (2) 0.271 (4) 0 (0) 0 (0) 3.388 (50)

De novo assembly
MIRA 4.0.2 69,853 0.014 (1) 0.115 (8) 0.115 (8) 0 (0) 0 (0) 1.904 (133)

velvet 1.2.10 22,794 1.228 (28) 2.106 (48) 1.185 (27) 0 (0) 0 (0) 2.588 (59)
SOAPdenovo2 2.04-r240 37,010 0 (0) 0.351 (13) 3.161 (117) 0 (0) 0 (0) 4.945 (183)

Alignment processing
samtools 1.5 56,979 0.351 (20) 0.228 (13) 0.509 (29) 0 (0) 0 (0) 3.247 (185)
bcftools 1.5 77,707 0.090 (7) 0.283 (22) 0.360 (28) 0 (0) 0 (0) 4.375 (340)

RNA-seq cufflinks 2.2.1 68,539 0.058 (4) 0.817 (56) 1.984 (136) 0.029 (2) 0 (0) 4.844 (332)
ChIP-seq PeakSeq 1.3 6,806 0.147 (1) 3.967 (27) 3.526 (24) 0 (0) 0 (0) 7.787 (53)

Control Programs

Web server
nginx 1.11.19 80,905 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 3.411 (276)
httpd 2.4.25 173,376 0.04 (7) 0.19 (33) 0.052 (9) 0 (0) 0 (0) 3.611 (626)
php 7.1.1 637,921 0.003 (2) 0.022 (14) 0.011 (7) 0.002 (1) 0 (0) 5.632 (3593)

DNS server bind 9.9.10b1 255,708 0.055 (14) 0.223 (57) 0.395 (101) 0.004 (1) 0 (0) 7.426 (1899)

Remote shell
openssh-portable 7.4p1 89,403 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 6.264 (560)

mosh 1.2.6 12,228 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 7.933 (97)
File copying rsync 3.1.2 39,446 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 6.718 (265)

FTP vsftpd 3.0.3 16,414 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 2.437 (40)
Database postgres 9.6.1 784,516 0.088 (69) 0.312 (245) 0.454 (356) 0 (0) 0 (0) 9.964 (7817)

Packet processing tcpdump 4.9.0 73,711 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 19.726 (1454)

Table 1: Insecure buffer overflow signatures for NGS analysis (top half) and control programs (bottom half). The counts reported
are the number of lines containing the corresponding insecure function call or static buffer declaration. Each count is normalized
by the number of appearances per 1000 lines of code. scanf is not included because it was not present in any program.

Program Selection. Many commonly used, open
source analysis programs are written in unsafe lan-
guages, like C and C++, known to be vulnerable to buffer
overflow attacks. To quantify the risk of buffer overflows
in NGS analysis programs, we evaluated 13 programs
that operate at different stages of the analysis pipeline
(see Table 1). To generate the list of programs in a sys-
tematic manner, we choose 6 analysis categories: (1)
preprocessing, (2) alignment, (3) de novo assembly, (4)
alignment processing, (5) RNA-seq, and (6) ChiP-seq.
We required at least one program from each category. We
searched for programs that were open source and written
in either C or C++. To ensure that all of these programs
were actively used by biologists, we required that they be
available as packages in the Galaxy bioinformatics work-
flow system (a popular web-based analysis platform) or
be part of a major effort, like the ENCODE project or the
assembly of the great panda genome [14, 21, 36]. Many
of them, including bwa, bowtie2, and samtools, come
installed on current Illumina sequencers. The one excep-
tion was the fqzcomp program, which we included be-
cause we used it earlier in Section 3. We shared our find-
ings about these programs with their maintainers in the
hope of raising their security mindfulness. Our discus-
sions with them confirmed that many had not considered
the security of their software.

Analysis Approach. We evaluated the risk of buffer
overflow attacks in these programs by using the rec-
ommendations of the OWSAP buffer overflow review
guide [29]. It suggests removing insecure C library func-
tion calls and checking static buffers and print format
strings. To quantify this, we counted the number of
lines containing commonly misused, insecure function
calls (strcat, strcpy, sprintf, vsprintf, gets, and
scanf) and static buffer declarations. We derived these
counts using the clang-query tool, which searches the ab-
stract syntax tree generated by the clang C and C++ com-
piler. We analyzed only those files compiled using the
default build. Function calls and buffer declarations in
headers were also counted if they were included in code
files, but they were ignored if they were in standard li-
brary headers (like the C standard lib or Boost library).
For comparison, we also computed these same metrics
for 10 control programs. For these, we chose programs
that were Internet connected and likely to have already
received adversarial pressure. Again, we included pro-
grams from 7 different categories and only considered
open source programs written in C or C++.

Analysis Results. The most common insecure func-
tions in both the NGS and control programs were
strcat, strcpy, and sprintf. The others were used
infrequently, and scanf was not present in any program.
The gets function appeared once in two NGS programs;
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Figure 4: A box plot with the average number of insecure func-
tion calls (left) and number of static buffer declarations (right)
in each program. Programs are separated into their correspond-
ing type (NGS or control) and all counts are normalized (count
/ 1000 lines of code).

this is notable because gets is an especially insecure
function that cannot do bounds checking, which is why
it was removed from the 2011 C standard [1]. Overall,
there was more insecure function usage in the NGS pro-
grams (Figure 4), with an average of 2.005 insecure func-
tion calls present per 1000 lines of code (sd=2.299) but
only 0.185 in the control programs (sd=0.304) — an 11-
fold difference. Using a two-tailed t-test, this difference
was found to be statistically significant (p=0.027).

We hypothesized that there may be more static buffer
declarations in the NGS programs due to poor cod-
ing practices, but there did not appear to be a differ-
ence. The NGS programs had an average of 6.729
buffer declarations per 1000 lines of code (sd=5.925),
and the control programs had a similar average of 7.312
(sd=4.674). This difference was not statistically signif-
icant (p=0.809). These results are only heuristics for
buggy code, but the high prevalence of insecure func-
tion calls in NGS programs provides evidence that the
NGS analysis pipeline does not adhere to security best
practices.

A Deeper Dive. To delve deeper into the security of
the NGS pipeline, we next looked for vulnerabilities
in the 13 programs. To identify them, we compiled
each NGS program with the HP Fortify static code an-
alyzer, which generates reports that include possible vul-
nerabilities [11]. We also manually inspected code for
the insecure C library calls we noted previously. We
quickly identified buffer overflow vulnerabilities in three
of the NGS programs (fastx-toolkit, samtools, and
SOAPdenovo2) and designed inputs that targeted these
vulnerabilities to overflow buffers and crash programs
(Figure 5). These vulnerabilities are described below:

• fastx-toolkit. This utility generates aggregate
statistics on FASTQ files. It places aggregate re-

sults in a static array that is 2,000 bases long, and
any reads longer than this will overflow the buffer.
A check ensures that the read length does not ex-
ceed a limit; however, an incorrect limit of 25,000
was used by mistake. Fittingly, a comment next to
the overflowable, static buffer says, “that’s pretty ar-
bitrary... should be enough for now.”
• samtools. This program post-processes DNA read

alignment files. In code that parses the header string
of an alignment file (SAM file), it places the parsed
header into the same buffer as the original unparsed
header, which normally shrinks the result. However,
if the header is malformed, then the parsed header
grows larger than the original and will overflow the
buffer.
• SOAPdenovo2. This large, de novo genome assem-

bler parses reads in a FASTQ file and writes them
into a static buffer that is 5,000 characters long.
Any reads longer than 5,000 bases will overflow the
buffer.

Given that the security risks of buffer overflow vulner-
abilities are well known, we did not consider it within the
scope of this paper to convert any of these vulnerabilities
into working exploits. The aim here, to identify these
three vulnerabilities and the construction of the crashing
inputs, was straightforward. Thus, we suspect that these
types of vulnerabilities are common.

These results have implications beyond direct DNA-
based exploits, which we return to in Section 7. Fore-
shadowing that discussion, NGS data is commonly
shared in large biological data repositories, making them
a possible vector for spreading malicious files. There are
also publicly available, remote servers, controlled and
managed by 3rd parties, where users can upload and pro-
cess data using these or similar programs.

Ethics and Disclosure. Numerous software develop-
ers and users are involved in the bioinformatics pipeline
at large. Our findings are not specific to any single entity
in this space, but rather apply broadly, across the industry
as a whole. We have notified the authors of potential is-
sues to the specific software packages that we analyzed,
but we stress that many other software packages likely
share similar types of vulnerabilities.

7 Discussion
Our results, and particularly our discovery that bioin-
formatics software packages do not seem to be written
with adversaries in mind, suggest that the bioinformat-
ics pipeline has to date not received significant adver-
sarial pressure. We thus consider it critical — both as a
research contribution and as a contribution to the broader
community — to reflect upon a threat model for the next-
gen sequencing pipeline. A concrete threat model can
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#define MAX_SEQ_LINE_LENGTH (25000)

...

#define MAX_SEQUENCE_LENGTH (2000) //that's pretty arbitrary... should be enough for now

...

struct cycle_data cycles[MAX_SEQUENCE_LENGTH];

...

while ( fastx_read_next_record(&fastx) ) {

    if (strlen(fastx.nucleotides) >= MAX_SEQ_LINE_LENGTH)        

        errx(1, "Internal error: sequence too long (on line %llu). Hard-coded max. length is %d",

             fastx.input_line_number, MAX_SEQ_LINE_LENGTH ) ;

    //for each base in the sequence...

    for (index=0; index<strlen(fastx.nucleotides); index++) {    

        ....

        cycles[index].nucleotide[ALL].count += reads_count; // total counts

        cycles[index].nucleotide[nuc_index].count += reads_count ; //per-nucleotide counts

        ....

    }

// header->text is a string with the entire header

char * newtext = header->text;

...

// This is parsed incorrectly if the header 

// included multiple LN:<num> in the same line

sprintf(len_buf, "LN:%d", header->target_len[tid]);

strcat(newtext, len_buf);

int gLineLen = 5000;

...

int lineLen = gLineLen;

char tmpStr[lineLen];

char * str; // = tempStr

...

memcpy ( str, &buf[p + 1], m - p - 1 );

Figure 5: Code fragments with buffer overflow vulnerabilities in three different NGS programs: fastx-toolkit (top), samtools
(bottom left), and SOAPdenovo2 (bottom right). Text in red highlights buggy code, and text in green denotes comments we included
for clarification.

serve as a guideline for the community, encouraging
the development of defenses and mitigation strategies as
well as the investigation of future exploit vectors. We
begin with a discussion on the future technological and
market trends relevant for DNA sequencing, followed by
a taxonomy of threats and directions for future defenses.

7.1 Future Trends

DNA Sequencing. The decreasing cost, the increasing
throughput, and the broader deployments of DNA se-
quencing capabilities will expand the opportunities and
motivations for attackers to target this pipeline, includ-
ing important domains like forensics, medicine, and agri-
culture. Fundamental aspects of sequencing technology
itself, such as the improving accuracy and ongoing devel-
opment of long read sequencers, e.g., Oxford Nanopore
Technologies [8], will radically change the structure of
sequencing data.

DNA Synthesis. Another quickly improving technol-
ogy is de novo DNA synthesis, which continues to get
faster and cheaper. With novel uses of synthetically pro-
duced DNA, like DNA for data storage [2, 9, 15, 28],
these improvements are expected to continue.

Wet Lab as a Service. There is increasing access to
wet lab techniques and services by non-experts. New
companies exist to provide customers with remote con-
trol of a wet lab through a computer (even offering wet
lab “APIs”) [35]. As these grow more prevalent, they

will enable more actors, even those with scant laboratory
experience, to attack the DNA sequencing pipeline.

Storage and Analysis. As DNA sequencing gets
cheaper, the business focus will likely shift to keep-
ing, analyzing and making use of genomic information
in cloud services (e.g., Illumina’s BaseSpace, Microsoft
Genomics). Tools already exist to help scientists who
have little programming or data science experience an-
alyze DNA sequencing data. Notable examples include
the Galaxy web analysis platform and the Broad Insti-
tute’s cloud based variant calling workflow [3, 13].

7.2 Attack Surfaces

This section covers the attack surfaces that are present
in the end-to-end DNA sequencing pipeline. Our ex-
ploration of this threat model focuses on exploits and is
complementary to existing efforts that protect privacy in
genetic computations [12, 32, 38].

Physical DNA Exploits. Sections 3-4 discussed how
DNA strands themselves could be used as a vector for
injecting code and data into the sequencing pipeline. To
execute such an attack, an attacker could target any facil-
ity that accepts samples for sequencing and processing.

Outsourced sequencing facilities are common because
next-gen sequencing machines are expensive and require
expertise to operate. Many facilities even provide bioin-
formatics services, which means that it is not just the se-
quencing machine but downstream analysis utilities that
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could be targeted by a DNA-based attack vector.
Another method of DNA injection is to contaminate

a biological tissue sample (e.g., blood, hair, and saliva)
with malicious DNA that the attacker knows will be se-
quenced. For example, they could send a contaminated
saliva sample to a personalized genomics testing com-
pany, like Sure Genomics [34]. This method creates ad-
ditional challenges because the malicious DNA sample
would have to survive genomic DNA extraction and sam-
ple preparation, including DNA purification, quality con-
trols, and library preparation.

DNA data storage services are an indirect means of
DNA-based code injection; the attacker would provide
digital data to be written that would be encoded and syn-
thesized into DNA and later sequenced when read.

Multiplex Sequencing. To achieve high throughput,
sequencers will continue to support high levels of sample
multiplexing. However, as discussed in Section 5, sam-
ple bleeding gives a side channel to attackers that can be
used to influence any concurrently sequenced samples.
Therefore, it is important to consider the sources of all
DNA samples when sequencing.

Analysis Services. Third party analysis service could
be targeted if they process attacker controlled data with
vulnerable software. Attackers could upload malicious
files directly for processing (e.g., Galaxy) or send mali-
cious data from biological instruments, like a DNA se-
quencer that is integrated with a cloud service (e.g., Illu-
mina’s Basespace Hub). Afterwards, the attacker would
direct the analysis service to process the malicious files
using a vulnerable workflow.

Shared Databases. Biological data generally, and
NGS results specifically, are commonly shared and ana-
lyzed by different research teams. To facilitate this shar-
ing, public repositories of NGS data are available for
download. The NIH, the European Bioinformatics In-
stitute, and the DNA Database of Japan maintain a large
combined repository, called the Sequence Read Archive
(SRA), which contains nearly 10 quadrillion bases of
DNA [31]. Anyone who creates an account can submit
sequencing files, which makes this an easy attack vector.

Direct sharing of biological data, including DNA se-
quences, could also occur directly between collaborators,
e.g., via email. An adversary could also explore direct
sharing as a potential attack vector.

7.3 Defenses

In this section we categorize possible defenses to help
mitigate the attacks described above.

Follow Best Practices for Secure Software. Our anal-
ysis suggests that the bioinformatics software commu-
nity has not received significant adversarial pressure.

Hence, its software is in general not hardened against at-
tack. Our first recommendation is therefore to encourage
the widespread adoption of standard software security
best practices like input sanitization, the use of memory
safe languages or bounds checking at buffers, and regular
security audits.

Patching is challenging because the analysis software
is quite decentralized (packages are often located in in-
dividually managed repositories) and not regularly up-
dated. One solution is to use a centralized repository
to manage updates and deliver patches, similar to the
APT package manager. Packages could also be signed
to ensure their authenticity. In the case of file sharing,
the sequencing files themselves could be signed by ver-
ified research groups before uploading them to central-
ized databases.

Secure Samples. In some domains, like forensics, at-
tackers could be highly motivated to disrupt sequencing
or cause mis-identification. In these cases, the biologi-
cal sample should be tightly monitored from collection
through sequencing. However, physical control of indi-
vidual samples may not be sufficient to stop contamina-
tion because of sample bleeding, which we discuss be-
low.

Minimize Sample Bleeding. Sample bleeding may
make concurrently sequencing samples from untrusted
sources risky. A simple solution is to enforce, by policy,
that the sources of all samples are verified before they are
sequenced together or else they are sequenced separately.
A better solution is to reduce or detect sample bleeding
with technical means.

The overall rate of bleeding can be reduced by prepar-
ing samples with two multiplex indices instead of one
[19, 24] and by modifying the default cluster identifica-
tion algorithm [25]. Another approach is to detect mis-
assigned reads by cross-aligning samples against one an-
other, and any found could be removed by the sequencer
before returning the demultiplexed files. We encourage
future research to minimize this side channel.

Detect Shellcode before Synthesis. Regulations al-
ready exist to prevent the synthesis of a known, dan-
gerous DNA sequence. For example, DNA synthesizers
are required to verify that it is not synthesizing biologi-
cal viruses, like chicken pox [4–6]. While this approach
works well when detecting known dangerous sequences,
it could prove difficult to detect arbitrary DNA shellcode
because general shellcode detection has proved difficult
in other domains. For example, shellcode can be con-
verted into syntactically correct English [23]. However,
we still encourage researchers to find creative strategies
that detect executable code in DNA.
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8 Conclusions
Significant advances in DNA synthesis, DNA sequenc-
ing, and genomic sciences derive from tools and tech-
niques not previously scrutinized for security robustness.
We conducted a broad security analysis of the DNA pro-
cessing pipeline, including a study of the feasibility of
synthesizing DNA capable of compromising a computer
program (Sections 3-4), a study of information leakage
and information injection side-channels during the se-
quencing process (Section 5), and a study of the general
software security practices in DNA processing software
(Section 6). To our knowledge, ours is the first effort
to broadly consider this pipeline, and the first to demon-
strate a DNA-based exploit. Informed by our results, we
presented lessons for this field, which has yet to receive
adversarial pressure. We strongly encourage additional
research before such adversarial pressure manifests.
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Abstract

Modern mobile bootloaders play an important role in
both the function and the security of the device. They
help ensure the Chain of Trust (CoT), where each stage
of the boot process verifies the integrity and origin of
the following stage before executing it. This process,
in theory, should be immune even to attackers gaining
full control over the operating system, and should pre-
vent persistent compromise of a device’s CoT. However,
not only do these bootloaders necessarily need to take
untrusted input from an attacker in control of the OS in
the process of performing their function, but also many
of their verification steps can be disabled (“unlocked”) to
allow for development and user customization. Apply-
ing traditional analyses on bootloaders is problematic, as
hardware dependencies hinder dynamic analysis, and the
size, complexity, and opacity of the code involved pre-
clude the usage of many previous techniques.

In this paper, we explore vulnerabilities in both the
design and implementation of mobile bootloaders. We
examine bootloaders from four popular manufacturers,
and discuss the standards and design principles that they
strive to achieve. We then propose BOOTSTOMP, a
multi-tag taint analysis resulting from a novel combina-
tion of static analyses and dynamic symbolic execution,
designed to locate problematic areas where input from an
attacker in control of the OS can compromise the boot-
loader’s execution, or its security features. Using our
tool, we find six previously-unknown vulnerabilities (of
which five have been confirmed by the respective ven-
dors), as well as rediscover one that had been previously-
reported. Some of these vulnerabilities would allow an
attacker to execute arbitrary code as part of the boot-
loader (thus compromising the entire chain of trust), or
to perform permanent denial-of-service attacks. Our tool
also identified two bootloader vulnerabilities that can be
leveraged by an attacker with root privileges on the OS
to unlock the device and break the CoT. We conclude

by proposing simple mitigation steps that can be im-
plemented by manufacturers to safeguard the bootloader
and OS from all of the discovered attacks, using already-
deployed hardware features.

1 Introduction

With the critical importance of the integrity of today’s
mobile and embedded devices, vendors have imple-
mented a string of inter-dependent mechanisms aimed at
removing the possibility of persistent compromise from
the device. Known as “Trusted Boot” [6] or “Verified
Boot,” [8], these mechanisms rely on the idea of a Chain
of Trust (CoT) to validate each component the system
loads as it begins executing code. Ideally, this proce-
dure can verify cryptographically that each stage, from
a Hardware Root of Trust through the device’s file sys-
tem, is both unmodified and authorized by the hardware’s
manufacturer. Any unverified modification of the various
bootloader components, system kernel, or file system im-
age should result in the device being rendered unusable
until a valid one can be restored.

Ideally, this is an uncircumventable, rigid process, re-
moving any possibility of compromise, even when at-
tackers can achieve arbitrary code execution on the high-
level operating system (e.g., Android or iOS). However,
hardware vendors are given a great amount of discretion
when implementing these bootloaders, leading to varia-
tions in both the security properties they enforce and the
size of the attack surface available to an adversary.

Unfortunately, analyzing the code of bootloaders to
locate vulnerabilities represents a worst-case scenario
for security analysts. Bootloaders are typically closed-
source [21], proprietary programs, and tend to lack
typical metadata (such as program headers or debug-
ging symbols) found in normal programs. By their
very nature, bootloaders are tightly coupled with hard-
ware, making dynamic analysis outside of the often-
uncooperative target platform impractical. Manual
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reverse-engineering is also very complicated, as boot-
loaders typically do not use system calls or well-known
libraries, leaving few semantic hints for an analyst to fol-
low.

In this paper, we first explore the security properties,
implementations, and weaknesses of today’s mobile de-
vice bootloaders. We begin with a discussion of the
proposed standards and guidelines a secure bootloader
should possess, and what, instead, is left to the discretion
of manufacturers. We then showcase four real-world An-
droid bootloader implementations on the market today.

Then, we present a static analysis approach, imple-
mented in a tool called BOOTSTOMP, which uses a novel
combination of static analysis techniques and under-
constrained symbolic execution to build a multi-tag taint
analysis capable of identifying bootloader vulnerabili-
ties. Our tool highlighted 36 potentially dangerous paths,
and, for 38.3% of them, we found actual vulnerabilities.
In particular, we were able to identify six previously-
unknown vulnerabilities (five of them already confirmed
by the vendors), as well as rediscover one that had been
previously-reported (CVE-2014-9798). Some of these
vulnerabilities would allow an adversary with root privi-
leges on the Android OS to execute arbitrary code as part
of the bootloader. This compromises the entire chain of
trust, enabling malicious capabilities such as access to
the code and storage normally restricted to TrustZone,
and to perform permanent denial-of-service attacks (i.e.,
device bricking). Our tool also identified two bootload-
ers that can be unlocked by an attacker with root privi-
leges on the OS.

We finally propose a modification to existing, vulner-
able bootloaders, which can quickly and easily protect
them from any similar vulnerabilities due to compromise
of the high-level OS. These changes leverage hardware
features already present in mobile devices today and,
when combined with recommendations from Google [8]
and ARM [6], enforce the least-privilege principle, dra-
matically constraining the attack surface of bootloaders
and allowing for easier verification of the few remaining
attackable components.

In summary, our contributions are as follows:
• We perform a study of popular bootloaders present

on mobile devices, and compare the security proper-
ties they implement with those suggested by ARM
and Google.
• We develop a novel combination of program anal-

ysis techniques, including static analysis as well
as symbolic execution, to detect vulnerabilities in
bootloader implementations that can be triggered
from the high-level OS.
• We implement our technique in a tool, called BOOT-

STOMP, to evaluate modern, real-world bootload-
ers, and find six previously-unknown critical vulner-

abilities (which could lead to persistent compromise
of the device) as well as two unlock-bypass vulner-
abilities.
• We propose mitigations against such attacks, which

are trivial to retrofit into existing implementations.

In the spirit of open science, we make our analysis tool
publicly available to the community1.

2 Bootloaders in Theory

Today’s mobile devices incorporate a number of secu-
rity features aimed at safeguarding the confidentiality,
integrity, and availability of users’ devices and data. In
this section, we will discuss Trusted Execution Environ-
ments, which allow for isolated execution of privileged
code, and Trusted Boot, aimed at ensuring the integrity
and provenance of code, both inside and outside of TEEs.

2.1 TEEs and TrustZone

A Trusted Execution Environment (TEE) is the notion
of separating the execution of security-critical (“trusted”)
code from that of the traditional operating system (“un-
trusted”) code. Ideally, this isolation is enforced using
hardware, such that even in the event the un-trusted OS
is completely compromised, the data and code in the TEE
remain unaffected.

Modern ARM processors, found in almost all mobile
phones sold today, implement TrustZone[1], which pro-
vides a TEE with hardware isolation enforced by the ar-
chitecture. When booted, the primary CPU creates two
“worlds”–known as the “secure” world and “non-secure”
world, loads the un-trusted OS (such as Android) into the
non-secure world, and a vendor-specific trusted OS into
the secure world. The trusted OS provides various cryp-
tographic services, guards access to privileged hardware,
and, in recent implementations, can be used to verify the
integrity of the un-trusted OS while it is running. The un-
trusted kernel accesses these commands by issuing the
Secure Monitor Call (SMC) instruction, which both trig-
gers the world-switch operation, and submits a command
the Trusted OS and its services should execute.

ARM Exception Levels (EL). In addition to being in
either the secure or non-secure world, ARM processors
support “Exception Levels,” which define the amount of
privilege to various registers and hardware features the
executing code has. The 64-bit ARM architecture defines
four such levels, EL0-EL3. EL0 and EL1 map directly to
the traditional notion of “user-mode” and “kernel mode,”
and are used for running unprivileged user applications

1https://github.com/ucsb-seclab/bootstomp
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and standard OS kernels respectively. EL2 is used for im-
plementing hypervisors and virtualization, and EL3 im-
plements the Secure Monitor, the most privileged code
used to facilitate the world-switch between secure and
non-secure. During the boot process described below,
the initial stages, until the non-secure world bootloader
is created, runs at EL3.

2.2 The Trusted Boot Process
In a traditional PC environment, the bootloader’s job is
to facilitate the location and loading of code, across var-
ious media and in various formats, by any means neces-
sary. However, in modern devices, particularly mobile
devices, this focus has shifted from merely loading code
to a primary role in the security and integrity of the de-
vice. To help limit the impact of malicious code, its job
is to verify both the integrity and provenance of the soft-
ware that it directly executes.

As with the traditional PC boot process, where a BIOS
loaded from a ROM chip would load a secondary boot-
loader from the hard disk, mobile bootloaders also con-
tain a chain of such loaders. Each one must, in turn,
verify the integrity of the next one, creating a Chain of
Trust (CoT).

On ARM-based systems, this secured boot process
is known as Trusted Boot and is detailed in the ARM
Trusted Board Boot Requirements (TBBR) specification.
While this document is only available to ARM’s hard-
ware partners, an open-source reference implementation
that conforms to the standard is available [6].

While this standard, and even the reference implemen-
tation, does leave significant room for platform-specific
operations, such as initialization of hardware peripher-
als, implementations tend to follow the same basic struc-
ture. One important aspect is the Root of Trust (RoT),
which constitutes the assumptions about secure code and
data that the device makes. In ARM, this is defined to
be 1) the presence of a “burned-in,” tamper-proof public-
key from the hardware manufacturer that is used to verify
subsequent stages, and 2) the very first bootloader stage
being located in read-only storage.

While manufacturers are free to customize the Trusted
Boot process when creating their implementations,
ARM’s reference implementation serves as an example
of how the process should proceed. The boot process
for the ARM Trusted Firmware occurs in the following
steps, as illustrated in Figure 1.

1. The CPU powers on, and loads the first stage boot-
loader from read-only storage.

2. This first stage, known as BL1, Primary Boot
Loader (PBL), or BootROM, performs any neces-
sary initialization to locate the next stage from its
storage, loads it into memory, verifies its integrity

using the Root of Trust Public Key (ROTPK), and if
this is successful, executes it. Since it is on space-
restricted read-only media, its functionality is ex-
tremely limited.

3. BL2, also known as the Secondary Boot Loader
(SBL) is responsible for creating the secure and
non-secure worlds and defining the memory per-
missions that enforce this isolation. It then lo-
cates and loads into memory up to three third-stage
bootloaders, depending on manufacturer’s config-
uration. These run at each of the EL3, EL2, and
EL1 levels, and are responsible for setting up the
Secure Monitor, a hypervisor (if present), and the
final-stage OS bootloader.

4. BL2 then executes BL31, the loader running at EL3,
which is responsible for configuring various hard-
ware services for the trusted and un-trusted OSes,
and establishing the mechanism used to send com-
mands between the two worlds. It then executes the
BL32 loader, if present, which will eventually exe-
cute BL33.

5. BL33 is responsible for locating and verifying the
non-secure OS kernel. Exactly how this is done is
OS-dependent. This loader runs with the same priv-
ilege as the OS itself, at EL1.

Next, we will detail extensions to this process devel-
oped for the Android ecosystem.

2.3 Verified Boot on Android

ARM’s Trusted Boot standard only specifies stages of the
boot process up to the point at which the OS-specific boot
loader is executed. For devices running Android, Google
provides a set of guidelines for Verified Boot [8], which
describes high-level functionality an Android bootloader
should perform.

Unlike the previous stages, the Android bootloader
provides more functionality than just ensuring integrity
and loading code. It also allows for the user or OS to
elect to boot into a special recovery partition, which de-
ploys firmware updates and performs factory reset oper-
ations. Additionally, modern Android bootloaders also
participate in enabling full-disk encryption and trigger-
ing the initialization of Android-specific TrustZone ser-
vices.

Ideally, the verification of the final Android kernel to
be booted would effectively extend the Chain of Trust all
the way from the initial hardware-backed key to the ker-
nel. However, users wishing to use their devices for de-
velopment need to routinely run kernels not signed by the
device manufacturer. Therefore, Google specifies two
classes of bootloader implementations: Class A, which
only run signed code, and Class B, which allow for the
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Figure 1: Overview of the Trusted/Verified Boot implementation according to the ARM and Google specifications. Between
parentheses the name of the internal storage partition where the code is located in a typical implementation.

user to selectively break the Chain of Trust and run un-
signed code, in a tamper-evident manner, referred to as
unlocking. Devices will maintain a security state (either
LOCKED or UNLOCKED) and properties of the tran-
sition between the two states must be enforced. With
regard to Class B implementations, Google requires that:
• The bootloader itself must be verified with a

hardware-backed key.
• If verification of the Android kernel with the OEM

key (a key hard-coded by the device’s manufacturer
in the bootloader code) fails for any reason, a warn-
ing will be displayed to the user for at least five sec-
onds. Then, if the bootloader is in the LOCKED state,
the device will not boot, otherwise, if the bootloader
is in the UNLOCKED state the Android kernel will be
loaded.
• The device will only transition from the LOCKED

state to the UNLOCKED state if the user first selects
the “allow OEM Unlock” option from the Devel-
oper Options menu in Android’s settings applica-
tion, and then issues the Fastboot command oem

unlock, or an equivalent action for devices without
Fastboot.
• When the device’s lock state changes for any rea-

son, user-specific data will be rendered unreadable.
Beyond the guidelines, Android bootloaders (typically

those that fall into Class B) also provide some means of
rewriting partitions on internal storage over USB. Google
suggests the use of the Fastboot protocol, also utilized for
the locking and unlocking process, for this functionality.

3 Bootloaders in Practice

While the standards and guidelines on bootloader design
in the previous section do cover many important security-

related aspects, a significant amount of flexibility is given
to OEMs to allow for functionality specific to their plat-
forms. These involve both aspects of the hardware itself,
but also logical issues with managing the security state
of the device. Even though this flexibility makes it hard
to reason about the actual security properties of bootload-
ers, it is difficult to envision a future for which these stan-
dards would be more precise. In fact, there are a number
of technical reasons due to which the definition of these
standards cannot be as comprehensive as we would hope.

One of these technical aspects is related to peripherals
and additional custom hardware that is shipped with each
device. While platform-specific code can be inserted at
every stage in ARM’s prototypical Trusted Boot imple-
mentation, no direction is given as to what code should
be inserted at which points in the boot process. Addi-
tionally, initialization tasks cannot be too tightly coupled
with the rest of the boot sequence, as peripheral hard-
ware, such as modems, may incorporate code from dif-
ferent vendors and necessitate a modification of the ini-
tialization process. Furthermore, vendors of the final de-
vices may not be able to alter earlier stages of the boot
process to add necessary initialization code, as they may
be locked to code supplied by the chip manufacturer. Fi-
nally, even aside from these issues, there are constraints
on storage media. ROMs, such as those mandated for the
first bootloader stage, tend to be small, and are inherently
a write-once medium, precluding their use for any code
that may need to be updated.

As an example, consider a mobile device with an on-
board GSM or LTE modem. Depending on the hardware
used, this modem could exist either as part of the System-
on-a-chip (SoC) package or externally on another chip.
Because the initialization of these two layouts has differ-
ent requirements (e.g., initializing memory busses and
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transferring code to an external modem vs. executing
modem code on the same chip), this may need to happen
at different phases in the boot process, where different
levels of hardware access are available.

This also applies to various bootloader services, such
as partition management and unlocking. Google’s im-
plementation provides the Fastboot protocol in the final-
stage bootloader, but manufacturers are free to use alter-
native methods, as well as incorporate this functionality
into other boot stages.

Where and how all of these features are implemented
can have a significant security impact. If a stage in
the bootloader is compromised, this could lead to the
compromise of all following stages, along with any pe-
ripherals or secured storage that they manage. The im-
pact of gaining control over a bootloader can be miti-
gated by using the lowest-possible Exception Level (dis-
cussed in the previous section), and performing tasks that
involve taking potentially-untrusted input in later, less-
privileged stages of the process. However, once again,
other than the Trusted Firmware reference implementa-
tion, no guidance is given on how to manage exception
levels with respect to bootloader features.

One aspect that increases the attack surface of modern
bootloaders is that the code used to bootstrap additional
hardware, such as modems, needs to be updateable, and
thus needs to be stored on writable partitions. These
writeable partitions, in turn, could be modified by an at-
tacker with privileged code execution. Thus, it is critical
that the content of these partitions is verified, such as by
checking the validity of a cryptographic signature. This
should ideally be accomplished by a previous bootloader
stage, which thus needs to load, parse, and verify these
partitions. This usage of data from writeable (and, as dis-
cussed previously, potentially attacker-controlled) parti-
tions is what makes common memory corruption vulner-
abilities in bootloaders very dangerous.

3.1 Bootloader Implementations
In the remainder of this section, we will explore four
bootloaders from popular device manufacturers. These
implementations all serve the same functions for their
respective hardware platforms and aim to comply with
both ARM and Google’s standards, but do so in vastly
different ways.

A comparison of the implementations can be found in
Table 1. If an attacker can compromise the final stage
bootloader, they will likely be able to also affect any
functionality it contains, as well as any that it in turn
loads, which in these cases, is the Android kernel and
OS.

Qualcomm. The Qualcomm MSM chipset family is by
far the most popular mobile chipset in devices today, rep-

Modem Peripherals
Vendor EL Fastboot Initialization Initialization

Qualcomm EL1 3 7 7
HiSilicon EL3 3 3 3
NVIDIA EL1 3 7 7
MediaTek EL1 3 3 7

Table 1: Final-stage Bootloader features, and which Exception
Level they occur in

resenting over 60% of mobile devices [16]. While many
manufacturers of MSM-based devices will customize the
bootloader to fit their specific product’s features, Qual-
comm’s “aboot” bootloader is still used with little mod-
ifications on many of them.
aboot is based on the Little Kernel (LK) open-source

project, and provides the final stage non-secure OS load-
ing functionality (equivalent to BL33 in ARM’s refer-
ence implementation). In further similarity to BL33,
it runs at EL1, giving it the same level of privilege as
the kernel it aims to load. It conforms very closely to
Google’s Verified Boot guidelines, implementing the tra-
ditional set of Android-specific features, including Fast-
boot, recovery partition support, and unlocking. aboot

can be used in either a Class A or Class B Verified
Boot implementation, as Fastboot, and therefore unlock-
ing can be disabled by the OEM or mobile carrier.

HiSilicon and Huawei. HiSilicon Kirin-based devices,
such as those from Huawei, implement a very different
bootloader architecture to the others we examined. In-
stead of merely being responsible for the initialization
required to load Android, this loader also combines func-
tionality usually found elsewhere in the boot process,
such as initializing the radio hardware, secure OS, se-
cure monitor, among others, giving it the equivalent roles
of BL31, BL33, and BL2 in the ARM reference imple-
mentation. In fact, this bootloader is loaded directly by
the ROM-based first-stage bootloader (BL1). To have
the privilege necessary to perform all these tasks, HiSi’s
bootloader runs at EL3, and executes the Linux kernel in
the boot partition at EL1 when it is finished. Along with
its hardware initialization tasks, it also includes Fastboot
support, by which it allows for unlocking.

MediaTek. Devices based on MediaTek chipsets, such
as the Sony Xperia XA and other similar handsets, im-
plement a bootloader similar to Qualcomm’s but using
a very different codebase. The Android-specific loader
runs at EL1, and is also responsible for partition manage-
ment and unlocking via Fastboot. Unlike Qualcomm’s,
this loader is also responsible for bootstrapping the mo-
dem’s baseband firmware, meaning that any compromise
in the bootloader could impact this critical component as
well.
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NVIDIA. NVIDIA’s Tegra-based devices ship with a
bootloader known as hboot. This bootloader is very
similar to Qualcomm’s, in that it runs at EL1, and im-
plements only the fastboot functionality at this stage.

4 Unlocking Bootloaders

While security-focused bootloaders do significantly raise
the bar for attackers wishing to persistently compromise
the device, there are many cases in which “unlocking,” as
detailed in Section 2, has legitimate benefits. Only per-
mitting the execution of signed code makes development
of the Android OS itself problematic, as well as disal-
lowing power-users from customizing and modifying the
OS’s code.

Of course, this is a very security-sensitive function-
ality; an attacker could unlock the bootloader and then
modify the relevant partitions as a way of implement-
ing a persistent rootkit. Google’s Verified Boot standard
covers the design of this important mechanism, discusses
many high-level aspects of managing the device’s secu-
rity state (see Section 2), and even provides specifics
about digital signatures to be used. However, as with the
ARM specifications covering Trusted Boot, these specs
must also allow for platform-specific variations in imple-
mentation, such as where or how these security mecha-
nisms are integrated into the boot process.

Furthermore, there are many unspecified, implicit
properties of Verified Boot that a valid implementation
should enforce, to ensure that the device is protected
from privileged code execution or unauthorized physical
control. These properties include:

The device state should only transition from locked to
unlocked with explicit user content. This is implicitly
handled by requiring a command sent to Fastboot to un-
lock, as this usually requires physical access to activate,
and causes a warning to be displayed to the user. Sim-
ilarly, a malicious app — no matter how privileged it is
— should not be able to silently unlock the bootloader.

Only the authorized owner of the device should be
able to unlock the bootloader. This means that anyone
in possession of a phone that is not theirs cannot simply
access Fastboot or similar protocol (i.e., by rebooting the
phone) and trigger an unlock. This is avoided on some
devices through checking an additional flag called “OEM
unlock,” (or, more informally “allow unlock”). This flag
is controlled by an option in the Android Settings menu,
and it is only accessible if the device is booted and the
user has authenticated (for instance, by inserting the cor-
rect “unlock pattern”). A proper implementation of Fast-
boot will honor the “OEM unlock” flag and it will refuse
to unlock the bootloader if this flag is set to false.

Interestingly, there is no requirement on the storage of
the device’s security state. While the standard offers a
suggestion about how to tie this state and its transitions
to the security properties they wish to enforce, the exact
storage of this information is left out, likely to account
for hardware variations with respect to secured storage.
Unfortunately, as we discuss in Section 5, specifics of
such implementation details can negatively impact the
security properties of the bootloader.

4.1 Unlocking vs Anti-Theft
Another interesting factor related to bootloaders and
bootloader locking is the overall usability of a device
by an attacker after it has been stolen. As mandated by
laws [30] and industry standards [9], phones should im-
plement mechanisms to prevent their usage when stolen.
Google refers to this protection as Factory Reset Pro-
tection (FRP) [7], and it has been enabled in Android
since version 5.0. In Google’s own implementations, this
means that the Android OS can restrict the usage of a
phone, even after a factory-reset, unless the legitimate
user authenticates.

This presents an interesting contradiction in relation
to bootloader unlocking capabilities. First, since this
mechanism is governed from within the OS, it could be
leveraged by a malicious process with sufficient privi-
lege. Of course, the original owner should be able to au-
thenticate and restore the device’s functionality, but this
could still be used as a form of denial-of-service. Sec-
ond, some manufacturers offer low-level firmware up-
load functionality, such as in the BL1 or BL2 stages,
designed to restore the device to a working state in the
event it is corrupted. This feature is in direct opposition
to anti-theft functionality, as if a user can recover from
any kind of corruption, this mechanism may be able to
be bypassed. However, if this mechanism respects the
anti-theft feature’s restrictions on recovering partitions,
this also means the device can be rendered useless by a
sufficiently-privileged malicious process. In other words,
there is an interesting tension between anti-theft and anti-
bricking mechanisms: if the anti-theft is implemented
correctly, an attacker could use this feature against the
user to irremediably brick her device; vice versa, if an
anti-bricking mechanism is available, a thief could use
this mechanism to restore the device to a clean, usable
state. In Section 8, we explore how this tension can be
resolved.

5 Attacking Bootloaders

Regardless of implementation specifics bootloaders have
many common functions that can be leveraged by an at-
tacker. While they may appear to be very isolated from

786    26th USENIX Security Symposium USENIX Association



possible exploitation, bootloaders still operate on input
that can be injected by a sufficiently-privileged attacker.
For example, the core task a bootloader must perform
(that of booting the system) requires the bootloader to
load data from non-volatile storage, figure out which sys-
tem image on which partition to boot, and boot it. To en-
force the Chain of Trust, this also involves parsing cer-
tificates and verifying the hash of the OS kernel, all of
which involves further reading from the device’s storage.
In Class B implementations, the device’s security state
must also be consulted to determine how much verifi-
cation to perform, which could be potentially stored in
any number of ways, including on the device’s storage as
well. While bootloader authors may assume that this in-
put is trusted, it can, in fact, be controlled by an attacker
with sufficient access to the device in question.

In this work, we assume an attacker can control any
content of the non-volatile storage of the device. This
can occur in the cases that an attacker attains root privi-
leges on the primary OS (assumed to be Android for our
implementation). While hardware-enforced write pro-
tection mechanisms could limit the attacker’s ability to
do this, these mechanisms are not known to be in wide
use today, and cannot be used on any partition the OS
itself needs to routinely write to.

Given this attacker model, our goal is to automatically
identify weaknesses, in deployed, real-world bootloader
firmware, that can be leveraged by an attacker conform-
ing to our attacker model to achieve a number of goals:
Code execution. Bootloaders process input, read from
attacker-controlled non-volatile storage, to find, validate,
and execute the next step in the boot process. What if the
meta-data involved in this process is maliciously crafted,
and the code processing it is not securely implemented?
If an attacker is able to craft specified meta-data to trig-
ger memory corruption in the bootloader code, they may
achieve code execution during the boot process. Depend-
ing on when in the boot process this happens, it might
grant the attacker control at exception levels consider-
ably higher than what they may achieve with a root or
even a kernel exploit on the device. In fact, if this is done
early enough in the boot process, the attacker could gain
control over Trusted Execution Environment initializa-
tion, granting them a myriad of security-critical capabil-
ities that are unavailable otherwise.
Bricking. One aspect that is related to secure bootload-
ers is the possibility of “bricking” a device, i.e., the cor-
ruption of the device so that the user has no way to
re-gain control of it. Bootloaders attempt to establish
whether a piece of code is trusted or not: if such code is
trusted, then the bootloader can proceed with their load-
ing and execution. But what happens when the trust can-
not be established? In the general case, the bootloader
stops and issues a warning to the user. The user can, usu-

ally through the bootloader’s recovery functionality (e.g.,
Fastboot) restore the device to a working state. However,
if an attacker can write to the partition holding this re-
covery mechanism, the user has no chance to restore the
device to an initial, clean state, and it may be rendered
useless.

This aspect becomes quite important when consider-
ing that malware analysis systems are moving from using
emulators to using real, physical devices. In this context,
a malware sample has the capability of bricking a device,
making it impossible to re-use it. This possibility consti-
tutes a limitation for approaches that propose baremetal
malware analysis, such as BareDroid [20].

One could think of having a mechanism that would
offer the user the possibility of restoring a device to a
clean state no matter how compromised the partitions
are. However, if such mechanism were available, any
anti-theft mechanism (as discussed in Section 4), could
be easily circumvented.

Unsafe unlock. As discussed in Section 4, the trusted
boot standard does not mandate the implementation de-
tails of storing the secure state. Devices could use an
eMMC flash device with RPMB, an eFuse, or a special
partition on the flash, depending on what is available. If
the security state is stored on the device’s flash, and a
sufficiently-privileged process within Android can write
to this region, the attacker might be able to unlock the
bootloader, bypassing the requirement to notify the user.
Moreover, depending on the implementation, the boot-
loader could thus be unlocked without the user’s data be-
ing wiped.

In the next section, we will propose a design for an
automated analysis approach to detect vulnerabilities in
bootloader implementations. Unfortunately, our exper-
iments in Section 7 show that currently deployed boot-
loaders are vulnerable to combinations of these issues.
But hope is not lost – in Section 8, we discuss a mecha-
nism that addresses this problematic aspect.

6 BOOTSTOMP

The goal of BOOTSTOMP is to automatically identify se-
curity vulnerabilities that are related to the (mis)use of
attacker-controlled non-volatile memory, trusted by the
bootloader’s code. In particular, we envision using our
system as an automatic system that, given a bootloader
as input, outputs a number of alerts that could signal
the presence of security vulnerabilities. Then, human
analysts can analyze these alerts and quickly determine
whether the highlighted functionality indeed constitute a
security threat.

Bootloaders are quite different from regular programs,
both regarding goals and execution environment, and
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they are particularly challenging to analyze with existing
tools. In particular, these challenges include:
• Dynamic analysis is infeasible. Because a primary

responsibility of bootloaders is to initialize hard-
ware, any concrete execution of bootloaders would
require this hardware.
• Bootloaders often lack available source code, or

even debugging symbols. Thus, essential tasks, in-
cluding finding the entry point of the program, be-
come much more difficult.
• Because bootloaders run before the OS, the use of

syscalls and standard libraries that depend on this
OS is avoided, resulting in all common functional-
ity, including even functions such as memcpy, being
reimplemented from scratch, thus making standard
signature-based function identification schemes in-
effective.

To take the first step at overcoming these issues, we
developed a tool, called BOOTSTOMP, combining differ-
ent static analyses as well as a dynamic symbolic execu-
tion (DSE) engine, to implement a taint analysis engine.
To the best of our knowledge, we are the fist to propose
a traceable offline (i.e., without requiring to run on real
hardware) taint analysis completely based on dynamic
symbolic execution. Other works as [24] [33] propose
completely offline taint analyses on binaries. In contrast
to our work, they implement static taint analyses, and are
hence not based on dynamic symbolic execution.

The main problem with these types of approaches is
that, though sound, they might present a high rate of false
positives, which a human analyst has to filter out by man-
ually checking them. Note that, in the context of taint
analysis, a false positive result is a path which is mistak-
enly considered tainted. Furthermore, producing a trace
(i.e., a list of basic blocks) representing a tainted path
using a static taint analysis approach is not as simple as
with symbolic execution.

On the other hand, our approach based on DSE,
though not sound (i.e., some tainted paths might not be
detected as explained in Section 7.4), presents the perk
of returning a traceable output with a low false positives
rate, meaning that the paths we detected as tainted are
indeed tainted, as long as the initial taint is applied and
propagated correctly. Note that there is a substantial dif-
ference between false positives when talking about taint
analyses and when talking about vulnerability detection.
Though our tool might return some false positives in
terms of detected vulnerabilities, as seen in Section 7,
false positives in tainted path detection are rare (we never
found any in our experiments) as our tool is based on
DSE. For a deeper discussion about the results obtained
by BOOTSTOMP, please refer to Section 7.4.

With these considerations in mind, since the output of
our analysis is supposed to be triaged by a human, we

Figure 2: BOOTSTOMP’s overview.

opted for a taint analysis based on DSE.
This section discusses the goal, the design features,

and the implementation details of BOOTSTOMP.

6.1 Design

Our system aims to find two specific types of vulnera-
bilities: uses of attacker-controlled storage that result in
a memory-corruption vulnerability, and uses of attacker-
controlled storage that result in the unlocking of the boot-
loader. While these two kinds of bugs are conceptually
different, we are able to find both using the same under-
lying analysis technique.

The core of our system is a taint analysis engine,
which tracks the flow of data within a program. It
searches for paths within the program in which a seed of
taint (such as the attacker-controlled storage) is able to
influence a sink of taint (such as a sensitive memory op-
eration). The tool raises an alert for each of these poten-
tially vulnerable paths. The human analyst can then pro-
cess these alerts and determine whether these data flows
can be exploitable.

Our system proceeds in the following steps, as shown
in Figure 2:

Seed Identification. The first phase of our system in-
volves collecting the seeds of taint. We developed an
automated analysis step to find all the functions within
the program that read data from any non-volatile stor-
age, which are used as the seeds when locating memory
corruption vulnerabilities. However, if the seeds have
semantics that cannot be automatically identified, such
as the unlocking mechanism of the bootloader, BOOT-
STOMP allows for the manual specification of seeds by
the analyst. This feature comes particularly in handy
when source code is available, as the analyst can rely on
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it to manually provide seeds of taint.

Sink Identification. We then perform an automated
analysis to locate the sinks of taint, which represent code
patterns that an attacker can take advantage of, such as
bulk memory operations. Moreover, writes to the de-
vice’s storage are also considered sinks for locating po-
tentially attacker-controlled unlocking mechanisms.

Taint Analysis. Once the seeds of taint have been col-
lected, we consider those functions containing the seed
of taint and, starting from their entry point, perform a
multi-tag taint analysis based on under-constrained sym-
bolic execution [23] to find paths where seeds reach
sinks. This creates alerts, for an analyst to review, includ-
ing detailed context information, which may be helpful
in determining the presence and the exploitability of the
vulnerability.

In the remainder of this section, we will explore the
details about each of these steps.

6.2 Seed Identification

1 #define SEC_X_LEN 255

2

3 void get_conf_x () {

4 //...

5 n = read_emmc("sec_x", a2, a3);

6 if (n < SEC_X_LEN) {

7 return;

8 }

9 //...

10 }

11

12 int get_user_data () {

13 // ...

14 if(! read_emmc(b1 , b2, 0)) {

15 debug("EMMC_ERROR: no data read");

16 return -1;

17 }

18 // ...

19 }

Listing 1: By scanning every call site of read emmc,
BOOTSTOMP infers that the first parameter is a string, the third
can assume the value zero, and the returned type is an integer.

For finding memory corruption vulnerabilities, our
system supports the automatic identification of seeds of
taint. We use approaches similar to those in prior work
(e.g., [27]). We rely on error logging because there are
many different mechanisms that may read from non-
volatile memory, or different types of memory (plain
flash memory vs. eMMC), and these error log strings
give us semantic clues to help finding them. Our sys-
tem looks for error logging functions using keywords as
mmc, oeminfo, read, and fail, and avoiding keywords like
memory and write.

This approach is useful for identifying functions that
somehow retrieve the content from a device’s storage.

However, since the signature of these functions is not
known, it is challenging to identify which argument of
this function stores the receiving buffer. To determine
the argument to be tainted, we use an approach based on
type inference.

Ideally, the taint should only be applied to the seed’s
argument pointing to the memory location where the read
data will be stored. As distinguishing pointers from inte-
gers is an undecidable problem [31], our analysis might
dereference an integer in the process of applying the
taint, resulting in a possible huge rate of false positive
alarms. Nonetheless, during this study, we observed that,
surprisingly, strings might not always be passed by refer-
ence to a function, but rather by value. During our analy-
sis, we check every call site of the functions we retrieved
using the above mentioned method and check the entity
of every passed argument. If an argument is composed of
only ASCII printable characters, we assume it is a string,
and we consider the same argument to a be a string for
every other call to the same function. When looking for
the memory locations to apply the taint, we consider this
information to filter out these arguments. We also do not
taint arguments whose passed values are zeroes, as they
might represent the NULL value.

As an example, consider Listing 1. First, BOOT-
STOMP retrieves the function read emmc as a possible
seed function, by analyzing the error log at line 18.
Then, it scans every call site of read emmc and infers
that the returned value is an integer (as it is compared
against an integer variable), the first parameter is a string
and the third parameter can assume the value zero. As
read emmc is a candidate seed function, it has to store
the content read from a non-volatile storage in a valid
buffer, pointed by a non-null pointer. Therefore, BOOT-
STOMP applies the taint only to the second parameter
of read emmc (a2 and b2). Note that, as the receiving
buffer could be returned by a seed function, if the type
of the returned value cannot be inferred, the variable it is
assigned to is tainted as well. Note that, when a tainted
pointer is dereferenced, we taint the entire memory page
it points to.

In the case of locating unlocking-related vulnerabil-
ities, there is no bootloader-independent way of locat-
ing the unlocking function, since the implementation de-
tails significantly vary. Therefore, BOOTSTOMP also
supports supplying the seeds manually: an analyst can
thus perform reverse-engineering to locate which func-
tion implements the “unlock” functionality and manu-
ally indicate these to our analysis system. While this
is not a straightforward process, there is a specific pat-
tern a human analyst can rely on: Fastboot’s main com-
mand handler often includes a basic command line parser
that determines which functionality to execute, and the
strings involved are often already enough to quickly pin-

USENIX Association 26th USENIX Security Symposium    789



point which function actually implements the “unlock”
functionality.

6.3 Sink Identification

Our automatic sink identification strategy is designed to
locate four different types of sinks:

memcpy-like functions. BOOTSTOMP locates memcpy-
like functions (e.g., memcpy, strcpy) by looking for se-
mantics that involve moving memory, unchanged, from
a source to a destination. As mentioned above, there are
no debugging symbols, and standard function signature-
based approaches would not be effective. For this reason,
we rely on a heuristic that considers the basic blocks con-
tained within each function to locate the desired behav-
ior. In particular, a function is considered memcpy-like
if it contains a basic block that meets the following con-
ditions: 1) Loads data from memory; 2) stores this same
data into memory; 3) increments a value by one unit (one
word, one byte, etc). Moreover, since it is common for
bootloaders to rely on wrapper functions, we also flag
functions that directly invoke one (and only one) function
that contains a block satisfying the above conditions.

We note that there may be several other functions that,
although satisfy these conditions as well, do not imple-
ment a memcpy-like behavior. Thus, we rely on an addi-
tional observation that memcpy and strcpy are among the
most-referenced functions in a bootloader, since much of
their functionality involves the manipulation of chunks
of memory. We therefore sort the list of all functions in
the program by their reference count, and consider the
first 50 as possible candidates. We note that, empirically,
we found that memcpy functions often fall within the top
five most-referenced functions.

Attacker-controlled dereferences. BOOTSTOMP con-
siders memory dereferences controlled by the attacker as
sinks. In fact, if attacker-controlled data reaches a deref-
erence, this is highly indicative of an attacker-controlled
arbitrary memory operation.

Attacker-controlled loops. We consider as a sink any
expression used in the guard of a loop. Naturally, any
attacker able to control the number of iterations of a loop,
could be able to mount a denial-of-service attack.

Writes to the device’s storage. When considering un-
locking vulnerabilities, we only use as sinks any write
operation to the device’s storage. This encodes the no-
tion that an unlocking mechanism that stores its secu-
rity state on the device’s storage may be controllable by
an attacker. To identify such sinks, we adopt the same
keyword-based approach that we employed to identify
the seeds of taint (i.e., by using relevant keywords in er-
ror logging messages).

Tainted 
Page 

ty

seed_func(ty);
x = ty[5];

Code Memory

Symbolic expressions

ty = TAINT_ty
x = deref(TAINT_ty_loc_5)
 

x

Figure 3: Taint propagation example.

6.4 Taint Tracking

While we cannot execute the bootloaders concretely, as
we discussed above, we can execute them symbolically.
Our interest is in the path the data takes in moving from
a seed to a sink, and path-based symbolic execution lets
us reason about this, while implicitly handling taint-
propagation. Given a bootloader, along with the seeds
and sinks identified in the previous stages, the analysis
proceeds as follows:
• Locate a set of entry points, defined as any function

that directly calls one of the identified seeds.
• Begin symbolic execution at the beginning of each

entry point. Note that, before starting to symboli-
cally execute an entry point, BOOTSTOMP tries to
infer, looking for known header as ELF, where the
global data is located. If it does find it, it uncon-
strains each and every byte in it, so to break any as-
sumptions about the memory content before starting
to analyze the entry point.
• When a path encounters a function, either step over

it, or step into it, considering the code traversal rules
below.
• When a path reaches a seed, the appropriate taint is

applied, per the taint policy described below.
• Taint is propagated implicitly, due to the nature of

symbolic execution. This includes the return values
of functions handling tainted data.
• If a path reaches a sink affected by tainted data, an

alert is raised.

Code traversal. To avoid state explosion, we constrain
the functions that a path will traverse, using an adaptive
inter-function level. Normally, the inter-function level
specifies how many functions deep a path would traverse.
However, the handling of tainted data in our analysis
means that we implicitly care more about those func-
tions which consume tainted data. Therefore, we only
step into functions that consume tainted data, up to the
inter-function level. For our experiments, we fixed the
inter-function level at 1. More in detail, our analysis tra-
verses the code according to the following rules:
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• When no data is tainted, functions are not followed,
such as at the beginning of an entry point, before
the seed has been reached. Particularly, this path
selection criteria allows us to have a fast yet accu-
rate taint analysis, at the expense of possible false
negative results, as some tainted paths might not be
discovered due to some missed data aliases.
• Functions are not followed if their arguments are

not tainted.
• Analysis terminates when all the possible paths be-

tween the entry point and its end are analyzed, or a
timeout is triggered. Note that we set a timeout of
ten minutes for each entry point. As we will show
in Section 7.2 our results indicate that this is a very
reasonable time limit.
• Unless any of the above conditions are met, we fol-

low functions with an inter-function level of 1. In
other words, the analysis will explore at least one
function away from the entry point.
• We explore the body of a loop (unroll the loop) ex-

actly once, and then assume the path exits the loop.

(Under-Constrained) Symbolic Execution. Our ap-
proach requires, by design, to start the analysis from arbi-
trary functions, and not necessarily from the bootloader’s
entrypoint, which we may not even be able to determine.
This implies that the initial state may contain fewer con-
straints than it should have at that particular code point.
For this reason, we use under-constrained symbolic ex-
ecution, first proposed by Ramos et al. [23], which has
been proven to reach good precision in this context.
Multi-tag taint analysis. To reach a greater preci-
sion, our system implements a multi-tag tainting ap-
proach [18]. This means that, instead of having one con-
cept of taint, each taint seed generates tainted data that
can be uniquely traced to where it was generated from.
Furthermore, we create unique taint tags for each invoca-
tion of a seed in the program. This means, for example,
that if a taint seed is repeatedly called, it will produce
many different taint tags. This improves precision when
reasoning about taint flow.
Taint propagation and taint removal. Taint is implic-
itly propagated using symbolic execution, as no con-
straint is ever dropped. This means that if a variable x
depends on a tainted variable ty, the latter will appear
in the symbolic expression of the former. As an exam-
ple consider Figure 3. Suppose that a location of an ar-
ray pointed by ty is dereferenced and assigned to x, such
as x = ty[5]. Assuming now that ty is tainted because
pointing to data read from an untrusted storage, the mem-
ory page it points to will be tainted, meaning that every
memory location within that page will contain a sym-
bolic variable in the form TAINT ty loc i. After the in-
struction x = ty[5], the symbolic variable x will be in the

form dere f (TAINT ty loc 5).
On the other hand, taint is removed in two cases. Im-

plicitly when a non-tainted variable or value is written
in a tainted memory location, or when a tainted variable
is constrained within non tainted values. As an exam-
ple and by referring to the above tainted variable x, if a
check such as i f (x < N), where N is non-tainted value,
is present, x would get untainted.

Concretization strategy. When dealing with memory
writes in symbolic locations, target address needs to be
concretized. Unlike existing work [5], our analysis opts
to concretize values with a bias toward smaller values in
the possible range (instead of being biased toward higher
values). This means that, when a symbolic variable could
be concretized to more than one value, lower values are
preferred. In previous work, higher values were chosen
to help find cases where memory accesses off the end
of an allocated memory region would result in vulner-
abilities. However, these values may not satisfy condi-
tional statements in the program that expect the value to
be “reasonable,” (such as in the case of values used to
index items in a vector) and concretizing to lower values
allows paths to proceed deeper into the program. In other
words, we opt for this strategy to maximize the number
of paths explored. Also, when BOOTSTOMP has to con-
cretize some expressions, it tries to concretize different
unconstrained variables to different (low) values. This
strategy aims to keep the false positive rate as low as pos-
sible. For a deeper discussion about how false negatives
and positive might arise, please refer to Section 7.4.

Finally, our analysis heavily relies on angr [28] (taint
engine) and IDA Pro [11] (sink and seed finding).

7 Evaluation

This section discusses the evaluation of BOOTSTOMP on
bootloaders from commercial mobile devices. In partic-
ular, for each of them, we run the analysis tool to locate
the two classes of vulnerabilities discussed in Section 6.
As a first experiment, we use the tool to automatically
discover potential paths from attacker-controllable data
(i.e., the flash memory) to points in the code that could
cause memory corruption vulnerabilities. As a second
experiment, we use the tool to discover potential vul-
nerabilities in how the lock/unlock mechanism is imple-
mented. We ran all of our experiments on a 12-Core Intel
machine with 126GB RAM and running Ubuntu Linux
16.04.

We first discuss the dataset of bootloaders we used,
an analysis of the results, and an in-depth discussion of
several use cases.
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7.1 Dataset

For this work, we considered five different bootloaders.
These devices represent three different chipset families:
Huawei P8 ALE-L23 (Huawei / HiSilicon chipset), Sony
Xperia XA (MediaTek chipset), and Nexus 9 (NVIDIA
Tegra chipset). We also considered two versions of the
LK-based bootloader, developed by Qualcomm. In par-
ticular, we considered an old version of the Qualcomm’s
LK bootloader (which is known to contain a security vul-
nerability, CVE-2014-9798 [19]) and its latest available
version (according to the official git repository [22]).

7.2 Finding Memory Corruption

We used BOOTSTOMP to analyze the five bootloaders in
our dataset to discover memory corruption vulnerabili-
ties. These vulnerabilities could result in arbitrary code
execution or denial-of-service attacks. Table 2 summa-
rizes our findings. In particular, the table shows the num-
ber of seeds, sinks, and entry points identified in each
bootloader. The table also shows the number of alerts
raised for each bootloader. Out of a total of 36, for
12 of them, the tool identified a potential path from a
source to memcpy-like sink, leading to the potential of a
buffer overflow. The tool raised 5 alerts about the pos-
sibility of a tainted variable being dereferenced, which
could in turn constitute a memory corruption bug. Fi-
nally, for 19, the tool identified that tainted data could
reach the conditional for a loop, potentially leading to
denial-of-service attacks. We then manually investigated
all the alerts to determine whether the tool uncovered se-
curity vulnerabilities. Our manual investigation revealed
a total of seven security vulnerabilities, six of which
previously-unknown (five are already confirmed by the
respective vendors), while the remaining one being the
previously-known CVE-2014-9798 affecting an old ver-
sion of Qualcomm’s LK-based bootloader. Note that, as
BOOTSTOMP provides the set of basic blocks composing
the tainted trace together with the involved seed of taint
and sink, manual inspection becomes easy and fast even
for not-so-experienced analysts. We also note that, due to
bugs in angr related to the analysis of ARM’s THUMB-
mode instructions, the MediaTek bootloader was unable
to be processed correctly.

These results illustrate some interesting points about
the scalability and feasibility of BOOTSTOMP. First, we
note that each entry point’s run elapsed on average less
than five minutes (Duration per EP column), discovering
a total of seven bugs. We ran the same set of experiments
using a time limit of 40 minutes. Nonetheless, we no-
ticed that no additional alerts were generated. These two
results led us to believe that a timeout of ten minutes (i.e.,
twice as the average analysis run) was reasonable. Sec-

ond, we noted a peak in the memory consumption while
testing our tool against LK bootloaders. After investi-
gating, we found out that LK was the only bootloader
in the dataset having a well known header (ELF), which
allowed us to unconstrain all the bytes belonging to the
.data and .bss segments, as stated in Section 6. Third, we
note that the overall number of alerts raised is very low,
in the range that a human analyst, even operating without
debugging symbols or other useful reverse-engineering
information, could reasonably analyze them. Finally, as
we show in the table, more than one alert triggered due
to the same underlying vulnerability; the occurrence of
multiple alerts for the same functionality was a strong in-
dicator to the analyst of a problem. This can occur when
more than one seed fall within the same path generating
a unique bug, for instance, when more than one tainted
argument is present in a memcpy-like function call.

With this in mind, and by looking at the table, one
can see that around 38.3% of the tainted paths represent
indeed real vulnerabilities. Note also that in the context
of tainted paths, none of the reported alerts were false
positives (i.e., not tainted paths), though false positives
are theoretically possible, as explained in Section 7.4.

Our tool uncovered five new vulnerabilities in the
Huawei Android bootloader. First, an arbitrary memory
write or denial of service can occur when parsing Linux
Kernel’s device tree (DTB) stored in the boot partition.
Second, a heap buffer overflow can occur when reading
the root-writable oem info partition, due to not check-
ing the num records field. Additionally, a user with root
privileges can write to the nve and oem info partitions,
from which both configuration data and memory access
permissions governing the phone’s peripherals (e.g., mo-
dem) are read. The remaining two vulnerabilities will be
described in detail below.

Unfortunately, due to the architecture of the Huawei
bootloader, as detailed in Section 3.1, the impact of these
vulnerabilities on the security of the entire device is quite
severe. Because this bootloader runs at EL3, and is
responsible for the initialization of virtually all device
components, including the modem’s baseband firmware
and Trusted OS, this vulnerability would not only allow
one to break the chain of trust, but it would also consti-
tute a means to establish persistence within the device
that is not easily detectable by the user, or available to
any other kind of attack. Huawei confirmed these vul-
nerabilities.

BOOTSTOMP also discovered a vulnerability in
NVIDIA’s hboot. hboot operates at EL1, meaning that
it has equivalent privilege on the hardware as the Linux
kernel, although it exists earlier in the Chain of Trust, and
therefore its compromise can lead to an attacker gain-
ing persistence. We have reported the vulnerability to
NVIDIA, and we are working with them on a fix.
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Bootloader Seeds Sinks Entry Total Alerts Bug-Related Alerts Bugs Timeout Total Duration MemoryPoints loop deref memcpy loops deref memcpy Duration per EP
Qualcomm (Latest) 2 1 3 1 1 2 0 0 0 0 1 12:49 04:16 512

Qualcomm (Old) 3 1 5 3 0 5 0 0 4 1 0 10:14 02:03 478
NVIDIA 6 1 12 7 0 0 1 0 0 1 0 24:39 02:03 248

HiSilicon 20 4 27 8 4 5 8 4 3 5 1 21:28 00:48 275
MediaTek 2 2 2 - - - - - - - - 00:08 00:04 272

Total 33 9 49 19 5 12 9 4 7 7 2 69:18 09:14 1785

Table 2: Alerts raised and bugs found by BOOTSTOMP’s taint analysis. Time is reported in MM:SS format, memory in MB.

Finally, we rediscovered a previous vulnerability re-
ported against Qualcomm’s aboot, CVE-2014-9798.
These vulnerabilities allowed an attacker to perform
denial-of-service attack. However, this vulnerability has
been patched, and our analysis of the current version of
aboot did not yield any alerts.

Case study: Huawei memory corruption vulnera-
bility. BOOTSTOMP raised multiple alerts concern-
ing a function, whose original name we believe to be
read oem(). In particular, the tool highlighted how this
function reads content from the flash and writes the con-
tent to a buffer. A manual investigation revealed how
this function is vulnerable to memory corruption. In
particular, the function reads a monolithic record-based
datastructure stored in a partition on the device storage
known as oem info. This partition contains a number of
records, each of which can span across multiple blocks.
Each block is 0x4000 bytes, of which the first 512 bytes
constitute a header. This header contains, among oth-
ers, the four following fields: record id, which indi-
cates the type of record; record len, which indicates
the total length of the record; record num, which in-
dicates the number of blocks that constitute this record;
record index, which is a 1-based index.

The vulnerability lies in the following: the function
will first scan the partition for blocks with a matching
record id. Now, consider a block whose record num is
2 and whose record index is 1. The fact that record num
is 2 indicates that this record spans across two different
blocks. At this point, the read oem function assumes
that the length of the current block is the maximum, i.e.,
0x4000, and it will thus copy all these bytes into the des-
tination array, completely ignoring the len value passed
as argument. Thus, since the oem info partition can be
controlled by an attacker, an attacker can create a spe-
cially crafted record so that a buffer overflow is triggered.
Unfortunately, this bootloader uses this partition to store
essential information that is accessed at the very begin-
ning of every boot, such as the bootloader’s logo. Thus,
an attacker would be able to fully compromise the boot-
loader, fastboot, and the chain of trust. As a result, it
would thus be possible for an attacker to install a persis-
tent rootkit.

Case study: Huawei arbitrary memory write. The
second case study we present is related to an arbi-
trary memory write vulnerability that our tool identified
in Huawei’s bootloader. In particular, the tool raised
a warning related to the read from partition func-
tion. Specifically, the tool pinpointed the following
function invocation read from partition("boot",

hdr->kernel addr), and, more precisely, the tool
highlighted that the structure hdr can be attacker-
controllable. Manual investigation revealed that not only
hdr (and its field, including kernel addr) are fully
controllable by an attacker, but that the function actu-
ally reads the content from a partition specified as input
(“boot”, in this case), and it copies its content to the ad-
dress specified by hdr->kernel addr. Since this desti-
nation address is attacker-controllable, an attacker could
rely on this function to write arbitrary memory (by mod-
ifying the content of the “boot” partition) to an arbitrary
address, which the attacker can point to the bootloader
itself. We note that this vulnerability is only exploitable
when the bootloader is unlocked, but, nonetheless, it is a
vulnerability that allows an attacker to run arbitrary code
as the bootloader itself (and not just as part of non-secure
OS). Moreover, the next section provides evidence that,
at least for this specific case, it is easy for an attacker to
unlock the bootloader.

7.3 Analyzing (In)Secure State Storage
As a second use case for our tool, we use it to analyze
the same five bootloaders we previously consider to de-
termine how their security state (i.e., their lock/unlock
state) is stored. In particular, as we discussed in Sec-
tion 4, if the bootloader merely stores the security state
on one of the flash partitions, then an attacker may be
able to change the content of this partition, unlock the
phone without the user’s consent, and thus violate one of
Google’s core Verified Boot principles.

To run this experiment, we begin with the manually-
identified unlocking functionality, as described in Sec-
tion 6.2, and locate paths that reach automatically-
identified writes to the device’s storage. This means that
each bootloader has one entry point. Table 3 shows the
overall results of this experiment, including the number
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Bootloader Sinks Potentially Timeout Duration Remarksvulnerable?
Qualcomm (Latest) 6 3 7 01:00 Detected write on flash and mmc

Qualcomm (Old) 4 3 7 00:40 Detected write on flash and mmc
NVIDIA 9 7 7 02:21 Memory mapped IO

HiSilicon 17 3 3 10:00 Write oeminfo
MediaTek 1 7 3 10:00 Memory mapped IO

Table 3: Alerts raised by BOOTSTOMP on potentially vulnerable write operation inside unlock routines. Time is reported in MM:SS
format.

of possible write operations to the device’s storage that
occurred within the unlocking functionality. Our system
was easily able to locate paths in Qualcomm’s bootloader
(both the old and the newest version) and Huawei’s boot-
loader where the security state was written to the device’s
non-volatile storage. Upon manual investigation, we dis-
covered that Qualcomm’s simply stores the bit ‘1’ or ‘0’
for whether the device is locked. Huawei’s stores a static
hash, but can still be recovered and replayed (see case
study at the end of this section). In both cases, writ-
ing the needed value to the flash will unlock the boot-
loader, potentially bypassing the mandatory factory re-
set, if additional steps are not taken to enforce it, such
as those mentioned in Section 8. Our tool did not iden-
tify any path to non-volatile storage for the NVIDIA’s
or MediaTek’s bootloaders. Upon manual investigation,
we discovered that these two bootloaders both make use
of memory-mapped I/O to write the value, which could
map to anything from the flash to special tamper-resistant
hardware. Thus, we cannot exclude the presence of vul-
nerabilities.

Case Study: Huawei bootloader unlock. Our tool
identified a path from a function, which we believe to
be called oem unlock, to a “write” sink. Upon man-
ual investigation, we were able to determine the pres-
ence of a vulnerability in the implementation of this
functionality, as shown in Figure 4. In a normal sce-
nario, the user needs to provide to the bootloader a
device-specific unlock code. Such code can be ob-
tained by a user through Huawei’s website, by providing
the hardware identifiers of the device. The problem lies
in the fact that the “correct” MD5 of the unlock code,
<target value>, is stored in a partition of the device’s
storage. Thus, even if it not possible to determine the
correct unlock code starting from its hash, an attacker
could just reuse the correct MD5, compute the expected
unlock state, and store it to the oem info partition,
thus entirely bypassing the user’s involvement.

7.4 Discussion
As stated in Section 6, and as demonstrated by the re-
sults in this section, our tool might present some false
negatives as well as false positives. In this section we

1 x = md5sum(unlock_code);

2 if (x == ‘‘<target_value >’’) {

3 unlock_state = custom_hash(x);

4 write(oem_info ,unlock_state);

5 }

Figure 4: Implementation of the (vulnerable) unlock function-
ality in Huawei’s bootloader.

consider the results achieved by our taint analysis en-
gine, and we discuss how false positive and false neg-
atives might arise.

As symbolic execution suffers from the path explosion
problem, generally speaking, not all the possible paths
between two program points can be explored in a finite
amount of time. This might cause some tainted paths
to be missed, causing some vulnerabilities to be missed.
False negatives might be present also because BOOT-
STOMP does not follow function calls when no taint is
applied. This approach is very useful, since it makes our
tool faster as less code has to be analyzed, but it might
miss some correlation between pointers. In fact, if a fu-
ture tainted variable is aliased, within a skipped function
to a variable whose scope falls within the current func-
tion, and this variable later happens to reach a sink, it
will not be reported.

Furthermore, since BOOTSTOMP relies on a maxi-
mum fixed inter-function level, it might not follow all the
function calls it encounters, possibly resulting in some
tainted variables not to be untainted as well as some
pointer aliases not being tainted. This problem might
create both false positives and false negatives.

Additionally, false positives could possibly arise from
the fact that not all the reported tainted paths lead to ac-
tual vulnerabilities. In fact, when the initial taint is ap-
plied, our tool tries to understand which parameter repre-
sents the variable(s) that will point to the read data, as ex-
plained in Section 6. If the taint is not applied correctly,
this will result in false positive results. Note however,
that our tool would taint every parameter that our type
inference heuristic does not exclude. Therefore, false
negatives are not possible in this case.

Our concretization strategy could possibly introduce
both false positives and false negatives. Given two un-
constrained pointers, intuitively it is unlikely that they
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will point to the same memory location. Therefore, the
most natural choice is to concretize them (if necessary)
to two different values. Assuming that these two point-
ers are indeed aliases, if one of them is tainted and the
other reaches a sink, no alarm will be raised causing then
a false negative. On the other hand if both of them are
tainted, but the former becomes untainted and the latter
reaches a sink, an alarm would be raised causing then a
false positive. According to our observations these cases
are very rare though, as we never encountered two un-
constrained pointers that happened to be aliases.

Finally, it is worth noting that while we found some
tainted paths that were not leading to actual vulnerabil-
ities, our tool never detected a tainted path which was
supposed to be untainted.

8 Mitigations

In this section, we will explore ways of mitigating the
vulnerabilities discovered in the previous section. With
the increasing complexity of today’s devices, it may be
difficult to completely ensure the correctness of boot-
loaders, but taking some simple steps can dramatically
decrease the attack surface.

As we have discussed throughout the previous sec-
tions, the goal of Trusted Boot and Verified Boot is
to prevent malicious software from persistently com-
promising the integrity of the operating system and
firmware. The attacks we discovered all rely on the at-
tacker’s ability to write to a partition on the non-volatile
memory, which the bootloader must also read. We can
use hardware features present in most modern devices to
remove this ability.

Binding the Security State. Google’s implementations
of Verified Boot bind the security state of the device (in-
cluding the lock/unlock bit) to the generation of keys
used to encrypt and decrypt user data, as described in
Section 2.3. While not specifically requiring any partic-
ular storage of the security state, this does ensure that if
the security state is changed, the user’s data is not usable
by the attacker, and the system will not boot without first
performing a factory reset. This, along with the crypto-
graphic verification mandated by Verified Boot, achieves
the goals Google sets, but does not completely shield the
bootloader from arbitrary attacker-controlled input while
verifying partitions or checking the security state.

Protect all partitions the bootloader accesses. Most
modern mobile devices utilize non-volatile storage meet-
ing the eMMC specification. This specifies the set of
commands the OS uses to read and write data, man-
age partitions, and also includes hardware-enforced se-
curity features. Since version 4.4, released in 2009 (a
non-public standard, summarized in [17]), eMMC has

supported Power-on Write-Lock, which allows individual
partitions to be selectively write-protected, and can only
be disabled when the device is rebooted. The standard
goes as far as to specify that this must also be coupled
with binding the reset pin for the eMMC device to the
main CPU’s reset pin, so that intrusive hardware attacks
cannot be performed on the eMMC storage alone.

While we are not able to verify directly whether any
handsets on the market today makes use of this fea-
ture, we note that none of the devices whose bootload-
ers we examined currently protect the partitions involved
in our attacks in this manner. Furthermore, we note
that many devices today make use of other features from
the same standard, including Replay-protected Memory
Blocks (RPMB) [17] to provide a secure storage accessi-
ble from Secure-World code.

eMMC Power-on Write-protect can be used to pre-
vent any partition the bootloader must read from being
in control of an attacker with root privileges. Before ex-
ecuting the kernel contained in the boot partition, the fi-
nal stage bootloader should enable write protection for
every partition which the bootloader must use to boot
the device. In Android, the system and boot partitions
contain entirely read-only data (excluding during OS up-
dates), which the bootloader must read for verification,
and therefore can be trivially protected in this way. To
close any loopholes regarding unlocking the bootloader,
the partition holding device’s security state should also
be write-protected. The misc partition used by Qual-
comm devices, for example is also used to store data
written by the OS, so the creation of an additional parti-
tion to hold the security state can alleviate this problem.

This does not impede any functionality of the device,
or to our knowledge, cause any impact to the user what-
soever. Of course, this cannot be used to protect par-
titions the OS must write to. While the OS does need
to write to system and boot to perform routine soft-
ware updates, this too can be handled, with only small
changes. If an update is available, the bootloader should
simply not enable write-protection when booting, and
perform the update. This increases only marginally the
attack surface, adding only the update-handling code in
the bootloader.

It should be noted that this method cannot protect the
status of the “Allow OEM Unlock” option in the An-
droid Settings menu, which by its very design must be
writable by the OS. This means that a privileged process
can change this setting, but unlocking the bootloader still
requires physical control of the device as well.

Alternative: Security State in RPMB. eMMC Power-
on Write Lock can be used to protect any partition which
is not written to by the OS. If, for whatever reason, this
is not possible, this could also be stored in the Replay-
protected Memory Block (RPMB) portion of the eMMC
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module.
We can enforce the property that the OS cannot tamper

with the security state by having the Trusted OS, residing
in the secure world, track whether the OS has booted, and
only allow a change in the security state if the bootloader
is running. Using RPMB allows us to enforce that only
TrustZone can alter this state, as it holds the key needed
to write the data successfully.

When the device boots to the final stage bootloader,
it will signal to TrustZone, allowing modifications to the
security state via an additional command. Once the boot-
loader is ready to boot the Android OS, it signals again to
TrustZone, which disallows all writes to the device until
it reboots.

While this requires minor modifications to the Trusted
OS and final-stage bootloader, it does not require a
change in the write-protection status or partition layout.

9 Related Work

Trusted Boot Implementations and Vulnerabilities
Methods that utilize the bootloader to bootstrap a trusted
environment have been studied extensively in the past.
Recent Intel-based PC systems utilize UEFI Secure Boot,
a similar mechanism for providing verification of operat-
ing system components at boot-time. This too has been
prone to vulnerabilities.

Specifically, Wojtczuk et al., studied how unprivileged
code can exploit vulnerabilities and design flaws to tam-
per with the SPI-flash content (containing the code that
is first executed when the CPU starts), completely break-
ing the chain-of-trust [34] in Intel systems. Kallenberg
et al., achieved a similar goal by exploiting the update
mechanisms exposed by UEFI code [14]. Researchers
have also shown how the chain-of-trust can be broken on
the Mac platform, using maliciously crafted Thunderbolt
devices [13, 12]. Other research focused on the way in
which Windows bootloader, built on top of UEFI, works
and how it can be exploited [4, 25]. Bazhaniuk et al.,
provided a comprehensive study of the different types
of vulnerabilities found in UEFI firmware and propose
some mitigations [2], whereas Rutkowska presented an
overview of the technologies available in Intel proces-
sors, which can be used to enforce a trusted boot pro-
cess [26].

All these works show how the complexity of these sys-
tems, in which different components developed by differ-
ent entities have to collaborate, and the different, some-
times conflicting, goals they try to achieve has lead to
both “classic” vulnerabilities (such as memory corrup-
tion), but also to hard-to-fix design issues. Our work
shows how this is true also in the mobile world.

While all of the previously mentioned works rely en-

tirely on manual analysis, Intel has recently explored au-
diting its own platform using symbolic execution [3].
This is similar in approach to our work, but it has a differ-
ent goal. In particular they focus on detecting a very spe-
cific problem in the UEFI-compliant implementation of
BIOS (out of bound memory accesses). Instead, we fo-
cus on vulnerabilities explicitly triggerable by an attacker
inside the bootloader code of ARM mobile device, con-
sidering both memory corruption as well as additional
logic flaws related to unlocking.

A recent work, BareDroid [20], proposes and imple-
ments modifications to the Android boot process to build
a large-scale bare-metal analysis system on Android de-
vices. Although with a different goal, in this work, au-
thors introduce some aspects related to ours, such as dif-
ficulties in establishing a chain of trust in Android de-
vices and how malware could permanently brick a de-
vice. We expand and integrate their findings, comparing
different implementations and devices.

Automatic Vulnerability Discovery Our approach, as
outlined in Section 6, attempts to automatically locate
vulnerabilities statically. Other approaches include fully-
dynamic analysis, such as coverage-based fuzzing [36],
or hybrid systems, such as Driller [10] and Dowser [29],
which switch between the static and dynamic analysis
to overcome the limitations of both. Unfortunately, we
could not use any approach leveraging concrete dynamic
execution, as it is currently impossible to overcome the
tight coupling of bootloaders and the hardware they run
on. Previous work has looked into hardware-in-the-loop
approaches [35, 15] to address this issue, by passing
events directed at hardware peripherals to a real hardware
device tethered to the analysis system. Unfortunately,
none of this work can be adapted to our platform, as
the hardware under analysis lacks the necessary prereq-
uisites (e.g., a JTAG interface or a completely unlocked
primary bootloader) that would be needed.

Many previous works have also proposed statically
locating memory corruption vulnerabilities, including
Mayhem [5] and IntScope [32], focusing on user-land
programs. These approaches are not directly applica-
ble to our goals, since in our work we are not focusing
solely on memory corruption and our analysis requires
an ad-hoc modeling and identification sources and sinks.
FirmAlice [27] proposes a technique for locating authen-
tication bypass vulnerabilities in firmware. The vulner-
abilities we wish to locate stem from the presence and
specific uses of “user input” (in this case, data from the
non-volatile storage), whereas FirmAlice can detect its
absence, en route to a pre-defined program state.
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10 Conclusion

We presented an analysis of modern mobile device boot-
loaders, and showed that current standards and guide-
lines are insufficient to guide developers toward creating
secure solutions. To study the impact of these design de-
cisions, we implemented a static analysis approach able
to find locations where bootloaders accept input from
an adversary able to compromise the primary operating
system, such as parsing data from partitions on the de-
vice’s non-volatile storage. We evaluated our approach
on bootloaders from four major device manufacturers,
and discovered six previously-unknown memory corrup-
tion or denial of service vulnerabilities, as well as two
unlock-bypass vulnerabilities. We also proposed miti-
gation strategies able to both limit the attack surface of
the bootloader and enforce various desirable properties
aimed at safeguarding the security and privacy of users.
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Abstract

Software-based MMU emulation lies at the heart of out-
of-VM live memory introspection, an important tech-
nique in the cloud setting that applications such as live
forensics and intrusion detection depend on. Due to the
emulation, the software-based approach is much slower
compared to native memory access by the guest VM. The
slowness not only results in undetected transient mali-
cious behavior, but also inconsistent memory view with
the guest; both undermine the effectiveness of introspec-
tion. We propose the immersive execution environment
(ImEE) with which the guest memory is accessed at na-
tive speed without any emulation. Meanwhile, the ad-
dress mappings used within the ImEE are ensured to
be consistent with the guest throughout the introspec-
tion session. We have implemented a prototype of the
ImEE on Linux KVM. The experiment results show that
ImEE-based introspection enjoys a remarkable speed up,
performing several hundred times faster than the legacy
method. Hence, this design is especially useful for real-
time monitoring, incident response and high-intensity in-
trospection.

1 Introduction

The thriving cloud computing has kept driving the re-
search on virtual machine introspection (VMI) [14, 18,
19, 21, 23, 29, 33, 34, 35, 36] in the recent years to ad-
dress the growing security concerns on virtual machines.
The center of the VMI research is to bridge the seman-
tic gap [24], namely, to reconstruct the high level kernel
semantics by accessing the guest kernel’s virtual address
space. For instance, the VMI tool in the monitor VM
extracts all running processes’ identifiers in an untrusted
guest VM by traversing the guest kernel’s task struct

list.

∗Work was mainly done when visiting SMU as a research assistant.

When the tool is deployed inside the target VM, it is
trivial to access the guest virtual address space. Nonethe-
less, such an in-VM introspection [14, 34] induces guest
OS modification and is subject to attacks if the guest ker-
nel is subverted. Placing the introspection agent outside
of the guest is a more appealing approach. Such an out-
of-VM introspection then faces the problem of replicat-
ing the guest’s virtual address (VA) to host physical ad-
dress (HPA) translation.

Existing out-of-VM introspection systems [18, 19, 33,
35] tackle the problem using a software-based address
translation whereby the MMU’s function is replaced by
software. As a result, the software-based access is much
slower than the native speed access in the guest. The
speed inferiority clearly impacts introspection perfor-
mance, e.g., longer turnaround time to scan the kernel’s
code section. Moreover, it has several negative secu-
rity implications. It costs more precious time for live
forensics and incident response. It is also incapable of
continuously monitoring a critical memory location as
the introspection loses the race against the attack run-
ning at native speed. Most importantly, it is difficult for
the software-based method to maintain consistent VA-
to-HPA mappings with the guest kernel, because it is
not amenable to tracking and following CR3 updates in
the guest. Inconsistent mappings consequently impair
the security of introspection. We stress that the cache
mechanism does improve performance, however, at the
cost of potential mapping and data inconsistency since
the cached mappings and data could be stale.

In fact, mapping consistency can not be assumed
for an in-VM introspection scheme without trusting the
guest kernel, even though the memory is introspected at
native speed. For instance, SIM [34] isolates its moni-
toring code in an isolated address space whereas it does
not prevent the malicious kernel thread from using a dif-
ferent address mapping. The consistency issue persists
in the broader scope of system monitoring. As shown by
Jang et. al [25], hardware-assisted monitor systems such
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as Copilot [30] and KI-mon [26] are circumvented by us-
ing address translation redirection attacks which deceive
the monitor into using a faked mapping.

In this paper, we propose a novel mechanism to allow
the introspection code in the monitor VM to access a tar-
get guest kernel’s virtual address space at native speed
and with mapping consistency, despite the kernel-level
attacks from the target. The code runs in a carefully de-
signed execution environment named as the Immersive
Execution Environment (ImEE). During a guest access,
the ImEE’s MMU walks the present paging structures
same as the guest’s, pointed to by the CR3 registers both
in the ImEE and in the guest.

We have implemented a prototype of the ImEE on
Linux KVM. The experiments demonstrate a remark-
able performance boost. As compared to the existing
software-based guest access method, the ImEE is sev-
eral hundred times faster to traverse kernel objects. The
ImEE is so lightweight and nimble that it only needs
23µs to activate and 7µs to switch the introspection tar-
get, around 200 times faster than the software method.
Hence, the ImEE is more attractive to applications desir-
ing strong security, faster response and high speed, for
instance, critical data monitoring, virtual machine scan-
ning, and live forensics.

CAVEAT. Our contribution in this paper is com-
plementary to existing out-of-VM introspection systems
[19, 18, 29, 33]. Those innovations focus upon more
software issues, like efficient kernel-level semantic re-
construction [19] and race conditions [29]. In contrast,
it is out of our scope to deal with the high-level issues
like which virtual addresses or kernel objects to read and
how to reuse the existing kernel code [19]. We expect
that, with modest retrofitting, those VMI applications can
harness the ImEE as a powerful guest access engine to
achieve better performance and stronger security.

ORGANIZATION. The next section briefly reviews the
legacy method to access the target VM and analyze its
weakness. We present a synopsis of the work in Sec-
tion 3. The design details of the ImEE and the code
running inside are presented in Section 4. The imple-
mentation and performance evaluation are described in
Section 5 and 6, respectively. We then discuss several re-
lated issues in Section 7, and briefly review the literature
in Section 8. Lastly, Section 9 concludes the paper.

2 Inadequacy of Software-based Guest Ac-
cess

It is a common practice in the VMI literature to use the
software-based method to translate virtual addresses be-
fore accessing a target guest VM. The guest’s own pag-
ing structures cannot be directly replicated in the mon-

itor VM, because it is incompatible with all software
therein. In addition, there is also a security concern that
the guest’s code or data could be used to attack the mon-
itor VM.

In this software-based approach, the target memory is
mapped to the monitor VM as a set of read-only pages.
Given a virtual address X , the introspection code walks
through all levels of the paging structures, including the
Extended Page Tables (EPTs1) in the memory to find out
the corresponding HPA. It then maps the HPA to its own
virtual address space, and finally issues an instruction
to read it. Obviously, such a procedure incurs a much
longer latency than the native access to X in the guest.

To assess how slow the software-based guest access is
in relative to the native speed access, we run a “cat-and-
mouse” experiment. The introspection program using
LibVMI keeps reading a guest process’s task->cred

pointer, while a guest kernel thread periodically modi-
fies the pointer and the new value stays for 20,000 CPU
cycles before being restored. The page-level data cache
of LibVMI is disabled to ensure the freshness of ev-
ery read whereas the translation caches are on since no
address mapping is modified. We conduct the experi-
ment for eight times, each lasting 10 seconds. In aver-
age, the modification is only spotted after being repeated
60 rounds. In one of the eight rounds, no modification
is caught. The experiment result demonstrates that in-
trospection at low speed cannot catch up with the fast-
running attacker. It is ill-suited for scenarios demanding
quick responses such as live forensics and real-time I/O
monitoring.

The slow speed also affects the mapping consistency
as the guest malware in the kernel may make transient
changes to the page tables, rather than the data. Since
walking the paging structures appears instant to the mal-
ware using the MMU, but not to the introspection soft-
ware, the malware’s attack on the page tables causes the
VMI tool to use inconsistent information obtained from
the paging structures.

Caching techniques have been used in order to reduce
the latency of guest accesses. For instance, LibVMI
[31] introduces three types of caches: the page-level data
cache, the VA-to-HPA translation cache and the pid to
CR3 cache. While promoting the performance, using the
caches is detrimental to effective introspection. Since
the guest continuously runs during the introspection, any
cached mapping or data is not guaranteed to be consistent
with the one in the memory. Moreover, it is difficult for
the software-based method with caches to catch up with
the pace of CR3 updates in the guest. Since the guest ker-
nel is untrusted, the introspection cannot presume that all

1Throughout this paper, we following Intel’s terminology to de-
scribe the scheme. It can also be implemented on AMD processors
supporting MMU virtualization.
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guest threads share the same kernel address space. CR3

synchronization with the guest may lead to cache thrash-
ing which backfires on the introspection performance.

Besides the security related limitations described
above, the software method has performance-related
drawbacks. It usually has a bulky code base since it has
to fully emulate the MMU’s behavior, such as supporting
32-bit and 64-bit paging structures as well as different
modes and page sizes. Its operation leaves a large mem-
ory footprint because of the intensive reliance on data
and translation caches. It also suffers from slow-start
due to the complex setup. For instance, the LibVMI ini-
tialization costs 100 milliseconds according to our mea-
surement. To change the introspection target from one
VM to another requires a new setup. With these perfor-
mance pitfalls, the software-based method is not the best
choice for introspection in data centers where the VMI
tools may need to scan a large crowd of virtual machines.

3 Synopsis

3.1 Models and Scope

System Model. We consider a multicore platform sup-
porting both CPU and MMU virtualization. Under the
management of a bare metal hypervisor, the platform
runs a trusted monitor VM and a set of untrusted guest
VMs which are the targets of introspection. The platform
administrator runs VMI applications inside the monitor
VM to introspect the live kernel states in the targets with-
out modifying or suspending them.

To avoid ambiguity, we use the “target” to refer to
the virtual machine under introspection, and use “guest”
with its hardware virtualization notion as in a “guest
physical address” (GPA) which refers to the physical ad-
dress a kernel uses inside a hardware-assisted virtual ma-
chine.

Trust Model. We assume all hardware and firmware in
the platform behave as expected. We trust the hypervi-
sor and the software in the monitor VM and assume that
the adversary cannot compromise the hypervisor or the
monitor VM’s kernel at launching time and runtime. We
do not trust any software running in the target, including
the kernel.

Scope of Study. The adversary we cope with resides
in the target kernel. Its goal is to stage a fake kernel ad-
dress space view to the VMI application. Namely, its
attack causes the VMI application to read those mem-
ory bytes that are “thought” to be used by kernel threads
but are actually not. Attacks that aim to beat the VMI
logic, e.g., manipulating a function pointer not known to
the introspection logic, are beyond and orthogonal to our

scope of study. Side-channel attacks or denial-of-service
attacks are not considered either.

3.2 Basic Idea
Our idea is to create a special computing environment
called Immersive Execution Environment (ImEE) with a
twisted address mapping setting (as in Figure 1). The
ImEE’s CR3 is synchronized with the target VM’s active
CR3 so that its MMU directly uses the target’s VA-to-
GPA mappings. Its GPA-to-HPA mappings are split into
two. The GPAs for the intended introspection are trans-
lated with the same mappings as in the target VM; the
GPAs for the local usage (indicated by the dotted box in
Figure 1) are mapped to the local physical pages via sep-
arated GPA-to-HPA mappings. With this setting, mem-
ory accesses are automatically directed by the MMU into
the target and the local memory regions according to the
paging structures.
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Figure 1: Illustration of the idea of direct usage of the
target VM’s VA-to-GPA mappings and splitting in GPA-
to-HPA mappings. Note that the shadow box is fully con-
trolled by the target (i.e., the adversary).

The paging structure setup in the ImEE ensures map-
ping consistency with the target VM. Firstly, the ImEE’s
VA-to-GPA mappings remain the same as the target’s,
because its CR3 and the target CR3 always point to the
same location. Any mapping modification in the target
also takes effect in the ImEE simultaneously. Secondly,
the hypervisor ensures that the ImEE GPAs intended for
introspection are mapped in the same way as within the
target. Hence, any VA for introspection is translated with
mapping consistency with the target. Note that the VA is
accessed at native speed because the MMU performs the
address translation.

3.3 Challenges
Suppose that the ImEE has been set up following the idea
above with an introspection agent running inside and ac-
cessing the target memory. The following design chal-
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lenges need to be addressed in order to achieve a suc-
cessful introspection.

Functionality Challenge. The ImEE agent’s virtual
address space comprises of the executable code, data
buffers to read and write, and the target kernel’s address
space. Since the agent code and data are logically dif-
ferent from the target kernel, we need a way to properly
split the GPA domain so that VAs for the local uses are
not mapped to the target and VAs for introspection are
not mapped to the agent memory.

This challenge to divide the GPA domain is further
complicated by two issues. Firstly, the virtual address
space layout of the target is not priorly known, because it
is entirely dependent on the current thread in the target.
Therefore, it is a challenge to device a universal mech-
anism to load the ImEE agent regardless the target’s ad-
dress space layout. Secondly, read/write operations on
the local memory and on the target memory are not dis-
tinguishable to the hardware. Therefore, it is difficult to
separate access to local pages and target pages. For ex-
ample, it is difficult to detect whether a VA for introspec-
tion is wrongly mapped to the local data (which could be
induced by the target kernel inadvertently or willfully)
because it does not violate the access permissions on the
page table.

Security Challenge. The ImEE is not fully isolated
from the adversary. The target VM’s kernel has the full
control of the VA-to-GPA mappings which affect the re-
sulting HPA. Hence, the adversary can manipulate the
ImEE agent’s control flow and data flow by modifying
the mappings at runtime. Although access permissions
can be enforced via the GPA-to-HPA translation, the ad-
versary can still redirect the memory reference at one
page to another with the same permissions.

A more subtle, yet important issue, is that the intro-
spection blind spot, namely the set of virtual addresses
in the target which are not reachable by the ImEE agent.
As shown in Figure 2, a VA for introspection is in the
blind spot if and only if it is mapped to the GPA for local
use. This is because the full address translation ends up
with a local page, instead of the target VM’s page. The
malicious target can turn its pages into the blind spot by
manipulating its guest page table. The blind spot issue
has two implications. First, detecting its existence ef-
ficiently is challenging. Note that it is time-consuming
to find out all VAs in the blind spot, because the guest
page tables have to be traversed to obtain the GPA cor-
responding to a suspicious VA. Second, the attacker can
manipulate VA to GPA mappings in an attempt to dis-
rupt the execution of the ImEE agent. By manipulate the
mappings, the attacker tries to cause invalid code to be
executed inside the environment, or cause the introspec-
tion to read arbitrary data.
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Figure 2: Illustration of the blind spot comprising three
virtual pages (in the dark color). Target kernel objects in
those pages cannot be introspected since they are mapped
to the local memory.

Performance Challenge. Although the ImEE agent
accesses the target memory at native speed, we aim to
minimize the time for setting it up in order to maxi-
mize its capability of quickly responding to real-time
events and/or adapting to a new introspection target (e.g.,
another thread in the target VM or even another tar-
get VM). The challenge is how to load the agent into
the virtual address space currently defined by the tar-
get thread and to prepare the corresponding GPA-to-HPA
mappings. Searching in the virtual address space is not
an option since it is time-consuming to walk the target
VM’s paging structures. In addition, it is also desirable
to minimize the hypervisor’s runtime involvement, be-
cause the incurred VM exit and VM entry events cost
non-negligible CPU time.

Besides the above three major challenges, there are
other minor issues related to the runtime event handling,
such as page faults and the target VM’s EPT updates.
The requirement of Out-of-VM introspection is to min-
imize intrusive effects on the target. For example, the
hypervisor is refrained from modifying the target VM’s
guest page tables because it leads to execution exceptions
in the target. Therefore, the minor issues also need care-
ful treatment.

3.4 System Overview
The ImEE is in essence a special virtual machine which
is created and terminated by the hypervisor based on the
VMI application’s request. Like a normal VM, the ImEE
hardware consists of a vCPU core and a segment of phys-
ical memory, both (de)allocated by the hypervisor when
needed. No I/O device is attached to the ImEE. The
ImEE does not have an OS and the only software run-
ning in it is the ImEE agent which reads the target mem-
ory. Figure 3 depicts an overview of the whole system.

The VMI application can launch the ImEE, put it into
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Figure 3: Overview of ImEE-based introspection. The
box with dashed lines illustrates the mixture of physical
memory. The shadowed regions belong to the target and
are not trusted.

sleep, and terminate it. Like a regular VM, the ImEE can
also migrate from one logic core to another. While the
ImEE is active, it runs in sessions which is defined as
the tenure of its CR3 content. To kick off a session, the
hypervisor either induces a VM exit or intercepting CR3

changes in the target.

4 The Design Details

In this section, we first explain the internals of the ImEE
with the focus on the paging structures, and then explain
the ImEE agent. We show our design choices for perfor-
mance where appropriate. Lastly, we describe the life-
cycle of ImEE, focusing on the runtime issues such as
transitions between sessions.

The approach is to carefully concert system design,
e.g., setting the ImEE’s EPTs and software design (i.e.
crafting the agent) so that the ImEE agent execution
straddles between two virtual address spaces: one for the
local usage and the other for accessing the target VM.

4.1 ImEE Internals
The ImEE requires a vCPU core which can be migrated
from one core to another. It also comprises one ex-
ecutable code frame and one read/writable data frame.
The former stores the agent code while the latter stores
the agent’s input and output data. To differentiate them
from the target VM’s physical memory, we name them
as the ImEE frames.

According to the CR3 content, the agent runs either
in the local address space or the target address space, as
depicted in Figure 4. When in the local address space, the
agent interacts with the VMI application while it runs in
the target address space to read the target memory. The
code frame is mapped into both spaces while the data
frame is mapped in the local address space only.

Local Address Space. The paging structures used in
the local address space comprise GPTL and EPTL, which
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Figure 4: The solid arrows describe the translation for
a VA within the ImEE, while the dotted arrows describe
the translation inside the target. All target frames acces-
sible to the ImEE agent are set as read-only and non-
executable in EPTT .

map the entire space to the ImEE frames. GPTL only
consists of two pages as shown in Figure 5. The global
flag on the GPTL is set so that the local address space
mappings in the TLB are not flushed out during CR3 up-
date. Specifically, only one virtual page is mapped to the
data frame while all others are mapped to the code frame.
With this setup, the agent code can execute from all but
one page. Moreover, the GPAs of the ImEE frames are
not within the GPA range the target VM uses, which
avoids conflict mappings used in the target address space.

GPTL

GPA space

RW
RX

RX

datacode

RX

Figure 5: The Illustration of GPTL. All entries in the
page table directory point to the same page table page
which has one PTE points to the data frame and all other
to the code frame.

Target Address Space. The target address space im-
plements our idea in Figure 1. To run the agent in this
space, the ImEE CR3 register is synchronized with the
target CR3, so that they use the same guest page tables.
The GPA-to-HPA mapping used in this space are gov-
erned by EPTT and EPTC.

All GPAs are mapped to the target frames by EPTT ,
except one page is redirected by EPTC to the ImEE
code frame. Specifically, EPTT is populated with the
GPA-to-HPA mappings from the target VM’s EPT, ex-
cept that all target frames are guarded by read-only
and non-executable permissions. This stops the agent
from modifying the target memory for the sake of non-
intrusiveness. It also prevents the adversary from inject-
ing code, because the adversary can place arbitrary bi-
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naries to those frames. The permission of the mapping
defined by EPTC is set as executable-only. Namely, it
cannot be read or written from the target address space.

Note that the ImEE data frame is not mapped in the tar-
get address space for two reasons. Firstly, it minimizes
the number of GPA pages redirected from the target to
the ImEE, and therefore reduces the potential blind spot.
Secondly, all memory read accesses performed in the tar-
get address space are bounded to the target. Therefore,
it feasible to configure the hardware to regulate memory
accesses so that any manipulation on the target GPT that
attempts to redirect the introspection access to the ImEE
memory is caught by a page fault exception.

CAVEAT. Address switches inside the ImEE do not
cause any changes on the EPT level. The GPA-to-HPA
mappings used in one address space are cached in the
ImEE TLBs and are not automatically invalidated dur-
ing switches. Note that EPTL, EPTC and EPTT do not
have conflict mappings because they map different GPA
ranges. The two address spaces are assigned with dif-
ferent Process-Context Identifier (PCID) avoid undesired
TLB invalidation on address space switch.

4.2 ImEE Agent

The ImEE agent is the only piece of code running in-
side the ImEE, without the OS or other programs. It is
granted with Ring 0 privilege so that it has the privilege
to read the target kernel memory and to manage its own
system settings, such as updating the CR3 register. It
is self-contained without external dependency and does
not incur address space layout changes at runtime in the
sense that all the needed memory resources are priorly
defined and allocated.

Our description below involves many addresses. We
use Table 1 to define the notations.

VA GPA
ImEE data Pd GPd
ImEE code (local addr. space) Pc GPc
ImEE code (target addr. space) Pc GP′c
Target page Pt GPt

Table 1: Address notations. For instance, GP c is the
guest physical address of the ImEE code page in the local
address space.

Overview. The main logic of the agent is as follows.
Initially, the agent runs in the local address space and
reads an introspection request from the data frame. Then
it switches to the target address space and reads the tar-
geted memory data from the target memory into the reg-
isters. Finally, it switches back to the local address space,

dumps the fetched data to the data page and fetches the
next request.

The Agent. Figure 6 presents the pseudo code of the
agent. The agent has only one code page and one data
page. Since the data frame is out of the target address
space, all needed introspection parameters (e.g., the des-
tination VA and the number of bytes to read) are loaded
into the general-purpose registers (Line 6). For the same
reason, the agent loads the target memory data into the
ImEE floating-point registers as a cache (Line 12), be-
fore switching to the local address space to write to the
data frame (Line 17).

1: while TRUE do
2: /* local address space: Read the request */
3: repeat
4: poll the interface lock;
5: until the lock is off
6: Read the request from the data frame to

general-purpose registers;
7:
8: /* switch to target address space */
9: Load the target CR3 provided by the hypervisor;

10:
11: /* target access */
12: Move n bytes from the target address x to

floating-point registers;
13:
14: /*switch to local address space */
15: Load CR3 with GPTL;
16: /* output to data frame */
17: Move data from the floating-point registers to

the ImEE data page;
18: if requested service not completed then
19: goto Line 9;
20: end if
21: Set interface lock;
22: end while

Figure 6: The sketch of the ImEE agent’s pseudo code

The agent is loaded at Pc in the local address space by
the hypervisor. Pc is chosen by the hypervisor such that
it is an executable page according to the target’s guest
page table. Because GPTL maps the entire VA range (ex-
cept one page) to the code frame. Therefore, there is an
overwhelming probability that Pc is also an executable
page in the local address space2. Therefore, the agent can
execute in the two address spaces back and forth which
explain Line 12 and 17 can run successfully without re-

2In case Pc is not executable under GPTL, the hypervisor only needs
to adjust the corresponding PTE.
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location.

Impact of TLB. No matter whether there is an attack
or not, TLB retention has no adverse effect on the intro-
spection. Suppose that the mappings in the local address
space are cached in the TLB. When the agent runs in the
target address space, the only VAs involved are for the
instructions (Pc) and the target addresses (Pt ). For VAs
in Pc, the cached mapping remains valid because the ad-
dress mappings are not changed. There are two exclusive
cases for Pt . If Pt 6= Pd , the translation does not hit any
TLB entry because it is never used in the local address
space. Otherwise, the TLB entry for Pd is still consid-
ered as a miss because of different PCIDs. The same
reasoning also applies to the cached mappings in the tar-
get address space.

Note that the adversary gains no advantage from a
TLB hit on a cached local address space translation.
Since EPTL is available in the target address space, the
adversary can manipulate its own page tables to achieve
the same outcome as a TLB hit. It can use arbitrary GPA
in its page tables.

4.3 Defeating Attacks via the Blind Spot
The introspection security demands the agent execution
to have both control flow integrity and data flow integrity.
Data confidentiality is also required since the leakage of
the introspection targets can help the adversary evade in-
trospection. The EPT settings of the ImEE and of the
target ensure that the adversary can only launch side-
channel attacks, which is beyond the scope of our study.

The only attack vectors exposed by the ImEE to the
adversary are the shared GPT and the target physical
memory which are fully controlled by the adversary. The
adversary can manipulate the VA-to-GPA mappings for
Pc and Pt . Depending on the specific manipulation, ei-
ther we can detect such attempts by the EPT violation
triggered, or the attack does not adversely affect the in-
trospection.

Detecting Blind Spot. The attacks on Pc is defeated by
the fact that the code frame is the only executable frame
inside the ImEE. Hence, the attack on Pc’s mapping, i.e.
mapping Pc to a page in GPt , is doomed to trigger an EPT
violation exception. Similarly, mapping Pt to GP′c also
triggers EPT violations because the read is on a execute-
only page.

Defeating Mapping Attacks. The attack attempts that
manipulate the mappings of Pt do not adversely affect
the introspection. Specifically, there are three cases for
the GPt which virtual page Pt which is mapped to by the
adversary.

• GPt = GP′c. Nonetheless, our EPTC maps the agent

code frame non-readable. Therefore, an EPT vio-
lation exception is thrown. The hypervisor can find
out the faulting VA and reports to the VMI tool. The
hypervisor can also reload the agent into a new ex-
ecutable page to introspect the faulting page. This
is the same case as in detecting blind spot described
above.

• GPt 6= GP′c, and GPt is within the pre-assigned GPA
range for the target VM. In this case, the ImEE’s
MMU walks the target VM’s GPT and fetches the
data in the same way as in the target VM. In other
words, the mapping consistency between the ImEE
and the target VM is still guaranteed. Although the
agent may read invalid data, its execution is not af-
fected by such mappings. The attack has no harm
to the execution as it is equivalent to feeding poi-
sonous contents to the VMI application, in the hope
to exploit a programming vulnerability. We remark
that this is the inevitable risk faced by any memory
introspection and can be coped with software secu-
rity countermeasures.

• GPt is mapped out of the pre-assigned GPA range
for the target. If GPt = GPd or GPt = GPc, the at-
tack causes the agent to read from the ImEE frames;
otherwise it causes an EPT page fault as the needed
mapping is absent. We do not consider this case as
a blind-spot problem, because the target VM’s EPT
does not have the mapping for GPt . Hence, the tar-
get VM’s kernel, including the adversary, is not able
to access this page. This attack does not give the
adversary any advantage over mapping Pt to an in-
range GPA whose physical frame stores the same
contents prepared by the adversary. (Note that we
do not assume or rely on the secrecy of the intro-
spection code.)

4.4 Operations of ImEE

Initialization. To start the introspection, the hypervisor
loads the needed agent code and data into the memory.
It initializes EPTT as a copy of the entire EPT used for
the target, and allocates a vCPU core for the ImEE. The
ImEE CR3 is initially loaded with the address of GPTL.

In case the target’s EPT occupies too many pages, the
hypervisor copies them in an on-demand fashion. In
other words, when the agent’s target memory access en-
counters a missing GPA-to-HPA mapping, the hypervi-
sor then copies the EPT page from the target’s EPT. Note
that it does not weaken security or effectiveness, because
the EPTs are managed by the hypervisor only.

Activation. Based on the VMI application’s request, the
hypervisor launches the ImEE wherein the agent runs in
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the local address space with an arbitrarily chosen virtual
address. The start of an session is marked by the target
VM’s CR3 capture. If it is the first session, the hyper-
visor may send out an Inter-Processor Interrupt (IPI) to
the target VM, or induce an EPT violation to the target,
or passively wait for a natural VM-exit (which is more
stealthy). After the trapping the core, the hypervisor
configures the target’s Virtual Machine Control Struc-
ture (VMCS) to intercept CR3 updates on it. Namely, the
execution of CR3 loading instruction(s) on the captured
vCPU triggers a VM exit. Note that the target’s other
vCPUs (if any) are not affected.

Agent Reloading. Once the target CR3 value is
switched, the hypervisor sends an IPI to the ImEE CPU
to cause it to trap to the hypervisor. The hypervisor then
reloads the agent. If the agent is currently running in
the target address space, its CR3 in the VMCS is imme-
diately replaced. The hypervisor then extracts the page
frame number from the target’s Instruction Pointer (IP).
It replaces the page frame number in the ImEE IP with
the one in the target IP without changing the offset. Since
the agent code lies within one page, preserving the offset
allows it to smoothly continue the interrupted execution.

If the agent is in the local address space, the CR3 for
the new target address space is saved in a register. The
crux of the session transition is to minimize the hypervi-
sor execution time as it hinders the ImEE’s performance
by holding the core.

We use a lazy-allocation method to find GP′c for the
purpose of setting up EPTC. When the agent resumes ex-
ecution, an EPT violation is triggered because the corre-
sponding physical page is mapped as read-only in EPTT .
From the exception, the hypervisor reads the faulting
GPA, changes the corresponding EPT permissions, and
restores the previous one to read-only. The newly modi-
fied EPTT entry becomes the new EPTC. Since the lazy
method uses the MMU to find GP′c, it saves the CPU time
for walking the page table.

Page Fault Handling. Although it is rare for kernel
introspection, it is possible to encounter a page fault due
to absent pages in the target VM. One possible reason is
that the malware inside the target attempts to evade in-
trospection by swapping out page content to disk. In this
case, since the mapping inside ImEE is consistent with
the one in the target VM, introspection on the swapped-
out page results in a page fault inside ImEE. We remark
that this behavior is the expected consequence of main-
taining mapping consistency between ImEE and the tar-
get. The effectiveness of ImEE’s introspection is not un-
dermined because once the swapped-out page is swapped
in, it is visible to ImEE immediately.

For the sake of resilience, we install a page fault han-
dler inside the ImEE. Since the agent resides in Ring 0,

the exceptions do not cause any context switch. Out of
the consideration of transparency and stealthiness, the
ImEE’s page fault handler does not attempt to resolve
the cause. Instead, it simply runs dozens of NOP instruc-
tions and retries the read. If the rounds of failure exceed
the predefined threshold, it aborts the execution.

5 Implementation

In this section, we report the details of our ImEE proto-
type implementation. We describe our prototype based
on KVM and the introspection tools we implemented on
top of our prototype.

5.1 ImEE on KVM

We have implemented a prototype of the ImEE and its
agent on Ubuntu 12.04 with Linux kernel 3.2.79. Our
implementation adds around 1400 SLOC to the Linux
KVM module. The main changes on the KVM module
include two new ioctl call handlers as the interface for
the VMI application to request the ImEE setup and exe-
cution. The new handlers leverage existing KVM utility
in the kernel to setup the ImEE as a special VM.

We customize the KVM’s handling of VM-exit events
in order to achieve better performance. Those events in-
tended for the ImEE introspection are redirected to the
new handler dedicated for the ImEE. Therefore, the long
execution path of the KVM’s event handling routines is
bypassed.

5.2 Specialized Agent

According to the commonly seen memory reading pat-
terns, we have implemented three types of ImEE agents
as listed in Table 2. The Type-1 agent performs a block
read, i.e., to read a contiguous memory block at the base
address. The Type-2 agent performs a traversal read, i.e.,
to read the specified member(s) of a list of structured ob-
jects chained together through a pointer defined in the
structure. The Type-3 agent reads the memory in the
same way as the Type-2, except that the extracted mem-
ber is a pointer and a dereference is performed to read
another structure. Note that the Type-2 and 3 agents are
particularly useful for traversing the kernel objects.

Type Mode of read # of Instructions
1 Block-read 38
2 Traversal-read 22
3 Traversal-read-dereference 40

Table 2: Three ImEE agents. The Type-3 agent uses 2
pointer deferences while the Type-2 agent uses one.
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The interface between the VMI application and the
ImEE agent are two fixed-size buffers residing on the
agent’s data frame and being mapped into the VMI ap-
plication’s space. One buffer is for the request to the
agent and the other stores the reply from the agent. Both
buffers are guarded by one spin-lock to resolve the read-
write conflict from both sides. When the ImEE session
starts, the agent polls the buffer and serves the request.
The VMI application ensures that the reply buffer is not
overflowed. We remark that the polling based approach
is faster than using interrupts as it does not induce any
VM-exit/entry.

5.3 Usability
The simple interface of ImEE allows easy development
of introspection tools. For common introspection tasks
that focus on kernel data structures, the development re-
quires a selection of the agent type, and a set of memory
reading parameters including the starting virtual address,
the number of bytes to read, and the offset(s) used for
traversal. Based on this method, we have developed four
user space VMI programs that collect different critical
kernel objects and have distinct memory reading behav-
iors. The objectives and logics of the four programs are
explained below.

• syscalldmp It dumps totally 351 entries of
the guest’s system call table pointed to by
sys call table. A continuous block of 1404
bytes from the guest is returned to the program.

• pidlist It lists all process identifiers in the guest.
It traverses the task struct list pointed to by the
kernel symbol init task, and records the PID

value of every visited structure in the list. In total,
4 bytes are returned while 8 bytes are read from the
guest for each task.

• pslist It lists all tasks’ identifiers and task names
stored in task struct. A task’s name is stored
in the member comm with a fixed size of 16 bytes.
Hence, 24 bytes are returned for each task node.

• credlist It lists all tasks’ credential structures refer-
enced by the task struct’s cred pointer. In total,
116 bytes including the credential structure to the
application for each task node. Hence it takes more
time than pidlist and pslist.

Because of their different memory access patterns,
they run with different types of agents. The syscalldmp
tool runs with Type-1 agent to perform block-reads. The
pidlist and pslist programs work with Type-2 agent and
the credlist program works with Type-3 agent. These
tools are linked with a small wrapper code to interact

with the ImEE-enabled KVM module via the customized
ioctl handler.

6 Evaluation

We evaluate our prototype from four aspects with Lib-
VMI as the baseline. LibVMI [31] is a cross-platform
introspection library which a variety of tools depend on.
To the best of our knowledge, LibVMI is the only open-
source tool that provides a comprehensive set of API for
reading the memory of a VM. In particular, it provides
the capability to handle translation from VA to GPA.
Therefore, LibVMI plays the role of a building block
for live memory access in tools such as Drakvuf[27]
and Volatility[37]. Our evaluation consists of four parts.
Firstly, we consider the overhead of ImEE, in terms
of component costs and the impact on the target VM
due to CR3-update interception. Secondly, we measure
the ImEE’s throughput in reading the target memory.
Thirdly, we compare the introspection performance of
the tools with two functionally equivalent ones imple-
mented with the LibVMI and in the kernel. Lastly, we
compare ImEE with LibVMI in a setting with multiple
guest VMs.

The hardware platform used to evaluate our imple-
mentation is a Dell OptiPlex 990 desktop computer with
an Intel Core i7-2600 3.4GHz processor (supporting VT-
x) and 4GB DRAM. The target VM in our experiments is
a normal KVM instance with 1GB of RAM and 1 vCPU.

6.1 ImEE Overhead
Table 3 summarizes the overheads of the ImEE. It takes
a one-time cost of 97 µs to prepare the ImEE environ-
ment where the main tasks are to make a copy of the tar-
get guest EPT as EPTT , to set up GPTL and EPTL, and to
allocate and setup the ImEE vCPU context. The ImEE
activation requires about 3.2 µs, and the agent load-
ing/reloading time is around 6.5 µs. The difference is
mainly due to handling of the incoming IPI by host ker-
nel on the ImEE core in the agent reloading case. In
comparison, it takes about 100 milliseconds to initialize
the LibVMI setting, which is around 1,000 times slower
than the ImEE setup.

Overhead ImEE LibVMI
Launch time 97 µs 100 ms
Activation time 3.2 µs -
Agent reloading time 6.5 µs -

Table 3: Overhead comparison between ImEE and Lib-
VMI.

Guest CR3 Update Interception. To maintain CR3
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consistency with the target during a session, the hyper-
visor intercepts the CR3 updates. To evaluate its perfor-
mance impact on the target, we measure the entailed time
cost and run several benchmarks to assess the VM’s per-
formance.

The cost due to interception mainly consists of VM-
exit, sending an IPI, recording VMCS data, and VM-
entry. In total, it takes about 2000 CPU cycles which
amounts 0.58 µs in our experiment platform. We run
three performance benchmarks: LMbench [3] for sys-
tem performance, Bonnie++ [1] for disk performance
and SPECint 2006 [7] for CPU performance while con-
text switches during their executions are intercepted by
the hypervisor. Figure 7 reports the LMbench score for
context switch time where the performance drops about
50%.
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Figure 7: LMBench: normalized result on context switch
time. The higher score means better performance.

Nonetheless, the interception does not seem to incur
noticeable impact to other benchmark results such as disk
I/O and network I/O, as shown in Figure 8, 9 and 10.
We attribute this effect to the relatively fewer number of
context switches involved during the macro-benchmark
runs, because the benchmark processes fully occupy the
CPU time slot. It is typical for a Linux process to have
between 1ms to 10 ms time-slot before being scheduled
off from the CPU.
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Figure 10: SPEC INT: normalized results on CPU per-
formance. The higher score means better performance.

To understand the impact of CR3 interception in real-
life scenarios, we test it with three different workloads
on the target VM: idle, online video streaming and file
downloading. Neither test shows noticeable performance
drop. When the target is under interception, the video is
rendered smoothly without noticeable jitters and the file
downloading still saturates the network bandwidth.

In our experiments, we find that the introspection en-
counters few context switches in the target VM. To un-
derstand this phenomena, we run experiments to mea-
sure the intervals between context switches. Figure 11
shows the distribution of their lengths under different
workloads. The analysis shows that the context switch
is expected to occur after around 40 µs, which could be
used as a guideline for the VMI application to determine
the duration of a session. Note that an encounter with the
context switch costs about 6.5 µs for the introspection
and 0.58 µs for the target VM.
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Figure 11: The frequency distribution of interval lengths
between context switches in three workloads: idle, video
streaming and file downloading. The x-axis is not dis-
played to the scale.

Lastly, the ImEE has a small memory footprint of a
few hundred KB on the host OS. LibVMI has a large
memory footprint as it uses up to 14MB to perform a
system call table dump.

6.2 Guest Access Speed
The turnaround time for accessing the VM refers to the
interval between sending a request and the arrival of the
reply. It consists of the time spent for checking the shared
buffers and the agent’s execution time. To assess the effi-
ciency of the ImEE’s interface with the VMI application,
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we measure the turnaround time with the ImEE agent
performing no task but returning immediately. The re-
sult is approximately 265 CPU cycles (or 77 ns) in our
setting.

To evaluate the memory-reading performance of the
ImEE, we run experiments to evaluate the turnaround
time with normal read requests. Table 4 below reports
the turnaround time in comparison with LibVMI for the
same workload. To make a fair comparison, LibVMI’s
translation cache is turned on whereas the page-level data
cache is turned off.

# of Bytes ImEE (µs) LibVMI (µs)
4 0.353 18.4
64 0.358 18.5
128 0.389 18.4
512 1.643 18.9
1024 1.715 38.1

Table 4: Memory read performance comparison.

We have also tested ImEE with the experiment de-
scribed in Section 2. The experiment shows that the
modification on the cred address is caught immediately
when the malware makes the first attack. Note that with
the ImEE support, it takes less than 1200 CPU cycles for
the VMI application to get a DWORD from the guest,
in contrast to more than 60,000 cycles using LibVMI.
The maximum introspection frequency of ImEE based
introspection is 2.83 MHz while an introspection using
LibVMI in our setting can only achieve 54 KHz in max-
imum.

6.3 Introspection Performance Compari-
son

We run introspection tools (syscalldump, pidlist, pslit
and credlist) in three settings: within the kernel, with
ImEE, and with LibVMI. Since this set of tests concerns
with real-life scenarios, we tested LibVMI on both KVM
and Xen for completeness. For each of the scenario, we
measure the turnaround time of introspection. The time
for the processing the semantics and the time for setting
up the ImEE/LibVMI are not included in the measure-
ment. Table 5 summarizes the results.

The experiments show that the ImEE-based introspec-
tion has a comparable performance to running inside the
kernel. It has a superior performance advantage over Lib-
VMI for traversing the kernel object lists. On KVM, The
LibVMI based introspection is around 50 times slower
than the ImEE with all caches and 300 times slower with-
out cache. On Xen, LibVMI is around 15 times and 70
times slower, respectively. Since the traversal only re-
turns a few bytes from different pages, LibVMI’s opti-

mization in bulk data transferring does not result in per-
formance gain.

6.4 Handling Multiple VMs

In a data center setting, a large number of VMs are hosted
on the same physical server. Therefore, for a VMI solu-
tion to be effective in such a setting, the capability to
handle multiple VM is important. Besides raw intro-
spection speed, two additional capabilities are important
for a VMI solution. Firstly, the VMI solution should
respond quickly to requests to introspect VMs encoun-
tered for the first time. Secondly, it should also maintain
swift response for introspection requests on VMs already
launched.

We compared the time taken for LibVMI and ImEE to
perform a syscall table dump by our tool in two scenar-
ios. We launch four VMs on our experiment platform.
Firstly we measure the time for each solution to intro-
spect four VMs once for each in a sequence. It takes
561 ms for LibVMI and 377 µs for ImEE, respectively.
In this case, LibVMI is about 1,400 times slower than
ImEE. The performance of LibVMI mainly due to the
initialization needed for each newly encountered VM.

Secondly, we measure the time taken for each solu-
tion for switching the introspection target among the four
VMs that are already scanned. The switching requires to
reset certain data between consecutive scans. For this
purpose, we slightly modified LibVMI to allow us to up-
date the CR3 value in the introspection context of a VM
with a new one. The experiment shows that it takes 19
ms for LibVMI to perform such work while 4.4 µs for
ImEE. ImEE shows around 4,300 times speed up. The
reason is that LibVMI’s software-based approach needs
to reset a number of memory states. In contrast, ImEE
only needs to fetch the current CR3 on the target VM’s
vCPU and replace the ImEE CR3, IP and the EPT root
pointer of the ImEE vCPU.

7 Discussions

7.1 CPU State

In-memory paging structure is only one of the factors
that determines the final outcome of the translation of
a virtual address. In fact, the final outcome is determined
by both in-memory state and in-CPU states. The affect-
ing in-CPU states include control registers and buffers
such as the TLB. For example, the TLB can be intention-
ally made out-of-sync with paging structures in memory,
therefore causes the introspection code to use a different
mapping from the one currently used by the target. An
ideal introspection solution should take into considera-
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Tools Kernel module ImEE LibVMI(KVM / Xen)
time mode without any cache without page cache with all cache

syscalldmp 0.2 2.9 block 28.2 / 43 18.7 / 47 2 / 54
pidlist 10 31.6 traversal 5,887 / 2,180 2,864 / 2,041 1,568 / 490
pslist 10.4 38.6 traversal 8,319 / 1477 2,695 / 1,442 1,672 / 542
credlist 25.3 25.6 hybrid 8,234 / 2,274 7,150 / 2,153 2,215 / 757

Table 5: Kernel object introspection performance (time in µs).

tion both sets of states because they collectively repre-
sent the current address translation.

However, for out-of-VM live introspection, it is re-
quired that it runs on a core that is independent of the
target VM. This limits the introspection’s capability to
utilize such in-CPU states because there is no mecha-
nism to fetch in-CPU states from another CPU. One pos-
sible solution is to preempt the vCPU of the target on
a physical core by a more privileged entity such as the
hypervisor, trying to preserve as many in-CPU states as
possible, including buffers and caches. However, the be-
havior of the buffers an caches when across VM transi-
tion is not fixed. Therefore, without hardware assistance,
attempts to implement an ideal solution is likely met with
hardware-specific tweaks and hacks, making it very dif-
ficult. We leave this issue as future work and present a
primitive solution in the Appendix.

7.2 Integration with Existing VMI Tools

The ImEE serves as the guest access engine for the VMI
applications without involving kernel semantics. It is not
challenging to retrofit exiting VMI tools that focus on
high-level semantics to benefit from the ImEE’s perfor-
mance and security. We use VMST [19] as an exam-
ples to briefly discuss how to combine a VMI application
with the ImEE. When an introspection instruction is ex-
ecuted in VMST, the XED library [10] decides whether
a data access should be redirected to the guest VM or
not. If so, the code fetches the data from the guest mem-
ory by traversing the guest VM’s page table in the same
way as LibVMI. It is easy to integrate VMST with the
ImEE. When a read redirection is generated by the XED
library, the code simply issues a memory read request
to the ImEE and waits for the reply. With the support
from the ImEE, shadow TLB and shadow CR3 proposed
in VMST are no longer needed.

7.3 ImEE vs. In-VM Introspection

Strictly speaking, the ImEE and in-VM introspection
systems are not comparable, as they are geared for dif-
ferent purposes. The ImEE is for effective target VM
access while in-VM systems are designed for reusing the

OS’s capability [23, 14] or for monitoring events in the
guest [34]. Since Process-Implant [23] and SYRINGE
[14] rely on a trusted guest kernel, we compare the ImEE
with SIM [34] from the perspective of accessing the tar-
get VM memory.

Security. Address space isolation in SIM prevents
the target VM kernel from tampering with SIM data and
code. In a multicore VM, it does not prevent the target
VM kernel from interrupting SIM code execution by us-
ing non-maskable interrupts. By knocking down the SIM
thread from its CPU core, the rootkit can safely erase
the attack traces without being caught. In comparison,
the entire ImEE environment is separated from the target
VM. It is much more challenging (if not feasible) for the
target VM kernel to disrupt the ImEE agent’s execution.
Note that the manipulation on the page tables backfires
on the adversary since they are shared between the ad-
versary and the target.

Effectiveness. SIM does not enforce consistent address
mappings. The SIM code and the target VM threads
are in separated address spaces, namely using separated
page tables. The SIM hypervisor does not update the
SIM page tables according to the updates in the kernel.
In comparison, any update on the target VM page table
takes immediate effect on the ImEE and CR3 consistency
is ensured by the hypervisor.

Performance and Usability. Both SIM and ImEE make
native speed accesses to the memory without emulating
the MMU. ImEE uses EPT and does not require any
modification on the target VM, while SIM relies on the
shadow page tables and makes non-negligible changes
on the target VM.

7.4 Paging Modes Compatibility
The design of ImEE is by nature compatible with various
paging modes such as Physical Address Extension mode
(PAE mode) and 64-bit paging. It only requires setting of
two additional bits in the control registers, namely PAE

bit in CR4 register and LME bit in EFER register so that
the ImEE core runs in the needed paging mode. To pre-
vent the adversary from changing the paging mode, the
hypervisor trap access to the above registers. To intro-
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spect a 64-bit VM, the agent needs to be compiled into
64-bit code as well. In fact, the ImEE performs better
on a 64-bit platform, because there are more general pur-
pose registers available, reducing the number of address
space switches, and the PCID can be used to prevent the
needed TLB entries from being flushed.

7.5 Architecture Compatibility

The ImEE’s design is also compatible to other multi-
core architectures such as ARM, on the condition that
the hardware supports MMU virtualization. Like the
x86 platform, ARM multicore processors also feature a
per-core MMU, thus each core’s translation can be per-
formed independently. As a result, a core can be set up to
use the translation used by the other, by setting it to use
the same root of paging structures. Moreover, by using
T T BR0 and T T BR1, the hypervisor can easily separate
the virtual address ranges used for the target accessing
and for the local usage. It simplifies the design as both
can use separated page tables. The ARM processor also
grants the software more control over the TLB entries.
Thus, the needed TLB entries can be locked by the agent.
Therefore, we expect better performance than the current
design.

8 Related Work

The fundamental problem of VMI is to acquire the ker-
nel’s semantic by reconstructing the kernel objects. Sig-
nificant efforts have been spent in directly recovering
the kernel’s data structures from the raw bytes. It can
be based on expert knowledge (e.g., Memparser [12],
GREPEXEC [13], Draugr [17], and others [2, 4, 5, 6,
8, 9, 22, 32]) and automatic tools (e.g, SigGraph [28],
KOP [15], and MAS [16]). These studies usually involve
a large amount of engineering work and are useful for
memory forensic analysis. Since they do not emphasize
on live memory introspection, the security and effective-
ness of accessing the guest’s live state are not their main
concerns. In general, they are orthogonal to our study in
this paper.

A more sophisticated approach is to reuse the exist-
ing kernel to interpret and construct the desired kernel
objects from a live guest memory image. Based on
whether the introspection uses the guest VM’s kernel or
not, schemes using this approach can be further divided
into in-VM introspection and out-of-VM introspection.

In-VM Introspection. In general, in-VM introspec-
tion schemes aim to save the engineering efforts by re-
lying on the guest kernel’s capabilities. Process Im-
planting [23] loads a VMI program such as strace and
ltrace into the guest VM and executes it with the cam-

ouflage of an existing process. SYRINGE [14] runs the
VMI application in the monitor VM and allows the in-
trospection code to call the guest kernel functions un-
der a guest thread’s context. When the guest kernel is
not trusted, the security and effectiveness are totally bro-
ken, because it is straightforward for a rootkit to evade
or tamper with the introspection. Hence, these in-VM in-
trospection schemes are only useful to monitor the user
space behavior in the guest VM. SIM [34] is an in-VM
monitoring scheme against rootkits. To run the monitor-
ing code inside the untrusted guest, it creates a SIM vir-
tual address space isolated from the guest kernel. Hooks
are placed in the guest to intercept events. The address
switches between the kernel and the SIM code is guarded
by dedicated gates.

Out-of-VM Introspection. The out-of-VM introspec-
tion code stays outside of the target guest. Therefore, it is
capable of introspecting the guest VM to detect kernel-
level malicious activities without directly facing the at-
tack. Virtuoso [18] generates the introspection code by
training the monitor application in a trusted VM and
reliably extracting the introspection related instructions
from the application. The execution trace is replayed
in a trusted VM when performing introspection, whose
data accesses are redirected to the guest VM’s memory.
VMST [19] is another out-of-VM introspection tech-
nique. It manages to reuse the kernel code by running
the introspection application in a monitor VM emulated
by QEMU[11]. A taint analysis runs in the monitor VM
and relevant data accesses are redirected to the guest’s
live memory. Hybrid-bridge [33] is a hybrid approach
which combines the strengths of both VMST and Vir-
tuoso. Similarly, the VMI application is running in the
trusted monitor VM and the OS code is reused. The
kernel data accesses which are related to the monitor-
ing functionality are identified and redirected to the guest
kernel memory when needed. EXTERIOR [20] is an-
other space traveling approach inspired by VMST, which
supports not only guest VM introspection but also recon-
figuration and recovery of the guest VM.

Process Out-Grafting [35] relocates the monitored
process from the guest VM to the monitor VM. The mon-
itor VM always forwards system calls to the guest. The
guest kernel handles it and return back the results to the
monitored process. This approach requires the implicit
assumption that the guest kernel is trusted.

TxIntro [29] is an out-of-VM and non-blocking ap-
proach designed for timely introspection. It mainly fo-
cuses on retrofitting the hardware transactional memory
to avoid reading inconsistent kernel states. In its design,
the VMI code runs on an implanted core and can also ac-
cess the guest memory at a native speed. Nevertheless,
it lacks sufficient security concerns and also fails to help
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the introspection code have a consistent memory view
with the guest’s. In order to make the VMI code see the
same mapping with the guest VM’s kernel, the L4 en-
tries of kernel addresses in its page table directly point
to the L3 page entries existing in the guest VM’s mem-
ory. However, there is no guarantee that the guest kernel
uses these L3 page entries to translate kernel address in-
deed during its execution. The L4 page table entries can
be changed on-the-fly during an introspection run and
the guest kernel can have completely different page ta-
bles to translate addresses by using another CR3 value.
In fact, unless the introspection code always keeps using
the same CR3 value with the guest’s directly when read-
ing the guest like ImEE, any change is able to happen on
the address mapping used in the guest and it is infeasible
for the VMI tool note that. Therefore by following its de-
sign, a consistent address translation cannot be achieved
and the effectiveness of the introspection is lost.

9 Conclusion

To summarize, we have shown that the software-based
address translation widely used in existing out-of-VM in-
trospection systems is not effective to bridge the address
gap. We then present the ImEE which provides the archi-
tectural support for effective target accesses. The ImEE
agent reads the target VM memory at the native speed as
its kernel, and the address translation is performed by the
hardware in the same way as in the guest. ImEE’s native
access speed allows consistent memory view with that of
the target VM.
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Appendices
A TLB-inclusive Introspection

Since the hardware does not automatically maintain the
consistency between the TLB entries and the PTEs in
the memory, the target VM’s adversary can leverage this
hardware behavior to defeat introspection. After access-
ing a page at VA, the adversary then modifies the PTE
to map VA to anther GPA without updating the TLB. An
introspection based on the page tables then results in a
different memory view from the adversary.

The ImEE scheme can be extended to access the tar-
get memory through the TLB used by the running target
thread. The hypervisor traps the target’s core in the same
way as describe before. Note that with the new VPID
technique from Intel, the TLB entries used by the target
are not evicted due to VM-exit. Our basic idea is to load

the agent to the trapped vCPU and to set up the identical
context used for TLB lookup.

The strongest method is that the hypervisor injects the
introspection agent to the thread’s address space, by ei-
ther directly modifying the target memory or using EPT
redirection as in the ImEE scheme. The execution of the
agent on the target’s core uses the TLB for translation
since it is in the same address space. Note that it dif-
fers from the in-VM introspection, because the agent ex-
ecution is independent of the target OS. Obviously, this
method is intrusive as it changes the target states and may
affect the execution of other target’s threads involving the
modified memory or mappings.

A non-intrusive way is to run the agent in an exter-
nal address space. As shown in Figure 12, the hyper-
visor creates a new page table directory with all its en-
tries being copied from the target’s except that one entry
is mapped to a separated page storing the mappings for
the agent. It loads the target’s CR3 with the new page
table base. Note that the PCID in the original CR3 is
not changed. When the agent runs, the TLB entries that
match the targeted VAs are used by the MMU (if the
entry has the same PCID). In case of TLB misses, the
agent still introspects the memory in the same way as in
the ImEE. The consistency is maintained because the tar-
get’s thread is not active during introspection. We have
experimented with this method. The result shows that
the agent does use the mappings in the TLB to read the
global page of the target, instead of following the map-
ping in the page table.

ImEE agent 

11 

Target CR3 

Figure 12: Basic idea of TLB-inclusive introspection.
The dashed arrows are used for introspection. The shad-
owed pages are allocated out of the target’s GPA range
so that the target’s core does not have TLBs for the page
table pages.

CAVEAT. The two methods above are only applicable
to check the intercepted thread. The adversary can still
use a secret PCID to hide its TLBs. It remains as a chal-
lenging problem to detect those entries. TLB-inclusive
introspection is not equivalent to checking the mappings
inside the TLB. Without using special hardware tech-
niques, it is infeasible to for software to inspect every
TLB entries.
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Abstract
Using memory after it has been freed opens programs up
to both data and control-flow exploits. Recent work on
temporal memory safety has focused on using explicit
lock-and-key mechanisms (objects are assigned a new
lock upon allocation, and pointers must have the correct
key to be dereferenced) or corrupting the pointer values
upon free(). Placing objects on separate pages and us-
ing page permissions to enforce safety is an older, well-
known technique that has been maligned as too slow,
without comprehensive analysis. We show that both old
and new techniques are conceptually instances of lock-
and-key, and argue that, in principle, page permissions
should be the most desirable approach. We then validate
this insight experimentally by designing, implementing,
and evaluating Oscar, a new protection scheme based on
page permissions. Unlike prior attempts, Oscar does not
require source code, is compatible with standard and cus-
tom memory allocators, and works correctly with pro-
grams that fork. Also, Oscar performs favorably – often
by more than an order of magnitude – compared to re-
cent proposals: overall, it has similar or lower runtime
overhead, and lower memory overhead than competing
systems.

1 Introduction

A temporal memory error occurs when code uses mem-
ory that was allocated, but since freed (and therefore pos-
sibly in use for another object), i.e., when an object is ac-
cessed outside of the time during which it was allocated.

Suppose we have a function pointer stored on the heap
that points to function Elmo() (see Figure 1) at address
0x05CADA. The pointer is used for a bit and then de-
allocated. However, because of a bug, the program ac-
cesses that pointer again after its deallocation.

This bug creates a control-flow vulnerability. For ex-
ample, between the de-allocation (line 7) and faulty re-

1 vo id (∗∗ someFuncPt r ) ( ) = m a l lo c ( s i z e o f ( vo id ∗ ) ) ;
2 ∗ someFuncPt r = &Elmo ; / / At 0x05CADA
3 (∗ someFuncPt r ) ( ) ; / / C o r r e c t use .
4 vo id (∗∗ c a l l b a c k ) ( ) ;
5 c a l l b a c k = someFuncPt r ;
6 . . .
7 f r e e ( someFuncPt r ) ; / / F r ee s p a c e .
8 userName = ma l lo c ( . . . ) ; / / R e a l l o c a t e s p a c e .
9 . . . / / O v e r w r i t e wi th &Grouch a t 0x05DEAD .

10 (∗ c a l l b a c k ) ( ) ; / / Use a f t e r f r e e !

0 5 C A D A 0 0

0 5 D E A D 0 0

someFuncPtr

callback

someFuncPtr
userName

callback

Figure 1: Top: someFuncPtr and callback refer
to the function pointer, stored on the heap. Bot-
tom: userName reuses the freed memory, formerly of
someFuncPtr/callback.

use of the pointer (line 10), some other code could allo-
cate the same memory and fill it from an untrusted source
– say a network socket. When the de-allocated pointer is
faultily invoked, the program will jump to whatever ad-
dress is stored there, say the address of the ROP gadget
Grouch() at address 0x05DEAD, hijacking control flow.

Heap temporal memory safety errors are becoming in-
creasingly important [27, 42]. Stack-allocated variables
are easier to protect, e.g., via escape analysis, which stat-
ically checks that pointers to a stack variable do not out-
live the enclosing stack frame, or can be reduced to the
heap problem, by converting stack allocations to heap
allocations [33]. Stack use-after-free is considered rare
[42] or difficult to exploit [27]; a 2012 study did not
find any such vulnerabilities in the CVE database [15].
We therefore focus on temporal memory safety for heap-
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allocated objects in the rest of this paper.
Various defenses have been tried. A decade ago, Dhur-

jati and Adve [23] proposed using page permissions and
aliased virtual pages for protection. In their scheme, the
allocator places each allocated object on a distinct virtual
page, even though different objects may share the same
physical page; when an object is deallocated, the cor-
responding virtual page is rendered inaccessible, caus-
ing pointer accesses after deallocation to fail. Although
a combination of the technique with static analysis led
to reasonable memory economy and performance, critics
found faults with evaluation and generality, and – with-
out quantitative comparison – summarily dismissed the
general approach as impractical [31, 42], or without even
mentioning it [41]. Since then, researchers have pro-
posed more elaborate techniques (CETS [31], DangSan
[41], Dangling Pointer Nullification [27] (“DangNull”)
and FreeSentry [42]), relying on combinations of deeper
static analysis and comprehensive instrumentation of
heap operations such as object allocation, access, and
pointer arithmetic. However, these schemes have yielded
mixed results, including poor performance, partial pro-
tection, and incompatibility.

In this work, we first study past solutions, which we
cast as realizations of a lock-and-key protection scheme
(Section 2). We argue that using page permissions to
protect from dangling pointers, an implicit lock-and-key
scheme with lock changes, is less brittle and complex,
and has the potential for superior performance. We then
develop Oscar, a new protection mechanism using page
permissions, inspired by Dhurjati and Adve’s seminal
work [23]. We make the following contributions:

• We study in detail the overhead contributed by the
distinct factors of the scheme – shared memory
mappings, memory-protection system calls invoked
during allocation and deallocation, and more page
table entries and virtual memory areas – using the
standard SPEC CPU 2006 benchmarks (Section 3).

• We reduce the impact of system calls by care-
ful amortization of virtual-memory operations, and
management of the virtul address space (Section 4).

• We extend Oscar to handle server workloads, by
supporting programs that fork children and the
common case of custom memory allocators other
than those in the standard C library (Section 5).

• We evaluate Oscar experimentally using both SPEC
CPU 2006 and the popular memcached service,
showing that Oscar achieves superior performance,
while providing more comprehensive protection
than prior approaches.

Our work shows, in principle and experimentally,
that protection based on page permissions – previously

thought to be an impractical solution – may be the most
promising for temporal memory safety. The simplicity
of the scheme leads to excellent compatibility, deploya-
bility, and the lowest overhead: for example, on SPEC
CPU, CETS and FreeSentry have 48% and 30% runtime
overhead on hmmer respectively, vs. our 0.7% overhead;
on povray, DangNull has 280% overhead while ours is
< 5%. While DangSan has runtime overhead similar to
Oscar, DangSan’s memory overhead (140%) is higher
than Oscar’s (61.5%). Also, our study of memcached

shows that both standard and custom allocators can be
addressed effectively and with reasonable performance.

2 Lock-and-Key Schemes

Use of memory after it has been freed can be seen as an
authorization problem: pointers grant access to an allo-
cated memory area and once that area is no longer al-
located, the pointers should no longer grant access to it.
Some have therefore used a lock-and-key metaphor to
describe the problem of temporal memory safety [31]. In
this section, we show how different published schemes
map to this metaphor, explicitly and sometimes implic-
itly, and we argue that page-permission-based protection
may be the most promising approach for many work-
loads (see Table 1 for a summary).

2.1 Explicit Lock-and-Key: Change the
Lock

In this scheme, each memory allocation is assigned a
lock, and each valid pointer to that allocation is assigned
the matching key. In Figure 1, the code is modified so
in line 1, the allocated object gets a new lock (say 42),
and the matching key is linked to the pointer (see Figure
2). Similarly, in line 5, the key linked to someFuncPtr

is copied to callback. The code is instrumented so that
pointer dereferencing (lines 3 and 10) is preceded by a
check that the pointer’s key matches the object’s lock.

When the space is deallocated and reallocated to a new
object, the new object is given a new lock (say, 43), and
userName receives the appropriate key in line 8. The
keys for someFuncPtr and callback no longer match
the lock past line 7, avoiding use after free (Figure 3).

Since this scheme creates explicit keys (one per
pointer), the memory overhead is proportional to the
number of pointers. The scheme also creates one lock
per object, but the number of objects is dominated by the
number of pointers.

Example Systems: Compiler-Enforced Temporal
Safety for C (CETS) [31] is an example of this scheme.
Although in our figure we have placed the key next to the
pointer (similar to bounds-checking schemes that store
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0 5 C A D A 0 0someFuncPtr

callback

lock: 42key: 42

key: 42

Figure 2: Each pointer has a key, each object has a lock.

someFuncPtr

callback

lock: 43key: 42

key: 42
userName

key: 43

0 5 D E A D 0 0

Figure 3: Lock change (see Figure 2 for the ’Before’).

someFuncPtr

callback

lock: 42key: XX

key: XX
userName

key: 42

0 5 D E A D 0 0

Figure 4: Key revocation (see Figure 2 for the ’Before’).

someFuncPtr

callback

userName

NULL

Figure 5: After pointer nullification (see Figure 1 for the
’Before’), object space can be reused safely.

both the pointer plus the size [25], called plus-size point-
ers) and lock next to the object, this need not be the case
in implementations. Indeed, one of the key advances of
CETS over prior lock-and-key schemes is that it uses a
disjoint metadata space, with a separate entry for each
pointer that stores the key and the lock location; this
avoids changing the memory layout of the program.

2.2 Explicit Lock-and-Key: Revoke the
Keys

Instead of changing the lock, one could revoke all
keys upon reallocation. This requires tracking of
keys throughout memory; for example, freeing either
someFuncPtr or callback should revoke the keys for
both pointers (Figure 4).

To enable this, upon allocation (line 1) instrumenta-
tion must maintain global metadata tracking all pointers
to a given object, and this index must be updated at every
relevant assignment (line 5). Deallocation (line 7) must
be followed by looking up all pointers to that object, re-
voking (nullifying or otherwise invalidating) their keys.
Revoking keys is harder than changing the lock, since it
requires tracking of key propagation.

Example Systems: To our knowledge, this has not been
used for any published explicit lock-and-key scheme;
but, it segues to the next idea that has been used in prior
work: revoking the keys with implicit lock-and-key.

2.3 Implicit Lock-and-Key: Revoke the
Keys

We can view a pointer as the key, and the object as the
lock. Thus, instead of revoking a key from a separate ex-
plicit namespace, we can change the pointer’s value [27].

The relevant code instrumentation is similar to the ex-
plicit case. Upon allocation or pointer assignment, we
update a global index tracking all pointers to each object.
Upon deallocation, we find and corrupt the value of all
pointers to the deallocated object (Figure 5), say by set-
ting them to NULL. Pointer dereferences need not be in-
strumented, since the memory management unit (MMU)
performs the null check in hardware.

Although this scheme does not need to allocate mem-
ory for explicit lock or key fields, it does need to track
the location of each pointer, which means the physical
memory overhead is at least proportional to the number
of pointers.1

Example Systems: DangNull’s dangling pointer
nullification [27] is an example of this scheme.
FreeSentry [42] is similar, but instead of nullifying the
address, it flips the top bits, for compatibility reasons (see
Section 6.3). DangSan [41] is the latest embodiment of
this technique; its main innovation is the use of append-
only per-thread logs for pointer tracking, to improve run-
time performance for multi-threaded applications.

2.4 Implicit Lock-and-Key: Change the
Lock

Implicit lock-and-key requires less instrumentation than
explicit lock-and-key, and changing locks is simpler than
tracking and revoking keys. The ideal scheme would
therefore be implicit lock-and-key in which locks are
changed.

One option is to view the object as a lock, but this
lacks a mechanism to “change the lock”. Instead, it is
more helpful to view the virtual address as the lock.

1DangSan can use substantially more memory in some cases due to
its log-based design.
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Figure 8: Each object has its own
shadow virtual page, which all
map to the same physical frame.

Recall that objects (and physical memory) are ac-
cessed via virtual addresses, which are translated (by the
MMU) into physical addresses. By removing the map-
ping or changing the page permissions, we can make a
virtual page inaccessible; the underlying physical mem-
ory can then be mapped to a different virtual address
(changed lock) for reuse. A drawback is that making a
virtual page inaccessible renders all objects on that page
– often a non-trivial number, since pages are 4KB or
larger – inaccessible (Figure 6). Placing one object per
page (Figure 7) is wasteful of memory resources: it uses
more memory and strains the cache and the TLB.

It is not strictly necessary to use page permissions to
enforce page inaccessibility after deallocation. In princi-
ple, we could maintain a hashtable of live pointers, and
instrument all the pointer dereferences to check that the
pointer is still live, trading off instrumentation for system
calls. This would still have less overhead than an explicit
lock-and-key scheme, because we would not need to in-
strument pointer arithmetic.

Example Systems: Electric Fence [9] implements this
scheme, by placing one object per physical frame. Its
high physical memory usage renders it impractical for
anything other than debugging.

Dhurjati and Adve [23] overcame this shortcoming
through virtual aliasing. Normally, malloc might place
multiple objects on one virtual page, which Dhurjati and
Adve refer to as the canonical virtual page. For each ob-
ject on the canonical virtual page, they create a shadow
virtual page that is aliased onto the same underlying
physical page frame. This allows each object to be dis-
abled independently (by changing the permissions for the
corresponding shadow page), while using physical mem-
ory/cache more efficiently than Electric Fence (Figure
8). However, this still requires many syscalls and in-
creases TLB pressure. Furthermore, creating shadows
introduces compatibility issues with fork (Section 5.1).

The physical memory overhead – one page table en-
try, one kernel virtual memory area struct, plus some
user-space allocator metadata, per object – is propor-

tional to the number of live objects. We expect this to
be more efficient than the other classes of lock-and-key
schemes, which have overhead proportional to the num-
ber of pointers (albeit with a smaller constant factor).
Some engineering is required to avoid stateholding of
munmap’ed page table entries (Section 8).

2.5 Summary of Lock and Key Schemes
Table 1 compares the plausible lock-and-key schemes.
Implicit lock-and-key schemes that change the lock (i.e.,
one object per virtual page) are advantageous by having
no overhead for any pointer arithmetic, and no direct cost
(barring TLB and memory pressure) for pointer derefer-
ences. Furthermore, the core technique does not require
application source code: for programs using the stan-
dard allocator, we need only change the glibc malloc

and free functions. However, Dhurjati and Adve’s full
scheme requires application source code to apply their
static analysis optimization, which allows them to reuse
virtual addresses when a pool is destroyed.

3 Baseline Oscar Design

We will develop the shadow virtual pages idea in a di-
rection that does not require source-code analysis, with
less stateholding of kernel metadata for freed objects,
and with better compatibility with fork. We focus on
glibc and Linux.

While we have argued that page-permissions-based
protections should require less instrumentation than
newer schemes, there has been no good data on the over-
head of shadows (without reliance on static analysis),
let alone quantitative comparisons with recent schemes.
In the first part of this paper, we quantify and predict
the overhead when using only shadows. These measure-
ments informed our approach for reducing the overhead,
which are described in the second part of this paper.

To help us improve the performance of shadow-page-
based schemes, we first measure their costs and break
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  Explicit lock-and-key: 
changing the lock e.g., 

Implicit lock-and-key: 
revoking the keys e.g., 

Implicit lock-and-key: 
changing the lock e.g., 

Instrumentation  CETS DangNull/FreeSentry Electric Fence 
malloc ()  Allocate lock address; Issue key; Set lock Register pointer Syscall to create virtual page 

Simple ptr arithmetic:    p+=2  No cost 

General ptr arithmetic:  p=q+1 Propagate lock address and key Update ptr registration  No cost 

Pointer dereference:     *p Check key vs. lock value (at lock address)  No cost <TLB and memory pressure> 
free ()  Deallocate lock address Invalidate pointers Syscall to disable virtual page 

No application source needed Needs source + recompilation  Yes; Req’d by Dhurjati&Adve 

Physical memory overhead O(# pointers) O(# pointers)  O(# objects) 

 

 

  

Table 1: Comparison of lock-and-key schemes. Green and a tick indicates an advantageous distinction.

down the source of overhead. Shadow-page schemes
consist of four elements: modifying the memory al-
location method to allow aliased virtual pages, inline
metadata to record the association between shadow and
canonical pages, syscalls to create and disable shadow
pages, and TLB pressure. We measure how much each
contributes to the overhead, so we can separate out the
cost of each.

It is natural to hypothesize that syscall overhead
should be proportional to the number of malloc/free
operations, as page-permissions-based schemes add one
or two syscalls per malloc and free. However, the other
costs (TLB pressure, etc.) are less predictable, so mea-
surements are needed.

Our baseline design [23] uses inline metadata
to let us map from an object’s shadow address
to its canonical address. When the program in-
vokes malloc(numBytes), we allocate instead with
internal_malloc(numBytes + sizeof(void*)) to
allocate an object within a physical page frame and then
immediately perform a syscall to create a shadow page
for the object. The object’s canonical address is stored
as inline metadata within the additional sizeof(void*)
bytes. This use of inline metadata is transparent to the
application, unlike with plus-size pointers. Conceivably,
the canonical addresses could instead be placed in a dis-
joint metadata store (similar to CETS), improving com-
pactness of allocated objects and possibly cache utiliza-
tion, but we have not explored this direction.

3.1 Measurement Methodology
We quantified the overhead by building and measuring
incrementally more complex schemes that bridge the de-
sign gap from glibc’s malloc to one with shadow vir-
tual pages, one overhead factor at a time.

Our first scheme simply changes the memory alloca-
tion method. As background, malloc normally obtains
large blocks of memory with the sbrk syscall (via the
macro MORECORE), and subdivides it into individual ob-
jects. If sbrk fails, malloc obtains large blocks us-
ing mmap(MAP_PRIVATE). (This fallback use of mmap

should not be confused with malloc’s special case of
placing very large objects on their own pages.) We can-
not create shadows aliased to memory that was allocated
with either sbrk or mmap(MAP_PRIVATE); the Linux
kernel does not support this. Thus, our first change was
MAP SHARED arenas: we modified malloc to always
obtain memory via mmap(MAP SHARED) (which can be
used for shadows) instead of sbrk. This change unfortu-
nately affects the semantics of the program if it fork()s:
the parent and child will share the physical page frames
underlying the objects, hence writes to the object by ei-
ther process will be visible to the other. We address this
issue – which was not discussed in prior work – in Sec-
tion 5.1.

MAP SHARED with padding further changes
malloc to enlarge each allocation by sizeof(void*)

bytes for the canonical address. We do not read or write
from the padding space, as the goal is simply to measure
the reduced locality of reference.

Create/disable shadows creates and disables shadow
pages in the malloc and free functions using mremap

and mprotect(PROT_NONE) respectively, but does not
access memory via the shadow addresses; the canoni-
cal address is still returned to the caller. To enable the
free function to disable the shadow page, we stored the
shadow address inside the inline metadata field (recall
that in the complete scheme, this stores the canonical).

Use shadows returned shadow addresses to the user.
The canonical address is stored inside the inline meta-
data field. This version is a basic reimplementation of a
shadow-page scheme.

All timings were run on Ubuntu 14.04 (64-bit),
using an Intel Xeon X5680 with 12GB of RAM.
We disabled hyper-threading and TurboBoost, for
more consistent timings. Our “vanilla” malloc/free
was from glibc 2.21. We compiled the non-
Fortran SPEC CPU2006 benchmarks using gcc/g++

v4.8.4 with -O3. We configured libstdc++ with
--enable-libstdcxx-allocator=malloc, and con-
figured the kernel at run-time to allow more virtual mem-
ory mappings.

We counted malloc and free operations using

USENIX Association 26th USENIX Security Symposium    819



 
-10%

0%

10%

20%

30%

40%

50%

60%

bzip2 gcc mcf gobmk hmmer sjeng libquantum h264ref milc lbm sphinx astar namd soplex povray

O
ve

rh
e

ad
 (

0
%

 =
 V

an
ill

a)
 

MAP_SHARED arenas MAP_SHARED with padding Create/disable shadows Use shadows

Figure 9: SPEC CPU2006 C/C++ benchmarks, showing the overhead as we reach the full design.

mtrace. We placed mtrace at the start of main, which
does miss a small number of allocations (e.g., static ini-
tializers and constructors for global C++ objects), but
these are insignificant.

3.2 Results
The overhead measurements of the four incrementally
more complete schemes are shown in Figure 9 for
15 of the 19 SPEC CPU2006 C/C++ benchmarks.
The remaining four benchmarks (perlbench, dealII,
omnetpp, xalancbmk) exhaust the physical memory on
the machine when creating/disabling shadows, due to
the accumulation of vm area structs corresponding to
mprotect’ed pages of “freed” objects. We therefore de-
fer discussion of them until the following section, which
introduces our improvements to the baseline design.

Even for the complete but unoptimized scheme (Use
shadows), most benchmarks have low overhead. gcc and
sphinx have high overhead due to creating/destroying
shadows, as well as using shadows. astar and povray

have a noticeable cost mainly due to using shadows,
a cost which is not present when merely creating/dis-
abling shadows; we infer that the difference is due to
TLB pressure. Notably, mcf’s overhead is entirely due
to MAP SHARED arenas, as is most of milc’s. Inline
padding is a negligible cost for all benchmarks.

In Figure 10, we plot the run-time of creating/dis-
abling shadows, against the number of shadow-page-
related syscalls2. We calculated the y-values by measur-
ing the runtime of Create/disable shadows (we used the
high watermark optimization from Section 4 to ensure
all benchmarks complete) minus MAP SHARED with
padding: this discounts runtime that is not associated
with syscalls for shadows. The high correlation matches
our mental model that each syscall has an approxi-
mately fixed cost, though it is clear from omnetpp and
perlbench that it is not perfectly fixed. Also, we can

2A realloc operation involves both creating a shadow and de-
stroying a shadow, hence the number of malloc/free operations is
augmented with (2 * realloc).
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Figure 10: Predicting syscall overhead.

see that perlbench, dealII, omnetpp and xalancbmk

each create over 100 million objects, which is why they
could not run to completion using the unoptimized im-
plementation.

4 Lowering Overhead Of Shadows

The previous section shows that the overhead is due
to MAP SHARED, creating/destroying shadows, and using
shadows. The cost of using shadows – via TLB pressure
– can be reduced with hardware improvements, such as
larger TLBs (see Section 6.2). In this section, we pro-
pose, implement, and measure three optimizations for re-
ducing the first two costs.

High water mark. The naı̈ve approach creates shad-
ows using mremap without a specified address and dis-
ables shadows using mprotect(PROT_NONE). Since dis-
abled shadows still occupy virtual address space, new
shadows will not reuse the addresses of old shadows,
thus preventing use-after-free of old shadows. How-
ever, the Linux kernel maintains internal data structures
for these shadows, called vm area structs, consuming
192 bytes of kernel memory per shadow. The accumu-
lation of vm area structs for old shadows prevented
a few benchmarks (and likely many real-world applica-
tions) from running to completion.

We introduce a simple solution. Contrary to conven-
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Figure 11: Left: Simplified lifecycle of a chunk of mem-
ory. Right: The destroyShadow syscall has been modi-
fied to simultaneously destroy the old shadow and create
a new one.

tional wisdom [23], with a small design modification,
Oscar can both unmap and prevent reuse of a virtual
page. We use a “high water mark” for shadow addresses:
when Oscar creates a shadow, we specify the high wa-
ter mark as the requested shadow address, and then in-
crement the high water mark by the size of the alloca-
tion. This is similar to the sbrk limit of malloc. Oscar
can now safely use munmap to disable shadows, without
risk of reusing old shadows. As we show in Section 6.1,
virtual address space exhaustion is an unlikely, tractable
problem.

Our scheme, including the high water mark, is
compatible with address space layout randomization
(ASLR). At startup, we initialize the high-water mark
at a fixed offset to the (randomized) heap base address.
To reduce variability in run-times, all benchmarks, in-
cluding the baseline, were measured without ASLR, as
is typical in similar research [40].

Refreshing shadows. Figure 11 (left) depicts the sim-
plified circle of life of a heap-allocated chunk of physi-
cal memory. Over the lifetime of a program, that chunk
may be allocated, freed, allocated, freed, etc., resulting
in syscalls to create a shadow, destroy a shadow, create a
shadow, destroy a shadow, etc. Except for the very first
time a chunk has been created by malloc, every shadow
creation is preceded by destroying a shadow.

Oscar therefore speculatively creates a new shadow
each time it destroys a shadow, in Figure 11 (right). This
saves the cost of creating a new shadow, the next time an
object is allocated on that canonical page. The optimisti-
cally renewed shadow is stored in a hash table, keyed
by the size of shadow (in number of pages) and the ad-
dress of the canonical page (not the canonical object).
This means the shadow address can be used for the next
similarly-sized object allocated on the canonical page(s),
even if the new object does not coincide precisely with

the old object’s size or offset within the page. It also im-
proves the likelihood that the shadow can be used when
objects are coalesced or split by the allocator.

Up to now, we have used mremap to create shadows.
mremap actually can be used to both destroy an old map-
ping and create a new virtual address mapping (at a spec-
ified address) in a single system call. We use this ability
to both destroy the old shadow mapping and create a new
one (i.e., refresh a shadow) with one system call, thereby
collapsing 2 system calls to 1 system call. This opti-
mization depends on the high water mark optimization:
if we called mremap with old_size = new_size with-
out specifying a new_address, mremap would conclude
that there is no need to change the mappings at all, and
would return the old shadow virtual address.

Using MAP PRIVATE when possible. As men-
tioned earlier, MAP SHARED is required for creating shad-
ows, but sometimes has non-trivial costs. However, for
large objects that malloc places on their own physical
page frames, Oscar does not need more than one shadow
per page frame. For these large allocations, Oscar uses
MAP_PRIVATE mappings.

Implementing realloc correctly requires care. Our
ordinary realloc wrapper is, in pseudo-code:

munmap(old_shadow);

new_canonical = internal_realloc(old_canonical);

new_shadow = create_shadow(new_canonical);

This works when all memory is MAP SHARED. How-
ever, if the reallocated object (new canonical) is large
enough to be stored on its own MAP PRIVATE pages,
create shadow will allocate a different set of physi-
cal page frames instead of creating an alias. This re-
quires copying the contents of the object to the new page
frames. Copying is mildly inefficient, but few programs
use realloc extensively.

The overhead saving is upper-bounded by the original
cost of MAP SHARED arenas.

Abandoned approach: Batching system calls. We
tried batching the creation or destruction of shadows, but
did not end up using this approach in Oscar.

We implemented a custom syscall (loadable kernel
module ioctl) to create or destroy a batch of shadows.
When we have no more shadows for a canonical page,
we call our batchCreateShadow ioctl once to create
100 shadows, reducing the amortized context switch cost
per malloc by 100x. However, this does not reduce the
overall syscall cost by 100x, since mremap’s internals are
costly. In a microbenchmark, creating and destroying
100 million shadows took roughly 90 seconds with indi-
vidual mremap/munmap calls (i.e., 200 million syscalls)
vs. ≈80 seconds with our batched syscall. The savings
of 10 seconds was consistent with the time to call a no-op
ioctl 200 million times.
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Figure 12: SPEC CPU2006 C/C++ benchmarks, showing the benefits of our optimizations.

In our pilot study, batching did not have a significant
benefit. It even slowed down some benchmarks, due to
mispredicting which shadows will be needed in the fu-
ture. For example, we may create 100 shadows for a
page that contains solely of a single object which is never
freed, wasting 99 shadows.

We also tried batch-disabling shadows: any objects
that are free()’d are stored in a “quarantine” of 100
objects, and when the quarantine becomes full, we dis-
able all 100 shadows with a single batched syscall, then
actually free those 100 objects. This approach maintains
temporal memory safety, unlike the standard use of quar-
antine (see Section 7). Unlike batch-creating shadows,
with batch-deletion we need not predict the future.

In our pilot study, batch deletion had mixed effects on
runtime overhead. We hypothesize this is due to disrupt-
ing favorable memory reuse patterns: malloc prefers to
reuse recently freed objects, which are likely to be hot in
cache; quarantine prevents this.

4.1 Performance Evaluation
The effect of these improvements on the previous subset
of 15 benchmarks is shown in Figure 12.

Our first two optimizations (high water mark, refresh-
ing shadows) greatly reduce the overhead for gcc and
sphinx; this is not a surprise, as we saw from Figure
9 that much of gcc and sphinx’s overhead is due to
creating/destroying shadows. These two optimizations
do not benefit mcf, as its overhead was entirely due to
MAP SHARED arenas; instead, fortuitously, the over-
head is eliminated by the MAP PRIVATE optimization.
The MAP PRIVATE optimization also reduces the over-
head on milc by roughly ten percentage points, almost
eliminating the overhead attributed to MAP SHARED.

The four allocation-intensive benchmarks are shown
in Figure 13. Recall that for these benchmarks, the
baseline scheme could not run to completion, owing
to the excessive number of leftover vm area structs
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Figure 13: The 4 allocation-intensive benchmarks.

for mprotect’ed shadows corresponding to “freed” ob-
jects. The high water mark optimization, which perma-
nently munmaps the shadows, allows Linux to reclaim the
vm area structs, reducing the memory utilization sig-
nificantly and enabling them to complete successfully.
To separate out the cost of syscalls from TLB pres-
sure, we backported the high water mark change to Cre-
ate/disable shadows.

For all four benchmarks, MAP SHARED and inline meta-
data costs (the first two columns) are insignificant com-
pared to creating/disabling and using shadows. Refresh-
ing shadows reduces overhead somewhat for perlbench
and omnetpp but increases overhead for xalancbmk and
dealII.

The MAP PRIVATE optimization had a negligible ef-
fect, except for perlbench, which became 30 p.p.
slower. This was initially surprising, since in all other
cases, MAP PRIVATE is faster than MAP SHARED. How-
ever, recall that Oscar also had to change the realloc

implementation. perlbench uses realloc heavily: 11
million calls, totaling 700GB of objects; this is 19x the
reallocs of all other 18 benchmarks combined (by calls
or GBs of objects). We confirmed that realloc caused
the slowdown, by modifying Refreshing shadows to use
the inefficient realloc but with MAP SHARED always;
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Figure 14: Runtime overhead of SPEC benchmarks. The graphs have different y-axes. Some overheads are based
on results reported in the papers, not re-runs (see legend). ’?’ indicates that FreeSentry did not report results for
libquantum, DangNull did not report results for dealII, omnetpp, or perlbench, and we could not re-run DangSan
on omnetpp or perlbench. FreeSentry and CETS did not report results for any of the benchmarks in the right graph.

this was marginally slower than refreshing shadows and
using MAP PRIVATE where possible.

4.2 Runtime Overhead Comparison

Figure 14 (left) compares the runtime overhead of Os-
car against DangSan, DangNull, FreeSentry, and CETS.
Figure 14 (right) shows the remaining SPEC bench-
marks, for which results were reported by DangSan and
DangNull, but not FreeSentry or CETS.

A caveat is that CETS’ reported overheads are based
on providing temporal protection for both the stack and
heap, which is more comprehensive than Oscar’s heap-
only protection. However, since CETS must, to a first
approximation, fully instrument pointer arithmetic and
dereferencing instructions even if only heap protection is
desired, we expect that the overhead of heap-only CETS
would still be substantially higher than Oscar.

All other comparisons (DangSan, DangNull,
FreeSentry) are based on the appropriate reported
overheads for heap-only temporal protection.

Comparison to DangSan. We re-ran the latest pub-
licly available version of DangSan3 on the same hard-
ware as Oscar. DangSan re-run overheads were normal-
ized to a re-run with their “baseline LTO” script. We
were unable to re-run perlbench due to a segmentation
fault, or omnetpp due to excessive memory consump-
tion4. As seen in the graphs, our re-run results are very
similar to DangSan’s reported results; thus, unless other-
wise stated, we will compare Oscar against the latter.

3March 19, 2017, https://github.com/vusec/dangsan/

commit/78006af30db70e42df25b7d44352ec717f6b0802
4We estimate that it would require over 20GB of memory, taking

into account the baseline memory usage on our machine and DangSan’s
reported overhead for omnetpp.

Across the complete set of C/C++ SPEC CPU2006
benchmarks, Oscar and DangSan have the same over-
all overhead, within rounding error (geometric means of
40% and 41%). However, for all four of the allocation-
intensive benchmarks, as well as astar and gcc, the
overheads of both Oscar and DangSan are well above the
10% overhead threshold [39], making it unlikely that ei-
ther technique would be considered acceptable. If we
exclude those six benchmarks, then Oscar has average
overhead of 2.5% compared to 9.9% for DangSan. Al-
ternatively, we can see that, for five benchmarks (mcf,
povray, soplex, gobmk, milc), Oscar’s overhead is 6%
or less, whereas DangSan’s is 10% or more. There are
no benchmarks where DangSan has under 10% overhead
but Oscar is 10% or more.5

Comparison to DangNull/FreeSentry. We emailed
the first authors of DangNull and FreeSentry to ask for
the source code used in their papers, but did not re-
ceive a response. Our comparisons are therefore based
on the numbers reported in the papers rather than by re-
running their code on our system. Nonetheless, the dif-
ferences are generally large enough to show trends. In
many cases, Oscar has almost zero overhead, implying
there are few mallocs/frees (the source of Oscar’s over-
head); we expect the negligible overhead generalizes to
any system. Oscar does not instrument the application’s
pointer arithmetic/dereferencing, which makes its over-
head fairly insensitive to compiler optimizations. We
also note that DangSan – which we were able to re-run
and compare against Oscar – theoretically should have
better performance than DangNull6.

5Of course, there is a wide continuum of “under 10%”, and those
smaller differences may matter.

6However, DangSan’s empirical comparisons to DangNull and
FreeSentry were also based on reported numbers rather than re-runs.
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reported a baseline of 0MB for libquantum, so an over-
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Oscar’s performance is excellent compared to
FreeSentry and DangNull, even though DangNull
provides less comprehensive protection: DangNull
only protects pointers to heap objects if the pointer
is itself stored on the heap. Figure 14 (left) compares
all SPEC CPU2006 benchmarks for which DangNull
and FreeSentry both provide data. FreeSentry has
higher overhead for several benchmarks (milc, gobmk,
hmmer, h264ref) – especially higher for the latter three.
FreeSentry is faster on the remaining three benchmarks,
but in all those cases except for sphinx3, our overhead
is negligible anyway. DangNull has much higher
overhead than Oscar for gobmk and sphinx3. For other
benchmarks, DangNull often gets zero overhead, though
it is not much lower than Oscar’s, and comes with the
caveat of their weaker protection.

Our comparisons are based on our overall “best”
scheme with all three optimizations. For some bench-
marks, using just the high water mark optimization and
not the other two optimizations would have performed
better. Even the basic shadow pages scheme without op-
timizations would often beat DangNull/FreeSentry.

Figure 14 (right) shows additional SPEC CPU2006
benchmarks for which DangNull reported their overhead
but FreeSentry did not. For the two benchmarks where
DangNull has zero overhead (bzip2, namd), Oscar’s are
also close to zero. For the other six benchmarks, Oscar’s
overhead is markedly lower. Two highlights are soplex
and povray, where DangNull’s overhead is 150%/280%,
while Oscar’s is under 6%.

When considering only the subset of CPU2006 bench-
marks that DangNull reports results for (i.e., excluding
dealII, omnetpp and perlbench), Oscar has a geo-
metric mean runtime overhead of 15.4% compared to
49% for DangNull. For FreeSentry’s subset of reported
benchmarks, Oscar has just 2.8% overhead compared to
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Figure 16: Memory overhead on CPU2006 (continued).
’?’ indicates that DangNull did not report memory usage
for dealII, omnetpp, or perlbench, and we could not
re-run DangSan on the latter two.

18% for FreeSentry.
Comparison to CETS. We compare Oscar to the

temporal-only mode of SoftBoundCETS [32] (which we
will also call “CETS” for brevity), since that has lower
overhead and a more comprehensive dataset than the
original CETS paper.

The latest publicly available version of SoftBound-
CETS for LLVM 3.47 implements both temporal and
spatial memory safety. We received some brief advice
from the author of SoftBoundCETS on how to modify
it to run in temporal-only mode, but we were unable to
get it to work beyond simple test programs. Thus, our
comparisons rely on their reported numbers rather than a
re-run.

We have omitted the bzip2 and mcf benchmarks, as
CETS’ bzip2 is from the CPU2000 suite [29] and we
suspect their mcf is as well.8 SPEC specifically cau-
tions that, due to differences in the benchmark workload
and/or source, the results on CPU2000 vs. CPU2006
might not be comparable [5].

Figure 14 (left) shows the overhead of CETS vs. our
overall best scheme. We are faster than CETS for all
benchmarks, often by a significant margin. For example,
CETS has >48% overhead on gobmk and hmmer, com-
pared to less than 1% for Oscar. The geometric mean
across CETS’ subset of CPU2006 benchmarks is 2.8%
for Oscar compared to 36% for CETS.

7September 19, 2014, https://github.

com/santoshn/softboundcets-34/commit/

9a9c09f04e16f2d1ef3a906fd138a7b89df44996
8In any case, since CETS has 23% and 114% overhead on bzip2

and mcf respectively – compared to less than 1.5% on each for Oscar –
including them in the comparison would not be favorable to CETS.
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4.3 Memory Overhead Comparison

Figures 15 and 16 show the memory overhead of Oscar,
DangSan (re-run and reported), and DangNull (reported
only). We did not find any reported data for FreeSentry,
CETS or SoftBoundCETS temporal-only. The graphs
have different y-axes to highlight differences in over-
heads in the lower-overhead benchmarks of Figure 15.

We calculated the memory overhead based on the
combined maximum resident set size (RSS)9, size
of the page tables10, and approximate size of the
vm area structs11. Our polling approach introduces
some minor inaccuracies with regard to obtaining the
maxima and baseline values. For DangSan, which does
not greatly increase the number of page table entries or
vm area structs, this is very similar to their maximum
resident set size metric. It is unclear what memory con-
sumption metric DangNull used, so some care should be
taken when interpreting their overheads.

The RSS values reported in /proc/pid/status are
misleading for Oscar because it double-counts every
shadow page, even though many of them are aliased to
the same canonical. We know, however, that the physical
memory usage of Oscar – and therefore the resident set
size when avoiding double-counting – is essentially the
same as the MAP SHARED with padding scheme (from
Section 3.1). We therefore calculated the maximum RSS
for that scheme, but measured the size of the page tables
and vm area structs for the full version of Oscar.

For the complete suite of CPU2006 benchmarks, Os-
car has 61.5% memory overhead, far lower than Dan-
gSan’s 140%. Even if we omit DangSan’s pathological
case of omnetpp (reported overhead of over 13,000%),
Oscar is still far more memory-efficient with 52% over-
head vs. 90% for DangSan. The only benchmarks on
which Oscar performs substantially worse than DangSan
are sphinx3 and soplex. sphinx3 with Oscar has a
maximum RSS of ≈50MB (compared to a baseline of
≈45MB), maximum page tables size of ≈130MB, and
maximum vm area structs of ≈45MB. In Section 8,
we propose methods to reduce the memory overhead by
garbage collecting old page table entries (which would
benefit sphinx3), and sharing inline metadata (which
benefits would soplex with its many small allocations).

DangNull has roughly 127% memory overhead, but,
as also noted by the DangSan authors, DangNull did
not report data for many of the memory-intensive bench-
marks. If we use the same subset of SPEC benchmarks
that DangNull reported, then Oscar has only 36% mem-
ory overhead (vs. ≈75% for DangSan).

9VmHWM (peak RSS) in /proc/pid/status
10VmPTE and VmPMD in /proc/pid/status
11We counted the number of mappings in /proc/pid/maps and

multiplied by sizeof(vm area struct).

5 Extending Oscar for Server Applications

When applying Oscar to server applications – which
are generally more complex than the SPEC CPU bench-
marks – we encountered two major issues that resulted in
incompatibility and incomplete protection: forking and
custom memory allocators. Additionally, we modified
Oscar to be thread-safe when allocating shadows.

5.1 Supporting shadows + fork()

Using MAP SHARED for all allocations is problematic for
programs that fork, as it changes the semantics of mem-
ory: the parent and child’s memory will be shared, so
any post-fork writes to pre-fork heap objects will un-
expectedly be visible to both the parent and child. In
fact, we discovered that most programs that fork and
use glibc’s malloc will crash when using MAP SHARED.
Surprisingly, they may crash even if neither the parent
nor child read or write to the objects post-fork.12

Oscar solves this problem by wrapping fork and em-
ulating the memory semantics the program is expecting.
After fork, in the child, we make a copy of all heap
objects, unmap their virtual addresses from the shared
physical page frames, remap the same virtual addresses
to new (private) physical page frames, and repopulate the
new physical page frames with our copy of the heap ob-
jects. The net effect is that the shadow and canonical
virtual addresses have not changed – which means old
pointers (in the application, and in the allocator’s free
lists) still work – but the underlying physical page frames
in the child are now separated from the parent.

Method. Oscar instruments malloc and free to keep
a record of all live objects in the heap and their shadow
addresses. Note that with a loadable kernel module, Os-
car could avoid recording the shadow addresses of live
objects and instead find them from the page table entries
or vm area structs.

Then, Oscar wraps fork to do the following:

1. call the vanilla fork(). After this, the child address
space is correct, except that the malloc’d memory
regions are aliased with the parent’s physical page
frames.

2. in the child process:

(a) for each canonical page in the heap:

12glibc’s malloc stores the main heap state in a static variable
(not shared between parent and child), but also partly through inline
metadata of heap objects (shared); thus, when the parent or child al-
locates memory post-fork, the heap state can become inconsistent or
corrupted. A program that simply malloc()s 64 bytes of memory,
fork()s, and then allocates another 64 bytes of memory in the child,
is sufficient to cause an assertion failure.
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i. allocate a new page at any unused
address t using mmap(MAP SHARED |

MAP ANONYMOUS)

ii. copy canonical page to t

iii. call mremap(old address=t,

new address=canonical page). Note
that mremap automatically removes the
previous mapping at canonical page.

(b) for each live object: use mremap to recreate a
shadow at the same virtual address as before
(using the child’s new physical page frames).

Compared to the naı̈ve algorithm, the use of mremap
halves the number of memory copy operations.

We can further reduce the number of system calls by
observing that the temporary pages t can be placed at vir-
tual addresses of our choice. In particular, we can place
all the temporary pages in one contiguous block, which
lets us allocate them all using just one mmap command.

The parent process must sleep until the child has
copied the canonical pages, but it does not need to wait
while the child patches up the child’s shadows. Oscar
blocks signals for the duration of the fork() wrapper.

This algorithm suffices for programs that have only
one thread running when the program forks. This covers
most reasonable use cases; it is considered poor practice
to have multiple threads running at the time of fork [6].
For example, apache’s event multi-processing module
forks multiple children, which each then create multiple
threads. To cover the remaining, less common case of
programs that arbitrarily mix threads and fork, Oscar
could “stop the world” as in garbage collection, or Leak-
Sanitizer (a memory leak detector) [1].

Our algorithm could readily be modified to be “copy-
on-write” for efficiency. Additionally, batching the
remappings of each page might improve performance;
since the intended mappings are known in advance, we
could avoid the misprediction issue that plagued regular
batch mapping. With kernel support we could solve this
problem more efficiently, but our focus is on solutions
that can be deployed on existing platforms.

Results. We implemented the basic algorithm in Os-
car. In cursory testing, apache, nginx, and openssh run
with Oscar’s fork fix, but fail without. These applica-
tions allocate only a small number of objects pre-fork,
so Oscar’s fork wrapper does not add much overhead
(tens or hundreds of milliseconds).

5.2 Custom Memory Allocators

The overheads reported for SPEC CPU are based on in-
strumenting the standard malloc/free only, providing a
level of protection similar to prior work. However, a few
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Figure 17: Throughput of Oscar on memcached.

of the SPEC benchmarks [19] implement their own cus-
tom memory allocator (CMAs). Since standard schemes
for temporal memory safety require instrumenting mem-
ory allocation and deallocation functions, without special
provisions none of them – including Oscar – will protect
objects allocated via arbitrary CMAs.

We found that CMAs seem to be even more com-
mon in server programs, such as apache, nginx, and
proftpd. Prior work typically ignores the issue of
CMAs. We solve this by manually identifying CMAs
and wrapping them with Oscar as well. CMA identifica-
tion could also be done automatically [18].

If we do not wrap a CMA with Oscar, any objects al-
located with the CMA would obviously not be resistant
to use-after-free. However, there are no other ill effects;
it would not result in any false positives for any objects,
nor would it result in false negatives for the non-CMA
objects.

5.3 Case Study: malloc-like custom mem-
ory allocator in memcached

memcached is a memory object caching system that
exports a get/set interface to a key-value store.
We compiled memcached 1.4.25 (and its prerequi-
site, libevent) and benchmarked performance using
memaslap.

When we wrapped only glibc’s malloc, the over-
head was negligible: throughput was reduced by 0–3%,
depending on the percentage of set operations (Figure
17). However, this is misleadingly low, as it fails to pro-
vide temporal memory safety for objects allocated by the
CMA. Therefore, we applied Oscar to wrap the CMA, in
the same way we wrapped glibc’s malloc/free.

Method. To support wrapping the CMA, we had to
ensure that Oscar malloc always used MAP SHARED even
for large objects. This is because the allocation may be
used by the CMA to “host” a number of shadows. Ad-
ditionally, we partitioned the address space to use sepa-
rate high-water marks for the malloc wrapper and CMA
wrapper.

We identified that allocations and deallocations via
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memcached’s slab allocator are all made through the
do item alloc and item free functions. Thus, it is
sufficient to add shadow creation/deletion to those func-
tions.

For ease of engineering, we made minor changes di-
rectly to the slab allocator, similar to those we applied
to glibc’s malloc: inserting a canonical address field
in the memcached item struct, and modifying the alloca-
tion/deallocation functions. In principle, we only need to
override the CMA allocate/deallocate symbols, without
needing to recompile the main application.

In this paper, the per-object metadata (e.g., the canon-
ical address) is stored inline. If Oscar switched to a dis-
joint metadata store (e.g., a hashtable), it would be easy
to extend Oscar to protect any custom memory alloca-
tors (not just CMAs with malloc-like interfaces) that
are identified: as with glibc’s malloc, the allocator
function simply needs to be wrapped to return a new
shadow, and the deallocator function wrapped to destroy
the shadow. This would be a better long-term approach
than individually dealing with each CMA that is encoun-
tered.

Results. When set operations are 3% of the total op-
erations (a typical workload [12]), the performance over-
head is roughly 4%. The overhead is higher for set oper-
ations because these require allocations (via the CMA),
which involves creating shadows. Get operations have
almost no overhead because they do not perform mem-
ory allocation or deallocation and consequently do not
require any system calls.13 Unlike SPEC CPU, which
is single-threaded, we ran memcached with 12 threads.
This shows that Oscar’s overhead is low even for multi-
threaded applications, despite our naı̈ve use of a mutex
to synchronize part of Oscar’s internal state (namely, the
high-water mark; see Section 8).

5.4 Special case: Region-based allocators
We have found several server programs that use region-
based custom memory allocators [14]. Region-based al-
locators are particularly favorable for page-permissions-
based schemes such as Oscar.

Typically, region-based allocators obtain a large block
of memory from malloc, which they carve off into ob-
jects for their allocations. The distinguishing feature is
that only the entire region can be freed, but not individ-
ual objects.

Region-based allocators by themselves are not resis-
tant to use-after-free, since the blocks from malloc may
be reused, but they provide temporal memory safety
when the underlying malloc/free is protected by a

13Technicality: memcached lazily expires entries, checking the
timestamp only during the get operation. Thus, the overhead of de-
stroying shadows may be attributed to get operations.

lock-and-key scheme. Thus, there is no need to explicitly
identify region-based CMAs; merely wrapping glibc’s
malloc/free with Oscar suffices to provide temporal
memory safety for such programs i.e., Oscar would pro-
vide full use-after-free protection for a region-based al-
locator, without the need for any custom modifications.

Oscar’s performance is especially good for programs
that use region-based allocators: since there are few
malloc()s or free()s to instrument, and correspond-
ingly low memory or TLB pressure, Oscar imposes neg-
ligible overhead. Other classes of lock-and-key schemes
also provide full protection to programs with region-
based allocators, but they often have high overhead, since
they must instrument all pointer arithmetic operations
(and possibly pointer dereferences).

6 Discussion

Our results show that shadow-page-based schemes with
our optimizations have low overhead on many bench-
marks. From Table 1, we argue that changing the lock
is theoretically easier than revoking all the keys, and im-
plicit lock-and-key is better than explicit. Our experi-
mental results confirm that prediction: Oscar’s runtime
overhead is lower than CETS, DangNull, and FreeSentry
overall and on most benchmarks, and comparable to
DangSan (but with lower memory overhead for Oscar),
even though they all need source code while Oscar does
not.

6.1 Virtual Address Space Considered
Hard to Fill

A concern might be that Oscar would exhaust the 247B
=128TB user-space virtual address space, necessitating
reuse of addresses belonging to freed pages. This is
unlikely in common scenarios. Based on extrapolating
the CPU2006 benchmarks, it would take several days of
continuous execution even for allocation-intensive pro-
grams. For example, with perlbench, which allo-
cates 361 million objects (≈1.4TB of shadow virtual
pages; >99% of objects fit in one page) over 25 min-
utes, it would take 1.6 days (albeit less on newer, faster
hardware) to allocate 128TB. dealII, omnetpp and
xalancbmk would take over 2.5 days each, gcc would
take 5 days, and all other CPU2006 benchmarks would
take at least 2 weeks. We expect that most programs
would have significantly shorter lifetimes, and there-
fore would never exhaust the virtual address space. It
is more likely that they would first encounter problems
with the unreclaimed page-table memory (see Section 8).
Nonetheless, it is possible to ensure safe reuse of virtual
address space, by applying a conservative garbage col-
lector to old shadow addresses (note that this does not
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affect physical memory, which is already reused with
new shadow addresses); this was proposed (but not im-
plemented) by Dhurjati and Adve.

Recently, Intel has proposed 5-level paging, allowing
a 57-bit virtual address space [20]; implementation of
Linux support is already underway [37]. This 512-fold
increase would make virtual address space exhaustion
take years for every CPU2006 benchmark.

6.2 Hardware Extensions

Due to the high overhead of software-based temporal
memory safety for C, some have proposed hardware ex-
tensions (e.g., Watchdog [30]). Oscar is fast because it
already utilizes hardware – hardware which is present
in many generations of x86 CPUs: the memory man-
agement unit, which checks page table entries. We
believe that, with incremental improvements, shadow-
page-based schemes will be fast enough for widespread
use, without the need for special hardware extensions.
For example, Intel’s Broadwell CPUs have a larger TLB
and also a second TLB page miss handler [7], which are
designed to improve performance for general workloads,
but would be particularly useful in relieving Oscar’s TLB
pressure. Intel has also proposed finer grained memory
protection [35]; if future CPUs support read+write pro-
tection on subpage regions, Oscar could be adapted to
one-object-per-subpage, which would reduce the num-
ber of shadows (and thereby TLB pressure).

6.3 Compatibility

Barring virtual address space exhaustion (discussed in
Section 6.1), Oscar will crash a program if and only if the
program dereferences a pointer after its object has been
freed. It does not interfere with other uses of pointers.
Unlike other lock-and-key schemes, page-permissions-
based schemes do not need to instrument pointer arith-
metic or dereferencing (Table 1).

Accordingly, Oscar correctly handles many corner
cases that other schemes cannot handle. For exam-
ple, DangNull/FreeSentry do not work correctly with en-
crypted pointers (e.g., PointGuard [21]) or with typecast-
ing from non-pointer types. CETS has false positives
when casting from a non-pointer to pointer, as it will ini-
tialize the key and lock address to invalid values.

Additionally, DangNull does not allow pointer arith-
metic on freed pointers. For example, suppose we allo-
cate a string p on the heap, search for a character, then
free the string:

char* p = strdup("Oscar"); // Memory from malloc

char* q = strchr(p, ’a’); // Find the first ’a’

free(p);

Computing the index of “a” (q - p == 3) fails with
DangNull, since p and q were nullified. It does work
with DangSan and FreeSentry (since they only change
the top bits) and with Oscar.

DangSan, DangNull and FreeSentry only track the lo-
cation of pointers when they are stored in memory, but
not registers. This can lead to false negatives: DangSan
notes that this may happen with pointers spilled from reg-
isters onto the stack during function prologues, as well as
race conditions where a pointer may be stored into a reg-
ister by one thread while another thread frees that object.
DangSan considers both issues to be infeasible to solve
(for performance reasons, and also the possibility of false
positives when inspecting the stack).

7 Related Work

7.1 Dhurjati and Adve (2006)
Our work is inspired by the original page-permission
with shadows scheme by Dhurjati and Adve [23]. Un-
like Dhurjati and Adve’s automatic pool allocation, Os-
car can unmap shadows as soon as an object is freed, and
does not require source code. Oscar also addresses com-
patibility with fork, which appears to be a previously
unknown limitation of Dhurjati and Adve’s scheme14.
They considered programs that fork to be advantageous,
since virtual address space wastage in one child will not
affect the address space of other children. Unfortunately,
writes to old (pre-fork) heap objects will be propagated
between parent and children (see Section 5.1), resulting
in memory corruption.

While Dhurjati and Adve did measure the runtime of
their particular scheme, their measurements do not let us
break down how much each aspect of their scheme con-
tributes to runtime overhead. First, their scheme relies
upon static analysis (Automatic Pool Allocation: “PA”),
and they did not measure the cost of shadow pages with-
out PA. We cannot simply obtain “cost of syscalls” via
“(PA + dummy syscalls) − PA”, since pool allocation af-
fects the cost of syscalls and cache pressure. Second,
they did not measure the cost of each of the four factors
we identified. For instance, they did not measure the in-
dividual cost of inline metadata or changing the memory
allocation method; instead, they are lumped in with the
cost of dummy syscalls. This makes it hard to predict
the overhead of other variant schemes, e.g., using one
object per physical page frame. Finally, they used a cus-
tom benchmark and Olden [34], which make it harder to
compare their results to other schemes that are bench-
marked with SPEC CPU; and many of their benchmark

14We inspected their source http://safecode.cs.illinois.

edu/downloads.html and found that they used MAP SHARED without
a mechanism to deal with fork.
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  One object per 
physical page frame 

One object per shadow virtual page 
(core technique of Dhurjati & Adve [D&A]) 

Physical memory overhead e.g., Electric Fence Vanilla Automatic pool allocation [D&A] Our work 

User-space memory 0 – 4KB per object (page align)  Low overhead (O(sizeof(void*)) per object) 

Page table entry for live objects 1 page table entry per object 

Page table entry for freed objs <Depends on implementation> 1 PTE per object 1 PTE per object in live pools 0 PTEs* 

VMA struct for live objects 1 VMA struct per object 

VMA struct for freed objects <Depends on implementation> 1 VMA struct per object  None 

No application source needed  Yes  Yes No; needs source + recompilation  Yes 

Compatible with fork()  Yes No; changes program semantics  Mostly 

 

 

  

Table 2: Comparison with Dhurjati and Adve. Green and a tick indicates an advantageous distinction. ∗ Oscar unmaps
the shadows for freed objects, but Linux does not reclaim the PTE memory (see Section 8).

run-times are under five seconds, which means random
error has a large impact. For these reasons, in this work
we undertook a more systematic study of the sources of
overhead in shadow-page-based temporal memory safety
schemes.

To reduce their system’s impact on page table uti-
lization, Dhurjati and Adve employed static source-
code analysis (Automatic Pool Allocation) – to sepa-
rate objects into memory pools of different lifetimes,
beyond which the pointers are guaranteed not to be
dereferenced. Once the pool can be destroyed, they
can remove (or reuse) page table entries (and associ-
ated vm area structs) of freed objects. Unfortunately,
there may be a significant lag between when the object is
freed, and when its containing pool is destroyed; in the
worst case (e.g., objects reachable from a global pointer),
a pool may last for the lifetime of the program. Besides
being imprecise, inferring object lifetimes via static anal-
ysis also introduces a requirement to have application
source code, making it difficult and error-prone to de-
ploy. Oscar’s optimizations do not require application
source code or compiler changes.

We cannot directly compare Oscar’s overhead to Dhur-
jati and Adve’s full scheme with automatic pool alloca-
tion, since they did not report numbers for SPEC CPU.

Oscar usually keeps less state for freed ob-
jects: they retain a page table entry (and associated
vm area struct) for each freed object in live pools
– some of which may be long-lived – whereas Oscar
munmaps the shadow as soon as the object is freed (Table
2). Dhurjati and Adve expressly target their scheme to-
wards server programs – since those do few allocations
or deallocations – yet they do not account for fork or
custom memory allocators.

If we are not concerned about the disadvantages of au-
tomatic pool allocation, it too would benefit from our
optimizations. For example, we have seen that using
MAP PRIVATE greatly reduces the overhead for mcf and
milc, and we expect this benefit to carry over when com-
bined with automatic pool allocation.

7.2 Other Deterministic Protection
Schemes

The simplest protection is to never free() any memory
regions. This is perfectly secure, does not require appli-
cation source code (change the free function to be no-
op), has excellent compatibility, and low run-time over-
head. However, it also requires infinite memory, which
is impractical.

With DangNull [27], when an object is freed, all point-
ers to the object are set to NULL. The converse policy –
when all references to a region are NULL (or invalid), au-
tomatically free the region – is “garbage collection”. In
C/C++, there is ambiguity about what is a pointer, hence
it is only possible to perform conservative garbage col-
lection, where anything that might plausibly be a pointer
is treated as a pointer, thus preventing free()’ing of the
referent. This has the disadvantages of false positives
and lower responsiveness.

The Rust compiler enforces that each object can only
have one owner [4]; with our lock-and-key metaphor, this
is equivalent to ensuring that each lock has only one key,
which may be “borrowed” (ala Rust terminology) but
not copied. This means that when a key is surrendered
(pointer becomes out of scope), the corresponding lock-
/object can be safely reused. It would be impractical to
rewrite all legacy C/C++ software in Rust, let alone pro-
vide Rust’s guarantees to binaries that are compiled from
C/C++.

MemSafe [38] combines spatial and temporal mem-
ory checks: when an object is deallocated, the bounds
are set to zero (a special check is required for sub-object
temporal memory safety). MemSafe modifies the LLVM
IR, and does not allow inline assembly or self-modifying
code. Of the five SPEC 2006 benchmarks they used, their
run-times appear to be from the ‘test’ dataset rather than
the ‘reference’ dataset. For example, for astar, their
base run-time is 0.00 seconds, whereas Oscar’s is 408.9
seconds. Their non-zero run-time benchmarks have sig-
nificant overhead – 183% for bzip2, 127% for gobmk,
124% for hmmer, and 120% for sjeng – though this in-
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cludes spatial and stack temporal protection.
Dynamic instrumentation (e.g., Valgrind’s memcheck

[3]) is generally too slow other than for debugging.
Undangle [15] uses taint tracking to track pointer

propagation. They do not provide SPEC results, but we
expect it to be even slower than DangNull/FreeSentry,
because Undangle determines how pointers are propa-
gated by, in effect, interpreting each x86 instruction.

Safe dialects of C, such as CCured [33], generally re-
quire some source code changes, such as removing un-
safe casts to pointers. CCured also changes the memory
layout of pointers (plus-size pointers), making it difficult
to interface with libraries that have not been recompiled
with CCured.

7.3 Hardening

The premise of heap temporal memory safety schemes,
such as Oscar, is that the attacker could otherwise re-
peatedly attempt to exploit a memory safety vulnerabil-
ity, and has disabled or overcome any mitigations such
ASLR (nonetheless, as noted earlier, Oscar is compati-
ble with ASLR). Thus, Oscar provides deterministic pro-
tection against heap use-after-free (barring address space
exhaustion/reuse, as discussed in Section 6.1).

However, due to the high overhead of prior temporal
memory safety schemes, some papers trade off protec-
tion for speed.

Many papers, starting with DieHard [13], approxi-
mate the infinite heap (use a heap that is M times larger
than normally needed) and randomize where objects are
placed on the heap. This means even if an object is
used after it is freed, there is a “low” probability that
the memory region has been reallocated. Archipelago
[28] extends DieHard but uses less physical memory, by
compacting cold objects. Both can be attacked by mak-
ing many large allocations to exhaust the M-approximate
heap, forcing earlier reuse of freed objects.

AddressSanitizer [36] also uses a quarantine pool,
though with a FIFO reuse order, among other techniques.
PageHeap [2] places freed pages in a quarantine, with the
read/write page permissions removed. Attempted reuse
will be detected only if the page has not yet been reallo-
cated, so it may miss some attacks. These defenses can
also be defeated by exhausting the heap.

Microsoft’s MemoryProtection consists of Delayed
Free (similar to a quarantine) and Isolated Heap (which
separates normal objects from “critical” objects) [8].
Both of these defenses can be bypassed [22].

Cling [11] only reuses memory among heap objects of
the same type, so it ensures type-safe heap memory reuse
but not full heap temporal memory safety.

7.4 Limiting the Damage from Exploits

Rather than attempting to enforce memory safety en-
tirely, which may be considered too expensive, some ap-
proaches have focused on containing the exploit.

Often the goal of exploiting a user-after-free vulnera-
bility is to hijack the control flow, such as by modifying
function pointers per our introductory example. One de-
fense is control-flow integrity (CFI) [10], but recent work
on “control-flow bending” [16] has shown that even the
ideal CFI policy may admit attacks for some programs.
Code pointer integrity (CPI) is essentially memory safety
(spatial and temporal) applied only to code pointers [26].
Code pointer separation (CPS) is a weaker defense than
CPI, but stronger than CFI. Both CPI and CPS require
compiler support.

CFI, CPS and CPI do not help against non-control
data attacks, such as reading a session key or changing
an ‘isAdmin’ variable [17]; recently, “data-oriented pro-
gramming” has been shown to be Turing-complete [24].

8 Limitations and Future Work

Oscar is only a proof-of-concept for measuring the over-
head on benchmarks, and is not ready for production, pri-
marily due to the following two limitations.

Reclaiming page-table memory takes some engineer-
ing, such as using pte free(). Alternatively, the Linux
source mentions they “Should really implement gc for
free page table pages. This could be done with a ref-
erence count in struct page.”15 Not all page-tables can
be reclaimed, as some page-tables may contain entries
for a few long-lived objects, but the fact that most ob-
jects are short-lived (the “generational hypothesis” be-
hind garbage collection) suggests that reclamation may
be possible for many page-tables. Note that the memory
overhead comparison in Section 4.3 already counts the
size of paging structures against Oscar, yet Oscar still
has lower overall overhead despite not cleaning up the
paging structures at all.

We did not encounter any issues with users’ mmap re-
quests overlapping Oscar’s region of shadow addresses
(or vice-versa), but it would be safer to deterministically
enforce this by intercepting the users’ mmap calls.

Currently, all threads share the same high-water mark
for placing new shadows, and this high-water mark is
protected with a global mutex. A better approach would
be to dynamically partition the address space between
threads/arenas; for example, when a new allocator arena
is created, it could split half the address space from
the arena that has the current largest share of the ad-
dress space. Each arena could therefore have its own

15http://lxr.free-electrons.com/source/arch/x86/include/asm/pgalloc.h
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high-water mark, and allocations could be made inde-
pendently of other arenas. This could lower the overhead
of the memcached benchmarks, but not the SPEC CPU
benchmarks (which are all single-threaded).

Our techniques could be applied to other popular
memory allocators (e.g., tcmalloc), or more generally,
any custom memory allocator. The overheads reported
for SPEC CPU are based on instrumenting the standard
malloc/free only, providing a level of protection simi-
lar to prior work. Wrapping CMA’s provides more com-
prehensive protection, though the overheads would be
higher for a few benchmarks, as discussed in Section 5.2.

If we are willing to modify internal malloc, Os-
car can be selective in how to refresh (or batch-create)
shadows. For example, objects that are small enough
(among other conditions) to fit in internal malloc’s
“small bins” are reused in a first-in-first-out order, which
means that a speculatively created shadow is likely to be
used eventually. Other bins are last-in-first-out or even
best-fit, which makes their future use less predictable.
This optimization may particularly benefit xalancbmk
and dealII, for which the ordinary refresh shadow ap-
proach was a net loss.

We could take advantage of the short-lived nature of
most objects to experiment with placing multiple objects
per shadow; fewer shadows means lower runtime and
memory overhead. To further reduce memory overhead,
we could change internal malloc to place the canon-
ical address field at the start of each page, rather than
the start of each object. All objects on the page would
then share the canonical address field, which could dras-
tically reduce the memory overhead for programs with
many small allocations (e.g., soplex).

9 Conclusion

Efficient, backwards compatible, temporal memory
safety for C programs is a challenging, unsolved prob-
lem. By viewing many of the existing schemes as lock-
and-key, we showed that page-permissions-based pro-
tection schemes were the most elegant and theoretically
promising. We built upon Dhurjati and Adve’s core idea
of one shadow per object. That idea is unworkable by it-
self due to accumulation of vm area structs for freed
objects and incompatibility with programs that fork().
Dhurjati and Adve’s combination of static analysis par-
tially solves the first issue but not the second, and comes
with the cost of requiring source-code analysis. Our sys-
tem Oscar addresses both issues and introduces new op-
timizations, all without needing source code, providing
low overheads for many benchmarks and simpler deploy-
ment. Oscar thereby brings page-permissions-based pro-
tection schemes to the forefront of practical solutions for
temporal memory safety.

10 Acknowledgements

This work was supported by the AFOSR under MURI
award FA9550-12-1-0040, Intel through the ISTC for Se-
cure Computing, and the Hewlett Foundation through the
Center for Long-Term Cybersecurity.

We thank Nicholas Carlini, David Fifield, Úlfar Er-
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Control-flow integrity principles, implementations, and applica-
tions. TISSEC (2009).

[11] AKRITIDIS, P. Cling: A Memory Allocator to Mitigate Dangling
Pointers. In USENIX Security (2010), pp. 177–192.

[12] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG, S., AND
PALECZNY, M. Workload analysis of a large-scale key-value
store. In ACM SIGMETRICS Performance Evaluation Review
(2012), vol. 40, ACM, pp. 53–64.

[13] BERGER, E. D., AND ZORN, B. G. DieHard: probabilistic mem-
ory safety for unsafe languages. ACM SIGPLAN Notices 41, 6
(2006), 158–168.

[14] BERGER, E. D., ZORN, B. G., AND MCKINLEY, K. S. Recon-
sidering custom memory allocation. ACM SIGPLAN Notices 48,
4S (2013), 46–57.

[15] CABALLERO, J., GRIECO, G., MARRON, M., AND NAPPA, A.
Undangle: early detection of dangling pointers in use-after-free
and double-free vulnerabilities. In International Symposium on
Software Testing and Analysis (2012), ACM, pp. 133–143.

[16] CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D., AND
GROSS, T. R. Control-flow bending: On the effectiveness of
control-flow integrity. In USENIX Security (2015), pp. 161–176.

USENIX Association 26th USENIX Security Symposium    831

https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://github.com/google/sanitizers/wiki/AddressSanitizerLeakSanitizer
https://support.microsoft.com/en-us/kb/286470
https://support.microsoft.com/en-us/kb/286470
http://valgrind.org/docs/manual/mc-manual.html
http://valgrind.org/docs/manual/mc-manual.html
https://rustbyexample.com/scope/move.html
https://rustbyexample.com/scope/move.html
https://www.spec.org/cpu2006/Docs/readme1st.html#Q21
https://www.spec.org/cpu2006/Docs/readme1st.html#Q21
https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
https://www.linuxprogrammingblog.com/threads-and-fork-think-twice-before-using-them
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/presentation/advancing-moores-law-in-2014-presentation.pdf
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK
http://community.hpe.com/t5/Security-Research/Efficacy-of-MemoryProtection-against-use-after-free/ba-p/6556134#.VsFYB8v8vCK
http://elinux.org/index.php?title=Electric_Fence&oldid=369914
http://elinux.org/index.php?title=Electric_Fence&oldid=369914


[17] CHEN, S., XU, J., SEZER, E. C., GAURIAR, P., AND IYER,
R. K. Non-Control-Data Attacks Are Realistic Threats. In
USENIX Security (2005), vol. 5.

[18] CHEN, X., SLOWINSKA, A., AND BOS, H. Who allocated my
memory? Detecting custom memory allocators in C binaries. In
WCRE (2013), pp. 22–31.

[19] CHEN, X., SLOWINSKA, A., AND BOS, H. On the detection
of custom memory allocators in C binaries. Empirical Software
Engineering (2015), 1–25.

[20] CORPORATION, I. 5-Level Paging and 5-Level EPT.
https://software.intel.com/sites/default/files/

managed/2b/80/5-level_paging_white_paper.pdf, May
2017.

[21] COWAN, C., BEATTIE, S., JOHANSEN, J., AND WAGLE, P.
PointGuard: protecting pointers from buffer overflow vulnerabil-
ities. In USENIX Security (2003), vol. 12, pp. 91–104.

[22] DEMOTT, J. UaF: Mitigation and Bypass. https:

//bromiumlabs.files.wordpress.com/2015/01/

demott_uaf_migitation_and_bypass2.pdf, January
2015.

[23] DHURJATI, D., AND ADVE, V. Efficiently detecting all dangling
pointer uses in production servers. In Dependable Systems and
Networks (2006), IEEE, pp. 269–280.

[24] HU, H., SHINDE, S., ADRIAN, S., CHUA, Z. L., SAXENA, P.,
AND LIANG, Z. Data-Oriented Programming: On the Expressive
of Non-Control Data Attacks. In IEEE S&P (2016).

[25] JIM, T., MORRISETT, J. G., GROSSMAN, D., HICKS, M. W.,
CHENEY, J., AND WANG, Y. Cyclone: A Safe Dialect of C. In
USENIX ATC (2002), pp. 275–288.

[26] KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA, G.,
SEKAR, R., AND SONG, D. Code-pointer integrity. In OSDI
(2014), pp. 147–163.

[27] LEE, B., SONG, C., JANG, Y., WANG, T., KIM, T., LU, L.,
AND LEE, W. Preventing Use-after-free with Dangling Pointers
Nullification. In NDSS (2015).

[28] LVIN, V. B., NOVARK, G., BERGER, E. D., AND ZORN, B. G.
Archipelago: trading address space for reliability and security.
ACM SIGOPS Operating Systems Review 42, 2 (2008), 115–124.

[29] NAGARAKATTE, S. personal communication, June 2017.

[30] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC, S.
Watchdog: Hardware for safe and secure manual memory man-
agement and full memory safety. ACM SIGARCH Computer Ar-
chitecture News 40, 3 (2012), 189–200.

[31] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. CETS: compiler enforced temporal safety for
C. ACM Sigplan Notices 45, 8 (2010), 31–40.

[32] NAGARAKATTE, S. G. Practical low-overhead enforcement of
memory safety for C programs. University of Pennsylvania, 2012.
Doctoral dissertation.

[33] NECULA, G. C., MCPEAK, S., AND WEIMER, W. CCured:
Type-safe retrofitting of legacy code. ACM SIGPLAN Notices 37,
1 (2002), 128–139.

[34] ROGERS, A., CARLISLE, M. C., REPPY, J. H., AND HENDREN,
L. J. Supporting dynamic data structures on distributed-memory
machines. TOPLAS 17, 2 (1995), 233–263.

[35] SAHITA, R. L., SHANBHOGUE, V., NEIGER, G., EDWARDS, J.,
OUZIEL, I., HUNTLEY, B. E., SHWARTSMAN, S., DURHAM,
D. M., ANDERSON, A. V., LEMAY, M., ET AL. Method and
apparatus for fine grain memory protection, Dec. 31 2015. US
Patent 20,150,378,633.

[36] SEREBRYANY, K., BRUENING, D., POTAPENKO, A., AND
VYUKOV, D. AddressSanitizer: A fast address sanity checker.
In USENIX ATC (2012), pp. 309–318.

[37] SHUTEMOV, K. A. [RFC, PATCHv1 00/28] 5-level pag-
ing. http://lkml.iu.edu/hypermail/linux/kernel/

1612.1/00383.html, Dec 2016.

[38] SIMPSON, M. S., AND BARUA, R. K. MemSafe: ensuring the
spatial and temporal memory safety of C at runtime. Software:
Practice and Experience 43, 1 (2013), 93–128.

[39] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal war in memory. In IEEE S&P (2013), IEEE, pp. 48–62.

[40] TICE, C., ROEDER, T., COLLINGBOURNE, P., CHECKOWAY,
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Abstract

We present a new class of content masking attacks
against the Adobe PDF standard, causing documents to
appear to humans dissimilar to the underlying content ex-
tracted by information-based services. We show three at-
tack variants with notable impact on real-world systems.
Our first attack allows academic paper writers and re-
viewers to collude via subverting the automatic reviewer
assignment systems in current use by academic confer-
ences including INFOCOM, which we reproduced. Our
second attack renders ineffective plagiarism detection
software, particularly Turnitin, targeting specific small
plagiarism similarity scores to appear natural and evade
detection. In our final attack, we place masked con-
tent into the indexes for Bing, Yahoo!, and DuckDuckGo
which renders as information entirely different from the
keywords used to locate it, enabling spam, profane, or
possibly illegal content to go unnoticed by these search
engines but still returned in unrelated search results.
Lastly, as these systems eschew optical character recog-
nition (OCR) for its overhead, we offer a comprehensive
and lightweight alternative mitigation method.

1 Introduction

Designed as a solution for displaying formatted infor-
mation consistently on computers with myriad hardware
and software configurations, Adobe’s Portable Docu-
ment Format (PDF) has become the standard for elec-
tronic documents. Academic and collegiate papers, busi-
ness write-ups and fact sheets, advertisements for print,
and anything else meant to be viewed as a final product
make use of the PDF standard. Indeed, there is an ele-
ment of constancy implied in the creation of a PDF doc-
ument. End users cannot easily change the text of a PDF
document, so most come to expect a degree of integrity
present in all PDF documents encountered.

Attacks are studied and corresponding defenses devel-

oped dealing with arbitrary code execution through some
allowances made by Adobe to execute JavaScript within
the rendering process of a PDF file [1] [2] or from other
rendering vulnerabilities [3] [4]. These typically allow
data exfiltration, botnet creation, or other objectives un-
related to the PDF file itself aside from using it as a de-
livery mechanism [5] [6] [7] [8]. We present a class of
attacks against the content integrity of PDF documents
themselves, and following this, describe and test a com-
prehensive defense method against these attacks. With-
out changing the appearance of a PDF, we are able to
alter how several information-based services see it, with
the following implications:

1. We demonstrate how academic paper writers can
collude with multiple conference reviewers, by altering
a paper invisibly to humans, to be assigned to those re-
viewers by automatic reviewer assignment systems, such
as that used by the IEEE International Conference on
Computer Communications (INFOCOM) [9] that openly
publishes its automated algorithm. We simulate this re-
viewer assignment system using 100 sample academic
papers and a corpus of 2094 papers from 114 reviewers
of a past security conference, finding that we can cause
any of said sample papers to match with any reviewer.

2. We show how an unethical student can invisibly
alter a document to avoid plagiarism detection, namely
the dominant market share Turnitin [10], and general-
ize methods to target specific small plagiarism similarity
scores to simulate the few false positives such systems
typically detect. We illustrate this attack by inducing pla-
giarism scores, as measured by Turnitin, from 0-100% in
10 academic papers without changing their appearance.

3. Lastly, we show real-world examples of mak-
ing leading search engines display arbitrary (potentially
spam, offensive material, etc.) results for innocuous key-
words. We have successfully caused Bing, Yahoo!, and
DuckDuckGo to index five documents under keywords
not displayed in those documents.

These systems have in common the need to scrape
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PDFs for their content for further processing or search-
ing within. Online conference paper or other document
repositories and companies that index the Internet re-
quire text from PDFs so they may be located via search.
Natural language processing tools scrape PDFs to dis-
cover the topics within, and this information is used in
several large conferences to assign unpublished work to
conference reviewers as well as in document repositories
to categorize large volumes of works without manual ef-
fort. Finally, plagiarism checkers require text from new
articles for comparison against currently published work
to detect impermissible similarity.

Scraping of PDF documents can be done in an au-
tomated setting by text extraction tools such as the
PDFMiner package [11]. However, fonts of any name
may be embedded in the PDF document, and these tools
cannot check the fonts’ authenticity. A font is actu-
ally akin to an encoding mechanism, which maps keys
pressed on a keyboard to glyphs representing those keys.
Without some way to check the validity of fonts in a PDF,
which glyphs a font maps keys to is arbitrary. Moreover,
humans reading a PDF read the rendered version of what
a tool such as PDFMiner reads, meaning that machines
and humans are on opposite ends of this encoding mech-
anism and may be caused to read different information.

Consequently, the various PDF document scraping en-
vironments may be misused through the remapping of
keys to arbitrary rendered glyphs. Using one or more
custom fonts, an attacker may cause a word to be ren-
dered as another word by switching the glyph mapping
within the font file, or rather change the underlying text
while keeping a constant rendered output. That is to
say, in a document containing the word “kind” an at-
tacker may force that to be rendered as “mean” with a
custom font mapping k to m, i to e, n to a, and d to n,
so the human now sees “mean” while the machine still
sees “kind”; or to avoid human detection an attacker can
change the underlying text to “mean” and use a font with
the reverse mapping to render it as “kind” for the human
to see. The latter tactic subverts aforementioned end ap-
plications, while still rendering PDFs in all appearances
normal to humans. We refer to this as a content masking
attack, as humans are caused to view a masked version
of the content these computer systems read.

To assign papers to reviewers for a conference, several
large conferences employ automated systems to com-
pare the subject paper with a corpus of papers written
by each reviewer to find the best match. This matching
is executed upon the most important topics, or keywords,
found in the paper via natural language processing meth-
ods. If an author replaces the keywords of a paper with
those of a reviewer’s paper, a high match is guaranteed,
and the two may thereby collude. By creating custom
glyph mappings for characters, the masked paper can

make perfect sense to the human eye, while the underly-
ing text read by the machine has many substituted words
which would not make sense to a human reader. This
exploit has the technical challenges of replacing words
of differing lengths (larger and smaller replacements re-
quire different methods) and also constructing multiple
fonts required for different mappings of the same letter
(for example, to map the word “green” to “brown” re-
quires two different font mappings for e). A naive de-
fense could check the number of fonts embedded, so in
Section 4 we design algorithms to minimize the num-
ber of auxiliary fonts used, in order to avoid detection.
To evaluate, we construct our own automatic reviewer
assignment system reproducing the current INFOCOM
system [9], and show that for 100 test papers, targeting
a specific reviewer is possible by masking 4-9 unique
words in most papers and no more than 12 for all tested.

This content masking attack also undermines plagia-
rism detection. In this case, we need only switch out iso-
lated characters to change plagiarized text to text never
written before, while again masking these changes as the
original text to the human reader. In fact, as most pa-
pers have a small (false positive) percentage of similarity
present due to common phrases within the English lan-
guage, this method simulates that by varying the number
of characters changed, to simulate the usual small but
nonzero plagiarism percentage. Only one font is required
to make this mapping, as the resultant text does not need
to make sense to the plagiarism detector. Thus, say, all
rendered e’s may be represented by some other letter in
a font that maps that key to the glyph e, and other letters
may be changed similarly, building a one-to-one map-
ping covering at most all letters. The challenge is to tar-
get a small plagiarism percentage, but accomplishing that
as we do in Section 5, a single embedded font bearing the
name of a popular font will cause no suspicion.

Finally, search engines and document repositories may
be subverted to display unexpected content also. Here,
we may replace the entire text of a PDF without changing
the rendered view, with a variety of implications. One
may hide advertisements in academic papers or business
fact sheets, for example, to spam users searching for in-
formation. In this exploit, the attacker should replace an
entire document with the fewest number of fonts neces-
sary, to avoid seeming particularly unusual. This must
be done in a different way than for the topic matching
exploit, due to changing the entire document rather than
a few words, so we outline another method in Section 6.
We then test it on popular search engines, finding that
Yahoo!, Bing, and DuckDuckGo are susceptible.

Having enumerated these vulnerabilities, as these sys-
tems eschew optical character recognition (OCR) for its
overhead, we offer a comprehensive and lightweight al-
ternative mitigation method in Section 7. While a naive
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method would perform OCR over the full document, we
instead render the unique characters used within the doc-
ument and perform OCR on these. This font verification
method has several technical challenges in its implemen-
tation, due to the number and variety of glyphs within
font files, and all these issues are overcome in the algo-
rithm we provide. We find it performs at a roughly con-
stant speed regardless of document length (a tenth of that
for full document OCR at 10 pages), with glyph distinc-
tion accuracy just under 100%, and with 100% content
masking attack detection rate.

2 Background Information

PDF Text Extraction: The Adobe PDF standard con-
tains eight basic types of objects, including strings.
Strings house the text in a document, including plain text,
octal or hexadecimal representations of plain text, or text
with some type of encoding [12]. PDF rendering soft-
ware treats each string as a series of character identifiers
(CIDs), each mapping to its corresponding glyph within
the font associated with that string via the Character Map
(CMap) [13]. A series of glyphs is thus displayed.

Text information extracted from PDF files by using
tools like the Python package PDFMiner. These tools ex-
tract text by copying the plaintext from all string objects
in a PDF file. Though these tools can extract the font
name for each string as well, a whitelist will not defend
against this attack, as fonts may be given any name.

Topic Matching: The exponential growth of human
knowledge/record keeping and the ease of its access de-
mands an efficient means of providing context-relevant
search results, stemming the research field of natural lan-
guage processing. This field extracts the specific subject
of a document without the need for human classification.
The ultimate goal of useful search results prompts the
companion research field of matching keywords to top-
ics which has been tackled by the leading search engines.

Latent Semantic Indexing (LSI) is a popular natu-
ral language processing algorithm for extracting topics
from documents. The LSI approach infers synonymous
words/phrases to be those with similar surrounding con-
texts, rather than constructing a thesaurus. These de-
tected patterns can allow singular value decomposition
to reduce the number of important words in a document
such that it may be represented by a small subset. This
small subset, of cardinality k, then contains frequency
data for each element, such that the document may be
represented by a dot in k-space. Similarity between doc-
uments is easily calculated via their Euclidean distances
apart in this geometric representation [14].

Latent Dirichlet Allocation is a newer popular topic
extraction algorithm, which is generally speaking a prob-
abilistic extension of LSI [9]. Topics are generated as

collections of related words, using supervised learning.
The probability of a document corresponding to each of
the predefined topics is calculated based on how well
the words within the document correspond to the words
within each topic [15, 16].

Topic matching is used within the automation of the
review assignment process for several large conferences,
such as the ACM Conference on Computer and Commu-
nications Security (CCS) or the IEEE International Con-
ference on Computer Communications (INFOCOM).
These conferences receive many submissions and have
many reviewers, and the manual task of finding the most
suitable reviewers for each paper is onerous, so they au-
tomate by comparing topics extracted from subject pa-
pers and papers published by reviewers. The authors
of [9] execute a performance comparison between LSI
and LDA for use in the present (as of 2016) INFOCOM
reviewer assignment system, which uses PDFMiner for
text extraction, finding LSI to work well with the aca-
demic papers submitted to that conference. We accord-
ingly perform our experiments using LSI to determine
the important keywords of each paper, and note that the
attack functions equivalently using LDA.

Plagiarism Detection: Turnitin, LLC has the domi-
nant market share for plagiarism detection software. Its
software is proprietary, but current documentation states
“Turnitin will not accept PDF image files, forms, or port-
folios, files that do not contain highlightable text...” [10],
indicating that PDFMiner or some similar internally de-
veloped tool is used to scrape the text from PDF docu-
ments. We may assume from the lack of support for im-
age files that optical character recognition (OCR) is not
used, meaning that our proposed attack should succeed,
which is proved in Section 5.2.

Additionally, the Turnitin documentation states that
“All document data must be encoded using UTF-8 char-
acter set” [17]. As mentioned in Section 2, text may have
custom encodings, but here we find they are not permit-
ted by Turnitin. This disallows any attack where text,
gibberish in appearance, is translated via decoding into
legible text. However, no restriction on fonts is in place,
due to the necessary ability for Turnitin’s client institu-
tions to specify their own format requirements.

Document Indexing: Extracting topics from a docu-
ment is somewhat of a subproblem to the larger issue of
document indexing. As information highly relevant to a
search may appear in a small portion of a document, sim-
ply relying on the overall topic of every document to in-
fer relevancy to a search may miss some useful results. A
search engine should do more than simply topic model-
ing to show results for a query. In fact, Google uses more
than 200 metrics to determine search relevancy [18], in-
cluding its famous PageRank system of inferring quality
of a site based on the number of sites linking to it [19].
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Though documentation is sparse on other search en-
gines such as Bing or Yahoo, Google does host some
discussion of its treatment of PDF files. It states that
they can index “textual content . . . from PDF files that
use various kinds of character encodings” [20] but that
aren’t encrypted. “If the text is embedded as images, we
may process the images with OCR algorithms to extract
the text” [20], but for our content masking attack, text is
not embedded as images, so logically the system would
not perform OCR. Our experiment finds out for sure for
Google, Bing, Yahoo, and DuckDuckGo in Section 6.2.

3 Masking Font Creation

The content masking attack is facilitated by the ability
to embed custom fonts within PDF documents. In fact,
having all fonts embedded is a formatting requirement
for the submission of academic papers to conferences.
However, no integrity check is performed on those fonts
as to the proper correlation between text strings within
the PDF file and the respective glyphs rendered in the
PDF viewer. An attacker may map characters to arbitrary
glyphs and alter the text extracted from a PDF document
while it appears unchanged to humans in a PDF viewer.
This requires two steps, firstly to create the requisite font
files and secondly to encode the text via these font files.

The first step may employ one of the multiple open
source multi-platform font editing tools such as Font-
Forge [21]. With this tool, one can open a font and di-
rectly edit the character glyphs with the typical vector
graphics toolbox, or copy the glyph for a character and
paste it into the entry for another character. One can then
edit the PDF file directly with open source tools such
as QPDF [22], or in the case of manipulating academic
papers, quicken the process by adding custom fonts in
LATEX, and aliasing each to a simple command [23]. We
employ the latter method for its greater ease. It em-
ploys the program ttf2tfm, included with LATEX, to con-
vert TrueType fonts to “TeX font metric” fonts which are
usable by LATEX. Two LATEXcode files are supplied by
[23]: T1-WGL4.enc for encoding, and t1custom.fd for
easy importing of the font into a LATEXdocument.

The second step of choosing how to mask this con-
tent and what in a document to encode with custom fonts
depends on the system targeted, and the technique and
evaluation for each of the three scenarios introduced in
Section 1 appears in the following three sections.

4 Content Masking Attack Against Con-
ference Reviewer Assignment Systems

As learned in Section 2, topic matching works from
groups of words constituting the main topic of the doc-

ument. Assignment of conference paper submissions to
reviewers is accomplished by finding the highest similar-
ity between detected topics within submissions and those
within a corpus of reviewers’ papers. Meanwhile, a lazy
paper writer may wish to collude with specific review-
ers, know of some more generous to papers, or just think
reviewers may be less critical of papers not within their
specializations. This lazy writer needs to change the pa-
per topic to target a specific reviewer, replacing words
corresponding to the topic of the paper with words com-
prising the topic of a paper from the reviewer’s corpus,
while being masked as the original words to still make
visual sense. We now discuss the challenges for this at-
tack and methods to target one or more reviewers, and
subsequently evaluate the attack efficacy.

4.1 Construct Word and Character Maps

We primarily require a list of original words within the
subject document to change, and a list of words from the
target document to which to change these original words.
The new words will then be masked to display as the
original words using the masking fonts described in Sec-
tion 3. First, any stopwords within the document should
be eliminated from consideration. These are common
words within the paper’s language, such as “the,” “of,”
“her,” or “from.” Stopwords may be removed by using
existing tools like the Natural Language Toolkit (NLTK)
Python package [24]. From here an attacker can replace
the most frequently used words in the subject paper with
the most frequently used words in the target reviewers
paper. This will result in the most frequently used words
in the target paper also appearing in the subject paper, for
a high similarity score as measured by the LSI method
within the automatic reviewer assignment system.

Consider word lists A and B having constituent words
{a1,a2, ...,an} and {b1,b2, ...,bn} which are in descend-
ing order of appearance within the subject and target pa-
pers, respectively. An attacker wishes to replace words
A with topic B and must therefore replace each word
ai within the text of the subject paper with a word
bi, encoded using some font(s) to render bi the same
graphically as ai (a word mapping). No other words
should/need be changed. Consequently, the objective is
to construct a mapping between the letters of each bi
and ai (a character mapping). If ai and bi are character
arrays {ai[1],ai[2], ...,ai[pi]} and {bi[1],bi[2], ...,bi[qi]},
then the attacker should construct a masking font such
that the character bi[1] maps to the glyph ai[1], bi[2] to
ai[2], etc. We may consider this analogous to a map data
structure, where bi[1] is a key and ai[1] its value, and so
on. Two challenges naturally arise in constructing the
required character mappings:

One-to-Many Character Mapping: From the brief

836    26th USENIX Security Symposium USENIX Association



Original
Text

Masked
Text

blank
(clearing font)

Favorable Mapping

Unfavorable Mapping

Figure 1: Handling the word length disparity challenge.
Each box represents a character.

Algorithm 1 Build Character Map

Input: subject paper s, target paper t
Output: character mapping C : B→ A, encoding fonts

F = { f1, f2, ..., fx}
1: A← top k topic words of LSI(s)
2: B← top k topic words of LSI(t)
3: C← empty character map
4: for i← 1 to k do
5: pi← length(ai)
6: qi← length(bi)
7: if pi < qi then . favorable mapping
8: for j← 1 to pi do
9: C←C∪{(bi[ j],ai[ j])}

10: for j← pi +1 to qi do
11: C←C∪{(bi[ j], /0)}
12: else if pi > qi then . unfavorable mapping
13: for j← 1 to qi−1 do
14: C←C∪{(bi[ j],ai[ j])}
15: rest← combine {ai[qi], ...,ai[pi]}
16: C←C∪{(bi[qi],rest)}
17: else . equal word length
18: for j← 1 to qi do
19: C←C∪{(bi[ j],ai[ j])}
20: x← largest number of key collisions in C
21: temp←C
22: for i← 1 to x do . build fonts
23: fi← empty font
24: for each c ∈C do
25: if value in c is /0 then
26: C←C \{c}
27: use clearing font for key in c
28: else if no key collision between c, fi then
29: C←C \{c}
30: fi← fi∪{c}
31: F ← F ∪ fi

32: C← temp
33: return C,F

example in Section 1 of changing the word green to
brown, we know that in terms of a map data structure
there is a collision for the key e and the values o and
w, such that an attacker will require two masking font
“maps” to render green as brown. The first challenge is to
minimize the number of fonts required in the document,
so as to avoid suspicion, while fully switching topic A
for B. This problem is not delimited by word: some
character mappings may be reused in the same or other
words, and many may not. Additionally, changing all of
the words in A to those in B may be unnecessary, which
also impacts the number of one-to-many mappings and
resultant number of required font files. If fewer words
must be changed while ensuring the required similarity
between papers, fewer fonts may be required, and a naive
font count threshold defense will be less effective.

Word Length Disparity: Further, the lengths pi and
qi of words ai and bi may differ, causing ai to be longer
than bi or vice versa. If pi > qi, to render bi as ai, a font
file entry is necessary for the letter bi[qi] mapping to the
last pi−qi +1 letters of ai. Several additional fonts may
be necessary if some bi ∈ B have the same last character.
Thus, we define a favorable keyword mapping as a word
mapping bi → ai such that pi < qi. In this case, only
a single clearing font is needed, wherein all characters
map to a blank glyph of no width. Figure 1 illustrates
handling favorable and unfavorable mappings. In prac-
tice, a blank glyph of no width is in fact a single dot, of
width (and height) equal to the smallest unit of measure
within a font drawing program. In contrast, an i is 569
units wide (and a w is 1500 units wide), so this dot will
not be rendered at all. And because this clearing font has
all letters map to no-width blanks, it will be the only ad-
ditional font required if ∀i, pi < qi, hence its favorability.

4.2 Matching One or More Papers to One
Reviewer

Mapping of words from B to A is by their original de-
scending order of frequency within the target and subject
papers, respectively. Algorithm 1 shows the overall en-
coding process and begins by running the LSI model on
the subject and target papers, then constructing a map be-
tween characters in k of the topic words returned. Then,
the mapping is added to C for each character, for each
word of B, to the corresponding character(s) in the cor-
responding word of A. Here, comments (Lines 7, 12,
17) indicate the steps taken for favorable and unfavorable
mappings and the case when both words are of the same
length. Finally at Line 22, the mappings in C are bro-
ken up into collections to be made into custom masking
fonts, with the exception of those characters from favor-
able mappings which map to null, for which the previ-
ously introduced single clearing font is used. Resulting
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from this algorithm are fonts to be used for each charac-
ter of the words in B to mask them as the words in A. If
the attacker has multiple papers under submission, this
process may be repeated independently for each paper.

4.3 Matching One Paper to Multiple Re-
viewers

For a better chance at cheating the peer review process
and to collude with multiple reviewers, the content mask-
ing attack can be adapted to split up the masked words
among two (or more) different lists of frequently used
words. Instead of mapping between word lists A and B,
the attacker will map between A and B and A and C, such
that a1 will be replaced with b1 part of the time and c1 the
rest of the time, and so on. The method is otherwise the
same as shown in Algorithm 1, but has its own challenge.

Intuition would suggest replacing a1 half of the time
with b1 and half of the time with c1. However, the re-
quirement for the attacker’s paper to be the most similar
of a large number of papers to a reviewer’s paper and
also the most similar of all others to another reviewer’s
paper is quite stringent. The intuitive method fails as
the similarity score for one target reviewer will be high
enough but the other too low. So we use an iterative re-
finement method which tunes the replacement percent-
ages according to the calculated similarity scores until
they are both the highest among their peers. This is gen-
eralizable to more than two reviewers, by refining the
percentages proportionally according to the successive
differences in similarity scores between the subject pa-
per and each of the target papers. We match one paper to
three reviewers in Section 4.4, the typical number of re-
viewers to which papers are assigned (barring contention
in reviews, which would not happen during collusion).

4.4 Experiment

We have built a conference simulation system reproduc-
ing the INFOCOM automatic assignment process de-
scribed in [9]. We imported into this system 114 TPC
members from a well-known recent security conference
as reviewers, and downloaded a collection of each of
these reviewers’ papers published in recent years. In to-
tal, this comprised 2094 papers used as training data for
the automatic reviewer assignment system. For testing
data, we also downloaded 100 papers published in the
greater Computer Science field. Our experiment, then,
is to test the topic matching of the test papers with the
training papers, via our content masking attack. Follow-
ing are evaluations of the content masking attack match-
ing one paper to one reviewer, multiple papers to one
reviewer, and one paper to multiple reviewers.

Matching one paper to one reviewer: The automatic
reviewer assignment process compares a subject paper
with every paper from the collection of reviewers’ papers
to gather a list of similarity scores. The reviewer with the
highest similarity score is assigned the paper to judge (if
available). We therefore aim to change a testing paper
topic to a training paper topic, and to examine how well
this works with all papers. For each such pair of papers,
then, we replace the frequently appearing words A in the
testing paper with those frequently appearing words B
in the training paper via Algorithm 1. We test the topic
matching of each of the 100 testing papers against our
training data to see what is required to induce a match.

For each pair of training and testing papers, we re-
place important words in the testing paper one by one, to
see how many replacements are needed to make that pair
the most similar. Figure 2 illustrates this iterative pro-
cess for one example training/testing paper pair, showing
resultant similarity scores. The box plots show where
the greatest concentration of the 2094 similarity scores
dwell, while red pluses show outliers. The blue stars
which emerge to the top correspond to the similarity
scores between the testing paper and the target training
paper. Figure 2 shows a clear separation of that similarity
score from the rest after replacing 9 words, meaning that
for this pair, content masking all appearances of those 9
unique words in the testing paper will result in its assign-
ment to the reviewer who wrote that training paper.

Performing this process for all 100 testing papers, we
compile the results into Figure 3, which displays the cu-
mulative distribution function (CDF) for the number of
words requiring replacement. Evidently, all 100 papers
may be matched with the target with 12 words or fewer
masked. The sharp jump appearing from 4-9 words indi-
cates that most papers can be successfully targeted to a
specific reviewer masking between 4 and 9 words. The
font requirements for replacing these words is then rep-
resented in Figure 4. A majority of papers require 3 or
fewer masking fonts, while almost all of them need only
as many as 5. This is a comparatively small number and
should go unnoticed among the collection of fonts nat-
ural to academic papers. For example, this paper has
some 19 embedded fonts, between bold/italic variants,
fonts used in figures, and one picture font used in Table
1.

Matching multiple papers to a single reviewer:
Should an author wish to have multiple submitted papers
all assigned to a target reviewer, the author may simply
repeat the content masking process on each paper. While
in the previous case we find that an average of 3 or 4
fonts is necessary to make a single test paper sufficiently
similar to the target training paper, that needs not directly
translate to 3 or 4 fonts per paper with multiple papers.
Some fonts may be reused among papers, resulting in
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Figure 2: Similarity scores relative
to amount of words masked. Blue
stars show the desired matching.
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Figure 3: Word masking require-
ments for all 100 testing papers.
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Figure 4: Masking font require-
ments for all 100 testing papers.
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Figure 5: Masking font requirements for matching from
1 to all 100 testing papers to a single reviewer.
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Figure 6: Similarity scores relative to amount of words
masked, between a paper and three reviewers. Blue
stars, black circles, and green triangles show the desired
matchings.

fewer overall fonts used. Figure 5 confirms this, show-
ing a trend more logarithmic than linear.

Matching a paper to multiple reviewers: Finally, we
evaluate the iterative refinement method to split masked
words among three reviewers’ papers as discussed in
Section 4.3. Figure 6 shows that the similarity scores
for the three target reviewers (blue star, black circle,
and green triangle) consistently increase; after some 70
words masked, the subject paper is more similar to the
three target papers than any others.

5 Content Masking Attack Against Plagia-
rism Detection

While a method similar to the topic matching subver-
sion technique just outlined may be used to hide plagia-
rism, fewer requirements constrain the plagiarist than the
lazy author targeting a specific reviewer in a conference.
Specifically, an attacker needs only make the underlying
text different than the rendered, plagiarized text. The un-
derlying text does not need to be actual words, and so
only one font is needed, ensuring the naive defense of
limiting fonts is defeated. This scrambling font is just a
random scrambling of the characters. Each original letter
is replaced with the letter which displays as the original.
Resulting is a human-legible PDF document which ap-
pears as gibberish to Turnitin and necessarily has a sim-
ilarity score of 0%. Details and options for this method
are below, followed by an evaluation of each option.

5.1 Targeting a Specific Plagiarism Score

Because Turnitin is a similarity checker, not a plagiarism
detector, it relies on the human factor to actually detect
plagiarism. Turnitin informs the individual with grad-
ing duties of any pieces of similar prose, which naturally
arise due to the plethora of written work in existence and
the human tendency toward common patterns and figures
of speech. It is unlikely then, and would stand out to
the grader, that a submission would have 0% similarity
with anything ever written. We offer and evaluate two
methods an attacker can use to target a specific (low but
non-zero) similarity score and more likely go unnoticed.

By Letter: Here, the attacker begins with a scram-
bling font and removes characters from being scrambled
successively until a target percentage of the text is not
being replaced. Intuitively, this small target percentage
would then appear plagiarized, yielding a credible simi-
larity score. This may be done in a calculated fashion us-
ing the known frequency of usage of letters in the English
(or other) language. The letters may be listed by their
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Figure 7: Effects of the percentage of text changed upon
plagiarism similarity scores for 10 sample documents.

frequency in ascending or descending order (we evaluate
both) and then excluded from scrambling in that order
until the target percentage of unaltered text is reached.

By Word: This method is similar to the previous, but
instead of leaving some characters unscrambled in the
custom font, the attacker leaves some words unaltered by
not applying the custom scrambling font to them. Here,
words within the document may be listed in frequency
of appearance, ascending or descending, and excluded
from the scrambling font in that order (we again evaluate
both). We also consider changing words at random with a
probability targeting some similarity score. This method
may be more effective for an attacker in the long run, if
Turnitin implements a requirement that some percentage
of words be found in a dictionary, English or otherwise.
In that case, this attack may be augmented by the previ-
ously described method of replacing real words for other
real words rendered as the originals.

5.2 Experiment
We use 10 already published papers retrieved from the
Internet and mask the content in varying degrees to see
the effects on Turnitin’s returned similarity scores. We
vary the amount a scrambling font is applied to the text
according to the previously described methods and up-
load the resultant papers to Turnitin. Again, we target a
specific range of similarity scores, between 5% and 15%,
such that a human grader is unlikely to suspect foul play.

Figure 7 plots the three methods. “Frequency descend-
ing” refers to the method of masking words in the order
of their frequency of appearance in the document, while
“Letter usage descending” refers to masking letters by
their frequency of usage. Ascending order proved un-
wieldy in both cases and not worth displaying. Finally,
“Random replacement” refers to the method of iterating
over all words and masking them with a probability of
1-100% in increments of 1%. These are all plotted in
terms of the percentage of text changed. Masking let-
ters by their frequency of usage results in a similarity

curve that is too steep to be manageable for selecting a
small range of similarity scores. In contrast, the other
two methods are very suitable for comfortably picking a
specific range. Any probability between 17% and 20%
will net a similarity score in our desired 5-15% range in
the case of randomly chosen masking. When words are
replaced in order of their frequency of appearance, the 5-
15% range may be achieved by replacing anywhere be-
tween 20 and 40% of the words, offering a very wide
range of safety for the plagiarist.

6 Document Indexing Subversion

The final direction of this attack is against search en-
gines, whether for the entire web or for small document
repositories or websites. Websites can implement a sim-
ple search returning pages housing the query text, or they
can use custom search engines offered by Google [25] or
Yahoo! [26]. Microsoft Bing also offers its API [27].
As small sites are unlikely to have a more sophisticated
search mechanism than the leading search engines, we
target and demonstrate our attack against these.

6.1 Method
We here consider modifying the entire content of a PDF
to render as something else. Both the underlying text
extracted by PDFMiner (or otherwise) and the rendered
text should make sense in this case, so that an individual
searching for certain terms will be caused to find a PDF
holding those words but displaying something entirely
different. This results in a more extreme version of the
one-to-many character mapping challenge from the at-
tack against topic matching. Instead of masking a small
finite number of words, we now examine masking the en-
tire content. However, this is facilitated by the realization
that these masks are not necessarily delineated by spaces
as before; the attacker can treat the entire document as
a single word to be masked. It consequently encounters
the word length disparity challenge, to treat the variation
in length between real and rendered text, but only once.

Nevertheless, the strategy of adding new fonts, ad hoc,
to cover each new mapping quickly balloons out of con-
trol, in terms of the attacker needing to keep track of what
mappings appear in what font. The number of fonts will
increase with the number of characters to be masked, to
an upper limit of every character needing a map to every
other. Considering (for English) upper and lower case
letters, numbers, and common punctuation (22 symbols,
dependent upon count), all 26+26+10+22 = 84 char-
acters must each map to the other 83 different characters,
as well as themselves for those cases which a character
and its mask are the same. This requires 84 fonts and
represents 842 = 7056 mappings. Code can certainly be
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Search Engine Indexed Papers Attack Successful Evades Spam Detection Not Later Removed
Google 3 7 7 7
Bing 3 3 3 3

Yahoo! 3 3 Flagged / Cleared 3
DuckDuckGo 3 3 3 3

Table 1: Results of content masking attack on search engines.

written to automatically construct all these mappings, but
to make this more efficient, we offer an alternative - 84
fonts, in each of which all characters map to one masking
character. For example, in font “MaskAsA” character a
maps to a, b to a, 4 to a, ! to a, etc. To mask a document
as another, the attacker may simply apply fonts, charac-
ter by character, that correspond to the desired mask. At
the end of the documents, the three end behavior options
presented as part of Algorithm 1 and illustrated in Figure
1 function here as well, to handle the length variation.

6.2 Experiment
To demonstrate the efficacy of this attack, we obtained
a handful of well-known academic papers, masked their
content, and then placed them on one author’s university
website to be indexed by several leading search engines.
For this simple proof of attack, we only used one mask-
ing font which scrambled the letters for rendering. The
resulting papers have legible text that renders to gibber-
ish, meaning that if they can be located by searching for
that legible text, the search engine is fooled.

We submitted the site housing these papers to Google,
Bing, and Yahoo! and searched for them some days
later. Search engine DuckDuckGo does not accept web-
site submissions but we searched there as well. Table 1
lists the results of our content masking attack on these
search engines. “Indexed Papers” indicates the search
engine listed the papers in its index. “Attack Successful”
means they are indexed using the underlying text, not
the rendered gibberish. After a successful attack, the pa-
pers may later be put behind a spam warning or removed
from the index, as shown in the last two columns. We
found similar results for each of the 5 papers tested: that
Bing, Yahoo!, and DuckDuckGo all indexed the papers
according to the masked legible text, and none removed
them later (at time of writing). Yahoo! did mark them as
spam after two days but confusingly some days after that
removed the spam warning.

Figure 8 illustrates this for one of tested paper. The
masked paper is shown in Figure 8a and contains no ren-
dered English words beyond what is shown. Figures 8b,
8c, and 8d show the search results for the legible underly-
ing text, and Figure 8e shows the spam warning appear-
ing days later but later disappearing. Each query was

(a) Gibberish paper

(b) Bing result for the gibberish paper

(c) DuckDuckGo result for the gibberish paper

(d) Yahoo! result for the gibberish paper

(e) Temporary Yahoo! spam warning

Figure 8: Results of the content masking attack against
popular search engines. The attack was not successful
against Google.
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appended with “site:XXX.edu” to isolate the university
website where they are hosted for this proof of concept.

Interestingly, Google indexed the papers, but accord-
ing to the rendered gibberish, not the underlying text.
This indicates, of these four engines, only it performs
OCR on PDF files it indexes rather than extracting the
text through PDFMiner or the like. After two days, the
papers were removed from Google’s index, before the
authors obtained screenshots. We conclude that Google
has a robust defense against the content masking attack,
while the other three engines remain susceptible.

7 Defense Against Content Masking

As intoned through this paper, Optical Character Recog-
nition (OCR) is able to move the text extraction process
from targeting the underlying text to the rendered ver-
sion, preventing this masking attack. OCR is required
for print documents scanned to PDF, but for documents
with rendered text, system designers have been loath to
use OCR in lieu of PDFMiner or its ilk. OCR is far more
complex and requires more processing time than simply
running the PDF file through a lightweight parser to col-
lect its strings. We propose here a lightweight font veri-
fication method that enables the use of OCR in a highly
efficient way to prevent the content masking attack. The
intuition is simple; we render each character in the fonts
embedded in the subject PDF file and then perform OCR
on those characters rather than the rendered PDF file it-
self. Where an academic paper may be some 50,-75,000
characters, the fonts embedded therein usually contain at
most just a couple hundred characters.

Challenges and Technical Details: While the intu-
ition is simple, some challenges arise in its realization.
First, while most PDF generation tools will embed only
those letters used in the document, it is possible through
Adobe InDesign, as one example, to embed the whole
font. Some fonts accommodate many characters used in
many other languages, and the upper limit on font char-
acter capacity is 216 = 65,536 because characters have
a two-byte index. Clearly, performing OCR on a font of
that size will be equivalent to performing OCR on an aca-
demic paper in terms of computational overhead. Conse-
quently, we scan the document to extract the characters
used, and only render those characters (in their respective
fonts) for OCR verification. This requires iterating over
the entire document, but the overhead introduced here is
much less than with full-document OCR, as the process
just builds a list from the series of character codes rather
than executing image processing techniques on all char-
acter glyphs. OCR is then performed on the series of
character codes used in each font only.

Second, the existence of many special characters
within a font prompts the question of what characters

OCR can distinguish and how to handle those it can’t.
Theoretically, OCR may mature to the point where it can
distinguish any sort of accent mark over normal letters,
any characters used in languages other than English, and
any additional special characters used in typeset mathe-
matics, etc., and some OCR software may be currently
in development working on a subset of these problems.
However, we aim to provide a defense method readily in-
tegrable into current systems. Additionally, such an ad-
vanced software will likely incur overhead beyond that
of a current OCR package to achieve the requisite preci-
sion, where our solution must be sufficiently lightweight
to fit within systems where full-document OCR has not
been applied due to computational complexity. We de-
fine a normal set of character codes as those represent-
ing upper and lowercase English letters, numbers, and
common punctuation, which English OCR packages tar-
get, and then we check if the extracted character codes
appear in this normal set or not. A letter in the normal
set appearing as something other than itself is evidence
of the content masking attack, as is a letter outside the
normal set having the glyph of one inside. OCR is per-
formed on all used characters in the font, as previously
mentioned, and those within the normal set are required
to have the correct respective glyph, while those outside
the normal set are constrained not to have a distinguish-
able glyph (i.e. one appearing in the normal set).

The third issue arises with the fact that many special
characters have high similarity with normal characters,
especially for those fonts in common use which have
many thousands of available characters. If one such spe-
cial character is used legitimately in the text, the scheme
just described will flag it as a content masking attack
due to its similar appearance with a normal set character.
Worse, common OCR tools available presently will con-
flate characters which humans can easily tell apart but
for which the software is not precise enough to do so.
For example, it is easy to tell visually that π and n are
different characters, but not by common OCR tools.

Font Training Step: We therefore introduce a training
step, wherein OCR is performed on the font and lists of
intersections compiled. When we perform OCR on each
represented character and the detected glyph for a spe-
cial character but appears like a normal letter, we check
the list of characters similar to that normal letter. If the
special character appears on that list, we recognize that it
may be valid and that we cannot know if it is being used
legitimately or as part of a content masking attack. As
the purpose of the content masking attack is to disguise
the visually rendered text as some other text for the com-
puter to see, we simply replace the extracted character
code for this letter as the normal letter it looks like, and
pass this on to the end application. If content masking
is occurring, the rendered text is sent to the plagiarism
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detector, reviewer assignment system, etc., thwarting the
attack. Otherwise, the string in which this special charac-
ter appears is with high probability not an English word
and would not be useful to the end application anyway. A
reviewer assignment system or plagiarism detector will
not make use of mathematical equations when assigning
reviewers, as these are not discernible words, so if πr2 is
extracted as nrz, no loss of function is suffered.

This training solution prompts one further issue,
which is that different fonts will need to be trained in-
dependently as their nuances cause different sets of char-
acters to appear similar. For the reviewer assignment and
plagiarism detection problems, we know a limited num-
ber of fonts should be used, due to academic formatting
requirements favoring a small set of fonts. Nevertheless,
for other applications, such as search indexing, the only
limit on the number of fonts that can be trained is that
those fonts must be legible enough for an OCR tool to
parse. These lists do not occupy too much space; for ex-
ample our lists for Times New Roman and Arial fonts are
29.4KB and 36.2KB, respectively. This database com-
piled, the OCR tool will be used to discern the real name
of each font used in the document, to counteract the prob-
lem mentioned early in this paper, that an attacker may
name a font anything desired. Open source OCR tools
such as Tesseract OCR [28] provide this functionality.

Font Verification Overview: The training process be-
gins by gathering a collection of fonts and training the
system on each. For each character in a font’s normal set,
all special characters are tested for OCR similarity, and
any identified as similar are added to the list for that nor-
mal character. Testing a new PDF file is outlined in Al-
gorithm 2, wherein the list of characters and their fonts is
reduced to unique combinations of those attributes, and
each then tested with OCR. Content masking attacks are
detected in lines 12 and 17 when the underlying char-
acter index is a normal character other than the OCR-
extracted character or when the underlying character in-
dex is a special character that does not appear in the simi-
larity list for the OCR-extracted character. In these cases,
this pseudocode exits to notify of the attack, though other
behavior could be inserted here. This protects all end
applications, except in the attack against plagiarism de-
tection in which the attacker replaces normal characters
with special characters similar in appearance. That spe-
cific attack is identified as possible at line 15, in the case
that the underlying character is a special character which
does appear in the similarity list for the OCR-extracted
character; in this case all instances of this character in the
text extracted from this file are replaced with the OCR-
extracted character for use in the end application.

Algorithm 2 Extract Rendered Text

Input: font list F = { f1, f2, ..., fp}, normal character
index set N = {n1,n2, ...,nq}, special character in-
dex set S = {s1,s2, ...,sr}, document character list
D = {d1,d2, ...,ds}

Output: extracted text T = {t1, t2, ..., ts}
1: Unique character index/font map list U = /0
2: for i← 1 to s do
3: if di /∈U then
4: U ←U ∪ (di, FONT(di))

5: m← |U |
6: OCR-extracted character index set O =
{o1,o2, ...,om}

7: for i← 1 to m do
8: oi← OCR(ui)
9: f ← ui. f ont

10: L ← list of similar character lists {l1, l2, ..., lv}
for f

11: if ui.index ∈ N then
12: if oi 6= ui.index then . Attack Detected
13: break
14: else if ui.index ∈ S then
15: if ui.index ∈ loi then . Attack Possible
16: ui← oi
17: else . Attack Detected
18: break
19: T ← Apply modified U to D
20: return T

Font Verification Performance: The implementation
for this defense method is written in Python and employs
PDF-Extract [29] to extract font files from PDFs, tex-
tract [30] to extract the text strings, and pytesseract [31],
a Python wrapper for Tesseract OCR [28]. The alterna-
tive to our font verification method is to perform OCR
on the entire document, so we use Tesseract OCR for
this purpose also for a fair comparison. This comparison
will illustrate not only that our method detects/mitigates
the content masking attack as well as the naive full docu-
ment OCR method, but that it performs far better in sev-
eral scenarios common to PDFs both in and out of the
presence of our content masking attack.

First, we compare the performance of the two meth-
ods with differing amounts of masked content. We gen-
erate 10 PDF files with masked characters varying from
5-20% in frequency of appearance, and apply both meth-
ods to each of these file. The results are shown in Fig-
ure 9 and show a distinct benefit to our font verifica-
tion method compared with the traditional full document
OCR. Here, detection rate refers to the correct extraction
of rendered text and the consequent ability to prevent the
content masking attack from occurring. For full docu-
ment OCR, we generate 10 PDF documents with no con-
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Figure 9: Attack detection under
varying degrees of attack.
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Figure 11: Attack detection time
relationship with PDF size.

tent masking and measure the error in character recog-
nition, and then we use this error as a threshold, such
that the attack is flagged for one of the content masked
PDF files if it is determined to have a larger difference
between characters and their glyphs. That threshold was
measured at 7%, and more than 20% of characters had
to be masked before the full document OCR method de-
tected the content masking attack (after this, detection
was 100%). The attack is considered detected by the
font verification method if Algorithm 2 flags it or the
edge case approach we take of replacing special char-
acters that look like normal letters with those normal let-
ters will enable the end application (plagiarism/spam de-
tector) to process the text properly and thereby flag the
attack. In all cases, our algorithm detected the attack or
constructed the proper English words required by the end
application to detect it.

The disparity here between the methods’ accuracy in
the 5-20% character masking range has a few aspects in-
volved. Fewer masked characters will appear in a sparser
distribution, which make them less visible among legit-
imate characters. OCR is affected by the distance be-
tween characters and the resolution of the image, among
other things, which we can control in the case of font
verification but which are not controlled when perform-
ing OCR over an entire document. We can generate an
optimal image of all relevant characters, check their va-
lidity, flag detected attacks, and in the case of special
characters which appear identical to normal letters, re-
place them with those normal letters for proper use in the
end application.

We also analyze the effects of document length on the
detection rate for each method, by comparing their re-
sults on 10 PDF files ranging from 1-10 pages in length
and having an even 30% distribution of masked charac-
ters. Figure 10 illustrates that while the font verification
method is almost perfectly static, full document OCR
gradually performs more poorly, reaching 14% misde-
tection by page 10. The aforementioned OCR error rate
explains this problem, where while 30% masked charac-
ters is above the required 20% to guarantee detection in

the previous experiment, additional pages of text steadily
allow more masked text to go unnoticed. The font verifi-
cation appears to be 100% throughout, but actually dips
to 99.8% halfway through. Our method is not immune
to the errors inherent to OCR as it also uses OCR, but its
more judicious approach minimizes those errors. In this
case, OCR is confusing the ’;’ and ’:’ characters; these
are rare but eventual in prose.

Finally, we demonstrate the performance gain of our
font verification method over the full document OCR
method, on 20 PDF files ranging from 1-20 pages in
length and having a 30% distribution of masked char-
acters. In Figure 11, the full document OCR method in-
creases linearly with pages added while the font verifi-
cation method unsurprisingly remains largely static, in-
creasing by roughly a second compared to the 45 expe-
rienced by the full document OCR method. In all, our
method requires about 6 seconds to check a 20 page doc-
ument, rather than 50 seconds, using one core on a laptop
processor (Intel i7 at 2.7GHz). This provides far better
scalability for the target systems than the alternative, and
is easily applied to current systems without requiring up-
grades.

8 Related Work

Most exploit research targeting the PDF standard has
been in bugs surrounding various programs rendering,
displaying, exporting, or otherwise handling PDF docu-
ments. The not-for-profit MITRE Corporation lists in its
Common Vulnerabilities and Exposures (CVE) collec-
tion 431 entries involving the keyword “PDF” and having
to do with these external programs [5]. These allow for
arbitrary code execution on the host computer and all the
associated security risks [6], including establishment of
botnets, data exfiltration, and other high-impact security
issues. They are, however, limited to basic hacking-type
exploits, zero-days chased by patches, and the PDF itself
is essentially a vehicle for the hack [7]. These attacks are
not thematically novel, and the patches indeed follow the
zero-days with reasonable speed [8].
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Similarly, some exploration has been performed on
the JavaScript execution ability within the PDF standard.
When abused, this too allows for arbitrary code execu-
tion. Security researcher Didier Stevens offers a series
of blogs discussing how to misuse this JavaScript exe-
cution, including how to encode the strings involved to
create polymorphic malware resisting simple signature-
based antivirus products [32]. Some research finds
that writing polyglots (code valid in multiple languages)
within PDFs can expose security concerns depending on
what language the reader uses to interpret the code [2].
Successive updates to the PDF standard implement mea-
sures to block certain functions, such as reaching out to
the Internet, placing their function behind a confirmation
window for the user to view [12]. Additionally, most cur-
rent antivirus products offer real-time protection using
heuristics that can detect potentially malicious behaviors
despite simple code obfuscation.

Some academic research regarding PDF security ana-
lyzes the JavaScript being executed to verify safety. One
work analyzes a set of static features extracted from the
PDF, and then instruments with context monitoring code
the JavaScript within. This combination static and run-
time approach is tested on a collection of 18623 PDF
documents without malware and 7370 with, resulting in
few false negatives and no false positives [1]. Other
research targets attacks not dependent on JavaScript or
other parsing vulnerabilities, including one that works to
detect these attacks using machine learning on existing
flagged PDF files using data extracted from the structure
of the file as well as its content [3]. One may expect
this strategy to suffer from the same difficulties experi-
enced by signature-based antivirus products, namely an
inability to detect malware not already discovered by re-
searchers. Another work allows PDF documents to be
opened in an emulated environment to track how they
behave before doing so in the host environment [4].

Some works slightly closer to ours examine the pos-
sibility of causing PDF documents to be rendered differ-
ently on different computers, showing how to restrict the
syntax of the PDF standard to prevent this from occur-
ring [33] [34]. This attack against data consistency has
some vague similarity to the concept of content mask-
ing - displaying different content for the human than the
machine. However, we provide several real-world exam-
ples of how our content masking attack can subvert real
systems, while the impact of the attack in this work is rel-
atively limited to the document looking different to hu-
mans using different computers. Some works [35] [36]
[37] examine poisoning search results, but this is from
the perspective of presenting false data to the machine
through website code or manipulations of the PageRank
algorithm via botnets, an existing threat vector for which
defenses have been continually adapting.

Section 2 introduces the Character Map (CMap),
through which letters are mapped to entries within fonts,
ultimately displaying the associated glyphs. During our
literature search, we found a work [13] from a social
science journal of Assessment & Evaluation in Higher
Education which touches on a similar topic from a non-
scientific stance. [13] discusses how the CMap can be
altered to make letters map to different characters within
a font. In this way, plagiarism detection can be fooled
by mapping to obscure characters whose glyphs are sim-
ilar in appearance to those for the typically used charac-
ters. After devising our attacks, we discovered this work
also contains cursory mention of the ability to modify the
glyphs within a font, but does not explore this possibility
or demonstrate its practicality as we do. We evaluate new
methods to target specific similarity scores such that the
resultant PDF does not appear unnatural with a 0% sim-
ilarity score. Further, we show how these custom fonts
can be used to subvert conference reviewer-assignment
systems and search indexing, developing new and dis-
tinct attack methods specific to each of these very dif-
ferent targets. Additionally, we provide a robust defense
method, including a defense against the slightly differ-
ent attack proposed in [13] involving the use of existing
characters similar in appearance to normal letters.

9 Conclusion

In this paper, we have presented a new class of content
masking attacks against the Adobe PDF standard. Af-
ter creating algorithms for each of three content mask-
ing attack variants, we perform a comprehensive evalu-
ation showing that each lives up to its theory and oper-
ates in present state-of-the-art systems. Our first attack
allows academic paper writers and reviewers to collude
via subverting the automatic reviewer assignment sys-
tems in current use by academic conferences including
INFOCOM, which we simulated. This requires no visi-
ble changes to the paper being reviewed and the addition
of just 3-5 custom masking fonts for almost all of the 100
papers tested, easily lost in any paper’s natural fonts. We
show a second attack that renders ineffective plagiarism
detection software, particularly Turnitin, to the point of
being able to target specific small plagiarism similarity
scores to appear natural and evade detection. In our fi-
nal attack, we successfully place masked content into the
indexes for Bing, Yahoo!, and DuckDuckGo which ren-
ders as information entirely different from the keywords
used to locate it. Lastly, we provide and test a robust font
verification algorithm which is more accurate than full
document OCR and requires considerably less computa-
tion power.
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Abstract
Event-driven programming (EDP) is the prevalent
paradigm for graphical user interfaces, web clients, and
it is rapidly gaining importance for server-side and net-
work programming. Central components of EDP are
event loops, which act as FIFO queues that are used by
processes to store and dispatch messages received from
other processes.

In this paper we demonstrate that shared event loops
are vulnerable to side-channel attacks, where a spy pro-
cess monitors the loop usage pattern of other processes
by enqueueing events and measuring the time it takes for
them to be dispatched. Specifically, we exhibit attacks
against the two central event loops in Google’s Chrome
web browser: that of the I/O thread of the host process,
which multiplexes all network events and user actions,
and that of the main thread of the renderer processes,
which handles rendering and Javascript tasks.

For each of these loops, we show how the usage pat-
tern can be monitored with high resolution and low over-
head, and how this can be abused for malicious purposes,
such as web page identification, user behavior detection,
and covert communication.

1 Introduction

Event-driven programming (EDP) consists of defining
responses to events such as user actions, I/O signals,
or messages from other programs. EDP is the preva-
lent programming paradigm for graphical user interfaces,
web clients, and it is rapidly gaining importance for
server-side and network programming. For instance, the
HTML5 standard [2] mandates that user agents be imple-
mented using EDP, similarly, Node.js, memcached, and
Nginx, also rely on EDP.

In EDP, each program has an event loop which con-
sists of a FIFO queue and a control process (or thread)
that listens to events. Events that arrive are pushed into

the queue and are sequentially dispatched by the con-
trol process according to a FIFO policy. A key fea-
ture of EDP is that high-latency (or blocking) opera-
tions, such as database or network requests, can be han-
dled asynchronously: They appear in the queue only as
events signaling start and completion, whereas the block-
ing operation itself is handled elsewhere. In this way
EDP achieves the responsiveness and fine-grained con-
currency required for modern user interfaces and net-
work servers, without burdening programmers with ex-
plicit concurrency control.

Figure 1: Shared event loop. A enqueues multiple short
tasks and records the time at which each of them is pro-
cessed. The time difference between two consecutive
tasks reveals whether V has posted tasks in-between, and
how long they took to execute.

In this paper we show that EDP-based systems are sus-
ceptible to side-channel attacks. The key observation is
that event loops form a resource that can be shared be-
tween mutually distrusting programs. Hence, contention
of this resource by one program can be observed by the
others through variations in the time the control process
takes for dispatching their events. Figure 1 illustrates
such a scenario for a loop that is shared between an at-
tacker A and a victim V .

Attacks based on observable contention of shared re-
sources have a long history [25] and an active present [8,
27, 37]; however, attacks against shared event loops have
so far only been considered from a theoretical point of
view [22]. Here, we perform the first attacks against real
EDP-based systems. Specifically, we target shared event
loops in the two central processes of Google’s Chrome
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web browser: The host process, whose event loop is
shared between all requests for common resources, such
as network and user interface; and the renderer pro-
cesses, whose loops can be shared between Javascript
tasks of different tabs or iframes.

We build infrastructure that enables us to spy on both
loops from a malicious HTML page. This is facilitated
by the asynchronous programming model used in both
Chrome and Javascript. Asynchronous function calls
trigger new tasks that are appended to the same queue, in
contrast to synchronous calls which are simply pushed
onto the current task’s call stack and executed without
preemption, blocking the loop.

• For the event loop of the renderer we rely on the
postMessage API, which is a Javascript feature
for cross-window communication based on asyn-
chronous callbacks. By posting messages to our-
selves we can monitor the event loop with a resolu-
tion of 25 µs, with only one task in the loop at each
point in time.

• For the event loop of the host process we rely on
two different mechanisms: network requests to non-
routable IP addresses, which enter the loop and
abort very quickly, providing a resolution of 500 µs;
and SharedWorkers, whose messages pass through
the event loop of the host process, providing a reso-
lution of 100 µs.

We use the information obtained using these techniques
in three different attacks:

1. We show how event delays during the loading
phase, corresponding to resource requests, parsing,
rendering and Javascript execution, can be used to
uniquely identify a web page. Figure 2 visualizes this
effect using three representative web pages. While this
attack shares the goal with the Memento attack [21],
the channels are quite different: First, in contrast to
Memento, we find that the relative ordering of events is
necessary for successful classification, which motivates
the use of dynamic time warping as a distance measure.
Second, we show that page identification through the
event loop requires only minimal training: we achieve
recognition rates of up to 75% and 23% for the event
loops of the renderer and host processes, respectively,
for 500 main pages from Alexa’s Top sites. These rates
are obtained using only one sample of each page for the
training phase.

2. We illustrate how user actions in cross-origin pages
can be detected based on the delays they introduce in the
event loop. In particular, we mount an attack against
Google OAuth login forms, in which we measure the
time between keystrokes while the user is typing a pass-
word. The timing measurements we obtain from the

event loop are significantly less noisy or require less priv-
ileges than from other channels [20, 38, 18].

Figure 2: Delays observed while loading different web
pages, by an attacker tab sharing the renderer process.
Horizontal axis depicts elapsed real time, vertical axis
depicts time taken by the event loop for processing the
tasks inserted by the attacker. All pages are clearly dis-
tinguishable, both by the human eye and by classification
techniques.

3. We demonstrate that shared event loops can
be used to transmit information between cross-origin
pages.Specifically, we implement a covert channel with
a bandwidth of 200 bit/s through the renderer’s main
thread event loop, and another one working cross-
processes of 5 bit/s.

Our attacks show that event loops can be successfully
spied on even with simple means. They work under the
assumption that event loops behave as FIFO queues; in
reality, however, Chrome’s event loop has a more so-
phisticated structure, relying on multiple queues and a
policy-based scheduler. We believe that this structure can
be leveraged for much more powerful attacks in the fu-
ture.

2 Isolation Policies and Sharing of Event
Loops in Chrome

In this section we revisit the same origin policy and its
variants. We then discuss the relationship of these poli-
cies with the Chrome architecture, where we put a special
focus on the way in which event loops are shared.

2.1 Same Origin Policy
The Same-Origin Policy (SOP) is a central concept in
the web security model: The policy restricts scripts on a
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web page to access data from another page if their origins
differ. Two pages have the same origin if protocol, port
and host are equal.

The demand for flexible cross-origin communication
has triggered the introduction of features such as domain
relaxation, the postMessage API, Cross-origin Resource
Sharing (CORS), Channel Messaging, Suborigins, or the
Fetch API. This feature creep comes with an increase in
browser complexity and attack surface, which has mo-
tivated browser vendors to move towards more robust
multi-process architectures.

2.2 Overview of the Chrome Architecture

The Chrome architecture is segmented into different op-
erating system processes. The rationale for this seg-
mentation is twofold: to isolate web content from the
host [6], and to support the enforcement of origin poli-
cies by means of the OS [30]. For achieving this seg-
mentation, Chrome relies on two processes:

HOST PROCESS

Main Thread

I/O Thread

RENDERER A

MainThread

IOChildThread

CompositorThread

RENDERER B

MainThread

IOChildThread

CompositorThread

Figure 3: Overview of Chrome’s architecture.

The host process runs the top-level browser window.
It has access to system resources such as network, file
system, UI events, etc., which it manages on behalf of
the unprivileged renderer processes. The host process
runs several threads; the most relevant ones are:

• the CrBrowserMain thread, which handles, e.g.,
user interaction events, and

• the IOThread, which handles, e.g., IPC, network
stack, and file system.

The renderer processes are sandboxed processes re-
sponsible for parsing, rendering and Javascript execu-
tion. Communication with the host process is done via
an inter-process communication (IPC) system based on
message passing. Each renderer runs several threads; the
most relevant ones are:

• the MainThread where resource parsing, style cal-
culation, layout, painting and non-worker Javascript
runs,

• the IOChildThread, which handles IPC communi-
cation with the host process, and

• the CompositorThread, which improves respon-
siveness during the rendering phase by allowing the
user to scroll and see animations while the main
thread is busy, thanks to a snapshot of the page’s
state.

Each of the threads in the host and renderer processes
maintains at least one event loop that is largely a FIFO
queue. Inter-thread and inter-process communication are
carried out via message passing through these queues.
We next discuss scenarios where pages of different origin
can share the event loops of host and renderer processes.
In Section 3 we show how this sharing can be exploited
for eavesdropping.

2.3 Sharing in the Renderer Processes
Chrome supports different policies that govern how web
applications are mapped to renderer processes, and that
influence whether or not event loops are shared.

The default policy is called process-per-site-
instance. It requires using a dedicated renderer
process for each instance of a site. Here, a
site is defined as a registered domain plus a
scheme. For example, https://docs.google.com and
https://mail.google.com:8080 are from the same site –
but not from the same origin, as they differ in subdomain
and port. A site instance is a collection of pages from
the same site that can obtain references to each other
(e.g., one page opened the other in a new window using
Javascript).

The other supported policies are more permissive. For
example, the process-per-site policy groups all instances
of a site in the same renderer process, trading robust-
ness for a lower memory overhead. The process-per-tab
policy dedicates one renderer process to each group of
script-connected tabs. Finally, the single-process policy
lets both the host and renderer run within a single OS
process (only used for debugging purposes).

Even in the restrictive default process-per-site-
instance policy, there are some situations that force
Chrome to host documents from different sites in the
same renderer process, causing them to share the event
loop:

• Iframes are currently hosted in the same process as
their parent.

• Renderer-initiated navigations such as link clicks,
form submissions, and scripted redirections will
reuse the same renderer as the origin page.

• When the number of renderer processes exceeds a
certain threshold, Chrome starts to reuse existing
renderers instead of creating new ones.

On (64-bit) OSX and Linux, the threshold for reusing
renderers is calculated by splitting half of the physical
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RAM among the renderers, under the assumption that
each consumes 60MB.1 In our experiments, on a ma-
chine with 4 GB of RAM we could spawn 31 new tabs
before any renderer was shared, whereas on a machine
with 8 GB of RAM we observed a threshold of approx-
imately 70 renderers. There is no apparent grouping
policy for the pages that can share a process when this
threshold is exceeded, except for tabs in Incognito mode
not being mixed up with “normal” tabs. In particular,
we do not observe any preference for similar origins,
same sites, or secure versus insecure pages. In fact, even
filesystem pages (loaded with file://) can co-reside
with an arbitrary HTTP site.

2.4 Sharing in the Host Process

The Chrome sandbox restricts access of renderers to
privileged actions. In particular, renderers have to com-
municate with the host process for network requests or
user input. The corresponding messages of all render-
ers pass through the event loop of the host process’ I/O
thread.

We illustrate this communication using two different
examples: how user actions flow from the host to the cor-
responding renderer process, and conversely, how net-
work requests flow from a renderer to the host process.

• UI flow: User actions such as mouse movements
or clicks enter the browser through the main thread
of the host process. The host main thread commu-
nicates the user event to the corresponding renderer
by message passing between their I/O event loops,
and the render acknowledges the receipt of this mes-
sage. Even events with no Javascript listeners oc-
cupy the event loop of the renderer’s main thread
for a measurable interval.

• Net stack: Chrome’s net stack is a complex cross-
platform network abstraction. Any network request
by a renderer is passed to the I/O thread of the host
process, which forwards it to a global resource dis-
patcher that will pass it to a worker to fulfill the
request. This worker will open a connection, if
necessary, and request the resource. After the re-
quest is done, the response headers are received and
sent back to the renderer process, which will re-
spond with an ACK after reading, Finally, the body
is received and the corresponding callbacks are trig-
gered.

1On Android there is no threshold since the OS suspends idle pro-
cesses.

3 Eavesdropping on Event Loops in
Chrome

In this section we describe how to violate the SOP by
eavesdropping on the event loops of Chrome’s host and
renderer processes. For each of these processes, we de-
scribe potential threat scenarios and present a simple
HTML page executing Javascript that can be used for
spying. We then present our monitoring tool to visual-
ize the event loops of the browser.

3.1 The Renderer Process Event Loop
3.1.1 Threat Scenarios

There are several scenarios in which an adversary site A
can share the event loop of the renderer’s main thread
with a victim site V . These scenarios are based on
Chrome’s policy for mapping sites to renderers, see Sec-
tion 2.3. We give two examples:

• Malicious advertisement. In this scenario, A runs
as an advertisement iframed in V . The SOP pro-
tects V’s privacy and itegrity by logically isolating
both execution environments. However, A’s iframe
is able to execute Javascript on V’s event loop, en-
abling it to gather information about the user behav-
ior in V .

• Keylogger. In this scenario, A pops up a login form
to authenticate its users via V’s OAuth. Because the
operation does not ask for special privileges and the
password is never sent to A, the victim could trust
it and fill the form. Meanwhile, A’s page monitors
keystroke timings (see Section 4.2), which can be
used for recovering user passwords [32].

3.1.2 Monitoring Techniques

To monitor the renderer’s event loop it is sufficient to
continuously post asynchronous tasks and measure the
time interval between subsequent pairs of events. We
measure the monitoring resolution in terms of the inter-
val between two subsequent measurement events on an
otherwise empty loop.

The most common way of posting asynchronous tasks
programmatically in Javascript is setTimeout. How-
ever, the resolution can be more than 1000 ms for inac-
tive tabs, rendering this approach useless for the purpose
of spying. To increase the resolution, we instead use the
postMessage API for sending asynchronous messages
to ourselves.

The code in Listing 1 shows how this is achieved.
The call to performance.now() in line 2 of the
function loop returns a high-resolution timestamp
that is saved as described below. The call to
self.postmessage(0,’*’) in line 3 posts message
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1 function loop() {

2 save(performance.now())

3 self.postMessage (0,'*')
4 }

5 self.onmessage = loop

6 loop()

Listing 1: Javascript code to monitor the main
thread’s event loop with the postMessage API.

“0” into the renderer’s event loop, where the second argu-
ment “*” indicates no restriction on the receiver’s origin.
Line 5 registers the function loop as an event listener,
which enables it to receive the messages it has posted.
This causes loop to recursively post tasks, while keep-
ing the render responsive since other events are still being
processed.

In order to minimize the noise introduced by the
measurement script itself, the function save in line 2
uses a pre-allocated typed array (Float64Array) to
store all the timing measurements. Contrary to normal
Javascript’s sparse arrays, typed arrays avoid memory re-
allocations and thus noisy garbage collection rounds, see
below. With that we achieve an average delay between
two consecutive tasks of around 25 µs on our target ma-
chine. This resolution is sufficient to identify even short
events. For example, a single mouse movement event
(without explicit event listener) consumes around 100 µs.

3.1.3 Interferences

In modern browsers there are several sources of noise
that affect measurement precision, beside the obvious ef-
fect of the underlying hardware platform and OS. They
include:

• Just-in-time compilation (JIT). JIT can trigger code
optimization or deoptimization, in the case of
Chrome by the CrankShaft and Turbofan compil-
ers, at points in time that are hard to predict. For
our measurements we rely on a warm-up phase of
about 150 ms to obtain fully optimized code.

• Garbage collection (GC). In the case of V8, GC in-
cludes small collections (so-called scavenges) and
major collections. Scavenges are periodical and fast
(< 1 ms); but major collections may take > 100 ms,
distributed into incremental steps. In our data, scav-
enges are easily identifiable due to their periodicity,
while major collections could be spotted due to their
characteristic size. On some browsers, such as Mi-
crosoft’s Internet Explorer, GC rounds can be trig-
gered programmatically, which helps to eliminate
noise from the measurements enabling more precise
attacks [11].

While all of these features reduce the effectiveness of our
attacks, it is interesting to think of them as potential side-
channels by themselves. For example, observable GC
and JIT events can reveal information about a program’s
memory and code usage patterns, respectively [29].

3.2 The Host Process Event Loop

3.2.1 Threat Scenarios

The Chrome sandbox ensures that all of the renderer’s
network and user interaction events pass through the host
process’ I/O event loop, see Section 2.4. We describe two
threat scenarios where this could be exploited.

• Covert channel. Pages of different origins running
in different (disconnected) tabs can use the shared
event loop to implement a covert channel, violat-
ing the browser’s isolation mechanisms. This will
work even if one (or both) pages run in incognito
mode. This channel can be used for tracking users
across sessions, or to exfiltrate information from
suspicious web pages without network traffic.

• Fingerprinting. A tab running a rogue page of A can
identify which pages are being visited by the user in
other tabs by spying on the shared event loop. De-
tecting the start of a navigation is facilitated by the
fact that the I/O thread blocks for a moment when
the user types in a URL and presses enter.

3.2.2 Monitoring Techniques

There are many ways to post asynchronous tasks into the
event loop of the host process; they differ in terms of the
resolution with which they enable monitoring the event
loop and the overhead they imply. Below we describe
two of the techniques we used.

Network Requests. The first technique is to use net-
work requests to systematically monitor the event loop
of the I/O thread of the host process. A valid network re-
quest may take seconds to complete, with only the start
and end operations visible in the loop, which provides
insufficient resolution for monitoring.

To increase the resolution, we make use of non-
routable IP addresses. The corresponding requests en-
ter the I/O thread’s event loop, are identified as invalid
within the browser, and trigger the callback without any
DNS resolution or socket creation. This mechanism pro-
vides a monitoring resolution of 500 µs and has the addi-
tional benefit of being independent from network noise.

Listing 2 shows the code of our monitoring proce-
dure. We rely on the Javascript Fetch API for posting the
network requests. The Fetch API provides an interface
for fetching resources using promises, which are ideal to
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manage asynchronous computations thanks to their sim-
ple syntax for handling callbacks. In line 2 we request
and save a high-resolution timestamp. In line 3 we re-
quest a non-routable IP address, and set the rejection call-
back of the promise to self, to recursively run when the
request fails.

1 function loop() {

2 save(performance.now())

3 fetch(new Request('http ://0/ ')).
4 catch(loop)

5 }

6 loop()

Listing 2: Javascript code to monitor the host’s I/O
thread using network requests.

Shared Workers. The second technique relies on web
workers, which is a mechanism for executing Javascript
in the background. Web workers that are shared between
multiple pages are usually implemented in a dedicated
OS process; this means they communicate via IPC and,
therefore, can be used to spy on the I/O thread of the host
process. This mechanism provides a monitoring resolu-
tion of 100 µs. Listing 3 shows the code of our worker-

1 onconnect = function reply(e) {

2 let port = e.ports [0]

3 port.onmessage = function () {

4 port.postMessage (0)

5 }

6 }

1 const w = new SharedWorker('pong.js')
2 function loop() {

3 save(performance.now())

4 w.port.postMessage (0)

5 }

6 w.port.onmessage = loop

7 loop()

Listing 3: Javascript code to monitor the host’s
I/O thread using SharedWorkers. The first snippet
is the worker’s ‘pong.js’ file. Second snippet is
the Javascript code that monitors the I/O thread by
communicating with the worker.

based monitoring procedure. The first snippet defines the
worker’s job, which consists in replying to each received
message. In the second snippet, we register the worker in
line 1. In lines 2-7 we record a timestamp and recursively
send messages to the worker, analogous to Listing 1. As
a result, we measure the round-trip time from the page to
the worker, which reflects the congestion in the I/O event
loop. Note that one can further increase the measure-
ment resolution by recording the time in each endpoint
and merging the results.

3.2.3 Interferences

There are many different sources of noise and uncertainty
in the I/O thread of the host process. The most notable
ones include the interleaving with the host’s main thread
and the messages from other renderers, but also the GPU
process and browser plugins. While these interferences
could potentially be exploited as side channels, the noise
becomes quickly prohibitive as the loop gets crowded.

3.3 The LoopScan Tool
We implement the eavesdropping techniques described
in Sections 3.1 and 3.2 in a tool called LoopScan, which
enables us to explore the characteristics of the side chan-
nel caused by sharing event loops. LoopScan is based
on a simple HTML page that monitors the event loops
of the host and renderer processes. It relies on the D3.js
framework, and provides interactive visualizations with
minimap, zooming, and scrolling capabilities, which fa-
cilitates the inspection of traces. For example, Figure 8
is based on a screenshot from LoopScan.

LoopScan’s functionality is in principle covered
by the powerful Chrome Trace Event Profiling Tool
(about:tracing) [3], which provides detailed flame graphs
for all processes and threads. However, LoopScan
has the advantage of delivering more accurate timing
information about event-delay traces than the profiler,
since loading a page with the Trace Event Profiling tool
severely distorts the measurements. LoopScan source is
publicly available at https://github.com/cgvwzq/

loopscan.

4 Attacks

In this section we systematically analyze the side channel
caused by sharing event loops in three kinds of attacks: a
page identification attack, an attack where we eavesdrop
on user actions, and a covert channel attack. For all at-
tacks we spy on the event loops of the renderer and the
host processes, as described in Sections 3.1 and 3.2. We
performed these attacks over the course of a year, always
using the latest stable version of Chrome (ranging from
v52-v58). The results we obtain are largely stable across
the different versions.

4.1 Page identification
We describe how the event-delay trace obtained from
spying on event loops can be used for identifying web-
pages loaded in other tabs. We begin by explaining
our data selection and harvesting process and the cho-
sen analysis methods, then we describe our experimental
setup and the results we obtain.
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4.1.1 Sample Selection

We start with the list of Alexa Top 1000 sites, from
which we remove duplicates. Here, duplicates are sites
that share the subdomain but not the top-level domains
(e.g., “google.br” and “google.com”) and that are likely
to have similar event-delay traces. From the remaining
list, we randomly select 500 sites as our sample set. This
reduction facilitates a rigorous exploration of the data
and the parameter space.

4.1.2 Data Harvesting

We visit each page in the sample set 30 times for both the
renderer and the host process, to record traces of event-
delays during the loading phase.

The event-delay traces for the renderer process con-
sist of 200.000 data items each. On our testing machine,
the measurement resolution (i.e. the delay between two
subsequent measurement events on an otherwise empty
loop) lies at approximately 25 µs. That is, each trace
captures around 5 seconds (200.000·25 µs = 5 s) of the
loading process of a page in the sample set.

The event-delay traces for the host process consist of
100.000 data items each. The measurement resolution
lies in the range of 80− 100 µs, i.e. each trace captures
around 9s of the loading process of a page.

We automate the harvesting procedure for the renderer
process as follows:

1. Open a new tab via
target = window.open(URL, ’_blank’); 2

2. Monitor the event loop until the trace buffer is full
3. Close the tab
4. Send the trace to the server
5. Wait 5 seconds and go to 1 with next URL

The harvesting procedure for the host process differs
only in that we use the rel="noopener" attribute in or-
der to spawn a new renderer.

We conducted measurements on the following three
machines:

1. Debian 8.6 with kernel 3.16.0-4-amd64, running on
an Intel i5 @ 3.30GHz x 4 with 4 GB of RAM, and
Chromium v53;

2. Debian 8.7 with kernel 3.16.0-4-amd64, running on
an Intel i5-6500 @ 3.20GHz x 4 with 16 GB of
RAM, and Chromium v57; and

3. OSX running on a Macbook Pro 5.5 with In-
tel Core 2 Duo @ 2.53GHz with 4 GB of RAM,
and Chrome v54.

2Note that this requires disabling Chrome’s popup blocker from
“chrome://settings/content”.

We measure the timing on a Chrome instance with two
tabs, one for the spy process and the other for the target
page. For the renderer process, we gather data on all
machines; for the host process on (2) and (3). Overall,
we thus obtain five corpora of 15.000 traces each.

4.1.3 Classification

Event Delay Histograms. Our first approach is to
cluster the observed event delays around k centers, and
to transform each trace into a histogram that represents
the number of events that fall into each of the k classes.
We then use the Euclidean distance as a similarity mea-
sure on the k-dimensional signatures.

This approach is inspired by the notion of memprints
in [21]. It appears to be suitable for classifying event-
delay traces obtained from event loops because, for ex-
ample, static pages with few external resources are more
likely to produce long events at the beginning and stabi-
lize soon, whereas pages with Javascript resources and
animations are likely to lead to more irregular patterns
and produce a larger number of long delays. Unfortu-
nately, our experimental results were discouraging, with
less than a 15% of recognition rate in small datasets.

Dynamic Time Warping. Our second approach is
to maintain temporal information about the observed
events. However, the exact moments at which events
occur are prone to environmental noise. For example,
network delays will influence the duration of network
requests and therefore the arrival of events to the event
loop. Instead, we focus on the relative ordering of events
as a more robust feature for page identification.

This motivates the use of dynamic time warping
(DTW) [7] as a similarity measure on event-delay traces.
DTW is widely used for classifying time series, i.e. se-
quences of data points taken at successive and equally
spaced points in time. DTW represents a notion of dis-
tance that considers as “close” time-dependent data of
similar shape but different speed, i.e. DTW is robust to
horizontal compressions and stretches. This is useful,
for example, when one is willing to assign a low distance
score to the time series “abc“ and “abbbbc‘, insensitive
to the prolonged duration of “b“. Formally, DTW com-
pares two time series: a query, X = (x1, ...,xn), and a ref-
erence, Y = (y1, ...,ym). For that we use a non-negative
distance function f (xi,yi) defined between any pair of el-
ements xi and y j. The goal of DTW is to find a matching
of points in X with points in Y , such that (1) every point
is matched, (2) the relative ordering of points in each se-
quence is preserved (monotonicity), (3) and the cummu-
lative distance (i.e. the sum of the values of f ) over all
matching points is minimized. This matching is called a
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warping path, and the corresponding distance is the time
warping distance d(X ,Y ).

Figure 4: The path in the upper right square represents
the optimal alignment between points in the time se-
ries corresponding to ’google.com’ (horizontal axis) with
points in the time series of ’youtube.com’ (vertical axis).

Figure 4 visualizes a warping path between the
time series corresponding to event-delay traces observed
while loading different webpages.

4.1.4 Speed-up Techniques

Unfortunately, the time required for computing d(X ,Y )
is quadratic in the length of the input sequences and does
not scale up to the raw data obtained in our measure-
ments. We rely on two kinds of speed-up techniques,
one at the level of the data and the other at the level of
the algorithm:

At the level of data, we reduce the dimension of our
data by applying a basic sampling algorithm: We split
the raw trace into groups of measurements corresponding
to time intervals of duration P, and replace each of those
groups by one representative. This representative can be
computed by summing over the group, or by taking its
average, maximum or minimum. The sum function gen-
erally yields the best results among different sampling
functions and is the one that we use onwards. Sampling
reduces the size of the traces by a factor of P/t, where t
is the average duration of an event delay. Figure 5 shows
two plots with the raw data taken from a renderer’s main
thread loop, and its corresponding time series obtained
after sampling.

At the algorithmic level, we use two sets of tech-
niques for pruning the search for the optimal warping
path, namely windowing and step patterns [15].

Figure 5: The top figure represents a raw trace of 200.000
time measurements from the renderer’s main thread ex-
tracted while loading “google.com”. The bottom figure
displays the same data after being converted into a time
series with P = 20 ms, i.e. using only 250 data points.
The difference in the height of the peaks is due to the ac-
cumulation of small events in the raw data, which are not
perceptible in the top figure.

• Windowing is a heuristic that enforces a global con-
straint on the envelope of the warping path. It speeds
up DTW but will not find optimal warping paths that lie
outside of the envelope. Two well-established constraint
regions are the Sakoe-Chiba band and the Itakura paral-
lelogram, see Figure 6.

(a) (b)

Figure 6: A global window constraint defines an enve-
lope limiting the search space for optimal warping paths:
(a) Itakura parallelogram, and (b) Sakoe-Chiba band.

• Step patterns are a heuristic that puts a local con-
straint on the search for a warping path, in terms of re-
strictions on its slope. In particular, we rely on three
well-known step patterns available in R. Intuitively, the
symmetric1 pattern favors progress close to the diagonal,
the symmetric2 pattern allows for arbitrary compressions
and expansions, and the asymmetric forces each point in
the reference to be used only once.
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Figure 7: Web page identification performance after tuning with traces from the renderer on Linux machine (1). Effect
of P, traceDuration, and windowSize, with three combinations of stepPattern and windowType.

4.1.5 Parameter tuning

The possible configurations of the techniques presented
in Section 4.1.4 create a large parameter space, see Ta-
ble 1 for a summary.

Parameter Values Description
traceDuration 1000,2000,4000 Trace duration (ms)
P 5,10,20,50 Sampling interval (ms)
windowType itakura, sakoechiba Window constraint
windowSize 1,5,10,30,50,100 Window size

stepPattern
symmetric1, symmetric2,

asymmetric Step pattern

Table 1: List of parameters tuned for optimizing web
page identification

We systematically identify the optimal parameter con-
figuration for each event loop on each machine. To avoid
overfitting, we divide our dataset of 30 traces (per page,
loop, and machine) into 15 traces for tuning and 15 for
cross-validation. For each parameter configuration we
perform a lightweight version (with 3 rounds) of the eval-
uation phase described in Section 4.1.6. Figure 7 visual-
izes an extract of the results we obtain for the renderer
process of the Linux (1) machine. The tuning phase
yields the following insights:

• The optimal parameters depend on the loop but ap-
pear to be stable across machines.

• Measuring the loading phase during 2 seconds is
sufficient for recognition of a webpage; the gain in recog-
nition from using longer traces is negligible.

• P and windowSize are the parameters with the
biggest impact on the recognition rate. However, they
also have the biggest impact on the computational cost
(the optimal choice being most expensive one).

• The combination of stepPattern = symmetric1 and
windowType = sakoechiba generally yields the best re-
sults.

4.1.6 Experimental Results

We evaluate the performance of page identification
through the shared event loops of host and renderer pro-

cesses on each individual machine, as well as through the
renderer process across two different machines.

To this end, we select the top configuration for each
corpus from the tuning phase and carry out a 10-fold
cross-validation. In each of the 10 rounds, we partition
the validation set into a training set that contains one
trace of each page, and a testing set that contains three
different (out of the 14 available) traces of each page.
For each of the traces in the testing set, we compute the
set of k closest matches in the training set according to
the time warping distance.

We measure performance in terms of the k-match
rate, which is the percentage of pages in the testing set
for which the true match is within the set of k closest
matches. We abbreviate the 1-match rate by recognition
rate, i.e. the percentage of pages where the best match is
the correct one. The result of the cross-validation is the
average k-match rate over all 10 rounds.

Table 2 summarizes our experiments. We highlight the
following results:

k
1 3 5 10

(1
) Renderer 76.7 % 86.7 % 88.8 % 91.1 %

sym1,sakoe,P = 5,windowSize = 100

(2
)

Renderer 58.2 % 68.6 % 71.8 % 75.1 %
sym1,sakoe,P = 5,windowSize = 100

I/O host 16.2 % 23.2 % 27.9 % 36.1 %
sym1,sakoe,P = 20,windowSize = 30

(3
)

Renderer 61.8 % 74.5 % 78.4 % 83.1 %
sym1,sakoe,P = 5,windowSize = 100

I/O host 23.48 % 32.9 % 38.1 % 46.6 %
sym1,sakoe,P = 20,windowSize = 30

Table 2: 10-fold cross-validation results on different ma-
chines and different event loops, with the best config-
uration after tuning. Machines (1) and (2) refer to the
Linux desktops, (3) to the OSX laptop, as described in
Section 4.1.2.

• We can correctly identify a page by spying on the
renderer from (1) in up to 76.7% of the cases, and cor-
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rectly narrow down to a set of 10 candidates in up to
91.1% of the cases.

• We can correctly identify a page though the host
process from (3) in up to 23.48% of the cases, and nar-
row down to a set of 10 candidates in up to 46.6% of the
cases.

• We stress that these recognition rates are obtained
using a single trace for training.

• Recognition is easier through the renderer than
through the host. This is explained by the difference
in noise and measurement resolution, see Section 3.2.3.
Furthermore, most operations on the host only block the
I/O thread while signaling their start and completion,
whereas the renderer is blocked during the entire exe-
cution of each Javascript task.

• We observe different recognition rates on different
machines. However the homogeneity in hardware and
software of Macbooks facilitate reuse of training data
across machines, which may make remote page identi-
fication more feasible.

• We obtain recognition rates below 5% for recog-
nition across machines (1) and (3). A reason for this
poor performance is that events on the OSX laptop of-
ten take 2x-5x more time than on the Linux desktop ma-
chine. This difference is reflected in the height of the
peaks (rather than in their position), which is penalized
by DTW. Normalizing the measurements could improve
cross-machine recognition.

The code and datasets used for tuning and cross-
validation are available as an R library at https://

github.com/cgvwzq/rlang-loophole.

4.1.7 Threats to Validity

We perform our experiments in a closed-world scenario
with only 2 tabs (the spy and the victim) sharing an event
loop. In real world scenarios there can be more pages
concurrently running the browser, which will make de-
tection harder. The worst case for monitoring the host
process occurs when a tab performs streaming, since the
loop gets completely flooded. The renderer’s loop, how-
ever, is in general more robust to noise caused by other
tabs in the browser.

On the other hand, our attacks do not make any use of
the pages’ source code or of details of Chrome’s schedul-
ing system with priority queues, the GC with periodic
scavenges, or the frame rendering tasks. We believe that
taking into account this information can significantly im-
prove an adversary’s eavesdropping capabilities and en-
able attacks even in noisy, open-world scenarios.

4.2 Detecting User Behavior

In this section we show that it is possible to detect user
actions performed in a cross-origin tab or iframe, when
the renderer process is shared. We first describe an attack
recovering the inter-keystroke timing information against
Google’s OAuth login forms, which provides higher pre-
cision than existing network-based attacks [32].

4.2.1 Inter-keystroke Timing Attack on Google’s
OAuth login form

Many web applications use the OAuth protocol for user
authentication. OAuth allows users to login using their
identity with trusted providers, such as Google, Face-
book, Twitter, or Github. On the browser, this process
is commonly implemented as follows:

1. A web application A pops up the login form of a
trusted provider T;

2. User V types their (name and) password and sub-
mits the form to T;

3. T generates an authorization token.
Because the window of the login form shares the event

loop with the opener’s renderer, a malicious A can eaves-
drop on the keystroke events issued by the login form.
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Figure 8: Delay pattern generated by a keystroke in the
Google OAuth login form, measured across origins on
Chrome Canary v61 on OSX. The two consecutive de-
lays of approx. 2ms each, correspond to keydown and
keypress event listeners.

Figure 8 depicts the event-delay trace of a keystroke
as seen by an eavesdropper on the renderer’s event loop.
The trace contains two characteristic consecutive delays,
caused by the keydown and keypress event listeners. We
use this observation to identify keystrokes, by scanning
the event-delay trace for pairs of consecutive delays that
are within a pre-defined range, forgoing any training or
offline work. Listing 4 contains the script that performs
this operation. We define 0.4 ms as a lower bound, and
3.0 ms as an upper bound for the range. We chose this
threshold before gathering the data, by manual inspection
of a few keystroke events. Note that this calibration could
be done automatically, based on the victim’s interactions
with a page controlled by an attacker.

858    26th USENIX Security Symposium USENIX Association

https://github.com/cgvwzq/rlang-loophole
https://github.com/cgvwzq/rlang-loophole


1 const L = 0.4, U = 3.0, keys = []

2
3 for(let i=1; i<trace.length -1; i++){

4 let d1 = trace[i] - trace[i-1],

5 d2 = trace[i+1] - trace[i]

6
7 if (L<d1<U && L<d1<U){

8 keys.push(trace[i])

9 }

10 }

Listing 4: Pseudo-Javascript code to detect
keystrokes in a trace of timestamps gathered by
the code in Listing 1. We classify a timestamp as
a keystroke if the differences to the previous and
subsequent timestamps (d1 and d2) are both in a
predefined range.

4.2.2 Experimental Evaluation

To evaluate the effectiveness of this attack, we have
implemented a malicious application A that extracts
the inter-keystroke timing information from a user V
logging-in via Google’s OAuth. The focus of our evalu-
ation is to determine the accuracy with which keystroke
timings can be measured through the event loop. A full
keystroke recovery attack is out of scope of this paper;
for this refer to [32].

Figure 9: Experimental setup for evaluating effectiveness
of automatic, cross-renderer keystroke detection.

We simulate an inter-keystroke timing attack in 4
steps, which are described below and illustrated in Fig-
ure 9.

1. A Selenium3 script acting as V navigates to A, clicks
on the login button (which pops up Google’s OAuth
login form), types a password, and submits the
form.

2. Meanwhile, the attacker A monitors the main
thread’s event loop using the attack described in
Section 4.2.1.

3Selenium (http://www.seleniumhq.org/) is a cross-platform
testing framework for web applications that provides capabilities for
programmatically navigating to web pages and producing user input.

3. V and A send to the server the timestamps of the
real and the detected keystrokes, respectively.

4. We compute the accuracy of the detected
keystrokes, where we take the timestamps of
the real keystrokes as ground truth. Matching the
timestamps requires taking into account the delay
(6 − 12 ms on our machine) between Selenium
triggering an event, and Chrome receiving it.

We use as inter-keystroke timings random delays uni-
formly drawn from 100−300 ms. This choice is inspired
by [20], who report on an average inter-keystroke delay
of 208 ms. Using random delays is sufficient for evalu-
ating the accuracy of eavesdropping on keystrokes, but
it obviously does not reveal any information about the
password besides its length.

4.2.3 Experimental Results

We perform experiments with 10.000 passwords ex-
tracted from the RockYou dataset, where we obtain the
following results:

• In 91.5% of the cases, our attack correctly identifies
the length of a password. 4 In 2.2% of the cases, the
attack misses one or more characters, and in 6.3%
of the cases it reports spurious characters.

• For the passwords whose length was correctly iden-
tified, the average time difference between a true
keystroke and a detected keystroke event is 6.3ms,
which we attribute mostly to the influence of Se-
lenium. This influence cancels out when we com-
pute the average difference between a true inter-
keystroke delay and a detected inter-keystroke de-
lay, which amounts to 1.4 ms. The noise of these
measurements is low: We observe a standard devia-
tion of 6.1 ms, whereas the authors of [20] report on
48.1 ms for their network based measurements.

Overall, our results demonstrate that shared event
loops in Chrome enable much more precise recovery of
keystroke timings than network-based attacks. More-
over, this scenario facilitates to identify the time when
keystroke events enter the loop (from popping-up to form
submission), which is considered to be a major obstacle
for inter-keystroke timing attacks on network traffic [20].

Keystroke timing attacks based on monitoring
procfs [38] or CPU caches [18] can extract more fine-
grained information about keystrokes, such as contain-
ment in a specific subsets of keys. However, they require
filesystem access or are more susceptible to noise, due
to the resource being shared among all processes in the
system. In contrast, our attack enables targeted eaves-
dropping without specific privileges.

4We configured Selenium to atomically inject characters that would
require multiple keys to be pressed.
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4.2.4 Open Challenges for Recognizing User Events

We conclude by discussing two open challenges for
recognizing user events, namely the detection of user
events beyond keystrokes and the detection of events in
the browser’s host process.

Detecting User Events beyond Keystrokes A contin-
uous mouse movement results in a sequence of events,
each of which carrying information about the coordinates
of the cursor’s trajectory. These events are issued with an
inter-event delay of 8 ms, and the (empty) event listener
operation blocks the loop for approx 0.1 ms. The partic-
ular frequency and duration of these events makes mouse
movements (or similar actions, like scrolling) easy to
spot with LoopScan, as seen in Figure 10.

Figure 10: Mouse movement captured by LoopScan tool.
The graph shows 3 delays of 0.1 ms duration (at t equals
3350, 3358 and 3366), with an inter-event delay of 8 ms.

Likewise, mouse click events, corresponding to “up”
or “down”, can be identified using LoopScan. Their
shape depends on the specific event listener of the spied
web page and the HTML element being clicked. We ex-
pect that events with specific listeners are more easily
detectable than events without registered event listeners,
that is, user actions that do not trigger Javascript exe-
cution. However, we can use the context in which the
event occurs to reduce the search space. For instance,
most mouse clicks only appear between two sequences
of mouse movement events.

We are currently investigating techniques that enable
the automatic identification of such patterns in event-
delay streams. A promising starting point for this are
existing on-line variants of dynamic time-warping [31].

Detecting User Events in the Host Process Our dis-
cussion so far has centered on detecting user events in
the event loop of the renderer process. However, all user
events originate in the main thread of the host process
and are sent towards a specific renderer through the event
loop of the host’s I/O thread. Hence, any user action can
in principle be detected by spying on the host.

Unfortunately, our current methods are not precise
enough for this task, since the host’s I/O thread is more
noisy than the renderer’s main thread and the effect of a
user action on the host process is limited to a short sig-
naling message, whereas the renderer’s main thread is

affected by the execution of the corresponding Javascript
event listener.

4.3 Covert Channel
In this section we show how shared event loops in
Chrome can be abused for implementing covert chan-
nels, i.e. channels for illicit communication across ori-
gins. We first consider the case of cross-origin pages
sharing the event loop of a renderer’s main thread be-
fore we turn to the case of cross-origin pages sharing the
event loop of the host processes’ I/O thread.

4.3.1 Renderer Process

We implement a communication channel to transmit
messages from a sender page S to a cross-origin receiver
page R running in the same renderer process.

For this, we use a simple, unidirectional transmission
scheme without error correction. Specifically, we encode
each bit using a time interval of fixed duration tb. The op-
timal configuration of tb depends on the system. In our
experiments we tried different values, with tb = 5 ms giv-
ing good results on different platforms: Chromium 52.0
on Debian 64-bit and Chrome 53 on OSX.

In each of those intervals we do the following:
• the sender S idles for transmitting a 0; it executes a

blocking task of duration t̂ < tb for transmitting a 1.
• the receiver R monitors the event loop of the ren-

derer’s main thread using the techniques described
in Section 3.1; it decodes a 0 if the length of the ob-
served tasks is below a threshold (related to t̂), and
a 1 otherwise.

Transmission starts with S sending a 1, which is used by
the agents to synchronize their clocks and start count-
ing time intervals. Transmission ends with S sending a
null byte. With this basic scheme we achieve rates of
200 bit/s. These numbers can likely be significantly
improved by using more sophisticated coding schemes
with error correction mechanisms; here, we are only in-
terested in the proof-of-concept.

We note that there are a number of alternative
covert channels for transmitting information between
pages running in the same renderer [1], e.g., us-
ing window.name, location.hash, history.length,
scrollbar’s position or window.frames.length. What
distinguishes the event-loop based channel is that it does
not require the sender and receiver to be connected, i.e.
they do not need to hold references to each other in order
to communicate.

4.3.2 Host Process

We also implement a communication channel to transmit
messages between two cooperative renderer processes
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sharing the host process. Transmission is unidirectional
from sender S to receiver R. Figure 11 visualizes how this
channel can be used, even if one of the parties browses
in Incognito mode.

Figure 11: Covert channel through the I/O event loop
of the Chrome’s host process. Tabs in different renderer
processes (one of them navigating in Incognito mode)
communicate.

As before, we encode each bit using a time intervals
of fixed duration tb. During each intervals we do the fol-
lowing:

• the sender S idles for transmitting a 0; it posts N
fetch requests into the I/O thread’s queue for send-
ing a 1.

• the receiver R monitors the event loop of the I/O
thread of the host process using the techniques de-
scribed in Section 3.2. It decodes a 0 if the number
of observed events during time interval tb is below
a threshold, and 1 otherwise.

The optimal values of N and tb highly depend on the ma-
chine. In our experiments we achieve good results, work-
ing on different systems, with a tb = 200 ms and N = 350,
which give us a 5 bit/s transmission rate. This rate is sig-
nificantly lower than for communication using the ren-
derer event loop, which is explained by the difference in
noise and monitoring resolution of both channels, as dis-
cussed in Section 3.2.3.

The threat scenario of this covert channel is more
relevant than the previous one for the renderer loop.
For example it could be used for exfiltrating informa-
tion from an attacked domain (on a tab executing mali-
cious Javascript). Using Workers (which are background
threads that run independently of the user interface) we
can transfer information across origins, without affect-
ing the user experience and without generating network
traffic.

5 Discussion

We have shown how sharing event loops leads to timing
side-channels and presented different attacks on Chrome.
We communicated our findings to the Chromium security
team, who decided not to take action for the time being.
Nevertheless, our results point to fundamental security
issues in the event-driven architecture of browsers that
eventually need to be addressed in a fundamental man-
ner. Below, we discuss how other platforms are affected
and present possible countermeasures.

5.1 Beyond Chrome
We focus on Chrome in our analysis because it is the
most widely used browser, and because it was the first
one to implement a multi-process architecture. However,
there are good reasons to expect similar side channels in
other browsers, as they all follow the same event-driven
paradigm and rely on similar architectures.

For instance, recent Firefox versions with multi-
process support5 also rely on a privileged browser pro-
cess and multiple content processes that, unlike render-
ers in Chrome, act as a pool of threads for each different
origin (each with its own message queue). Despite this
difference, tests with LoopScan on Firefox version 55
show that congestion on both event loops is observable
across origins and tabs.

Specifically, we applied the monitoring technique for
the renderers described in Section 3.1.2 on a micro-
benchmark with a set of 30 pages with 15 traces each.
We achieved a recognition rate of 49%, which is be-
low the recognition rate achieved on Chrome for a set of
500 pages. A fair comparison between both architectures
will require a better understanding of Firefox’s policy for
mapping sites to threads and events to loops.

5.2 Countermeasures
The attacks presented in this paper rely on two capabili-
ties of the adversary: (1) the ability to post tasks into the
loop’s queue with high frequency, and (2) the ability to
accurately measure the corresponding time differences.

Rate Limiting. An obvious approach to counter (1)
is to impose a limit on the rate at which tasks can be
posted into an event loop. Unfortunately, rate limiting
implies penalties on performance, which is especially
problematic for asynchronous code.

At the level of the renderer, one possibility is to rely
on an accumulate and serve policy [22]. With this pol-
icy, the event loop accumulates all the incoming jobs

5Firefox’s Electrolysis (or e10s) project
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in a buffer for a period T , and then process and serves
all the accumulated jobs from party A, followed by all
the jobs from V . This has the advantage of limiting the
amount of information leaked while retaining high amor-
tized throughput.

At the level of the host process, where resource fetch-
ing is one of the main performance concerns, setting any
bound on the processing rate is not acceptable. Here, it
seems more reasonable to monitor the IPC activity of all
renderers and penalize or flag those who exhibit a bad or
anomalous behavior, e.g., along the lines of [39].

Reduce Clock Resolution. An obvious approach to
counter (2) is to limit the resolution of available clocks.
This has already been applied by browser vendors for
mitigating other kinds timing channels, but these ef-
forts are unlikely to succeed, as shown in [23]: Modern
browsers have a considerable number of methods to mea-
sure time without any explicit clock. For instance, some
recent exploits [16] use high-resolution timers build on
top of SharedArrayBuffers. The current resolution of
performance.now is limited to 5 µs, which makes mi-
croarchitectural timing attacks difficult, but does not pre-
clude the detection of Javascript events.

Full Isolation. As discussed in Section 2.2, Chrome’s
multi-process architecture tries to use a different ren-
derer for different origins, except for some corner
cases. The “Site Isolation Project” is an ongoing ef-
fort to ensure a complete process-per-site-instance pol-
icy, that means: providing cross-process navigations,
cross-process Javascript interactions and out-of-process
iframes. All this without inducing too much overhead.

One open question is how to handle the system’s pro-
cess limit, namely which sites should have isolation pref-
erence, or which heuristic for process reuse should be
used. A recent proposal, “IsolateMe” [4], puts the devel-
opers in charge of requesting to be isolated from other
web content (even if it does not provide a firm guaran-
tee).

CPU Throttling. Chrome v55 introduces an API that
allows to limit how much CPU a background page is
allowed to use, and to throttle tasks when they exceed
this limit. This affects background tabs trying to spy
on the renderer’s main thread, but still allows spying
on (and from) any iframe and popup, as well as on the
I/O thread of the host process through shared Workers.
Moreover, background tabs with audio activity are not
affected, as they are always marked as foreground. Since
Chrome v57 pages (or tabs) are only subjected to throt-
tling after 10 seconds in the background, which is too
long to prevent the attacks in this paper.

6 Related Work

Timing attacks on web browsers date back to Felten and
Schneider [13], who use the browser cache to obtain in-
formation about a user’s browsing history.

More recently, so-called cross-site timing attacks [10,
35] have exploited the fact that the browser attaches
cookies to all requests, even when they are performed
across origins. The presence or absence of these cookies
can be determined by timing measurements, which re-
veals information about the user’s state on arbitrary sites.
A special case are cross-site search attacks [14], which
circumvent the same-origin policy to extract sensitive in-
formation, by measuring the time it takes for the browser
to receive responses to search queries.

Other classes of browser-based timing attacks exploit
timing differences in rendering operations [24, 33, 5], or
simply use the browser as an entry point for Javascript
that exploits timing channels of underlying hardware, for
example caches [26, 16], DRAM buffers [17], or CPU
contention [9].

Of those approaches, [9] is related to our work in
that it identifies web pages across browser tabs, based on
timing of Javascript and a classifier using dynamic time
warping. However, because the attack relies on CPU
contention as a channel, it requires putting heavy load on
all cores for monitoring. In contrast, our attack exploits
the browser’s event loop as a channel, which can be mon-
itored by enqueing one event at a time. This makes our
attack stealthy and more independent of the execution
platform.

To the best of our knowledge, we are first to mount
side-channel attacks that exploit the event-driven archi-
tecture of web browsers. Our work is inspired by a proof-
of-concept attack [36] that steals a secret from a cross-
origin web application by using the single-threadedness
of Javascript. We identify Chrome’s event-driven archi-
tecture as the root cause of this attack, and we show
how this observation generalizes, in three different at-
tacks against two different event loops in Chrome.

Finally, a central difference between classical site fin-
gerprinting [28, 19, 34, 12] approaches and our page
identification attack is the adversary model: First, our ad-
versary only requires its page to be opened in the victim’s
browser. Second, instead of traffic patterns in the vic-
tim’s network, our adversary observes only time delays
in the event queues of the victim’s browser. We believe
that our preliminary results, with up to 76% of recogni-
tion rate using one single sample for training in a closed-
world with 500 pages, can be significantly improved by
developing domain-specific classification techniques.
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7 Conclusions

In this paper we demonstrate that shared event loops in
Chrome are vulnerable to side-channel attacks, where a
spy process monitors the loop usage pattern of other pro-
cesses by enqueueing tasks and measuring the time it
takes for them to be dispatched. We systematically study
how this channel can be used for different purposes, such
as web page identification, user behavior detection, and
covert communication.
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Abstract
Every day, hundreds of thousands of Internet domain
names are abandoned by their owners and become avail-
able for re-registration. Yet, there appears to be enough
residual value and demand from domain speculators to
give rise to a highly competitive ecosystem of drop-catch
services that race to be the first to re-register potentially
desirable domain names in the very instant the old re-
gistration is deleted. To pre-empt the competitive (and
uncertain) race to re-registration, some registrars sell their
own customers’ expired domains pre-release, that is, even
before the names are returned to general availability.

These practices are not without controversy, and can
have serious security consequences. In this paper, we
present an empirical analysis of these two kinds of post-
expiration domain ownership changes.We find that 10 %
of all com domains are re-registered on the same day as
their old registration is deleted. In the case of org, over
50 % of re-registrations on the deletion day occur during
only 30 s. Furthermore, drop-catch services control over
75 % of accredited domain registrars and cause more than
80 % of domain creation attempts, but represent at most
9.5 % of successful domain creations. These findings
highlight a significant demand for expired domains, and
hint at highly competitive re-registrations.

Our work sheds light on various questionable practices
in an opaque ecosystem. The implications go beyond the
annoyance of websites turned into “Internet graffiti” [26],
as domain ownership changes have the potential to cir-
cumvent established security mechanisms.

1 Introduction

Domain names are a key part of linking to content on
the Web, and they have an equally central role in naming
services on the Internet, such as in email addresses. A
large number of security mechanisms and protocols have
been devised that rely on domains to designate distinct

zones of authority or trust. For example, controlling a
domain name is often equivalent to gaining access to
additional resources [44]. An assumption common to all
these approaches is that domain ownership is constant and
perpetual. However, in actuality this is not true as domain
name registrations must be renewed and paid for on a
yearly basis. In fact, hundreds of thousands of expired
domain names are deleted each day (e.g., over 75 k per
day in the popular com zone alone [24]).

Once a domain name has been deleted, it can be re-
registered by any interested party on a first-come, first-
served basis. Schlamp et al. [44] showed how such re-
registrations can be used to take over protected resources
associated with these domains. Nikiforakis et al. [42]
discussed websites still attempting to include JavaScript
code from third-party domains long after they had expired,
allowing attackers to inject code into these sites. Lever et
al. [33] measured more formally how often re-registered
domains were associated with malicious behaviour. How-
ever, by focussing on certain kinds of risk or malice, these
studies do not illustrate the full scope of the issue.

We argue that the problem goes beyond specific cases
of abuse related to re-registered domains. It also in-
cludes the much broader and more frequent category of
undesirable behaviour akin to topics thoroughly studied
by the security community, such as spam [32], search
engine poisoning [49], ISPs hijacking NXDOMAIN
DNS responses [50], domain parking [2, 48], typo-
squatting [1, 37, 47], and reuse of social media profile
names [35, 36]. Re-registered domains appear to be pre-
dominantly used for speculation and monetisation pur-
poses, taking advantage of the residual traffic still reach-
ing the domains. Users who follow links from third-party
websites or type in an address that they remember are
taken to a new incarnation of the site that can be arbitrarily
different from the service that they actually wish to visit.
In Section 4.4, we show that a majority of re-registered
domains are parked and host nothing but advertisements.
ICANN called this undesirable practice “a form of Inter-
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net graffiti” [26]; domain parking is also known to pose
higher-than-average risks to visitors [48].

We believe it is important for the security community
to better understand the big picture of domain ownership
transfers and the implications for users, Internet abuse,
and defences thereof. This paper provides a quantitative
analysis of the “recycling” of expired domain names. We
show that this is a frequent phenomenon, causing a range
of negative side effects as companies compete with each
other while catering to the demand for expired domains.

There are four distinct scenarios in which domains
can change owners: When the current owner sells to a
new owner while the domain registration is active; when
the domain’s sponsoring registrar sells the domain to a
new owner while the domain registration is expired but
before control of the domain is returned to the registry
(pre-release); as an instant re-registration in the very mo-
ment the old registration is deleted, using a drop-catch
service; or as a conventional domain registration at any
later time using any domain name registrar. Regular do-
main sales are authorised by the owner of the domain
and therefore less of a concern from an abuse perspective.
Medium to long-term domain re-registrations have been
studied before [29, 22]. Pre-release and drop-catch do-
main ownership transfers, however, are barely mentioned
in the literature, and we are not aware of any systematic
measurement or quantification of these phenomena.

There is an entire ecosystem of services attempting
to monetise and profit from expired domains. Many do-
main registrars such as GoDaddy auction off their own
customers’ expired domains (without their collaboration);
when sold, these domains maintain their current registra-
tion and are simply made over to the new owner. From a
security perspective, such pre-release domains are prob-
lematic because they retain their original creation dates
and exhibit only very limited cues as to the new owner-
ship. For instance, pre-release domains subvert proactive
creation-time domain blacklisting mechanisms such as
Predator [21], which is related to a similar technique used
by the commercial Spamhaus blacklist, because the own-
ership change does not involve a new registration. This
example illustrates the need for a thorough study of how
commonly pre-release domains are available and sold.

Once expired domains are deleted, they can be re-
registered on a first-come, first-served basis, and these
re-registrations can be quite competitive. So-called drop-
catch services race to be the first to re-register expired
domain names in the very moment they become avail-
able. During a daily phenomenon that is called “the drop,”
they flood the registry’s systems with registration requests,
something previously described as “the world’s largest
legal denial of service attack” [8]. In order to gain an
advantage over their competition, drop-catch services
reverse-engineer details of the drop [8, 28] and place

their own systems in an “optimal strategical location” [4]
physically close to the registry; these optimisations re-
semble high-frequency trading in the financial industry.
Drop-catch services are not without controversy. Some
registries actively discourage the practice (e.g., registrars
are penalised for failed uk registration requests [8]), while
others at least implicitly encourage or facilitate it (e.g.,
Verisign makes available to its registrars lists of com and
net domains that are about to be deleted).

The extent and process of the drop are publicly known
only in abstract terms as each drop-catch service aims to
maintain their competitive position. In this paper, we con-
duct the first measurement study of the drop and provide
as much detail as is possible from an outside vantage
point. Furthermore, we characterise the extent and com-
petitiveness of drop-catch re-registrations on “day 0,” that
is, the day an expired domain name is deleted.

We find that a surprisingly large fraction of deleted do-
mains (10 % of com) is re-registered on the same day. In
the case of org, the drop lasts only about 30 seconds,
but accounts for more than half of all same-day re-
registrations of deleted domains. These results show that
re-registrations are frequent and highly competitive. Des-
pite the significantly higher price, there is a large demand
for drop-catch domains. In fact, there seems to be an
arms race between drop-catch services that has been in-
tensifying recently, with the Top 3 now controlling 75 %
of accredited registrars. Drop-catch causes at least 80 %
of domain creation attempts, yet only a tiny fraction are
eventually successful. The higher prices paid for drop-
catch domains suggest that their new owners consider
them to be valuable; however, in our cursory analysis of
domain uses, we show that most re-registered drop-catch
domains contain nothing but advertisements and parking
pages, suggesting monetisation through residual traffic
and speculative re-registrations. Our findings raise the
question of whether these uses justify the risks associated
with domain ownership changes without the explicit con-
sent of the prior registrant; they furthermore illustrate that
security mechanisms must account for domain deletions
and re-registrations as a frequent phenomenon (e.g., more
than 20 % of all com domains are deleted each year, and
out of those, 10 % are re-registered immediately by a new
owner, and many more at a later time).

Our work makes the following contributions:

• We call attention to widespread “recycling” of used
domains despite relatively high prices and measure
the extent of the issue as a whole, instead of simply
focussing on specific types of detected abuse.

• We describe little-known ways domain ownership
can change, and are the first to quantify the secretive
ecosystem of drop-catch services and their daily race
to take over deleted domains. We use a variety of
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public data sources to confirm the existence of a
phenomenon so far described only anecdotally.

• We show that same-day domain takeovers are fre-
quent and competitive, using a full sample of all
domains deleted from four popular zones during a
four-week period in 2016 (over 4 million domains).

• We quantify the inordinate impact that drop-catch
services have on the domain registration ecosystem,
accounting for over 75 % of accredited registrars and
over 80 % of domain creation attempts, but at most
9.5 % of successful domain creations.

• We discuss how certain registrars exploit grace peri-
ods to minimise their financial risk when attempt-
ing to sell pre-release domains or proactively re-
registered drop-catch domains, similar to the now
banned practice of domain tasting [6, 27].

2 Background & Related Work

Names in the Domain Name System (DNS) are structured
hierarchically. Top-level domains (TLDs) such as com or
net are created by the Internet Corporation for Assigned
Names and Numbers (ICANN) and then delegated for
day-to-day operation to a registry such as Verisign. Each
registry maintains a directory of the registered second-
level names and their authoritative name servers, called
a DNS zone. Registries delegate billing and customer
support to ICANN-accredited registrars, companies such
as GoDaddy or Gandi, which sell domain names to their
customers. The Internet Assigned Numbers Authority
(IANA) maintains a list of all accredited registrars and
their globally unique IDs [23]. Details about the activ-
ity of these registrars in each zone are available in the
monthly reports that registries must file with ICANN, and
that are made public after a three-month delay [24].

2.1 Domain Lifecycle

Domains are registered for a period of one or more years.
If a domain is not renewed before its expiration date, it
goes through a series of phases that permit late renewals
before the domain is ultimately deleted. Figure 1 shows a
simplified domain state diagramme taken from [29]. For
the purposes of this paper, it is sufficient to know that
domains not explicitly renewed or deleted before their
expiration date are automatically renewed by the registry,
giving the registrar a 45-day auto-renew grace period to
undo this automatic renewal before becoming liable for
the renewal fees. The details of how this grace period
affects the domain and its original owner depend on each
registrar’s policies. Typically, registrars either deactiv-
ate the domain or point it to a parking site to alert the
owner that the domain can still be renewed. Unless oth-

erwise requested by the owner of the expired domain,
registrars typically delete it shortly before the end of the
45-day auto-renew grace period in order not to incur the
registry’s renewal fee. Such domains enter a 30-day re-
demption period during which the domain is deactivated
and “locked” by the registry in the sense that the only
allowed modification is renewal by the original owner,
for an increased fee. Domains not recovered during the
redemption period transition into the pending delete state,
which means that these registrations will be deleted after
5 days and the domains can be re-registered by any inter-
ested party on a first-come, first-served basis.

Figure 2 summarises a domain’s most typical expiration
phases on a timeline. Expired domains can change owners
during two points in time: Pre-release domains can be
sold and transferred to a new owner during the auto-renew
grace period; pending delete domains can be re-registered
by a drop-catch service directly after deletion, or manually
at any later point, all provided that the domain has not
already changed owners beforehand.

2.2 Pre-Release Domain Sales

During the auto-renew grace period, even though the ex-
piration date has already passed, registrars maintain con-
trol over the domain. ICANN and the registries appear
to give registrars some flexibility in how they manage
this period, with the result that different registrars imple-
ment a range of varying policies that may or may not
be favourable to the registrant of the expiring domain.
Some registrars such as Gandi give their customers the
full 45 days for late renewals without additional fees [15],
whereas other registrars begin charging increased late re-
newal fees or attempt to sell the domain to a new owner.
GoDaddy, for example, begins charging customers an in-
creased late renewal fee on the 19th day after expiration,
and puts the domain name up for auction beginning on
the 26th day [17]. While GoDaddy operates their own
domain name auction service, other registrars such as
Moniker or Tucows partner with third-party platforms
such as SnapNames [46]. These auctions allow any in-
terested party to bid for expiring names and potentially
acquire them, subject to the original registrant not exer-
cising their right to renew the domain. If a domain is sold,
the new owner pays for the renewal as well as auction
fees and the sponsoring registrar changes the domain’s
ownership information to the new owner. The domain
remains under the management of the registrar and keeps
its original metadata such as the registration creation date.
From a domain management point of view, this process is
the same as what would happen if the previous owner had
sold the domain to a new owner, except that the previous
owner does not in fact participate in or benefit from the
pre-release sale, since all proceeds go to the registrar and
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Figure 2: Timeline of domain expiration with a pre-release sale oppor-
tunity during the auto-renew grace period and a re-registration oppor-
tunity after the domain has been deleted (drop-catch re-registrations
occur instantly after deletion).

auction platform. The entire auction process takes place
during the duration of the auto-renew grace period when
registrars hold the domains for free. Unsold domains can
be deleted before they incur any cost at the registry, which
means that registrars run a negligible financial risk when
they attempt to sell their customers’ expired domains.

2.3 Drop-Catch Domain Re-Registrations
While the general process of domain expiration depicted
in Figure 1 is very similar for the generic TLDs, the exact
procedure of domain deletion at the end of the pending
delete period may differ from registry to registry. In
the following description, we focus on the com and net

zones operated by Verisign because they are the most
popular and have most details available in various online
sources [8, 28, 13]. According to these sources, each day
Verisign makes available to its registrars a list of all do-
mains that just entered the pending delete period and will
become available for re-registration five days later, along
with popularity data derived from traffic to the zone’s
authoritative DNS servers. Deletion of domains follows a
somewhat predictable procedure that is also called “the
drop.” Beginning each day at 2pm ET, Verisign’s systems
iterate over the “dropping” domain names in a certain
order and change their status from registered to available
one by one, with the whole process lasting up to an hour.

Since deleted domains can be re-registered on a first-
come, first-served basis, to maximise the probability of
“catching” a sought-after domain, it is essential to predict

when exactly it will “drop” and place the re-registration
request in a timely manner. For popular domains, it is
not very promising to attempt to do so manually, since
a number of drop-catch services specialise in automatic
re-registration of deleted domains in the very moment
they become available. These services accept backorders
from customers who are interested in an already registered
domain and attempt to re-register the domain if it is ever
deleted. Around the deletion window, drop-catch services
flood the registry with registration requests, most of which
can be expected to fail because the domain has either
not been deleted yet, or it has already been re-registered
by a competitor. Drop-catch services attempt to reverse
engineer the registry’s deletion process in order to use
their resources more efficiently and gain an advantage
over their competition. Furthermore, drop-catch services
are said to use multiple (rate-limited) registrar access
credentials and place their servers physically close to the
registry’s systems [4, 8, 28], similar to common practices
in high frequency trading in the financial industry.

In contrast to pre-release domain sales, drop-catch ser-
vices do not control the domain when an order is placed
and cannot guarantee that they will be able to obtain it.
The starting price of a drop-catch domain can be up to
ten times the regular annual registration fee. If a drop-
catch service successfully obtains a domain and multiple
customers had placed an order, the winner is typically
determined in a three-day private auction. Since such do-
mains were deleted (even if only for fractions of a second),
their metadata looks like that of a newly registered do-
main, without any trace of the prior registration instance.

2.4 Domain Tasting
Figure 1 shows that newly registered domains start in a
five-day add grace period during which the domain re-
gistration can be cancelled at no cost. While intended to
address accidental domain registrations such as typing er-
rors, this grace period led to wide-spread abuse, so-called
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domain tasting, which consists in domain speculators
tentatively registering a domain with the sole purpose of
testing how much traffic it would receive, and deleting the
domain if the observed traffic did not warrant the regis-
tration fee. In related work, Coull et al. [6] showed that
domain tasting accounted for 76 % of all daily domain
creations. After 2008/2009, when ICANN implemented
policies penalising registrars for excessive tasting, the
frequency of the phenomenon declined by 99.7 % [27].
We will show in Section 4.6 that in a fashion similar to
pre-release sales, at least one drop-catch service makes
use of domain tasting to tentatively register domain names
and delete them at no cost when it cannot find a buyer.

2.5 Related Work

Prior research in the area of domain registrations includes
the work on registration intent by Halvorson et al. [18,
19, 20]. Schlamp et al. [44] describe an attack to take
over protected resources by re-registering the expired
domains of email addresses. Nikiforakis et al. [42] study
inclusions of third-party JavaScript code in websites and
find dependencies loaded from expired domain names,
which could be re-registered for code injection attacks.
Attackers have also been reported to re-register expired
domains that built up a good reputation [5, 22, 33].

Although unrelated to domains, Mariconti et al. [35,
36] show that similar risks of trust abuse exist on social
networks that allow abandoned profile names to be reused.

Two works present a more systematic examination of
domain re-registrations: Hao et al. [22] investigate char-
acteristic registration patterns of spam domains and find
that among re-registered domains, those later used for
spamming tend to be registered faster than non-malicious
domains. They then use several registration-time fea-
tures to predict which domains are likely to be used for
malicious purposes [21]. Lever et al. [33] analyse the
maliciousness of domains before and after re-registration
with a focus on when malicious behaviour occurs, not
when or why a domain is re-registered. In several case
studies, they recount concrete security issues that arose
from expired (and re-registered) domain names of name
servers, email addresses, software repositories, and spam
operations. To automatically detect domain ownership
changes, the authors propose Alembic, an algorithm based
on DNS-related features. It is unclear whether pre-release
domain sales exhibit DNS signals strong enough to be de-
tected, since such sales might result in only minor changes
to the DNS configuration when domains continue to be
maintained by the same registrar or hosting company.

In previous work [29], we studied the expiration pro-
cess of domain names, long-term re-registration probabil-
ities, and ambiguities in WHOIS data. Our analysis at the
time was oblivious to the nature of re-registrations. In this

paper, we focus on immediate drop-catch re-registrations,
and we also characterise related phenomena such as pre-
release sales. We are not aware of any prior work that has
studied the pre-release and drop-catch ecosystems.

3 Methodology

To study post-expiration ownership changes of domain
names, we need to know which domains are available for
pre-release sale or drop-catch re-registration, and track
their status to discover the outcome.

3.1 Domain Availability Lists
Most pre-release and drop-catch services publish lists of
imminently available domains so that prospective buyers
can scout them for interesting inventory. We downloaded
these lists daily as the starting point for our analysis.

3.1.1 Pre-Release

We downloaded pre-release lists from four large services
that sell expiring domains: Dynadot [14], GoDaddy [16],
NameJet [40], and SnapNames [45]. These lists contain
the names of available pre-release domains along with
the date when each auction will close, and sometimes
also metadata such as the current bid, the number of par-
ticipants in the auction, the age of the domain, or traffic
data collected by the registrar from a post-expiration park-
ing page that can be used to valuate the domain. While
Dynadot and GoDaddy are primarily registrars and ap-
pear to re-sell their own customers’ expired domains,
other services partner with third-party registrars to offer
their expiring domain inventory (e.g., the list of partner
registrars of SnapNames includes Moniker and Tucows).

3.1.2 Pending Delete

Lists of domains in the pending delete state are avail-
able from drop-catch services such as Namepal Back-
orders [3], Domain Graveyard [9], Domain Monster [10],
DropCatch [11], Dynadot [14], NameJet [40], Pool [43],
and SnapNames [45]. These lists contain the deletion
date of each domain, that is, when the domain can be re-
registered, and sometimes also traffic data derived from
the zone’s DNS lookup traffic.

A practical complication when using these lists is that
the time zones of dates are sometimes not explicitly stated,
and the listed dates sometimes refer to the last time to
place an order, whereas in other cases they refer to the ac-
tual deletion date. In contrast to pre-release lists, pending
delete lists do not contain exclusive inventory and should
therefore overlap among all services. (Some lists differed
by around one hundred names per day; we noticed that
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some services removed names containing trademarks or
punycode domains whereas other services did not.) We
use the overlap to convert all lists into a common time
convention as follows: As a preliminary reference, we
use Dynadot’s list, which is the only one that declares
its timestamps as UTC, and is also the most complete
list. Separately for each other list, we extract the dates
associated with each domain found in both that list and
Dynadot’s list, and compute the distribution of the time
difference. We use the mode of this distribution as each
list’s time offset from Dynadot. Once we have adjusted
all lists, we observe that they agree on the same date for
99.99 % of com and net domains and around 80 % of org
and biz domains, with the vast majority of disagreements
involving only a one-day difference. We hypothesise
that the qualitative difference between com/net and the
other zones may be due to different ways of collabora-
tion between the registries and the drop-catch services;
Verisign manages both com and net and is known to
make lists of pending delete domains available to regis-
trars, whereas we could not find any public information
regarding the other registries’ policies. To resolve any
disagreement among the lists about the deletion date of a
domain, we apply a majority voting algorithm and pick
the date declared by most of the lists.

3.2 Domain Status Tracking

The domain lists compiled by pre-release and drop-catch
services alert us about new domains becoming available,
but they do not contain the outcome, that is, whether a pre-
release domain was sold to a new owner, or if a deleted
domain has been re-registered. We obtain this information
from the respective registry’s WHOIS database, which is
the official public source for domain registration metadata.
Since WHOIS databases contain only current data but no
history, we need to extract data periodically in order to
detect changes. Furthermore, while access to WHOIS
databases is public, it is also rate limited, which bounds
the number of domains that we can track. We conducted
two experiments, each designed to measure a specific
aspect of domain re-registrations:

• pre-release sales and drop-catch re-registrations over
a four-week period in 2016, our MAIN data set, and

• domain tasting in drop-catch re-registrations during
one week in 2017 (TASTING).

A common principle of both experiments was that we
sourced new domains from the daily lists during the seed
time, and we periodically requested WHOIS records for
these known domains during the tracking time.

Zone com net org biz name

Pre-Release Domains 1.2 M 135 k 116 k 21 k 182
min/day 23.8 k 2.5 k 2.1 k 388 2
median/day 43.5 k 4.9 k 4 k 710 7
max/day 53.7 k 6.7 k 6.4 k 1.1 k 15

Sales/Late Renewals 70.6 k 5.9 k 4.8 k 475 6

Table 1: The number of domains on all pre-release lists during our
28-day measurement period along with the daily min/median/max, and
total domains not deleted (either sold by platform or renewed by owner).

Zone com net org biz name

Pending Delete Domains 2.1 M 255 k 169 k 51 k −
min/day 61.6 k 7.4 k 4.8 k 1.2 k −
median/day 76.4 k 9.2 k 6.1 k 1.7 k −
max/day 92.1 k 11.2 k 7.5 k 2.6 k −

All Observed Re-Registr. 334.3 k 33.5 k 15.5 k 3.3 k −
“Day 0” Re-Registrations 215.6 k 16.9 k 7.9 k 0.9 k −

Table 2: The number of domains on all pending delete lists during our
28-day measurement period along with the daily min/median/max. Note
the strong daily variation. Our observations of overall re-registrations
are right censored, whereas deletion day re-registrations are not.

3.2.1 MAIN: Pre-Release & Drop-Catch Domains

During a four-week period starting in late July 2016, each
day we began tracking all com, net, org, biz and name

domains appearing on the pre-release and pending delete
lists mentioned above with an end date three days in the
future. That is, we requested the WHOIS records of each
pre-release and pending delete domain three days before
the end of the auction or the deletion date, respectively.
This first WHOIS lookup allowed us to extract domain
metadata corresponding to the expiring registration, such
as the original domain creation date, the expiration date,
and any status flags corresponding to expiration states
(Figure 1) that may be set, such as pending delete. We
then repeated each lookup every 2 weeks. The frequency
was chosen low enough to include every listed domain
while not exhausting our limited budget of lookups, but
high enough to observe transient status changes such as
the 30-day redemption period. After the end of the four-
week period, we stopped adding new domains from the
lists, but we continued tracking the previous sample until
mid-December. For our lookups, we respected conser-
vative delays between queries (2 s for com, net, biz and
name, and 30 s for org), and we were able to carry out
our lookups without being blocked. Overall, we tracked
more than four million domains, as shown in Table 1 for
pre-release, and in Table 2 for pending delete domains.

Recall that pre-release domain sales take place during
the auto-renew grace period so that registrars can delete
the domains without incurring any cost if they do not sell.
Since the length of this period is no more than 45 days,
we can conclude that a sale or renewal has taken place if
the WHOIS status at least 45 days after the initial lookup
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shows that (1) the domain still exists, (2) the domain is
not in a redemption period or pending delete state (it
is not being deleted), and (3) the domain’s records still
have the same creation date as in the first lookup (the
domain has not been re-registered). Note that we do not
possess registrant information for com and net domains
due to their thin WHOIS model. In these zones, registrant
information is not available from the registry, but must be
requested from the domain’s sponsoring registrar. Prior
work by Liu et al. found that registrars’ Whois servers
typically have much lower, and usually undisclosed rate
limits, which makes it challenging to extract registrant
data at scale [34]. Furthermore, the authors described a
growing number of domains hiding their true ownership
through privacy protection services, over 20 % in 2014.
For the purposes of this work, we decided that the benefits
of ownership data did not justify the effort needed to
collect it. As a result, we cannot distinguish pre-release
sales from domain owners using the very last opportunity
to renew their expired domain, since both cases result in
the domain remaining active. However, we believe that
only a small fraction corresponds to last-minute renewals
because registrars contact their customers many weeks
before expired domains go to auction and disincentivise
late renewals with higher fees, as discussed in Section 2.2.

Pending delete domains can be re-registered as soon as
the domain exits the pending delete status. We can detect
a re-registration by a creation date that is on or after the
“drop date” from the pending delete lists. If a domain is re-
registered on the same day that the previous registration
was deleted, we call it a 0-day drop-catch re-registration.

3.2.2 TASTING: Drop-Catch Domain Tasting

Domain tasting registrations are active for a maximum
of five days, the duration of the add grace period, before
they are deleted. Since the two-week measurement fre-
quency in the MAIN data set cannot reliably find every
instance of tasting registrations, we discarded any such
observation from that data set to retain only “surviving”
registrations, and we designed a separate experiment to
measure tasting. Specifically, for the TASTING experi-
ment’s seed time of one week in late January 2017, we
extracted Whois records for all domains from the pending
delete lists three times at fixed delays: Three days before
the deletion date to observe the registration instance that
was about to be deleted, one day after the deletion date
to observe any drop-catch re-registration, including short-
lived tasting registrations, and six days after the deletion
date to find out whether a drop-catch re-registration had
been cancelled (due to tasting) or remained active.

Zone com net org biz name

Total Domains (Aug’16) 131 M 16.1 M 11.3 M 2.3 M 166 k
added (per day) 81.3 k 8.7 k 5.4 k 1.3 k 26
deleted (per day) 72.7 k 8.8 k 6.5 k 1.5 k 66

“Day 0” Re-Reg. Adds 9.5 % 7.0 % 5.2 % 2.4 % −
(mean, per day) 7.7 k 605 280 32 −

Table 3: The total number of domains registered in August 2016 as well
as the daily mean of domains added and deleted in July and August 2016
according to the ICANN registry reports. Deletion day re-registrations
(as determined in our measurements) are given both in absolute terms
and as a fraction of daily domain creations. They represent an upper
bound on successful drop-catch domain creations.

3.3 Limitations

Our analysis relies on domain lists to discover expiring
and deleting domains. While the high overlap among
pending delete lists of competing services makes us con-
fident that their union represents all com, net, org and
biz domains that are about to be deleted, our pre-release
lists do not cover the full inventory of expiring domains
available for purchase due to the fragmented ecosystem.
However, we believe that our pre-release lists cover a
majority of the available inventory as we source our data
from the most popular platforms. According to our results
in Section 4.1, the vast majority of domains on pre-release
lists is not sold but deleted, which causes those domains to
ultimately appear on pending delete lists. Our pre-release
lists are more than half the size of the pending delete
lists, with the largest part of the difference likely due to
registrars that do not offer any pre-release sales at all.

This paper analyses ownership transfers of expiring or
deleted domains, which implies a bias towards domains of
lesser value. Highly valuable domain names are likely to
be sold directly rather than expiring due to non-renewal.

4 Analysis

We begin our analysis by providing context for expiring
domains. According to ICANN’s registry reports, 2.2 M
com domains were deleted in August 2016, which corres-
ponds to 1.7 % of all registered com domains, as shown
in Table 3. In contrast, about 2.6 M com domains were
added during the same period, hinting at a constant and
sizeable turnover in registered domains. While some of
the added domains were never registered before, many are
re-registrations of old domains. In this paper, we focus on
drop-catch domains that are re-registered on day 0, that
is, on the deletion day of the old registration.

Some expired domains may be available even before
they are deleted, and our pre-release lists (Table 1) advert-
ise around 1.2 M com domains over a period of 28 days.
The large number of expiring domains that can be ac-
quired by means of an ownership transfer instead of a
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Zone com net org biz name

Dynadot 17.1 % 32.9 % 13.7 % 22.4 % 27.8 %
1.9 k 607 176 17 5

GoDaddy 5.31 % 3.33 % 4.06 % 2.21 % 0.65 %
30.5 k 1.9 k 2.0 k 164 1

NameJet 9.89 % 7.63 % 6.81 % 4.84 % −
27.1 k 2.4 k 1.5 k 134 −

SnapNames 3.39 % 2.41 % 2.59 % 1.57 % −
11.1 k 981 1.1 k 160 −

Table 4: Pre-release domains not deleted (likely sold) per platform.

re-registration illustrates that security mechanisms should
avoid relying exclusively on creation-time features to
detect potential ownership changes. To conclude this
overview, Table 2 shows that the number of domains on
pending delete lists supplied by drop-catch services is in
line with the official statistics from the ICANN reports.
Therefore, we can rely on these pending delete lists to
discover the domains that are about to be deleted.

4.1 Demand for Expired Domains
Using the predicted deletion dates from the pending de-
lete lists (in the MAIN data set), we find that 10.1 % of
all deleted com domains are re-registered on the same
day, that is, the earliest possible day for a re-registration.
Smaller zones also exhibit smaller fractions of same-day
re-registration at 6.6 % of net, 4.7 % of org and 1.8 % of
biz. Our results suggest that re-registrations are not only
a common phenomenon in general, but also one driven by
enough competition to cause re-registrations to happen as
early as possible. The deletion day has the highest daily
rate of re-registrations. For instance, after the 10.1 % on
the deletion day, it takes about one month until the next
5 % of deleted com domains are re-registered.

Given that many buyers appear to be interested in gain-
ing access to a domain name as soon as possible, we
look at the sales of pre-release domains, which are avail-
able even before they are deleted. Pre-release domains
are typically exclusive inventory of the selling platform,
thus competition among prospective buyers would play
out monetarily in auctions as opposed to a timing-based
technical arms race between competing services.

The four pre-release domain lists that we use in our
research are slightly different in nature. GoDaddy and
Dynadot are domain registrars themselves and likely sell
only their own customers’ expired domains—all com do-
mains on these two lists were initially registered by only
16 and 11 different registrar IDs, respectively. NameJet
and SnapNames, on the other hand, appear to be mar-
ketplaces with a number of collaborating registrars; we
observed 277 and 263 registrar IDs in their com domains.

Taken together, the four pre-release lists contain more
than half as many domains as the pending delete lists dur-

ing the same time span in the com, net, and org zones,
and less than half for biz. While pre-release lists are
biased towards participating registrars, and only domains
not sold during the pre-release phase ultimately appear
on a pending delete list, the pre-release domains available
through the four services make up a sizeable portion of
the entire expiring domain inventory. It is worth invest-
igating how many of them are sold pre-release instead of
becoming available as pending delete domains.

Since purchases of pre-release domains are guaran-
teed and the prices sometimes lower than drop-catch re-
registrations, one might expect to observe a higher frac-
tion of pre-release sales than drop-catch re-registrations.
However, the numbers in Table 4 do not support such a
general trend. In nearly all zones, Dynadot and NameJet
sell a larger fraction of their inventory than the corres-
ponding re-registration rates one month after deletion.
GoDaddy and SnapNames, on the other hand, sell a con-
siderably lesser fraction—GoDaddy has the largest invent-
ory of domains but sells only 5.31 % of their pre-release
com domains, which is half the percentage of overall com
drop-catch re-registrations on the deletion day.

Pre-release domains that are not sold are marked for de-
letion and will appear on pending delete lists. While one
may suspect that the availability of pre-release domains
of a registrar might have a negative affect on drop-catch
re-registrations, we did not find any clear difference in
re-registration rates of registrars that offer pre-release
domains compared to others that do not. In fact, we ob-
served a surprisingly frequent phenomenon of pre-release
domains that were not sold initially, but re-registered as
drop-catch domains once they had been deleted.

4.2 Competitiveness of Re-Registrations

To gain a better understanding of how domains are re-
registered on their deletion day (and verify the third-party
accounts cited in Section 2.3), we need a fine-grained
view of the creation time of the re-registration. Unfortu-
nately, WHOIS records for com and net domains do not
contain the exact time when the domain was created, but
for org and biz, we can plot domain creations with a
second precision. Figure 3 shows the UTC time-of-day
creation time of all org and biz re-registrations from the
pending delete lists separately for the deletion day, that
is, drop-catch re-registrations, and all re-registrations that
happened on a later day. Re-registrations on any day after
the deletion day are relatively evenly distributed over the
day with no strong time-of-day effect. Re-registrations
on the deletion day, however, do not begin until 14:30
for org and 17:00 for biz with around 90 % and 60 % of
all re-registrations on that day occurring within the first
30 minutes. The remaining re-registrations during the re-
maining time of the day are again evenly distributed. This
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Figure 3: CDF of the time of day when domains
from pending-delete lists are re-registered, sep-
arately for day 0 (drop-catch) and any later day.
Drop-catch re-registrations occur in a spike after
deletion of the domains, whereas regular re-
registration times are more evenly distributed.
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Figure 4: CDF of re-registration times for org
on day 0 (minute-level detail of Figure 3). Ex-
cept for a few outliers, re-registrations begin
at 14:30 and slow down before 14:31 UTC, at
which point more than 60 % of the deletion day
re-registrations have already occured.
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Figure 5: CDF of re-registration times for org
on day 0 (second-level detail of Figure 4). More
than half of the deletion day re-registrations oc-
cur within the first 30 s; only around 10 % are
re-registered during the following 30 s.

suggests that the drop process of org and biz is similar
to the one reported for com and net. In other words, all
domains scheduled to become available for re-registration
on a given day do so within a brief “drop” interval.

Figure 4 contains a minute-precision detail of the same
plot for org re-registrations on day 0 and shows that over
60 % of the day’s re-registrations occur in the minute
between 14:30 and 14:31. Figure 5 zooms in even further
to a second-level precision and reveals that more than half
of the day’s re-registrations occur within the first half of
the first minute; only around 10 % are re-registered during
the following 30 s. The high density of re-registrations
during a very short time period hints at how competitive
the re-registration race is. For instance, manual attempts
to re-register a sought-after domain on its deletion day
rather than paying for a drop-catch service will likely fail.

Re-registrations on day 0 for biz are significantly
slower than org, with about 50 % in the first five-minute
interval and roughly 20 % during the next 30 minutes. The
lower re-registration speed may be an indicator for lower
interest in biz re-registrations. In fact, biz is the smallest
of the four zones with pending delete domains analysed
in this paper, and it is decreasing in size (Table 3).

To further investigate how many resources are dedic-
ated to re-registrations, we compare the number of re-
gistrar IANA IDs used for re-registrations on day 0 as
opposed to any later day. Registrar IDs are used in WHOIS
records to identify the sponsoring registrar of a domain,
but there is no 1:1 mapping to companies since a regis-
trar could use multiple IDs (e.g., due to acquisitions of
other registrars), and it has been reported that drop-catch
services use multiple credentials in order to increase their
success rate during the drop [8, 28]. Indeed, we find that
re-registrations of com, net and org domains on day 0 are
carried out with a very large diversity of registrar IDs. For
instance, we observed a total of 1,745 registrar IDs for
com 0-day domains, but only 308 registrar IDs for com re-
registrations on any later day combined. Re-registrations

of net and org similarly use many times more registrar
IDs on day 0 as opposed to the entire period after the dele-
tion day. At the same time, re-registrations on day 0 only
account for between half and two thirds of all observed re-
registrations. This illustrates that disproportionately more
resources are utilised for 0-day re-registrations. Consider,
for instance, that the 1,745 registrar IDs correspond to
a daily median of only 7.7 k com 0-day re-registrations.
For biz, the trend is inverse with only 34 registrar IDs
used on the deletion day compared to 94 afterwards; this
is another indicator that the biz drop is less competitive.

The higher number of registrar IDs in use for deletion-
day re-registrations goes in hand with a much lower skew
towards the most active IDs. According to Figure 6, the
10 most active registrar IDs on the deletion day account
for only 20 % of same-day re-registrations. While the 90
next registrar IDs together hold the same market share,
there is significant weight in the middle ranks as half of
the registrar IDs (ranks 100 – 1000) account for over half
of deletion-day re-registrations. This effect cannot be
observed at all for re-registrations after the deletion day
(Figure 7), where the top 10 registrar IDs alone account
for almost three quarters of re-registrations. The more
equal distribution of deletion-day re-registrations over
registrar IDs suggests a tight competition where the top
performers hold a small but not overwhelming advantage.

The high number of registrar IDs on the deletion day
is centred around the time of the drop, as illustrated in
Figure 8. Within the first 30 s after the drop, hundreds of
registrar IDs are being used each second, but after around
15 minutes this number already decreases to fewer than
10 registrar IDs per minute. This suggests that the 0-day
distribution in Figure 6 is dominated by the drop, and that
the remainder of the day may be more akin to the post-
deletion day distribution in Figure 7, with the additional
resources being deployed only for the time of the drop.
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Figure 6: CDF of deletion day domain re-registrations per registrar ID
ranked by re-registration volume (log scale). The 10 most active registrar
IDs are responsible for 20 % of com re-registrations on day 0.
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Figure 7: CDF of domain re-registrations after the deletion day per
registrar ID ranked by re-registration volume (log scale). The 10 most
active registrar IDs account for 74 % of com re-registrations on days 1+.
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Figure 8: Histogram of distinct registrar IDs observed for org re-
registrations during one-minute intervals on the deletion day (log scale).
The number rapidly decreases from hundreds of registrar IDs used
directly after the drop to just a few per minute half an hour later.

4.3 Drop-Catch Registrar Characteristics
We now show that the characteristics of registrars enga-
ging in drop-catch re-registrations can be very different
from regular registrars. To that end, we compute met-
rics from ICANN’s registry transaction report for com in
August 2016 and make the following observations:

• Domain creations by drop-catch registrars are typic-
ally for a one-year duration, whereas other registrars
often have a higher fraction of domains paid in ad-
vance for up to ten years. For example, 30.8 % of do-
main creations by GoDaddy’s registrar 146 were for
two or more years, whereas the drop-catch registrars
627 (Pheenix), 635 (SnapNames) and 1570 (Drop-
Catch) created only one-year registrations. This sug-
gests a lower willingness of up-front investments to
commit to domain names in the long term.

• Drop-catch registrars are rarely on the receiving end
of domain transfers between registrars, as most trans-
fers are away to another registrar. For the regular
registrars OVH (433), Gandi (81) and GoDaddy,
27.6 %, 35.8 % and 55.7 % of all domain transfers
were outbound, whereas the percentage was 100 %
for Pheenix and SnapNames. These registrar IDs ap-
pear to be used for creations of drop-catch domains,
but not for management of regular domains.

• The success ratio of attempted domain creations is
very low for drop-catch registrars, with a large major-
ity of domain creations failing. The sample registrar
IDs of Pheenix and DropCatch had success rates of
0.05 % whereas GoDaddy’s success ratio was 71.7 %
and Gandi’s was 99.3 %. This confirms accounts of
the drop, when the registry systems are flooded with
speculative domain creation requests, most of which
fail because the domain is not yet available, or has
already been re-registered by a competitor.

Especially the latter point has implications for the do-
main registration systems managed by the registries. In
August 2016, more than 99.9 % of all attempted domain
creations in the com zone failed. Conservatively estimated,
at least 80 % of all attempts can be attributed to failed
drop-catching, which means that drop-catch services are
responsible for a very large majority of all domain cre-
ation requests received by Verisign, the com registry.

The large number of registrar IDs engaging in drop-
catch found in Section 4.2 does not correspond to thou-
sands of independent drop-catch services, but rather some
drop-catch services using large numbers of registrar IDs.
To better characterise the drop-catch ecosystem, we need
to find out which registrar IDs collaborate and which
ones compete. To that end, we group the individual re-
gistrar IDs found on the complete IANA list in February
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Name IDs %

1 DropCatch.com 1252 42.6 %
2 Pheenix.com 498 16.9 %
3 SnapNames.com 466 15.8 %
4 LogicBoxes.com 53 1.8 %
5 MyDomain.com 43 1.5 %
6 XZ.com 21 0.7 %
7 Name.com 19 0.6 %
8 Dynadot.com 19 0.6 %
9 22.cn 16 0.5 %

(total) 2387 81.1 %

Table 5: All clusters with more than 10 registrar IDs as of Feb. 2017.
The Top 3, all drop-catch services, control 75 % of accredited registrars.

2017 into clusters likely belonging to the same company
when they share the same official contact email address
or phone number, or if their name differs only by a num-
ber. For instance, the list contains 1,201 IDs with names
“DropCatch.com n LLC”, where n is a number. Another
cluster contains names that look similar to the human eye,
such as “Charlemagne 888, LLC,” “George Washington
888, LLC,” and “Napoleon Bonaparte, LLC”—these are
grouped because of their contact information and belong
to the drop-catch service Pheenix. Almost 92 % of the
clusters consist of a single registrar ID, but a small number
of clusters is very large. Table 5 shows all nine clusters
with more than ten registrar IDs. Their sizes correspond
to what was previously reported by specialised online
media [38, 39]. Overall, the clusters comprising more
than ten registrar IDs account for more than 81 % of all
registrar IDs on the IANA list, and the Top 3, all drop-
catch services, account for three quarters of all accredited
registrars. (In contrast, as shown in Table 3, drop-catch
services do not register such a large share of domains—at
most 9.5 % of successful com domain creations each day
can be attributed to drop-catch re-registrations.) Note
that our clustering groups only registrars with evident
similarities in their names or contact information. Some
drop-catch services are said to have agreements with inde-
pendent registrars to use their credentials for the duration
of the drop. Therefore, these clusters likely underestimate
the true “horse power” of drop-catch services.

To gain a historical perspective, we search ICANN’s
registry transaction reports for the first time a registrar ID
has been observed to register domains (in the com zone).
Figure 9 shows that regular domain registrars such as
GoDaddy maintain a constant or only modestly increasing
number of registrar IDs, whereas drop-catch clusters grow
over two orders of magnitude in an apparent arms race
among drop-catch services [38, 39]. Note that the plot
only shows cluster size increases due to newly allocated
registrar IDs because we always apply the February 2017
clustering. As a result, initially independent registrars that
were later acquired and became part of a larger cluster are
shown as part of that cluster from the beginning.
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Figure 9: Historical perspective on cluster size in terms of registrar
IDs, from ICANN com reports until February 2017. Drop-catch services
increased their size, whereas regular registrar clusters remained constant.
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Figure 10: Cluster size vs. domain creations in February 2017. Reg-
ular registrars such as GoDaddy or Enom have high numbers of total
creations using very few registrar IDs, whereas drop-catch services such
as SnapNames or DropCatch have an order of magnitude fewer domain
creations but use almost two orders of magnitude more registrar IDs.

It is important to keep in mind that maintaining a large
number of registrar IDs is not at all necessary in order
to register large numbers of domains. Figure 10 plots all
clusters in terms of the number of domains registered in
February 2017, and the number of active registrar IDs of
the cluster in the same month. GoDaddy registered by far
the most domains, but used fewer than ten registrar IDs.
Drop-catch services such as SnapNames or DropCatch,
on the other hand, used large numbers of registrar IDs to
re-register relatively few domains. According to ICANN,
maintaining a registrar ID costs more than USD 4,000 in
yearly fees alone [25], which amounts to several million
dollars per year for the largest clusters. This suggests that
controlling a large number of registrar IDs is considered
a prerequisite to success in the competitive drop-catch
business—but it also suggests that drop-catch services
expect the generated revenue to justify the investment.
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Figure 11: CDF of the last observed bids for successfully acquired
drop-catch domains with multiple backorders on DropCatch (February
to June 2017). Most auctions remain close to the starting price, whereas
a few exceed one thousand US dollars. The curve for org is shifted to
the left because of a promotion ($ 15 starting price instead of $ 59).

4.4 Value and Use of Drop-Catch Domains

As of 2017, a regular com registration costs around $ 15
per year; a drop-catch re-registration can cost $ 60 to $ 80.
When multiple customers backorder the same domain,
the winner is usually determined in a three-day private
auction. DropCatch, however, conducts these auctions
in public. We extracted the current bid around 3.5 hours
before the end of each auction during five months in early
2017. Figure 11 shows that a majority of auctions re-
mained close to the starting price, whereas 3.9 % of com
auctions exceeded one thousand dollars. Overall, Drop-
Catch successfully re-registered an average of 2773 com

domains per day in early 2017 (Table 6). It appears that
only a small fraction of those domains received back-
orders by multiple interested customers, as the median
number of auctions was 21 per day for com, 5 for net, and
10 for org (the latter likely due to an ongoing promotion).
Our observation 3.5 hours before the end only allows us
to give an approximate lower bound on the daily auction
revenue with a median of $ 4108 for com, $ 382 for net
and $ 254 for org. Based on a starting price of $ 59, the
com drop-catch domains sold without an auction yielded
an estimated daily revenue of $ 162 k. In comparison, the
1252 registrar IDs controlled by DropCatch represent a
daily fixed cost of at least $ 13.7 k, or approximately $ 5
per sold com domain (ignoring other costs and domains).

Pre-release sales, in contrast, are carried out at compar-
atively minor cost to the registrars since they already man-
age the domain and can return it to the registry without
any fee if it is not sold during the grace period. The
pre-release lists often contain metadata about the current
auction state of each domain, such as the number of bid-
ders and the current price. Unfortunately, the data does

not refer to when the auction ended, but to when the list
was compiled by the service the morning or night before.
Since auctions tend to be busiest just before they conclude,
our data does not allow us to characterise the final prices
of pre-release sales. Instead, we use it to investigate how
early customers start bidding on expiring domains.

Surprisingly, at our latest observation point, nearly all
ultimately sold pre-release domains are still at the start-
ing price. For instance, only 8.9 % of Dynadot’s sold
com domains have an observed price higher than the start-
ing price. However, there are some outliers, such as a
GoDaddy com domain listed at $ 64,888. The relatively
low proportion of sold domains along with auctions that
are still inactive on the day before a domain is sold sug-
gest a lower competition among buyers of pre-release
domains compared to drop-catch domains.

From a buyer’s perspective, certain premium-priced
pre-release and drop-catch domains must appear more
attractive than regularly-priced domains that are freely
available for registration. The desirability of a name is
difficult to measure. Therefore, we focus on two metrics
that relate directly or indirectly to the number of visitors
that a domain is expected to receive due to its past history.

Drop-catch re-registrations appear to be correlated to
the traffic data reported by the pending delete lists, as
over 80 % of com domains with more than 100 k visit-
ors are re-registered on the deletion day as opposed to
50 % of domains with 10 k – 100 k visitors, or 5 % of do-
mains with fewer than 1 k reported visitors. We observe
a similar trend for the age of the domain, with those that
had been registered for a longer time period being more
likely to be re-registered immediately after deletion. This
phenomenon is in line with our prior findings [29].

Similarly to drop-catch domains, pre-release domains
that are reported to receive more traffic or that have
already been registered for longer time spans are more
likely to be sold than other domains. For instance, Dyn-
adot and GoDaddy com domains that were sold had a
median registration length of four years as opposed to
one year for Dynadot’s com domains that were not sold
as pre-release (GoDaddy: 2 years). A long registration
period however does not guarantee that a domain will be
sold, as we observed GoDaddy domains over 20 years old
in both the sold and not sold categories.

To provide a first cursory overview of what re-
registered websites are being used for, we conduct a
small-scale manual classification of websites. We inspect
a random sample of 50 drop-catch domains six months
after the re-registration, and find that 23 are parked and
display a “for sale” message or textual advertising; nine
sites contain advertising for online casinos, one is ma-
licious, two are empty, and eight cannot not be loaded
due to an error. Even though just a superficial analysis,
it appears that only a small minority of the re-registered
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sites contain any useful content, while a majority attempt
to monetise incoming traffic in a rather generic way. We
are planning to further explore this topic in future work,
and focus this paper on how domains are re-registered.

4.5 Comparison of Drop-Catch Services

To better compare the relative performance of drop-catch
services, we rank the most active clusters of registrar
IDs according to com re-registrations on the deletion day
(Table 6). In 2016, DropCatch dominated the ranking
with more than twice as many drop-catch re-registrations
as SnapNames, the cluster ranked second.

Due to a lack of visibility into registration times, we
cannot distinguish between domains re-registered during
the drop and those that were still re-registered on the de-
letion day, but after the drop. GoDaddy, for instance,
is ranked fourth in deletion day re-registrations in 2016.
While GoDaddy does accept domain backorders, it is un-
likely that all 11 k deletion-day re-registrations occurred
during the competitive drop, given that the GoDaddy
cluster consists of only seven registrar IDs. It is more
likely that these domains were re-registered after the
drop, and their relatively large number may be due to
GoDaddy’s position as the most popular domain registrar
overall. Similarly, in 2017, the Alibaba cluster with only
two registrar IDs is ranked first, before the DropCatch
cluster with 1252 registrar IDs. Indeed, certain domain
name speculators appear to leverage reseller APIs to re-
register domains on the deletion day (e.g., using desktop
software [41]). While the cost is comparable to regular
domain registrations, such “do-it-yourself” drop-catching
is expected to succeed only for relatively non-competitive
domains not targeted by the large drop-catch services.

The relative ranking of the known drop-catch services
DropCatch, SnapNames and Pheenix remains the same
in our 2016 and 2017 data. An interesting observation
is that Pheenix added 300 registrar IDs in late 2016 [39]
and controlled more registrar IDs than SnapNames during
our 2017 measurement. However, Pheenix is ranked only
eleventh with 301 re-registrations, as opposed to Snap-
Names with 7623 on rank three. Even before the increase,
Pheenix re-registered fewer domains per registrar ID than
DropCatch or SnapNames, suggesting that Pheenix may
be less efficient in using their registrar IDs.

Despite the widely supported recommendation that cus-
tomers place backorders with all services [7, 12, 31], we
do not know how many customers follow this advice, thus
our findings should not be seen as a comparison of how
successful drop-catch services are in fulfilling their cus-
tomers’ orders. Furthermore, our clustering cannot group
registrar IDs that collaborate during the drop without ex-
hibiting any clear administrative relationship. For some
of the clusters, we could not find any public information

2016 (4 weeks) 2017 (1 week)

1 DropCatch.com 87437 Aliyun.com 20208
2 SnapNames.com 40552 DropCatch.com 19411
3 XZ.com 20104 SnapNames.com 7623
4 West.cn 8854 LogicBoxes.com 2201
5 GoDaddy.com 7389 Onamae.com 1069
6 Onamae.com 6573 XZ.com 875
7 DNS.cn 4935 GoDaddy.com 875
8 BizCN.com 4553 West.cn 808
9 Oray.com 4031 BizCN.com 432

10 CNDNS.com 3200 OpenSRS.com 384

Table 6: The Top 10 clusters according to deletion-day re-registrations
of com in 2016 and 2017 (MAIN and TASTING data sets, respectively).
There is some variation between the years, and the deletion-day rankings
are very different from general domain name registrations (not shown).

regarding a drop-catch service that might be operated by
the same corporate entity. At the same time, some well-
known drop-catch services such as Pool are not among
the most highly ranked clusters, which leads us to believe
that we cannot currently characterise their performance
due to the limitations inherent in our methodology.

4.6 Domain Tasting

ICANN considers domain tasting a “profit-making abuse
of the domain name system” [26] and discourages it by
allowing each registrar only a limited number of free do-
main deletions during the initial five-day add grace period
after domain creation. Traditionally, domain tasting has
been understood as a way for the domain registrant to
test how much traffic the domain receives before deciding
whether to keep or return it (e.g., [6]). However, we show
that domain tasting can also be used for a similar purpose
as the auto-renew grace period in the case of pre-release
domain sales. That is, a service can use the add grace
period to attempt selling a domain to a customer and
return it to the registry for free if no sale is made.

The restrictions imposed by ICANN affect only regis-
trars with a high ratio of domain deletions per registrar ID.
Drop-catch services, however, already need to maintain a
high number of registrar IDs in order to compete in the
drop. In absolute terms, they could delete a high num-
ber of domains for free while staying below ICANN’s
thresholds on a per-registrar ID basis. We designed the
TASTING experiment to specifically measure domain tast-
ing among domains re-registered on the deletion day of
the prior registration. We find that domain tasting is re-
latively uncommon. Only about 2.1 % of com domains
re-registered on the deletion date (and much fewer in the
other zones) are deleted within the first five days. How-
ever, we find that SnapNames is responsible for over
98 % of all domain tasting among drop-catch domains.
Upon closer inspection, we find that SnapNames’ web-
site features a file of domain names “in auction,” which
appears to contain only domain names that were recently
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re-registered during the drop, and that all have an active
website with a parking page during the three-day duration
of the auction. When checking the registration status of
these domains a week later, we find that 41.2 % of the
domains have been deleted. We suspect that SnapNames
proactively registers domain names during the drop, even
without having received a specific backorder from a cus-
tomer, and deletes these names if they do not find a buyer.

4.7 Summary
• Domain ownership can change fast, and often: 10 %

of com, and 5 % of org domains are re-registered
on the same day as the old registration is deleted.
Domain-based trust mechanisms should anticipate
ownership changes as a common, expected event.

• Pre-release sales allow ownership changes without
implication of the prior owner and maintain the old
registration: Expired domains as old as 20 years
are available with comparatively little competition.
Anti-abuse tools may need improved detection of
ownership changes that are not re-registrations.

• Drop-catch services have a significant impact on
the domain name registration system: The Top 3
account for 75 % of all accredited registrars, and
drop-catch is responsible for over 80 % of all domain
creation attempts, yet results in no more than 9.5 %
of successful com domain registrations. Drop-catch
consumes a disproportionate share of resources.

• Drop-catch re-registrations are highly competitive:
Half of org’s same-day re-registrations occur within
30 s of the drop (biz: within 5 min of the drop), and
0-day re-registrations have the highest diversity and
most evenly distributed market share of registrar IDs.
High demand for certain expired domains and the
willingness to pay premium prices sustain an entire
industry dedicated to “recycling” old domains.

• Only few drop-catch domains are put to “good” use:
Most seem to contain nothing but advertisements and
parking pages to profit from residual traffic. Many
if not most drop-catch re-registrations may be of
limited value to the Internet community as a whole.

5 Discussion & Conclusions

Our analysis has shown that there is significant demand
for expired domain names (e.g., over 10 % of all com
domains re-registered immediately on the day that they
were deleted), and that there is a highly competitive envir-
onment of drop-catch services that race to be the first to
re-register a domain in the very instant that it is deleted
(e.g., over half of org re-registrations on the deletion day
take place within a 30 s time frame). In the current system,

the drop-catch service with most technical resources and
the best insight into details of the drop is going to be most
successful in re-registering deleted domains for their cus-
tomers. However, the uncertainty of this process and lack
of transparency as to which service is most successful res-
ult in the common recommendation that customers place
orders with all services [7, 12, 31]. The re-registration
race is open to all registrars, and manual re-registration
is at least a theoretical possibility, but it is quite wasteful
of resources as drop-catch services cause a daily flood of
requests as a byproduct of determining the next owner.

Pre-release domain sales typically take place as auc-
tions, thus they are efficient from a technical point of view.
However, there are administrative concerns, as pre-release
sales do not allow buyers to freely choose their registrar,
prevent the former domain owner from using the 30-day
redemption period to recover the expired domain, and
might incentivise registrars to make late domain renewals
more difficult (or expensive) for their customers because
of the potentially more lucrative pre-release sales.

From a security perspective, domain ownership
changes are problematic because of their potential to
break domain-based trust mechanisms [44], abuse resid-
ual trust [33], and more generally profit from residual
traffic in various ways that are not necessarily illegal,
but often undesirable. While banning domain ownership
changes altogether may not be practicable, we argue that
the process should be made more transparent. State-of-
the-art anti-abuse systems may find it challenging to de-
tect domain ownership changes such as pre-release sales
because they do not result in a new domain creation. As
a policy-based approach, registrars could be required to
maintain a public log of ownership changes, similar to
Certificate Transparency [30], so that security mechan-
isms can “reset” trust in a reliable way: Whitelists can
drop domains after certain changes of ownership, web
browsers can purge cached website permissions, and web-
sites can remove links pointing to a deleted domain.

What exactly drives that demand for expired domain
names, whether it is intended “productive” use, abuse [22,
33], monetisation through advertising [48], or speculation
with the goal of reselling the domain name, is still an open
question, and an interesting direction for future work.
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Abstract

Counter-cryptanalysis, the concept of using cryptana-
lytic techniques to detect cryptanalytic attacks, was in-
troduced at CRYPTO 2013 [23] with a hash collision
detection algorithm. That is, an algorithm that detects
whether a given single message is part of a colliding mes-
sage pair constructed using a cryptanalytic collision at-
tack on MD5 or SHA-1.

Unfortunately, the original collision detection algo-
rithm is not a low-cost solution as it costs 15 to 224 times
more than a single hash computation. In this paper we
present a significant performance improvement for colli-
sion detection based on the new concept of unavoidable
conditions. Unavoidable conditions are conditions that
are necessary for all feasible attacks in a certain attack
class. As such they can be used to quickly dismiss par-
ticular attack classes that may have been used in the con-
struction of the message. To determine an unavoidable
condition one must rule out any feasible variant attack
where this condition might not be necessary, otherwise
adversaries aware of counter-cryptanalysis could easily
bypass this improved collision detection with a carefully
chosen variant attack. Based on a conjecture solidly sup-
ported by the current state of the art, we show how we
can determine such unavoidable conditions for SHA-1.

We have implemented the improved SHA-1 collision
detection using such unavoidable conditions and which is
more than 20 times faster than without our unavoidable
condition improvements. We have measured that overall
our implemented SHA-1 with collision detection is only
a factor 1.60 slower, on average, than SHA-1. With the
demonstration of a SHA-1 collision, the algorithm pre-
sented here has been deployed by Git, GitHub, Google
Drive, Gmail, Microsoft OneDrive and others, showing
the effectiveness of this technique.

1 Introduction

Cryptographic hash functions, computing a small fixed-
size hash value for a given message of arbitrary length,
are a crucial cryptographic primitive that are used to se-
cure countless systems and applications. A key crypto-
graphic requirement is that it should be computationally
infeasible to find collisions: two distinct messages with
the same hash value. Industry’s previous de facto choices
MD5 and SHA-1 are both based on the Merkle-Damgård
construction [18, 6] that iterates a compression function
that updates a fixed-size internal state called the chaining
value (CV) with fixed-size pieces of the input message.

In 2004, MD5 was completely broken and real col-
lisions were presented by Wang et al.[33, 35]. Their
collision attack consisted of two so-called near-collision
attacks on MD5’s compression function where the first
introduces a difference in the chaining value and the
second eliminates this difference again. Hence, these
so-called identical-prefix collisions had a limitation that
the two colliding messages need to be identical before
and after these near-collision blocks. In 2007 Stevens
et al.[27] introduced chosen-prefix collisions for MD5
that allowed arbitrary different prefixes. Irrefutable proof
that hash function collisions indeed form a realistic and
significant threat to Internet security was presented at
CRYPTO 2009 by Stevens et al. [29] by demonstrating a
certificate authority that could issue two Certs with dif-
ferent keys that have the same hash value.

More proof of the threat posed by collision attacks ap-
peared in 2012 when it became clear that not only aca-
demic efforts have been spent on breaking hash func-
tions. Nation-state actors [20, 14, 13] have been linked
to the highly advanced espionage malware, so named
Flame, that was found targeting the Middle-East in May
2012. As it turned out, it used a forged signature to craft
malicious windows updates.

Despite the common knowledge that MD5 is insecure
for digital signatures effectively since 2004, even in 2017
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there are still Industry issues in deprecating MD5 for sig-
natures [10]. SHA-1, designed by NSA and standardized
by NIST [19], is also weak and was theoretically broken
in 2005 with a collision attack with an estimated com-
plexity of 269 SHA-1 calls presented by Wang et al.[34].
With real collisions for full SHA-1 out of reach at that
time, there were efforts at producing collisions for re-
duced versions of SHA-1: 64 steps [3] (with a cost of 235

SHA-1 calls), 70 steps [2] (cost 244 SHA-1), 73 steps [8]
(cost 250.7 SHA-1), the last being 75 steps [9] (cost 257.7

SHA-1) in 2011. The cost of collisions for SHA-1 was
improved to 261 SHA-1 calls at EUROCRYPT 2013 [24],
together with a near-collision attack with cost 257.5 and
a chosen-prefix collision attack with cost 277.1 SHA-1
calls, which remains the current state-of-the-art. Other
recent efforts focused on finding freestart collisions for
SHA-1, i.e., collisions for its compression function, with
a 76-step freestart collision [12] (cost 250 SHA-1) and
more recently a freestart collision for full SHA-1 [26].
Despite various efforts, an actual collision for SHA-1 re-
mained out of reach for 11 years, but this year a SHA-1
collision was finally announced by Stevens et al.[25].
This shows that SHA-1 collision attacks have finally be-
come practical. Furthermore, they provided several ex-
amples of PDF file pairs that have the same SHA-1 hash,
yet show distinct visual contents.

At CRYPTO 2013 the novel concept counter-
cryptanalysis of using cryptanalytic techniques to detect
cryptanalytic attacks was introduced in the form of a hash
collision detection algorithm [23]. This hash collision
detection algorithm is able to expose cryptanalytic col-
lision attacks given only one message from a colliding
message pair. It’s utility was immediately proven by us-
ing it to uncover the yet unknown chosen-prefix collision
attack in Flame’s forged signature, regardless of the fact
that its sibling colliding file remains unknown. More-
over, it even enabled forensic analysis by recovering the
internal differential paths, which were used in a recon-
struction of the attack procedure and complexity [7].

In principle the collision attack detection provides
strong guarantees: it guarantees detection of any variant
collision attack in each tested attack class, whereas the
chance of false positives is as negligible as the chance of
finding a random second preimage. However, so far there
is a significant cost: to detect collision attacks against
SHA-1 (respectively MD5) costs the equivalent of hash-
ing the message 15 (respectively 224) times, detecting
the 15 (respectively 224) best attack classes.

1.1 Motivation

The main motivation of this paper is to provide an ef-
fective manner to reduce the potential harm of SHA-1
collision attacks for the near future as discussed below.

It is not the aim of SHA-1 collision detection to obviate
the need to move to newer hash functions with longer di-
gests. Rather, SHA-1 collision detection is meant to be a
mitigation used for deployed systems that are unable to
migrate to a new hash function. In these cases, an imple-
mentation of SHA-1 with collision detection may be used
as a drop in replacement. Such an update, that requires
only changing the module responsible for hashing, is sig-
nificantly easier than redeploying an entire distributed
system, including revising protocols that currently rely
on SHA-1. Collision detection for SHA-1 attacks is a
thorough stop-gap solution that will provide security to
systems and software that may not be able to migrate to
newer hash functions before SHA-1 collisions become a
viable security threat. The example of the well-known
version control system Git that relies very strongly on
SHA-1 for integrity and even security is very amenable
to such a solution. In fact at the time of writing, Git and
GitHub now use the improved SHA-1 collision detection
of this paper by default. Our improved implementation
is also being used by Google Drive, Gmail and Microsoft
OneDrive.

Based on the latest results for the complexity of find-
ing a SHA-1 collision, the projected cost of such an at-
tack ranges from US$ 75 K and US$ 120 K by renting
low-cost computing resources on Amazon EC2 [22, 26],
which is significantly lower than Schneier’s 2012 es-
timates. These projections resulted in the withdrawal
of CABForum Ballot 152 to extend issuance of SHA-1
based HTTPS certificates, and in the deprecation of
SHA-1 for digital signatures in the IETF’s TLS proto-
col specification version 1.3. The recent SHA-1 collision
paper further confirms these costs [25].

Unfortunately CABForum restrictions on the use of
SHA-1 do not apply on Certification Authority certifi-
cates currently outside their CA program. E.g., it ex-
cludes retracted CA certificates that are still supported
by older systems (and CA certificates have indeed been
retracted to circumvent CABForum regulations and con-
tinue to issue new SHA-1 certificates 1 to serve to these
older systems), and certificates for other TLS applica-
tions including up to 10% of credit card payment sys-
tems [31]. It thus remains in widespread use across the
software industry for, e.g., digital signatures on software,
documents, and many other applications, perhaps most
notably in the widely used Git versioning system.

It is very likely that SHA-1 is heading towards a simi-
lar fate as MD5, risking various security issues for many
years to come. Certainly, the spectacular end of life of
MD5, including a high profile cyberattack on the nation
state level, provided advanced warning of the end of life
of SHA-1. Indeed, the success of cryptanalytic attacks of

1E.g., SHA-1 certificates are still being sold by CloudFlare at the
time of writing: www.cloudflare.com/ssl/dedicated-certificates/.

882    26th USENIX Security Symposium USENIX Association

https://www.cloudflare.com/ssl/dedicated-certificates/


the Merkle-Damgard construction motivated the SHA-3
competition. Not to mention, inspired widespread ef-
forts to migrate deployed software to the longer length
digest hash functions of SHA-2 family. So, one may
challenge the utility of collision detection for the SHA-1
function, which has been known to have an impending
break for some time. However, the Flame attacks show
that long after newer versions of software have been de-
ployed, older versions that rely on older cryptography
may still be in use and provide a vulnerability for attack-
ers. Even with this cautionary tale, as noted above, vari-
ous software and services still issue SHA-1 certificates or
use SHA-1. So even though SHA-1 collisions have been
expected for some time, it has not been sufficient to moti-
vate a complete migration to newer hash functions. Even
if systems are moved from using SHA-1, verification of
signatures of SHA-1 digests may remain necessary for
existing signatures, such as deployed binaries or not yet
expired certificates.

An example is GPG/PGP email and attachment sig-
natures where SHA-1-based signatures remain common.
E.g., Stevens et al.’s colliding PDF document technique
would allow an attacker to have someone sign and email
a carefully crafted benign PDF document with GPG/PGP
using a SHA-1-based signature. That signature would
then also be valid for a malicious PDF document that
was crafted together with the benign PDF document to
make them collide. Also, as previously mentioned, an-
other example of widely a deployed system that relies on
SHA-1 in a fundamental way is Git, which uses SHA-1
as an identifier for commits. It is infeasible that all de-
ployed Git repositories will be migrated off of SHA-1,
but since SHA-1 collisions are now feasible Git might be
at risk. As one potentially scenario, consider an attacker
that has committed one file of a colliding pair2 to a Git
repository under his control, in which case he could then
selectively deliver either contents to targeted users, with-
out the users noticing by looking at Git hashes or verify-
ing signatures on the repository. Although, Git now uses
this SHA-1 collision detection algorithm, so this risk has
been mitigated for updated clients.

1.2 Collision detection
Collision attack detection exploits two key facts-of-life
for feasible cryptanalytic collision attacks on MD5 and
SHA-1. The first is a requirement for a high-probability
differential path, which necessarily includes a section
with no differences (or MSB-differences for MD5) to
achieve the high-probability. The second is the direct
consequence that there only few message block differ-

2As Git adds a header before computing the SHA-1 hash of an ob-
ject, this header should be taken into account while constructing the
SHA-1 collision.

ences that admit such a high-probability differential path.
Extensive studies for message block differences that al-
low high-probability differential paths for both MD5 and
SHA-1 strongly confirm these properties.

Collision detection detects near-collision attacks
against MD5’s or SHA-1’s compression function for
a given message by ‘jumping’ from the current com-
pression function evaluation CVout =Compress(CVin,B)
to a presumed related compression function evaluation
CV ′out = Compress(CV ′in,B

′). If B (and B′) were con-
structed using a collision attack that uses message block
difference δB and trivial difference δWSi at step i then
the presumed related compression function evaluation
can be fully reconstructed. Namely, those differences
directly imply values for message block B′ = B + δB
and state WS′i = WSi + δWSi at step i, which are suffi-
cient to compute the related input chaining value CV ′in
and thereby also the related output chaining value CV ′out .
This reconstruction from the middle of the related com-
pression function evaluation is called a recompression. A
collision attack necessarily requires a final near-collision
attack with CV ′out = CVout , which can be detected in
this manner. If no collision attack was used to con-
struct B then finding CV ′out = CVout means that we have
found a second pre-image for the compression function
by chance. Therefore the chance of false positives is as
negligible as the chance of finding a random second pre-
image.

For MD5 and SHA-1 one thus distinguishes many at-
tack classes that each are described by the message block
difference δB, step i and intermediate state difference
δWSi. In the case of SHA-1 each attack class depends en-
tirely on the so-called disturbance vector (DV). In either
case, for every block of the given message, each attack
class requires another compression function evaluation.
With the 223 known attack classes for MD5, collision
detection costs a factor 224 more than MD5. SHA-1 col-
lision detection costs a factor 15 more than SHA-1 given
the original proposed list of 14 most threatening distur-
bance vectors.

2 Our contributions

In this paper we present a significant run-time perfor-
mance improvement to collision detection. This im-
provement is based on a new concept in cryptanalysis,
namely unavoidable conditions, which are conditions
that are necessary for all feasible attacks within a cer-
tain class of attacks. To determine an unavoidable condi-
tion one must rule out any feasible variant attack where
this condition might not be necessary. Otherwise, adver-
saries aware of counter-cryptanalysis could easily bypass
this improved collision detection with a carefully chosen
variant attack.
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We provide a formal framework of unavoidable con-
ditions for collision attacks on MD5-like compression
functions that can be used to show that indeed conditions
are unavoidable, and we show how they can be used to
speed up collision detection.

Furthermore, we present a conjecture that SHA-1 col-
lision attacks based on a disturbance vector may not de-
viate from the prescribed local collisions for steps 35 up
to 65 to remain feasible. As the current state of art on
SHA-1 collision attacks is entirely based on disturbance
vectors for very compelling reasons, and published colli-
sion attacks only deviate from local collisions in the first
20 steps or the last 5 steps (75 up to 79), the current state
of art solidly supports this conjecture with a safe large
margin. Based on this conjecture, we show how we can
efficiently determine such unavoidable conditions for the
known cryptanalytic attack classes on SHA-1. Moreover,
we show how we can exploit a significant overlap of un-
avoidable conditions between DVs that allows a more ef-
ficient checking of unavoidable bit conditions for many
disturbance vectors simultaneously.

Collision detection uses recompressions, i.e., evalua-
tions of the compression function starting from an inter-
mediate state to uniquely determine the input and output
chaining value for a given message block. Collision de-
tection requires a recompression for each tested DV for
each message block of a given message. Unavoidable bit
conditions allow a significant improvement to collision
detection by very quickly checking the unavoidable bit
conditions per DV and only performing a recompression
when all unavoidable bit conditions for that DV are sat-
isfied.

We have implemented the improved SHA-1 collision
detection using unavoidable conditions which checks 32
DVs (twice as many as previous work). The improved
collision detection is 20 to 30 times faster than with-
out our unavoidable condition improvements. We have
measured that overall our improved SHA-1 collision de-
tection is only a factor 1.60 slower on average than
SHA-1. The correctness of our implementation follows
from easily verified attack-class independent code, au-
tomatically generated tables for each attack class from
a very short identification, and testing its correctness
against the known SHA-1 collision.

After the demonstration of a SHA-1 collision, the open
source implementation of our algorithms was included
in Git. As part of incorporating our implementation, it
was further optimized to meet Git’s performance require-
ments. These performance improvements were small in
comparison with the detection algorithm as it stood be-
fore our algorithmic optimizations, less than doubling
the speed. However, these improvements made the dif-
ference between the algorithm being adopted in Git or
not [32]. This shows that the more than 20 times im-

provement that unavoidable conditions introduce, in fact,
make this algorithm usable in practice.

The remainder of our paper is organized as follows. In
Sect. 3 we treat the formal concept of unavoidable con-
ditions and their practical applications. How to deter-
mine them for known attack classes against SHA-1 and
to maximize the overlap between the sets of unavoid-
able conditions between DVs is covered in Sect. 4. In
Sect. 5 we disclose more specific details about our open-
source implementation, in particular with regards how to
efficiently check unavoidable bit conditions. We discuss
performance aspects in Sect. 6.

3 Unavoidable conditions

3.1 Model

Necessary and/or sufficient bit conditions are a very use-
ful tool for hash function cryptanalysis as laid out by
Wang et al.[35]. In effect they reduce the problem of
finding a message block pair that conforms to a differ-
ential path to the problem of finding a message block
for which the bit conditions are satisfied. As well as
reducing cost from computations over two compression
function evaluations to only one compression function
evaluation, such conditions allows more effective use of
early stop techniques and advanced message modifica-
tion techniques.

We define unavoidable conditions as conditions that
are necessary for all feasible attacks in a certain attack
class. While necessary and sufficient conditions for an
attack can be easily and manually derived, determining
unavoidable conditions is significantly harder as it re-
quires the analysis of all feasible attacks in a certain
attack class. We more formally define attack classes
and such unavoidable conditions in a framework that we
use to actually find unavoidable conditions for SHA-1
by showing these are necessary for all feasible attacks
within an attack class.

Our attack class definition in Thm. 1 below is rather
general but captures the functionality of many colli-
sion attacks variants (collision attack, pseudo-collision
attack, near-collision attack) against compression func-
tions: i.e., algorithms that output a pair of compression
function inputs. Our general definition does not describe
what the input or output differences should look like or,
e.g., whether it requires specific values for CV1 and CV2.
Instead such details are abstracted away as properties of
specific attack classes.

Definition 1 (Compression function attack class). For
N,M ∈ N+, let H : {0,1}N × {0,1}M → {0,1}N be a
compression function, then a class of attacks C against
H is a set of (randomized) algorithms A that produce a
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tuple (CV1,B1,CV2,B2) ∈ {0,1}N ×{0,1}M×{0,1}N ×
{0,1}M as output.

We model an unavoidable condition for an attack class
as a predicate over pairs (CV,B) of a chaining value and
message block. Such a predicate is called an unavoidable
condition if and only if it holds for all possible (CV1,B1)
and (CV2,B2) that may be output by any attack in the
attack class.

Definition 2 (Unavoidable condition). For N,M ∈ N+,
let H : {0,1}N × {0,1}M → {0,1}N be a compression
function and C be an attack class against H. Let
u : {0,1}N × {0,1}M → { f alse, true} be a non-trivial
predicate over compression function inputs. Then u is
called an unavoidable condition for attack class C if
and only if for all A ∈ C and for all possible outputs
(CV1,B1,CV2,B2) ← A it holds that u(CV1,B1) = true
and u(CV2,B2) = true.

3.2 Speeding up collision detection
Let S be a set of attack classes. For each attack class C ∈
S let sC = (δB, i,δWSi) be the associated message block
difference, step i and difference for the intermediate state
after step i as given in [23]. Also, let UC be a set of
unavoidable conditions for each C ∈ S.

For each compression function evaluation during the
hashing of a given message, collision detection will per-
form a recompression for every attack class C ∈ S. Such
a recompression is rather costly as it results in that the
overall cost of collision detection is a factor |S| more
than only computing the hash.

If for compression function input (CV,B) and for a
given attack class C at least one unavoidable condition
u ∈ UC is not satisfied then by definition (CV,B) cannot
be output by any attack A ∈ C (i.e., (CV1,B1) = (CV,B)
or (CV2,B2)= (CV,B) as in Thm. 1). As an attack from C
has been ruled out, a recompression for C is unnecessary
and can be skipped. Alg. 1 is the improved collision de-
tection that uses unavoidable conditions as preconditions
before a performing a recompression. If the unavoidable
conditions can be evaluated very quickly in comparison
to the recompression, e.g., comparing whether two bits
are equal/unequal in the internal state of the compres-
sion function, then a significant speed improvement can
be achieved.

4 Application to SHA-1

4.1 Notation
SHA-1 is defined using 32-bit words X = (xi)

31
i=0 ∈

{0,1}32 that are identified with elements X = ∑
31
i=0 xi2i

of Z/232Z (for addition and subtraction). A binary

signed digit representation (BSDR) for X ∈ Z/232Z
is a sequence Z = (zi)

31
i=0 ∈ {−1,0,1}32 for which

X = ∑
31
i=0 zi2i. We use the following notation: Z[i] =

zi, RL(Z,n) and RR(Z,n) (cyclic left and right rota-
tion), w(Z) (Hamming weight), σ(Z) = X = ∑

31
i=0 ki2i ∈

Z/232Z.
In collision attacks we consider two related messages

M and M′. For any variable X related to the SHA-1
calculation of M, we use X ′ to denote the correspond-
ing variable for M′. Furthermore, for such a ‘matched’
variable X ∈ Z/232Z we define δX = X ′−X and ∆X =
(X ′[i]−X [i])31

i=0.

4.2 SHA-1’s compression function

The input for SHA-1’s Compress consists of an interme-
diate hash value CVin = (a,b,c,d,e) of five 32-bit words
and a 512-bit message block B. The 512-bit message
block B is partitioned into 16 consecutive 32-bit strings
which are interpreted as 32-bit words W0, W1, . . . ,W15
(using big-endian), and expanded to W0, . . . ,W79 as fol-
lows:

Wt = RL(Wt−3⊕Wt−8⊕Wt−14⊕Wt−16,1),
for 16≤ t < 80.

(1)

We describe SHA-1’s compression function Compress in
an ‘unrolled’ version. For each step t = 0, . . . ,79 it uses
a working state consisting of five 32-bit words Qt , Qt−1,
Qt−2, Qt−3 and Qt−4 and calculates a new state word
Qt+1. The working state is initialized before the first step
as:

(Q0,Q−1,Q−2,Q−3,Q−4)

= (a,b,RR(c,30),RR(d,30),RR(e,30)).

For t = 0,1, . . . ,79 in succession, Qt+1 is calculated as
follows:

Ft = ft(Qt−1,RL(Qt−2,30),RL(Qt−3,30)),
Qt+1 = Ft +ACt +Wt +RL(Qt ,5)+RL(Qt−4,30).

(2)

These 80 steps are grouped in 4 rounds of 20 steps each.
Here, ACt is the constant 5a82799916, 6ed9eba116,
8f1bbcdc16 or ca62c1d616 for the 1st, 2nd, 3rd and 4th
round, respectively. The non-linear function ft(X ,Y,Z)
is defined as (X ∧Y )⊕ (X ∧Z), X ⊕Y ⊕Z, (X ∧Y )∨
(Z ∧ (X ∨Y )) or X ⊕Y ⊕Z for the 1st, 2nd, 3rd and 4th
round, respectively. Finally, the output intermediate hash
value CVout is determined as:

CVout = (a+Q80, b+Q79, c+RL(Q78,30),
d +RL(Q77,30), e+RL(Q76,30)).
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Algorithm 1: Improved collision detection

Let H : {0,1}N×{0,1}M →{0,1}N , IV ∈ {0,1}N be an MD5-like compression function consisting of I
reversible steps and a Davies-Meyer feed-forward.

Let S be a set of attack classes s = (δB, i,δWSi) and Us a set of unavoidable conditions for each s ∈ S .
The algorithm below returns True when a near-collision attack was detected and False otherwise.
Given padded message P = P1|| . . . ||Pn consisting of n blocks Pj ∈ {0,1}M do:

1. Let CV0 = IV and do the following for j = 1, . . . ,n:

(a) Evaluate CVj = H(CVj−1,Pj) and store intermediate working states WSi after each step i = 0, . . . , I−1 of
H.

(b) For each s = (δB, i,δWSi) ∈ S do:

i. If u(CVj−1,Pj) = f alse for some u ∈ Us then skip steps ii.–vi.
ii. Determine P′j = Pj +δB, WS′i =WSi +δWSi

iii. Compute steps i, i−1, . . . ,0 of H backwards to determine CV ′j−1

iv. Compute steps i+1, . . . , I−1 forwards to determine WS′I−1
v. Determine CV ′j from CV ′j−1 and WS′I−1 (Davies-Meyer feed-forward)

vi. If CV ′j =CVj return True

2. Return False

4.3 Local collisions and the disturbance
vector

In 1998, Chabaud and Joux [4] constructed a collision at-
tack on SHA-0, SHA-1’s withdrawn predecessor, based
on local collisions. A local collision over 6 steps for
SHA-0 and SHA-1 consists of a disturbance δQt+1 = 2b

created in some step t by a message word bit difference
δWt = 2b. This disturbance is corrected over the next five
steps, so that after those five steps no differences occur
in the five working state words. They were able to inter-
leave many of these local collisions such that the mes-
sage word differences (∆Wt)

79
t=0 conform to the message

expansion (cf. Eq. 1). For more convenient analysis, they
consider the disturbance vector which is a non-zero vec-
tor (DVt)

79
t=0 conform to the message expansion where

every ‘1’-bit DVt [b] marks the start of a local collision
based on the disturbance δWt [b] = ±1. We denote by
(DWt)

79
t=0 the message word bit differences without sign

(i.e., DWt =W ′t ⊕Wt ) for a disturbance vector (DVt)
79
t=0:

DWt :=
⊕

(i,r)∈R
RL(DVt−i,r),

where

R= {(0,0),(1,5),(2,0),(3,30),(4,30),(5,30)}.

Note that for each step one uses differences δWt instead
of DWt . We say that a message word difference δWt is
compatible with DWt if there are coefficients c0, . . . ,c31 ∈
{−1,1} such that δWt = ∑

31
j=0 c j ·DWt [ j]. The setWt of

all compatible message word differences given DWt is
defined as:

Wt :=
{

σ(X)
∣∣∣ BSDR X ,

X [i]∈{−DWt [i],+DWt [i]}, i∈{0,...,31}

}
(3)

As for bit position 31 it holds that −231 ≡ 231 mod 232,
only the signing of bits 0, . . . ,30 affect the resulting δWt .
In fact for every δWt ∈ Wt it holds that the coefficient
ci ∈ {−1,1} for every bit position i ∈ {0, . . . ,30} with
DWt [i] = 1 is uniquely determined.

4.4 Disturbance vector classes
Manuel [15] has classified previously found interesting
disturbance vectors into two classes. A disturbance vec-
tor from the first class denoted by I(K,b) is defined by
DVK = . . . = DVK+14 = 0 and DVK+15 = 2b. Similarly,
a disturbance vector from the second class denoted by
II(K,b) is defined by DVK+1 = DVK+3 = RL(231,b) and
DVK+15 = 2b and DVK+i = 0 for i ∈ {0,2,4,5, . . . ,14}.
For both classes, the remaining DV0, . . . ,DVK−1 and
DVK+16, . . . ,DV79 are determined through the (reverse)
message expansion relation (Eq. 1).

4.5 Unavoidable conditions
The literature on collision attacks against SHA-1 (e.g.,
see [34, 21, 16, 11, 3, 17, 2, 37, 5, 36, 8, 15, 24]) con-
sists entirely of attacks based on combinations of local
collisions as prescribed by a disturbance vector. This is a
common property and for a very compelling reason: it is
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the only known way to construct differential paths with
message word differences compatible with the message
expansion relation. Even then it seems that out of 2512

possible disturbance vectors there are only a few tens of
disturbance vectors suitable for feasible cryptanalytic at-
tacks.

In the first number of steps and the last few steps at-
tacks can deviate from the DV-prescribed local collisions
without a significant impact in the overall attack com-
plexity. On the contrary, it is an important technique
to use a specially crafted so-called ’non-linear’ differ-
ential path for the first number of steps to allow arbi-
trary chaining value differences to be used in combina-
tion with the disturbance vector as introduced by Wang
et al.[34]. Also, for the last few steps there may be higher
probability differential steps as shown in [24]. How-
ever, deviating from DV-prescribed local collisions to-
wards the middle becomes very costly very quickly as
the resulting avalanche of perturbations directly leads to
significant increases of the attack complexity. Hence, for
the steps in the middle it remains unavoidable to use the
DV-prescribed local collisions, which has led us to the
following conjecture:

Conjecture 3. Over steps [35,65) it is unavoidable to
use the DV-prescribed local collisions: deviating from
the DV over these steps will result in an avalanche that
will significantly increase the attack complexity.

As published collision attacks only deviate from local
collisions in the first 20 steps or the last 5 steps (75 up
to 79) for reasons already mentioned, the current state of
art solidly supports our conjecture with a safe margin. In
fact we have considered taking a large range of steps in
Thm. 3, however the increase in number of unavoidable
conditions only results in a slight performance increase.
In the end we opted for a larger safety margin instead of
a slight performance increase.

Based on our Thm. 3, we propose to protect against
attack classes based on disturbance vectors that use the
prescribed local collisions over steps [35,65). This re-
striction allows us to determine unavoidable conditions
over all non-zero probability differential paths over steps
35 up to 65 that adhere to the disturbance vector. We pro-
pose to use unavoidable message bit relations that control
the signs of bits in the ∆Wt . These message bit relations
are used in attacks to ensure that, e.g., adjacent active bits
collapse to a single bit difference, or that two bits have
opposing sign to cancel differences (the perturbation of
each local collision). Looking at SHA-1 attacks, these
message bit relations are all of the form Wi[a]⊕Wj[b] = c
or Wi[a] = c, hence this specific form of unavoidable con-
ditions can be checked very efficiently. But as noted be-
fore, one cannot simply use the necessary conditions of
one attack, it is important to prove which of those mes-

sage bit relations are necessary for all feasible attacks.
We will refer to such unavoidable message bit relations
as unavoidable bit conditions or UBCs. The method we
can use to determine the UBCs for each disturbance vec-
tor is described below.

4.6 Using Joint-Local Collision Analysis
Choose any disturbance vector that may lead to a feasible
collision attack. To determine the UBCs for this distur-
bance vector, we will need to work with the set of all pos-
sible DV-based differential paths over steps [35,65). Any
differential path uses fixed differences for each expanded
message word, these directly imply values for some bits
Wt [i]. The set of these bit positions Wt [i] is independent
of the differential path and is pre-determined by the DV.
We map each differential path to a vector containing the
values for these bit positions Wt [i]. Then we can look
at the smallest affine vector space that encompasses all
these vectors. This affine vector space can be repre-
sented by a system of linear equations over those mes-
sage bits, which will directly give the desired unavoid-
able bit conditions. By construction it follows that any
solution to any possible differential path based on this
DV satisfies these unavoidable bit conditions. Therefore
if an expanded message does not satisfy all UBCs then
this message cannot be a solution for any possible differ-
ential path over steps [35,65) based on this DV.

To efficiently compute UBCs we will use techniques
introduced in [24] that allow efficient computations on
large classes of differential paths that are otherwise not
possible. We will present our method at a higher level
using notation taken from [24]: Let Qt be the set of all
allowed state differences ∆Qt given (DVi)

79
i=0:

Qt :=
{

BSDR Y
∣∣∣ σ(Y )=σ(Z),

Z[i]∈{−DVt−1[i],DVt−1[i]}, i=0,...,31

}
.

A differential path P over steps t ∈ [35,65) is given as

P = ((∆Qt)
64+1
t=35−4,(∆Ft)

64
t=35,(δWt)

64
t=35),

with correct differential steps for t ∈ [35,65):

σ(∆Qt+1) = σ(RL(∆Qt ,5))+σ(RL(∆Qt−4,30))
+σ(∆Ft)+δWt .

(4)

The success probability Pr[P] of a differential path P is
defined as the probability that the given path P holds ex-
actly for uniformly-randomly chosen Q̂35−4, . . . , Q̂35 and
Ŵ35, . . . ,Ŵ64 and where the other variables are computed
as defined in SHA-1’s compression function. This can be
efficiently computed (cf. [24]).

The set of all possible DV-based differential paths over
steps [35,65) that we will actually use to determine un-
avoidable bit conditions is defined as:

D[35,65) :=
{
P̂
∣∣ ∆Q̂i ∈Qi, δŴj ∈W j, Pr[P̂]> 0

}
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Let P ∈D[35,65) and let δW35, . . . ,δW64 be its message
word differences. Let t ∈ [35,65) and let It ⊆{0, . . . ,30}
be the set of bit positions 0≤ i≤ 30 such that DWt [i] = 1.
As δWt ∈ Wt , we have that δWt = ∑

31
i=0 ci ·DWt [i] with

c0, . . . ,c31 ∈ −1,1 (Eq. 3). We use the fact that the co-
efficients ci with i ∈ It are uniquely determined. This
implies values for the bits Wt [i] with i ∈ It as:

• if ci = 1 then ∆Wt [i] = 1 ·DWt = 1
thus Wt [i] = 0 and W ′t [i] = 1;

• if ci =−1 then ∆Wt [i] =−1 ·DWt =−1
thus Wt [i] = 1 and W ′t [i] = 0;

Hence, given P ∈ D[35,65) for t ∈ [35,65) and i ∈ It the
value of Wt [i] is known. Let X = ((t, i) | t ∈ [35,65)∧ i ∈
It) be a vector of all (t, i) for which the value of Wt [i] is
known given P ∈D[35,65) and let R = |X | be the length of
X . Then we can define a mapping that maps differential
paths to a vector over F2 of the message bits Wt [i] that
are known:

µ :D[35,65)→ FR
2 : P 7→ (Wt [i]|(t, i) = X [r])R

r=1

And we can look at the smallest affine vector space
V that encapsulates the image µ(D[35,65)) of D[35,65).
Although V is uniquely determined, its representation
V = o+ < v1, . . . ,vn > with an origin o and generating
vectors v1, . . . ,vn is not unique. Let Po ∈ D[35,65) be a
fixed differential path, then we compute V as:

o = µ(Po), ∀P ∈ D[35,65) : vP = µ(P)−o.

Using linear algebra we can determine an equivalent de-
scription of V as a system of equations over bits Wt [i]
with (t, i) ∈ X . This system of linear equations can be
further manipulated using linear operations, and thus can
be viewed as a linear space itself. So we use its ’row
reduced form’ which results entirely in equations over 2
message bits of the form Wi[a]⊕Wj[b] = c.

For our improved SHA-1 collision detection imple-
mentation we have selected the 32 disturbance vectors
with lowest estimated cost as in [24]. This is more
than the 14 disturbance vectors intially suggested in [23],
but using UBCs we could simply add protection against
more DVs with very low extra cost. We ended up at 32
DVs as our UBC checking algorithm uses a 32-bit in-
teger to hold a mask where each bit is associated with
a DV and represents whether the UBCs of that DV are
all fulfilled. The 32 disturbance vectors with number of
UBCs in parentheses are given in Tbl. 1. The full listing
of UBCs for these DVs is given in Appendix A.

4.7 Exploiting overlapping conditions be-
tween DVs

As disturbance vectors within each type I or II are all
shifted and rotated versions of each other, disturbance

vectors may have local collisions at the same positions
and therefore may have some overlap in unavoidable bit
conditions. In this section we try to maximize the num-
ber of UBCs shared between DVs by further manipulat-
ing the set of UBCs per DV. As each UBC is a linear
equation, the set of UBCs per DV can be further manip-
ulated for our purposes using simple linear operation.

In the previous section we analyzed 32 disturbance
vectors and found 7 to 15 UBCs per DV with a total of
373 UBCs. The UBCs for each DV were generated in a
‘row-reduced form’ and this already leads to a significant
overlap of UBCs: among the total of 373 UBCs there are
only 263 distinct UBCs. E.g., UBC W39[4]⊕W42[29] = 0
is shared among DVs I(45,0), I(49,0) and II(48,0). Using
the procedure below we are able to reduce the number of
distinct UBCs to 156. Note that for each DV the new set
of UBCs remains equivalent to the original set of UBCs.

To minimize the overall amount of distinct UBCs we
use a greedy selection algorithm to rebuild the set of
UBCs per DV. Starting at an empty set of UBCs for each
DV, our greedy algorithm in each step selects a new dis-
tinct UBC that is shared between as many DVs as pos-
sible and adds it to set of UBCs for the corresponding
DVs. More specifically, for each DV it first generates a
list of candidate UBCs by taking all linear combinations
of the original set of UBCs and removes all candidates
that are a linear combination of the current set of UBCs
and thus that are already covered so far. Then it selects
all UBCs that maximize the number of DVs it belongs
to but is not covered so far. It rates each of those UBCs
first based on weight (minimal weight prefered), second
based on number of active bit positions (fewer bit posi-
tions prefered) and finally on the gap j− i between the
first Wi and the last Wj in the UBC. It selects the best
rated UBC and adds that to UBC sets of the DVs it be-
longs to but is not covered so far. Finally, for each DV
it will output a new set of UBCs that is equivalent to the
original set of UBCs, but for which there are much fewer
distinct UBCs over all DVs.

The output of improved sets of UBCs of our greedy
selection algorithm for the 32 DVs and original 373
UBCs found in the previous section can be found in Ap-
pendix A. Using this approach we have further reduced
the number of unique UBCs from 263 to 156, where each
new UBC belongs up to 7 DVs.

In Sect. 5.1 we further comment on the implementa-
tion of this greedy algorithm that immediately outputs
optimized C code for verifying UBCs for all 32 DVs si-
multaneously. This optimized C code is verified against
a straightforward simple implementation using the origi-
nal sets of 373 UBCs as described in Sect. 5.2.
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Table 1: SHA-1 DV selection and number of UBCs
I(43,0) (11 UBCs) I(44,0) (12 UBCs) I(45,0) (12 UBCs) I(46,0) (11 UBCs)
I(46,2) (7 UBCs) I(47,0) (12 UBCs) I(47,2) (7 UBCs) I(48,0) (14 UBCs)
I(48,2) (7 UBCs) I(49,0) (13 UBCs) I(49,2) (8 UBCs) I(50,0) (14 UBCs)
I(50,2) (8 UBCs) I(51,0) (15 UBCs) I(51,2) (10 UBCs) I(52,0) (14 UBCs)

II(45,0) (11 UBCs) II(46,0) (11 UBCs) II(46,2) (7 UBCs) II(47,0) (14 UBCs)
II(48,0) (15 UBCs) II(49,0) (14 UBCs) II(49,2) (9 UBCs) II(50,0) (14 UBCs)
II(50,2) (9 UBCs) II(51,0) (14 UBCs) II(51,2) (9 UBCs) II(52,0) (15 UBCs)

II(53,0) (14 UBCs) II(54,0) (14 UBCs) II(55,0) (14 UBCs) II(56,0) (14 UBCs)

5 Implementation

This section describes the implementation of the UBC
check in the SHA-1 Collision detection library. The
source code for this library can be found at [28] This re-
lease contains the collision detection library that can be
used in other software in the directory ’lib’, the ‘src’ di-
rectory contains a modified sha1sum command line tool
that uses the library. Both can be built by calling ‘make’
in the parent directory, additionally a special version
‘sha1dcsum partialcoll’ is also included that specifically
detects example collisions against reduced-round SHA-1
(as no full round SHA-1 collisions have been found yet.)
Furthermore, in the directory ‘tools’ we provide the fol-
lowing:

• the original listing of UBCs per DV (directory
‘data/3565’);

• an example partial collision for SHA-1 (file
‘test/sha1 reducedsha coll.bin’);

• the greedy selection algorithm from Sect. 4.7 that
optimizes the UBC sets and outputs optimized code
(directory ‘parse bitrel’), see Sect. 5.1;

• a program that verifies the optimized C code with
optimized UBC sets against manually-verifiable C
code (directory ‘ubc check test’), see Sect. 5.2;

The collision detecting SHA-1 implementation, includ-
ing the SHA-1 compression function as well as the col-
lision detection logic and UBC checks, has been heavily
optimized to be competitive with the performance of the
prior implementation of SHA-1 in Git. This prior im-
plementation of SHA-1 had been optimized in order to
meet the performance requirements of the heavily uti-
lized software. As such, we are assured that our imple-
mentation of the core SHA-1 functionality has been op-
timized to the point of being competitive with deployed
and utilized implementations [32]. In Sect. 6 we discuss
expected and measured performance of our improved
SHA-1 collision detection.

5.1 Parse Bit Relations
This section describes the parse_bitrel program that
implements the greedy selection algorithm described in
Sect. 4.7 and generates source code for an optimized
UBC check.

The greedy algorithm using the input UBC sets in di-
rectory ‘data/3565’ outputs improved UBC-sets for the
DVs that have significant overlap. Another equivalent
perspective is looking at the unique UBCs and the set
of DVs each unique UBC belongs to, Appendix A lists
the improved UBCs in this manner. The program -

parse bitrel uses this perspective to generate opti-
mized source code for a function ubc_check which
given an expanded message will return a mask of which
DVs had all their UBCs satisfied.

As noted in Sect. 4.6 we have selected 32 disturbance
vectors. Thus keeping track for which disturbance vec-
tors a recompression is necessary conveniently fits in a
32 bit integer mask C. Each bit position in C will be as-
sociated with a particular DV T(k,b), where T represents
the type I or II, and we have a named constant of the form
DV_T_K_B_bit that will have only that bit set. Initially
C will have all bits set and for each UBC that is not sat-
isfied we will set bits to 0 at the bit positions of the DVs
the UBC belongs to.

The UBCs for SHA-1 are of the form Wi[a]⊕Wj[b] = c
as described in Sect. 4.6. The outcome of this condition
is translated into a mask with all bits set or all bits cleared
using the following C-code:

M=0-(((W[i]>>a)^(W[j]>>b))&1) if c = 1
M=(((W[i]>>a)^(W[j]>>b))&1)-1 if c = 0

Note that in both of these cases, if UBC is satisfied then M
results in a value with all bits set (−1 in 2’s complement)
and 0 otherwise.

Say the UBC belongs to multiple disturbance
vectors DV_T1_K1_B1_bit, DV_T2_K2_B2_bit, . . .,
DV_TN_KN_BN_bit, then a mask is formed that has all
other bits belonging to other DVs set to 0. This mask
will be OR’ed into the mask M above to force bits to the
value 1 for all bit positions associated with DVs not be-
longing to this unique UBC:

M | ~(DV_T1_K1_B1_bit | DV_T2_K2_B2_bit | ...

| DV_TN_KN_BN_bit).
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In effect, only the bit positions for DVs the unique
UBC belongs to can be 0 which they will be if and only
if the unique UBC is not satisfied. Hence, this last mask
will be AND’ed into the variable C to conditionally clear
the bits associated with these DVs if the UBC is not sat-
isfied. For example, the following clause is one of the
clauses generated by the parse_bitrel:

C &= ((((W[46]>>4)^(W[49]>>29))&1)-1) |

~( DV_I_46_0_bit | DV_I_48_0_bit | DV_I_50_0_bit |

DV_I_52_0_bit | DV_II_50_0_bit | DV_II_55_0_bit );

The ubc_check function thus consists of initializing
the variable C and statements for each unique UBC to up-
date C as described above. The parse bitrel program
combines these clauses into a bit-wise AND of all the in-
dividual statements and generates the ubc check func-
tion. The above example works for all cases. However,
we can produce slightly better statements with fewer op-
erations in certain cases which are omitted here, but can
be found in the public source code.

5.2 UBCCheckTest: Correctness testing

This section describes the program ubc check test for
correctness testing. The above program parse bitrel

will output optimized C-code for ubc check that will
verify all UBCs and output a mask whose bits mark
whether a recompression for a particular DV is needed.
For testing purposes one would like to have many test
cases to run it on, however there are no SHA-1 exam-
ple collisions at all. Hence, great care must be taken
to ensure code correctness of the collision detection li-
brary. For this purpose we let parse_bitrel also out-
put C-code for a function ubc_check_verify that will
be equivalent to ubc_check but will be based on the
original non-improved UBC-sets and use straightforward
code that can be manually verified for correctness. After
manual verification we know ubc_check_verify to be
correct.

To ensure that ubc_check is correct we test its func-
tional equivalence to the correct ubc_check_verify.
As each individual UBC statement depends on only 2
expanded message bits Wi[a] and Wi[b], if an error exists
it will trigger with probability at least 0.25 for random
values. Unfortunately, such an error may be masked by
other UBCs not being satisfied and forcing the bit posi-
tions in C with possible errors to 0 anyway. To ensure
any error will reveal itself, we feed 224 random inputs
to both ubc_check and ubc_check_verify and verify
whether their outputs are identical. As the highest num-
ber of UBCs of a DV is 15, if an error is located in the
code of one of these UBCs we can still expect that out
of the 224 samples we will have approximately 210 cases
where all other UBCs for this DV are satisfied. In these

cases the output bit for this DV of ubc check and ubc-

check verify equals the output for the target UBC and
the error will be exposed with probability at least 0.25
for each of these 210 cases. The probability that an error
with probability at least 0.25 will not occur in 210 ran-
dom inputs is at most 0.751024 ≈ 2−425. This, as well
as a few other basic tests, ensures that our greedy selec-
tion algorithm for improved UBC-sets and the produced
optimized C-code ubc_check contains no errors.

6 Performance

In this section we discuss the expected performance in-
crease and we compare some measured speeds. We have
compiled and tested the code on different compiler and
processor technologies. The performance of the imple-
mentation was tested with several compilers, platforms
and processors. For x86 performance the code was run
on Linux, Windows and macOS. On Linux, the code was
compiled for x86-64 with GCC 5.4.0 (gcc) and run on
Ubuntu 16.04. The code was compiled for both x86-32
and x86-64 with the Microsoft Visual Studio 2015 C++
compiler (msvc) and run on Windows 10. In both of
these cases, the code was run on an Intel Xeon L5520
running at 2.26GHz. For macOS, the code was compiled
with Clang 4.2.1 (clang) targeting x86-64 macOS Sierra
and run on an Intel Core i7 3615QM running at 2.30Ghz.
To measure performance on ARM architecture, the code
was compiled with GCC 4.9.2 (gcc arm) and run on a
Raspberry Pi 3 running Raspbian Jessie with a quad-core
Broadcom BCM2837, which is an ARM Cortex-A53,
running at 1.2Ghz. Note that at the time of these ex-
periments Raspbian Jessie runs in 32 bit mode only, even
though this particular processor model can run in both 32
and 64 bit modes.

The performance numbers below vary a bit between
different compiler and processor technologies due to dif-
ferent available processor instructions and different com-
piler optimizations. Such variances for a given platform
could be eliminated using assembly code, however such
code is very difficult to maintain and therefore not con-
sidered for our project, which intends to show the fea-
sibility of these algorithms and techniques. Rather, as-
sembler implementations of these algorithms can be con-
sidered by projects that require these collision detection
and high performance implementations. Due to these
variances the shown results should be taken as indicative
speed improvements for other compilers and/or compiler
optimization flags and/or processors.

Using UBCs, we will only do a recompress for a given
DV if all its UBCs are satisfied. Let S be the set of
DVs and Udv be the set of UBCs for dv ∈ S. Then
the probability pdv that a random message block satis-
fies all UBCs associated with dv ∈ S is pdv = 2−|Udv|.
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Table 2: Comparison of the performance of SHA-1’s
compression function and our ubc check function.
Units given in number of single message block opera-
tions per millisecond. ubc check takes 46% to 76% of
the time of SHA1Compress.

SHA1Compress ubc_check

gcc x86-64 4236.38 8359.01(0.51×)
clang x86-64 5192.51 11363.47(0.46×)
msvc x86-64 2618.30 4445.76(0.59×)
msvc x86-32 2712.14 4663.56(0.58×)
gcc arm 815.26 1074.47(0.76×)

Hence, the expected cost of the recompressions for dv ∈
S is pdv × n× SHA1Compress, where n is the number
of message blocks for a given message, or equivalently
pdv×SHA-1.

The expected total cost of all recompressions for
a given message of n message blocks is therefore
(∑dv∈S pdv)× SHA-1. For the 32 selected disturbance
vectors given in Tbl. 1 together with their number of
UBCs, we found that ∑dv∈S pdv ≈ 0.0495.

Therefore using UBCs we have reduced the cost of re-
compressions from 32×SHA-1 to ≈ 0.0495×SHA-1, a
speed improvement of a factor of about 646. Also, this
implies that on average we can expect to do one recom-
pression about every 20.2 message blocks. However,
the total cost of collision detection includes the cost of
SHA-1 as well as the cost of verifying the UBCs.

We have measured the cost of ubc_check in compar-
ison to SHA1Compress in function calls per millisecond
in Tbl. 2. These figures were determined by measuring
the time of 226 function calls on already prepared ran-
dom inputs. The relative performance ratio ubc check/
SHA1Compress is given in parentheses. We have mea-
sured that ubc check takes about 46% to 76% of the
time of SHA1Compress depending on the platform. De-
note this ratio as u then we can expect that the total
cost of collision detection using UBCs is approximately
(1+ u+ 0.0495)× SHA-1. Hence, this leads to an esti-
mated cost factor of about 1.51 to 1.81 of collision de-
tection relative to the original SHA-1. Note that we ex-
pect the actual figures to be slightly lower as both the
cost of the recompressions and the cost of ubc check

are expressed relatively to SHA1Compress and not to
SHA-1 which actually includes some more overhead.
This shows that the UBC check almost completely elim-
inates the amount of time doing full disturbance vector
checks and the performance loss is purely spent by time
in the ubc check function itself. Thus using UBCs we
expect collision detection to be possible in around three
halves the time it takes to compute a single hash digest.
Overall the relative timings of ubc check shows that we

can expect drastic speedups from using unavoidable con-
ditions.

The analysis of the internal operations of the SHA-1
hash and collision detection ignores a great deal of over-
head that the algorithm may incur. So it is necessary
to do a more detailed performance analysis of the full
collision detection algorithm. The scaling of this algo-
rithm does not depend on the length of the input vary-
ing. So a reference timing for hashing random 2 kilobyte
messages was used. This number was chosen because it
is representative of the order of magnitude of bytes that
must be hashed while verifying a single RSA certificate.
Tbl. 3 shows the overall function calls per millisecond
count for random 2KiB messages. We timed the origi-
nal SHA-1 without collision detection, SHA-1 with col-
lision detection with the UBC optimizations, and finally
SHA-1 with collision detection but without using UBCs.
The presented timings were determined by running the
measured function on an already prepared random input
in a loop with 512 iterations, and averaging these tim-
ings for 128 different random inputs. Note that these are
preliminary performance numbers and have limited pre-
cision and more accurate numbers will be provided in
later drafts of this paper.

As in the previous table the relative performance to
SHA-1 is given in parentheses. For example, when com-
piled with gcc x86-64 the SHA-1 digest algorithm with
hash collision detection but without the UBC check opti-
mizations takes over 39 times the amount of time it takes
to run the original digest algorithm. While adding the
UBC check allows the collision detection code to run in
well under double the time. This table shows that while
adding the straight forward collision detection code in-
creases the time of a SHA-1 computation by around 30
to 40 times, using the UBC check optimizations allows a
SHA-1 computation with collision detection to be run in
about 1.6× the time.

7 Future directions

From our results it is clear unavoidable conditions can
be used for a significant speed up for collision detection
resulting in only a small performance loss compared to
the performance of the original cryptographic primitive
SHA-1.

We intend to supply additional reference code to ease
use of our SHA-1 collision detection library in all appli-
cation that use OpenSSL [30] in future work. This should
make collision detection significantly easier to apply in
applications even for developers with limited experience
with OpenSSL and cryptographic libraries.

Another future research direction is how to deter-
mine unavoidable conditions for MD5. MD5 is signif-
icantly weaker than SHA-1 and there are 223 known at-
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Table 3: Performance numbers for message block computations of the SHA-1 Message Digest algorithm, units given
in number of 2KiB messages hashed per millisecond. Collision detection using UBCs is 1.43 to 1.66 times slower
than SHA-1, however without using UBCs collision detection is 30 to 43 times slower than SHA-1.

SHA1 SHA1DC no UBC Check SHA1DC UBC Check
gcc x86-64 148.14 3.75(39.50×) 92.82(1.60×)
clang x86-64 226.60 7.58(29.88×) 136.33(1.66×)
msvc x86-64 115.80 2.69(42.98×) 72.23(1.60×)
msvc x86-32 83.42 2.06(40.58×) 58.14(1.43×)
gcc arm 26.11 0.81(32.04×) 16.30(1.60×)

tack classes that are based on a number of different ap-
proaches to construct a high probability differential path
over the most important steps that contribute to the com-
plexity. It is thus significantly more challenging to find
UBCs for these classes and will require a more close
study of the different main approaches. Nevertheless, as
MD5 collision detection is 224 times slower than MD5,
there is ample room and demand for speed improve-
ments.

8 Conclusion

In this paper we have presented a significant perfor-
mance improvement for collision detection, which is
very timely due to the recently announced first collision
for SHA-1. We have formally treated a new concept of
unavoidable conditions that the output of any feasible at-
tack in an attack class must satisfy. Furthermore, based
on a conjecture solidly supported by the current state of
the art, we have shown how we can determine unavoid-
able bit conditions (UBC) for SHA-1 and how to maxi-
mize the overlap between the UBC sets of different DVs.
We have implemented the improved SHA-1 collision de-
tection using such unavoidable conditions and which is
about 20 to 30 times faster than without our unavoidable
condition improvements. We have measured that overall
our implementation of SHA-1 with collision detection is
only a factor 1.60 slower on average than the original
SHA-1.

That collisions attacks are a realistic and significant
threat is very clear given the rogue Certification Author-
ity publication [29] and the exposed Windows Update
signature forgery in the supermalware Flame [23]. This
shows that nation states have the resources to carry out
such attacks and exploit them in the real world. Further-
more SHA-1-based signatures are still used at large and
are also supported for verification almost ubiquitously.
More protection against signature forgeries is greatly
warranted and our improved SHA-1 collision detection
enables protection against digital signature forgeries at a
very low cost.

As SHA-1 is practically broken, yet SHA-1-based sig-

natures are still used at large and are also widely sup-
ported (at least for verification), our improved SHA-1
collision detection enables protection against digital sig-
nature forgeries at a very low cost. Our improved imple-
mentation was deemed effective enough for Git, GitHub,
Google Drive, Gmail and others to already deploy it in
practice.

Acknowledgments

The authors would like to acknowledge the code review
feedback given by the developers in the Git community,
which has greatly improved the quality of our imple-
mentation. The optimization suggestions given by Li-
nus Torvalds and Jeff King (peff) especially significantly
improved performance. The authors would also like to
thank the anonymous reviewers who took time to give
detailed feedback and suggestions for improving this pa-
per.

References

[1] Gilles Brassard (ed.), Advances in Cryptology -
CRYPTO ’89, 9th Annual International Cryptology
Conference, Santa Barbara, California, USA, Au-
gust 20-24, 1989, Proceedings, Lecture Notes in
Computer Science, vol. 435, Springer, 1990.

[2] Christophe De Cannière, Florian Mendel, and
Christian Rechberger, Collisions for 70-Step SHA-
1: On the Full Cost of Collision Search, Selected
Areas in Cryptography (Carlisle M. Adams, Ali
Miri, and Michael J. Wiener, eds.), Lecture Notes
in Computer Science, vol. 4876, Springer, 2007,
pp. 56–73.

[3] Christophe De Cannière and Christian Rechberger,
Finding SHA-1 Characteristics: General Results
and Applications, ASIACRYPT (Xuejia Lai and
Kefei Chen, eds.), Lecture Notes in Computer Sci-
ence, vol. 4284, Springer, 2006, pp. 1–20.

892    26th USENIX Security Symposium USENIX Association

http://dx.doi.org/10.1007/978-3-540-77360-3_4
http://dx.doi.org/10.1007/978-3-540-77360-3_4
http://dx.doi.org/10.1007/11935230_1
http://dx.doi.org/10.1007/11935230_1


[4] Florent Chabaud and Antoine Joux, Differential
Collisions in SHA-0, CRYPTO (Hugo Krawczyk,
ed.), Lecture Notes in Computer Science, vol. 1462,
Springer, 1998, pp. 56–71.

[5] Martin Cochran, Notes on the Wang et al. 263 SHA-
1 Differential Path, Cryptology ePrint Archive, Re-
port 2007/474, 2007.
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A Unavoidable bit conditions

The tables below list the UBCs we have found in Sect. 4.6 and after processing to exploit their overlap as in Sect. 4.7.
Instead of listing DVs with their UBCs, we list the UBCs together with the list of DVs they belong to.

Table 4: Overlapping unavoidable bit conditions

UBC List of DVs the UBC belongs to
W44[29]⊕W45[29] = 0 I(48,0) I(51,0) I(52,0) II(45,0) II(46,0) II(50,0) II(51,0)
W49[29]⊕W50[29] = 0 I(46,0) II(45,0) II(50,0) II(51,0) II(55,0) II(56,0)
W48[29]⊕W49[29] = 0 I(45,0) I(52,0) II(49,0) II(50,0) II(54,0) II(55,0)
W47[29]⊕W48[29] = 0 I(44,0) I(51,0) II(48,0) II(49,0) II(53,0) II(54,0)
W46[29]⊕W47[29] = 0 I(43,0) I(50,0) II(47,0) II(48,0) II(52,0) II(53,0)
W45[29]⊕W46[29] = 0 I(49,0) I(52,0) II(46,0) II(47,0) II(51,0) II(52,0)
W43[29]⊕W44[29] = 0 I(47,0) I(50,0) I(51,0) II(45,0) II(49,0) II(50,0)
W40[29]⊕W41[29] = 0 I(44,0) I(47,0) I(48,0) II(46,0) II(47,0) II(56,0)
W47[4]⊕W50[29] = 0 I(47,0) I(49,0) I(51,0) II(45,0) II(51,0) II(56,0)
W46[4]⊕W49[29] = 0 I(46,0) I(48,0) I(50,0) I(52,0) II(50,0) II(55,0)
W45[4]⊕W48[29] = 0 I(45,0) I(47,0) I(49,0) I(51,0) II(49,0) II(54,0)
W44[4]⊕W47[29] = 0 I(44,0) I(46,0) I(48,0) I(50,0) II(48,0) II(53,0)
W43[4]⊕W46[29] = 0 I(43,0) I(45,0) I(47,0) I(49,0) II(47,0) II(52,0)
W42[4]⊕W45[29] = 0 I(44,0) I(46,0) I(48,0) I(52,0) II(46,0) II(51,0)
W41[4]⊕W44[29] = 0 I(43,0) I(45,0) I(47,0) I(51,0) II(45,0) II(50,0)
W54[29]⊕W55[29] = 0 I(51,0) II(47,0) II(50,0) II(55,0) II(56,0)
W53[29]⊕W54[29] = 0 I(50,0) II(46,0) II(49,0) II(54,0) II(55,0)
W52[29]⊕W53[29] = 0 I(49,0) II(45,0) II(48,0) II(53,0) II(54,0)
W50[29]⊕W51[29] = 0 I(47,0) II(46,0) II(51,0) II(52,0) II(56,0)
W42[29]⊕W43[29] = 0 I(46,0) I(49,0) I(50,0) II(48,0) II(49,0)
W41[29]⊕W42[29] = 0 I(45,0) I(48,0) I(49,0) II(47,0) II(48,0)
W50[4]⊕W53[29] = 0 I(50,0) I(52,0) II(46,0) II(48,0) II(54,0)
W49[4]⊕W52[29] = 0 I(49,0) I(51,0) II(45,0) II(47,0) II(53,0)
W48[4]⊕W51[29] = 0 I(48,0) I(50,0) I(52,0) II(46,0) II(52,0)
W40[4]⊕W43[29] = 0 I(44,0) I(46,0) I(50,0) II(49,0) II(56,0)
W39[4]⊕W42[29] = 0 I(43,0) I(45,0) I(49,0) II(48,0) II(55,0)
W38[4]⊕W41[29] = 0 I(44,0) I(48,0) II(47,0) II(54,0) II(56,0)
W37[4]⊕W40[29] = 0 I(43,0) I(47,0) II(46,0) II(53,0) II(55,0)
W55[29]⊕W56[29] = 0 I(52,0) II(48,0) II(51,0) II(56,0)
W51[29]⊕W52[29] = 0 I(48,0) II(47,0) II(52,0) II(53,0)
W52[4]⊕W55[29] = 0 I(52,0) II(48,0) II(50,0) II(56,0)
W51[4]⊕W54[29] = 0 I(51,0) II(47,0) II(49,0) II(55,0)
W36[4]⊕W40[29] = 0 I(46,0) I(49,0) II(45,0) II(48,0)
W45[6]⊕W47[6] = 0 I(47,2) I(49,2) I(51,2)
W44[6]⊕W46[6] = 0 I(46,2) I(48,2) I(50,2)

W35[4]⊕W39[29] = 0 I(45,0) I(48,0) II(47,0)
W53[29]⊕W56[29] = 1 I(52,0) II(48,0) II(49,0)
W51[29]⊕W54[29] = 1 I(50,0) II(46,0) II(47,0)
W50[29]⊕W52[29] = 1 I(49,0) I(51,0) II(45,0)
W49[29]⊕W51[29] = 1 I(48,0) I(50,0) I(52,0)
W48[29]⊕W50[29] = 1 I(47,0) I(49,0) I(51,0)
W47[29]⊕W49[29] = 1 I(46,0) I(48,0) I(50,0)
W46[29]⊕W48[29] = 1 I(45,0) I(47,0) I(49,0)
W45[29]⊕W47[29] = 1 I(44,0) I(46,0) I(48,0)
W44[29]⊕W46[29] = 1 I(43,0) I(45,0) I(47,0)

W40[4]⊕W42[4] = 1 I(44,0) I(46,0) II(56,0)
W39[4]⊕W41[4] = 1 I(43,0) I(45,0) II(55,0)
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W38[4]⊕W40[4] = 1 I(44,0) II(54,0) II(56,0)
W37[4]⊕W39[4] = 1 I(43,0) II(53,0) II(55,0)
W41[1]⊕W42[6] = 1 I(48,2) II(46,2) II(51,2)
W40[1]⊕W41[6] = 1 I(47,2) I(51,2) II(50,2)
W39[1]⊕W40[6] = 1 I(46,2) I(50,2) II(49,2)
W36[1]⊕W37[6] = 1 I(47,2) I(50,2) II(46,2)

W58[29]⊕W59[29] = 0 II(51,0) II(54,0)
W57[29]⊕W58[29] = 0 II(50,0) II(53,0)
W56[29]⊕W57[29] = 0 II(49,0) II(52,0)

W48[6]⊕W50[6] = 0 I(50,2) II(46,2)
W47[6]⊕W49[6] = 0 I(49,2) I(51,2)
W46[6]⊕W48[6] = 0 I(48,2) I(50,2)
W43[6]⊕W45[6] = 0 I(47,2) I(49,2)
W42[6]⊕W44[6] = 0 I(46,2) I(48,2)
W50[6]⊕W51[1] = 0 I(50,2) II(46,2)
W47[6]⊕W48[1] = 0 I(47,2) II(51,2)
W46[6]⊕W47[1] = 0 I(46,2) II(50,2)
W42[6]⊕W43[1] = 0 II(46,2) II(51,2)
W41[6]⊕W42[1] = 0 I(51,2) II(50,2)
W40[6]⊕W41[1] = 0 I(50,2) II(49,2)

W56[4]⊕W59[29] = 0 II(52,0) II(54,0)
W55[4]⊕W58[29] = 0 II(51,0) II(53,0)
W54[4]⊕W57[29] = 0 II(50,0) II(52,0)
W53[4]⊕W56[29] = 0 II(49,0) II(51,0)
W39[4]⊕W43[29] = 0 I(52,0) II(51,0)
W38[4]⊕W42[29] = 0 I(51,0) II(50,0)
W37[4]⊕W41[29] = 0 I(50,0) II(49,0)
W35[3]⊕W39[28] = 0 I(51,0) II(47,0)
W63[0]⊕W64[5] = 1 I(48,0) II(48,0)
W62[0]⊕W63[5] = 1 I(47,0) II(47,0)
W61[0]⊕W62[5] = 1 I(46,0) II(46,0)
W60[0]⊕W61[5] = 1 I(45,0) II(45,0)

W56[29]⊕W59[29] = 1 II(51,0) II(52,0)
W48[29]⊕W55[29] = 1 I(51,0) I(52,0)

W36[4]⊕W38[4] = 1 II(52,0) II(54,0)
W63[1]⊕W64[6] = 1 I(45,0) II(45,0)
W61[2]⊕W62[7] = 1 I(46,2) II(46,2)
W44[1]⊕W45[6] = 1 I(51,2) II(49,2)
W37[1]⊕W38[6] = 1 I(48,2) I(51,2)
W35[1]⊕W36[6] = 1 I(46,2) I(49,2)

Table 5: Remaining unavoidable bit conditions

UBC DV of UBC UBC DV of UBC
W59[29]⊕W60[29] = 0 II(52,0) W53[6]⊕W55[6] = 0 II(51,2)

W52[6]⊕W54[6] = 0 II(50,2) W51[6]⊕W53[6] = 0 II(49,2)
W49[6]⊕W51[6] = 0 I(51,2) W41[6]⊕W43[6] = 0 I(47,2)
W40[6]⊕W42[6] = 0 I(46,2) W37[1]⊕W37[6] = 0 I(51,2)
W55[6]⊕W56[1] = 0 II(51,2) W54[6]⊕W55[1] = 0 II(50,2)
W53[6]⊕W54[1] = 0 II(49,2) W51[6]⊕W52[1] = 0 I(51,2)
W49[6]⊕W50[1] = 0 I(49,2) W48[6]⊕W49[1] = 0 I(48,2)
W45[6]⊕W46[1] = 0 II(49,2) W39[6]⊕W40[1] = 0 I(49,2)

W57[4]⊕W59[29] = 0 II(55,0) W60[4]⊕W64[29] = 0 II(56,0)
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W60[5]⊕W64[30] = 0 I(44,0) W59[4]⊕W63[29] = 0 II(55,0)
W59[5]⊕W63[30] = 0 I(43,0) W58[4]⊕W62[29] = 0 II(54,0)
W57[4]⊕W61[29] = 0 II(53,0) W44[3]⊕W48[28] = 0 II(56,0)
W44[4]⊕W48[29] = 0 II(56,0) W43[3]⊕W47[28] = 0 II(55,0)
W43[4]⊕W47[29] = 0 II(55,0) W42[3]⊕W46[28] = 0 II(54,0)
W42[4]⊕W46[29] = 0 II(54,0) W41[3]⊕W45[28] = 0 II(53,0)
W41[4]⊕W45[29] = 0 II(53,0) W40[3]⊕W44[28] = 0 II(52,0)
W40[4]⊕W44[29] = 0 II(52,0) W39[3]⊕W43[28] = 0 II(51,0)
W39[5]⊕W43[30] = 0 II(51,2) W38[3]⊕W42[28] = 0 II(50,0)
W38[5]⊕W42[30] = 0 II(50,2) W37[3]⊕W41[28] = 0 II(49,0)
W37[5]⊕W41[30] = 0 II(49,2) W36[3]⊕W40[28] = 0 II(48,0)
W35[5]⊕W39[30] = 0 I(51,2) W59[0]⊕W64[30] = 1 I(44,0)
W58[0]⊕W63[30] = 1 I(43,0) W58[29]⊕W61[29] = 1 II(53,0)

W55[29]⊕W58[29] = 1 II(50,0) W52[1]⊕W56[1] = 1 II(51,2)
W51[1]⊕W55[1] = 1 II(50,2) W50[1]⊕W54[1] = 1 II(49,2)
W47[1]⊕W51[1] = 1 II(46,2) W46[1]⊕W48[1] = 1 II(51,2)
W45[1]⊕W47[1] = 1 II(50,2) W43[1]⊕W51[1] = 1 I(50,2)
W42[1]⊕W50[1] = 1 I(49,2) W38[0]⊕W43[30] = 1 II(51,2)
W38[1]⊕W40[1] = 1 I(49,2) W38[4]⊕W39[4] = 1 I(52,0)

W37[0]⊕W42[30] = 1 II(50,2) W37[4]⊕W38[4] = 1 I(51,0)
W36[0]⊕W41[30] = 1 II(49,2) W36[4]⊕W37[4] = 1 I(50,0)
W63[2]⊕W64[7] = 1 I(48,2) W62[1]⊕W63[6] = 1 I(44,0)
W62[2]⊕W63[7] = 1 I(47,2) W61[1]⊕W62[6] = 1 I(43,0)

W39[30]⊕W44[28] = 1 II(52,0) W38[30]⊕W43[28] = 1 II(51,0)
W37[30]⊕W42[28] = 1 II(50,0) W36[30]⊕W41[28] = 1 II(49,0)
W35[30]⊕W40[28] = 1 II(48,0)
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Abstract
Password remains the most widespread means of au-
thentication, especially on the Internet. As such, it
is the Achilles heel of many modern systems. Face-
book pioneered using external cryptographic ser-
vices to harden password-based authentication in a
large scale. Everspaugh et al. (Usenix Security ’15)
provided the first comprehensive treatment of such a
service and proposed the Pythia PRF-Service as a
cryptographically secure solution. Recently, Schnei-
der et al. (ACM CCS ’16) proposed a more efficient
solution which is secure in a weaker security model.

In this work, we show that the scheme of Schnei-
der et al. is vulnerable to offline attacks just af-
ter a single validation query. Therefore, it defeats
the purpose of using an external crypto service in
the first place and it should not be used in practice.
Our attacks do not contradict their security claims,
but instead show that their definitions are simply
too weak. We thus suggest stronger security defi-
nitions that cover these kinds of real-world attacks,
and an even more efficient construction, Phoenix,
to achieve them. Our comprehensive evaluation con-
firms the practicability of Phoenix: It can handle
up to 50% more requests than the scheme of Schnei-
der et al. and up to three times more than Pythia.

1 Introduction

In spite of the research and development in au-
thentication mechanisms such as public-key infras-
tructure or secure hardware tokens, the reality has
shown that password-based authentication remains
the most widespread means, especially on the Inter-
net. As such, password-based authentication is the
Achilles heel of many modern systems. Following a
suggestion from the 70s, passwords are commonly
stored as salted hash values. Yet, it is no longer

adequate in the face of the increasing number of at-
tacks. Prominent breaches of user accounts include
Adobe, Yahoo, and much more [24]. The financial
consequences are also dramatic. Verizon asked for
a 1 billion discount on acquiring Yahoo [20] after
knowing it had been hacked (1.5 billion+ accounts).
We see an urgent need for action.

Obvious Weaknesses in Current Systems. Al-
most all web services store passwords as salted hash
values as shown in Figure 1. The security of the

Alice, 123456

username      password

Alice, salt      H(salt,123456)

Figure 1: Password-based Authentication

passwords relies crucially on the assumption that
the databases are kept secret from external attack-
ers, and the internal administrators are trusted for
not disclosing the databases or guessing the pass-
words themselves. However, the reality shows that
databases get stolen. This is disastrous as pass-
words usually have low entropy and therefore can
be guessed by a brute-force attack easily.

Under the aforementioned threat, there is a need
for new solutions to protect passwords in a setting
where the attacker has full access to the compro-
mised service provider, including its secret keys and
databases. It is not hard to see that any solution
in which the web service can verify a given pass-
word alone is not viable, as a compromised service
provider has all the knowledge (e.g., secret keys)
to carry out a brute-force guessing attack (e.g., de-
crypting by the secret key of the web service) as in a

USENIX Association 26th USENIX Security Symposium    899



normal validation. Additional cryptographic mech-
anisms are needed to enhance security.

Moreover, an ideal solution should not change the
infrastructure from the point of view of users. This
is challenging as it rules out solutions which requires
the end users to perform cryptographic operations.

External Password Hardening Services. A
promising approach for the web service provider is
to use external crypto services [4], where a crypto
server carries out certain cryptographic operations,
such as the computation of pseudorandom functions
(PRF). Its general advantage is that it abstracts
crypto away from developers, freeing them from the
selection and implementation of suitable algorithms
and the involved issue of key management.

Cryptographic PRF services are used in practice
by Facebook [16] for password-based authentication.
In this setting, the end-user Alice enters her user-

Alice, 123456

username      password

Alice            PRF(….)

Alice
resp

Figure 2: Password-based Authentication

name and the corresponding password into the web
service as usual, as in Figure 2. The service provider
no longer stores salted hash values, but only pseu-
dorandom values which can only be computed with
the help of the external PRF server, i.e., the service
provider acts as a client of the PRF service.

While used in practice, such kind of password
hardening services did not receive much atten-
tion from the academia until the seminal work of
Everspaugh et al. [9]. They formalize partially-
oblivious PRFs (PO-PRF) with several security
properties that conventional PRF services do not
offer, with a fairly efficient construction, Pythia.
Even if the web server is compromised and the
database (of pseudorandom values) is stolen, brute-
force offline attacks are no longer possible. The rea-
son is that the adversary must interact with the PRF
service to confirm a guess. The partial oblivious-
ness ensures that the external crypto server does
not learn the password but can still see the user-
name when answering PRF requests. Rate limiting
can thus be applied to make sure that an adversary
cannot guess too many times. For incident response
after key compromise, or to update the key proac-
tively as a prudent practice, both the web server and
the crypto service should be able to rotate their keys,
without the end users noticing anything. Efficient

key rotation [9, 21] means the amounts of commu-
nication and server computation are independent of
the size of the database. It is an important secu-
rity feature that cryptographic password hardening
services must have [9, 21].

Using Pythia for password hardening is not with-
out disadvantages. For example, it is only secure
under a strong assumption [21], and is based on
pairings, which is not as efficient as one can hope
for. Very recently, Schneider et al. [21] claimed
that all the properties expected by Pythia can be
achieved by a weaker cryptographic primitive called
partially-oblivious commitments (PO-COM). Using
PO-COM, the PRF values are replaced with “en-
rollment records” which can be jointly computed by
the client and the server via an enrollment protocol.
The main difference lies in how a password is veri-
fied. Instead of jointly computing a PRF value, the
client and the server engage in a validation proto-
col to verify whether a candidate password matches
an enrollment record. Schneider et al. [21] also sug-
gested a scheme that is twice as efficient as Pythia.
Unfortunately, as we will show, their scheme is vul-
nerable to offline dictionary attacks. This motivates
us to develop a new solution which is secure against
such attacks while achieving even better efficiency.

1.1 Overview of Our Contribution
Formal security definitions are important even from
a practical standpoint. They precisely describe what
level of security can be achieved and serve as a basis
for comparison between different solutions. Find-
ing the “right” security definitions is challenging.
They should be strong enough to cover all real-
world attacks, but not to exclude efficient solution.
In this work, we revisit the security notions of Ev-
erspaugh et al. [9] and Schneider et al. [21]. We argue
that both fail to cover key rotation and rate limit-
ing, while the latter even leaves room for practically-
relevant attacks.

In response, we propose strengthened security def-
initions for password hardening schemes. Next, we
propose a new construction, Phoenix, which is 1)
extremely efficient, 2) reasonably simple, and 3) se-
cure based on simple and well-known assumptions.
With these properties, we believe that Phoenix may
attract deployment interest. Below highlights our
contributions in more details.

Formalizing Key Rotation. The literature [9,
21] highlights the importance of key rotation since
it renders the old key useless and preserves the
(forward-)security of the system as long as both par-
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ties are not compromised simultaneously. Somewhat
surprisingly, none of the existing security definitions
take key rotation into account. To fill the gap, we
formalize forward security of password hardening
services, which captures the security guarantee in
the presence of key rotation mechanisms.

Modeling Online Attacks. We argue that the
definition of obliviousness (renamed to hiding in our
work) given by Schneider et al. [21] is too weak.
The property is supposed to protect the passwords
when the client is compromised. Ideally, it should be
guaranteed that the best attack strategy for guess-
ing a password is to brute-force by repeatedly in-
teracting with the crypto service online (modeled
by the validation oracle in the security definition).
Unfortunately, obliviousness, as defined by Schnei-
der et al. [21], fails to capture this intuition, as its
security experiment denies the adversary access to
the validation oracle after receiving the challenge en-
rollment record. Indeed, permitting the adversary
such accesses would allow it to trivially distinguish
between two possible passwords. Moreover, by re-
sorting to a crypto server to harden the passwords,
one naturally expects it can perform rate limiting.
While it is obviously a crucial feature, we are not
aware of any definition which takes this into account.
To resolve these issues, we suggest a “correct” secu-
rity definition, which covers both online attacks and
rate limiting. The latter is guaranteed by upper-
bounding the advantage of the adversary by the loss
of entropy in guessing and validation.

Attacking against Schneider et al. [21]. The
shortcoming of the obliviousness definition by
Schneider et al. [21] is not just a definitional defi-
ciency. We detail how to perform highly efficient (es-
sentially only one exponentiation for each trial) of-
fline dictionary or direct attacks against their scheme
by just a single interaction with the crypto server!
We stress that our attack is outside of the security
model of Schneider et al. [21]. Below we only show
part of the scheme which matters in the attack.

In their scheme, an enrollment record, stored by
the client C using the crypto service provided by
S, can be seen as an ElGamal encryption under
a secret key sx of S, in the form of (T1,T2) =
(gy,gysx ·pwskC ) ∈G2, where G is a (multiplicative)
finite cyclic group. To validate that this record cor-
responds to a password pw for some username un, C
sends (T1,un,v) for v= pwr·skC . Without any validity
checking, S returns π2, a zero-knowledge proof of sx
with respect to (gy,gysx). This opens the door for
the following generic offline dictionary attack, with-

out exploiting the structure of the zero-knowledge
proof: An adversary A who compromised C (and
hence obtained skC and (T1,T2)) sends (gy,un,h) to
S where h is a random group element independent of
any passwords. After getting π2 from S, A can then
try different passwords pw by testing if the proof
π2 is for (T1,T2/pwskC ). This is doable since the
entropy of pw is assumed to be low. By further ex-
ploiting the structure of the specific instantiation of
the proof, the adversary can even extract the pass-
word directly: It first extracts the value gysx from
the proof π2, then computes pw = (T2/g

ysx)1/skC .
We conclude that one must not use the scheme of
Schneider et al., as our attack defeats its purpose of
using an external crypto service.

Reviving the Broken Scheme. In the spirit
of providing password hardening services using
a weaker tool than PO-PRFs [21], we present
Phoenix, a conceptually simple construction from
standard cryptographic primitives. It achieves two
seemingly contradicting goals: a high security level
without sacrificing the efficiency. Our scheme can,
in fact, handle roughly 50% more request per second
than that of Schneider et al. [21], and three times
more than Pythia [9]. Since the scheme of Schnei-
der et al. [21] is vulnerable to the one validation-
query offline dictionary attacks, ours is the first ef-
ficient and fully secure solution based on standard
decisional Diffie-Hellman assumption.

1.2 Notations
Let λ ∈ N be the security parameter. By x←$S we
denote the uniform drawing of a random element
x from set S. Unless stated otherwise, all algo-
rithms run in probabilistic polynomial time (PPT).
x←$A(y) denotes the event that A on input y out-
puts x. If A is deterministic we write x ← A(y)
instead. For two PPT interactive algorithms A,B,
we denote by (a,b)←$〈A(x),B(y)〉X the event that
A and B engage in the protocol X on input x and
y, and produce local outputs a and b, respectively.
If there is only one output, then it is assumed to
be for A. We write B〈A(x),·〉(y) if B can invoke an
unbounded number of executions of the interactive
protocol with A in an arbitrarily interleaved order.

2 Crypto Password Hardening (PH)

Both previous works formulated cryptographic prim-
itives [9, 21] which were supposed to cover the prop-
erties of cryptographic password hardening (PH)
services. We do not follow this approach. Instead,
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we define PH directly, which is simpler and more
natural. A direct definition removes the need for
bridging the security requirements of the underlying
primitives to those expected by PH (e.g., the main
feature of key rotation seems to make more sense in
PH than in the underlying commitment [21]).

2.1 Overview

Our formalization of PH is closely related to the
definition of partially-oblivious commitments (PO-
COM) defined by Schneider et al. [21], with the main
difference being that we consider key rotation in all
security definitions. Roughly speaking, a PH scheme
PH is a two party protocol that is partitioned in
phases. The first phase is the setup phase, in which
a client C and the server S set up their public and se-
cret keys individually without communication. Each
phase after the first is either an enrollment, a valida-
tion, or a key rotation phase, in an arbitrary order.

In an enrollment phase, the client and the server
cooperate to generate an enrollment record T for a
username un, and a password pw, where un is an
input available for both and pw is a private input
from the client. The client then stores the record T .

Subsequently, in a validation phase, the client can
interact with the server to verify if a pair (un,pw)
is stored in a record T . Similar to the enrollment
phase, un is a common input and pw is a private
input from the client. We note that in the original
syntax [21], while un is not an input of the server, it
is supposed to be revealed to the server during the
interactions in the protocol for rate limiting.

Suppose an adversary, who may have knowledge
of some enrollment records, compromises either the
client or the server secret key. It can then act as the
compromised party and interacts with the other in
the protocols to figure out the underlying passwords
of the enrollment records. As soon as the incident
is discovered, the (true) client and the (true) server
communicate to refresh their keys and all enrollment
records. Instead of regenerating them from scratch,
they enter a key rotation phase to update their se-
cret keys. In addition to an updated client secret
key, the client also obtains some auxiliary informa-
tion, using which it is able to update each enrollment
record locally, without further communicating with
the server, nor knowing the underlying password of
the record. Note that our syntax of the key rota-
tion phase is significantly different. In the original
definition [21], the key rotation protocol updates a
single enrollment record instead of all records stored
by the client. We believe that this was an oversight.

2.2 Definition of PH
We provide a formal definition of cryptographic
password hardening schemes. Some algorithms in
our formalization get as input some auxiliary input,
such as a random session identifier. Under normal
circumstances, the auxiliary information is an empty
string denoted by ε. Non-empty auxiliary informa-
tion is only used in defining forward-security.

Definition 1 (PH) Let U and P be the username
and password space respectively. A cryptographic
password hardening service PH consists of the effi-
cient algorithms (Setup,KGenC ,KGenS ,〈C,S〉enrl,〈C,
S〉val,〈C,S〉rot,Udt), to be executed in four phases:

Setup Phase. On input the security parameter λ,
Setup(1λ) outputs the public parameter pp. On input
the public parameter pp, the client runs KGenC(pp)
to generate a client public key pkC, and a client se-
cret skC, while the server runs KGenS(pp) to gener-
ate a server public key pkS , a server secret skS . All
parties will take as input the public parameter pp,
the client public key pkC, and the server public key
pkS in all subsequent protocols.

Enrollment Phase. In the enrollment protocol
〈C(skC ,un,pw,aux),S(skS ,un,aux)〉enrl, the client
inputs its secret key skC, a username un∈ U , a pass-
word pw ∈ P, and some auxiliary information aux.
The server inputs its secret key skS , a username un,
and some auxiliary information aux. The client out-
puts an enrollment record T , while the server outputs
nothing. We say that the enrollment record T stores
the tuple (un,pw). The client stores the tuple (T,un),
and securely deletes the password pw and all inter-
mediate values that are computed locally or obtained
from the server. The server is also supposed to delete
all intermediate values.

Validation Phase. In the validation protocol
〈C(skC ,T,un,pw),S(skS ,un)〉val, the client inputs its
secret key skC, an enrollment record T , a username
un ∈ U , and a password pw ∈ P. The server inputs
its secret key skS , and a username un. The client
outputs a decision b ∈ {0,1} of whether T stores the
tuple (un,pw), while the server outputs nothing.

Key Rotation Phase. In the key rotation pro-
tocol 〈C(skC),S(skS)〉rot, the client and the server
input their secret keys skC and skS respectively. The
client outputs an updated client public key pk′C, an
updated client secret key sk′C and an update token
τ . The server outputs an updated server public key
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pk′S , and an updated secret key sk′S . Using the up-
date token τ , the client runs the update algorithm
Udt(τ,T,un) to update each of the old enrollment
records T into new ones T ′.

Correctness. We require that all honestly gener-
ated enrollment records can pass validation. For-
mally, a cryptographic password hardening service
scheme PH is correct if for all security parameter
λ ∈ N, public parameters pp ∈ Setup(1λ), key pairs
(pkC ,skC) ∈ KGenC(pp) and (pkS ,skS) ∈ KGenS(pp),
username un ∈ U , password pw ∈ P, enrollment
records T ∈ 〈C(skC ,un,pw, ε),S(skS ,un, ε)〉enrl, it
holds that 〈C(skC ,T,un,pw),S(skS ,un)〉val = 1. Note
that it is unnecessary to define the correctness of key
rotation, as it will be captured by forward security
to be introduced below.

2.3 Security of PH

Our security definitions are fundamentally different
from, and arguably stronger than, the originals [21].
In particular, our notions cover important real-world
attacks and ensures security in the presence of key
rotation, as discussed in the introduction. In the
following, we first give an overview of our definitions,
and discuss the differences in details in Section 2.4.

A cryptographic password hardening service is re-
quired to be (partially) oblivious, hiding, binding,
and forward secure. Roughly speaking, partial obliv-
ious means that it is infeasible, even for a malicious
server, to tell which password pw is used by the client
in the enrollment and validation protocols. It is par-
tial in the sense that the username un can be re-
vealed. In fact, un is required to be revealed to the
server for rate limiting. We therefore simply let un
be a common input for both parties in the enroll-
ment and the validation protocols.

Hiding means that, given the client secret key skC ,
a username un, and an enrollment record T of
(un,pw) for some hidden password pw, the best strat-
egy of any adversary to guess pw is by launching an
online dictionary attack which requires interaction
with the server via the validation protocol.

Binding requires that it is computationally infea-
sible, even for a malicious server, to convince the
client that an enrollment record T is valid for two
distinct pairs (un,pw) and (un′,pw′).

Forward security means that compromising either
the client or the server secret key does not help the
adversary to determine the underlying password of
an enrollment record. We formalize this intuition
in an even stronger property. It requires that even

if both the client and server secret keys are adver-
sarially generated, the updated keys and enrollment
records are indistinguishable from the freshly gen-
erated ones. This formalization is simpler because
we do not need to argue about the security of secret
keys which can be rotated for many times.

2.3.1 Partial Obliviousness

Partial obliviousness protects against a malicious
server that wishes to learn the password pw behind
an enrollment record after observing its creation and
several validations. The property is partial since it
does not guarantee anything about the secrecy of the
username un. In fact, in the syntax defined above,
we let the client reveal the username un to the server
explicitly by regarding un as a common input.

Technically, we consider a security experiment
played between a challenger acting as the client and
an adversary acting as the malicious server. The
challenger generates the client secret key and keeps
it secret (Line 1). Furthermore, it simulates execu-
tions of the enrollment, validation, and key rotation
protocol, where only the client secret key input is
fixed (Line 2). The adversary can provide all other
client inputs, as well as the server side code. The
embedded client secret key can be updated by exe-
cuting the key rotation protocol. The client outputs
of all protocol executions, except for sk′C from the
key rotation protocol, are given to the adversary.

The experiment then proceeds in two stages, a
learning phase and a challenge phase. In the learn-
ing phase, the adversary is free to interact with the
challenger in the above protocols. At the end of
this phase, the adversary outputs a username un∗,
and two passwords pw∗0 and pw∗1 (Line 3). It will
then be challenged on one of the passwords and the
attacker has to guess the password. Formally, the
challenger generates the challenge record T ∗ (for the
password pwb) together with the adversary (line 7).
In addition to the previous protocols, the adversary
gets access to an additional embedded-password val-
idation protocol, which embeds either (un∗,pw∗0) or
(un∗,pw∗1) (Lines 8). Note that the adversary may
query the (normal) enrollment and validation proto-
col on most username-password pairs, and the pro-
tocols only return ⊥ for the pairs (un∗,pw∗b′′) for
b′′ ∈ {0,1} (Lines 10 and 11) to avoid it from winning
trivially. Finally, the adversary outputs b′ guessing
which tuple is embedded (Line 9).

Definition 2 (Partial Obliviousness) A crypto-
graphic password hardening service PH is partially
oblivious if, for any three-stage PPT adversary
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OblbΠ,A(1λ)

1 : pp←$ Setup(1λ), (pkC ,skC)←$ KGenC(pp)
2 : O := {〈C(skC , . . .), ·〉X :X ∈ {enrl,val,rot}}

3 : (un∗,pw∗0,pw∗1,state)←$AO
1 (pp,pkC)

4 : // All client outputs are given to adversary,

5 : // except for sk′C output by 〈C(skC), ·〉rot.

6 : // 〈C(skC), ·〉rot updates skC embedded in all oracles to sk′C .

7 : (T ∗,state)←$〈C(skC ,un∗,pw∗b , ε),A2(st)〉enrl

8 : O′ := O∪{〈C(skC , ·,un∗,pw∗b ), ·〉val}

9 : b′ ←$AO′
3 (state,T ∗)

10 : // 〈C(skC, . . .), ·〉enrl and 〈C(skC, . . .), ·〉val return ⊥

11 : // on input containing (un∗,pw∗b′′ ) for b′′ ∈ {0,1}.

12 : return b′

Figure 3: Partial Obliviousness Experiment

A = (A1,A2,A3), there exists a negligible function
negl (λ) such that∣∣∣Pr

[
Obl0Π,A(1λ) = 1

]
−Pr

[
Obl1Π,A(1λ) = 1

]∣∣∣≤ negl (λ)

where the randomness is taken over the random
coins of the experiments and the adversary. Figure 3
defines the two experiments.

2.3.2 Hiding

The hiding property protects the passwords from an
adversary who compromises the client, learns its se-
cret key and all enrollment records, and wishes to
learn the underlying password behind one of the
records. We formalize this intuition by letting the
adversary play the client role in the enrollment, val-
idation, and key rotation protocols.

Inevitably, since passwords are assumed to have
low entropy, the adversary always succeeds if it at-
tempts to validate the target record with all pos-
sible passwords. Our formulation covers this fact
by adjusting the success determination accordingly.
To explain our idea, consider the following experi-
ment: The challenger chooses a random password.
The adversary is given access to a magical oracle
which, when given a guess, answers whether the
guess equals the chosen password. Suppose that only
Q guesses are allowed. Obviously, the best strategy
of the adversary is to asks for the Q most proba-
ble passwords. If one of them returns true, then the
adversary wins by outputting that password. Other-
wise, its best strategy is to output the most probable
password which is not yet guessed, i.e., the (Q+1)-
th most probable password. Since the adversary can
use the server as the magical oracle by interacting

with it in the validation protocol, the best we can
hope for is that the adversary cannot perform sig-
nificantly better than the above strategy.

Technically, we consider a security experiment
(see Figure 4) played between a challenger acting
as the server and an adversary acting as the ma-
licious client. The challenger generates the server
secret key honestly and keeps it secret (Line 1). The
adversary can interact with the challenger in the
enrollment, validation, and key rotation protocols
using arbitrary client side codes (Line 2). Eventu-
ally, the adversary outputs a client secret key skC ,
a username un∗, and a distribution χ of passwords
(Line 6). The distribution models the real-world sit-
uations where the passwords to be protected are not
uniformly random in {0,1}λ but instead follow a cer-
tain distribution possibly with low entropy, which
might be known by the adversary. The challenger
then chooses a random password pw∗ (Line 7) from
the distribution χ and computes a fresh challenge
enrollment record T ∗ for the tuple (un∗,pw∗) using
the honest client and server code (Line 8). The chal-
lenger sends T ∗ to the adversary (Line 9). The ad-
versary can continue to interact with the server and
finally outputs pw′. It wins if pw∗ is equal to pw′.

Using the above strategy, the adversary wins with
probability at least

∑Q+1
i=1 pi, where Q is the num-

ber of times the validation oracle is queried on in-
puts containing un∗, and pi is the i-th most proba-
ble event in χ. We therefore require that the suc-
cess probability of the adversary be negligibly close
to
∑Q+1
i=1 pi. We remark that similar bounds are

used in the context of password-authenticated key
exchange [3].

Definition 3 (Hiding) A cryptographic password
hardening service PH is hiding if, for any two-stage
PPT adversary A= (A1,A2), there exists a negligi-
ble function negl (λ) such that

Pr
[
HidingΠ,A(1λ) = 1

]
≤
Q+1∑
i=1

pi+negl (λ)

where the randomness is taken over the random
coins of the experiment and the adversary, pi is the
probability of the i-th most probable event in the dis-
tribution χ specified by A1 in the experiment, and Q
is the number of times 〈·,S(skS , ·)〉val is queried by
A2 on server input un∗. Figure 4 defines the exper-
iment HidingΠ,A.

2.3.3 Binding

Similar to commitments, binding guarantees it is in-
feasible to open an enrollment record into two dis-
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HidingΠ,A(1λ)

1 : pp←$ Setup(1λ), (pkS ,skS)←$ KGenS(pp)
2 : O := {〈·,S(skS , . . .)〉X :X ∈ {enrl,val,rot}}
3 : // All server outputs are given to adversary,

4 : // except for sk′S output by 〈·,S(skS)〉rot.

5 : // 〈·,S(skS)〉rot updates skS embedded in all oracles to sk′S .

6 : (skC ,un∗,χ,state)←$AO
1 (pp,pkS)

7 : pw∗ ←$χ

8 : T ∗ ←$〈C(skC ,un∗,pw∗, ε),S(skS ,un∗, ε)〉enrl

9 : pw′ ←$AO
2 (state,T ∗)

10 : return (pw∗ = pw′)

Figure 4: Hiding Experiment

tinct passwords. In our setting, however, the en-
rollment record is never opened but only validated.
The binding property in this context prevents a mali-
cious server from convincing the client that an enroll-
ment record T ∗ is valid for distinct tuples (un∗0,pw∗0)
and (un∗1,pw∗1). Since by the correctness require-
ment if T is the enrollment record for (un,pw), then
(T,un,pw) must pass validation. Thus, the bind-
ing property implicitly guarantees that a malicious
server can never convince the client that an invalid
enrollment record is valid.

Technically, we consider a security experiment
played between a challenger acting as the client and
an adversary acting as the malicious server. At
the beginning, the adversary outputs a client se-
cret key skC , an enrollment record T ∗, and a tuple
(un∗0,pw∗0). The challenger and the adversary then
interact in the validation protocol to validate the tu-
ple (T ∗,un∗0,pw∗0), where the adversary can use arbi-
trary server-side code. After observing the commu-
nication transcript, the adversary outputs another
tuple (un∗1,pw∗1). It interacts with the challenger
again to validate the tuple (T ∗,un∗1,pw∗1). The ad-
versary wins if (un∗0,pw∗0) and (un∗1,pw∗1) are distinct
and both validations output 1. We require that the
probability of this happening is negligible.

Definition 4 (Binding) A cryptographic password
hardening service PH is binding if, for any four-
stage PPT adversary A= (A1,A2,A3,A4), there ex-
ists a negligible function negl (λ) such that

Pr
[
BindingΠ,A(1λ) = 1

]
≤ negl (λ)

where the randomness is taken over the random
coins of the experiment and the adversary. Figure 5
defines the binding experiment.

BindingΠ,A(1λ)

1 : (pkS ,skC ,T
∗,un∗0,pw∗0,state)←$A1(1λ)

2 : (b0,state)←$〈C(skC ,T ∗,un∗0,pw∗0),A2(state)〉val

3 : (un∗1,pw∗1,state)←$A3(state)
4 : (b1,state)←$〈C(skC ,T ∗,un∗1,pw∗1),A4(state)〉val

5 : b2← ((un∗0,pw∗0) 6= (un∗1,pw∗1))
6 : return b0∧ b1∧ b2

Figure 5: Binding Experiment

2.3.4 Forward Security

Intuitively, the key rotation should render an old
client or server key useless to the adversary. Further,
an old client or server secret key should not help in
recovering information from an updated enrollment
record. To formalize this intuition, one possible but
complicated way is to define a security experiment
which gives the adversary accesses of a special key
rotation oracle apart from the usual enrollment and
validation oracles. The key rotation oracle leaks ei-
ther the client or the server secret key to the ad-
versary, and at the same time rotates the old keys
to the new ones. The goal of the adversary is to
find out the underlying password of an enrollment
record. Alternatively, we consider a simpler defini-
tion based on the intuition that the rotated keys and
enrollment records are indistinguishable from freshly
generated ones.

Technically, we consider a security experiment
played between a challenger, acting as both the
client and the server, and an adversary acting as
a malicious outsider. At the beginning, the adver-
sary outputs both secret keys skC and skS , and a
valid tuple (T,un,pw) under the specified keys. This
models the situations where the adversary somehow
obtains the secret keys which might be rotated many
times. The challenger then either rotates the keys
and updates the enrollment record, or samples a
new pair of keys and generates a fresh enrollment
record for (un,pw), using some auxiliary information
aux = L(T ), for some leakage function L. The up-
dated or fresh keys and enrollment record are then
sent to the adversary, who must guess how those are
produced. We require the probability of the adver-
sary guessing correctly to be negligible.

Definition 5 (Forward Security) Let L be a
leakage function which maps an enrollment record T
to some auxiliary information aux. A cryptographic
password hardening service PH is L-forward secure if
for any two-stage PPT adversary A= (A1,A2) there
exists a negligible function negl (λ) such that
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RotbΠ,A,L(1λ)

1 : pp←$ Setup(1λ)
2 : (skC ,skS ,T,un,pw,state)←$A1(pp)
3 : b0← 〈C(skC ,T,un,pw),S(skS ,un)〉val

4 : if b= 0 then
5 : ((pk′C ,sk

′
C , τ),(pk′S ,sk

′
S))←$〈C(skC),S(skS)〉rot

6 : T ′ ←$ Udt(τ,T,un)
7 : else
8 : (pk′C ,sk

′
C)←$ KGenC(pp), (pk′S ,sk

′
S)←$ KGenS(pp)

9 : aux←L(T )
10 : T ′ ←$〈C(sk′C ,un,pw,aux),S(sk′S ,un,aux)〉enrl

11 : endif
12 : b1 ←$A2(state,sk′C ,sk

′
S ,T

′)
13 : return b0∧ b1

Figure 6: L-Forward Security Experiment

∣∣∣Pr
[
Rot0Π,A,L(1λ) = 1

]
−Pr

[
Rot1Π,A,L(1λ) = 1

]∣∣∣≤ negl (λ)

where the randomness is taken over the random
coins of the experiments and the adversary. Figure 6
defines the two experiments.

2.4 Comparison with the Definitions
of Schneider et al. [21]

We comprehensively explain the differences between
our definitions and those of Schneider et al. [21]. We
argue that ours either capture the intended security
features better, or imply their counterparts.

2.4.1 Partial Obliviousness

The property was introduced in the name “partially
hiding”, which we believe is an oversight since the
primitive was called “partially-oblivious” commit-
ment schemes. The adversary in the original security
experiment is stronger such that it generates both
the client and server secret keys. However, it is also
weaker in other abilities:

• Their embedded-password validation oracle em-
beds an enrollment record T output by the ad-
versary. In contrast, ours allow the adversary
to query on any enrollment record T .

• The client secret key embedded in the oracles is
fixed. The adversary cannot instruct the chal-
lenger to rotate it into a new one.

• The adversary does not learn the client outputs
from the embedded-password oracles. We think
this violates the general philosophy of crypto-
graphic definitions where, for most of the time,

only the secret keys are assumed to be hidden
from the adversary.

2.4.2 Hiding

The property was introduced in the name of “obliv-
iousness”, which we believe is an oversight since
obliviousness is supposed to be a security property
against a malicious server. However, the original se-
curity experiment models a malicious client, who is
trying to figure out the underlying password pw of a
given enrollment record T .

Recall that the whole point of introducing PO-
PRF and PO-COM is to prevent against offline dic-
tionary attacks. The idea is that, even given the
client secret key skC and the enrollment record T for
some username un, the adversary can only guess the
underlying password pw one at a time with the aid of
the server. This rate-limits validation queries based
on the username un. Assuming there is enough en-
tropy in the password pw, the adversary is unable to
recover pw before the limited number of validation
query quota is used up. Curiously, the definition of
Schneider et al. [21] does not model such an attack:
In the second stage, after specifying the challenge
passwords pw0 and pw1, the adversary is no longer
given access to the validation oracle. If they allow
the adversary to query the validation oracle even
once in this stage, the adversary can win trivially by
simply querying the oracle with either pw0 or pw1.

We fix this issue by requiring the adversary to
specify a distribution χ of passwords instead of just
two, and allowing it to query the validation oracle
as many times as it wants. The resistance against
offline dictionary attacks is then modeled by the suc-
cess probability of the adversary: We require that
the adversary must only be able to rule out at most
one possible password from each query to the valida-
tion oracle. Finally, note that the adversary in the
original definition cannot access any rotation oracle.

2.4.3 Binding

In the original definition, the binding property is
only guaranteed for honestly generated keys and
honestly validated enrollment records. It is not clear
what this security guarantee means in the context
of password hardening, the main motivating appli-
cation. We thus make the following changes with
a malicious server in mind. First, although it is
not necessary for the context of password hardening,
we let the adversary provide the client secret key.
Second, it does not output the two pairs (un0,pw0)
and (un1,pw1) right away. Instead, it first outputs
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(un0,pw0), waits until the validation protocol is exe-
cuted on this pair, and then adaptively outputs the
second pair. Third, the server-side code for validat-
ing the two pairs (un0,pw0) and (un1,pw1) is pro-
vided by the adversary. This formulation makes
more sense in the context of password hardening.
It models a malicious server which is trying to con-
vince the client that an enrollment record is valid for
two pairs (un0,pw0) and (un1,pw1), whereas at least
one of which must be invalid.

3 Phoenix

We propose a conceptually simple, almost generic
construction, Phoenix, based on (partially) homo-
morphic encryption and pseudorandom functions.

In the enrollment protocol, S receives a username
un. It returns hS← PRFkS (un,nS) for some random
nonce nS . C computes hC ← PRFkC (un,pw,nC) for
another random nonce nC , and encrypts the product
hS ·hC under the server public key. Then, it stores
the ciphertext as the enrollment record of (un,pw)
in its database, and securely deletes the password
pw and all intermediate values computed locally or
received from the server. S should also delete all its
intermediate values.

To validate a candidate password pw′, C computes
the pseudorandom value h′C ← PRFkC (un,pw′,nC),
and performs a homomorphic operation on the ci-
phertext such that it now encrypts the product
hS · hC/h′C . It then sends the resulting ciphertext
to S, who attempts to decrypt it. Suppose the can-
didate password is correct, the term hC is canceled
out, and S is left with a ciphertext of hS . S thus
verifies whether the message obtained from decryp-
tion equals hS , and proves the correctness of the
decryption if so. C is convinced that the candidate
password is correct if and only if the proof is valid.

To support key rotation, we need key homomor-
phism in addition to message homomorphism. We
thus instantiate the above generic construction with
an encryption scheme which is inspired by ElGa-
mal [8] and Cramer-Shoup [6], and the pseudoran-
dom function PRFk(·) = H(·)k [17], where k ∈ Zq
and the hash function H is modeled as a ran-
dom oracle. We cannot use ElGamal or Cramer-
Shoup directly, as the former is only CPA-secure
(so it is difficult to simulate the validation oracle
in the security reduction) while the latter (or any
CCA-secure scheme in general) is not homomor-
phic. Interestingly, with such an instantiation, an
enrollment record is an encryption of HS(un,nS)kS ·
HC(un,pw,nC)kC , from which we can draw connec-
tion to Pythia [9], in which the record is computed

Setup(1λ)

crs←$ Π.Gen(1λ), g←$G
return (crs,g)

KGenC(pp)

pkC ←⊥, skC ← kC ←$Zq
return (pkC ,skC)

KGenS(pp)

s,x,y,kS ←$Zq
h← gs

z← gxhy

pkS ← (h,z)
skS ← (s,x,y,kS)
return (pkS ,skS)

Figure 7: Setup Phase of Phoenix

as e(HS(un),HC(pw))kS . The pairing function e(·, ·)
is used in Pythia mainly for partial blinding by the
client, i.e., blinding pw but not un. In our construc-
tion, the server only evaluates the PRF on the user-
name un but not the password pw, which perhaps
explains why we do not need pairing.

3.1 Formal Description
Let G be a (multiplicative) finite cyclic group of or-
der q = q(λ). Let Hi∈{C,S} : {0,1}λ×{0,1}∗ → G
be hash functions to be modeled as random oracles.
Let Π be a standard non-interactive zero-knowledge
proof of knowledge system for length-2 discrete loga-
rithm representation (instantiated in Figure 11). We
construct our cryptographic password hardening ser-
vice, Phoenix, as follows.

Setup Phase. Figure 7 shows the setup algorithm
as well as the key generation algorithms. The setup
algorithm samples a common reference string crs of
the proof system Π and a random generator g of the
group G, and outputs them as the public parame-
ter pp. The client secret key is a random integer
kC . The server secret key consists of random inte-
gers s,x,y,kS , while the corresponding public key
consists of h= gs and z = gxhy.

Enrollment Phase. Figure 8 shows the enroll-
ment protocol. The input auxiliary information aux
is either an empty string denoted by ε, or a tu-
ple (nS ,nC) of server and client nonces which is
purely for proving forward security. In the former
usual case, the server and the client sample their
nonces nS and nC respectively independently and
randomly. Next, the server sends the server PRF
value hS = HS(un,nS)kS and the server nonce nS
to the client, who computes the client PRF value
hC = HC(un,nS)kC locally, and encrypts the value
hS ·hC using an ElGamal-like encryption scheme as
(gr,hr ·hS ·hC ,zr). The element zr serves as an in-

USENIX Association 26th USENIX Security Symposium    907



tegrity tag which is important for proving the hiding
property. The client then store the ciphertext and
the nonces as the enrollment record.

Validation Phase. Figure 9 shows the validation
protocol. The client wishes to validate whether
T is a valid enrollment record of the given candi-
date username un and password pw. Recall that
an enrollment record is of the form T = (gr,hr ·
hS ·hC ,zr,nS ,nC). To prepare for a validation re-
quest, the client divides the element hr ·hS ·hC by
the candidate PRF value HC(un,nS)kC , and reran-
domizes the ciphertext components. It then sends
the rerandomized ciphertext and the server nonce to
the server. The latter checks if the ciphertext is in-
deed a valid encryption of hS = HS(un,nS)kS and,
if so, returns a proof of knowledge of this fact. If
the proof passes verification, then the client is con-
vinced that the candidate username and password
satisfy hS = HS(un,nS)kS and hC = HC(un,nS)kC ,
and concludes that the enrollment record T is valid.

Key Rotation Phase. Figure 10 shows the key
rotation protocol and the update algorithm. In a
nutshell, the protocol and the algorithm work to-
gether to perturb the secret keys and the enroll-
ment records randomly yet consistently through ho-
momorphisms. To be concrete, in the key rota-
tion protocol, the server samples random integers
α,β,γ,δ and η, such that the secret key compo-
nents of the client and the server are computed as
(s′,x′,y′,k′S ,k′C) = (αs+β,αx+ δ,y+ η,αs+ γ,αs).
The client then updates each of the stored enroll-
ment records T as follows. Recall that an enroll-
ment record T = (T1,T2,T3,nS ,nC) is of the form
(T1,T2,T3) = (gr,gsrgkSS gkCC ,g

(x+sy)r). Denote r′ :=
r+v. For consistency, T2 is updated as

T ′2 = (T2 ·hv)α · (T1 ·gv)β ·gγS
= gαs(r+v)gαkSS gαkCC ·gβ(r+v) ·gγS
= g(αs+β)(r+v)gαkS+γ

S gαkCC

= gs
′r′g

k′S
S g

k′C
C .

To update T3, the client obtains from the server the
value ζ = δ+α ·η ·s+β · (y+η), and computes

T ′3 = (T3 ·zv)α · (T1 ·gv)ζ

= gα(x+sy)(r+v) ·g(δ+α·η·s+β·(y+η))(r+v)

= g((αx+δ)+(αs+β)(y+η))(r+v)

= g(x′+s′y′)r′ .

The client runs the update algorithm on all of its
stored enrollment records.

Correctness. The correctness of Phoenix follows
immediately from the completeness of Π.

3.2 Security Analysis
We give intuitions behind why Phoenix is partially
oblivious, hiding, binding, and forward secure in the
random oracle model, assuming the DDH assump-
tion holds in G. We refer the curious readers to
Appendix C for the formal security analysis.

Partial Obliviousness. Partial obliviousness
means that a compromised server cannot distinguish
which password among pw∗0 and pw∗1 was used to
generate an enrollment record for some known
username un∗. To show why this requirement is
satisfied, recall that in the challenge enrollment
record T ∗ = (T ∗1 ,T ∗2 ,T ∗3 ,n∗S ,n∗C), the only compo-
nent which is dependent on the password pw∗b is T ∗2 ,
which is of the form T ∗2 = hrhSHC(un∗,pw∗b ,n∗C)kC .
Since HC is modeled as a random oracle, both
HC(un∗,pw∗0,n∗C) and HC(un∗,pw∗1,n∗C) can be
programmed to random values independent of the
passwords, which perfectly hide the bit b from
the server. One subtlety here is the consistency
of the simulation of the random oracle, which can
be ensured as long as no oracles are queried on
inputs containing the random nonce n∗C before T ∗

is generated. Fortunately, the latter happens with
overwhelming probability as n∗C is randomly picked
by the challenger during the generation of T ∗.

Hiding. The hiding property, which defends
against dictionary attacks by a compromised client,
is the most difficult property to prove. Our proof is
inspired by the techniques used to prove the security
of password-authenticated key exchange (PAKE)
protocols. The main idea is to gradually and un-
noticeably replace the challenge enrollment record
with a truly random one, such that it hides the pass-
word perfectly. During the course, we argue that the
only ways for the adversary to notice the changes are
either solving the DDH problem or guessing the cor-
rect password in a query to the validation oracle.
Since DDH is assumed to be hard, we conclude that
the adversary cannot perform better than guessing.

Binding. The binding property requires that a
malicious cannot convince the client that an enroll-
ment record T ∗ is valid for two distinct username-
password tuples (un∗0,pw∗0) and (un∗1,pw∗1). This
property follows straightforwardly from the DL
assumption, which states that finding the dis-
crete logarithm of g2 base g1 is hard for random
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Enrollment Protocol

Client C(skC ,un,pw,aux) Server S(skS ,un,aux)
parse pkS as (h= gs,z = gxhy), skC as kC parse skS as (s,x,y,kS)
if aux 6= ε then parse aux as (nS ,nC) if aux 6= ε then parse aux as (nS ,nC)

else nC ←{0,1}λ else nS ←{0,1}λ

r←$Zq, hC ←HC(un,pw,nC)kC hS ,nS hS ←HS(un,nS)kS

return T ← (gr,hr ·hS ·hC ,zr,nS ,nC)

Figure 8: Enrollment Protocol of Phoenix

Validation Protocol

Client C(skC ,T,un,pw) Server S(skS ,un)
parse pkS as (h,z), skC as kC parse skS as (s,x,y,kS)
parse T as (T1,T2,T3,nS ,nC)
u←$Zq, b← 0[
c1
c2
c3

]
←

 T1 ·gu

T2 ·hu/HC(un,pw,nC)kC
T3 ·zu

 (c1, c2, c3,nS) if
[
c2
c3

]
=
[

cs1 ·HS(un,nS)kS
cx1(c2/HS(un,nS)kS )y

]
then

b←Π.Vf((g,h,c1, c2,HS(un,nS)),π) π π←$ Π.PoK{(s,kS) : c2 = cs1 ·HS(un,nS)kS ∧ h= gs}

return b endif

Figure 9: Validation Protocol of Phoenix

(g1,g2). To see why, note that if the enrollment
record T ∗ = (T ∗1 ,T ∗2 ,T ∗3 ,n∗S ,n∗C) stores both tuples
(un∗b ,pw∗b), b ∈ {0,1}, then T ∗2 is of the form T ∗2 =
hrHS(un∗b ,n∗S)kSHC(un∗b ,pw∗b ,n∗C)kC . Then it must
be the case that HS(un∗0,n∗S)kSHC(un∗0,pw∗0,n∗C)kC =
HS(un∗1,n∗S)kSHC(un∗1,pw∗1,n∗C)kC . To exploit this
collision, the challenger simulates HS and HC such
that their inputs are mapped to ga1 and gb2 respec-
tively for random exponents a and b. Doing so allows
it to extract the discrete logarithm from the ratio of
the exponents associated with HS and HC in the
expression respectively.

Forward Security. Phoenix achieves L-forward
security with a mild leakage defined by the leakage
function L which, on input T = (T1,T2,T3,nS ,nC),
merely outputs the nonces (nS ,nC). This can be
proved by an information-theoretic argument that,
all possible combinations of client and server secret
keys obtainable from fresh key generation can also be
obtained by key rotation. Then, no matter how the
new secret keys are generated, the enrollment record
T can be updated to be consistent with the new keys,
and is indistinguishable to a fresh enrollment record

generated using the same nonces.

4 Evaluation

We implemented a prototype using Python3, Fal-
con as web framework, and Charm for the cryp-
tographic computations. We used NIST P-256
for all TLS public key operations and as the
base group for Phoenix. Information was passed
to Phoenix via HTTP GET parameters and re-
turned as a text/json response (with group ele-
ments encoded in base64): therefore, an enroll-
ment interaction would go as follows. The client
sends an http request to /enroll?tweak=john and
would get back a response in the following form:
{hs="rPHu...LcQ==",ns="4qKM...uWQ="}

We then measured the performance of Phoenix
in comparison with Pythia and the scheme by
Schneider et al. [21] on Amazon EC2 using t2.micro
instances with the server running in Frankfurt and
clients both on a separate t2.micro instance in
Frankfurt and Ireland. At the time of writing,
t2.micro instances were equipped with 1 GB of RAM
and one core Intel XEON E5-2676.
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Rotation Protocol

Client C(skC) Server S(skS)
parse pkS as (h,z) parse skS as (s,x,y,kS)
parse skC as kC α,β,γ,δ,η←$Zq

ζ := δ+α ·η ·s+β · (y+η)

k′C ← α ·kC α,β,γ,ζ k′1← α ·kS +γ, s′← α ·s+β

pk′C ←⊥ x′← α ·x+ δ, y′← y+η

sk′C ← k′C pk′S ← (hα ·gβ ,zα ·gζ)

τ ← (α,β,γ,ζ) sk′S ← (s′,x′,y′,k′S)

return (pk′C ,sk
′
C , τ) return (pk′S ,sk

′
S)

Udt(τ,T,un)

// Use the old server public key.

parse pkS as (h,z)
parse τ as (α,β,γ,ζ)
parse T as (T1,T2,T3,nS ,nC)
gS ←HS(un,nS)
v←$Zq
T ′1← T1 ·gv

T ′2← (T2 ·hv)α · (T1 ·gv)β ·gγS
T ′3← (T3 ·zv)α · (T1 ·gv)ζ

return T ′← (T ′1,T ′2,T ′3,nS ,nC)

Figure 10: Rotation Protocol of Phoenix

Frankfurt Ireland
HTTP HTTPS HTTPS HTTP HTTPS HTTPS

keep-alive keep-alive
RTT (64 bytes) 1.2 23
Pythia eval 17.93 25.28 16.01 62.03 113.79 38.56
Schneider et al. enroll 9.80 22.86 8.14 53.72 111.40 30.89
Schneider et al. validate 12.30 25.65 10.73 56.32 115.32 33.49
Phoenix enroll 5.43 17.93 3.89 50.30 107.25 26.52
Phoenix validate 9.74 22.78 8.06 53.92 113.02 30.73

Table 1: Latency in millisecond (ms)

We used the Nginx web server configured with
ECDHE-ECDSA-AES128-GCM-SHA256 for TLS
and uWSGI for the Python applications.

Latency. For the latency measurements, a full in-
teraction was executed between the cryptographic
service and the consuming web service. The num-
bers take both server and client-side processing
into account. As the client-side computations for
Phoenix are significant compared to the server-side
computations, the total latency is significantly larger
than the pure latency of the HTTP(S) requests. The
latency measurements try to answer the question
“How long does the user have to wait for the website
to check the password?”.

The presented numbers are an average over 5,000
executions of the respective protocol. We measured
HTTP and HTTPS setups as well as HTTPS with
keep-alive which removes all costs for TCP and TLS
handshakes and is therefore close to the inherent la-
tency of the cryptographic scheme.

As shown in Table 1, even in a single datacenter
setup, the full TLS handshake takes approximately
as much time as the computations of Phoenix: Re-

using a keep-alive connection it takes approximately
half the time compared to a fresh HTTPS connec-
tion in the same datacenter setting. If the crypto
service is hosted by a different datacenter from the
web application, network round-trip time quickly
dominates the overall execution time of Phoenix:
There is only one round-trip inherently needed for
either Phoenix protocol execution and the differ-
ence between the one-datacenter and same-continent
setting is almost exactly this one round-trip using
keep-alive. In a real world setup for a large website,
we expect the web service to keep a connection to
the cryptographic service open at any time and the
HTTPS with keep-alive measurements is realistic.

Throughput. For throughput measurements, we
used the Apache benchmark tool with 10,000 itera-
tions and 400 parallel requests. uWSGI and Nginx
were both configured to run with two processes to
keep OS overhead on the single core server low.

As shown in Table 2, Phoenix can process ap-
proximately 50 % more requests than the scheme by
Schneider et al. and about three times as many as
Pythia. It can even be easily scaled to multiple
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HTTPS HTTPS
keep-alive

static page > 10,000 795.22
parameter 2,607.16 807.50
Pythia eval 128.50 125.75
Schneider et al. enroll 380.37 278.51
Schneider et al. validate 221.75 183.92
Phoenix enroll 1,557.81 697.66
Phoenix validate 371.34 275.42

Table 2: Requests per second

cores or even servers if needed.
Current suggestions for state of the art pass-

word hashing [23] suggest choosing a work factor
of up to one second. Apple uses 10,000 iterations
of PBKDF2 for iTunes [12], which takes around
278.80 ms on our Amazon instance. Both computa-
tion cost and latency of Phoenix are considerably
below this mark which suggests Phoenix is highly
practical and can even be combined with traditional
password hardening in a hybrid approach.

5 Conclusion

We revisit the existing security notions of crypto-
graphic password hardening service and found that
some important properties were overlooked or not
well defined. While Pythia [9] and the subsequent
work by Schneider et al. [21] highlight the impor-
tance of key rotation, none of their security no-
tions take this feature into account. Furthermore,
we argue that the security definitions of Schnei-
der et al. [21] are weak. We give a stronger definition
and show that the scheme of Schneider et al. is in-
secure under our security definition. The attack is
simple yet of high practical relevance since it allows
an offline password dictionary attack, which is sup-
posedly avoided by the password hardening service.

We propose the Phoenix password hardening ser-
vice which greatly improves efficiency while satisfies
all desirable security properties. Specifically, it is
more efficient than the insecure protocol of Schnei-
der et al. and the seminal Pythia PRF service.
With its efficiency and simplicity, Phoenix is the
first readily deployable password hardening service.
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A Related Work

Many primitives are related to partially-oblivious
pseudorandom functions [9], such as delegatable
PRFs [14] and fully oblivious PRFs [18, 11]. They
do not allow partial obliviousness [9].

One-more unpredictability formalized for partially
oblivious PRFs [9] draws some similarities to one-
more unforgeability of blind signature schemes [13,
19, 10, 22]. This similarity inspires the subsequent
analysis [21] that the “one-more” type assumptions
are needed for proving the security of Pythia [9].

One should not confuse the resistance against
offline dictionary attack with a similar property
achieved by threshold password-authenticated key-
exchange (t-PAKE) [15]. We only consider protocols
between two parties, namely, a client and the server.
On the other hand, to authenticate using t-PAKE,
a client has to interact with a threshold number of
available servers. There are other schemes [15, 1, 7]
which support blinding, but they fail to achieve par-
tial blinding (and hence rate-limiting).

One may also consider our primitive to be simi-
lar to other proof-of-knowledge protocols such as P-
Signatures [2] since both share a mechanism to ver-
ify if two commitments are committing to the same
value. However, they are different in general. In
particular, ours does not involve any signature.

B Preliminaries

Non-Interactive Zero-Knowledge Proof of
Knowledge (NIZKPoK). Π = (Gen,Prove,Vf) is
an adaptive non-interactive zero-knowledge (NIZK)
proof system for a language L∈NP with the witness
relation R if it satisfies the following properties:
Completeness: For all x,w such that R(x,w) = 1,
and common reference strings crs∈Gen(1λ), we have
Vf(crs,x,Prove(crs,x,w)) = 1.
Soundness: For all adversaries A,

Pr[x /∈ L ∧ Vf(crs,x,π)→ 1 : crs←$ Gen(1λ);
(x,π)←$A(crs)] = ε(λ).

Zero-Knowledge: There exists PPT simulator S =
(Scrs,SProve) such that, for all PPT adversaries A,

|Pr[AProve(crs,·,·)(crs)→ 1 : crs← Gen(1λ)]−

Pr[AS
′(crs,td,·,·)(crs)→ 1 : (crs, td)←Scrs(1λ)]|= ε(λ)

where S ′(crs, td,x,w) = SProve(crs, td,x).
Furthermore, Π is a proof of knowledge (PoK) sys-

tem if, for all PPT provers P ∗, there exists a PPT

algorithm EP∗ such that

|Pr[Vf(crs,x,π) = 1 ∧ (x,w) /∈R : crs← Gen(1λ);
(x,π)← P ∗(crs),w← EP∗(crs,x,π)]|= ε(λ)

For ease of reading, we denote by PoK{w :
R(x,w) = 1} the execution of Prove(crs,x,w).

Discrete Logarithm (DL) Assumption. Let G
be a finite cyclic group of order q = q(λ). Let g be
a generator of G, and h be a group element. The
discrete logarithm problem asks to find an integer
x ∈ Zq such that h = gx. The discrete logarithm
assumption states that, for any PPT algorithm A,
the probability of A solving a random instance of
the discrete logarithm problem is negligible.

Decisional Diffie-Hellman (DDH) Assump-
tion. Let G be a finite cyclic group of order q =
q(λ). Let g be a generator of G, and a,b,c ∈ Zq.
The decisional Diffie-Hellman problem asks to dis-
tinguish the tuple (g,ga,gb,ga·b) from (g,ga,gb,gc).
The decisional Diffie-Hellman assumption states
that, for any PPT algorithm A, the probability of
A solving a random instance of the decisional Diffie-
Hellman problem is negligible.

C Formal Security Analysis

We will show that Phoenix is partially oblivious,
hiding, binding, and forward secure, relying mainly
on the DDH assumption.

Note that the instantiation of Π in Figure 11 is
a well-known extension of the Schnorr proofs [5],
which is complete, sound, and zero-knowledge, as-
suming the DL assumption holds in G (implied by
the DDH assumption) and the two hash functions
are modeled as random oracles. Thus, in the follow-
ing, we will assume Π is sound and zero-knowledge.

For conciseness, consider an extended DDH prob-
lem, which asks to distinguish whether ci←$Zq for
i ∈ [t] or ci = a · bi for i ∈ [t], when given a tuple
(g,ga,gbi ,gci)ti=1 for some t= poly (λ). By standard
hybrid argument, it can be shown that if DDH is
hard in G, then so does the extended DDH.

Theorem C.1 (Partial Oblivious) Suppose the
DDH assumption holds in G, and HC is modeled as a
random oracle, then Phoenix is partially oblivious.

Proof: The idea of the proof is to replace the pseu-
dorandom values HC(un∗,pw∗b ,n∗C)kC for b∈{0,1} by
truly random values. Then, we can reverse the role
of pw0 and pw1. Formally, we prove by defining a
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Π.Gen(1λ)

H ←$H= {H : {0,1}∗→ Zq}
return crs :=H

Π.Vf((g,h,c1, c2,gS),π)

parse π as (h̄, c̄1, ḡS , s̄, k̄S)
c :=H(g,h,c1, c2,gS , h̄, c̄1, ḡS)

b1 := (cs̄1gk̄SS = c̄1 · ḡS · cc2)

b2 := (gs̄ = h̄ ·hc)
return b := (b1∧ b2)

Π.PoK{(s,kS) : c2 = cs1 ·g
kS
S ∧ h= gs}

r1, r2 ←$Zq
h̄ := gr1

c̄1 := cr1
1

ḡS := gr2
S

c :=H(g,h,c1, c2,gS , h̄, c̄1, ḡS)
s̄ := r1 + c ·s
k̄S := r2 + c ·kS
return π := (h̄, c̄1, ḡS , s̄, k̄S)

Figure 11: Instantiation of Π

sequence of hybrid experiments for b ∈ {0,1}, each
differs slightly from the previous:
EXPb,0: is identical to OblbΠ,A.
EXPb,1: The challenger simulates the random oracle
HC as follows. On query HC(un,pw,nC), it samples
a←$Zq and returns ga. This experiment is func-
tionally equivalent to Expb,0.
EXPb,2: When executing 〈C(skC ,un∗,pw∗b , ε),
A2(st)〉enrl, since aux = ε, the challenger picks the
client nonce n∗C randomly and programs the random
oracle HC on (un∗,pw∗b ,n∗C) and (un∗,pw∗1−b,n∗C). If
any oracle (including the random oracle) is queried
on input containing n∗C before, the challenger
aborts. This happens with probability O(2−λ)
for each oracle query. Thus, this experiment is
computationally indistinguishable to Expb,1.
EXPb,3: The challenger is given an extended DH-
tuple (g,gkC ,gγ ,gθ,gδ,gξ) with δ= kCγ and ξ = kCθ.
Since the challenger does not know kC , it com-
putes the pseudorandom values HC(un,pw,nC)kC
differently. Let a be such that HC(un,pw,nC)
is programmed to ga. The challenger com-
putes HC(un,pw,nC)kC as (gkC )a. Since no or-
acle is queried on input containing n∗C before
the challenge is requested, HC(un∗,pw∗b ,n∗C) is
not yet programmed. Upon receiving the chal-
lenge request (un∗,pw∗0,pw∗1) from A, it programs
HC(un∗,pw∗b ,n∗C) := gγ and HC(un∗,pw∗b ,n∗C)kC :=
gδ. Additionally, it programs HC(un∗,pw∗1−b,n∗C) :=
gθ and HC(un∗,pw∗1−b,n∗C)kC := gξ. This experiment
is functionally equivalent to EXPb,2.
EXPb,4: The challenger is given a random tuple (g,
gkC ,gγ ,gθ,gδ,gξ) with δ,ξ←$Zq. It simulates HC
as in EXPb,3. This experiment is computationally
indistinguishable from EXPb,3, by the (extended)
DDH assumption.

Observe that EXP0,4 and EXP1,4 are functionally

equivalent. Thus, we have Obl0Π,A being computa-
tionally indistinguishable from Obl1Π,A. �

Theorem C.2 (Hiding) Let q > 2λ. Suppose that
the DDH assumption holds in G, and HS is modeled
as a random oracle, then Phoenix is hiding.

Proof: The idea of the proof is to gradually switch
the challenge enrollment record to an entirely ran-
dom one using hybrid argument. After arriving at
that hybrid experiment, the information that can
be obtained by the adversary from the oracles can
also be obtained by guessing the password. Thus,
no adversary can perform better than the one which
performs an online dictionary attack. We prove for-
mally by defining a sequence of hybrid experiments,
each differs slightly from the previous:
EXP0: is identical to HidingΠ,A.
EXP1: The proofs are now simulated using the sim-
ulator S of the proof system Π. This experiment is
computationally indistinguishable from EXP0 by the
computational zero-knowledge property of Π.
EXP2: The challenger simulates the random ora-
cle HS as follows. When A queries HS(un,nS),
it samples γ←$Zq and programs HS(un,nS) := gγ .
It further computes HS(un,nS)kS = (gkS )γ . No-
tice that the knowledge of kS is no longer required
by the challenger. Furthermore, when executing
〈C(skC ,un∗,pw∗, ε),S(skS ,un∗, ε)〉enrl, since aux = ε,
the challenger picks fresh client and server nonces n∗C
and n∗S respectively randomly and programs the ran-
dom oracle HS on (un∗,n∗S). If any oracle (including
the random oracle) is queried on input containing
n∗S before, the challenger aborts. This happens with
probability O(2−λ) for each oracle query. Thus, this
experiment is computationally indistinguishable to
Exp1.
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EXP3: The challenger is given a DH-tuple
(g,gδ,gkS ,gη) with η = δ · kS . It sets pp := g and
computes pkS honestly. Eventually, A requests to
receive an enrollment record for un∗. The chal-
lenger programs HS(un∗,n∗S) := gδ and replaces
HS(un∗,n∗S)kS by gη. This experiment differs from
EXP2 only if A queries an oracle for inputs contain-
ing n∗S before requesting the challenge, which by our
assumption will never happen.
EXP4: The challenger is given a random tuple
(g,gδ,gkS ,gη) with η←$Zq. It simulates HS as in
EXP3. This experiment is computationally indistin-
guishable from EXP3 by the DDH assumption.
EXP5: In the validation oracle the server ig-
nores the first condition c2 = cs1 · HS(un,nS)kS ,
and only checks the second condition c3 =
cx1(c2/HS(un,nS)kS )y. At this point, note that s is
not used anywhere. We show by a Cramer-Shoup-
like argument [6] that this experiment is statistically
indistinguishable from EXP3.

Note that the only information about x and y
available to an unbounded distinguisher is the rela-
tions which are linearly dependent to logg z= x+sy.
Therefore, in the view of the distinguisher, the val-
ues of x and y are not uniquely determined, and can
only be guessed correctly with a probability of at
most 1/q. Suppose that the two experiments can
be distinguished with a probability higher than 1/q.
In such an event, A must have sent (c1, c2, c3,nS)
as the first message in an interaction with the val-
idation oracle on username un, such that the tuple
satisfies only the second condition but not the first
one. Let hS :=HS(un,nS)kS . Since the first condi-
tion is not satisfied, it holds that c2 6= cs1 ·hS . Let
s′ 6= s be such that c2 = cs

′
1 ·hS . Then, by the sec-

ond condition, we have c3 = cx1(c2/hS)y = cx+s′y
1 . In

other words, logc1 c3 = x+s′y. Since s′ 6= s, the rela-
tions logg z=x+sy and logc1 c3 =x+s′y are linearly
independent, meaning that the distinguisher is able
to figure out the values of x and y. However, this
contradicts to the fact that this cannot happen with
probability higher than 1/q.
EXP6: The challenger is given a DH-tuple (g,
gr,gs,gu) with u = rs. It sets pkS := (h,z)
where h := gs and z := gx(gs)y. The challenge
enrollment record is replaced by (T ∗1 ,T ∗2 ,T ∗3 ) =
(c∗1, c∗2 · HC(un,pw,nC)kC , c∗3), where (c∗1, c∗2, c∗3) :=
(gr,gu+η,grx+uy) (since HS(un∗,n∗S)kS has been
programmed to gη). Note that c∗3 can be pre-
computed before answering any oracle queries. This
experiment is functionally equivalent to EXP5.
EXP7: The challenger is given a random tuple
(g,gr,gs,gu) with u←$Zq. It simulates the chal-

lenge enrollment record as in EXP6. This experiment
is computationally indistinguishable from EXP6 by
the DDH assumption.
EXP8: The challenger samples r,s←$Zq (so that
it knows s again) and u←$Zq \ {rs} instead. This
experiment is different from EXP7 with probability
only 1/q, which is negligible.
EXP9: This is the most technical transition. In this
and the next (which is also the last) experiment,
we assume an unbounded challenger and only use
information-theoretic arguments. SupposeA queries
the validation oracle on un and sends (c1, c2, c3,n∗S)
to the server. We split into two cases. First,
(c1, c2, c3) = (c∗1 · gv, c∗2 · hv, c∗3 · zv) for some v ∈ Zq
(which is checkable by an unbounded challenger).
In this case, we call the adversary successful, and
the challenger outputs a simulated proof without
checking the second condition (it must be satisfied).
Otherwise, (c1, c2, c3) 6= (c∗1 · gv, c∗2 ·hv, c∗3 · zv) for all
v ∈ Zq. In this case, the challenger outputs ⊥ with-
out checking the second condition. We claim that
this experiment is indistinguishable from EXP8 by
the following information-theoretic argument.

Throughout the experiment, A learns the rela-
tions z = gx+sy, c∗2 = gu+η, and c∗3 = grx+uy. If A
is powerful, it might know logz = x+ sy, logc∗2 =
u+ η, and logc∗3 = rx+ uy. Substituting the first
and second into the third, we have logc∗3− r logz =
(logc∗2 − rs)y− ηy. Note that this is a quadratic
equation with two variables (y,η) which has expo-
nentially many solutions. η also counts as a variable
since HS(un,n∗S)kS are never revealed to A for all
un, and in particular for un = un∗. Suppose that A
queries the validation oracle on (un,nC ,nS) where
(un,nS) = (un∗,n∗S), and (c1, c2, c3) received from
the A satisfies the second condition. We have c3 =
cx1c

y
2g
−η·y. By substituting logz = x+ sy, we have

logc3− logc1 logz= (logc2− logc1 ·s)y−ηy. For this
relation to be satisfied, Amust either guess the tuple
(y,η) correctly, which happens with negligible prob-
ability, or keep the coefficients unchanged. For the
latter case, we have logc∗2−rs= logc2− logc1 ·s and
logc∗3−r logz = logc3− logc1 logz. Let logc1 = r+v
for some v ∈ Zq, or equivalently, c1 = c∗1 · gv. We
obtain c2 = c∗2 · (gs)v = c∗2 ·hv and c3 = c∗3 ·zv.
EXP10: The challenger replaces T ∗1 , T ∗2 and
T ∗3 by random group elements in G, and hence
the challenge enrollment record is independent
of pw∗. Internally, it stores (c∗1, c∗2, c∗3) :=
(T ∗1 ,T ∗2 /HC(un,pw,nC)kC ,T ∗3 ) so as to answer
queries to the validation oracle. This experiment
is functionally equivalent to EXP9.

In EXP10, the view of A is independent of pw∗
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unless it is successful in one of the Q queries to
the validation oracle on un∗. Among all successful
adversaries, A cannot do better than guessing pw∗
and hence (c∗1, c∗2, c∗3) correctly, and re-randomizes
the latter. Note that the probability of guessing the
correct pw∗ is upper-bounded by

∑Q+1
i=1 pi. To con-

clude, the probability that A wins in EXP0, that is
HidingΠ,A, is upper-bounded by

∑Q+1
i=1 pi+ ε(λ). �

Theorem C.3 (Binding) Suppose that the DL as-
sumption holds in G, and HS and HC are modeled
as random oracles, then Phoenix is binding.

Proof: Our idea is to program the random oracles
so that they map inputs to random group elements,
with their discrete logarithms known to the simula-
tor. Thus, if the adversary outputs two valid tuples
for the same enrollment record, the simulator can
solve a system of linear equations of the exponents.
It is then able to recover the discrete logarithm of a
group element which is used as a generator for sim-
ulating the random oracles. Formally, we prove by
reduction.

Suppose a PPT adversary A breaks binding
with non-negligible probability, we construct a PPT
solver B of the discrete logarithm problem. Let B
be a simulator which receives a discrete logarithm
problem instance (g1,g2). It generates crs honestly
and sends pp := (crs,g1) to A. B maintains dictio-
naries D1 and D2 mapping (un,nS) and (un,pw,nC)
respectively to random exponents. When A queries
the random oracle HS on (un,nS), it checks whether
HS(un,nS) is programmed. If so, it retrieves and
returns HS(un,nS). Otherwise, it samples a ran-
dom exponent a← Zq, records D1[un,nS ] := a, and
programs HS(un,nS) := ga1 . B simulates HC sim-
ilarly. When A queries the random oracle HC
on (un,pw,nC), it checks whether HC(un,pw,nC)
is programmed. If so, it retrieves and returns
HC(un,pw,nC). Otherwise, it samples a random ex-
ponent b← Zq, records D2[un,pw,nC ] := b, and pro-
grams HC(un,pw,nC) := gb2.

Assuming A is successful, it outputs (skC ,
T ∗,un∗0,pw∗0,state) such that 〈C(skC ,T ∗,un∗0,pw∗0),
A2(state)〉val outputs 1 at the client side. Parse
skC = kC , and T ∗ = (T ∗1 ,T ∗2 ,T ∗3 ,n∗S ,n∗C). Let
a0 and b0 be such that HS(un∗0,n∗S) = ga0

1 and
HC(un∗0,pw∗0,n∗C) = gb0

2 . This means that A is
able to produce a proof π0 of the knowledge of
(s,kS,0) such that T ∗2 = (T ∗1 )s ·HS(un∗0,n∗S)kS,0 ·
HC(un∗0,pw∗0,n∗C)kC = (T ∗1 )s ·ga0·kS,0

1 ·gb0·kC
2 and h=

gs1. Using the extractor of Π, B extracts (s,kS,0).
Next, A outputs (un∗1,pw∗1,state) such that

〈C(skC ,T ∗,un∗1,pw∗1),A(state)〉val outputs 1 at the

client side. Let a1 and b1 be such thatHS(un∗1,n∗S) =
ga1 and HC(un∗1,pw∗1,n∗C) = hb1 . This means that
A is able to produce a proof π1 of the knowledge
of (s,kS,1) such that T ∗2 = (T ∗1 )s ·HS(un∗1,n∗S)kS,1 ·
HC(un∗1,pw∗1,n∗C)kC = (T ∗1 )s ·ga1·kS,1

1 ·hb1·kC and h=
gs1. Using the extractor of Π, B extracts (s,kS,1).

Through simple arithmetic, we obtain the re-
lation g

a0·kS,0
1 · gb0·kC

2 = g
a1·kS,1
1 · gb1·kC

2 . That is,
logg1 g2 = (a1 ·kS,1−a0 ·kS,0)/(kC · (b0− b1)). Since
(un∗0,pw∗0) 6= (un∗1,pw∗1), b0 and b1 are sampled inde-
pendently at random. Thus the above expression is
well defined with overwhelming probability. B thus
outputs a1·kS,1−a0·kS,0

kC ·(b0−b1) and solves the discrete loga-
rithm problem with overwhelming probability. �

Theorem C.4 (Forward Security) Let L be a
leakage function such that L(T ) := (nS ,nC) for T =
(T1,T2,T3,nS ,nC). Phoenix is L-forward secure.

Proof: We prove by showing that each pair of
client and server secret keys output by the key gen-
eration algorithms can also be obtained via rotation
from any old pair of secret keys, and vice versa.

Consider the RotbΠ,A,L experiment. Let
(s,x,y,kS ,kC) ∈ Z5

q be the client and server secret
key components chosen by A. There is a one-to-one
correspondence between each (s′,x′,y′,k′S ,k′C) ∈ Z5

q

and each (α,β,γ,δ,η) ∈ Z5
q , given equivalently by

s′ = α ·s+β

x′ = α ·x+ δ

y′ = y+η

k′S = α ·kS +γ

k′C = α ·kC

and



α = k′C/kC

β = s′−α ·s
γ = k′S −α ·kS
δ = x′−α ·x
η = y′−y

.

Thus, the distribution of (s′,x′,y′,k′S ,k′C) which is
sampled uniformly from Z5

q and that which is com-
puted from a uniformly random tuple (α,β,γ,δ,η)
are identical.

Next, let T = (T1,T2,T3) given byA be of the form
(gr,gsrgkSS gkCC ,g

(x+sy)r). The new record T ′ is of
the form T ′ = (gr′ ,gs′r′gk

′
S
S g

k′C
C ,g

(x′+s′y′)r′), where if
b= 0 then r′ = r+v for a uniformly random v←$Zq,
and if b = 1 then r′←$Zq is sampled uniformly at
random. The two cases give identical distributions.
�
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Abstract

High-performance cryptographic code often relies on
complex hand-tuned assembly language that is cus-
tomized for individual hardware platforms. Such code
is difficult to understand or analyze. We introduce a new
programming language and tool called Vale that supports
flexible, automated verification of high-performance as-
sembly code. The Vale tool transforms annotated assem-
bly language into an abstract syntax tree (AST), while
also generating proofs about the AST that are verified via
an SMT solver. Since the AST is a first-class proof term,
it can be further analyzed and manipulated by proven-
correct code before being extracted into standard assem-
bly. For example, we have developed a novel, proven-
correct taint-analysis engine that verifies the code’s free-
dom from digital side channels. Using these tools, we
verify the correctness, safety, and security of implemen-
tations of SHA-256 on x86 and ARM, Poly1305 on x64,
and hardware-accelerated AES-CBC on x86. Several im-
plementations meet or beat the performance of unverified,
state-of-the-art cryptographic libraries.

1 Introduction
The security of the Internet rests on the correctness of the
cryptographic code used by popular TLS/SSL implemen-
tations such as OpenSSL [61]. Because this cryptographic
code is critical to TLS performance, implementations of-
ten use hand-tuned assembly, or even a mix of assembly,
C preprocessor macros, and Perl scripts. For example, the
Perl subroutine in Figure 1 generates optimized ARM
code for OpenSSL’s SHA-256 inner loop.

Unfortunately, while the flexibility of script-generated
assembly leads to excellent performance (§5.1) and helps
support dozens of different platforms, it makes the cryp-
tographic code difficult to read, understand, or analyze. It
also makes the cryptographic code more prone to inadver-
tent bugs or maliciously inserted backdoors. For instance,
in less than a month last year, three separate bugs were
found just in OpenSSL’s assembly implementation of the
MAC algorithm Poly1305 [64–66].

Since cryptographic code is so critical for security,
we argue that it ought to be verifiably correct, safe, and
leakage-free.

sub BODY_00_15 {
my ($i,$a,$b,$c,$d,$e,$f,$g,$h) = @_;
$code.=<<___ if ($i<16);
#if __ARM_ARCH__>=7
@ ldr $t1,[$inp],#4 @ $i
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#‘$Sigma1[1]-$Sigma1[0]‘
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
eor $t0,$t0,$e,ror#‘$Sigma1[2]-$Sigma1[0]‘@Sigma1(e)
# ifndef __ARMEB__
rev $t1,$t1
# endif
#else
@ ldrb $t1,[$inp,#3] @ $i
add $a,$a,$t2 @ h+=Maj(a,b,c) from the past
ldrb $t2,[$inp,#2]
ldrb $t0,[$inp,#1]
orr $t1,$t1,$t2,lsl#8
ldrb $t2,[$inp],#4
orr $t1,$t1,$t0,lsl#16
# if $i==15
str $inp,[sp,#17*4] @ make room for $t4
# endif
eor $t0,$e,$e,ror#‘$Sigma1[1]-$Sigma1[0]‘
orr $t1,$t1,$t2,lsl#24
eor $t0,$t0,$e,ror#‘$Sigma1[2]-$Sigma1[0]‘@Sigma1(e)
#endif

FIGURE 1—Snippet of a SHA-256 code-generating Perl script
from OpenSSL, with spacing adjusted to fit in one column.
§4.1 helps decode and explain the motivations for this style.

Existing approaches to verifying assembly code fall
roughly into two camps. On one side, frameworks like
Bedrock [19], CertiKOS [23], and x86proved [42] are
built on very expressive higher-order logical frameworks
like Coq [22]. This allows great flexibility in how the
assembly is generated and verified, as well as high as-
surance that the verification matches the semantics of
the assembly language. On the other side, systems like
BoogieX86 [37, 77], VCC [56], and various assembly lan-
guage analysis tools [9] are built on satisfiability-modulo-
theories (SMT) solvers like Z3 [25]. Such solvers can
potentially blast their way through large blocks of as-
sembly and tricky bitwise reasoning, making verification
faster and easier.

In this paper, we present Vale, a new language for ex-
pressing and verifying high-performance assembly code
that strives to combine the advantages of both approaches;
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FIGURE 2—Verifying cryptographic code with Vale and
Dafny.

i.e., it combines flexible generation of high-performance
assembly with automated, rigorous, machine-checked ver-
ification. For any assembly program written in Vale, the
Vale tool constructs an abstract syntax tree (AST) rep-
resenting the program’s code, and produces a proof that
this AST obeys a desired specification for any possible
evaluation of the code (Figure 2). The specification, the
AST, and the proofs are currently expressed in Dafny [50],
an off-the-shelf logical framework supporting SMT-based
verification, higher-order reasoning, datatypes, functions,
lemmas, and extraction of executable code. Dafny uses
Z3 to verify the proofs generated by Vale.

After verification, the AST is available in the logical
framework for further analysis and manipulation. As a
powerful example of this post-analysis, we have devel-
oped a verified analyzer that checks Vale ASTs for po-
tential information leakage through timing and memory-
access channels.

Although we trust our crypto specs, Dafny, and the
assembly language semantics to be correct, as shown in
Figure 2, neither Vale nor the information leakage ana-
lyzer is part of the trusted computing base. The former
merely produces ASTs and proofs that are then checked
against trusted specifications by Dafny; the latter is writ-
ten directly in Dafny and verified once and for all to be
correct for all possible ASTs. Working directly on as-
sembly language means we trust an assembler but not a
higher-level compiler, so we need not worry about com-
pilers that introduce information leaks into cryptographic
code [43].

Contributions In summary, this paper makes the follow-
ing contributions.

• The design and implementation of Vale (§2), which
combines flexible generation of high-performance
assembly with automated machine-checked verifica-
tion.

• A machine-verified analyzer that checks verified
Vale programs for side channels based on a novel
combination of dataflow analysis and Hoare-style
proofs (§3).

• A series of case studies applying Vale to standard
algorithms like Poly1305, AES, and SHA on x86,
x64, and ARM platforms with support for both the
GNU assembler and MASM (§4). They show that
Vale is flexible enough to express and verify even
highly scripted code generation like that in Figure 1.
In particular, it replaces the use of chaotic Perl scripts
with a principled approach based on verification and
partial evaluation.

• An evaluation demonstrating that, because Vale
can match the expressiveness of OpenSSL’s code-
generation techniques, the verified assembly code
generated by Vale can match the performance of
highly-optimized implementations like OpenSSL
(§5). Hence, verification does not require compro-
mising on performance. We believe that Vale is the
first system to demonstrate formally verified assem-
bly language cryptographic code whose performance
matches that of comparable OpenSSL code.

All Vale code and case studies are available on GitHub at
https://github.com/project-everest/vale.

2 Vale Design and Implementation
Vale is currently targeted towards verifying cryptographic
assembly language code, which tends to have simple struc-
tured control flow and heavy inlining. Therefore, the Vale
language includes control constructs such as inline pro-
cedures, conditionals, and loops. Note that these control
constructs are independent of any particular features in the
underlying logical framework. For example, even when
using Dafny as a logical framework, Vale procedures are
not executable Dafny methods, Vale while loops are not
executable Dafny while loops, and executable Vale code
is not compiled with Dafny’s compiler, which compiles
Dafny’s own control constructs to C#. Instead, Vale relies
on the logical framework mainly for mathematical reason-
ing in proofs, and uses executable Dafny code only for
specialized tasks like printing assembly language code
and static analysis of Vale code.

The Vale language does not contain anything specific to
a particular architecture such as x86 or ARM or to a par-
ticular assembler such as the GNU assembler or MASM.
Instead, programmers write Dafny code that defines the
syntax and semantics for the architecture of their choice,
then use Vale to manipulate the syntax and semantics. §2.1
introduces examples of such Dafny declarations. §2.2 and
§2.3 then present Vale code, demonstrating the flexibility
and expressiveness of the Vale language. §2.4 describes
how Vale generates Dafny proofs that make the best use
of Dafny and Z3. Finally, §2.5 describes how Vale handles
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errors to improve usability. Figures in these subsections
present examples of Dafny and Vale code. Although the
syntax for both languages is similar, Vale’s syntax (see
appendix) is independent from Dafny’s syntax; the figure
captions specify the language of each code snippet.

2.1 Dafny declarations

datatype reg = R0 | R1 | R2 | R3 | R4 | R5
| R6 | R7 | R8 | R9 | R10 | R11 | R12 | LR
datatype op =
op_reg(r:reg)

| op_const(n:uint32)
datatype ins =
Add(addDst:op, addSrc1:op, addSrc2:op)

| Ldr(ldrDst:op, ldrBase:op, ldrOffset:op)
| Str(strSrc:op, strBase:op, strOffset:op)
datatype cmp = Lt(o1:op, o2:op) | Le(o3:op, o4:op)
datatype code =
Ins(ins:ins)

| Block(block:codes)
| IfElse(ifCond:cmp, ifTrue:code, ifFalse:code)
| While(whileCond:cmp, whileBody:code)
type codes = list<code>
datatype state = State(ok:bool,

regs:map<reg, uint32>,
mem:map<int, uint32>)

function evalCode(c:code, s1:state, s2:state):bool
{ match c case Ins(ins) => ...

case Block(block) => ...
case IfElse(cond, ifT, ifF) => ...
case While(cond, body) => ...

}
method PrintCode(c:code) { ... }

FIGURE 3—Example Dafny definitions for simplified ARM.

As a running example, the Dafny declarations in Fig-
ure 3 define registers, operands, instructions, and struc-
tured code for a simplified subset of ARM code. The state
of the simplified ARM machine consists of registers and
memory. To help prove execution safety, the state also
contains an ok flag to indicate whether the state is consid-
ered good (ok = true) or crashed (ok = false). The
operational semantics are defined as a relation evalCode
that specifies all possible states s2 that code c can
reach in a finite number of steps from s1. Since any
crash happens in a finite number of steps, showing
∀s2 . evalCode(c, s1, s2) ⇒ s2.ok proves that
c starting in state s1 cannot crash.

Notice that neither the logical framework nor Vale
needs to know anything about particular assembly lan-
guage architectures. In fact, the logical framework need
not know anything about assembly language at all. This
allows Vale to take advantage of existing logical frame-
works like Dafny. It also ensures portability across ar-
chitectures; supporting a new architecture means writing
a new set of declarations like those in Figure 3, with
no modifications needed to Vale or Dafny. Furthermore,
properties of programs are proven directly in terms of the

method Main()
{
var code := Block(
cons(Add(op_reg(R7), op_reg(R7), op_const(1))
,cons(Add(op_reg(R7), op_reg(R7), op_const(1))
,cons(Add(op_reg(R7), op_reg(R7), op_const(1))
,nil))));

...proof about code...

assert forall s1:state, s2:state ::
s1.ok && evalCode(code, s1, s2)

&& s1.regs[R7] < 0xfffffffd
==> s2.ok && s2.regs[R7] == s1.regs[R7] + 3;

PrintCode(code);
}

FIGURE 4—Example Main method in Dafny.

semantics of assembly language, so the Vale language
and tool need not be trusted. Although Vale builds on
standard Hoare rules for conditional statements, while
loops, and procedure framing, these rules are expressed
as a hand-written library of lemmas, verified relative to
the assembly language semantics, as depicted in Figure 2.

Given a machine’s semantics, a Dafny programmer
can, in theory, construct ASTs for assembly-language pro-
grams and try to prove properties about their evaluation.
Figure 4 shows an example. It creates a block of code
consisting of three Add instructions; proves safety (that
the final state is good); proves that one effect of the code
is to add three to register R7; and prints the code.

However, cons(...), op_reg(...), and
op_const(...) make an awkward syntax for writing
assembly language. Since Dafny is a general-purpose
high-level language that knows nothing about assembly
language instructions, operands, and registers, Vale
provides domain-specific language support for declaring
instructions, declaring and instantiating input and output
operands, declaring which registers an instruction reads
and modifies, and so on. Furthermore, it’s useful to
have language support for constructing proofs about
complex code. Vale can be thought of as an assistant that
generates the code variable in the example above and
fills in the missing “...proof about code...”. Dafny checks
the Vale-generated code object, using the Vale-generated
proof, against a crypto specification the programmer
writes in Dafny; hence, any mistakes in the code or proof
will be caught by Dafny. This means that Vale is not part
of the trusted computing base on which the correctness,
safety, and security of the code depend.

2.2 Vale procedures

Figure 5 shows some simple Vale procedures. The global
variables ok, r0. . .r12, lr, and mem represent distinct
components of the state type declared in Figure 3. Each
procedure declares which of these components it can
read (using reads clauses) or read and modify (using
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modifies clauses). The effect on the state is expressed
using preconditions (requires clauses) and postcondi-
tions (ensures clauses). The Add3ToR7 procedure, for
example, promises to add three to register r7 under the
condition that the initial value or r7 isn’t so big that
adding three would cause overflow.

var{:state ok()} ok:bool;
var{:state reg(R0)} r0:uint32;
var{:state reg(R1)} r1:uint32;
...
var{:state reg(R12)} r12:uint32;
var{:state reg(LR)} lr:uint32;
var{:state mem()} mem:map(int, uint32);

procedure AddOne(inout operand r:uint32)
requires r < 0xffffffff;
ensures r == old(r) + 1;

{
ADD(r, r, 1);

}

procedure Add3ToR7()
modifies r7;
requires r7 < 0xfffffffd;
ensures r7 == old(r7) + 3;

{
AddOne(r7);
AddOne(r7);
AddOne(r7);

}

FIGURE 5—Examples of state declarations and inline proce-
dure declarations in Vale.

In addition to preconditions and postconditions, Vale
also requires loop invariants for loops:
while (r7 <= 100) // example loop in Vale

invariant r7 <= 103; // loop invariant
{

Add3ToR7();
}

For each procedure, the Vale tool generates a Dafny
function that produces an AST value of type code. For ex-
ample, for the code in Figure 5, it generates the following
Dafny code:
function method{:opaque} code_AddOne(r:op):code {

Block(cons(code_ADD(r, r, op_const(1)), nil()))
}
function method{:opaque} code_Add3ToR7():code {

Block(cons(code_AddOne(op_reg(R7)),
cons(code_AddOne(op_reg(R7)),
cons(code_AddOne(op_reg(R7)), nil()))))

}

Here, function method is Dafny’s syntax for a func-
tion whose code can be extracted and executed. Both
Vale and Dafny use the syntax {:...} for attributes. The
opaque attribute indicates that the function definition will
be hidden during proofs except where explicitly revealed.

procedure{:instruction Ins(Add(dst,src1,src2))}
ADDW(out operand dst:uint32,

operand src1:uint32, operand src2:uint32)
ensures dst == (src1 + src2) % 0x100000000;

procedure{:instruction Ins(Add(dst,src1,src2))}
ADD(out operand dst:uint32,

operand src1:uint32, operand src2:uint32)
requires 0 <= src1 + src2 < 0x100000000;
ensures dst == src1 + src2;

procedure{:instruction Ins(Ldr(dst,base,offset))}
LDR(out operand dst:uint32,

operand base:uint32, operand offset:uint32)
reads mem;
requires InMem(base + offset, mem);
ensures dst == mem[base + offset];

procedure{:instruction Ins(Str(src,base,offset))}
STR(operand src:uint32,

operand base:uint32, operand offset:uint32)
modifies mem;
requires InMem(base + offset, mem);
ensures mem == old(mem)[base + offset := src];

FIGURE 6—Example Vale instruction declarations, including
two for the same instruction: both a wrapping (ADDW) and non-
wrapping (ADD) specification of the Add instruction.

The leaves of the AST are the individual instructions
declared in Figure 3. Programmers declare instructions
as Vale procedures with specifications of their choice.
They must prove that the specifications are sound with
respect to the semantics given by evalCode, so these
specifications do not have to be trusted.

Multiple procedures with different specifications may
be given for the same instruction if different specifications
will be more convenient in different situations. For ex-
ample, the ADDW (wrapping add) and ADD (non-wrapping
add) procedures in Figure 6 both have the same body, a
single Add instruction. However, ADD restricts its input
operands so it can provide a simpler postcondition that
need not consider the consequences of overflow. This
hiding often makes code easier to verify in cases when
wrapping is not intended.

The generation of first-class AST values allows pro-
grammers to customize the analysis and processing of
assembly language code. For example, the PrintCode
method in Figure 3 can be customized to print assem-
bly language in various formats; our current PrintCode
emits either GNU assembler or MASM assembly code,
depending on a command-line argument. This makes
Vale more flexible than tools like BoogieX86 [77] and
VCC [56] that hard-wire the generation of assembly
language output. Indeed, Vale initially only supported
MASM output, but adding support for the GNU assem-
bler took less than two hours. §3 pushes this flexibility
even further, implementing an entire verified information
leakage analysis with no modifications to Vale.
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procedure ReadA(ghost a:seq(uint32),inline b:bool)
reads r0; mem;
modifies r1;
requires

length(a) >= 3;
a[0] <= 100;
a[1] <= 100;
forall i :: 0 <= i < length(a) ==>

InMem(r0 + 4 * i, mem)
&& mem[r0 + 4 * i] == a[i];

ensures
b ==> r1 == a[0] + 1;
!b ==> r1 == a[1] + 1;

{
inline if (b) {

LDR(r1, r0, 0); //load memory [r0+0] into r1
AddOne(r1);

} else {
LDR(r1, r0, 4); //load memory [r0+4] into r1
AddOne(r1);

}
}
procedure{:recursive} AddNToR7(inline n:nat)

modifies r7;
requires r7 + n <= 0xffffffff;
ensures r7 == old(r7) + n;

{
inline if (n > 0) {

AddOne(r7);
AddNToR7(n - 1);

}
}

FIGURE 7—Ghost and inline parameters in Vale.

2.3 Operands, ghost variables, and inline variables

Parameters to procedures may be operands, ghost vari-
ables, or inline variables. The AddOne procedure in Fig-
ure 5, for example, takes an operand r as a parameter.
Operands are marked as in, out, or inout to indicate
whether the operand is read, written, or both, where in
is the default. These labels are used in place of reads
and modifies clauses. Register and CISC-style mem-
ory operands may be read and/or written, while constant
operands may only be read.

Ghost parameters may be used to make specifications
about the state easier to express. For example, the ReadA
procedure in Figure 7 uses a ghost parameter a to help
express the memory pointed to by register r0. In this case,
each 4-byte word of the memory contains one element of
the sequence a. Ghost parameters are used in the proofs
(but not the ASTs) that Vale generates.

Inline parameters, on the other hand, do appear in the
ASTs and may be used to specialize the generated code
before passing it to PrintCode, as seen in Figure 7. The
ReadA procedure uses an inline bool to generate code to
load from r0 + 0 if b = true, and to load from r0 + 4
if b = false. The AddNToR7 procedure uses an inline
natural number n to repeat the AddOne instruction n times,
generating a completely unrolled loop.

From these, Vale generates functions parameterized

function method{:opaque} code_ReadA(b:bool):code
{

Block(cons((
if b then Block(cons(code_LDR(

op_reg(R1), op_reg(R0), op_const(0))
...

else ... )))
}
function method{:opaque} code_AddNToR7(n:nat):code
{

Block(cons((
if (n > 0) then Block(cons(

code_AddOne(sp_op_reg(R7)) ...
else ...)))

}

FIGURE 8—Dafny code that generates varying assembly
code.

over the inline b and n variables, so that each b and n
produces a possibly different AST (see Figure 8). In these
functions, inline if statements turn into conditional
expressions that generate different code for different in-
line variable assignments, in contrast to ordinary if state-
ments that turn into IfElse nodes in the AST. Neverthe-
less, the proofs generated by Vale verify the correctness of
the procedures for all possible b and n. From the proof’s
perspective, inline variables are no different from ordi-
nary variables and inline if statements are no different
from traditional if statements. The proofs are checked
before picking particular b and n values to generate and
print the code. This may be thought of as a simple form of
partial evaluation, analogous to systems like MetaML [73]
that type-check a program before partially evaluating it.
This sort of partial evaluation provides a principled re-
placement for Perl scripts and ifdefs; §4.1 describes
how these features are used to express and verify the code
in Figure 1.

2.4 Vale proofs

Although Vale ultimately proves properties in terms of the
underlying machine semantics, it still structures its proofs
to take advantage of the automated SMT-based reasoning
provided by Dafny and Z3. For each procedure p, the Vale
tool generates a Dafny lemma which proves that if p’s
preconditions hold then it does not crash and its postcon-
ditions hold. A Dafny lemma is quite similar to a Dafny
method: the desired property is declared as the postcon-
dition (i.e., via ensures clauses) and proof assumptions
are declared as preconditions (i.e., via requires clauses).
In its simplest form, a Vale proof looks much like the as-
sertion in Figure 4; i.e., it consists of a Dafny lemma

• taking an initial state s1 and a final state s2 as pa-
rameters,

• requiring evalCode(p.code, s1, s2),
• requiring s1.ok,
• requiring that all of p’s preconditions hold for s1,
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• ensuring that all of p’s postconditions hold for s2,
and

• ensuring that any state not mentioned in a modifies
clause remains the same from s1 to s2.

The lemma’s proof (i.e., the body of the lemma) consists
largely of calls to the lemmas for other procedures; for
example, the proof of Figure 5’s lemma for Add3ToR7
consists mainly of three calls to the lemma for AddOne,
whose proof consists mainly of one call to the lemma
for ADD. Vale stitches these calls together by adding ad-
ditional calls to library lemmas, written in Dafny, for
sequential composition, if/else, and while loops.

For some procedures, this simple proof form leads to
slower-than-expected proof verification by Dafny and Z3.
We find that the primary culprit is Z3’s reasoning about
long chains of updates to the state type and its compo-
nents state.regs and state.mem. By itself, reasoning
about updates is acceptably fast, but the combination of
updates and complex specifications leads to painfully slow
reasoning.

Therefore, Vale can also generate more sophisticated
proofs that factor reasoning about updates and reasoning
about specifications into two separate lemmas. An outer
lemma reasons about the updates and the well-formedness
of a procedure p’s states and instructions, but does not
attempt to reason about p’s preconditions and postcondi-
tions. Instead, the outer lemma calls an inner lemma to
do this reasoning. Conversely, the state is never exposed
to the inner lemma; instead, the inner lemma reasons only
about the components of the state at each step of the eval-
uation. This frees the inner lemma from reasoning about
long chains of updates to the state. The optimized proof
form speeds up verification of some procedures, such as
the Vale code for the SHA ARM code from Figure 1, by
as much as a factor of three (see §5.2).

2.5 Error handling in Vale

Vale is designed so that, when debugging a Vale program,
users only inspect user-generated code. They never need
to examine the Vale-generated code objects and proofs,
since all error messages are presented to the user in terms
of user-generated Vale code and Dafny specifications.

While Vale error messages do not assign blame to Vale-
generated Dafny code, Vale does leverage Dafny’s error
handling. Dafny provides rich error messages, which in-
clude file names, line and column numbers, and error
descriptions (e.g. “A precondition for this call might not
hold.”). To lift these error messages, Vale translates user-
generated Vale code to an intermediate Dafny representa-
tion that encodes line information from the Vale source
files. As a result, Dafny directs a user to errors within the
lines of the Vale program, as opposed to the lines of a
Vale-generated Dafny file. Thus, Vale gains Dafny’s rich
error handling without reducing usability.

Similarly, in general, a basic Vale user only needs to
know Vale and Dafny; they do not need to know internal
pieces of Dafny’s toolchain, such as Boogie or Z3, since
code for those tools is generated by Dafny.

3 Information Leakage Analysis

Since cryptographic code typically operates on secrets,
proving it secure requires more than functional correct-
ness; it requires proving the absence of leakage. Histor-
ically, attackers have exploited two broad categories of
leakage: leakage via state and leakage via side channels.
Leakage via state occurs when a program leaves secrets or
secret-dependent data in registers or memory [20]. Leak-
age via side channels occurs when an adversary learns
secrets by observing aspects of the program’s behavior.
While physical side channels are a concern [32, 48, 55],
digital side channels are typically more problematic, since
they can often be exploited by a remote attacker. These
side channels include program execution time [10, 17, 47]
and (particularly in shared tenancy deployments, such as
the cloud) memory accesses [8, 13, 31, 40, 68, 78]. Elim-
inating such side channels at the source-code level can be
difficult, as compilers may optimize away defensive code,
or even introduce new side channels [16, 43, 49].

To prove the absence of digital leakage in Vale pro-
grams, we developed a novel approach that combines
functional verification with a taint-based analyzer proven
correct against a simple specification (§3.1). This ana-
lyzer, written in Dafny, makes use of Vale’s ability to
reason about ASTs in a high-level logical framework
(§3.2). It also leverages existing specifications (e.g., fram-
ing conditions) and invariants from the code’s functional
verification to greatly simplify analysis (§3.3).

As we discuss in detail in §4, we run our analyzer on
our various cryptographic implementations to prove them
free of digital leakage. In the process, we have discovered
state leakage in OpenSSL.

Overall, because our analyzer is formally verified
against a small spec (§5.2), it has far fewer lines of trusted
code than prior compiler-aided approaches to detecting
side channels [57, 69, 70, 79]. Additionally, since we
directly analyze assembly programs, our approach does
not suffer from the compiler-introduced side channels
discussed above. Compared with prior approaches to for-
mally proving the absence of side channels (e.g., [9]), we
invest a one-time effort in verifying our analyzer, which
we can then run on an arbitrary number of Vale programs,
rather than formally reasoning about side channels for ev-
ery Vale program we write. Furthermore, previous work
struggled with alias analysis and hence resorted to manu-
ally inserted assumptions [9], whereas our alias analysis
is machine-checked (§3.3).
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3.1 Specifying leakage freedom

Below, we first provide some intuition for what it means
for a method to be leakage free. We then conclude the
section with our formal definition of leakage freedom, a
definition based on non-interference [34].

Secret inputs. A method is leakage free if it does not leak
secret inputs to an adversary. Thus, part of the specifica-
tion of leakage freedom is a specification of which inputs
are secret. To be conservative, we have the programmer
specify the opposite: the set of locations PubStartLocs
she is sure contain non-secret information. We then treat
all other locations as containing secrets.

State leakage. Secrets leak when they can be deduced
from architectural state visible to the adversary when
the method terminates. Thus, part of the specification of
leakage freedom is a specification of which outputs are
visible to the adversary. For this, we have the programmer
specify a set of locations PubEndLocs that are visible to
the adversary upon method termination. To prove leak-
age freedom, we must prove that these locations’ final
contents do not depend on secrets.

The programmer may omit from PubEndLocs any lo-
cations whose final contents are fully determined by the
functional-correctness specification. One useful applica-
tion of this principle is declassification; e.g., we leave the
32-byte hash computed by SHA-256 out of PubEndLocs
since it is a fully specified function of the hash’s input.
Another common application of this principle is framing,
i.e., when the calling convention for a method specifies
that it must leave a location unchanged. Since functional
correctness prevents changes to the location, there is no
need to check that location for leakage.

Cache-based side channels. As shown by Barthe et
al., a program is free of cache-based side channels if
it does not branch on secrets, and if it performs no secret-
dependent memory accesses [12]. Thus, to prove freedom
from cache-based side channels, it suffices to show that an
execution trace, which records all branches and memory-
access locations, does not depend on secret inputs.

To enable machine-checked verification of cache-based
side-channel freedom in Vale, we expand the architectural
model of the state with an additional ghost field trace
that represents the execution trace defined above. We also
update our machine semantics to ensure the execution
trace captures all branches and memory access locations.
For instance, we ensure that a store instruction appends
the accessed memory address to the execution trace.

Timing-based side channels. Closing cache-based side
channels is an important step in closing timing-based
side channels, but it is not sufficient. We must also show
that inputs to any variable-latency instructions do not
depend on secrets [69]. Thus, we update our machine

predicate isLeakageFree(
code:code, pubStartLocs:set<location>,
pubEndLocs:set<location>) {

forall s, t, s’, t’ ::
( evalCode(code, s, s’)
&& evalCode(code, t, t’)
&& (forall loc :: loc in pubStartLocs

==> s[loc] == t[loc])
&& s.trace == t.trace )

==> ( s’.trace == t’.trace
&& (forall loc :: loc in pubEndLocs

==> s’[loc] == t’[loc]) )
}

FIGURE 9—Correctness specification for leakage freedom.

semantics to also capture in trace all inputs to variable-
latency instructions. This way, if we prove that the trace is
independent of secrets then we also prove that the running
time is independent of secrets.

Attacker model. In summary, we model a strong at-
tacker capable of fully observing detailed digital side
channel information. We assume the attacker sees a full
execution trace of our code, including each instruction
executed, all memory locations each instruction accesses,
and any other instruction inputs that can influence tim-
ing. We also assume the attacker sees all architectural
state resulting from running our code, except for locations
where our specification explicitly says we store secrets
(e.g., decrypted messages).

Formal definition of leakage freedom. We now present
a formal definition of leakage freedom; for its encoding
in Dafny, see Figure 9. A Vale method with code Code is
leakage free if, for any two successful runs of Code, the
following two conditions:

• the two initial states, s and t, match in every location
in PubStartLocs; and

• the execution traces in those initial states, s.trace
and t.trace, are identical

imply the following two outcomes:
• the two final states, s’ and t’, match in every loca-

tion in PubEndLocs; and
• the execution traces in those final states are identical.

This is an intuitive specification for leakage freedom:
for any pair of executions of the program with the same
public values but potentially different secrets, the timing
and cache behavior of the program are the same in both
executions. Hence, any adversary’s observations must be
independent of the secret values. It is reasonable to only
consider successful runs since our functional verification
proves that the code always executes successfully.

3.2 Analyzer implementation

Rather than directly proving that each Vale program sat-
isfies our leakage specification, we invest in a one-time
effort to write and prove correct a leakage analyzer that
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can run on any Vale program. Our analyzer takes as input:
• a Vale code value (§2) Code,
• a set of locations (e.g., register names)
PubStartLocs assumed to be free of secrets
when the code begins, and

• a set of locations PubEndLocs that must be free of
secrets when the code ends.

It outputs a Boolean LeakageFree indicating whether the
code is leakage free under these conditions.

The analyzer’s top-level specification states that the
analysis is sound (though it may not be complete); i.e.,
when the analyzer claims that Code is leakage free, then
it satisfies isLeakageFree (Figure 9). More formally, we
prove that the analyzer satisfies the following postcondi-
tion:

LeakageFree ⇒
isLeakageFree(Code,PubStartLocs,PubEndLocs).

We prove this correctness property via machine-checked
proofs in Vale’s underlying logical framework Dafny [50].

The analyzer’s implementation is a straightforward
flow-sensitive dataflow analysis [45] in the tradition of
Denning et al. [27]. The main novelties are that we for-
mally verify the implementation relative to a succinct
correctness condition, and that we leverage the knowl-
edge of aliasing present in the functional verification of
the Vale programs, as described further in §3.3.

The dataflow analysis checks the code one instruc-
tion at a time, keeping track of the set of untainted lo-
cations PubLocs. In other words, it maintains the invari-
ant that each location in PubLocs contains only public
information. Initially, it sets PubLocs to PubStartLocs.
If at any point it concludes that the execution trace may
depend on state outside of PubLocs, the analyzer returns
False to indicate it cannot guarantee leakage freedom.
This may happen if a branch predicate might use a loca-
tion not in PubLocs, or a memory dereference might use
the contents of a register not in PubLocs as its base ad-
dress or offset. Loops are iterated until PubLocs reaches
a fixed point. Taint values are chosen from a lattice of
two elements (Public and Secret, with the partial order
Secret > Public), which helps in conservatively merging
taints. For instance, when the analysis merges taints for
a given destination across multiple program paths (e.g.,
at the end of a loop), the analysis conservatively sets the
destination’s taint to the least upper bound of the desti-
nation’s taint across all paths. Similarly, if an instruction
partially overwrites a destination, then the destination’s
taint is chosen as the least upper bound of the destina-
tion’s existing taint and the new taint. However, if an
instruction completely overwrites a destination, then the
destination’s taint is set to the new taint value. As a result,
the taint of a destination (e.g. a register) can change be-
tween Secret and Public many times during the analysis

of the program, thus affecting the size of the PubLocs set.
If the analyzer reaches the end of Code, it returns True if
PubEndLocs ⊆ PubLocs.

3.3 Memory taint analysis

The main challenge for taint analysis is tracking the taint
associated with memory locations. However, given our
focus on proving functional correctness of cryptographic
code, we observe that we can carefully leverage the work
already done to prove functional correctness, to drastically
simplify memory taint analysis.

Memory taint analysis is challenging because typically
one cannot simply look at an instruction and determine
which memory address it will read or write: the effective
address depends on the particular dynamic values in the
registers used as the base and/or offset of the access. Thus,
existing tools for analyzing leakage of assembly language
code depend on alias analysis, which is often too con-
servative to verify existing cryptographic code without
making potentially unsound assumptions [9].

Our approach to memory taint analysis carefully lever-
ages the work already done to prove functional correct-
ness, since some of that work requires reasoning about
the flow of information to and from memory. After all,
a program cannot be correct unless it manages that flow
correctly. For example, the developer cannot prove SHA-
256 correct without proving that the output hash buffer
does not overlap the unprocessed input.

We can push some of the work of memory taint analysis
to the developer by relying on her to provide lightweight
annotations in the code. In addition to specifying which
addresses are expected to contain public information on
entry and exit, she must make a similar annotation for
each load and store. This annotation consists of a bit in-
dicating whether she expects the instruction to access
public or secret information. For CISC instructions where
each operand may implicitly specify a load or store, she
must annotate each such memory-accessing operand with
a bit. Crucially, however, we do not rely on the correct-
ness of these annotations for security. If the developer
makes a mistake, it will be caught during either functional-
correctness verification or during leakage analysis.

These annotations make our analyzer’s handling of
memory taint straightforward. The analyzer simply labels
any value resulting from a load public or secret based
on the load instruction’s annotation. The analyzer also
checks, for each store annotated as public, that the value
being stored is actually public.

To ensure that annotation errors will be caught during
functional correctness verification, we expand the archi-
tectural model of the state with an additional ghost field
pubaddrs, representing the set of addresses currently
containing public information. A store adds its address to,
or removes it from, pubaddrs, depending on whether the
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annotation bit indicates the access is public or secret. A
load annotated as public fails (i.e., causes the state’s ok
field to become False) if the accessed address is not in
pubaddrs.

Thus, the developer is obligated to prove, before per-
forming a load, that the accessed address is in pubaddrs.
She can do this by adding it as a precondition, or by stor-
ing public information into that address. She must also
prove that any intervening store of secret information does
not overwrite the public information; in other words, she
must perform her own alias analysis. Note, however, that
she must already perform such alias analysis to prove her
code correct, so we are not asking her to do more work
than she would already have had to perform, given our
goal of functional correctness.

4 Case Studies
We illustrate Vale’s capabilities via four case studies of
high-performance cryptographic code we built with it.

4.1 OpenSSL SHA-256 on ARM

As we describe in more detail in §5.1, to identify a base-
line for our performance, we measure the performance of
six popular cryptographic libraries. For the platforms and
algorithms we evaluate, OpenSSL consistently proves to
be the fastest.

To achieve this performance, OpenSSL code tends to
be highly complex, as illustrated by the SHA-256 code
snippet in Figure 1. Note that this code is not written
directly in a standard assembly language, but is instead
expressed as a Perl subroutine that generates assembly
code. This lets OpenSSL improve performance by calling
the subroutine 16 times to unroll the loop:
for($i=0;$i<16;$i++) {
&BODY_00_15($i,@V); unshift(@V,pop(@V));

}

Furthermore, each unrolled loop iteration is customized
with a different mapping from SHA variables a. . .h to
ARM registers r4. . .r11 (stored in the @V list). This re-
duces register-to-register moves and further increases per-
formance. Finally, a combination of Perl-based run-time
checks (if ($i < 16)) and C preprocessor macros are
used to select the most efficient available instructions
on various versions of the ARM platform, as well as to
further customize the last loop iteration (i = 15).

OpenSSL’s use of Perl scripts is not limited to SHA on
ARM. It implements dozens of cryptographic algorithms
on at least 50 different platforms, including many per-
mutations of x86 and x64 (with and without SSE, SSE2,
AVX, etc.) and similarly for various versions and permu-
tations of ARM (e.g., with and without NEON support).
Many of these implementations rely on similar mixes of
assembly, C preprocessor macros, and Perl scripts. The
difficulty of understanding such code-generating code is

arguably a factor in the prevalence of security vulnerabili-
ties in OpenSSL.

To demonstrate Vale’s ability to reason about such com-
plex code, we ported all of OpenSSL’s Perl and assembly
code for SHA-256 on ARMv7 to Vale. This code takes
the current digest state and an arbitrary array of plaintext
blocks, and compresses those blocks into the digest. C
code handles the padding of partial blocks.

Porting the Perl and assembly code itself was rela-
tively straightforward and mostly involved minor syn-
tactic changes. The primary challenge was recreating in
our minds the invariants that the developers of the code
presumably had in theirs. As Figure 1 shows, the code
comments are minimalist and often cryptic, e.g.,
eor $t3,$B,$C @ magic
ldr $t1,[sp,#‘($i+2)%16‘*4] @ from future BODY_16_xx

In the second line, the odd syntax with the backticks is
used when the Perl code makes a second pass over the
string representing the assembly code, this time acting as
an interpreter to perform various mathematical operations,
like ($i+2)%16.

As discussed above, OpenSSL’s code generation relies
on many Perl-level tricks that we replicate in Vale. For
example, we use inline parameters to unroll loops and con-
ditionally include certain code snippets, similar to how
the Perl code does. The Perl code also carefully renames
the Perl variables that label ARM registers in each un-
rolled loop to minimize data movement. To support this,
our corresponding Vale procedure takes an inline loop it-
eration parameter i, and eight generic operand arguments.
The mapping from operand to ARM register is then added
as a statically verified function of i, e.g.,
requires @h == OReg(4+(7-(i%8))%8)

which requires the h operand (“@h” refers to the operand h,
not the value stored there) to be R11 on the first iteration,
R10 on the next iteration, etc. This essentially shifts the
contents of the SHA variable h in iteration i into the SHA
variable g in iteration i+ 1, and similarly for other state
variables, some of which are updated in more complex
ways.

To prove the functional correctness of our code, we ver-
ify it against the Dafny SHA-256 specification from the
Ironclad project [37], itself based off the FIPS 180-4 stan-
dard [60]. This proof requires several auxiliary lemmas,
typically to help guide Z3 when instantiating quantifiers,
or to reveal certain function definitions that we hide by
default to improve verifier performance. We also take
advantage of Z3’s bit-vector theory to automatically dis-
charge relations like:

(x&y)⊕ (∼x&z) == ((y ⊕ z)&x)⊕ z

which allow OpenSSL’s code to optimize various SHA
steps; e.g., the relation above saves an instruction by com-
puting the right-hand side.
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To demonstrate that our implementation is not only
correct but side-channel and leakage free, we run our ver-
ified analysis tool (§3) on the Vale-generated AST. To
our surprise (given that the code is a direct translation of
OpenSSL’s implementation), the tool reports that the im-
plementation is free of leakage via side channels, but not
via state. Indeed, further investigation shows that while
OpenSSL’s C implementation carefully scrubs its inter-
mediate state, after OpenSSL’s assembly implementation
returns, the stack still contains most of the caller’s reg-
isters and 16 words from the expanded version of the
final block of hash input. We do not know of an attack to
exploit this leakage, but in general, leakage like this can
undermine security [20].

Discussions with the OpenSSL security team indicate
that while they aim to always scrub key material from
memory, the remainder of their scrubbing efforts are ad
hoc due to their unusual threat model [67]. On the one
hand, OpenSSL usually runs in process with an applica-
tion, and hence everything in the address space is trusted;
nonetheless, they feel an instinctual need to scrub memory
when they can do so without too much performance over-
head. Because they do not have a precise and systematic
way to identify “tainted” memory and scrub it efficiently,
leaks like the one we identified are tolerated. In our case,
the developers acknowledge the leak but have declined to
change the code.

Tools like Vale offer one approach to systematically
track leakage and provably and efficiently block it. In-
deed, after we add the appropriate stack scrubbing to our
implementation, our analyzer confirms that it is free of
both side channels and leakage.

4.2 SHA-256 on x86

To demonstrate Vale’s generality across platforms, we
have also used it to write an x86 version of SHA-256’s
core. This required writing a trusted semantics for a sub-
set of Intel’s architecture, a trusted printer to translate
instructions into assembly code, and a verified proof li-
brary (which in many cases differs very little from our
corresponding ARM library). For the implementation, we
wrote the code from scratch, rather than copying the algo-
rithm from OpenSSL. At no point did we need to change
Vale itself.

One of the benefits of Vale’s platform generality is
that we can write and use high-level lemmas that are
platform-independent. We took advantage of this to reuse
most of the lemmas from §4.1. For instance, our lemma
lemma_SHA256TransitionOKAfterSettingAtoH es-
tablishes that a certain step of the SHA-256 procedure has
been followed correctly; we invoke this lemma from the
ARM, x86, and x64 versions of SHA-256. We also lever-
age Vale’s platform generality to reuse the specification
for SHA-256 across all platforms.

When we run our verified analysis tool on our code, it
confirms that it is leakage free.

4.3 Poly1305 on x64

We have also ported the 64-bit non-SIMD code for
Poly1305 [14] from OpenSSL to Vale. OpenSSL’s
Poly1305 is a mix of C and assembly language code. We
began by writing a trusted semantics for a subset of x64.
We then verify the OpenSSL assembly language code for
the Poly1305 main loop and add our own initialization
and finalization code in assembly language to replace the
C code, resulting in a complete Vale implementation of
Poly1305. Except for an extra instruction for the while-
loop condition, our main loop code is identical to the
OpenSSL code. This forces us to verify the mathematical
tricks that underlie OpenSSL’s efficient 130-bit multipli-
cation and mod implementations. For this verification,
Z3’s automated reasoning about linear integer arithmetic
is quite useful, helping us, for example, to maintain in-
variants on the size of intermediate values that sometimes
exceed 130 bits by various amounts. These invariants are
crucial to establish that numbers are eventually reduced
all the way to their 130-bit form and that enough carry bits
are propagated through larger intermediate values. In fact,
a bug fixed in March 2016 [65] was due to not propagat-
ing carry bits through enough digits; Vale’s verification,
of course, catches this bug.

4.4 AES-CBC using x86 AES-NI instructions

Our final case study illustrates Vale’s ability to support
complex, specialized instructions. Specifically, we have
used Vale to implement the AES-128 CBC encryption
mode using the AES-NI instructions provided by recent
Intel CPUs [36]. AES is a block cipher that takes a fixed
amount of plaintext; cipher-block chaining (CBC) is an
encryption mode that applies AES repeatedly to encrypt
an arbitrary amount of plaintext. In 2008, Intel introduced
AES-NI instructions to both increase the performance of
the core AES block cipher and make it easier to write
side-channel free code, since software implementations
of AES typically rely on in-memory lookup tables which
are expensive to make side-channel free. As we quantify
in §5.1, implementations that take advantage of this hard-
ware support are easily 3.5–4.0× faster than traditional
hand-tuned assembly that does not.

For this case study, we extended our x86 model from
§4.2 by adding support for 128-bit XMM registers, defi-
nitions for Intel’s six AES-support instructions [35], and
four generic XMM instructions [39]. None of these exten-
sions requires changes to Vale. We also wrote a formal
specification for AES-CBC based on the official FIPS
specification [59].

Our implementation follows Intel’s recommendations
for how to perform AES-128 [35]. However, unlike the
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FIGURE 10—Time for various libraries to compute the SHA-
256 hash of 10 KB of random data. Each data point averages
100 runs.
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FIGURE 11—Time for various libraries to encrypt and decrypt
10 KB of random data using AES-CBC. Decryption is gener-
ally faster because it is more parallelizable. Each data point
averages 100 runs.

code provided by Intel, our code includes a proof of its
correctness. We also run our verified analysis tool on the
code to confirm that it is leakage free.

The implementation involves an elaborate sequence
of AES-NI instructions interwoven with generic XMM
instructions. Proving it correct is non-trivial, particularly
since Intel’s specifications for its instructions assume var-
ious properties of the AES specification that we must
prove. For example, we must prove that the AES RotWord
step commutes with its SubWord step.

5 Evaluation
In our evaluation, we aim to answer two questions:
(1) Can our verified code meet or exceed the perfor-
mance of state-of-the-art unverified cryptographic li-
braries? (2) How much time and effort is required to
verify our cryptographic code?

5.1 Comparative performance

To compare our performance to a state-of-the-art imple-
mentation, we first measure the performance of six pop-
ular cryptographic libraries: BoringSSL [1], Botan [2],
Crypto++ [3], GNU libgcrypt [5], ARM mbedTLS (for-
merly PolarSSL) [6], and OpenSSL [7]. We collect the
measurements on a G5 Azure virtual machine running
Ubuntu 16.04 on an Intel Xeon E5 v3 CPU and config-
ured with enough dedicated CPUs to ensure sole tenancy.
Each reported measurement is the average from 100 runs
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FIGURE 12—Throughput comparison of two OpenSSL SHA-
256 routines for ARM: one written in C and one written in
hand-tuned assembly. Each data point averages 10 runs.

 0

 200

 400

 600

 800

 1000

16 64 256 1024 8192 16,384

T
h
ro

u
g
h
p
u
t 

(M
B

/s
)

Number of input bytes per AES-CBC-128 encryption

C
ASM without AES-NI

ASM with AES-NI
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AES-CBC-128 routines for x86: one written in C, one writ-
ten in hand-tuned assembly with only scalar instructions, and
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and, as is the case in all figures in this paper, error bars
indicate 95% confidence intervals.

As shown in Figures 10 and 11, our results support the
anecdotal belief that, in addition to being one of the most
popular TLS libraries [61], OpenSSL’s cryptographic im-
plementations are the fastest available. Hence, in our re-
maining evaluation, we compare our performance with
OpenSSL’s. These strong OpenSSL performance results
suggest that OpenSSL’s Byzantine mix of Perl and hand-
written assembly code (recall Figure 1) does result in
noticeable performance improvements compared to the
competition. As further support for the need for hand-
written assembly code, Figures 12 and 13 compare the
performance of OpenSSL’s C implementations (compiled
with full optimizations) to that of its hand-written assem-
bly routines. We see that OpenSSL’s assembly code for
SHA-256 on ARM gets up to 67% more throughput than
its C code, and its assembly code for AES-CBC-128 on
x86 gets 247–300% more throughput than its C code due
to the use of SSE and AES-NI instructions.

To accurately compare our performance with
OpenSSL’s, we make use of its built-in benchmarking
tool openssl speed and its support for extensible cryp-
tographic engines. We register our verified Vale routines
as a new engine and link against our static library. Surpris-
ingly, in collecting our initial measurements, we discov-
ered that OpenSSL’s benchmarking tool does not actually
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FIGURE 14—Comparing Vale implementations to OpenSSL’s,
for SHA-256 on ARM, for Poly1305 on x64, and for AES-
CBC-128 on x86. Each data point averages 10 runs.

conduct a fair comparison between the built-in algorithms
and those added via an engine. Calls via an engine per-
form several expensive heap allocations that the built-in
path does not. Hence, the “null” engine that returns im-
mediately actually runs slower than OpenSSL’s hashing
routine! To get a fair comparison, we create a second en-
gine that simply wraps OpenSSL’s built-in routines. We
report comparisons between this engine and ours.

We compare Vale’s performance with OpenSSL’s on
three platforms. We compare our ARM implementation
(§4.1) with OpenSSL’s by running them on Linux (Rasp-
bian Jessie) on a Raspberry Pi with a 900MHz quad-core
ARM Cortex-A7 CPU and 1GB of RAM. For this, we
compile OpenSSL to target ARMv7 and above, but with-
out support for NEON, ARM’s SIMD instructions. For
Intel x64, we compare our Poly1305 (§4.3) implemen-
tation with OpenSSL’s with SIMD disabled. Finally, to
show that we can take advantage of advanced instructions,
on Intel x86, we measure our AES-CBC-128 (§4.4) im-
plementation against OpenSSL’s with full optimizations
enabled, including the use of AES-NI and SIMD instruc-
tions. We collect the x86/x64 measurements on Windows
Server 2016 Datacenter using the same Azure instance as
in §5.1.

Spec Impl Proof ASM Verification
Component (Source lines of code) time (min)
ARM 873 170 650 – 0.6
x86 1565 256 1000 – 2.1
x64 1999 377 1392 – 3.8
Common Libraries 1100 252 4302 – 1.2
SHA-256 (ARM)

237
330 1424 2085 6.6

SHA-256 (x86) 598 2265 4345 5.7
Poly1305 (x64) 47 325 1155 202 2.7
AES-CBC (x86) 413 432 2296 311 8.2
Taint analysis 217 1276 2116 – 4.3
Total 6451 4016 16600 6943 35.3

TABLE 1—System Line Counts and Verification Times.

Figure 14 summarizes our comparative results. They
show that, for SHA-256 and AES-CBC-128, Vale’s per-
formance is nearly identical to OpenSSL’s. Indeed, our
Poly1305 implementation slightly outperforms OpenSSL,
largely due to using a complete assembly implementation
rather than a mix of C and assembly. Our AES-CBC-128
implementation also slightly outperforms OpenSSL (by
up to 9%) due to our more aggressive loop unrolling.
These positive results should be taken with a grain of
salt, however. For real TLS/SSL connections, for instance,
OpenSSL typically calls into an encryption mode that
computes four AES-CBC ciphertexts in parallel (to sup-
port, e.g., multiple outbound TLS connections) to better
utilize the processor’s SIMD instructions. Our Vale im-
plementation does not yet support a similar mode.

5.2 Verification time and code size

Table 1 summarizes statistics about our code. In the table,
specification lines include our definitions of ARM and
Intel semantics, as well as our formal specification for the
cryptographic algorithms. Implementation lines consist
of assembly instructions and control-flow code we write
in Vale itself, whereas ASM counts the number of assem-
bly instructions emitted by our verified code. Proof lines
count all annotations added to help the verifier check our
code, e.g., pre- and post-conditions, loop invariants, asser-
tions, and lemmas. Vale itself is 5,277 lines of untrusted
F# code. Note that the two SHA implementations share
the same Dafny-level functional specification. The proof
entry for SHA-256 (x86) also includes a number of proof
utilities used by the ARM version.

The overall verification time for all the hand-written
Dafny code and Vale-generated Dafny code is about 35
minutes, with the bulk of the time in the procedures con-
stituting the cryptographic code. Most procedures take
no more than 10 seconds to verify, with the most com-
plex procedures taking on the order of a minute. The
reasonably fast turnaround time for individual procedures
is important, because the developer spends considerable
time repeatedly running the verifier on each procedure
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Vale Taint 1st SHA AES-CBC SHA port Poly1305
12 6 6 5 0.75 0.5

TABLE 2—Person-months per component.

when developing and debugging it.
A key design decision in Vale is the verification of

inlined procedures and unrolled loops before the inlining
and unrolling occurs. Furthermore, as discussed in §4.1,
Vale supports operand renaming for inlined procedures
and unrolled loops, allowing us to match OpenSSL’s Perl-
based register renaming. Figure 15 quantifies the benefits
of this decision by showing the cost of verifying code
after unrolling. (Note the log scale.) The three lines show:
• the cost of verifying an unrolled loop consisting en-

tirely of x86 add eax, 1 instructions, ranging from
10 to 100 total instructions;

• the cost of verifying an unrolled loop of x86 AES
key inversions, up to the maximum 9 iterations per-
formed by AES, where each iteration consists of 3
instructions; and

• the cost of verifying an unrolled loop of x86 AES
key expansions, up to the maximum 10 iterations
performed by AES, where each iteration consists of
10 instructions.

If 100 adds are unrolled before verification, verification
takes 58 seconds, which is tolerable, though much slower
than verifying before unrolling. If all 10 AES key ex-
pansion iterations are unrolled, verification takes 2300
seconds, compared to 105 seconds for verifying before
unrolling. Finally, Dafny/Z3 fails to verify the AES key in-
version for 6 unrolled iterations and 9 unrolled iterations,
indicating that SMT solvers like Z3 are still occasion-
ally unpredictable. Verifying code before inlining and
unrolling helps mitigate this unpredictability and speeds
up verification.

5.3 Verification effort

Table 2 summarizes the approximate amount of time we
spent building Vale, our verified taint analyzer, and our

case studies. Our first implementations of SHA-256 and
of AES-CBC were developed in parallel with Vale itself.
They helped push the tool to evolve, but they also required
multiple rewrites as Vale changed. Once Vale stabilized,
porting SHA-256 to other architectures and implementing
Poly1305 from scratch (including specifications, code,
and proof) went much more rapidly, though the effort
required was still non-trivial. In general, proving func-
tional correctness was far more challenging than proving
absence of leakage. For example, the SHA port initially
only proved functional correctness. We then spent less
than three days extending the functional proof to handle
memory tainting and correcting errors identified by the
taint analysis.

As further evidence for Vale’s usability, an independent
project is using Vale to develop a microkernel. Several
researchers in that project are new to software verifica-
tion and yet are able to make progress using Vale. Their
efforts have also proceeded without the need to modify
Vale, even though they have enriched our relatively sim-
ple machine semantics, which we use to reason about
cryptographic code, with details needed to program a mi-
crokernel, e.g., program status registers, privilege modes,
interrupts, exceptions, and user-mode execution.

6 Related Work
Other projects have verified correctness and security prop-
erties of cryptographic implementations written in C or
other high-level languages, either using Coq [11] or SMT
solvers [28, 80]. The SAW tool [28], for example, verifies
C code (via LLVM) and Java code against mathemati-
cal specifications written in the Cryptol language. Like
Vale, SAW can use SMT solvers for verification, although
unlike Vale, SAW unrolls loops before verification and
assumes a static layout of data structures in memory. We
hope to connect verified assembly language code to veri-
fied high-level language code in the future.

Vale, like other cryptography verification efforts, re-
lies on formal specifications to define the correctness of
implementations. The growing number of verified imple-
mentations, both in high-level languages and assembly
language, motivates standardization and thorough testing
of such formal specifications. Cryptol [30], for exam-
ple, may be used as a common specification language.
In the future, we hope to check our Dafny specifications
against specifications in Cryptol or similar languages.
Vale also depends on formal semantics for the assem-
bly language instructions used by Vale programs; these
could be checked against existing architecture specifi-
cations [71] or extended using more detailed ISA mod-
els [33].

The Vale language follows in the path of Bedrock [19]
and x86proved [42, 44], which use Coq to build assem-
bly language macros for various control constructs like
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IF, WHILE, and CASE. Vale attempts to make these ap-
proaches easier to use by leveraging an SMT-based logical
framework and providing features like mutable ghost vari-
ables and inline variables. Furthermore, although earlier
tools have been used to synthesize cryptography code [29],
Vale has been used to verify existing OpenSSL assembly
language code, where optimizations are nontrivial. Vale
also includes a verified analyzer that checks for leakage
and side channels.

Chen et al. [18] embed a simple Hoare logic in Coq,
which they use to verify the “core part” of a Curve25519
implementation written in the qhasm language, which is
very close to assembly language. Like Vale, they use
an SMT solver to complete the verification, although
they only handle loop-free code and some of the SMT
queries take hours to complete. A successor project uses a
computer algebra system to reduce this verification time,
at least in some initial experiments [15]; this technique
seems promising and could help to better automate many
of Vale’s lemmas about modular arithmetic.

mCertiKOS [23], based on Coq, addresses information
flow, although they do not consider timing and memory
channels. In contrast to the verification done for mCer-
tiKOS, which is targeted at a single difficult system (a
small kernel), our information analysis tool can run auto-
matically on many pieces of code. Such a tool is useful
for verifying large suites of cryptographic code. Dam
et al. [24] do address timing, but they approximate by
assuming each instruction takes one machine cycle.

Other assembly language verifiers like BoogieX86 [77],
used by Ironclad [37], and VCC’s assembly language [56]
have built on SMT solvers, but do not expose ASTs and as-
sembly language semantics as first-class constructs. They
thus are neither as flexible nor as semantically founda-
tional as Vale, Bedrock, and x86proved. For example,
BoogieX86 and Ironclad cannot support verified loop un-
rolling and are tied to the x86 architecture; hence, they
would require tool changes to support ARM and x64.

Both BoogieX86 and Almeida et al. [9] leverage SMT
solvers for information flow analysis. BoogieX86’s analy-
sis is very flexible, but is considerably slower than Vale’s
taint-based approach and does not address timing and
memory channels. As discussed in more detail in §3,
Almeida et al. detect a subset of side channels, but do not
prove correctness of the cryptographic code, and resort to
unproven assumptions about aliasing. Furthermore, they
analyze intermediate code emitted by the LLVM compiler,
whereas Vale verifies assembly code. This distinction is
relevant since a compiler may choose to implement an IR-
level instruction (e.g., srem) using a sequence of variable-
latency assembly instructions (e.g., idiv). Also, their
analysis is tied to the LLVM compiler’s code-generation
strategy, whereas ours is not.

Myreen et al. [58] apply common proofs across similar

pieces of code for multiple architectures by decompiling
the assembly language code to a common format. We use
a different approach to sharing across architectures: write
each architecture’s code as a separate Vale procedure, but
share lemmas about abstract state between the procedures.

Many attacks based on side channels have been demon-
strated [8, 10, 17, 38, 41, 76, 78]. We focus on detect-
ing digital side channels by statically verifying precise
constant-time execution. Side channels can also be miti-
gated via compiler transformations [4, 21, 57, 69, 70, 79],
operating system or hypervisor modifications [46, 54],
microarchitectural modifications [52, 53], and new cache
designs [74, 75].

7 Conclusions and Future Work

Vale is our programming language and tool for writing and
proving properties of high-performance cryptographic as-
sembly code. It is assembler-neutral and platform-neutral
in that developers can customize it for any assembler by
writing a trusted printer, or for any architecture by writing
a trusted semantics. It can thus support even advanced in-
structions, as we demonstrate with an x86 implementation
of AES-128/CBC that leverages SSE and AES-NI instruc-
tions. Also, as we have shown with our implementations
of SHA-256 on both ARM and x86, developers can reuse
proofs and specifications for code across architectures.
Vale supports reasoning about extracted code objects in
a general-purpose high-level verification language; as an
illustration of this style of reasoning, we have built and
verified an analyzer that can declare a program free of
digital information leaks. This analyzer uses taint track-
ing with a unique approach to alias analysis: instead of
settling for a conservative, unsound, or slow analysis, it
leverages the address-tracking proofs that the developer
already writes to prove her code functionally correct.

Vale uses Dafny as a target verification language but
only as an off-the-shelf tool with no customization, sug-
gesting that we can also support other back ends. We hope
to soon target F⋆ [72], Lean [26], and Coq [22].

By porting OpenSSL’s SHA-256 ARM code and
Poly1305 x64 code, we have shown that Vale can prove
correctness, safety, and security properties for existing
code, even if it is highly complex. The proofs ensure that
the verified code meets its mathematical specification,
ruling out bugs like those that appeared in OpenSSL’s
Poly1305 code [64–66], as well as other correctness and
memory safety bugs that have appeared in OpenSSL’s
cryptographic code. We plan to continue porting addi-
tional variants of these algorithms (e.g., adding SIMD
support for SHA and Poly1305 for a performance boost
of 23–41% [62, 63]) and many others. Ultimately, we
hope Vale will enable the creation of a complete crypto-
graphic library providing fast, provably safe, correct, and
leakage-free code for a wide variety of platforms.
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A Vale Grammar
For reference, this appendix contains an annotated gram-
mar for the Vale language. We use ∗ to indicate zero or
more repetitions, ∗, to indicate zero or more repetitions
separated by commas, +, to indicate one or more repe-
titions separated by commas, and ∗; to indicate zero or
more repetitions, each terminated by a semi-colon. In
most places, vertical bars divide grammar alternatives
and square brackets surround optional grammatical com-
ponents, but in a few places where we think their us-
age is clear, we abuse this notation and use vertical bars
and square brackets to stand for themselves in the gram-
mar. Other punctuation stands for itself. Lowercase letters
stand for identifiers and are suggestive of what kind of
identifiers they represent.

At the top level, a Vale program consists of some num-
ber of declarations.

PROGRAM ::=
| DECL∗

A declaration introduces a variable, function, or pro-
cedure, or provides some declarations in the underlying
logical framework (Dafny) to be included verbatim.

DECL ::=
| var x : TYPE ;

| function f ( FORMAL∗, ) : TYPE [:= f] ;
| procedure p ( PFORMAL∗, )

[returns ( PRET∗, )] SPEC∗ { STMT∗ }
| procedure p ( PFORMAL∗, )

[returns ( PRET∗, )] SPEC∗ extern ;
| procedure p ( PFORMAL∗, )

[returns ( PRET∗, )] := p ;
| VERBATIM-DECL-BLOCK

A FORMAL represents a formal parameter of a func-
tion or a bound variable. It is simply an identifier and an
optional type. An attempt is made to infer any omitted
types. Procedure parameters are broken down into two
categories, PFORMAL and PRET, the latter of which is
used for parameters that are only being returned from the
procedure.

FORMAL ::=
| x [: TYPE]

PFORMAL ::=
| ghost x : TYPE
| inline x : TYPE
| TYPE x : TYPE
| out TYPE x : TYPE
| inout TYPE x : TYPE

PRET ::=
| ghost x : TYPE
| TYPE x : TYPE

Types are declared in the underlying logical framework
and referred to in Vale by name. Types can be parameter-
ized by other types. Vale also supports tuple types.

TYPE ::=
| t
| TYPE ( TYPE∗, )
| tuple ( TYPE∗, )
| ( TYPE )

A procedure can be declared with specification clauses.
A reads or modifies clause says which global variables
the procedure may read or write, respectively. The key-
words requires and ensures are used to introduce pre-
and postconditions. Since it often happens that a proce-
dure both requires and ensures some invariant condition,
there is a specification clause that avoids the syntactic
repetition of such conditions.

SPEC ::=
| reads x∗;

| modifies x∗;

| requires LEXP∗;

| ensures LEXP∗;

| requires / ensures LEXP∗;
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LEXP ::=
| EXP
| let FORMAL := EXP

Procedure bodies have statements.

STMT ::=
| assume EXP ;
| assert EXP ;
| assert EXP by { STMT∗ }
| calc [CALCOP] { CALC∗ }
| reveal f ;
| p ( EXP , ... , EXP) ;
| ASSIGN ;
| [ghost] var x [: TYPE] [:= EXP] ;
| forall FORMAL∗, TRIGGER∗

[:| EXP] :: EXP { STMT∗ }
| exists FORMAL∗, TRIGGER∗ :: EXP ;
| while ( EXP ) INVARIANT∗ DECREASE

{ STMT∗ }
| for ( ASSIGN∗, ; EXP ; ASSIGN∗, )

INVARIANT∗ DECREASE { STMT∗ }
| [ghost] [inline] if ( EXP ) { STMT∗ }

ELSE

ELSE ::=
| else if ( EXP ) { STMT∗ } ELSE
| [ else { STMT∗ } ]

A proof calculation is a statement that helps guide a
proof [51]. CALC represents either an expression or a
hint in a calculation.

CALC ::=
| [CALCOP] EXP ;
| [CALCOP] { STMT∗ }

CALCOP ::=
| < | > | <= | >= | ==
| && | || | <== | ==> | <==>

Assignment statements are standard.

ASSIGN ::=
| x := EXP
| this := EXP
| DESTINATION+, := p ( EXP∗, )

DESTINATION ::=
| x
| ( [ghost] var x [: TYPE] )

Loops are declared with loop invariants and termination
metrics.

INVARIANT ::=
| invariant EXP∗;

DECREASE ::=
| decreases * ;
| decreases EXP+, ;

A matching trigger is a directive for the verifier, a fea-
ture useful to experts.

TRIGGER ::=
| { EXP+, }

Expressions include the expected ones. The produc-
tions below show examples of numerical literals and
bitvector literals.

EXP ::=
| x
| f
| false | true
| 0 | 1 | 2 | 3 | ... | 1_000_000 | ...
| 0.1 | 0.2 | ... | 3.14159 | ...
| 0x0 | 0x1 | ... | 0xdeadBEEF
| 0x1_0000_0000 | ...
| bv1(0) | bv32(0xdeadbeef) | bv64(7) | ...
| "STRING"
| ( - EXP )
| this
| @x
| const(EXP)
| f ( EXP∗, )
| EXP [ EXP ]
| EXP [ EXP := EXP ]
| EXP ?[ EXP ]
| EXP . fd
| EXP . ( fd := EXP )
| old ( EXP )
| old [ EXP ] ( EXP )
| seq ( EXP∗, )
| set ( EXP∗, )
| list ( EXP∗, )
| tuple ( EXP∗, )
| ! EXP
| EXP * EXP | EXP / EXP | EXP % EXP
| EXP + EXP | EXP - EXP
| EXP < EXP | EXP > EXP
| EXP <= EXP | EXP >= EXP | EXP is c
| EXP == EXP | EXP != EXP
| EXP && EXP
| EXP || EXP
| EXP <== EXP | EXP ==> EXP
| EXP <==> EXP
| if EXP then EXP else EXP
| let FORMAL := EXP in EXP
| forall FORMAL∗, TRIGGER∗ :: EXP
| exists FORMAL∗, TRIGGER∗ :: EXP
| lambda FORMAL∗, TRIGGER∗ :: EXP
| ( EXP )
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Abstract
Targeted online advertising now accounts for the largest
share of the advertising market, beating out both TV and
print ads. While targeted advertising can improve users’
online shopping experiences, it can also have negative
effects. A plethora of recent work has found evidence that
in some cases, ads may be discriminatory, leading certain
groups of users to see better offers (e.g., job ads) based
on personal characteristics such as gender. To develop
policies around advertising and guide advertisers in mak-
ing ethical decisions, one thing we must better understand
is what concerns users and why. In an effort to answer
this question, we conducted a pilot study and a multi-step
main survey (n=2,086 in total) presenting users with dif-
ferent discriminatory advertising scenarios. We find that
overall, 44% of respondents were moderately or very con-
cerned by the scenarios we presented. Respondents found
the scenarios significantly more problematic when dis-
crimination took place as a result of explicit demographic
targeting rather than in response to online behavior. How-
ever, our respondents’ opinions did not vary based on
whether a human or an algorithm was responsible for the
discrimination. These findings suggest that future pol-
icy documents should explicitly address discrimination in
targeted advertising, no matter its origin, as a significant
user concern, and that corporate responses that blame the
algorithmic nature of the ad ecosystem may not be helpful
for addressing public concerns.

1 Introduction

Online advertising revenue is projected to reach $83 bil-
lion in 2017, an increase of $20 billion and 40% since
2015 [27, 36]. It has surpassed T.V. and print advertis-
ing, accounting for 37% of the media market share [2].
The growth of online advertising can be attributed both to
growth in digital users and the ability to do unprecedent-
edly specific targeting of ads: individually customizing

advertisements to users. Targeted advertising is often
driven by inferencing: the process of using collected in-
formation about a user’s digital habits to infer beliefs
about her demographics and preferences [8]. Targeted
advertising—also known as online behavioral advertising,
or OBA—has a number of consumer benefits (e.g., seeing
more interesting or relevant ads) [19, 34, 40] but it has
also raised serious concerns [5,6,13,21,28,29,32,37,47],
including threats to consumer privacy and the potential
for discrimination.

Consumer privacy issues related to targeted advertising
have received considerable attention from researchers,
media, and government agencies for several years [5, 9,
14, 16, 18, 19, 22, 33, 34, 40, 44]. More recently, the issue
of algorithmic discrimination in targeted advertising has
begun to attract similar attention [5, 6, 13, 21, 28, 29, 32,
37, 47]. In one example, Datta et al. found that Google
showed ads promoting certain high-paying jobs more
frequently to men than women [13].

Consumer opinions about general privacy threats from
targeted advertising have been fairly well documented [30,
33, 39, 40]. Recent work has also begun to examine how
well users understand the process of inferencing [45]
and how inference accuracy affects attitudes and percep-
tions [11, 38]. To the best of our knowledge, however,
little to no investigation has focused on people’s attitudes
toward discriminatory practices that arise, possibly unin-
tentionally, from inferencing and OBA.

We argue that better understanding of such attitudes
is critical, because the instances of discrimination in tar-
geted advertising touch on complicated legal and moral
issues. While consumer preferences are far from the only
important factor to consider, they do help us to under-
stand the current landscape. Companies might use in-
formation about consumer attitudes to avoid particularly
egregious mistakes that can lead to bad press and even
lawsuits [22, 44]. Knowledge of people’s attitudes can
also aid advocates of algorithmic fairness in understand-
ing how to focus their public awareness efforts. Finally,
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data about consumer attitudes may prove valuable to pol-
icymakers, who can take these attitudes—and resulting
corporate incentives—into account (as two of many im-
portant factors) when developing a regulatory framework
for this increasingly controversial ecosystem.

As a first step toward achieving this understanding, we
conducted three surveys (two smaller pilots and then a
main survey) comparing respondents’ attitudes to differ-
ent discriminatory advertising scenarios, with the aim of
understanding which specific scenarios people find most
problematic and why. In particular, we varied factors
such as which player in the ecosystem was responsible,
whether targeting decisions were made by an algorithm or
a human, and whether the targeting was based explicitly
on demographic factors or arose from behavioral factors.
To ensure we encountered a range of attitudes, we re-
cruited a broad array of respondents, both from Amazon’s
Mechanical Turk crowdsourcing site (MTurk) and from a
web panel with quota sampling to closely match the de-
mographics of the U.S. population. We used the two pilot
surveys to develop a final set of questions and a candidate
regression model, which we applied in our main survey.

In our main survey (n=891), a large portion (44%) of
respondents viewed our scenarios of discrimination in
targeted advertising as a moderate or severe problem. The
severity of the problem, however, depended primarily
on how the discrimination occurred—based on explicit
targeting of demographic factors or behavioral inferenc-
ing—and who was discriminated against. Respondents
tended to rate scenarios in which differences in behavioral
patterns led to discriminatory effects as less problematic
and more ethical than scenarios in which discrimination
was explicitly based on demographics. To our surprise,
however, whether a human or an algorithm made the tar-
geting decision had no statistically significant impact on
perceptions of problem severity or ethics. Responses on
severity also did not appear to differ based on the entity
responsible for the discrimination (e.g., the ad network or
the advertiser), and many participants held both entities
responsible, regardless of which was explicitly named
as the perpetrator. Based on these results, we suggest
implications for companies and policymakers and suggest
future work to deepen understanding of attitudes toward
discrimination in targeted advertising.

2 Related Work

We review related work in two key areas: empirically
observed discrimination in online targeted advertising
and end-user perceptions of inferencing and behavioral
advertising.

2.1 Discrimination in Online Targeting

Since the inner workings of the ad process are opaque,
most knowledge of behavioral advertising has been de-
rived through black-box observation.

Researchers have designed tools that create profiles
with specific attributes (e.g., age, gender) to scrape
ads seen with this profile and compare to other pro-
files’ ads, providing insight into how often targeted
ads are displayed and which attributes influence target-
ing [6, 13, 28, 29, 32, 35, 47]. Mikians et al. found early
evidence of price and search discrimination based on user
characteristics [35]. In another measurement, up to 65%
of the ads seen across the ad categories tested were tar-
geted based on some behavioral or profile aspect, such as
browsing patterns [32].

Some of the identified targeting can be considered dis-
criminatory. In one of the earliest examples, Sweeney
found that ads displayed during search were more likely
to associate stereotypically African American names than
stereotypically white names with claims about arrest
records [37]. Carrascosa et al. [10] found that health
and religion were used in assigning advertisements to
consumers, even though this is prohibited by E.U. law
and may be prohibited by U.S. law for certain advertise-
ments [42]. Finally, using the AdFisher tool, Datta et al.
determined that ads promoting the seeking of high-paying
executive jobs were shown significantly more often to
simulated men than women [13].

2.2 Perceptions of Inferencing and Behav-
ioral Advertising

Significant research has explored users’ perceptions of
targeted advertising, including both their understanding
of the process and their attitudes and opinions.

There are strong indications that the process of tar-
geted advertising is poorly understood. McDonald and
Cranor found in surveys and interviews that people did
not understanding the mechanisms or frequency of track-
ing [34]. Ur et al. identified a mismatch between par-
ticipants’ mental models and actual OBA implementa-
tions [40]. Warshaw et al. interviewed high-school-only-
educated adults and found that they did not understand
or believe in strong behavioral inferencing; instead, par-
ticipants believed that targeting decisions were based on
stereotypes or on straightforward intuitions [45].

Reaction to behavioral advertising has been mixed,
with some appreciation of potential benefits but also con-
cern for potential harms. Ur et al. found that people
informed about online behavioral advertising express in-
terest in receiving more-relevant ads, but also strong con-
cerns about data collection and privacy [40]. Similarly,
Agarwal et al. found that people expressed interest in rel-
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evant ads but were concerned about personal or intimate
advertisements being shown, particularly when other peo-
ple might also see them [3]. Turow et al. found that many
users are resigned to privacy violations, and therefore ac-
cept benefits such as discounts or relevant ads as some
consolation for unavoidable tracking [39].

In a lab experiment, Malheiros et al. concluded that
when ads were more personalized to the user they were
more noticeable, but that the users also became less com-
fortable as the degree of personalization increased [33].
More recently, Coen et al. found that people were less con-
cerned about inferencing when they believed the results
were accurate [11]. Tschantz et al. found no statistically
significant associations between profile accuracy and peo-
ple’s concern about tracking or confidence in avoiding
it [38].

3 Overview of Studies

To examine peoples’ perceptions of discriminatory ad-
vertising, we first performed an exploratory pilot study,
Pilot 1 (Section 4), which looked broadly at a wide va-
riety of possible discrimination situations, with the goal
of identifying a smaller set of relevant constructs and re-
lationships to further examine. In our main study, we
used the resulting smaller set of questions in a two-step
regression analysis. First, we conducted a second pilot
study, Pilot 2 (Section 5.2), in order to collect training
data. Using this data, we conducted an exploratory regres-
sion analysis and distilled a set of parsimonious models
to evaluate. Finally, we collected a final larger data set
to validate these models and generate our final results
(Section 5.3).

The structure of the survey questions was similar in
both Pilot 1 and the final survey. In each case, the partici-
pant was given a scenario about discrimination in targeted
advertising, together with a brief explanation of how the
discrimination occurred. In each case, the scenario con-
sisted of a fictional technology company, Systemy, plac-
ing a job ad using the fictional ad network Bezo Media.
The job ad, which in the scenario appeared on a local
newspaper’s website, was shown more frequently to peo-
ple in some target group than to people in other groups.
This scenario was loosely based on real-life findings from
Datta et al. about discriminatory ads [13].

Explanations included information about how the de-
cision to target a specific group was made: whether an
algorithm or a human made the decision, which company
in the scenario made the decision, and what behavioral or
demographic cues led to the targeting decision.

The participant then answered Likert-scale questions
about how responsible various entities (e.g., the advertiser,
the ad network) were for the discrimination, whether each
entity had acted ethically, and whether the overall situ-

ation constituted a problem. We deliberately asked the
responsibility questions before the question about how
problematic the scenario was, to avoid priming the re-
sponsibility answers with an assumption that the scenario
was problematic. In addition, we asked the participant
how believable they found the scenario they had read.
We then asked respondents to optionally provide free-text
feedback on the scenario. Finally, we collected standard
demographic information, including age, gender, edu-
cation level, and ethnicity. The full set of questions is
shown in Appendix A. All surveys were deployed using
the Qualtrics web survey tool.

All three studies were approved by the University of
Maryland’s Institutional Review Board (IRB).

4 Pilot 1: Evaluating a Broad Range of Dis-
criminatory Factors

We designed the first pilot study to explore a broad range
of factors that might prove important to respondents’ per-
ceptions of discrimination in targeted online advertising.

4.1 Scenarios

As described in Section 3, in our survey respondents were
presented with a scenario describing an online targeted
advertising situation that resulted in discrimination. They
were then asked questions about their opinion of the sce-
nario. Respondents in Pilot 1 were assigned randomly
to one of 72 total scenarios. The scenarios varied along
two axes. The first was the target of the discriminatory
ads, that is, one of eight groups of people who saw the
job ad more frequently. The second was the explanation
for how the targeting came about. We drew the eight
explanations we considered in part from suggested ex-
planations posited by the authors of an ad-discrimination
measurement study [12] with the intent to span a range of
both real-life plausibility and discriminatory intent. We
also used a ninth condition, in which no explanation was
provided, as a control. The targets and explanations used
in Pilot 1 are listed in Table 1.

Because we used racial, political, and health charac-
teristics in the target sets, we included questions about
race/ethnicity, political affiliation, and health status in the
demographic portion of the survey.

4.2 Cognitive Interviews

We anticipated that the explanations of discriminatory
targeting provided in our scenarios might be complex and
unfamiliar to our respondents. As such, we carefully pre-
tested the wording of our explanations and subsequent
questions using cognitive interviews, a standard technique
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Targets:

• Are/be over 30 years old • Are/be under 30 years old
• Are/be a registered Democrat • Are/be a registered Republican
• Are/be white • Are/be Asian
• Have a pre-existing health condition • Have no pre-existing health condition

Explanations:

• No explanation given (control).

• An HR employee at Systemy chooses to target individuals who [target].

• An employee at Bezo Media chooses to target individuals who [target].

• An advertising sales employee at the local news site chooses to target Systemy’s ads to individuals who [target].

• An HR employee at Systemy chooses to advertise on the local news site specifically because its readers are known to mostly
[target].

• Individuals who [target] tend to click on different ads than [opposite of target]. Bezo Media’s automated system has observed
this difference and automatically assigns the Systemy ads to individuals who [target].

• Systemy requests that this ad be shown to viewers who have recently visited technology-interest websites. People who [target]
tend to visit more technology-interest websites than individuals [opposite of target].

• Bezo Media charges less to reach individuals who [target] than individuals who [opposite of target], and a Systemy marketing
employee chooses the less expensive option.

• Bezo Media charges less to reach individuals who [target] than individuals who [opposite of target], and Systemy’s marketing
computer program automatically selects the less expensive option.

Table 1: Scenarios for Pilot 1. Each respondent viewed one explanation, with one targeted group filled in as receiving
more of the targeted ads.

Gender Age Race Education

Female 52 yrs Black High School
Female 34 yrs White M.S.
Male 22 yrs Black B.S.
Female 22 yrs White B.S.
Female 20 yrs Black Some College
Female 39 yrs Black High School
Male 31 yrs Black High School
Male 44 yrs White B.S.

Table 2: Cognitive Interview Demographics

for evaluating the intelligibility and effectiveness of sur-
vey questions by asking respondents to think aloud while
answering the survey questions [46]. We conducted eight
in-person cognitive interviews with respondents from a
variety of demographic groups (Table 2). As a result of
these interviews, we made the scenario descriptions more
narrative, clarified the wording of some questions, and
added the question about believability.

4.3 Respondents

The targets and explanations in this pilot study were delib-
erately designed to cover a broad range of possible topics,
to help us identify the most salient and relevant issues to

explore further. As such, we wanted to ensure that we
sampled from a broad range of respondents, so that is-
sues important to different demographic groups would be
potentially salient in our results. This goal seemed partic-
ularly critical in light of prior work suggesting that people
with less educational attainment have important miscon-
ceptions about targeted advertising [45]. To achieve these
broad demographics, we contracted Survey Sampling In-
ternational (SSI) to obtain a near-census-representative
sample.

In August and September of 2016, 988 respondents
completed our Qualtrics questionnaire, which took on
average four to five minutes. Respondents were paid
according to their individual agreements with SSI; this
compensation could include a donation to a charity of
their choosing, frequent flier miles, a gift card, or a variety
of other options. We paid SSI $3.00 per completion. The
demographic makeup of the respondents was close to the
U.S. population as seen in table 3, with slightly more
educated individuals. Between 15 and 16 respondents
were assigned to each of the 72 scenarios.

4.4 Results

We examined the results using exploratory statistics and
data visualizations to identify themes of most interest.
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Metric SSI Census

Male 47.6% 48.2%
Female 52.4% 51.8%

Caucasian 67.0% 64.0%
Hispanic 12.0% 16.0%
Asian 5.0% 5.4%
African American 13.1% 12.0%
Other 2.9% 2.6%

up to H.S. 18.5% 41.3%
Some college 40.0% 31.0%
B.S. or above 41.6% 27.7%

18–29 years 23.7% 20.9%
30–49 years 38.8% 34.7%
50–64 years 23.5% 26.0%
65+ years 14.1% 18.4%

Table 3: Respondent demographics, Pilot 1, compared to
2015 U.S. Census figures [41]

Figure 1: Problem severity, organized by target (Pilot 1).

One key goal was to develop a smaller set of issues to
focus on in the follow-up studies.

First, we considered the issue of who was targeted in
the scenario, that is, which group of people benefited from
or was shortchanged by the discriminatory advertising.
We found that the scenarios that targeted race were more
likely to be considered problematic than the other targets
that we considered: age, political affiliation, and health
condition (see Figure 1). Opinions about which groups
are targeted touch on a range of cultural and sociological
issues that are not likely to be unique to online targeted
advertising; as such, these opinions were not of primary
interest to our research question, which mainly concerns
how different explanations for discriminatory outcomes
affect people’s attitudes. Therefore, we decided to limit
future scenarios to targeting race, in the interest of pro-
voking more dramatic reactions that might allow us to
identify interesting explanation-based differences.

Second, we considered respondents’ responses regard-

Figure 2: Problem severity, organized by targeting mech-
anism (Pilot 1).

Figure 3: Problem severity, organized by human or algo-
rithmic decision (Pilot 1).

ing the severity of the various scenarios. The most no-
ticeable pattern was that scenarios that targeted based on
behavior (e.g., browsing history), rather than explicit de-
mographics, were generally rated less problematic (see
Figure 2).

Third, we had hypothesized that whether a human or an
algorithm made the decision to target the advertisement
would play an important role in respondents’ perceptions
of the scenario. We were surprised that we did not find
evidence for this in the pilot, but we decided to include it
in our subsequent studies in hopes of confirming (or not)
its lack of importance (see Figure 3).

5 Main Study

Based on the results from Pilot 1, we designed our final
survey. Below, we detail the content of this final sur-
vey and the results of our generation and validation of
regression models for analysis of this data.

5.1 Final Survey Instrument
Our final survey contrasted demographic and behavioral
explanations, as well as human and algorithmic decisions.
Because there is confusion about which entity in the com-
plex advertising ecosystem makes decisions that can have
discriminatory outcomes, and because we were explicitly
interested in asking questions about responsibility, we
included a factor locating the decision-making either at
Systemy (the company placing the ad) or Bezo (the ad
network). We did not include the local news site as a po-
tential decision-maker because it did not seem to provide
particularly interesting results in Pilot 1. As discussed in
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Target Mechanism Decider Entity

White Behavior Human Advertiser
Asian Demographics Algorithm Ad Network
Black

Table 4: Variables included in the scenarios for the final
survey instrument.

Section 4, we limited the targeted groups to only consider
race.

The final set of 24 scenarios (demographic vs. behav-
ioral × human vs. algorithmic × two entities × three target
groups) is detailed in Table 4.

The text of the scenario shown to the respondents was:

Systemy is a local technology firm that devel-
ops software. They are expanding and want to
hire new employees. Systemy contracts with
Bezo Media, an online advertising network,
which places Systemy’s job ad on a local news
website. [explanation]. As a result, the ad is
shown more frequently to [target] individuals
than [opposite of target] individuals.

The explanations shown to the respondents can be found
in Table 5.

Because the scenario wording remained very close to
the wording as used in Pilot 1, we did no further cognitive
interviews.

5.2 Pilot 2: Training Data Generation
Before running the final collection of data with this sur-
vey, we conducted one additional pilot survey. This pilot
generated training data that we used to test a variety of
potential regression models without worrying about ero-
sion of statistical confidence due to multiple testing. Such
testing allowed us to narrow down the breadth of potential
covariates to only the most relevant.

5.2.1 Respondents

As the goal of Pilot 2 was to create training data for se-
lecting a final set of regression models to be confirmed
with a larger data collection, we considered it sufficient to
collect a smaller, less diverse—and also less expensive—
sample. We deployed our four- to five-minute survey to
191 respondents using Amazon’s Mechanical Turk crowd-
sourcing service (MTurk).1 MTurk has been shown to
provide adequate data quality, but also to be younger and
more educated than the general population [24, 26]. We
required respondents to have an approval rate of at least
85% on the MTurk service and reside in the U.S., and

1https://www.mturk.com

Metric MTurk Census

Male 48.2% 48.2%
Female 51.8% 51.8%

Caucasian 81.2% 64.0%
Hispanic 4.7% 16.0%
Asian 4.7% 5.4%
African American 7.3% 12.0%
Other 2.1% 2.6%

Up to H.S. 13.6% 41.3%
Some college 32.5% 31.0%
B.S. or above 53.9% 27.7%

18–29 years 26.6% 20.9%
30–49 years 53.1% 34.7%
50–64 years 16.7% 26.0%
65+ years 3.6% 18.4%

Table 6: Respondent demographics for Pilot 2, compared
to figures from the 2015 U.S. Census [41].

we compensated them $0.75 each. To avoid duplicate re-
spondents, each participant’s unique MTurk identification
number was recorded and duplicate IDs were prevented
from completing the survey again. Detailed demographics
can be found in Table 6.

5.2.2 Analysis and Results

Because the majority of our survey questions were Likert
scales, we primarily analyze our data using logistic regres-
sion, which measures how several different input factors
correlate with a step increase in the output Likert vari-
able being studied [23]. This allows us to examine how
both our experimental factors and demographic covari-
ates correlate with respondents’ reactions to the presented
scenario.

For the degree of responsibility and problem questions,
we generated an initial model including the experimental
factors (the target, mechanism, decider, and entity vari-
ables from Table 4); participant demographic covariates
including age, gender, ethnicity, and education level; and
pairwise interactions between various factors. We then
compared a variety of models using subsets of these co-
variates, looking for the best fit according to the lowest
Akaike Information Criterion (AIC) [4]. (We included the
experimental factors in every model we considered.)

For each question, multiple models were very close in
AIC value. From among those with near-minimal AIC for
each of the five questions, we selected a final model that
included the four experimental factors—target, mecha-
nism, decider, and entity—along with the demographic
covariates that appeared most relevant. No pairwise inter-
actions were included in the final model. The final set of
factors and covariates is summarized in Table 7. For each
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Targets:

• Are/be white • Are/be Asian • Are/be black

Explanations:

• An employee at Systemy places an order with Bezo Media to show the ad more often to people who have recently visited
technology-interest websites. The employee predicts, based on prior experience, that people who recently visited a technology-
interest website will be more likely to read and click on the ad. Individuals who are [target] tend to visit more technology-
interest websites than individuals of other races.

• Systemy uses an algorithm to decide how to place its ads. The algorithm places an order with Bezo Media to show the ad more
often to people who have recently visited technology-interest websites. The algorithm predicts, based on prior data, that people
who have recently visited a technology-interest website will be more likely to read and click on the ad. Individuals who are
[target] tend to visit more technology-interest websites than individuals of other races.

• Systemy uses an algorithm to decide how to place its ads. The algorithm places an order with Bezo Media to show the ad more
often to people who are [target] than individuals of other races. The algorithm predicts, based on prior data, that [target]
people will be more likely to read and click on the ad.

• An employee at Systemy places an order with Bezo Media to show the ad more often to people who are [target] than individuals
of other races. The employee predicts, based on prior experience, that [target] people will be more likely to read and click on
the ad.

• Bezo Media uses an algorithm to decide when to show which ads. The algorithm shows the ad more often to people who have
recently visited technology-interest websites. The algorithm predicts, based on prior data, that people who had recently visited
a technology-interest website will be more likely to read and click on the ad. Individuals who are [target] tend to visit more
technology-interest websites than individuals of other races.

• An employee at Bezo Media decides to show the ad more often to people who have recently visited technology-interest websites.
The employee predicts, based on prior experience, that people who recently visited a technology-interest website will be more
likely to read and click on the ad. Individuals who are [target] tend to visit more technology-interest websites than individuals
of other races.

• An employee at Bezo Media decides to show the ad more often to people who are [target] than individuals of other races. The
employee predicts, based on prior experience, that [target] people will be more likely to read and click on the ad.

• Bezo Media uses an algorithm to decide when to show which ads. The algorithm shows the ad more often to people who are
[target] than individuals of other races. The algorithm predicts, based on prior data, that [target] people will be more likely to
read and click on the ad.

Table 5: Scenarios in the final survey instrument. Each participant viewed one explanation, with one targeted group
filled in as receiving more of the targeted ads.

question, we excluded respondents who gave “don’t know”
responses to that question from the associated regression
analysis.

5.3 Final Survey Results
To validate the regression model developed during Pilot 2,
we conducted a final, larger-scale data collection with our
final survey instrument. To promote both high data quality
and broad generalizability in our results, with reasonable
cost, we deployed our survey with both MTurk and SSI.
We again required Turkers to have 85% approval and
compensated them $0.75; we again paid SSI $3.00 per
completion. Respondents from both the first and second
pilot study were excluded from participation in this survey.
To account for differences in the two samples, we added
sample provider as a covariate to our regression model
(shown at the bottom of Table 7).

Table 8 summarizes the results.

5.3.1 Respondents

We collected responses from 535 MTurk respondents and
372 SSI respondents, for a total of 907. Demographics for
the two samples are shown in Table 9, with U.S. Census
data for comparison [41].

The 16 respondents who reported their race as “other”
were excluded from the dataset, because the small sample
frequently prevented the regression model from converg-
ing. All further results are therefore reported for the
remaining 891 respondents, or for slightly fewer when
respondents answered “don’t know” to certain questions.
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Factor Description Baseline

Target The ethnicity receiving more ads in the scenario. White, Asian, or Black. White
Mechanism Decision made based on either the demographics or the behavior of the targeted group. Demographics
Decider Whether the targeting decision was made by an algorithm or a human. Algorithm
Entity Entity making the decision: Either the ad network or the advertiser. Ad network

Age Of respondent. Continuous. n/a
Education Of respondent. High school diploma or less, Some college (HS+), Bachelor’s Degree and

up (BS+)
High school or less

Ethnicity Of respondent. White, Black, Hispanic or Latino, Asian, or Other White

Sample Provider Amazon’s Mechanical Turk and SSI MTurk

Table 7: Factors used in the regression models for problem, responsibility, ethics, and believability. The sample provider
factor was used in the main study only, not in Pilot 2.

Ad network Advertiser News site End user

Factor Severity Respons. Ethical Respons. Ethical Respons. Ethical Respons. Ethical

T-Asian – – – – – –
T-Black – – – – – – – –
Behavior – – –
Human – – – – – – – – –
Advertiser – – – – – – –
Age of respondent – – – – –
HS+ – – – – – – – –
BS+ – – – – –
R/E-Asian – – – – – – – – –
R/E-Black – – – – – –
R/E-Hisp. or Lat. – – – – – – – – –
SSI – – – – – –

Table 8: Summary of regression results. indicates a significant increase in severity, in responsibility, or in unethical
behavior, compared to baseline, as appropriate. indicates a significant decrease, and – indicates no significant effect.
T- indicates the race of the targeted group, while R/E indicates the race or ethnicity of the respondent.

5.3.2 Model Validation

To verify that the set of factors and covariates we selected
in Pilot 2 were also reasonable for our final data, we ver-
ified that the error rate when applying this regression to
the final dataset was within the confidence interval of the
error rate observed on our training data (e.g. the Pilot 2
data). More specifically, we bootstrapped [15] root mean
square error (RMSE) [31] confidence intervals from the
Pilot 2 data and verified that the RMSE after applying the
models to the final data were within these confidence in-
tervals. This enabled us to verify that the models selected
based on our training data were appropriately fit to the
final data. All of the models except the model for user
responsibility and the model for local responsibility were
appropriately fit. We retain these two models for analysis
continuity, while acknowledging that a different model
might have been a better fit.

5.3.3 Severity of Problem

Respondents were asked, on a four-point scale from “not
a problem” (1) to “a serious problem” (4), to rate how
problematic they found the discrimination scenario with
which they were presented. The ordering and phrasing of
the scale was taken from a commonly used set of Likert-
type items developed by Vagias [43]. Across all scenarios,
44% of respondents selected a “moderate” (3) or “serious”
(4) problem.

Overall, respondents gave a median rating of “some-
what of a problem” (2) to scenarios in which the dis-
criminatory advertising occurred as a result of the users’
behavior (e.g., Asian people visit technology job sites
more often and thus Asian people saw the ad more often),
compared to a median rating of “moderate problem” for
scenarios in which discrimination occurred due to direct
demographic targeting. In the demographic scenario, 53%
of respondents indicated a moderate or severe problem,
compared to 34% in the behavioral scenario. Figure 4
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Metric SSI MTurk Total Census

Male 41.4% 50.5% 46.7% 48.2%
Female 58.3% 49.5% 53.1% 51.8%

Caucasian 63.2% 83.2% 75.0% 64.0%
Hispanic 12.9% 3.9% 7.6% 16.0%
Asian 5.4% 4.9% 5.1% 5.4%
African American 16.9% 6.2% 10.6% 12.0%
Other 1.6% 1.9% 1.8% 2.6%

Up to H.S. 31.7% 11.2% 19.6% 41.3%
Some college 35.8% 33.5% 34.4% 31.0%
B.S. or above 32.5% 55.3% 46.0% 27.7%

18–29 years 20.4% 27.1% 24.4% 20.9%
30–49 years 41.9% 56.4% 50.5% 34.7%
50–64 years 31.5% 14.8% 21.6% 26.0%
65+ years 6.2% 1.7% 3.5% 18.4%

Table 9: Respondent demographics for the main study.
The Total column is the demographics of the total sam-
ple including both the MTurk and SSI respondents. The
census figures are from 2015 U.S. Census [41].

Figure 4: Responses for problem severity, broken down
into behavior and demographic conditions.

provides an overview of the scores. If we instead compare
scenarios based on whether a human or algorithm decided
to do the targeting, we find the respondents gave a median
rating of “somewhat of a problem” in both cases.

To assess which factors influence respondents’ percep-
tions of problem severity, we conducted a regression anal-
ysis (as described in Section 5.2.2). Results are shown in
Table 10. Using this analysis, we find that respondents’
perception of the severity of the scenario was significantly
affected by how the discrimination took place (e.g., based
on users’ online behavior vs. explicitly their demograph-
ics). Behavior-based ad targeting was only 49% as likely
as demographic-based targeting to increase respondents’
severity rating. That is, respondents evidenced less con-
cern when user behavior (in this case, web browsing his-
tory) led to de-facto discrimination than when explicit
demographic targeting yielded the same result.

Respondents also found targeting black and Asian in-
dividuals for more job ads significantly less problematic
(58% and 60% as likely to increase severity rating, respec-
tively) than targeting white individuals. On the other hand,

Factor OR CI p-value

T-Asian 0.60 [0.41, 0.88] 0.010*
T-Black 0.58 [0.40, 0.86] 0.006*

Behavior 0.49 [0.36, 0.67] <0.001*

Human 1.11 [0.82, 1.51] 0.498

Advertiser 0.94 [0.69, 1.28] 0.689

Age of respondent 0.99 [0.97, 1.00] 0.040*

HS+ 1.76 [1.13, 2.75] 0.013*
BS+ 1.58 [1.03, 2.43] 0.036*

R/E-Asian 1.34 [0.67, 2.68] 0.413
R/E-Black 2.87 [1.55, 5.34] <0.001*
R/E-Hispanic or Latino 1.94 [0.99, 3.85] 0.052

SSI 1.66 [1.17, 2.35] 0.005*

Table 10: Regression results for problem severity (n=830).
n may not add to the total number of respondents due to
item non-response. OR is the odds ratio between the
given factor and the baseline: that is, how many times
more likely this factor is than the baseline to increase one
step on the four-point problem severity scale. CI is the
95% confidence interval for the odds ratio. Statistically
significant factors (p <0.05) are denoted with a *. T- indi-
cates the race of the targeted group, while R/E indicates
the race or ethnicity of the respondent.

as was the case in both pilots, whether the decision on how
to target the advertisement was made by an algorithm or a
human did not appear to affect respondents’ perceptions.
The entity doing the targeting (advertiser or ad network)
similarly had no significant effect on perceptions.

Certain respondent demographics also factored into
ratings of problem severity. Table 10 shows that older
respondents are associated with lower severity ratings;
for example, a 10-year age gap is associated with only
a 90% (0.9910 = 0.90) likelihood of increased severity.
Black respondents were 2.87× as likely as baseline white
respondents to rate the problem as more severe. Results
for education level indicate that holding at least a high-
school diploma was associated with higher likelihood of
increased severity; there was no apparent further distinc-
tion based on achievement of a bachelor’s degree. Finally,
respondents recruited through SSI were 1.66×more likely
to increase one step in severity, despite our model sepa-
rately accounting for age and ethnicity.

5.3.4 Degree of Responsibility

We next consider the responsibility level respondents as-
sign to different entities involved in the discriminatory
scenario: the ad network (Bezo Media), the advertiser
(Systemy), the local news website on which the adver-
tisement was displayed, and the end user who sees the
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Gender Race Education Mechanism Entity Decider Host entity
Male White aboveHSLessBS Behavior AdNetwork Human Mturk ArS
Female White BSPlus Behavior AdNetwork Algorithm Mturk ArS
Female White HSorLess Demographics Advertiser Human SSI ArS
Male White aboveHSLessBS Behavior Advertiser Algorithm SSI ArS
Female White BSPlus Behavior Advertiser Algorithm Mturk ArS
Female White aboveHSLessBS Demographics AdNetwork Algorithm SSI ArS
Female White BSPlus Behavior Advertiser Human SSI ArS
Female Asian BSPlus Behavior AdNetwork Algorithm SSI ArS
Female White aboveHSLessBS Behavior AdNetwork Algorithm SSI ArS
Male White BSPlus Demographics Advertiser Human SSI ArS
Male White BSPlus Demographics AdNetwork Human SSI ArS
Female White aboveHSLessBS Demographics AdNetwork Human SSI ArS
Female White HSorLess Demographics AdNetwork Human SSI ArS
Female White HSorLess Behavior Advertiser Human SSI ArS
Female Asian BSPlus Demographics AdNetwork Human SSI ArS
Female White aboveHSLessBS Behavior Advertiser Human SSI ArS
Male White aboveHSLessBS Behavior AdNetwork Algorithm SSI ArS
Female White aboveHSLessBS Behavior AdNetwork Human SSI ArS
Male White aboveHSLessBS Behavior Advertiser Human SSI ArS
Female White HSorLess Demographics AdNetwork Human SSI ArS
Male Black HSorLess Demographics AdNetwork Algorithm SSI ArS
Male White HSorLess Behavior AdNetwork Human SSI ArS
Male White aboveHSLessBS Behavior Advertiser Algorithm SSI ArS
Male Black aboveHSLessBS Behavior Advertiser Human SSI ArS
Female Black aboveHSLessBS Demographics AdNetwork Algorithm SSI ArS
Female White aboveHSLessBS Behavior AdNetwork Human SSI ArS
Male White BSPlus Behavior AdNetwork Algorithm SSI ArS
Female Asian aboveHSLessBS Behavior Advertiser Human SSI ArS
Female White BSPlus Behavior Advertiser Human Mturk ArS
Female Black aboveHSLessBS Demographics Advertiser Algorithm SSI ArS
Female Black BSPlus Behavior Advertiser Algorithm SSI ArS
Female Asian BSPlus Behavior AdNetwork Human SSI ArS
Female White BSPlus Behavior AdNetwork Human Mturk ArS
Female Hispanic	or	Latino HSorLess Behavior AdNetwork Human SSI ArS
Female Black BSPlus Demographics Advertiser Human SSI ArS
Female White BSPlus Behavior AdNetwork Human SSI ArS
Male White BSPlus Behavior AdNetwork Algorithm Mturk ArS
Female White aboveHSLessBS Demographics AdNetwork Human SSI ArS
Female White aboveHSLessBS Demographics AdNetwork Human SSI ArS
Female White aboveHSLessBS Behavior AdNetwork Algorithm Mturk ArS
Male Black HSorLess Behavior AdNetwork Algorithm SSI ArS
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Figure 5: Responsibility scores, per entity, broken down
by the behavioral and demographic conditions.

ad. Respondents provided their responsibility ratings on
a four-point scale including “not at all responsible” (1),
“somewhat responsible” (2), “mostly responsible” (3), and
“completely responsible” (4) [43].

Across scenario types, 63% of respondents rated the
user as “not at all responsible” for the outcome; this was
also the median value. Respondents also did not attribute
a high level of responsibility to the local news network:
the median responsibility score in this case was “some-
what responsible,” with 42% of respondents selecting “not
at all responsible.” On the other hand, only 17% and 18%,
respectively, of respondents rated the ad network and the
advertiser “not at all responsible,” with the median score
for the ad network “mostly responsible” and for the ad-
vertiser “somewhat responsible.” Respondents’ ratings of
responsibility for each entity are shown in Figure 5.

We also applied regression analysis to determine what
factors influenced respondents ratings of responsibility for
each of these entities. Tables 11–14 illustrate the results
of the regressions for each entity.

For all entities, except for end user, the mechanism by
which the advertisement was targeted (demographics vs.
behavior) is significant. The advertiser, ad network, and
local news site all accrue less responsibility when behav-
ior is used. This effect is strongest for the ad network;
respondents are only 33% as likely to rate the ad network
as responsible for the discrimination when demographic
targeting rather than behavioral targeting is used. The
advertiser and ad network also accrue more responsibility
when Asian people are targeted as compared to white
people.

As might be expected, responsibility aligns with the
details of the scenarios seen by the respondents: the ad-
vertiser is assigned more responsibility when the scenario
provided implicates the advertiser than when it implicates
the ad network, and the same holds for the ad network’s
responsibility when the scenario implicates the network.

Factor OR CI p-value

T-Asian 1.64 [1.01, 2.67] 0.045*
T-Black 1.10 [0.70, 1.73] 0.674

Behavior 0.33 [0.22, 0.49] <0.001*

Human 1.12 [0.76, 1.66] 0.554

Advertiser 0.44 [0.30, 0.66] <0.001*

Age of respondent 0.97 [0.96, 0.99] <0.001*

HS+ 0.88 [0.51, 1.52] 0.656
BS+ 1.40 [0.81, 2.43] 0.228

R/E-Asian 1.28 [0.50, 3.32] 0.604
R/E-Black 3.24 [1.34, 7.86] 0.009*
R/E-Hispanic or Latino 1.71 [0.72, 4.03] 0.221

SSI 1.01 [0.66, 1.56] 0.946

Table 11: Regression results for ad network responsibility
(n=867), where OR > 1 is associated with more responsi-
bility. See Table 10 caption for more detailed explanation.

The implicated entity does not significantly affect how
responsibility is assigned to the local news site or end user.
These results, while unsurprising, do help to validate that
our respondents read and understood their assigned sce-
narios. As with problem severity, whether a human or
algorithm made the targeting decision continues to have
no significant impact.

Also similarly to problem severity, age proved a signif-
icant factor for three of the four responsibility questions
(not advertiser). In all three cases, older respondents
were correlated with lower responsibility scores. Finally,
respondents recruited from SSI assigned greater responsi-
bility to the local news site and the end user than MTurk
respondents. Unlike with problem severity, the race of
the respondent appears to have limited correlation with
responsibility assignment in most cases.

5.3.5 Ethical Behavior

Next, we consider respondents’ opinions about whether
each of the four entities behaved ethically. Specifically,
respondents were asked to agree or disagree that the entity
had behaved ethically, on a five-point Likert scale from
strongly agree to strongly disagree. Across all scenarios,
75% of respondents agreed or strongly agreed that the user
behaved ethically (median = agree, or 2). Additionally,
57% of respondents reported that the local news network
behaved ethically (median = agree). On the other hand,
only 49% and 43% agreed or strongly agreed that the
advertiser and ad network, respectively, behaved ethically
(both medians = neutral (3)). We note that these ratings
align well with those observed for responsibility.

The regression results for ethical behavior are shown in
Tables 15–18. Consistent with the findings from previous
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Factor OR CI p-value

T-Asian 1.62 [1.03, 2.58] 0.038*
T-Black 0.87 [0.57, 1.32] 0.518

Behavior 0.54 [0.37, 0.77] <0.001*

Human 0.70 [0.49, 1.01] 0.055

Advertiser 1.96 [1.36, 2.83] <0.001*

Age of respondent 0.99 [0.97, 1.00] 0.160

HS+ 0.66 [0.38, 1.12] 0.125
BS+ 0.80 [0.47, 1.36] 0.403

R/E-Asian 1.98 [0.75, 5.26] 0.170
R/E-Black 1.71 [0.84, 3.49] 0.140
R/E-Hispanic or Latino 1.06 [0.53, 2.12] 0.867

SSI 1.06 [0.71, 1.58] 0.783

Table 12: Regression results for advertiser responsibility
(n=857), where OR > 1 is associated with more responsi-
bility. See Table 10 caption for more detailed explanation.
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Figure 6: Agreement that each entity was behaving eth-
ically, broken down by the behavioral and demographic
conditions.

questions, the mechanism of targeting is significant for
advertiser, ad network and local news website; in all three
cases, behavior-based targeting is significantly correlated
with a lower perception of unethical behavior than the
demographic-based targeting. This is illustrated in Fig-
ure 6. Human vs. algorithmic decision making continues
to show no significant effect.

In contrast to responsibility, the entity making the de-
cision in the provided scenario (the ad network or ad-
vertiser) does not appear to have a significant effect on
respondents’ perceptions of ethical behavior in any case.
The targeted group is similarly uncorrelated.

Respondent demographics appear to have little to no
correlation with these results. In two cases (ad network
and local news site), Asian respondents were more likely
to disagree that the entity in question had behaved ethi-
cally, but no other demographic covariates were signifi-
cant.

Factor OR CI p-value

T-Asian 0.86 [0.61, 1.22] 0.400
T-Black 1.00 [0.70, 1.41] 0.983

Behavior 0.71 [0.54, 0.95] 0.019*

Human 0.89 [0.67, 1.18] 0.430

Advertiser 1.17 [0.88, 1.55] 0.284

Age of respondent 0.98 [0.97, 1.00] 0.011*

HS+ 0.77 [0.51, 1.17] 0.216
BS+ 0.80 [0.53, 1.19] 0.271

R/E-Asian 1.67 [0.85, 3.28] 0.140
R/E-Black 1.08 [0.66, 1.75] 0.764
R/E-Hispanic or Latino 1.21 [0.69, 2.14] 0.502

SSI 2.00 [1.46, 2.76] <0.001*

Table 13: Regression results for local news site respon-
sibility (n=843), where OR > 1 is associated with more
responsibility. See Table 10 caption for more detailed
explanation.

Figure 7: Responses for scenario believability, broken
down into behavior and demographic conditions.

5.3.6 Believability

Because several of our cognitive interview respondents ex-
pressed skepticism that discriminatory scenarios like the
ones we described could be realistic, we added a question
about believability at the end of the survey. Respondents
were asked to rate the scenario on a five-point scale from
“definitely could not happen” to “definitely could happen.”
Overall, 88% of respondents reported that the scenario
“definitely” or “probably” could happen. Figure 7 pro-
vides an overview of respondents’ ratings of scenario
believability. This result suggests that, among the pop-
ulations we surveyed, there is widespread if potentially
shallow awareness of behavioral targeting capabilities and
the potential for discrimination, intentional or otherwise.

6 Limitations

Our study, like most similar surveys, has several important
limitations. First, while our sample included a broad vari-
ety of demographic groups, it was not a true probabilistic
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Factor OR CI p-value

T-Asian 0.99 [0.69, 1.42] 0.962
T-Black 0.84 [0.58, 1.20] 0.340

Behavior 1.34 [1.00, 1.79] 0.054

Human 1.05 [0.78, 1.41] 0.734

Advertiser 1.30 [0.97, 1.75] 0.080

Age of respondent 0.97 [0.95, 0.98] <0.001*

HS+ 0.75 [0.49, 1.14] 0.177
BS+ 0.73 [0.48, 1.10] 0.131

R/E-Asian 1.96 [1.03, 3.73] 0.041*
R/E-Black 1.66 [1.04, 2.67] 0.035*
R/E-Hispanic or Latino 1.31 [0.76, 2.28] 0.330

SSI 2.40 [1.73, 3.32] <0.001*

Table 14: Regression results for end-user responsibility
(n=851), where OR > 1 is associated with more responsi-
bility. See Table 10 caption for more detailed explanation.

sample. While we believe our conclusions can to some
extent generalize, Turkers and web panel participants are
generally more active internet users than average. People
with less technical knowledge might find our scenarios
less believable or feel differently about what constitutes a
severe problem.

Second, our surveys dealt with the highly sensitive
topic of discrimination, especially racial discrimination.
Social desirability bias may cause respondents to report
higher-than-realistic severity of discrimination scenarios,
particularly with respect to historically disadvantaged
groups.

Third, the ad eco-system is complex and complicated.
There are many different entities involved in the publish-
ing of an ad. In this survey, we took some of the involved
entities and incorporated them into simplified scenarios.
Despite simplification and pre-testing via cognitive inter-
views, it is possible some respondents did not understand
important subtleties of these scenarios, affecting their re-
sponses. However, the fact that respondents tended to
most blame whichever entity was implicated by the sce-
nario (Section 5.3.4 suggests that respondents understood
the scenarios to at least some degree.

More generally, all self-report surveys are susceptible
to respondents who hurry through, answer haphazardly, or
do not think deeply about the questions. In this particular
survey, we were concerned that the scenarios might be
too complex for some participants to understand, or that
participants who did not believe the discriminatory sce-
nario might not answer meaningfully. To minimize these
effects, we kept the survey short and used cognitive in-
terviews to ensure that our questions and answer choices
could be easily understood. We explicitly measured be-
lievability and found that the majority of participants did

Factor OR CI p-value

T-Asian 0.87 [0.55, 1.37] 0.535
T-Black 1.04 [0.65, 1.65] 0.885

Behavior 0.42 [0.28, 0.62] <0.001*

Human 0.97 [0.67, 1.42] 0.885

Advertiser 0.81 [0.56, 1.19] 0.284

Age of respondent 1.00 [0.98, 1.01] 0.635

HS+ 0.82 [0.46, 1.46] 0.495
BS+ 0.61 [0.35, 1.06] 0.078

R/E-Asian 5.55 [1.30, 23.59] 0.020*
R/E-Black 1.58 [0.80, 3.14] 0.189
R/E-Hispanic or Latino 1.70 [0.73, 3.94] 0.216

SSI 0.80 [0.53, 1.21] 0.293

Table 15: Regression results for ethical behavior by the
ad network (n=891), where OR > 1 is associated with
stronger disagreement that the ad network behaved ethi-
cally. See Table 10 caption for more detailed explanation.

find our scenario plausible. In addition, our major results
proved consistent across two pilots and our main survey.
As a result, we are reasonably confident that respondents
were able to provide thoughtful answers to our questions.

Fourth, only some of our variables, the factors Target,
Mechanism, Entity, and Decider, were experimentally
randomized. Thus, our causal claims only extend to them.
For the other variables, the covariates Age, Ethnicity, Ed-
ucation, and Sample Provider, we can only makes claims
of correlation.

Fifth, despite basing our conclusions on three rounds
of data collection, false positives remain possible. Pi-
lot 2 produced a series of hypotheses about what variables
would constitute a useful, parsimonious logistic regres-
sion model that we could apply across the nine questions
we asked. The main study applied this model to new
data, and investigated how these variables were corre-
lated with each outcome. (For Decider, based on Pilot 2,
we anticipated a coefficient statistically indistinguishable
from zero.) The main regressions also controlled for the
data coming from SSI, about which we had no explicit
hypotheses motivated by Pilot 2.

In our main study we consider each variable-question
combination as an independent hypothesis; we do not
aggregate across questions or variables. Intuitively, these
variables and questions are distinguishable from one an-
other and different explanations may apply to each. As
such, we do not correct for multiple hypothesis testing.
Ultimately the question of when to aggregate and adjust
p-values or not to comes down judgements about the indi-
vidual hypotheses being interesting each on their own [20]
and the goals of the study [7].
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Factor OR CI p-value

T-Asian 0.94 [0.60, 1.45] 0.765
T-Black 1.02 [0.66, 1.59] 0.925

Behavior 0.46 [0.32, 0.67] <0.001*

Human 0.91 [0.63, 1.30] 0.602

Advertiser 1.42 [0.99, 2.03] 0.058

Age of respondent 1.00 [0.98, 1.01] 0.832

HS+ 0.97 [0.57, 1.65] 0.912
BS+ 0.76 [0.45, 1.27] 0.293

R/E-Asian 2.76 [0.95, 7.99] 0.062
R/E-Black 1.07 [0.59, 1.95] 0.818
R/E-Hispanic or Latino 1.94 [0.84, 4.48] 0.120

SSI 0.83 [0.56, 1.24] 0.365

Table 16: Regression results for ethical behavior by the
advertiser (n=891), where OR > 1 is associated with
stronger disagreement that the advertiser behaved ethi-
cally. See Table 10 caption for more detailed explanation.

7 Discussion and Conclusion

Below, we present a summary of our findings, discussion
on the respondents’ understanding, implications for gov-
ernance and policy guidelines for OBA, and suggestions
for future work.

7.1 Summary of Findings

Overall, we find that for most questions we examined, peo-
ple’s perceptions of discriminatory ad-targeting scenarios
depend on how the discrimination occurred. As might be
expected, respondents rated scenarios in which the dis-
crimination occurred based on how users behaved, with
no explicit intent to discriminate based on demographic
characteristics, to be significantly less problematic than
scenarios with explicit racial targeting. Respondents also
assigned more blame to the ad network, advertiser, and
host website, and rated these entities’ behavior as less
ethical, in the behavioral scenarios.

Respondents also found scenarios in which minorities
(in our scenarios, people of black or Asian race) benefited
from such ad-targeting discrimination less problematic
than scenarios in which the majority benefited. Relatedly,
we also find that black respondents are more likely to
view discriminatory scenarios as a more severe problem.
We hypothesize that these ratings are influenced by dis-
criminatory history in the U.S., where we recruited our
respondents.

We find that whether the ad network or advertiser is ex-
plicitly mentioned in the scenario as causing the discrim-
ination influences the accrual of responsibility to those
entities; however, to our surprise, the named entity did

Factor OR CI p-value

T-Asian 0.98 [0.65, 1.47] 0.925
T-Black 1.16 [0.77, 1.76] 0.470

Behavior 0.45 [0.32, 0.64] <0.001*

Human 0.91 [0.65, 1.27] 0.569

Advertiser 0.80 [0.57, 1.12] 0.198

Age of respondent 0.99 [0.98, 1.01] 0.419

HS+ 1.31 [0.80, 2.12] 0.279
BS+ 0.94 [0.59, 1.50] 0.808

R/E-Asian 3.25 [1.12, 9.38] 0.029*
R/E-Black 1.14 [0.65, 2.02] 0.641
R/E-Hispanic or Latino 1.29 [0.64, 2.60] 0.475

SSI 1.04 [0.71, 1.52] 0.841

Table 17: Regression results for ethical behavior by the
local news site (n=891), where OR > 1 is associated with
stronger disagreement that the site behaved ethically. See
Table 10 caption for more detailed explanation.

not influence respondents’ ratings of the severity of the
scenarios, or of whether any entity had behaved ethically.
Overall, the median ethics rating for both the ad network
and the advertiser was neutral. We suspect this may relate
part to many respondents not entirely understanding some
subtleties of the online ad ecosystem. Nevertheless, these
results suggest that it is not necessarily helpful for entities
to “pass the blame” to other players, as the mechanism
of discrimination seems more important. We were also
surprised to find that whether a person or an algorithm
was responsible for selecting how and whom to target
made no difference in respondents’ ratings of the severity
of the scenario, suggesting that “an algorithm did it” will
not be a viable excuse.

Finally, we find that the majority (88%) of respon-
dents believed our scenario, suggesting a wariness or
even awareness of these issues, at least among heavily-
internet-using Turkers and SSI panel members.

7.2 Governance and Policy Implications

A number of organizations, including the FTC, the EFF,
and industry groups such as the American Advertising
Federation, provide guidelines and recommendations for
the ethical use of targeted advertising [1, 18, 25]. Of these
recommendations, only the EFF policy document men-
tions discrimination as a potential, unethical consequence.
Our results, as well as prior research that has brought
to light instances of discrimination (e.g., [13, 37]), high-
light the importance of discrimination as an ad-targeting
consideration. We find that 43% of respondents rated
our discriminatory advertising scenarios a significant or
moderate problem. More specifically, in the more prob-
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Factor OR CI p-value

T-Asian 0.91 [0.65, 1.27] 0.574
T-Black 1.05 [0.75, 1.47] 0.789

Behavior 1.15 [0.87, 1.51] 0.321

Advertiser 0.94 [0.71, 1.24] 0.656

Human 0.91 [0.69, 1.20] 0.509

Age of respondent 1.00 [0.99, 1.01] 0.566

HS+ 0.96 [0.64, 1.44] 0.845
BS+ 0.68 [0.46, 1.00] 0.051

R/E-Asian 1.90 [0.97, 3.74] 0.063
R/E-Black 1.57 [0.97, 2.53] 0.067
R/E-Hispanic or Latino 1.30 [0.76, 2.24] 0.340

SSI 1.03 [0.76, 1.40] 0.839

Table 18: Regression results for ethical behavior by the
end user (n=891), where OR > 1 is associated with
stronger disagreement that the end user behaved ethically.
See Table 10 caption for more detailed explanation.

lematic demographic scenario, 53% did so; even in the
less problematic behavioral scenario, when discrimina-
tion happened as a result of targeting based on users’
web browsing history, 34.2% did so. Thus, we propose
that guidelines, especially those issued by government
agencies, should include explicit language about discrimi-
nation to address this topic of common concern.

Our findings suggest that while respondents distinguish
behavioral from demographic targeting, they are not espe-
cially concerned with whether an algorithm was involved
in the outcome. This suggests that responses that focus
on the algorithmic nature of the ad ecosystem may not be
helpful for addressing public concerns.

Finally, our findings represent a broad cross-section
of users’ opinions, but they do not represent a normative
guideline for what should be appropriate. Many kinds of
discrimination that may seem acceptable to the general
public today may in fact be illegal, immoral, or unjust.
Activists and advocates who are concerned about online
discrimination can use our work as a starting point to
better understand where more education, persuasion, and
lobbying for new regulations may be most needed for
furthering their agenda.

7.3 Future Work

Overall, our work addresses only a small portion of the
critical topic of online algorithmic discrimination. Our
results highlight an important distinction between users’
perceptions of scenarios involving explicitly racial vs.
implicitly racial, online-behavior-based discrimination.
However, we explored only web-history-based targeting,
and thus, future work may seek to explore whether users

react similarly to other types of behaviors, or whether
certain online behaviors are more sensitive.

Similarly, future work is needed to explore reactions to
discrimination based on factors other than race. Our first
pilot results suggested that users did not feel as strongly
about topics such as pre-existing health conditions, at
least in our advertising scenario, this should be explored
in further detail in a wider range of scenarios.

Relatedly, we only explored user perceptions of scenar-
ios involving advertising discrimination, and only in the
context of a potentially desirable ad (for a job). It would
be interesting to explore whether reactions remain the
same when the ad in question is potentially undesirable,
for example related to bail bonds or drug-abuse treatment.
Related work [17, 35] has also shown evidence of dis-
crimination in the search results shown to different users;
questions about discrimination in pricing, insurance, and
other services also remain open. Thus, future work could
focus on exploring and comparing user reactions to dis-
criminatory results in a variety of settings.

Finally, the concrete regression models, with particu-
lar coefficient values, as described in Section 5.3, were
not tested for predictive power against independent test
data. Such validation may make interesting future work
for those interested in accurately predicting people’s re-
sponses to cases of discrimination.
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A Survey Questions

Q1-4: How much responsibility does entity have for the
fact that their ads are seen much more frequently by peo-
ple who are target race than individuals of other races?

• Not at all responsible
• Somewhat responsible
• Mostly responsible
• Completely responsible
• Don’t know

This question would be asked four times in a random
order, each time with a new entity. Either Systemy (the
advertiser), Bezo Media (the ad network), the individual
visiting the website, or the the local news website.

Q5: Do you think it’s a problem that Systemy job ads
are seen much more frequently by people who are target
race than individuals of other races?

• Not at all a problem
• Minor problem
• Moderate problem
• Serious Problem
• Don’t know
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Q6-9: Please tell us how much you agree or disagree
with the following statements: entity behaved ethically in
this situation

• Strongly Agree
• Agree
• Neutral
• Disagree
• Strongly Disagree

This question would be again be asked four times in
a random order, each time with a new entity. Either Sys-
temy (the advertiser), Bezo Media (the ad network), the
individual visiting the website, or the the local news web-
site.

Q10: Do you think the scenario we described could
happen in real life?

• Definitely could happen
• Probably could happen
• Neutral
• Probably could not happen
• Definitely could not happen

Q11:Please specify your age. [drop-down menu of ages
18-100 or over]

Q12: Please specify the gender with which you most
closely identify.

• Male
• Female
• Other

Q13: Please specify the highest degree or level of
school you have completed.

• Some high school credit, no diploma or equivalent
• High school graduate, diploma or the equivalent (for

example: GED)
• Some college credit, no degree
• Trade/technical/vocational training
• Associate degree
• Bachelor’s degree
• Master’s degree
• Professional degree
• Doctorate degree

Q14: Please specify your ethnicity.

• Hispanic or Latino
• Black or African American
• White
• American Indian or Alaska Native
• Asian
• Other

USENIX Association 26th USENIX Security Symposium    951





Measuring the Insecurity of Mobile Deep Links of Android

Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, Gang Wang
Department of Computer Science, Virginia Tech

{fbeyond, wchun, andres, danfeng, gangwang}@vt.edu

Abstract
Mobile deep links are URIs that point to specific loca-

tions within apps, which are instrumental to web-to-app
communications. Existing “scheme URLs” are known to
have hijacking vulnerabilities where one app can freely
register another app’s schemes to hijack the communi-
cation. Recently, Android introduced two new meth-
ods “App links” and “Intent URLs” which were designed
with security features, to replace scheme URLs. While
the new mechanisms are secure in theory, little is known
about how effective they are in practice.

In this paper, we conduct the first empirical measure-
ment on various mobile deep links across apps and web-
sites. Our analysis is based on the deep links extracted
from two snapshots of 160,000+ top Android apps from
Google Play (2014 and 2016), and 1 million webpages
from Alexa top domains. We find that the new linking
methods (particularly App links) not only failed to de-
liver the security benefits as designed, but significantly
worsen the situation. First, App links apply link verifica-
tion to prevent hijacking. However, only 194 apps (2.2%
out of 8,878 apps with App links) can pass the verifica-
tion due to incorrect (or no) implementations. Second,
we identify a new vulnerability in App link’s preference
setting, which allows a malicious app to intercept arbi-
trary HTTPS URLs in the browser without raising any
alerts. Third, we identify more hijacking cases on App
links than existing scheme URLs among both apps and
websites. Many of them are targeting popular sites such
as online social networks. Finally, Intent URLs have lit-
tle impact in mitigating hijacking risks due to a low adop-
tion rate on the web.

1 Introduction

With the wide adoption of smartphones, mobile websites
and native apps have become the two primary interfaces
to access online content [10, 44]. Today, a user can easily

launch apps from websites with preloaded context, which
becomes instrumental to many key user experiences. For
instance, from a restaurant’s home page, users can tap a
hyperlink to launch the phone app and call the restaurant,
or launch Google Maps for navigation. Recently, users
can even search in-app content with a web-based search
engine (e.g., Google) and directly launch the target app
by clicking the search result [5].

The key enabler of web-to-mobile communication is
mobile deep links. Like web URLs, mobile deep links
are universal resource identifiers (URI) for content and
functions within apps [49]. The most widely used deep
link is scheme URL supported by both Android [7] and
iOS [3] since 2008. If an app wants to be launched from
the web, the app can register URI schemes to the mobile
OS during installation. For example, the Facebook app
registers “fb://profile” to open user profiles. Later
when the link “fb://profile/user1” is clicked on the
web, OS then can direct users to the Facebook app.

Threats to Mobile Deep Links. Despite the conve-
nience, researchers have identified serious security vul-
nerabilities in scheme URLs [18, 19, 55]. The most sig-
nificant one is link hijacking, where one app can register
another app’s scheme and induce the mobile OS to open
the wrong app. Fundamentally, link hijacking is possi-
ble because there is no restriction on what schemes apps
can register. A malicious app may register “fb” to hijack
the deep link request to the Facebook app to launch it-
self. This allows the malicious apps to perform phishing
attacks (e.g., displaying a fake Facebook login box) or
steal sensitive data carried by the link (e.g., PII) [19, 35].
Even though Android and iOS may prompt users be-
fore launching an app, there are many cases where such
prompting is skipped without user knowledge.

Recently, two new deep link mechanisms were pro-
posed to address the security risks in scheme URLs:
App link and Intent URL. 1) App Link [6, 9] was in-
troduced to Android and iOS in 2015. It no longer al-
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lows developers to customize schemes, but exclusively
uses HTTP/HTTPS scheme. To prevent hijacking, App
links introduced a way to verify the app-to-link associa-
tion. More specifically, mobile OS verifies a registered
link (e.g., https://facebook.com/profile) by con-
tacting the corresponding web host (facebook.com) for
verification. This prevents apps other than Facebook to
claim this link. 2) Intent URL [2] is another solution
introduced in 2013, which only works on Android. In-
tent URL defines how deep links should be called by
websites. Instead of calling “fb://profile”, Intent
URL explicitly specifies the destination app identifier
(i.e., package name) in the parameter to avoid confusion.

Measurements. While most existing works focus
on vulnerabilities in scheme URLs [18, 19, 55], little is
known about how widely App links and Intent URLs
are adopted, and how effective they are in mitigating
the threat in practice. In this paper, we conduct the
first large-scale measurement on the current ecosystem of
mobile deep links. Our goal is to detect and measure link
hijacking vulnerabilities across the web and mobile apps,
and understand the effectiveness of new linking mecha-
nisms in battling hijacking attacks.

We perform extensive measurements on a large col-
lection of mobile apps and websites. To measure the
adoption of different mobile deep links, we collected two
snapshots of 160,000+ most popular Android apps from
Google Play in 2014 and 2016, and crawled 1 million
web pages (using a dynamic crawler) from Alexa top do-
mains. We primarily focus on Android for its significant
market share (87%) [29] and availability of apps. We
also perform a subset of analysis on iOS deep links. At
the high-level, our method is to extract the link regis-
tration entries (URIs) from apps, and then measure their
empirical usage on websites. To detect hijacking attacks,
we group apps that register the same URIs as link colli-
sion groups. We find that not all link collisions are ma-
licious — certain links are expected to be shared such
as links for common functionality (e.g., “tel”) or third-
party libraries (e.g., “zxing”). We develop methods to
identify malicious hijacking attempts.

Findings. Our study has four surprising findings,
which lead to one overall conclusion: the newly intro-
duced deep link solutions not only fail to improve secu-
rity, but significantly increase hijacking risks for users.

First, App links’ verification mechanism fails in prac-
tice. Surprisingly, among 8,878 Android apps with App
links, only 194 (2.2%) correctly implement link verifica-
tion. The reasons are a combination of the lack of mo-
tivation from app developers and various developer mis-
takes. We confirm a subset of mistakes in iOS App links
too: 1,925 out of 12,570 (15%) fail the verification due

to server misconfigurations, including popular apps such
as Airbnb.

Second, we uncover a new vulnerability in App
links, which allows malicious apps to stealthily intercept
HTTP/HTTPS URLs in the browser. The root cause is
that Android grants excessive permissions to unverified
App links through the preference setting. For an unver-
ified App link, Android by default will prompt users to
choose between the app and the browser. To disable pro-
moting, users may set a “preference” to always use the
app for this link. This preference is overly permissive,
since it not only disables prompting for the current link,
but all other unverified links registered by the app. A
malicious app, once received preference, can hijack any
sensitive HTTP/HTTPS URLs (e.g., to a bank website)
without alerting users. We validate this vulnerability in
the latest Android 7.1.1.

Third, We detect more malicious hijacking attacks
on App links (1,593 apps) than scheme URLs (893
apps). Case studies show that popular websites (e.g.,
“google.com”) and apps (e.g., Facebook) are common
targets for traffic hijacking. In addition, we identify sus-
picious apps that act as the man-in-the-middle between
websites and the original app to record sensitive URLs
and the parameters (e.g., “https://paypal.com”).

Finally, Intent URLs have very limited impact in miti-
gating hijacking risks due to the low adoption rate among
websites. Only 452 websites out of the Alexa top 1 mil-
lion contain Intent URLs (0.05%), which is a much lower
ratio than that of App links (48.0%) and scheme URLs
(19.7%). Meanwhile, among these websites, App links
drastically increase the number of links that have hijack-
ing risks compared to existing vulnerable scheme URLs

To the best of our knowledge, our study is the first
empirical measurement on the ecosystem of mobile deep
links across web and apps. We find the new linking meth-
ods not only fail to deliver the security benefits as de-
signed, but significantly worsen the situation. There is a
clear mismatch between the security design and practical
implementations due to the lack of incentives of develop-
ers, developer mistakes, and inherent vulnerabilities in
the link mechanism. Moving forward, we propose a list
of suggestions to mitigate the threat. We have reported
the over-permission vulnerability to the Google Android
team. The detailed plan for further notification and risk
mitigation is described in §8.

2 Background and Research Goals

Mobile deep links are URIs that point to specific loca-
tions within mobile apps. Through deep links, websites
can initiate useful interactions with apps, which is instru-
mental to many key user experiences, for example, open-
ing apps, sharing and bookmarking in-app pages [49],

954    26th USENIX Security Symposium USENIX Association



https://foo.com/p

Mobile Phone

foo://p

App
foo

App

bar

Browser ⁄ Webview

intent://p#Intent;scheme=

foo;package=com.foo;end

Implicit intent

Explicit intent

Implicit intent

Scheme URL:

App Link:

Intent URL:

Figure 1: Three types of mobile deep links: Scheme
URL, App Link and Intent URL.

scheme  host     path

scheme            host                          path

App Link:    http://facebook.com/pro�le/1234

Scheme URL:    fb://pro�le/1234

Figure 2: URI syntax for Scheme URLs and App links.

and searching in-app content using search engines [5]. In
the following, we briefly introduce how deep links work
and the related security vulnerabilities. Then we describe
our research goals and methodology.

2.1 Mobile Deep Links
To understand how deep links work, we first introduce
inter-app communications on Android. An Android app
is essentially a package of software components. One
app’s components can communicate with another app’s
components through Intent, a messaging object charac-
terized “action”, “category” and “data”. By sending an
intent, one app can communicate with the other app’s
front-end Activities, or background Services, Content
Providers and Broadcast Receivers.

Mobile deep links trigger a particular type of intent
to enable communications between the web and mobile
apps. As shown in Figure 1, after users click on a link
in the browser (or in-app WebView), the browser sends
an intent to invoke the corresponding component in the
target app. Unlike app-to-app communication, mobile
deep link can only launch front-end Activity in the app.

Mobile deep links work in two simple steps: 1) Reg-
istration: an app “foo” should first register its URIs
(“foo://” or “https://foo.com”) to the mobile OS
during installation. The URIs are declared in the in
the “data” field of intent filters. 2) Addressing: when
“foo://” is clicked, mobile OS will search all the intent
filters for a potential match. Since the link matches the
URI of app “foo”, mobile OS will launch this app.

2.2 Security Risks of Deep Linking

Hijacking Risk in Scheme URL. Scheme URL is
the first generation of mobile deep links, and is the least
secure one. It was introduced since Android 1.0 [7]

App

foo

Mobile OS
Get https://foo.com/assetlinks.json

foo.com

Return assetlinks.json

app: foo  

https://foo.com/*

assetlinks.json

 Verify

Register 
https://foo.com/*

1

4 3

2
Mobile Phone

Figure 3: App link verification process.

and iOS 2.0 [3] in 2008. Figure 2 shows the syntax
of a scheme URL. App developers can customize any
schemes and URIs for their app without any restriction.

Prior research has pointed out key security risks in
scheme URLs [19, 55], given that any app can register
other apps’ schemes. For example, apps other than Face-
book can also register “fb://”. When a deep link is
clicked, it triggers an “implicit intent” to open any app
with a matched URI. This allows a malicious app to hi-
jack the request to the Facebook app to launch itself, ei-
ther for phishing (e.g., displaying a fake Facebook login
box), or stealing sensitive data in the request [19, 35].

With an awareness of this risk, Android lets users be
the security guard. When multiple apps declare the same
URI, users will be prompted (with a dialog box) to se-
lect/confirm their intended app. However, if the mali-
cious app is installed but the victim app is not, the mali-
cious app will automatically skip the prompting and hi-
jack the link without user knowledge. Even when both
apps are installed, the malicious app may trick users to
set itself as the “preference” and disable prompting. His-
torically speaking, relying on end-users as the sole secu-
rity defense is risky since users often fail to perceive the
nature of an attack, leading to bad decisions [12, 22, 53].

Solution1: App Link. App Link was introduced
recently in October 2015 to Android 6.0 [6] as a more
secure version of deep links. It was designed to pre-
vent hijacking with two mechanisms. First, the authen-
tic app can build an association with the correspond-
ing website, which allows the mobile OS to open the
App link exclusively using the authentic app. Second,
App link no longer allows developers to customize their
own schemes, but exclusively uses the http or https
scheme.

Figure 3 shows the App link association process. Sup-
pose app “foo” wants to register “http://foo.com/*”.
Mobile OS will contact the server at “foo.com” for ver-
ification. The app’s developer needs to set up an associ-
ation file “assetlinks.json” beforehand under the root di-
rectory (“/.well-known/”) of the foo.com server. This
file must be hosted on an HTTPS server. If the file
contains an entry that certifies that app “foo” is asso-
ciated with the link “http://foo.com/*”, the mobile
OS will confirm the association. The association file
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contains a field called “sha256 cert fingerprints”,
which is the SHA256 fingerprint of the associated app’s
signing certificate. The mobile OS is able to verify
the fingerprint and prevent hijacking because only the
authentic app has the corresponding signing certificate.
Suppose a malicious app “bar” also wants to register
“http://foo.com/*”, the verification will fail, assum-
ing the attacker cannot access the root of foo.com server
to modify the association file and the fingerprint.

The iOS version of App links is called universal link,
introduced at iOS 9.0 [9], which has the same verifica-
tion process. The association file for iOS is “apple-app-
site-association”. However, iOS and Android have dif-
ferent policies to handle failed verifications. iOS pro-
hibits opening unverified universal links in apps. An-
droid, however, leaves the decision to users: if an unver-
ified link is clicked, Android prompts users to choose if
they want to open the link in the app or the browser.

Solution 2: Intent URL. Intent URL was intro-
duced in 2013 and only works on Android [2]. Intent
URLs prevent hijacking by changing how the deep link
is called on the website. As shown in Figure 1, in-
stead of calling “foo://p”, Intent URL is structured as
“intent://p/#Intent;scheme=foo;package=com
.foo;end” where the package name of the target app is
explicitly specified. Package name is a unique identifier
for an Android app. Clicking an intent URL will launch
an “explicit intent” to open the specified app.

Compared to scheme URLs and App links, Intent URL
does not need special URI registration on the app. Intent
URL can invoke the same interfaces defined by the URIs
of scheme URLs or App links, as well as other exposed
components [2].

2.3 Research Questions

While the hijacking risk of scheme URLs has been re-
ported by existing research [18, 19, 55], little is known
about how prevalently this risk exists among apps, and
how effective the new mechanisms (App links and Intent
URLs) are in reducing this risk in practice. We hypothe-
size that upgrading from scheme URL to App link/Intent
URL is a non-trivial task, considering that scheme URLs
may already have significant footprints on the web. Mo-
bile platforms might be able to enforce changes to apps
through OS updates, but their influence on the web is
likely less significant. In this paper, we conduct the first
large-scale measurement on the mobile deep link ecosys-
tem to understand the adoption of different linking meth-
ods and their effectiveness in battling hijacking threats.

Threat Model. Our study focuses on link hijack-
ing threat since this is the security issue that App Links
and Intent URLs aim to address. Link hijacking happens

Link Conditions Prompt
Type > 1 Set As Link User?

Apps Preference Verified

Scheme
URL

3 7 / 3

3 3 / 7

7 7 / 7

7 3 / 7

App
Link∗

/ 7 7 3

/ 3 7 7

/ 7 3 7

/ 3 3 7

Intent URL / / / 7

Table 1: Conditions for whether users will be prompted
after clicking a deep link on Android. ∗App Links always
have at least one matched app, the mobile browser.

when a malicious app registers the URI that belongs to
the victim app. If mobile OS redirects the user to the
malicious app, it can lead to phishing (e.g., the malicious
app displays forged UI to lure user passwords) or data
leakage (e.g., the deep link may carry sensitive data in the
URL parameters such as PII and session IDs) [19, 35]. In
this threat model, mobile OS and browser (or WebView)
are not the targets of the attack, and we assume they are
not malicious.

The Role of Users. Users also play a role in this
threat model. After clicking on a deep link, a user may
be prompted with a dialog box to confirm the destination
app. As shown in Table 1, prompting can be skipped in
many cases. For scheme URLs, a malicious app can skip
prompting if the victim app is not installed, or by trick-
ing users to set the malicious app as the “preference”.
App link can skip prompting if the link has been verified.
Otherwise, users will be prompted to choose between the
browser and the app. Intent URLs will not prompt users
at all since the target app is explicitly specified.

Our Goals. Our study seeks to answer key ques-
tions regarding how mobile deep links are implemented
in the wild and their security impact. We ask three sets of
questions. First, how prevalently are different deep links
adopted among apps over time? Are App links and Intent
URLs implemented properly as designed? Second, how
many apps are still vulnerable to hijacking attacks? How
many vulnerable apps are exploited by other real-world
apps? Third, how widely are hijacked links distributed
among websites? How much do App links and Intent
URLs contribute to mitigating such links?

To answer these questions, we first describe data col-
lection (§3), and measure the adoption of App links and
scheme URLs among apps (§4). We perform extensive
security analyses to understand how effective App links
can prevent hijacking (§5), and then describe the method
to detect hijacking attacks among apps (§6). Finally, we
move to the web to measure the usage of Intent URLs,
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and the prevalence of hijacked links (§7). In §8, we sum-
marize key implications and discuss possible solutions.

3 Datasets

We collected data from both mobile apps and websites,
including two snapshots of 160,000+ most popular An-
droid apps in 2014 and 2016, and web pages from Alexa
top 1 million domains.

Mobile Apps. To examine deep link registration,
we crawled two snapshots of mobile apps from Google
Play. The first snapshot App2014 contains 164,322 most
popular free apps from 25 categories in December 2014
(crawled with an Android 4.0.1 client). In August 2016,
we crawled a second snapshot of top 160,000 free apps
using an Android 6.0.1 client. We find that 48,923 apps
in App2014 are no longer listed on the market in 2016.
4,963 apps in 2014 snapshot fell out of the top 160K list
in 2016. To match the two datasets, we also crawled
these 4,963 apps in 2016, forming an App2016 dataset of
164,963 apps. The two snapshots have 115,399 overlap-
ping apps. For each app in App2016, we also obtained
the developer information, downloading count, review
count and rating.

Our app dataset is biased towards popular apps among
the 2.2 million apps in Google Play [48]. Since these
popular apps have more downloads, potential vulnerabil-
ities could affect more users. Our result can serve as a
lower bound of empirical risks.

Alexa Top 1 Million Websites. To understand deep
link usage on the web, we crawled Alexa top 1 million
domains [1] in October 2016. We simulate using an An-
droid browser (Android 6.0.1, Chrome/41/0/2272.96) to
visit these web domains and load both static HTML page
(index page) and the dynamic content from JavaScript.
This is done using modified OpenWPM [25], a head-
less browser-based crawler. For each visit, the crawler
loads the web page and waits for 300 seconds allowing
the page to load the dynamic content, or perform the redi-
rection. We store the final URL and HTML content. This
crawling is also biased towards popular websites, assum-
ing that deep links on these sites are more likely to be
encountered by users. We refer this dataset as Alexa1M.

4 Deep Link Registration by Apps

In this section, we start by analyzing mobile apps to un-
derstand deep link registration and adoption. In order to
receive deep link requests, an app needs to register its
URIs to mobile OS during installation. Our analysis in
this section focuses on Scheme URLs and App links. For
Intent URLs, as described in §2, developers do not need
special registrations in the app. Instead, it is up to the

websites to decide whether to use Intent URLs or scheme
URLs to launch the app. We will examine the adoption
Intent URLs later by analyzing web pages (§7).

We provide an overview of deep link adoption by an-
alyzing 1) how widely the scheme URLs are adopted
among apps, and 2) whether App links are in the process
of replacing scheme URLs for better security.

4.1 Extracting URI Registration Entries
Android apps register their URIs in the manifest file
(AndroidManifest.xml). Both Scheme URLs and
App Links are declared in Intent filters as a set
of matching rules, which can either be actual links
(fb://login/) or a wild card (fb://profile/*).
Since there is no way to exhaustively obtain all links be-
hind a wild card, we treat each matching rule as a regis-
tration entry. Given a manifest file, we extract deep link
entries in three steps:

• Step1: Detecting Open Interfaces. We capture all
the Activity intent filters whose “category” field con-
tains both BROWSABLE and DEFAULT. This returns
all the components that are reachable from the web.

• Step2: Extracting App Link. Among intent fil-
ters in Step 1, we capture those whose “action” con-
tains VIEW. This returns intent filters with either App
Links or Scheme URLs in their “data” fields1. We ex-
tract App Link URIs as those with http/https scheme.
Note that App Link intent filters have a special field
called autoVerify. If its value is TRUE, then mobile
OS will perform verification on the App link.

• Step3: Extracting Scheme URL. All the non-
http/https URIs from Step2 are Scheme URLs.

We apply the above method to our dataset and the re-
sult is summarized in Table 2. Among the 160K apps in
App2016, we find that 20.3K apps adopt scheme URLs
and 8.9K apps adopt App links. Note that for the apps in
App2014 (Android 4.0 or lower), App Link had not been
introduced to Android yet. We find that 4,545 apps in
App2014 register http/https URIs, which are essentially
scheme URLs with “http” or “https” as the scheme.
For consistency, we still call these http/https links as App
links, but link verification is not supported for these apps.

4.2 Scheme URL vs. App Link
Next, we compare the adoption of Scheme URLs and
App links across time, app categories and app popular-
ity. We seek to understand if the new App links are on
the way of replacing Scheme URLs.

1The rest intent filters whose “action” is not VIEW can still be trig-
gered by Intent URLs.
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Dataset Total Apps accept Apps accept Apps accept Unique Unique
Apps Scheme URLs App Links either Links Schemes Web Hosts

App2014 164,322 10,565 (6.4%) 4,545 (2.8%) 12,428 (7.6%) 8,845 6,471
App2016 164,963 20,257 (12.3%) 8,878 (5.4%) 23,830 (14.5%) 18,839 18,561

Table 2: Two snapshots of Android apps collected in 2014 and 2016. 115,399 apps appear in the both datasets; 48,923
apps in App2014 are no longer listed on the market in 2016; App2016 has 49,564 new apps.
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Adoption over Time. As shown in Table 2, there
are significantly more apps that started to adopt deep
links from 2014 to 2016 (about 100% growth). However,
the growth rates are almost the same for App links and
Scheme URLs. There are still 2-3 times more apps using
scheme URLs than those with App links. Apps links are
far from replacing scheme URLs.

Figure 4 specifically looks at apps in both snapshots.
We select those that adopt either type of deep links in
either snapshot (13,538 apps), and compute the differ-
ences in their number of schemes/hosts between 2014
and 2016. We find that the majority of apps (over 96.2%)
either added more deep links or remained the same. Al-
most no apps removed or replaced scheme URLs with
App links. The conclusion is the same when we compare
the number of URI rules (omitted for brevity). This sug-
gests that scheme URLs are still heavily used, exposing
users to potential hijacking threat.

App Popularity. We find that deep links are
more commonly used by popular apps (based on down-
load count). In Figure 5, we divide apps in 2016 into
three buckets based on their download count: [0,1K),
[1K,1M), [1M,∞). Each has 20,654, 127,323 and 5,223
apps respectively. Then we calculate the percentage of
apps that adopt deep links in each bucket. We observe
that 33% of the 5,223 most popular apps adopt scheme
URL, and the adoption rate goes down to 8% for apps
with <1K downloads. The trend is similar for App links.
In addition, we find that apps with deep links have aver-
agely 4 million downloads per app, which is orders of
magnitude higher than apps without deep links (125K
downloads per app). As deep links are associated with
popular apps, potential vulnerabilities can affect many
users.

App Categories. Among the 25 app cat-
egories, we find that the following categories
have the highest deep link adoption rate: SHOP-
PING (25.5%), SOCIAL (23.4%), LIFESTYLE
(21.0%), NEWS AND MAGAZINES (20.5%) and
TRAVEL AND LOCAL (20.2%). These apps are
content-heavy and often handle user personally identifi-
able information (e.g., social network app) and financial
data (e.g., shopping app). Link hijacking targeting these
apps could have practical consequences.

5 Security Analysis of App Links

Our result shows that App links are still not as popular
as scheme URLs. Then for apps that adopt App links,
are they truly secure against link hijacking? As we dis-
cussed in §2.2, App link was designed to prevent hijack-
ing through a link verification process. If a user clicks
on an unverified App link, the mobile OS will prompt
the user to choose whether he/she would like to open
the link in the browser or using the app. In the fol-
lowing, we empirically analyze the security properties of
App links in two aspects. First, we measure how likely
app developers make mistakes when deploying App link
verification. Second, we discuss a new vulnerability
we discovered which allows malicious apps to skip user
prompting when unverified App links are clicked. Ma-
licious apps can exploit this to stealthily hijack arbitrary
HTTP/HTTPS URLs in the mobile browser without user
knowledge.

5.1 App Link Verification

We start by examining whether link verification truly
protects apps from hijacking attacks. Since App link has
not been introduced for App2014, all the http/https links
in 2014 were unverified. In the following, we focus on
apps in App2016. In total, there are 8,878 apps that regis-
ter App links, involving 18,561 unique web domains. We
crawled two snapshots of the association files for each
domain in January and May of 2017 respectively. We
use the January snapshot to discuss our key findings, and
then use the May snapshot to check if the identified prob-
lems have been fixed.
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Date Apps w/
App Links

Apps Verif.
Turned On

Apps
Verified

Apps with Failed Verifications∗
App

Misconfig.
Host w/o
Assoc. F.

Host w/
HTTP

Wrong
Path

Host
Invalid F.

Host Assoc.
Other apps

Jan.17 8,878 415 194 26 177 11 0 10 60
May.17 8,878 415 192 26 171 8 0 18 57

Table 3: App Link verification statistics and common mistakes (App2016) based on data from January 2017 and May
2017. ∗One app can make multiple mistakes.

Type Date Hosts w/ Assoc. F. Under HTTP Wrong Path Invalid File

iOS
Jan.17 12,570 1,817 (14%) 0 (0%) 108 (1%)
May.17 13,541 1,820 (13%) 0 (0%) 113 (.8%)

Android
Jan.17 1,833 330 (18%) 4 (.2%) 81 (4%)
May.17 2,779 474 (17%) 0 (0%) 118 (4%)

Table 4: Association files for iOS and Android obtained after scanning 1,012,844 domains.

Failed Verifications. As of January 2017, we find
a surprisingly low ratio of verified App links. Among
8,878 apps that register App Links, only 194 apps suc-
cessfully pass the verification (2%). More specifically,
only 415 apps (4.7%) set the “autoVerify” field as TRUE,
which triggers the verification process during app instal-
lation. This means the vast majority of apps (8,463,
95.3%) do not even start the verification process. Inter-
estingly, 434 apps actually have the association file ready
on their web servers, but the developers seem to forget to
configure the apps to turn on the verification.

Even for apps that turn on the verification, only 194
out of 415 can successfully complete the process as of
January 2017. Table 3 shows the common mistakes of
the failed apps (one app can have multiple mistakes).
More specifically, 26 apps incorrectly set the App link
(e.g., with a wildcard in the domain name), which is im-
possible for mobile OS to connect to. On the server-side,
177 apps turn on the verification, but the destination do-
main does not host the association file; 11 apps host the
file under an HTTP server instead of the required HTTPS
server; 10 apps’ files are in invalid JSON format; 60
apps’ association files do not contain the App link (or
the app) to be verified. Note that for these failed apps,
we do not distinguish whether they are malicious apps
attempting to verify with a domain they do not own, or
simply mistakes by legitimate developers.

We confirm all these mistakes lead to failed verifica-
tions by installing and testing related apps on a phys-
ical phone. We observe many of these mistakes are
made by popular apps from big companies. For ex-
ample, “com.amazon.mp3” is Amazon’s official music
app, which claims to be associated with “amazon.com”.
However, the association file under amazon.com does
not certify this app. We tested the app on our phone,
which indeed failed the verification.

In May 2017, we check all the apps again and find that
most of the identified problems remain unfixed. More-
over, some apps introduce new mistakes: there are 8

more apps with an invalid association files in May com-
pared to that of January. Manual examination shows that
new mistakes are introduced when the developers update
the association files.

Misconfigurations for iOS and Android. To show
that App links verification can be easily misconfigured,
we put together 1,012,844 web domains to scan their as-
sociation files. These 1,012,844 domains is a union of
Alexa top 1 million domains and the 18,561 domains ex-
tracted from our apps. We scan the association files for
both Android and iOS.

As of January 2017, 12,570 domains (out 1 million)
have iOS association files and only 1,833 domains have
Android association files (Table 4). It is unlikely that
there are 10x more iOS-exclusive apps. A more plau-
sible explanation is iOS developers are more motivated
to perform link verification, since iOS prohibits opening
unverified HTTP/HTTPS links in apps. In contrary, An-
droid leaves the decision to users by prompting users to
choose between using apps or a browser.

We find iOS apps also have significant mis-
configurations. This analysis only covers a subset of pos-
sible mistakes compared to Table 3, but still returns a
large number. As of January 2017, 1817 domains (14%)
are hosting the association file under HTTP, and there
are additional 108 domains (1%) with invalid JSON files.
One example is the Airbnb’s iOS app. The app tries to
associate with “airbnb.com.gt”, which only hosts the
association file under an HTTP server. This means users
will not be able to open this link in the Airbnb app.

In May 2017, we scan these domains again. We ob-
serve 7.7% of increase of hosts with association files for
iOS and 51.6% increase for Android. However, the num-
ber of misconfigured association files also increased.

5.2 Over-Permission Vulnerability
In addition to verification failures, we identify a new vul-
nerability in the setting preferences for App links. Recall
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that unverified App links still have one last security de-
fense — the end user. Android OS prompts users when
unverified App links are clicked, and users can choose
between a browser and the matched app. We describe an
over-permission vulnerability that allows malicious apps
to skip prompting for stealthy hijacking.

Over-Permission through Preference Setting. User
prompting is there for better security, but prompting
users too much can hurt usability. Android’s solution
is to take a middle ground using “preference” setting.
When an App link is clicked, users can set “preference”
for always opening the link in the native app without
prompting again. We find that the preference setting
gives excessive permissions. Specifically, the preference
not only disables the prompting for the current link that
the user sees, but all other (unverified) HTTP/HTTPS
links that this app register. For example, if the user sets
preference for “https://bar.com”, all the links with
“https://” in this app receive the permission. Exploit-
ing this vulnerability allows malicious apps to hijack any
HTTP/HTTPS URLs without alerting users.

Proof-of-Concept Attack. Suppose “bar” is a
malicious app that register both “https://bar.com”
and “https://bank.com/transfer/*”. The user
sets preference for using “bar” to open the link
“https://bar.com”, which is a normal action. Then
without user knowledge, the permission also applies to
“https://bank.com/transfer/*”.

Later, suppose this user visits her bank’s
website in a mobile browser, and trans-
fers money through an HTTPS request
“https://bank.com/transfer?sessionid=8154&
amount=1000& recipient=tom”. Because of the
preference setting, this request will automatically trigger
bar without prompting the user. The browser wraps up
this URL and the parameters in plaintext to create an
Intent, and hands it over to the app bar. bar can then
change the recipient and use the session ID to transfer
money to the attacker. In this example, the attacker
sets the path of the URI as “/transfer/*” so that bar
would only be triggered during money transfer. The
app can make this even stealthier by quickly terminating
itself after the hijacking, and bouncing the user back to
the bank website in the browser.

We validate this vulnerability in both Android 6.0.1
and 7.1.1 (the latest version). We implement the proof-
of-concept attack by writing a malicious Android app to
hijack the author’s own blog website (instead of an actual
bank). The attack is successful: the malicious app hi-
jacked the plaintext parameters in the URL, and quickly
bounced the user back to the original page in the browser.
The bouncing is barely noticeable by users.

Discussion. Fundamentally, this vulnerability is
caused by the excessive permission to unverified App
links. When setting preferences, the permission is not
applied to the link-level, but to the scheme-level. We sus-
pect that the preference system of App links is directly
inherent from scheme URLs. For scheme URLs, the
preference is also set to the scheme level which makes
more sense (e.g., allowing the Facebook app to open all
“fb://”). However, for App links, scheme-level permis-
sion means attackers can hijack any HTTP/HTTPS links.

To successfully exploit this vulnerability, a malicious
app needs to trick users to set the preference (e.g., using
benign functionalities). For example, an attacker may
design a recipe app that allows users to open recipe web
links in the app for an easy display and sharing. This
recipe app can ask users to set the preference for opening
recipe links but secretly registers an online bank’s App
links to receive the same preference. We have filed a bug
report through Google’s Vulnerability Reward Program
(VRP) in February 2017. We are currently working with
the VRP team to mitigate the threat.

iOS has a similar preference setting, but not vulnera-
ble to this over-permission attack. In iOS, if the user sets
preference for one app to open an HTTPS link. The per-
mission goes to all the HTTPS links that the app has suc-
cessfully verified. The Android vulnerability is caused by
the fact that permission goes to unverified links.

5.3 Summary of Vulnerable Apps
Thus far, our analysis shows that most apps are still vul-
nerable to link hijacking. First, scheme URLs are still
heavily used among apps. Second, for apps that adopt
App links, only 2% can pass the link verification. The
over-permission vulnerability described above makes the
situation even worse. In 2016, out of all 23,830 apps that
adopt deep links, 23,636 apps either use scheme URLs
or unverified App links. These are candidates of poten-
tial hijacking attacks.

6 Link Hijacking

While many apps are vulnerable in theory, the real ques-
tion is how many vulnerable apps are exploited in prac-
tice? For a given app, how likely would other apps regis-
ter the same URIs (a.k.a., link collision)? Do link colli-
sions always have a malicious intention? If not, how can
we classify malicious hijacking from benign collisions?

To answer these questions, we first measure how likely
it is for different apps to register the same URIs. Our
analysis reveals the key categories of link collisions, and
we develop a systematic procedure to label all of them.
This analysis allows us to focus on the highly suspicious
groups that are involved in malicious hijacking. Finally,
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we present more in-depth case studies to understand the
risk of typical attacks.

6.1 Characterizing Link Collision
Links collision happens when two or more apps register
the same deep link URIs. When the link is clicked, it is
possible for mobile OS to direct users to the wrong app.
Note that simply matching “scheme” or app link “host”
is not sufficient. For example, “myapp://a/1” and
“myapp://a/2” do not conflict with each other since
they use different “paths” in the URI. To this end, we de-
fine two apps have link collision only if there is at least
one link that is opened by both apps.

Prevalence of Link Collisions. To identify link col-
lision, we first group apps based on the scheme (scheme
URL) or web host (App links). Figure 6 and Figure 7
show the number of apps that each scheme/host is as-
sociated with. About 95% of schemes are exclusively
registered by one single app. The percentage is slightly
lower for App links (76%–82%). Then for each group,
we filter out apps that have no conflicting URIs with any
other apps in the group, and produce apps with link colli-
sions. Within App2014, we identify 394 schemes, 1,547
web hosts from 5,615 apps involved in link collisions.
The corresponding numbers for 2016 are higher: 697
schemes and 3,272 web hosts from 8,961 apps.

Our result is a lower bound of actual collisions, biased
towards popular apps. Schemes/hosts that are currently
mapped to a single app might still have collisions with
apps outside of our dataset. For the rest of our analysis,
we focus on the more recent 2016 dataset.

Categorizing Link Collisions. We find that not all
collisions have malicious intention. After manually ana-
lyzing these schemes and hosts, we categorize collisions
into 3 types. Table 5 shows the top 10 mostly registered
schemes/hosts and their labels.

• Functional scheme (F) is reserved for a common
functionality, instead of a particular app. “file” is
registered by 1,278 apps that can open files. “geo”
is registered by 238 apps that can handle GPS coor-
dinates. These schemes are expected to be registered

Scheme Apps Web Host Apps
file F© 1278 google.com P© 480
content F© 727 google.co.uk P© 441
oauth T© 520 zxing.appspot.com T© 410
x-oauthflow-twitter T© 369 maps.google.com P© 187
x-oauthflow-espn-
twitter T©

359 beautygirlsinc.com P© 148

zxing T© 321 triposo.com P© 131
testshop T© 278 feeds.feedburner.com T© 126
shopgate-10006 T© 278 feeds2.feedburner.com T© 123
geo F© 238 feedproxy.google.com T© 112
tapatalk-byo T© 180 feedsproxy.google.com T© 110

Table 5: Top 10 schemes and app link hosts with link col-
lisions in App2016. We manually label them into three
types: F©= Functional, P©= Per-App, T©= Third-party

by multiple apps. IANA [13] maintains a list of URI
schemes, most of which are functional ones. This
collision type does not apply to App links.

• Per-app scheme/host (P) is designated to an indi-
vidual app. “maps.google.com” is to open Google
Maps (but registered by 186 other apps) and “fb” is
supposed to open Facebook app (but registered by
4 other apps). Collisions on per-app schemes/hosts
are often malicious, with the exception if all apps are
from the same developer.

• Third-party scheme/host (T) is used by third-
party libraries, which often leads to (uninten-
tional) link collision. “x-oauthflow-twitter”
is a callback URL for Twitter OAuth. Twit-
ter suggests developers defining their own call-
back URL, but many developers copy-paste this
scheme from an online tutorial (unintentional colli-
sion). “feedproxy.google.com” is from a third-
party RSS aggregator. Apps use this service to redi-
rect user RSS requests to their apps (benign colli-
sion).

Because of the “shared” nature, functional schemes
or third-party schemes/hosts are expected to be used by
multiple apps. Related link collisions are benign or un-
intentional. In contrary, per-app schemes/hosts are (ex-
pected to be) designated to each app, and thus link colli-
sion can indicate malicious hijacking attempts.

6.2 Detecting Malicious Hijacking

Next, we detect malicious hijacking by labeling per-app
schemes/hosts. This task is challenging since schemes
and hosts are registered without much restriction—
it is difficult to tell based on the name of the
scheme/host. Our The high-level intuition is: 1)
third-party schemes/hosts often have official documen-
tations to teach developers how to use the library,
which are searchable online; 2) functional schemes are
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Deep Links
In Total Link Collisions After Pre-

Processing Functional Third-party Per-app

#Schemes (#Apps) 18,839 (20,257) 697 (7,432) 376 (6,350) 30 (2,135) 197 (3,972) 149 (893)
#Hosts (#Apps) 18,561 (8,878) 3,272 (2,868) 2,451 (2,083) N/A 137 (999) 2,314 (1,593)

Table 6: Filtering and classification results for schemes and App link hosts (App2016).

well-documented in public URI standard. To these
ends, we develop a filtering procedure to label per-app
schemes/hosts. For any manual labeling tasks, we have
two authors perform the task independently, and a third
person to resolve any disagreements.

Pre-Processing. We start with the 697 schemes
and 3,272 hosts (8,961 apps) that have link collisions in
App2016. We exclude schemes/hosts where all the colli-
sion apps are from the same developer. This leaves 376
schemes and 2,451 web hosts for further labeling.

Classifying Schemes. We label schemes in two steps.
The results are shown in Table 6. First, we filter out
functional schemes. IANA [13] lists 256 common URI
schemes, among which there are a few per-apps scheme
under “provisional” status (e.g., “spotify”). We man-
ually filter them out and get 175 standard functional
schemes. Matching this list with our dataset returns 30
functional schemes with link collisions. Then, to label
third-party schemes, we manually search for their doc-
umentations or tutorials online. For certain third-party
schemes, we also check the app code to be sure. In to-
tal, we identify 197 third-party schemes, and the rest 149
schemes are per-app schemes (also manually checked).

Figure 8 shows the number of collision apps for
different schemes. Not surprisingly, per-app schemes
have fewer collision apps than functional and third-party
schemes.

Classifying App Link Hosts. This only requires
labeling third-party hosts from per-app hosts. In total,
there are 2,451 hosts after pre-processing. We observe
that 1633 hosts are jointly registered by 5 apps, and 347
subdomains of “google.com” are registered by 2 apps.
All these hosts are not third-party hosts, which helps to
trim down to 471 hosts for manual labeling. We follow
the same intuition to label third-party web hosts by man-
ually searching their official documentations. In total,
we label 137 third-party hosts, and 2,314 per-app hosts.
Figure 9 compares per-app hosts and third-party hosts on
their number of collision apps, which are very similar.

Testing Automated Classification. Clearly manu-
ally labeling cannot scale. Now that we have obtained
the labels, we briefly explore the feasibility of automated
classification. As a feasibility test, we classify per-app
schemes from third-party schemes using 10 features such
as unique developers per scheme, and apps per scheme
(feature list in Appendix). 5-fold cross-validation us-
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ing SVM and Random Forests classifiers return an accu-
racy of 59% (SVM) and 62% (RF). If we only focus on
schemes that have a higher-level of collisions (e.g., > 4
developers), it returns a higher accuracy: 84% (SVM)
and 75% (RF). The accuracy is not high enough for prac-
tical usage. Intuitively, there are not many restrictions on
how developers register their URIs, and thus it is possible
that the patterns of per-app schemes are not that strong.

Since fully automated classification is not yet feasi-
ble, we then explore useful heuristics to help app mar-
ket admins to conduct collision auditing. We rank fea-
tures based on the information gain, and identify top 3
features: average number of apps from the same devel-
oper (apDev), number of unique no-prefix components
(npcNum) and number of unique components (ucNum).
Regarding apDev, the intuition is that developers are
likely to use a different per-app scheme for each of their
apps, but would share the same third-party schemes (e.g.,
oauth) for all their apps. A larger apDev of the colli-
sion link indicates a higher chance of being a third-party
scheme. Moreover, third-party schemes are likely to use
the same component name for different apps (i.e., less
unique), leading to smaller npcNum and ucNum.

6.3 Hijacking Results and Case Studies

In total, we identify 149 per-app schemes and 2,314 per-
app hosts that are involved in link collisions. The related
apps (893 and 1,593 respectively) are either the attacker
or victim in the hijacking attacks. To understand how
per-app schemes and hosts are hijacked, we perform in-
depth cases studies on a number of representative attacks.

Traffic Hijacking. We find apps that regis-
ter popular websites’ links (or popular apps’ schemes)
seeking to redirect user traffic to themselves. For
example, “google.com” is registered by 480 apps
from 305 non-Google developers. The scheme
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“google.navigation” from Google Maps is hijacked
by 79 apps from 32 developers. The intuition is that
popular sites and apps already have a significant num-
ber of links distributed to the web. Hijacking their links
are likely to increase the attacker apps’ chance of being
invoked. We find many popular apps are among the hi-
jacking targets (e.g., Facebook, Airbnb, YouTube, Tum-
blr). Traffic hijacking is the most common attack.

URL Redirector MITM. A number of hijackings
are conducted by “URL Redirector” apps. When users
click on an http/https link in the browser, these Redirec-
tor apps redirect users to the corresponding apps. Es-
sentially, Redirector apps play the role of mobile OS in
redirecting URLs, but their underlying mechanisms have
several security implications. For example, URLLander
(com.chestnutcorp.android.urlander) and Ap-
pRedirect (com.nevoxo.tapatalk.redirect) each
has registered HTTPS links from 36 and 75 web domains
respectively (unverified) and has over 10,000 installs. We
suspect that users install Redirector apps because of the
convenience, since these apps allow users to open the
destination apps (without bouncing to the browser) even
if the destination apps have not yet adopted App links.
The redirection is hard coded without the consent of the
destination apps or the originated websites.

URL redirector apps can act as man-in-the-middle
(MITM) to hijack HTTP/HTTPS URLs. For example,
URLLander registered “https://www.paypal.com”
for redirection. When a user visits paypal.com us-
ing a browser (usually logged-in), the URL contains
sensitive parameters including a SESSIONID. Once the
user agrees to use URLLander for redirection, the URL
and SESSIONID will be handed over to URLLander
by the browser in plaintext. This MITM threat applies
to all the popular websites that Redirector apps reg-
istered such as facebook.com, instagram.com, and
ebay.com. Particularly for eBay, we find that the offi-
cial eBay app explicitly does not register to open the link
“payments.ebay.com”, but this link was registered by
Redirector apps. We analyze the code of AppRedirect
and find it actually writes every single incoming URL
and parameters in a log file. Redirection (and MITM)
can be automated without prompting users by exploiting
the over-permission vulnerability (see §5.2) — if the user
once sets a preference for just one of those links.

Hijacking a Competitor’s App. Many apps are
competitors in the same business, and we find tar-
geted hijacking cases between competing apps. For
example, Careem (com.careem.acma) and QatarTaxi
(com.qatar.qatartaxi) are two competing taxi book-
ing apps in Dubai. Careem is more popular (5M+ down-
loads), which uses scheme “careem” for many function-
alities such as booking a ride (from hotel websites) and

Dataset App Link
(Webpage)

Scheme URL
(Webpage)

Intent URL
(Webpage)

Alexa1M 3.2M (480K) 431K (197K) 1,203 (452)

Table 7: Number of deep links (and webpages that con-
tain deep links) in Alexa top 1 million web domains.

adding credit card information. QatarTaxi (10K down-
loads) registers to receive all “careem://*” deep links.
After code analysis, we find all these links redirect users
to the QatarTaxi app’s home screen, as an attempt to draw
customers.

Bad Scheme Names. Hijackings are also caused by
developers using easy-to-conflict scheme names. For ex-
ample, Citi Bank’s official app uses “deeplink” as its
per-app scheme, which conflicts with 6 other apps. These
apps are not malicious, but may cause confusions — a
user is going to open the Citi Bank app, but a non-related
app shows up (and vice versa). We detect 14 poorly
named per-app schemes (e.g., “myapp”, “app”).

7 Mobile Deep Links on The Web

Our analysis shows that hijacking risks still widely exist
within apps. Next, we move to the web-side to examine
how mobile deep links are distributed on the web, and
estimate the likelihood of users encountering hijacked
links. In addition, we focus on Intent URL to examine
its adoption and usage. We seek to estimate the impact
of Intent URLs to mitigating hijacking threats.

In the following, we first measure the prevalence of
Intent URLs on the web, and compare it with scheme
URLs and App links. Then, we revisit the hijacked links
detected in §6 and analyze their appearance on the web.

7.1 Intent URL Usage

Intent URL is a secure way of calling deep links from
websites by specifying the target app’s package name
(unique identifier). In theory, Intent URL can be used
to invoke existing app components defined by scheme
URLs (and even App links) to prevent hijacking. The
key question is how widely are Intent URLs adopted in
practice.

Intent URLs vs. Other Links We start by extracting
mobile deep links from web pages in Alexa1M collected
in §3. For App links and scheme URLs, we match all the
hyperlinks in the HTML pages with the link registration
entries extracted from apps. We admit that this method
is conservative as we only include deep links registered
by apps in our dataset. But the matching is necessary
since not all the HTTP/HTTPS links or schemes on the
web can invoke apps. For Intent URLs, we identify them
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(b) Scheme URLs
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(c) App Links

Figure 10: Deep link distribution among Alexa top 1 million websites. Website domains are sorted and divided into
20 even-sized bins (50K sites per bin). We report the % of websites that contain deep links in each bin.

 0

 20

 40

 60

 80

 100

1 2 10 100 1000

C
D

F 
of

 A
pp

 (%
)

# Web Domains per App

Intent URL
Scheme URL

Figure 11: Number of websites that
host deep links for each app.

 1

 10

 100

 1000

 10000

Scheme URL AppLink

# 
of

 D
ee

pl
in

ks
 (T

ho
us

an
d) Third-party

Per-app
Functional

3.4K
7.2K

398K

122K

2620K

Figure 12: Different type of hijacked
deep links in Alexa1M.

 1

 10

 100

 1000

Scheme URL AppLink

# 
of

 W
eb

si
te

s 
(T

ho
us

an
d) Third-party

Per-app
Functional

2.3K

5.3K

191K

36K

456K
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jacked deep links in Alexa1M.

based on their special format (“intent://*;end”). The
matching results are shown in Table 7.

The key observation is Intent URLs are rarely used.
Out of 1 million web domains, only 452 (0.05%) contain
Intent URLs in their index page. As a comparison, App
links and Scheme URLs appear in 480K (48%) and 197K
(19.7%) of these sites. For the total number of links, In-
tent URL is also orders of magnitude lower than other
links (1,203 versus 3.2M and 431K). This extremely low
adoption rate indicates that Intent URLs have little im-
pact to mitigating hijacking risks in practice.

Challenges to Intent URL Adoption. Since Android
still supports scheme URLs, it is possible that developers
are not motivated to use Intent URLs to replace the still-
functional scheme URLs. In addition, even if security-
aware developers use Intent URLs on their own websites,
it is difficult for them to upgrade scheme URLs that have
been distributed to other websites.

As shown in Figure 10(a), Intent URLs are highly
skewed towards to high-ranked websites. In contrary,
Scheme URLs are more likely to appear in low-ranked
domains (Figure 10(b)), and App links’ distribution is
relatively even (Figure 10(c)). A possible explanation is
that popular websites are more security-aware.

Then we focus on apps, and examine how many web-
sites that contain an app’s deep links (Figure 11). We find
that most apps have their Intent URLs on a single website
(90%). We randomly select 40+ pairs of the one-to-one
mapped apps and websites for manual examination. We
find that almost all websites (except 2) are owned by the
app developers, which confirms our intuition. Scheme
URLs are found in more than 5 websites for 90% of apps

(50 websites for more than half of the apps). It is chal-
lenging to remove or upgrade scheme URLs across all
these sites.

Insecure Usage of Intent URL. Among the 1,203
Intent URLs, we find 25 Intent URLs did not specify the
package name of the target app (only the host or scheme).
These 25 Intent URLs can be hijacked.

7.2 Measuring Hijacking Risk on Web
To estimate the level of hijacking risks on the web, we
now revisit the hijacking attacks detected in §6 (those
on per-app schemes/hosts). We seek to measure the vol-
ume of hijacked links among webpages, and estimation
App link’s contributions over existing risks introduced
by scheme URLs.

Hijacked Mobile Deep Links. We extract links from
Alexa1M that are registered by multiple apps, which re-
turns 408,455 scheme URLs and 2,741,817 App links.
Among them, 7,242 scheme URLs and 2,619,565 App
links contain per-app schemes/hosts (i.e., hijacked links).

The key observation is that App links introduce orders
of magnitude more hijacked links than scheme URLs, as
shown in Figure 12 (log scale y-axis). We further exam-
ine the number of websites that contain hijacked links.
As shown in Figure 13, App links have a dominating
contribution: 456K websites (out of 1 million, 45.6%)
contains per-app App links that are subject to link hi-
jacking. The corresponding number for scheme URL is
5.3K websites (0.5%).

App links, designed as the secure version of deep
links, actually expose users to a higher level of risks. In-
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tuitively, http/https links have been used on the web for
decades. Once apps register App links, a large number
of existing http/https links on the web are automatically
interpreted as App links. This creates more opportunities
for malicious apps to perform link hijacking.

Links Carrying Sensitive Data. To illustrate the
practical consequences of link hijacking, we perform a
quick analysis on the hijacked links with a focus on their
parameters. A quick keyword search returns 74 sen-
sitive parameter names related to authentications (e.g.,
authToken, sessionid, password, access token,
full list in Appendix). We find that 1075 hijacked links
contain at least one of the sensitive parameters. A suc-
cessful hijacking will expose these parameters to the at-
tacker app. This is just one example, and by no means
exhaustive in terms of possibly sensitive data carried in
hijacked links (e.g., PII, location).

8 Discussion

Key Implications. Our results shed light on the prac-
tical challenges to mitigate vulnerable mobile deep links.
First, scheme URL was designed for mixed purposes,
including invoking a generic function (functional/third-
party schemes) and launching a target app (per-app
schemes). The multipurpose design makes it difficult
to uniformly enforce security policies (e.g., associating
schemes to apps). A more practical solution should pro-
hibit per-app schemes, while not crippling the widely de-
ployed functional/third-party schemes on the web.

Second, App links and Intent URLs were designed
with security in mind. However, their practical usage
has deviated from the initial design. Particularly for App
links, 98% of apps did not implement link verification
correctly. In addition to various configuration errors, a
more important reason is unverified links still work on
Android, and developers are likely not motivated to ver-
ify links. As a result, App links not only fail to provide
better security, but worsen the situation significantly by
introducing more hijackable links.

Finally, the insecurity of deep links leads to a tough
trade-off between security and usability. Mobile deep
links were designed for usability, to enable seamless
context-aware transitions from web to apps. However,
due to the insecure design, mobile platforms have to con-
stantly prompt users to confirm the links they clicked,
which in turn hurts usability. The current solution for
Android (and iOS) takes a middle ground, by letting
users set “preference” for certain apps to disable prompt-
ing. We find this leads to new security vulnerabilities
(over permission risk in §5.2) that allow malicious apps
to hijack arbitrary HTTP/HTTPS URLs in the Android
browser.

Legacy Issue. Android does not strongly enforce
App link verification possibly due to the legacy issues.
First, scheme URLs are still widely used on websites
as discussed in §7. Disabling scheme links altogether
would inevitably affect users’ web browsing experience
(e.g., causing broken links [8]). Second, according to
Google’s report [11], over 60% of Android devices are
still using Android 5.0 or earlier versions, which do not
support App link verification. Android allows apps (6.0
or higher) to use verified App links while maintaining
backward compatibility by not enforcing the verification.

Countermeasures. We discuss three countermea-
sures to mitigate link hijacking risks. In the short term,
the most effective countermeasures would be disabling
scheme URLs in mobile browsers and WebViews. Note
that this is not to disable the app interfaces defined by
schemes, but to encourage (force) websites to use Intent
URLs to invoke per-app schemes safely. Android may
also whitelist a set of well-defined functional schemes
to avoid massively breaking functional links. For cus-
tomized scheme URLs that are still used on the web,
Android needs to handle their failure gracefully without
severely degrading user experience. Second, prohibit-
ing apps from opening unverified App links to prevent
link hijacking. The drawback is that apps without a web
front would face difficulties to use deep links — they will
need to rely on third-party services such as Brach.io [4]
or Firebase [5] to host their association files. Third,
addressing the over-permission vulnerability (§5.2), by
adopting more fine-grained preference setting (e.g., at the
host level or even the link level). This threat would also
go away if Android strictly enforces App link verifica-
tions.

Vulnerability Notification & Mitigation. Our study
identifies new vulnerabilities and attacks, and we are tak-
ing active steps to notifying the related parties for the risk
mitigation.

First, regarding the over-permission vulnerability, we
have filed a bug report through Google’s Vulnerability
Reward Program (VRP) in February 2017. As of June
2017, we have established a case and submitted the sec-
ond round of materials including the proof-of-concept
app and a demo of the attack. We are waiting for further
responses from Google. Second, we have reported our
findings to the Android anti-malware team and the Fire-
base team regarding the massive unverified App links and
the misconfiguration issues. Details regarding their miti-
gation plan, however, were not disclosed to us. Third, as
shown in §5.1, most of the misconfigured App links have
not been fixed after 5 months. In the next step, we plan
to contact the developers, particularly those of hijacked
apps and help them to mitigate the configuration errors.
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Limitations. Our study has a few limitations. First,
our conclusions are limited to mobile deep links of An-
droid. Although iOS takes a more strict approach to en-
forcing the link verification, it remains to be seen how
well the security guarantees are achieved in practice. Our
brief measurement in §5.1 already shows that iOS uni-
versal links also have misconfigurations. More exten-
sive measurements are needed to fully understand the
potential security risks of iOS deep links. Second, our
measurement scope is still limited comparing to the size
of Android app market and the whole web. We argue
that data size is sufficient to draw our conclusions. By
measuring the most popular apps (160,000+) and web
domains (1,000,000), we collect strong evidence on the
incompetence of the newly introduced linking mecha-
nisms in providing better security. Third, we only fo-
cus on the link hijacking threat, because this is the se-
curity issue that App links and Intent URLs were de-
signed to address. There are other threats related to web-
to-mobile communications such as exploiting WebViews
and browsers [20, 37], and cross-site request forgery on
apps [27, 46, 50]. Our work is complementary to existing
work to better understand and secure the web-and-app
ecosystem.

9 Related Work

Inter-app Communication & Deep Links. Re-
searchers have discovered various vulnerabilities in the
inter-app communication mechanism in Android [19, 23]
and iOS [52], which leads to potential hijacking and
spoofing attacks. The fundamental issue is a lack of
source and destination authentication [52]. In the con-
text of app-to-app communication, attacks may cause
permission escalation [15, 21] and sensitive data leak-
age [46]. Mobile deep links (e.g., scheme URL) inherent
some of these vulnerabilities when facilitating commu-
nications between websites and apps. Unlike web URLs
whose uniqueness is guaranteed by the DNS, mobile
deep links lack a similar, centralized entity for link reg-
istration and addressing. As a result, multiple apps may
register the same link, leading to hijacking risks. Our
work is complementary to existing work since we focus
on large-scale empirical measurements, providing new
understandings to how the risks are mitigated in practice.

Other recent works on mobile deep links focus on im-
proving usability instead of security. Two systems are
proposed to automatically generate deep links for apps
via static and dynamic code analysis [38, 49].

Mobile Browser Security. In web-to-app communi-
cations, mobile browsers play an important role in bridg-
ing websites and apps, which can also be the target of
attacks. For example, malicious websites may attack the

browser using XSS [27, 50] and origin-crossing [52].
The threat also applies to customized in-app browsers
(called WebView) [20, 37, 40, 51]. In our work, we focus
hijacking threats to apps, a different threat model where
browser is the not target.

Detection and Mitigation. Existing research has ex-
plored different approaches to detect vulnerabilities in
app-to-app communications. On one hand, static code
analysis leverages call graphs and flow analysis to de-
tect information leakages [15, 26, 36, 45, 57] and vul-
nerable interfaces for inter-app communications [14, 32,
33, 34, 41, 42, 43]. On the other hand, dynamic anal-
ysis tracks information flow in the runtime which can
capture attacks that would be otherwise missed by static
analysis [24, 28, 30, 54, 56]. To remove and miti-
gate vulnerabilities, researchers propose to automatically
generate app patches [39, 45, 58], enforce strict poli-
cies [16, 17, 31, 51, 59] and provide guidelines for writ-
ing safer apps [31]. Our work highlights the significant
gap between a security solution and the practical impact
in mitigating threats. Beyond technical solutions, other
factors such as developer incentives and capabilities and
mobile platform policies also play a big role.

10 Conclusion

In this paper, we conducted the first large-scale measure-
ment study on mobile deep links across popular Android
apps and websites. Our results showed strong evidence
that the newly proposed deep link methods (App links
and Intent URLs) fail to address the existing hijacking
risks in practice. In addition, we identified new vul-
nerabilities and empirical misconfigurations in App links
which ultimately expose users to a higher level of risks.
Finally, we made a list of suggestions to countermeasure
the link hijacking risks in Android. Moving forward, we
plan to further investigate automated methods for hijack-
ing detection, and conduct more extensive measurements
on iOS deep links in the future.
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Appendix

Features for Classifying Schemes. Table 8 shows a
list of features for classifying per-app schemes and third-
party schemes in §6. These features are selected based
on the intuition that third-party schemes are likely to be
used by a larger variety of apps and developers, but are
used for similar components in the third-party library

Sensitive Mobile Deep Link Parameters . Table 9
is a list of sensitive parameters identified in the mobile
deep links from Alexa top 1 million websites. We ex-
clusively focus on link parameters that are related to au-
thentication. These parameter names are used in §7 to
match hijacked deep links that carry sensitive data. We
obtain this list by keyword searching and manual anno-
tation. This is by no means an exhaustive list. The goal
is provide examples to illustrate practical consequences
of link hijacking attacks.

Feature Description
aNum Total # of apps
uDev # of developers

cNum Total # of components
ucNum # of unique components

utcNum # of unique third-party components
npcNum # of unique components name (no prefix)

tDev # of developers with third-party components
apDev Average # of apps of the same developer
tDevP % of third-party developers

ucP % of unique components

Table 8: Features used for scheme classification.

access token, actionToken, api key, apikey, apiTo-
ken, Auth, auth key, auth token, authenticity token,
authkey, authToken, autologin, AWSAccessKeyId,
cookie, csrf token, csrfKey, csrfToken, ctoken,
fk session id, FKSESSID, FOGSESSID, force sid,
formkey, gsessionid, guestaccesstoken, hkey, IK-
SESSID, imprToken, jsessionid, key, keycode, keys,
LinkedinToken, live configurator token, LLSES-
SID, MessageKey, mrsessionid, navKey, newsid,
oauth callback, oauth token, pasID, pass, pass key,
password, PHPSESSID, piggybackCookie, plkey,
redir token, reward key, roken2, seasonid, secret key,
secret perk token, ses key, sesid, SESS, sessid, ses-
sid2b4f0b11dea2f7ae4bfff49b6307d50f, SESSION,
session id, session rikey, sessionGUID, sessionid,
sh auth, sharedKey, SID, tok, token, uepSessionToken,
vt session id, wmsAuthSign, ytsession

Table 9: Sensitive parameters in mobile deep links.
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Abstract

While in its early days, the Web was mostly static, it has
organically grown into a full-fledged technology stack.
This evolution has not followed a security blueprint,
resulting in many classes of vulnerabilities specific to
the Web. Even though the server-side code of the past
has long since vanished, the Internet Archive gives us a
unique view on the historical development of the Web’s
client side and its (in)security. Uncovering the insights
which fueled this development bears the potential to not
only gain a historical perspective on client-side Web se-
curity, but also to outline better practices going forward.

To that end, we examined the code and header infor-
mation of the most important Web sites for each year
between 1997 and 2016, amounting to 659,710 differ-
ent analyzed Web documents. From the archived data,
we first identify key trends in the technology deployed
on the client, such as the increasing complexity of client-
side Web code and the constant rise of multi-origin appli-
cation scenarios. Based on these findings, we then assess
the advent of corresponding vulnerability classes, inves-
tigate their prevalence over time, and analyze the security
mechanisms developed and deployed to mitigate them.

Correlating these results allows us to draw a set
of overarching conclusions: Along with the dawn of
JavaScript-driven applications in the early years of the
millennium, the likelihood of client-side injection vul-
nerabilities has risen. Furthermore, there is a noticeable
gap in adoption speed between easy-to-deploy security
headers and more involved measures such as CSP. But
there is also no evidence that the usage of the easy-to-
deploy techniques reflects on other security areas. On
the contrary, our data shows for instance that sites that
use HTTPonly cookies are actually more likely to have
a Cross-Site Scripting problem. Finally, we observe that
the rising security awareness and introduction of dedi-
cated security technologies had no immediate impact on
the overall security of the client-side Web.

1 A Historic Perspective on Web Security

The Web platform is arguably one of the biggest techno-
logical successes in the area of popular computing. What
modestly started in 1991 as a mere transportation mech-
anism for hypertext documents is now the driving force
behind the majority of today’s dominating technologies.
However, from a security point of view, the Web’s track
record is less than flattering, to a point in which a com-
mon joke under security professionals was to claim that
the term Web security is actually an oxymoron.

Over the years, Web technologies have given birth to
a multitude of novel, Web-specific vulnerability classes,
such as Cross-Site Scripting (XSS) or Clickjacking,
which simply did not exist before, many of them mani-
festing themselves on the Web’s client side. These ongo-
ing developments are due to the fact that the Web’s client
side is under constant change and expansion. While early
Web pages were mostly styled hypertext documents with
limited interaction, modern Web sites push thousands of
lines of code to the browser and implement non-trivial
application logic. This ongoing development shows no
signs of stopping or even slowing down. The trend is
also underlined by the increase in client-side APIs in the
browser: while in 2006 Firefox featured only 12 APIs, it
now has support for 93 different APIs ranging from accu-
rate timing information to an API to interact with Virtual
Reality devices1. This unrestricted growth led to what
Zalewski [41] dubbed The Tangled Web.

Now, more than 25 years into the life of the Web, it
is worthwhile to take a step back and revisit the devel-
opment of Web security over the years. This allows us
to gain a historical perspective on the security aspects of
an emerging and constantly evolving computing platform
and also foreshadows future trends.

Unfortunately, the majority of Web code is commer-
cial and, thus, not open to the public. Historic server-

1A list of all available features in current browsers is available at
http://caniuse.com/
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side code that has been replaced or taken offline cannot
be studied anymore. However, the Web’s client side, i.e.,
all Web code that is pushed in the form of HTML or Java-
Script to the browser is public. And thankfully, the Inter-
net Archive has recognized the historical significance of
the Web’s public face early on and attempts to preserve
it since 1996.

Thus, while the server-side portion of old Web appli-
cations is probably gone forever, the client-side counter-
part is readily available via the Internet Archive’s Way-
back Machine. This enables a novel approach to histor-
ical security studies: A multitude of Web security prob-
lems, such as Client-Side XSS or Clickjacking, manifest
themselves on the client side exclusively. Hence, evi-
dence of these vulnerabilities is contained in the Internet
Archive and thus available for examination. Many of the
current state-of-the-art security testing methods can be
adapted to work on the archived version of the sites, en-
abling an automated and scalable security evaluation of
the historic code.

Thus, we find that the archived client-side Web code
offers the unique opportunity to study the security evo-
lution of one of the most important technology platforms
during (almost) its entire existence, allowing us to con-
duct historical analyses of a plethora of properties of the
Web. This way, we are not only able to investigate past
Web trends, but also draw conclusions on current and fu-
ture Web development trends and (in)security. In the fol-
lowing, we give a brief overview of our conducted study
and outline our research approach.

Technological Evolution of the Web’s Client Side
We first examine the evolution of client-side technolo-
gies, i.e., which technologies prevailed in the history of
the Web. We then systematically analyze the archived
code on a syntactical level. The focus of this analysis
step is on observable indicators that provide evidence on
how diversity, complexity, and volume of this code has
developed over the years, as all these three factors have
a direct impact on the likelihood of vulnerabilities. Sec-
tion 3 reports on our findings in this area. The overall
goal of this activity is to enable the correlation of trends
in the security area with ongoing technological shifts.

Resulting Security Problems With the ever-growing
complexity of the deployed Web code and the con-
stant addition of new powerful capabilities in the Web
browser in the form of novel JavaScript APIs the over-
all amount of potential vulnerability classes has risen as
well. As motivated above, several of the vulnerabilities
which exclusively affect the client side have been prop-
erly archived and, thus, can be reliably detected in the
historical data. We leverage this capability to assess a

lower bound of vulnerable Web sites over the years. Sec-
tion 4 documents our security testing methodology and
highlights our key findings in the realm of preserved se-
curity vulnerabilites.

Introduction of Dedicated Security Mechanisms To
meet the new challenges of the steadily increasing secu-
rity surface on the Web’s client side, several dedicated
mechanisms, such as security-centric HTTP headers or
JavaScript APIs, have been introduced. We examine if
and how these mechanisms have been adopted during
their lifespan. This provides valuable evidence with re-
spect how the awareness of security issues has changed
over time and if this awareness manifests itself in overall
improvements of the site’s security characteristics. We
discuss the selected mechanisms and the results of our
analysis in Section 5.

Overarching Implications of our Analysis Based on
the findings of our 20-year-long study, we analyze the
implications of our collected data in Section 6. By look-
ing at historical trends and correlating the individual data
items, we can draw a number of conclusions regard-
ing the interdependencies of client-side technology and
client-side security. Moreover, we investigate correla-
tions between actual vulnerabilities discovered in histori-
cal Web applications and the existence of security aware-
ness indicators at the time, and finish with a discussion
of important next steps for Client-Side Web security.

2 Methodology

In this section, we present our methodology of using the
Internet Archive as a gateway to the past, allowing us to
investigate the evolution of the Web’s client side (secu-
rity), and outline our technical infrastructure.

2.1 Mining the Internet Archive for Histor-
ical Evidence

To get a view into the client-side Web’s past, the Internet
Archive (https://archive.org) offers a great service:
since 1996, it archives HTML pages, including all re-
sources which are included, such as images, stylesheets,
and scripts. Moreover, for each HTML page, it also
stores the header information initially sent by the remote
server allowing us to even investigate the prevalence of
certain headers over time.

For a thorough view into how the Web’s client side
changed over the years, we specifically selected the 500
most relevant pages for each year. Given that these are
the most frequented sites of the time, they also had the
greatest interest in securing their sites against attacks.
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For this purpose, we analyzed the sites identified by
Lerner et al. [19] as the 500 most important sites per year.
For 1996, the Internet Archive only archived copies of
less than half of these sites, though. Therefore, for our
work, we selected the years 1997 to 2016. For each year,
we used the first working Internet Archive snapshot of
each domain as an entry point.

Unlike Lerner et al. [19], who investigated the evolu-
tion of tracking, though, we did not restrict our analy-
sis to the start pages of the selected sites. Instead, we
followed the first level of links to get a broader cover-
age of the sites. In doing so, we encountered similar
issues as described in the previous work: several sites
were unavailable in the archive and links often led to
content from a later point in time. To allow for a pre-
cise analysis, we excluded all domains that either had
no snapshot in the Archive for a given year or did not
have any working subpages. Moreover, when crawling
the discovered links, we excluded any that resulted in a
redirect to either a more recent, cached resource or the
live version of the site. Also, when a page redirected
to an older version, we only allowed the date to devi-
ate at most three months from the start page. On aver-
age, this allowed us to consider 422 domains per year 2.
On these domains, we crawled a grand total of 659,710
unique URLs, yielding 1,376,429 frames, 5,440,958 dis-
tinct scripts, and 21,169,634 original HTTP headers for
our analysis. Since the number of domains varies for
each year, throughout this paper we provide fractions
rather than absolute numbers for better comparability.

Threats to Validity Given the nature of the data col-
lected by the Internet Archive, our work faces certain
threats to validity. On the one hand, given the redirection
issues to later versions discussed above, we cannot en-
sure a complete coverage of the analyzed Web site, i.e.,
we might miss a specific page which carries a vulner-
ability or might not collect an HTTP header only sent
when replying to a certain request, e.g., a session cookie
sent after login. Moreover, since the Archive’s crawler
cannot log into an application, we are unable to analyze
protected parts of a Web site.

The analyses of Client-Side XSS vulnerabilities are
based on the dynamic execution of archived pages, for
which we use a current version of Google Chrome. To
the best of our knowledge, this should not be cause for
over-approximation of our results. On the contrary, Inter-
net Explorer does not automatically encode any part of a
URL when accessed via JavaScript, i.e., especially in the
case of Client-Side Cross-Site Scripting, our results pro-
vide a lower bound of exploitable flaws.

Nevertheless, we believe that the Archive gives us the

2For a full list of domains see https://goo.gl/eXjQfs

Proxy

Figure 1: Infrastructure overview

unique opportunity to get a glimpse into the state of Web
security over a 20-year time frame. Moreover, several
works from the past that investigate singular issues we
highlight as part of our study confirm our historical find-
ings [16, 10, 24, 17, 31, 38].

2.2 Technical Infrastructure

In this section, we briefly explain the technical infras-
tructure used to conduct our study.

Custom Proxy and Crawlers To reduce the load on
the Wayback Archive, we set up our own proxy infras-
tructure. Archive.org adds certain HTML and JavaScript
elements to each cached page to gather statistics. In our
proxy, before persisting the files to disk, we removed all
these artifacts which would taint our analysis results. The
proxy infrastructure is depicted in Figure 1: for crawling,
we used Google Chrome. The proxy was set up such
that it only allowed access to archived pages. With our
crawlers, we then collected all scripts and all headers sent
from the Archive servers. Note that apart from the reg-
ular HTTP headers, the Archive also sends the original
headers of the site at the time of archiving, prefixed with
X-Archive-Orig-, allowing us to collect accurate orig-
inal header information.

Data Storage and Parsing We stored all information
gathered by our crawlers in a central database. For data
analysis, we developed several tools, e.g., to parse header
information. Moreover, to analyze the collected HTML
and JavaScript we employed lightweight static analysis
techniques. To discover relevant HTML elements, e.g.,
object tags, we used Python’s BeautifulSoup to parse
and analyze the HTML. For JavaScript, we developed
a lightweight tool based on esprima and node.js to parse
JavaScript and extract features such as called APIs, pa-
rameter passed to the APIs, or statements contained in
each analyzed file.
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Dynamic Dataflow Analysis To automatically verify
the existence of Client-Side Cross-Site Scripting issues
in the archived pages, we leveraged the techniques we
developed for CCS 2013 [17]. To that end, we ran their
modified version of Chromium on the cached pages to
gather all data flows from attacker-controllable sources
to dangerous sinks, such as document.write or eval.
Subsequently, we ran an exploit generator to craft URLs
modified in such a way that they would allow to exploit
a vulnerability. The crawlers were then sent to visit these
exploit candidates. If indeed a vulnerability existed, this
triggered the payload allowing us to automatically verify
the flaw. As this is not a contribution of this work, we
refer the reader to [17] for further details.

3 Evolution of Client-Side Code

In this section, we discuss how client-side active con-
tent evolved over time, showing that JavaScript remains
the only prevailing programming language on the Web’s
client side. While in the beginning of the Web, all content
was merely static and at best linking to other documents,
the Web has changed drastically over the course of the
years. After server-side programming languages such
as PHP enabled designing interactive server-side appli-
cations, at the latest starting with the advent of the so-
called Web 2.0 around 2003, client-side technology be-
came more and more important. To understand how this
client-side technology evolved over time, we analyzed
the HTML pages retrieved from the Internet Archive,
searching specifically for the most relevant technologies,
i.e., JavaScript, Flash, Java, and Silverlight.

Figure 2 shows the technologies we discovered in the
top-ranked sites in our study over time. We observe that
starting from the beginning our of study in 1997, Java-
Script was widely deployed, while initially Java applets
could also be discovered in few cases. Generally speak-
ing, though, Java and Silverlight did not play a signif-
icant role in active technologies used by the top sites.
Over the years, JavaScript usage increased, spiking from
about 60% to 85% in 2003, reaching its peak in 2009
with 98.3% of all sites using JavaScript. This number
remained stable until 2016. Curiously, not all sites ap-
pear to be using JavaScript. This, however, is caused
by two factors: on the one hand, the Alexa top 500
list contains a number of Content Distribution Networks,
which do not carry any JavaScript on their static HTML
front pages. Moreover, we found that in some cases the
Archive crawler could not store the included JavaScript.
As our analysis only considers executed JavaScript, this
makes for the second part of non-JavaScript domains.

Starting from 2002, we can also observe an increase in
the usage of Flash. Its share increased, also reaching its

1997 2002 2007 2012
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40%
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100% JavaScript
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Figure 2: Technologies used by top 500 sites

peak in 2009 with 48%. However, we also observe that
the use of Flash decreases noticeably in the following
years ending with only approximately 20% of the 2016
site population using it. This is in part related to modern
browsers nowadays switching off Flash by default, and
moreover the fact that HTML5 can be used to develop
interactive advertisements instead of Flash.

In addition to the core technologies, we considered
jQuery in our analysis, since it is one of the main drivers
behind powerful JavaScript applications. We find that af-
ter it was first introduced in 2006, the major sites quickly
picked up on its use. Until 2011, coverage quickly grew
to over 65% of all sites using it, whereas by 2016, almost
75% of the major sites were using jQuery.

JavaScript as the Powerhouse of the Web 2.0 As we
observed in the previous section, at least starting in 2003,
JavaScript was omnipresent on the Web. To understand
the magnitude of its success, we analyzed all JavaScript
which was included in external scripts (not considering
libraries like jQuery). We selected these instead of inline
scripts (i.e., such scripts that do not have a src attribute,
but contain the code in the script tags) as the major func-
tionality of Web sites is mostly contained in such external
scripts instead of being intermixed with the HTML code.
Figure 3 shows the average number of statements in each
external script by year, i.e., whenever a domain included
a single external file in 2016, it contained more than 900
statements. As the figure shows, this number increased
steadily over the years, while at the same time, the aver-
age number of scripts included in each frame remained
stable at about four scripts per frame.

Moreover, we analyzed the Cyclomatic Complexity of
all scripts per year. Designed by McCabe [22] in 1976, it
measures the number of potential paths through the pro-
gram, which equals the number of different test cases
needed to cover all branches of the program. Figure 4
shows the results of our analysis, averaged per exter-
nal script (excluding well-known libraries) in each year.
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Figure 4: Cyclomatic Complexity Statistics

By 2016, each external script on average had more than
300 paths to cover. Also, the graph depicts the trend of
an ever-increasing number of paths, underlining the in-
creased complexity of modern applications.

These figures clearly show that modern JavaScript ap-
plications are more powerful than ever, but also incur a
higher complexity due to the large code base to maintain.

Script Inclusions from Remote Domains Next to the
amount of JavaScript code, we investigated the origin of
the code. Browsers allow for Web sites to include script
content from remote origins, which is often used to in-
corporate third-party services (e.g., for site analytics, ad-
vertising, or maps) or to reduce traffic on a site (e.g., by
including jQuery from Google). However, when such re-
mote scripts are included, they operate in the origin of the
including site, i.e., they can modify both the global Java-
Script state as well as the DOM. This adds more com-
plexity to the page, since inclusion of third-party content
might have side-effects, ranging from modified function-
ality all the way to vulnerabilities introduced by third-
party code. As Nikiforakis et al. [24] have comprehen-
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Figure 5: JavaScript Inclusion Statistics

sively demonstrated, the inclusion of third-party scripts
has an immediate impact on a Web site’s security char-
acteristics, that scales negatively with the number of ex-
ternal code sources. Figure 5 shows the evolution of re-
mote inclusions over time, plotting the number of distinct
remote origins used in average domains. Starting from
2000, domains started using third-party inclusions. The
trend since then is clearly pointing upwards, reaching al-
most 12 distinct remote origins per domain by 2016.

Cross-Domain Data Access Modern Web sites are of-
ten interconnected, bringing the need for cross-domain
communication and data access. However, such commu-
nication is prohibited by the Same-Origin Policy (SOP),
which states that resources may only access each other
if they share an origin, i.e., protocol, host, and port
match [41]. To nevertheless allow applications to com-
municate across these boundaries, different technologies
can be used. One technique to do so is called JSONP,
short for JSON with padding. The SOP has certain ex-
emptions, such as the fact that including scripts from a
remote origin is permitted. JSONP leverages this by pro-
viding data in the form of a script, where the data is con-
tained as JSON, wrapped in a call to a function which
is typically specified as a URL parameter. This way, a
site may include the script from a remote origin, effec-
tively getting the data as the parameter to the specified
callback function. There are, however, a number of se-
curity issues associated with this, such as cross-domain
data leakage [18] or the Rosetta Flash attack [32]. To
detect JSONP in the data, we pre-filtered all scripts in
which any given URL parameter was contained in the
response as a function call. Subsequently, we manually
checked the results to filter out false positives. The re-
sults of our analysis are depicted in Figure 6, showing
that at most about 17% of all sites used JSONP during
our study timeframe. Moreover, we observe a slight de-
crease since 2014.
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While with JSONP, the developer has to ensure that
no unauthorized origin can include the endpoint, Cross-
Origin Resource Sharing (CORS) is secure by default.
CORS is a policy deployed by the server and is meant
to control data access when a request is conducted with
the XMLHttpRequest API [41]. By default, such a re-
quest does not carry authentication credentials in the
form of cookies. If a snippet wants to do such an au-
thenticated request across domains, the remote HTTP
server has to specifically allow the snippet’s origin in the
Access-Control-Allow-Origin header; a wildcard is
not sufficient to grant access. In our study, we found that
CORS deployment has overtaken the use of JSONP in
2014 and has increased drastically resulting in 20% of
the investigated sites to deploy such a header.

The most recent addition to the technologies which
may be used for cross-domain communication, which
was introduced with HTML5, is postMessage [7]. This
API allows for cross-domain message exchange when-
ever two sites are rendered in the same browser tab (or
popup window). It can be used to convey even complex
JavaScript objects allowing for a seamless communica-
tion between origins. The API has gained a lot of popu-
larity since its inception and we find that over 65% of the
sites in 2016 either received postMessages or sent them.

Summary To sum up, we observe that over time, Java-
Script has remained the most important scripting lan-
guage on the Web. At the same time, with increas-
ingly powerful applications, the complexity of the Web
platform has risen, and new APIs are constantly added
to browsers. In turn, JavaScript applications have be-
come much more complex, showing a steady increase
in the amount of code executed by the client, including
code from an increasing amount of different sources, and
exchanging data across the trust boundaries of the do-
main. Moreover, even legacy technology like Flash still
remains in use by a notable fraction of sites. Thus, se-

curing a modern Web application with all its different
components is challenging. Hence, in the following sec-
tions, we analyze how security evolved over time by first
discussing a number of issues we discovered, and subse-
quently showing which countermeasures were deployed.

4 Discovered Security Issues

Based on the technologies we identified as most preva-
lent in the previous section, in this section, we highlight
security issues pertaining to these technologies, as dis-
covered in our study. To that end, we report on the Client-
Side XSS vulnerabilities we found, analyze the insecure
usage of postMessages over time, outline the (in)security
of cross-domain communication in Flash, and show the
general pattern of including outdated third-party library
versions.

4.1 Client-Side XSS Vulnerabilities

The term Cross-Site Scripting (XSS) was first intro-
duced in 2000 by a group of security engineers at Mi-
crosoft [29]. At first, this issue was believed to only
be caused by insecure server-side code. In 2005, Amit
Klein wrote an article about what he dubbed DOM-
based Cross-Site Scripting [12], detailing the risk of
XSS through insecure client-side code. He called it
DOM-based since he argued that it was caused by using
attacker-provided data in interactions with the Document
Object Model (DOM). Nowadays, this does not hold true
anymore considering that the eval construct allows for
JavaScript execution without the use of any DOM func-
tionality. Hence, this type of issue is also referred to as
Client-Side Cross-Site Scripting [34].

In contrast to Cross-Site Scripting caused by server-
side code, Client-Side XSS can be discovered in the
HTML and JavaScript code that was delivered to the
client and in this case to the Archive crawler. There-
fore, this data source allows us to investigate when the
first instances of this attack occurred and how many sites
were affected over the course of the last 20 years. To that
end, we used an automated system developed by us to
crawl the pages, collect potentially dangerous data flows,
and generate proof-of-concept exploits for each of the
flows [17].

Compared to our previous work, which was conducted
on live Web sites, the archived data has one drawback:
in case an exploit could only be triggered by modify-
ing a search parameter, this effectively changed the URL
and, hence, the corresponding page was not contained in
the Archive. Therefore, for each site without a verified
exploit, we sampled one potentially vulnerable flow and
analyzed the JavaScript code manually. In doing so, we
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Figure 7: Client-Side XSS Vulnerabilities per year

could manually verify that 33% (142/427) of the sampled
domains were in fact vulnerable.

Figure 7 shows the results of our analysis. Even back
in 1997, sites were vulnerable to Client-Side XSS. We
also notice a distinctive increase in vulnerabilities start-
ing from 2003, which coincides with the advent of the
Web 2.0. Moreover, the results are stable at around 12%
to 14% from 2007 to 2012. In 2013, when we published
our work on discovering Client-Side XSS, we found ap-
proximately 10% of the Top 10.000 sites to be vulnera-
ble, which aligns with our findings. After 2013, the num-
bers slightly drop, leaving about 8% of the 2016 sites
exploitable.

4.2 Insecure postMessage Handling

To allow for an easy cross-domain communication chan-
nel, sites may use postMessages to communicate be-
tween documents of differing origins. The API gives
guarantees on the authenticity and confidentiality of a
message — a receiver can verify the origin of the sender,
and the sender may specifically target an origin ensuring
that the message is not accessible by any other origin. In
practice, however, these checks are often omitted [31].
We therefore analyzed our data set in two dimensions:
handling of received postMessages without performing
origin checks and calls to the postMessage API with a
wildcard origin.

Given the large amount of data we collected, i.e.,
8,992 distinct scripts, we opted to analyze the postMes-
sage receivers in a light-weight fashion. To that end,
whenever our static analysis discovered that a postMes-
sage receiver was registered, we checked the file for ac-
cess to the origin property of the message. Although it
was shown by Son and Shmatikov [31] that the existence
of an origin check does not preclude a vulnerability, we
present the results as an estimation over our study period.
The results of our analysis are shown in Table 1. When-

postMessage no origin postMessage wildcard
received check sent target

2009 0.5% 0% 20.9% 2.2%
2010 10.8% 2.4% 5.9% 3.9%
2011 18.5% 8.4% 19.0% 14.8%
2012 32.7% 11.4% 32.7% 17.9%
2013 31.9% 21.8% 41.2% 22.8%
2014 40.0% 19.6% 52.2% 33.0%
2015 50.5% 18.1% 62.9% 45.8%
2016 48.0% 26.3% 64.1% 50.3%

Table 1: postMessage Statistics

ever a site used at least one postMessage receiver without
an origin check, we marked this domain as not using the
origin check. We find that the data does not show a trend
towards more secure usage. On the contrary: in 2016,
more than half of the pages which received postMessages
had at least one receiver without an origin check.

A missing origin check does not necessarily result in a
vulnerability, as pointed out by Son and Shmatikov [31].
In their work, only 13 out of 136 distinct receivers led to
an actual vulnerability. Their analysis efforts, however,
were mostly manual; hence, while an in-depth analysis
of the discovered receivers is not feasible for our work,
we leave a more automated approach to such analyses to
future work.

Apart from the authenticity issue of postMessages, not
specifying a target origin might endanger the confiden-
tiality of an application’s data. Table 1 shows the re-
sults of our analysis. Note that in comparison to received
postMessages the numbers vary, since not every site that
sends postMessages also receives them. Moreover, the
high number of postMessage senders in 2009 is related to
Google page ads, which featured postMessages in 2009,
but removed its usage in 2010. Even though not every
message with a wildcard target is necessarily security-
critical, we find that by 2016, more than half of the sites
we analyzed sent at least one such message. We leave
further investigation of the actual exploitability of such
insecure postMessages to future work.

4.3 Flash Cross-Domain Policies
Similar to JavaScript, Flash also offers APIs to conduct
HTTP requests, either to the same site or across domain
boundaries. To nevertheless ensure the user’s protection
against cross-domain data leakage, Flash tries to down-
load a policy file (crossdomain.xml) from the remote
origin before allowing access to that site’s content. If
it is missing, no data can be exchanged between the
sites [35]. If it exists, the policy file can specify which
origins may access the site’s data, and can contain wild-
cards, e.g., to allow for all subdomains of a given domain
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Figure 8: Crossdomain.xml files and wildcards

to gain access (*.domain.com). However, this wildcard
can also be used to whitelist any site (*) or any prefix
(prefix*), e.g., prefix.otherdomain.com for cross-
domain access.

In part, these policy files are also stored by the Web
Archive. However, we discovered a number of cases
where no policy file was available 3. Therefore, all re-
sults we present in the following must be considered
lower bounds. This drawback of the archived data is
also clearly visible in the number of sites hosting a
crossdomain.xml file in 2009, as shown in Figure 8.

We analyzed the crossdomain policy files for danger-
ous wildcards, i.e., wildcards allowing access to any re-
mote origin. The results are shown in Figure 8 as the
grey line. We find that for 2008, about 7% of all domains
had such wildcards and the number decreased afterwards
(along with the general decline in the use of Flash, and
hence crossdomain.xml files). The existence of a wild-
card does not necessarily imply a vulnerability, since ac-
cess might be granted to any domain by a content dis-
tribution network [16]. Hence, we also analyzed which
of the domains with wildcard policies had artefacts of a
login, e.g., login pages or session cookies. The result of
this analysis is also shown in the graph as the red line.
Here, we observe that at most 3% of all domains should
be considered vulnerable, which is in line with the results
presented by Lekies et al. [16] and Jang et al. [10].

4.4 Usage of Outdated Libaries
Much of the success of JavaScript stems from the pow-
erful libraries used by many Web sites. The most widely
used library on the Web is undoubtedly jQuery; in our
work we found that up to 75% of the Web sites we an-
alyzed used jQuery. The usage pattern is also shown in

3A prime example is the facebook.com policy http://web.archi
ve.org/cdx/search/cdx?url=facebook.com/crossdomain.xml,
which does not have entries between 2011 and 2013
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Figure 9: jQuery usage and vulnerability statistics

Figure 9. When code is included from a third party into
any Web site, this code is implicitly trusted, i.e., it runs in
the origin of the including Web site. Therefore, whenever
any third-party component is vulnerable, this implies that
all sites which include the flawed code will suffer from
the vulnerability.

To understand the risk associated with this, we used
retire.js [25], a tool to detect libraries and report known
vulnerabilities in them, on the versions of jQuery we col-
lected in our study. Moreover, for each domain that used
jQuery we checked if the used version had a known vul-
nerability at the time of use. The results are also depicted
in Figure 9: it becomes clear that the majority of Web
sites used outdated versions of jQuery, for which known
vulnerabilities existed at the time.

Although this paints a grim picture, a vulnerable li-
brary does not necessarily directly imply a site at risk.
As an example, one vulnerability which was disclosed
in 2012 [11] could only be triggered if user-provided in-
put was used in a CSS selector. Nevertheless, as previous
work has shown, such outdated libraries can cause severe
security issues, such as Client-Side XSS [34].

Next to jQuery, only the YUI library was discovered
on a notable fraction of domains. In 2011, its usage
reached its peak with about 10% prevalence, dropping
off until 2016 to 3.5% of the domains that included the
library. Similar to what we observed for jQuery, the frac-
tion of domains running a known vulnerable version of
YUI is high: for 2016, 85% of the sites running YUI ran
a vulnerable version. These results are comparable to the
results of Lauinger et al. [14].

5 Indicators for Security Awareness

In this section, we highlight a number of features we can
measure, that indicate whether a site operator is aware of
Web security mechanisms.

Most of the security awareness indicators can be found
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in the HTTP headers of the responses. The Web Archive
records all headers it received when originally crawling
the target site, which allows us to go back in time and
investigate how many sites used any of the relevant head-
ers. For our work, we identified a number of these rel-
evant headers, which we discuss in the following in the
order of their introduction on the Web. An overview over
the fraction of domains that make use of these security
headers is shown in Figure 10. Moreover, Table 2 shows
when each of the discussed security measures was imple-
mented by the major browsers.

5.1 HTTP-only Cookies
The Web’s principle feature for session management is
the use of cookies. These are sent along with every re-
quest to the server, allowing a user to establish a session
in the first place and for the server to correctly attribute
requests to a user. At the same time, by default, cook-
ies are accessible from JavaScript as well, making these
session identifiers prime targets for Cross-Site Script-
ing attacks. To thwart these attacks, starting from 2001
browsers added support for so-called HTTP-only cook-
ies. This flag marks a cookie to only be accessible by
the browser in an HTTP request, while at the same time
disallowing access from JavaScript.

We mark a domain as using HTTP-only cookies when
at least one cookie was set using the httponly flag. This
only represents a lower bound for the sites, though. Nat-
urally, the Archive crawler does not log into any Web
application. It is reasonable to assume that some sites
do not use session identifiers until the need arises, i.e., a
user successfully logs in. Hence, sites might have made
use of the header more frequently, but the archived data
cannot account for such behavior.

In our study, we found that sites started employing
this technique in 2006 before any other security measures
were in place. Moreover, we can clearly observe a trend
in which by 2016, over 40% of all domains made use of
this. This indicates that the admins of the most relevant
sites on the Web are well-aware of the dangers of cookie
theft and try to mitigate the damage of an XSS attack.

Chrome IE Firefox

HTTP-only Cookies 2008 2001 2006
Content Sniffing 2008 2008 2016
X-Frame-Options 2010 2009 2009
HSTS 2010 2015 2010
CSP 2011 2012 2010

Table 2: Browser support for Web security features
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Figure 10: Use of Security Headers per year

5.2 Disallowing Content Sniffing

Although all markup and programming languages used
in the Web are well-specified, Web application develop-
ers often make more or less subtle mistakes when build-
ing their sites. To still allow users of these sites an un-
hindered view on the pages, modern browsers are very
error-tolerant, i.e., they compensate for a number of mis-
takes which can be introduced by developers. One of
the mechanisms used to achieve this tolerance is content
sniffing, a technique used by browsers to guess the type
of content being shown, to allow for proper rendering.
The HTTP/1.1 standard specifically states that such sniff-
ing should only happen when no Content-Type header
is sent from the server [5]. Depending on the implemen-
tation of the browser, this can either can be done by an-
alyzing the URL (e.g., looking for a .html suffix) or by
investigating the content of the resource [41].

For the sake of presentation, let us assume a Web site
offers users a way to upload text files (marked by a .txt
suffix). In this case, a user can upload a text file contain-
ing HTML code. If a victim’s browser is now lured to the
URL hosting the .txt file and no explicit Content-Type
header is sent, modern browsers will analyze the con-
tent, deem it to be HTML and render it accordingly. This
effectively results in the attacker’s HTML and accompa-
nying script code to be executed under the origin of the
vulnerable site, leading to a Cross-Site Scripting vulner-
ability. In addition, improper content sniffing could also
lead to the site being used to host malware.

To prevent such attacks, Internet Explorer first im-
plemented the X-Content-Type-Options header in
2008 [15]. When the value of this header was set to
nosniff, it would prevent IE from trying to guess the
content. In the specific case, Internet Explorer’s al-
gorithm was also more aggressive than RFC2616 de-
manded: it tried to sniff content regardless of the pres-
ence of any Content-Type headers. Google Chrome
showed a similar behavior, which can also be controlled

USENIX Association 26th USENIX Security Symposium    979



using the X-Content-Type-Options header. Similar to
what we observed for HTTP-only cookies, at first only
few sites adopt this security mechanism. Again, a no-
table increase can be observed over time, resulting in al-
most 47% of the analyzed sites using the protective mea-
sure by 2016.

5.3 Clickjacking Protection

Another potential danger to Web applications is so-called
Clickjacking [9]. This type of attack is a sub class of the
more general attack dubbed Unsolicited Framing by Za-
lewski [41]. The main idea relies on the ability of an
attacker to mask a frame pointing to a benign-but-buggy
site with the opacity CSS attribute on his own site. The
attacker now tries to motivate the victim to click in the
area in which this hidden frame resides. This can, e.g.,
be achieved by a pretend browser game. However, in-
stead of interacting with the apparent browser game, the
victim actually clicks in the hidden frame. The extend
of this attack can range from invoking actions, such as
soliciting likes on a social media site, all the way to an
attack outlined by Jeremiah Grossman, in which Click-
jacking was used to gain access to the video and audio
feed from the victim’s computer [6].

While the unsolicited framing itself was already dis-
cussed before the devastating demonstration by Gross-
man, the clear attack potential as shown by their attack in
2008 motivated browser vendors to develop and deploy
a protective measure, dubbed the X-Frame-Options
header (for short also XFO). Even though the X in the
name denotes the fact that this was not a standardized
header, it was introduced within a few months after the
presented attack by Internet Explorer and Firefox, while
Chrome followed a year later (see Table 2). The notion of
this header is simple: framing can either be completely
blocked (DENY), only be allowed from the same origin
(SAMEORIGIN), or specifically allowed for certain URLs
(ALLOW-FROM url) [23]. Depending on the browser,
there also exists a variant ALLOWALL, which effectively
disables any protection as well as SAMEDOMAIN, which is
an alias for SAMEORIGIN. Note, however, that these val-
ues are not presented in the accompanying RFC, which
was introduced in 2013 [28].

For our measurements, we only counted sites which
use the protective measure by either setting it to DENY,
SAMEORIGIN, its alias SAMEDOMAIN, or ALLOW-FROM
with a specific list of domains. The results are depicted in
Figure 10. The results indicate that although the header
was introduced in 2010, an increase in its usage can only
be observed starting from 2012. The number of sites
using XFO increased rapidly since then and reached its
peak in 2016 with 53% of all sites deploying it. Note,
however, that use of the header has been deprecated

by Content Security Policy (CSP) Level 2 [39] starting
from around 2015, being replaced by the more powerful
frame-ancestors directive of CSP.

5.4 Content Security Policy

One of the biggest client-side threats to any Web appli-
cation is the injection of markup, either HTML or even
JavaScript code, into it. In such a case, the browser can-
not distinguish between markup originating from the de-
veloper of the application and the attacker’s code. Hence,
all code is executed, leading to a client-side code injec-
tion known as Cross-Site Scripting. To mitigate the ex-
ploitability of such an injection vulnerability, the W3C
has proposed the so-called Content Security Policy. In
its foundation, CSP is a technique that aims to specifi-
cally whitelist sources of code with the goal of stopping
any attacker-provided code from being executed. To that
end, a Web application that deploys CSP sends a header
containing a number of whitelisted code origins, e.g.,
self or cdn.domain.com. Even if an attacker man-
ages to inject her own markup into the application, the
code is bound to be hosted on either the site itself or
cdn.domain.com. The main assumption here is that the
attacker is unable to control any code on these origins.
Also, by default, CSP disallows the use of inline script
elements and the eval construct.

CSP has many more directives, allowing Web devel-
opers to control which hosts may be contacted to retrieve
images or stylesheets, specifying how the site may be
framed (deprecating the X-Frame-Options header), or
to report violations of the policy. The setup of a prop-
erly working policy, however, is non-trivial, as has been
shown by previous work [37, 38]. Nevertheless, we deem
the presence of a CSP header to be an indicator for the
awareness of a site’s operator. Given the results from
previous work, investigating the security of the policies
of single sites is out of scope for our work.

Initially, CSP was introduced by Firefox and
WebKit-based browsers (including Chrome) with dif-
ferent names, i.e., X-Content-Security-Policy and
X-WebKit-CSP, respectively. We therefore count the
presence of these headers as a regular use of the nowa-
days standardized Content Security Policy. As we
can observe in Figure 10, even though implemented in
browsers for a number of years, CSP only was used in
the wild starting from 2013 by any of the major sites.
As previous work has shown, setting up CSP for legacy
applications is very challenging. Our data indicates that
even by 2016, less than 10% of the sites we considered
deployed any CSP at all. Hence, although CSP mitigates
the effect of XSS vulnerabilities in JavaScript-enabled
Web applications, its adoption still lags far behind other
security measures.
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5.5 HTTP Strict Transport Security

Along with the success of the Web as the number one
platform for information access also came a number
of attacks on the connection between client and server.
While in the Web’s beginning, transfer of sensitive infor-
mation was less likely to occur, modern Web applications
almost always require a login. Arguably, the transport of
such sensitive information should be conducted in a se-
cure manner, i.e., should always be encrypted. On the
other hand, network attackers have an interest to gain ac-
cess to such information. To that end, they might either
eavesdrop (in case of a passive network attacker) on a
plaintext connection, or try to manipulate a connection to
an extend where the encryption is dropped, e.g., by SSL
stripping attacks [13]. In addition, Web developers might
accidentally transmit sensitive information over insecure
channels. An example of this is the use of cookies with-
out specifically setting the secure flag. In that case, the
cookies are transferred in any connection to the domain
for which they were set, regardless of the use of HTTPS.

To ensure that neither an active attacker can strip SSL
nor an unknowing developer can accidentally build an
insecure application, browsers implement HTTP Strict
Transport Security, or HSTS for short [8]. With this
HTTP header, browsers can be instructed to only con-
nect to a domain via HTTPS regardless of the URL and
to only do so using a validated certificate.

Obviously, HSTS is only a relevant feature for any site
that runs via HTTPS. The Archive.org crawler, however,
does not store whether a site was retrieved via HTTP or
HTTPS, i.e., based on the historical data we gathered, we
cannot decide whether a site was running HTTPS in the
first place. Also, setting an HSTS header on an unen-
crypted connection has no effect, i.e., it is ignored by the
browser [13].

Support for HSTS was first introduced in Chrome and
Firefox in 2010. In addition to the header, browsers also
feature a preload list of domains, to which only HTTPS
connections are allowed, regardless of the existence of
the HSTS header. For our analysis, we therefore consid-
ered both the headers as well as entries for the domains
in the preload list for January of each year. Our analy-
sis shows that only very few domains made use of HSTS
until 2012. Starting from 2013, we observe a steady in-
crease, resulting in almost 30% adoption rate by 2016.

5.6 Additional Indicators for Security
Awareness

On top of the headers we discussed so far, we identified
additional features which indicate awareness of poten-
tial security problems. In 2010, Bates et al. [2] showed
that the built-in XSS filter of Internet Explorer could not

only be bypassed by encoding data in UTF-7, but even
be used to disable Clickjacking protections or conduct
phishing attacks. At that time, Internet Explorer allowed
Web sites to specifically disable its XSS filter by send-
ing the X-XSS-Protection: 0 header to the client. In
our study we found that in 2009 and 2010, 30 and 55
sites, respectively, disabled the XSS filter in IE by send-
ing this header. For 2009, all these sites were related
to Google (e.g., including Youtube), showing that the is-
sues in IE were known to Google before the publication
in 2010. One reasonable explanation is that Google en-
gineers were confident that no XSS vulnerabilities were
contained in their sites, and wanted to ensure that no vul-
nerabilities could be introduced into otherwise bug-free
sites.

A more recent feature for securing the client side is the
sandbox feature of iframes in HTML5. Using this fea-
ture, a site may restrict the capabilities of an iframe, e.g.,
by disabling JavaScript or isolating content in a unique
origin, thereby mitigating any exploitable vulnerabilities
in the sandboxed content. We found that only three sites
made use of it in any of the HTML pages we analyzed,
showing that this feature is hardly used.

6 Key Insights

In this section, we discuss the key insights of our study
results. We first discuss the takeaways on client-side
technology, following with the implications of our anal-
ysis for client-side security. Finally, we investigate the
correlation between discovered vulnerabilities and the
awareness indicators outlined in the previous section.

6.1 Client-Side Technology
The Web’s Complexity is still on the Rise In our
study of the Web’s evolution, we found that although sev-
eral technologies for client-side interaction were devel-
oped over the years, the only prevailing one is JavaScript.
Moreover, we determined that the general complexity of
JavaScript kept rising over the years. On the one hand,
the average number of statements per external script has
almost reached 1,000 by 2016 — without counting pow-
erful libraries such as jQuery. On the other hand, code
does not necessarily only originate from a site’s devel-
oper, but often resides on remote domains. In our work,
we found that on average, a domain in our 2016 dataset
included script content from almost twelve distinct ori-
gins, which is an increase by almost 100% since 2011.
Along with the introduction of powerful new APIs in
the browsers, which nowadays, e.g., allow for client-to-
client communication that was never envisioned by the
Web’s server/client paradigm, we find that the general
complexity of client-side Web applications is on the rise.
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Involvement of Third Parties Including content from
third parties allows Web sites to outsource certain parts
of their application, e.g., advertisements. However,
whenever code is included from a remote domain, it
may contain vulnerabilities, which effectively compro-
mise the including site. With the rise in complexity
in these third-party libraries, the risk for vulnerabilities
also increases. As an example, while jQuery 1.0 only
contained 768 statements, the most recent version 1.12
(in the 1.* branch) already consists of 3,541 statements.
Moreover, sites rarely update their third-party compo-
nents. As shown by Lauinger et al. [14], a large num-
ber of Web sites use outdated versions of well-known li-
braries, such as jQuery, which contain exploitable flaws.
In our work, we found that especially jQuery was often
used in versions with known vulnerabilities at the time of
use. Moreover, the fraction of domains that use such vul-
nerable third-party libraries remained high since 2012.

Another risk of including third-party code stems from
the fact that this code may be arbitrarily altered by the
remote site or in transit. In the recent past, this was used
to conduct large-scale DDoS attacks against Web sites
used to bypass censorship in China [21]. However, such
attacks can be stopped if sites start implementing Subre-
source Integrity, which ensures that included JavaScript
is only executed when its has the correct checksum [1].

The Rise of the Multi-Origin Web The Web’s pri-
mary security concept is the Same-Origin Policy, which
draws a trust boundary around an application by only al-
lowing resources of the same origin to interact with one
another. In the modern Web, though, applications com-
municate across these boundaries, e.g., between an ad-
vertisement company and the actual site. In our work, we
observed a clear trend towards interconnected sites, espe-
cially using postMessages, which are used by more than
65% of the Web sites we analyzed for 2016. In addition,
we note that the usage of CORS is on the rise as well,
with 20% of the 2016 domains sending a corresponding
header. Given the nature of the Internet Archive crawler,
i.e., the fact that it cannot log in to any applications,
all these numbers need to be considered lower bounds.
Hence, we clearly identify a trend towards an intercon-
nected, multi-origin Web in which ensuring authenticity
of the exchanged data is of utmost importance.

6.2 Client-Side Security
Client-Side XSS Remains a Constant Issue One of
the biggest problems on the Web is Cross-Site Scripting.
In our work, we studied the prevalence of the client-side
variant of this attack over the years. We found that with
the dawn of more powerful JavaScript applications as a
result of so-called Web 2.0, the number of XSS vulnera-

bilities in the JavaScript code spiked. Between 2007 and
2012, more than 12% of the analyzed sites had a least one
such vulnerability. Even though the general complex-
ity of JS applications kept rising after 2012, the number
of vulnerable domains declined, ranging around 8% un-
til 2016. Nevertheless, given our sample of the top 500
pages, such attacks still threaten a large fraction of the
Web users and developer training should focus more on
these issues.

Security vs. Utility Many new technologies intro-
duced in browsers come with security mechanisms, such
as the authenticity and integrity properties provided by
the postMessage API. However, oftentimes these fea-
tures are optional — a developer may, e.g., choose not
to check the origin of an incoming postMessage. As we
observed in our work, technology which enables com-
munication across domain boundaries, such as JSONP,
Flash’s ability to access remote resources, or postMes-
sages, is often used without proper security considera-
tions. Especially in the context of postMessages, this is
a dangerous trend: more than 65% of the sites we ana-
lyzed for 2016 either send or receive such messages, with
a steady increase in the previous years (see Figure 6). As
shown by Son and Shmatikov [31], improper handling of
postMessages can result in exploitable flaws. Hence, any
technology added to browsers should default to a secure
state similar to CORS.

Complexity of Deploying Security Measures During
the course of our study, a number of new security mech-
anisms were introduced in browsers. In our analysis, we
found that the rate of adoption varies greatly for the dif-
ferent technologies. As an example, within two years
of being fully supported by the three major browsers,
the X-Frame-Options header was deployed by 20%
of the sites we analyzed, within four years its adoption
rate even reached more than 40%. In contrast, although
CSP has been fully supported since 2012, even after four
years, only about 10% of the sites we analyzed deployed
such a policy. The main difference between the two types
of measures is the applicability to legacy applications:
XFO can be selectively deployed to HTML pages which
might be at risk of a clickjacking attack. In contrast, CSP
needs to be adopted site-wide to mitigate a Cross-Site
Scripting. Moreover, previous work [37, 38] has shown
that deploying a usable CSP policy is non-trivial, espe-
cially considering the multitude of third-party compo-
nents in modern Web apps. In contrast, even though dep-
recated by CSP, the X-Frame-Options header still shows
increased usage in 2016. Hence, we find that the more ef-
fort needs to be put into securing a site with a specific se-
curity mechanism, the less likely sites in our study were
to adopt the mechanism.
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6.3 Correlating Vulnerabilities and Aware-
ness Indicators

To understand whether there is a correlation between ac-
tual vulnerabilities and the general understanding of se-
curity concepts for the Web, we compared the set of sites
vulnerable against Client-Side XSS attacks with their use
of security indicators. The intuition here is that the use
of a security indicator implies a more secure site. We
chose Client-Side XSS specifically, since a vulnerability
can be proven, whereas it is, e.g., unclear if usage of an
outdated library could actually lead to an exploit.

The results of this analysis are shown in Figure 11: for
each indicator we checked how many sites were vulner-
able against a Client-Side XSS attack. To reduce noise,
we only included an indicator for a given year if it was
present on at least 10% of the analyzed sites. Hence, we
exclude all years before 2009, since (as shown in Fig-
ure 10) no security measure was deployed on at least
10% of the sites. For each year, we plot the fraction
of sites which carry the indicator and are susceptible to
XSS. In addition, the graph shows the baseline as all sites
that do not have any indicator.

HTTP-only Cookies When considering the httponly
cookie flag, the results are surprising: In our dataset,
its presence actually correlates with a higher vulnerabil-
ity ratio compared to cases in which no indicators are
found. Note however, that our study focusses on a small
data set of 500 domains per years, and hence the results
are not statistically significant. Even though the overall
numbers are too small to produce significant results, this
trend is counter-intuitive. We leave a more detailed in-
vestigation of this observation by analyzing a large body
of sites to future work. It is noteworthy, however, that
previous work from Vasek and Moore [36] investigated
risk factors for server-side compromise, and found that
httponly cookies are negative risk factors. Similar to
our work, however, there findings were inconclusive due
to a limited sample set. Comparing server- and client-
side vulnerabilities with respect to the use of httponly
cookies, however, is an interesting alley for future work.

The correlation between httponly cookies and in-
creased fraction of vulnerabilities might be caused by
several reasons: applications that use session cookies are
more likely to have a larger code base and thus, more
vulnerabilities. For 2011, the year with the highest frac-
tion of vulnerable sites, we therefore analyzed the aver-
age number of instructions for domains with httponly
cookies and found that they only have a code base which
is about 10% larger than an average Web site, with a
comparable average cyclomatic complexity. Another po-
tential reason for our findings might be the fact that de-
velopers underestimate the dangers of an XSS vulnera-
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Figure 11: Security Headers vs. Client-Side XSS

bility. Although taking over a session of a user might be
considered the worst-case scenario which is averted by
HTTP-only cookies, attackers may leverage an XSS ex-
ploit for many other attacks, e.g., XSS worms or stealing
passwords from password managers [33].

Early Adopters For X-Frame-Options and HSTS
(considered from 2010 and 2013 respectively) we see an-
other trend: early adopters of new security mechanisms
are less likely to be susceptible to Client-Side XSS at-
tacks, even though the code bases for these sites are also
about 10% larger than an average site. We find that for
both XFO and HSTS, the first two considered years show
no vulnerabilities. However, until the end of our study
in 2016, more and more sites deploy both headers, re-
sulting in vulnerability rates comparable to sites without
security indicators. Hence, we find that the late adopters
of such new technologies are more likely to introduce
Client-Side XSS vulnerabilities in their sites.

CSP Deployment Another insight here is the fact that
not a single site using CSP had a vulnerability, even leav-
ing out the 10% threshold discussed above. It is impor-
tant to note that even a valid CSP policy would not have
stopped exploitation of a Client-Side XSS issue: since
our analysis was conducted on the Archive.org data, CSP
policies would not be interpreted by the browser since
they all carried an X-Archive-Orig- prefix. The rea-
son for lack of Client-Side XSS on these sites is likely
twofold: either companies invested enough in their secu-
rity to go through the tedious process of setting up CSP
in general have better security practices, or this again
shows the early adoption effect we observed for XFO and
HSTS.
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6.4 Going Forward
In our study, we found a number of recurring patterns in
the Web’s insecurity, i.e., that deployment heavily hinges
on the ease of use, optional security mechanisms are
rarely used, and that several vulnerabilities are still in
existence even though they have been known for many
years. Therefore, in the following, motivated by our find-
ings, we discuss how Web security can move forward.

Ease of Use Considering the security technologies we
investigated, we find that regardless of the potential
benefit, a security measures adoption rate is controlled
mostly by the ease of its deployment. While CSP al-
lows very fine-grained control over resources that can be
accessed and — more importantly — script code which
can be executed, setting up a working CSP policy is of-
ten tough. Apart from this hurdle, significant changes
on the application itself are required. This high effort
must be considered a big roadblock for CSP’s success.
In contrast, headers like HSTS or XSO, which are easy
to deploy and address a single issue, are adopted more
swiftly in a shorter timeframe. Thus, we argue that for
future techniques ease of use should be a primary design
concern.

Make Security Mandatory Our findings highlight
that if security checks are optional, they are oftentimes
not used, as evidenced, e.g., by the lack of origin check-
ing on postMessages. Moreover, if there is an easy way
to ensure utility, e.g., through using a wildcard, develop-
ers tend to follow that path. Hence, we argue that new
technology should ship with mandatory security, which
either does not allow for generic wildcards or in that
case, following the approach taken by CORS, limit the
privileges of an operation. Also, existing APIs could be
changed to at least warn developers. As an example,
accessing the data property of a postMessage without
a prior access to the origin property could result in a
JavaScript console warning for a potentially missing ori-
gin check. Future generations of APIs could extend this
behavior to throw security exceptions, in case crucial se-
curity checks have been omitted.

Ensure Better Developer Training The results of our
study indicate that although security measures exist to
prevent or mitigate attacks, developers are often un-
aware of the underlying security issues. Examples for
this include (missing) origin checking on postMessages,
the ineffective use of HTTP-only cookies, or the inclu-
sion of user-controllable data in the generation of script
code, which causes Client-Side XSS. Especially Client-
Side Cross-Site Scripting appears a class of vulnerabil-
ity that remains unresolved — even in light of mitigat-

ing technologies like CSP. We therefore argue that re-
search should continue to investigate how developers can
be better educated on security issues and how develop-
ment tools can be designed in a way that they empower
their users to build secure applications.

7 Related Work

Our work touches on many areas of Web security. In the
following, we discuss research related to our work.

Large-Scale Analysis of Web Security and Privacy
Several papers have conducted large-scale analyses of
different aspects of Web security. Yue and Wang [40]
analyzed inclusions of external scripts and investigated
dangerous API calls. In 2010, Zhou and Evans [42]
investigated the use of HTTP-only cookies finding that
only 50% of the investigated sites make use of the fea-
ture. In 2011, two works analyzed the use of crossdo-
main policies for Flash, as well as other cross-domain
communication channels [16, 10], which align with the
results we presented for that time. In the same year,
Richards et al. [27] provided the first large-scale anal-
ysis of the (mis)use of eval, showing that while it can
be replaced in certain cases, removing it all-together is
impossible. In 2012, Nikiforakis et al. [24] examined
Javascript inclusions over time of the Alexa top 10.000,
pointing out the trend of an evermore increasing amount
of external inclusions, which we also observed in our
work. In the area of privacy, Lerner et al. [19] conducted
an analysis of how trackers evolved over time, also using
data from archive.org.

Vulnerability Detection in the Wild In addition to
the previously discussed papers, several works have fo-
cussed on examining a certain type of vulnerability in
the wild. In 2013, Son and Shmatikov [31] analyzed
insecure usage of postMessage receivers finding several
exploitable issues. In the same year, we presented an
automated system to measure the prevalence of Client-
Side Cross-Site Scripting in the wild [17]. More recently,
Lauinger et al. [14] performed an in-depth analysis of the
usage of vulnerable libraries in the wild, showing results
comparable to our historical view.

Content Security Policy An area that has gained more
attention over the last years is the Content Security Pol-
icy. While Doupé et al. [4] showed in 2013 that automat-
ically separating code and data is feasible for ASP.net
applications, Weissbacher et al. [38] conducted a long-
term study which indicated that CSP was not deployed
at scale. Moreover, they discussed the difficulties in set-
ting up CSP for legacy applications. In 2016, Pan et al.
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[26] showed that automatically generating CSP policies
for the Alexa top 50 is feasible. In the same year, Weich-
selbaum et al. [37] investigated the efficacy of deployed
CSP policies in the wild, highlighting that around 95%
of the examined policies are susceptible to bypassing.
Moreover, though, the authors propose an extension to
CSP to allow for easier deployment.

HTTPS Over the last year, the research community
also has focussed more on HTTPS. Clark and van
Oorschot [3] systematically explored issues in the area of
HTTPS in terms of infrastructure as well as attack vec-
tors against HTTPS in general. Later on, Liang et al. [20]
examined the relation between the usage of HTTPS and
the embedding of CDNs into Web pages. Most recently,
Sivakorn et al. [30] presented an overview of the privacy
risks of exposing non authenticating cookies over HTTP,
leading to intrusions of end-user privacy.

8 Conclusion

In this paper, we conducted a thorough study on the secu-
rity history of the Web’s client side using the preserved
client-side Web code from the Internet Archive. In the
course of our study, we were able to observe three over-
arching developments: For one, the platform complexity
of the client-side Web has not plateaued yet: Regardless
of the numerical indicator we examine, be it code size,
number of available APIs, or amount of third-party code
in web sites, all indicators still trend upwards.

Furthermore, the overall security level of Web sites is
not increasing noticeably: Injection vulnerabilities found
their way onto the client side in the early years of the new
millennium and show no sign of leaving. Vulnerabilities
that are on the decrease, due to deprecated technology, as
it is the case with insecure crossdomain.xml policies,
appear to be seamlessly replaced with insecure usage of
corresponding new technologies, e.g., insecure handling
of postMessages.

Finally, we could observe a steady adoption of easy to
deploy security mechanisms, such as the HTTPOnly-flag
or the X-Frames-Option header. Unfortunately, this
trend does not apply to more complex security mech-
anisms, such as the Content-Security-Policy or
sandboxed iframes. Furthermore, we found that while
early adopters of dedicated security technologies are
overall less likely to exhibit vulnerabilities, this does not
apply into the extended lifetime of the mechanism – late
adopters appear to have no inherent security advantage
over average sites despite their demonstrated security
awareness.

Overall, these results paint a sobering picture. Even
though Web security has received constant attention from

research, security, and standardization communities over
the course of the last decade, and numerous dedicated
security mechanisms have been introduced, the overall
positive effects are modest: Client-Side XSS stagnates at
a high level and potentially problematic practices, such
as cross-origin script inclusion or usage of outdated Java-
Script libraries are still omnipresent. At best, it appears
that the growing security awareness merely provides a
balance to a further increase in insecurity, caused by the
ever-rising platform complexity.

Thus, this paper provides strong evidence, that the pro-
cess of making the Web a secure platform is still in its
infancy and requires further dedicated attention to be re-
alized.
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Abstract
Heap overflow is a prevalent memory corruption vulner-
ability, playing an important role in recent attacks. Find-
ing such vulnerabilities in applications is thus critical for
security. Many state-of-art solutions focus on runtime
detection, requiring abundant inputs to explore program
paths in order to reach a high code coverage and luckily
trigger security violations. It is likely that the inputs being
tested could exercise vulnerable program paths, but fail
to trigger (and thus miss) vulnerabilities in these paths.
Moreover, these solutions may also miss heap vulnerabil-
ities due to incomplete vulnerability models.

In this paper, we propose a new solution HOTracer to
discover potential heap vulnerabilities. We model heap
overflows as spatial inconsistencies between heap allo-
cation and heap access operations, and perform an in-
depth offline analysis on representative program execu-
tion traces to identify heap overflows. Combining with
several optimizations, it could efficiently find heap over-
flows that are hard to trigger in binary programs. We im-
plemented a prototype of HOTracer, evaluated it on 17
real world applications, and found 47 previously unknown
heap vulnerabilities, showing its effectiveness.

1 Introduction
Memory corruption vulnerabilities are the root cause of
many severe threats, including control flow hijacking and
information leakage attacks. Among them, stack corrup-
tion vulnerabilities used to be the most popular ones. As
effective defenses [3, 12, 15, 19, 24, 35, 46, 47] against
stack corruption are deployed gradually, nowadays heap
overflow vulnerabilities become more popular. For ex-
ample, it is reported that about 25% of exploits against
Windows 7 utilized heap corruption vulnerabilities [28].

There are a lot of sensitive data stored in the heap, in-
cluding heap management metadata associated with heap
objects (e.g., size attributes, and linked list pointers), and
sensitive pointers within heap objects (e.g., pointers for
virtual function calls). It makes the heap a valuable target

to attack. As the heap layout is not deterministic, heap
overflow vulnerabilities are in general harder to exploit
than stack corruption vulnerabilities. But attackers could
utilize techniques like heap spray [16] and heap feng-
shui [43] to arrange the heap layout and reliably launch
attacks, making heap overflow a realistic threat.

Several solutions are proposed to protect heap overflow
from being exploited, e.g., Diehard [4], Dieharder [34],
Heaptherapy [52] and HeapSentry [33]. In addition to
runtime overheads, they also cause denial of service, be-
cause they will terminate the process when an attack is
detected. So it is imperative to discover and fix heap over-
flows in advance.

In general, both static analysis and dynamic analysis
can be used to detect heap vulnerabilities. But static anal-
ysis solutions (e.g., [21, 36]) usually have high false pos-
itives, and are only fit for small programs. In addition
to its intrinsic challenge (i.e., alias analysis), static anal-
ysis may generate false positives because the heap layout
is not deterministic [27]. But for any specific execution,
the spatial relationships between heap objects are deter-
ministic. So, it’s easier and more reliable to use dynamic
analysis to detect heap vulnerabilities.

Online dynamic analysis is the mostly used state-of-
art heap vulnerability detection solutions. In general,
they monitor target programs’ runtime execution (e.g.,
by tracking some metadata), and detect vulnerabilities by
checking for security violations or program crashes. For
example, AddressSanitizer [40] creates redzones around
objects and tracks addressable bytes at run time, and de-
tects heap overflows when unaddressable redzone bytes
are accessed. Fuzzers (e.g., AFL [51]) test target pro-
grams with abundant inputs and report vulnerabilities
when crashes are found during testing.

These solutions are widely adopted by industry to find
vulnerabilities in their products. However, they all work
in a passive way and could miss vulnerabilities. To re-
port a vulnerability, they expect a testcase to exercise a
vulnerable path and trigger a security violation. Even if a
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passive solution could generate a bunch of inputs to reach
a high code coverage and could catch all security viola-
tions, e.g., by combining AFL and AddressSanitizer, it
could still miss vulnerabilities. For example, it may gen-
erate a bunch of inputs to exercise a vulnerable path, but
fail to trigger the vulnerability in that path due to some
critical vulnerability conditions.

Moreover, multiple vulnerabilities may exist in one
program path. Passive solutions (e.g., fuzzers) may only
focus on the first one and miss the others. For example,
when analyzing a known vulnerability CVE-2014-1761
in Microsoft Word with our tool HOTracer, we found
two new heap overflows, in the exact same program path
which we believe many researchers have analyzed many
times. It shows that, even for a vulnerable path in the spot-
light, online solutions could not guarantee to find out all
potential vulnerabilities in it.

On the other hand, offline analysis solutions could ex-
plore each program path thoroughly and discover poten-
tial heap vulnerabilities in a more proactive way, e.g., by
reasoning about the relationship between program inputs
and candidate vulnerable code locations. For example,
DIODE [41] focuses on memory allocation sites vulner-
able to integer overflow which will further lead to heap
overflow, and then infers and reasons about constraints
of the memory allocation size to discover vulnerabilities.
Dowser [23] and BORG [31] focus on memory accesses
sites that are vulnerable to heap overflow, and guide sym-
bolic execution engine to explore suspicious buffer ac-
cessing instructions. However, neither of these solutions
accurately model the root cause of heap overflow, and thus
will miss many heap overflow vulnerabilities.

We point out that the root cause of heap overflow vul-
nerabilities is not the controllability of either memory al-
location or memory access, but the spatial inconsistency
between heap allocation and heap access operations. For
example, if a program first allocates a buffer of size x+2,
and then writes x+ 1 bytes into it, a heap overflow will
happen if attackers make x+2 integer overflows but x+1
not. It is nearly impossible to identify this heap over-
flow vulnerability when only considering heap allocation
or heap access operations.

In this paper, we propose a new offline analysis solution
HOTracer, able to recover heap operations, check spa-
tial consistency and discover heap overflow vulnerabili-
ties. It first records programs’ execution traces, no matter
the corresponding inputs are benign or not. Then it recog-
nizes heap allocation and heap access operation pairs and
checks whether there are potential spatial inconsistencies.
Furthermore, it checks whether the heap allocation and
heap access operations could be controlled by attackers or
not. If either one is controllable (i.e., tainted or affected
by inputs), HOTracer reasons about the path conditions
and spatial inconsistency to generate a PoC (i.e., proof-

of-concept) input for the potential vulnerability.
In this way, our solution could discover potential vul-

nerabilities that may be missed by existing online and of-
fline solutions. For online solutions, e.g., AFL and Ad-
dressSanitizer, they rely on delicate inputs to trigger the
vulnerabilities. Our solution could work fine as long as
the inputs could exercise any heap allocation and heap ac-
cess operations.

On the other hand, a combination of existing offline so-
lutions, e.g., DIODE and Dowser, seems to be able to
achieve the same goal as HOTracer. However, the com-
bination is incomplete. DIODE only considers heap allo-
cation vulnerable to integer overflows, and Dowser only
focuses on heap accesses via loops. Moreover, to make
the combination practical and efficient in the real world,
we have to solve several challenges.

First, there could be numerous execution traces to an-
alyze. Since recording and analyzing a trace is time-
consuming, we could not aim for a high code cover-
age. Instead, we analyze programs with representative use
cases, and explore significantly different program paths.

Second, we need to identify all heap operations from
the huge execution traces (without source code). Even
worse, many programs utilize custom memory allocators
and custom memory accesses. HOTracer utilizes a set
of features to identify potential heap operations. More-
over, we need to group related heap allocation and heap
access operations that operate on same heap objects into
pairs. But the number of such pairs is extraordinary large.
HOTracer reduces the number of pairs by promoting low-
level heap access instructions into high-level heap access
operations, and prioritizes pairs to explore pairs that are
more likely to be vulnerable.

Finally, it is challenging to generate concrete inputs to
trigger the potential vulnerability in a specific heap oper-
ation pair, especially in large real-world applications, due
to the program trace size and constraint complexity. HO-
Tracer mitigates this issue by collecting only partial traces
and concretizes inputs that do not affect the vulnerability
conditions.

We implemented a prototype of HOTracer based on
QEMU and analyzed 17 real world applications. HO-
Tracer found 47 previously unknown vulnerabilities,
showing that it is effective and efficient in finding heap
vulnerabilities. In addition to finding new vulnerabilities,
HOTracer could also be used to help identifying the root
cause of a vulnerability. As shown in Figure 1, HOTracer
could be used to triage vulnerabilities in crashes (or se-
curity violations) generated by online dynamic analysis
tools (e.g., fuzzers), or even further explore the same path
to discover vulnerabilities that may be missed.

In summary, we have made the following contributions.

• We proposed a new offline dynamic analysis solu-
tion, which is able to discover heap vulnerabilities
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Figure 1: Applications of HOTracer. It relies on programs’ execution traces, which can be generated in many ways, to
discover heap vulnerabilities. It could discover heap vulnerabilities that are missed by online dynamic analysis tools
(e.g., AFL and AddressSanitizer), because the testcases may not cause any runtime crashes or security violations at
all, or only trigger shallow ones. It could also help clarifying the root cause (i.e., determine if it is a heap vulnerability
or not) of a crash or violation.

that are hard to detect and prone to miss in benign
traces, and able to help identifying the root cause of
crashes and security violations in suspicious traces.

• We pointed out the root cause of heap vulnerabilities
is inconsistency between heap operations. We also
proposed a method to accurately model heap vul-
nerability conditions, with heap objects’ spatial and
taint attributes (i.e., affected by inputs or not).

• We addressed several challenges, including path ex-
plosion, pair explosion and constraint explosion, to
make the solution practical and efficient.

• We implemented a prototype system, which is able
to handle large real world applications and generate
concrete inputs to prove heap vulnerabilities.

• We found 47 previously unknown vulnerabilities in
17 real world applications. Two of them are hidden
in the same path as a known vulnerability.

2 Background
In this section, we will illustrate the root causes of heap
overflow (and underflow) vulnerabilities, with a running
example demonstrated in Figure 2.

2.1 Running Example

Usually, a heap access operation is performed via a heap
pointer and a memory access size. In practice, the pointer
used for heap access is usually derived from a heap ob-
ject (e.g., p1 at line 12 of Figure 2). As developers may
use pointer arithmetic to get new pointers, we further de-
compose pointers into two parts: pointer base addresses
and offsets. So a heap access operation is represented as
(ptr,o f f setptr,sizeaccess).

It is worth noting that, the offset and size may be de-
rived from untrusted user input, either directly (e.g., the
offset size at line 8) or indirectly (e.g., the size computed
from the length of string p1->name at line 21).

On the other hand, a heap access operation’s target ob-
ject is represented by a memory range, i.e., an allocation

 1 #define SIZE (1024-4) 

 2 struct OBJ{ 
 3   char name[SIZE]; 

 4   void set_name(char* src, size_t size){ 

 5     if(size > SIZE) exit(-2); 
 6     memcpy(name, src, size); 

 7     // off-by-one, when size == SIZE 
 8     name[size]=0; 

 9   } 

10 }; 

11 int main(){ 

12   OBJ* p1 = new OBJ(); 

13   OBJ* p2 = new OBJ(); 

14   // tainted: size and input 
15   input = get_input(&size); 

16   // Vul #1: off-by-one if size=SIZE 
17   p1->set_name(input, size); 

18   // coalesce p1 and p2, causing p1 free. 
19   free(p2); 

20   // Vul #2: use after free
21   printf("p1 name: %s\n", p1->name); 
22   return 0; 
23 } 

Figure 2: Two sample heap vulnerabilities: an off-by-one
heap overflow and a use-after-free.

address and size. We refer obj to allocation address of an
object and represent it as (ob j, sizeob j).

The allocation address is usually a heap address re-
turned by memory management functions. However, the
allocation size may be derived from user inputs. Even if
it is not affected by inputs, e.g., developers use a constant
number (e.g., 1020 at line 3) that seems to be big enough
as the allocation size, the program may be still vulnerable
to heap overflow.

Although experienced developers may sanitize inputs
before using (e.g., line 5) to stop potential vulnerabilities,
it is error-prone to implement such checks. For example,
the check at line 5 misses one corner case where size
equals to SIZE. This corner case will lead to an off-by-
one vulnerability (i.e., a special heap overflow) at line 8,
which is called at line 17. It will overflow one byte after
the object p1, with value 0.

Although this off-by-one vulnerability could only over-
write one extra byte of 0, it is still exploitable. For exam-
ple, in the running example, it will cause a further use-
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after-free vulnerability and lead to control flow hijacking.
Details are omitted due to the space limitation.

2.2 Root Cause Analysis

The root cause of heap overflow (or underflow) is that,
the heap access offset or size exceeds the target heap ob-
ject’s bound. More specifically, for a heap access via
(ptr,o f f setptr,sizeaccess) and target object (ob j, sizeob j),
similar to related work SoftBound [30], we conclude that
there is an underflow vulnerability if:

ptr+o f f setptr + sizeaccess < ob j.

Given that heap pointers ptr always refer to base objects’
address obj, it equals to:

o f f setptr + sizeaccess < 0. (S1)

There is an overflow vulnerability if:

ptr+o f f setptr + sizeaccess > ob j+ sizeob j.

i.e.,
o f f setptr + sizeaccess > sizeob j. (S2)

It is worth noting that, o f f setptr may be a negative inte-
ger, but sizeaccess and sizeob j are always positive. If we use
o f f setptr as unsigned integer, and assume its bit-width is
N, then Equation S1 becomes

o f f setptr + sizeaccess >= 2N−1. (S3)

Moreover, sizeob j usually are smaller than 2N−1. For
example, objects on 32-bit platform usually are smaller
than 231 = 2G bytes. So, Equation S3 implies Equa-
tion S2. So, Equation S2 always holds if there is a heap
overflow or underflow.

In other words, a heap overflow or underflow exists if
and only if:

rangeaccess > rangeob j. (S)

where, rangeaccess represents o f f setptr + sizeaccess, and
rangeob j represents sizeob j, and all values here are un-
signed. Without loss of generality, we use the term heap
overflow to represent both heap overflow and heap under-
flow in this paper.

Equation S depicts the inconsistency of spatial at-
tributes between heap allocation and heap access. Our
solution HOTracer uses it to build heap vulnerability con-
ditions.

2.3 Observation

Even though no security violations are triggered by a be-
nign input, potential vulnerabilities may still exist in the
same program path. If user inputs could affect either heap
allocation or heap access along this execution trace, they
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Figure 3: Heap overflow vulnerabilities exist in the
shadow area, with the condition: rangeaccess > rangeob j.

could change the spatial attributes of heap objects to sat-
isfy Equation S, cause spatial inconsistency between heap
allocation and heap access, and thus trigger a heap over-
flow vulnerability.

We illustrate this possibility using Figure 3. If we can
control the heap allocation size, we could make it smaller
than the heap access size (e.g., dotted line 1 in the figure),
to satisfy the Equation S and trigger heap overflows. If
we can control both the heap allocation size and the heap
access size, we could also make Equation S holds (e.g.,
dotted line 2).

3 Design
We aim to discover heap vulnerabilities with dynamic
analysis, without relying on testcases to directly trigger
vulnerabilities, and without source code. To achieve this
goal, we analyze programs’ execution traces offline, and
explore potential vulnerable states along the binary traces.

Furthermore, to make the solution efficient and practi-
cal, we select representative testcases to generate a limited
number of traces, perform spot checks on a small num-
ber of heap <allocation, access> operation pairs that are
more likely to be vulnerable, and concretize values in path
constraints and vulnerability constraints to speed up the
constraint resolving.

3.1 System Overview

Based on the observation discussed in Section 2.3, our of-
fline analysis tracks heap objects’ spatial attributes (e.g.,
size) and taint attributes (e.g., affected by inputs or not,
and affected by which input bytes) along the target execu-
tion trace.

Figure 4 shows an overview workflow of our solution
HOTracer. It first pre-processes the sample inputs by first
selecting representative inputs, and then feeds them into a
dynamic analysis component to generate execution traces
for each input. For a given trace, HOTracer traverses it
offline again to do some in-depth analysis.

Then, it identifies heap allocation and heap access op-
erations, and builds the heap layout. It also groups heap
operations that operate on same objects into pairs.
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Figure 4: Overview of HOTracer’s solution. It selects useful testcases and generate traces for each of them. Then it
recognizes heap operations in traces, tracks heap objects’ attributes and infer vulnerability conditions for each pair
of heap operations. It finally generates proof-of-concept (PoC) inputs to prove vulnerabilities by reasoning about
vulnerability conditions and path constraints.

Next, HOTracer tracks heap objects’ spatial and taint
attributes during execution traces. Based on these at-
tributes, it builds the vulnerability conditions using Equa-
tion S for each pair of heap <allocation, access> opera-
tions.

Finally, it solves the vulnerability conditions, along
with the path constraints, to check potential heap over-
flows, and generates concrete inputs to prove the existence
of them.

Following this process, we figure out there are many
challenges when making it work for real world applica-
tions, especially the usability and efficiency of this so-
lution. First, there would be numerous execution traces
to analyze. Second, there would be a large number of
heap <allocation, access> operation pairs in each execu-
tion trace. Third, the path constraints and vulnerability
condition constraints would be very large and complex to
solve, especially for real world applications. In the re-
maining of this section, we will discuss our design choice
to address these challenges.

3.2 Trace Generation Optimization

3.2.1 Testcase Selection

We may have too many input samples to analyze, and an-
alyzing a single program trace thoroughly is expensive.
On the other hand, many samples may exercise the same
program path, and thus it is not necessary to analyze all
of them. To mitigate this issue, we will only select repre-
sentative inputs to analyze.

We use different heuristics to select seed inputs based
on types of inputs. For known file types (e.g., multimedia
input files), we crawl some sample inputs from the Inter-
net. Then we parse the structure of these sample inputs,
and utilize the file format information to select represen-
tatives from each sub-type (e.g., tags in MP4 files). In
general, we will perform a min-set coverage analysis to
select a minimal set of testcases that covers all the sub-
types. Based on the trivial knowledge that different sub-
types of inputs will exercise different program paths, we
could get a set of representative execution traces.

For unknown file types, we use fuzzers to generate a

set of seed inputs, and distill the inputs to a minimum set
which covers most code blocks. In this way, we could also
get a set of representative testcases.

3.2.2 Trace Record and Replay

For each selected input, we need to feed it to the target
program, and get its runtime execution trace for further
offline analysis. It is critical to record the trace in a timely
manner. Otherwise, it may cause timeout issues and inter-
rupt the program execution.

We adopted the record-replay mechanism introduced
in PANDA [18] to generate traces with a low overhead.
In general, it has two phases to generate traces. In the
record phase, it takes a snapshot of the system before ex-
ecution, and records only changes at runtime. In this way,
the recording process costs low overheads. In the replay
phase, it interprets the snapshot and records to recover the
full execution trace for further offline analysis.

3.3 Heap Operation Model

3.3.1 Heap Allocation Recognition

Heap objects are created by allocation functions. By ana-
lyzing heap allocation functions, we can get the size and
address of heap objects, and update the spatial attributes
of heap objects.

However, it is challenging to recognize all heap allo-
cation functions accurately. In addition to standard APIs
(e.g., malloc and free), developers usually develop cus-
tom heap allocators for different purposes. For exam-
ple, Firefox uses a custom heap management implementa-
tion Jemalloc, to solve its memory fragmentation prob-
lems. We studied some popular custom allocators (e.g.,
Jemalloc, Tcmalloc, MMgc), and figured out their work
flows share the same pattern as shown in Figure 5, and
they have the following features.

First, the most important feature is the return values of
memory allocators must be heap pointers.

A. An allocator always returns a pointer to the heap re-
gion, which is known for a specific platform.
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Second, the allocation size processing is also an impor-
tant feature. It affects the memory allocation in several
ways.

B1 Custom allocators have to use standard allocation in-
terfaces to get memory from system when the allo-
cator is called for the first time, or when the internal
reserved memory pool is drained.

B2 Allocators usually keep different memory pools for
different allocation sizes to improve allocation effi-
ciency and ease the burden of boundary check.

B3 Allocators usually pad extra bytes at the end of ob-
jects to make objects aligned (with 4 bytes, 8 bytes
etc.).

B4 Allocators usually maintain internal heap manage-
ment structures and update them when allocating.
To avoid concurrency issues, the heap allocators will
lock the internal metadata before updating, e.g., by
calling EnterCriticalSection on Windows plat-
forms.

Third, memory allocation functions will be used by the
program in special ways.

C1 The return value of an allocator will be first used in
memory write operations before any read operations.

C2 A memory allocator will usually be invoked several
times in a specific execution trace.

C3 The allocator will return different values in differ-
ent invocations in most cases, unless the underlying
memory is released before allocation.

C4 Some heap allocation functions will initialize the ob-
jects (e.g., set to 0) before returning, to avoid poten-
tial bugs (e.g., use of uninitialized variables).

We first identify all functions satisfying feature A. Then
we point out ones satisfying at least one feature of B1,
B2, B3, B4. Finally, we recognize ones satisfying at
least one feature of C1, C2, C3, C4. In this way, we
could get a set of candidate heap allocators. Furthermore,
we will remove wrapper functions from the set.

It is worth noting that, identifying heap allocators in
this way may generate false positives and thus increase the
number of candidate pairs. From our evaluation, the false

positive ratio is very low. On the other hand, this solution
in general will not generate false negatives. So it will not
prevent us from discovering potential heap vulnerabilities.

It is an open challenge to accurately identify all heap
allocators in binary programs. Existing works like Mem-
Brush [13] provide promising alternatives. MemBrush
uses features A and C1, together with some other mi-
nor features to identify candidate allocators. The major
difference is that, MemBrush uses dynamic online analy-
sis to repeatedly invoke and test each candidate allocator
with different parameters. However, the dynamic testing
process is slow, and its accuracy improvement over our
solution is not significant. So we only use the features
proposed here to do a quick recognition.

3.3.2 Heap Operation Pairs

After recognizing heap allocators, we could recover the
address and size attributes of heap objects and pointers,
and update them along the execute trace. We further re-
cover the heap layout with these spatial attributes, and
maintain the point-to relationship between heap objects
and pointers. So we could group heap allocation and heap
access operations into pairs.

We also track the taint attributes of heap objects and
pointers using taint analysis. Further we could check heap
operations pairs that could be controlled by attackers for
potential vulnerabilities.

3.4 Candidate Pair Reduction

There are too many heap allocation sites and heap access
operations even in one single trace, making the number
of candidate vulnerable pairs too large to analyze. As a
result, it is crucial to reduce the number of candidate pairs.

We first abstract low level heap access instructions to
high level operations to reduce the number of heap access
operations, and then prioritize candidate pairs based on
the likelihood of vulnerability in each pair. In this way, we
could limit the number of candidate pairs to a reasonable
number, and make further vulnerability discovery practi-
cal.

3.4.1 Heap Access Abstraction

We could easily recognize heap access instructions in the
trace after recognizing all heap pointers and heap objects.
A straightforward solution would be treating each heap
access instruction in the traces as a heap access operation,
and generating the pairs. However, it will explode the
number of heap operation pairs. For example, a buffer
copy could be compiled into a simple loop, or a REP-
prefixed instruction, which is represented with a sequence
of memory access instructions in the trace. Each iteration
of every heap access instruction will contribute to a new
heap operation pair. So the number of pairs grows rapidly
in this way.
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Obviously, we should treat each one of such loops and
sequences of memory access as one heap access if possi-
ble, in order to reduce the number of heap operation pairs
without missing any potential vulnerabilities.

On the other hand, it is also helpful to recover high-
level heap access operations for other purposes. For ex-
ample, it could help us to identify the size of heap access
and the taint attributes of heap access operations.

Thus, we abstract heap access operations in the follow-
ing order to reduce the number of heap operation pairs.

D1 We first recover simple loops that are used for heap
access. We treat each occurrence of these loops in
the trace as one heap access operation, but not any
instruction within these loops.

D2 We then treat each sequence of heap access instruc-
tions that corresponds to one REP instruction in the
trace as a single heap access operation.

D3 We finally treat every remaining instruction in the
trace that accessed the heap as a heap access opera-
tion.

3.4.2 Heap Operation Pairs Sorting

The heap access abstraction phase greatly reduces the
number of candidate heap <allocation, access> operation
pairs. However, the number would be still big. We further
mitigate this issue by prioritizing the heap operation pairs.
Pairs that are more likely to be vulnerable will be explored
first in the following steps.

First, we prioritize pairs that have access operations of
type D2, since it is the most common case of heap buffer
access operations. Then we prioritize pairs that have ac-
cess operations of type D1.

Second, we will prioritize heap operation pairs depend-
ing on the ability of attackers, i.e., how well they could
affect the heap operations. As shown in Figure 3, attack-
ers may have different abilities to control heap operations.
The order we use to prioritize these pairs is as follows.

E1 The heap allocation and heap access size are affected
by different input bytes. It means attackers could
change the element of heap pairs independently and
make it inconsistent. This type is most vulnerable
according to our experience.

E2 Only the heap allocation but not the heap access op-
eration is affected by input bytes. This is also a pop-
ular case of heap overflow vulnerabilities. The fa-
mous IO2BO vulnerability [41, 53] in general falls
into this category.

E3 Only the heap access but not the heap allocation op-
eration is affected by input bytes. It is also vulner-
able in this case if the access size exceeds the (con-
stant) allocation size.

E4 The heap allocation and heap access size are affected
by same input bytes. This type of heap operation
happens a lot in practice. For example, the pro-
gram allocates X bytes and later tries to access only
X bytes. In most cases, this type is not vulnerable.

E5 Neither the heap access nor the heap allocation oper-
ation is affected by input bytes. Usually there should
be no heap overflow in this case, unless there is a
careless bug, e.g., the program allocates 100 bytes
and tries to access 101 bytes no matter what inputs
are given. Most tools are able to detect this kind of
vulnerability.

Furthermore, considering the ability of constraint
solvers, we will prioritize pairs that have simpler program
path constraints, simpler computation of heap operation
sizes, and shorter distance from allocation to access op-
erations. This prioritization enables us to explore simpler
pairs first and reason about them to discover vulnerabili-
ties.

3.5 Constraint Solving Optimization

After getting the candidate vulnerable heap operation
pairs, we could reason about each pair to confirm whether
it is vulnerable or not. Basically, we will collect the path
constraint and the vulnerability condition for each candi-
date pair, and then query the constraint solver to generate
PoC if possible.

However, the program path and vulnerability condition
constraints may be too complex for solvers to resolve. We
thus proposed several optimizations to mitigate this issue.

First, HOTracer will concretize irrelevant bytes in the
constraints. More specially, only bytes occurring in the
vulnerability conditions will be marked as symbolic, other
bytes will be replaced with concrete values used in current
execution trace. So we only need to solve parts of the
constraints.

Moreover, HOTracer only collects instructions from the
first related input point till the vulnerability points, and
performs symbolic execution on them. In this way, it
could greatly reduce the possibility of solver failure or
timeout.

4 Implementation
In this section, we will discuss implementation details of
HOTracer, and our practical experience with real world
programs. Our current prototype focuses on analyzing
Windows x86/x64 applications. But the techniques we
developed are general, and could be extended to other
platforms.

4.1 Collect Traces

HOTracer relies on program execution traces to discover
heap vulnerabilities. The diversity of traces affect the
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number of program paths that will be analyzed. To gen-
erate traces, we first select input testcases for target pro-
grams, and then test them on target programs and record
their runtime executions.

4.1.1 Testcase Selection

The testcases could origin from different sources, e.g.,
fuzzers, existing benchmarks, or network crawlers, as
shown in Figure 1.

As discussed in Section 3.2.1, we will use parsers to
parse testcases of known input format, and select repre-
sentative testcases based on their sub-types. In general,
we trivially perform a min-set coverage analysis to select
a minimal set of testcases that cover all the sub-types. We
also use fuzzers to generate testcases of unknown input
format, and further distill the testcases based on their code
coverage information.

4.1.2 Trace Generation

Given an input testcase, we use our previous dynamic
analysis framework [32] to generate the execution trace.
Our dynamic analysis framework implements a record-
replay mechanism similar to PANDA [18], based on the
open-source whole-system hardware emulator QEMU, to
improve the performance of recording.

It takes a snapshot of the system before execution,
and records changes to the CPU state and memory in a
changelog file during the execution. In this way, it will
not slowdown QEMU much. After the runtime execution
finished, we could replay the snapshot and changelog file
to generate an execution trace, which is identical to the
runtime execution trace.

4.2 Identify Heap Operations

Given the trace, we need first identify heap allocation and
heap access operations, as well as the heap objects and
pointers in the trace, to detect potential heap overflow vul-
nerabilities.

4.2.1 Heap Allocation Recognition

Based on the heuristics described in Section 3.3.1, we
could identify most custom heap allocators with a high ac-
curacy. After identifying these heap allocators, we could
identify the sizes and addresses of heap objects along a
trace, from the arguments and return values of these al-
locators. Furthermore, by performing data flow analysis,
we could recognize all heap pointers and their mappings
to heap objects (described in Section 4.3).

4.2.2 High Level Heap Access

Rather than checking every heap access instruction in the
trace, we check some high level heap access operations
first, to reduce the number of candidate heap operation
pairs.

   

  //EAX is a pointer, EBX is another pointer 

  SUB EAX, EBX 

  MOV ESI,EAX 

  … 

  // ESI=(EAX-EBX)+EBX=EAX, not related to EBX 

  ADD ESI,EBX 

(a) add

   

  //EAX is a pointer, ECX is another pointer 

  SUB EAX, ECX 

  MOV ESI,EAX 

  … 

  // ESI=(EAX-ECX)+ECX-0x4=EAX-0x4, not related to ECX 

  LEA ESI, [ESI+ECX-0x4] 

(b) lea

Figure 6: Corner cases of taint propagation.

Heap Access of Type D1 It is common for developers
to use a loop to access a heap object. This is also a com-
mon source of heap overflow vulnerabilities. A loop in
the trace is a continuously repeated sequence of instruc-
tions ending with jump instructions, unlike its representa-
tion in the control flow graph (i.e., a backward edge) [8].
HOTracer takes the sequence of instruction addresses in
the trace as a string, and identifies loops by searching for
continuously repeated sub-strings.

We record instructions in a historybuffer. While analyz-
ing an instruction in the binary trace, we look forward in
the historybuffer for the appearance of this instruction. If
it is in a loop, the following instructions would repeat the
sequence between this instruction and the last one. The
sequence is the loop body and jump instructions at the
end of the loop body infer the exit conditions. In this way,
we could identify loops with one sequential scanning.

For each loop, we also care about whether its execu-
tion is affected by inputs. We infer the relationship be-
tween the count of loop iterations and inputs at the loop
exit point (i.e., a conditional branch instruction). We also
count the number of iterations in current trace to infer the
access range of a loop.

Our current prototype could find nested loops but not
complicated overlapped loops [45, 50]. We leave it as a
future work.

Heap Access of Type D2 It is easy to recognize REP
instructions in a trace, so does the access size (i.e., ECX),
by comparing the instruction sequence in the trace with
instructions in the original binaries.

4.3 Track Spatial Attribute

4.3.1 Build Heap Layout

From the execution trace, we know the exact values of
heap pointers and addresses of objects, and thus we could
easily get the layout of the heap. During the data flow
analysis, we track heap objects’ spatial attributes accord-
ing to allocation operations. The attributes are initialized
to allocation sizes when objects are allocated. When deal-
locating, their spatial attributes are updated to 0. In this
way, we could get the heap state at any moment.
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4.3.2 Pair Heap Operations

As we pointed in Section 2.2, we analyze heap operations
in pairs based on the point-to relationships between point-
ers and objects. However, it is not trivial to infer whether
a pointer should point to an object, because the pointer
value may exceed its expected object’s memory region
(e.g., due to heap overflow). In other words, we could
not rely only on the values of heap pointers and addresses
of objects.

So we perform an analysis to track pointers’ prove-
nances, in order to build the accurate heap layout. In gen-
eral, when a pointer is set to point to an allocated object,
we set the base object as this pointer’s provenance. This
provenance will be propagated along the program trace,
e.g., via pointer arithmetic operations, to other pointers.
The provenance of a pointer will be updated when it is
reset. This provenance analysis is similar to classic taint
analysis [6].

As a result, by querying a pointer’s provenance, we
could always infer which object it should point to, even
if the pointer’s value is overflowed. For the target object
at access points, we could easily get its allocation opera-
tion. In this way, we group specific heap access and heap
allocation operation into a pair, and further evaluate their
spatial attributes to discover potential heap overflows.

Under-taint Issue: However, there is a corner case dur-
ing the taint (i.e., provenance) propagation for pointers.
For example, the SUB instruction in Figure 6a will usually
clean the taint attribute of the pointer (i.e., EAX), since
the result is constant and is not a pointer any more [6].
However, this offset could be later used to compute an-
other pointer (e.g., the final ESI register) which should be
tainted. As a result, the new pointer will take a wrong
attribute from EBX rather than EAX.

We propose a new solution to mitigation this is-
sue. More specifically, we tag the destination register
EAX of the SUB instruction with a set of taint attributes
(provenanceEAX ,−provenanceEBX ). It is worth noting
that, objects’ addresses (i.e., pointers’ provenances) are
usually lower than a specific value on a given platform,
so −provenanceEBX is different from any normal taint at-
tribute. We can detect this abnormal attribute when it is
used in instructions like ADD and LEA, and recover the cor-
rect taint attribute of operands.

4.4 Track Taint Attribute

HOTracer tracks taint attributes of different values (e.g.,
sizes of heap objects, offsets of heap pointers etc.). In
general, it performs a fine-grained taint propagation anal-
ysis to track each value’s source (i.e., specific bytes in the
input).

We use the same taint analysis solution as previous
provenance analysis, to track values’ taint attributes, i.e.,

which input bytes affect the target values. What’s dif-
ferent is that, we use the position of input bytes as taint
attributes, and propagate these attributes along the trace.

However, sometimes the inputs will not directly af-
fect values used in heap access or allocation operations.
For example, programs may use strlen or other custom
functions to infer some values (e.g., length) of the inputs,
and use them as size to allocate memory. In this case, the
heap allocation is indirectly affected by the inputs. These
inferred values are control dependent on the inputs. For
example, the return value of strlen control-depends on
the input string, i.e., whether the input character equals to
’\0’ or not.

Classical dynamic taint analysis solutions usually will
not propagate taint information for control dependen-
cies [39], due to the concern of taint propagation effi-
ciency. Instead, HOTracer performs an extra backward
analysis, to search for the definition points of heap allo-
cation sizes. Given the high-level loop and branch infor-
mation we recovered, if we find out the definitions are
control-dependent on the inputs, we will mark the alloca-
tion sizes as tainted.

Furthermore, the traces we collected only include user-
space instructions. So some data flow will be missing
when the kernel kicks in. HOTracer will check value of
registers before and after the executed instructions (e.g.,
sysenter). If the value of any register other than the des-
tination operand has changed, a potential data flow miss-
ing is found. In this case, we will clean the taint attributes
of the registers, to avoid false positives. Another choice is
using summary information of syscalls, to propagate the
taint attributes for kernel execution. However, it requires
a lot of engineering work to correctly summarize the side-
effects of all syscalls.

4.5 Build Vulnerability Condition

For each pair of heap access and heap allocation opera-
tions, we assume the heap access has attributes rangeaccess
and the target heap object has attributes rangeob j,

1. a heap overflow exists if rangeaccess > rangeob j is
true for current testcase, i.e., Equation S holds.

2. a potential heap overflow exists if either rangeaccess
or rangeob j is tainted, which may make Equation S
hold.

In case 1, we can confirm the existence of heap over-
flow in current trace and show the root cause of heap over-
flows. In case 2, we could infer the conditions of po-
tential heap vulnerabilities and reason about these con-
ditions. More specially, by performing symbolic execu-
tion, we can build the constraints between input bytes and
the spatial attributes of rangeaccess and rangeob j. Together
with the vulnerability Equations S, we can build the vul-
nerability conditions.
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First, for a heap access operation, if the heap access’
range is larger than the object’s range, then a heap over-
flow is confirmed. It means the original input already trig-
gers the vulnerability.

It is worth noting that, heap management functions will
also access heap objects’ metadata that are out of the ob-
jects’ bound. But these overflow access operations are
benign. So we will rule out these heap access when dis-
covering heap vulnerabilities.

Second, for a heap access, if the heap pointer’s size
is not larger than the object’s size, we will discover po-
tential heap overflow by checking their taint attributes.
There are also three cases: (1) if only the object’s size
or the pointer’s size is tainted (e.g., line 1 and line 3 in
Figure 3), there may be a heap overflow; (2) if both the
object’s size and pointer’s size are tainted (e.g., line 2 in
Figure 3), there may be a heap overflow too. (3) neither
the object’s size nor the pointer’s size is tainted, then there
are no heap overflow in this heap access, unless there is
an instinctive bug that could be triggered no matter what
inputs are given.

For the case (2), i.e., when the object’s size and
pointer’s size are both tainted, there are also two sub-
cases: they rely on different input bytes; or they rely on
same input bytes. In the former case, usually there will be
some heap overflows. In the latter case, there may be no
heap overflows at all. For example, if we allocate a heap
buffer with size X from input, and access heap with size
X, then there are no overflows. But vulnerabilities like in-
teger overflow may cause the allocation size mismatches
with the access size, even though they rely on same inputs.
HOTracer will check the existence of integer overflow in
this case (i.e., IO2BO [41, 53]).

4.6 Prove Heap Vulnerabilities

After building the vulnerability conditions, the last step is
to find concrete inputs that trigger the vulnerabilities. We
use the widely used constraint solver Z3 [17] to resolve
the constraints and generate inputs.

4.6.1 Build Path Constraints

Inputs satisfying only the vulnerability conditions may
not trigger vulnerabilities at all, since (1) it may not reach
the vulnerable point that we analyzed, because a different
program path is exercised, and (2) it may be blocked by
some input validations deployed in the program.

So, HOTracer will also collect the program path con-
straints, i.e., how the input bytes affect the branches in the
trace. By feeding the vulnerability conditions and pro-
gram path constraints to the solver, we could get inputs
that will exercise the same path and trigger heap vulner-
abilities, or confirm that there are no heap vulnerabili-
ties along this path, or fail because the state-of-art solvers
could not solve the constraints.

4.6.2 Constraint Simplification

As discussed in Section 3.5, HOTracer will only collect
path constraints related to bytes used in the vulnerabil-
ity conditions, and use concrete values for other input
bytes used in the path constraints, to simplify the path
constraints.

We also notice that, programs may read the same input
bytes multiple times via multiple functions. For example,
some programs use the first read operation for preproc-
cessing, and a second read to process the content. To re-
duce the complexity, we will only collect path constraints
from the last relevant read to the vulnerability points. If
inputs generated from these constraints could not trigger
the vulnerability, then we will include path constraints
starting from previous reads.

4.6.3 Mutate and Verify

Since our vulnerability conditions only consider heap
overflow, the concrete inputs generated by constraint
solvers (called candidate PoC inputs) may not trigger
crashes or other severe consequences.

On the other hand, inputs that could trigger crash would
make further analysis easier, e.g., debugging and bug fix-
ing. So, HOTracer performs another step to filter the can-
didate PoC inputs, to find out inputs that could trigger
crashes.

The idea is that, we will compare the candidate PoC
input with the seed input, to find out the input bytes that
have changed. Then we use a simple fuzzer to mutate only
these bytes with simple mutation strategies, e.g., mini-
mum and maximum signed or unsigned integers, common
values like 0 and 1, and random bytes etc. We will test
each mutated input, to see whether it could trigger a crash.

For any candidate PoC input, if one of its mutations
triggers a crash, HOTracer will report a heap vulnerability
together with this mutation input. Otherwise, HOTracer
will ignore this candidate PoC input.

It is worth noting that, the ignored candidate PoC in-
puts may still be valuable. The associated vulnerability
instructions could be exploited with advanced exploits.
We leave it as a future work to analyze these candidate
PoC inputs and whether they are exploitable.

5 Evaluation
In this section, we present the evaluation of our solu-
tion HOTracer. Our prototype implementation is based on
our existing QEMU-based dynamic analysis framework.
The seed selection component takes about 40 LOC of
shell scripts, the heap operation identification component
takes about 1.3K LOC of C++ code, the heap attributes
tracking and vulnerability condition building components
take about 8K LOC of C++ code, and the vulnerability
proving component takes about 9K LOC of C++ code.
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Table 1: Zero-day vulnerabilities found by HOTracer.

ID (count) Application version input bug status
new (1) Feiq 3.0.0.2 tcp reported
new (1) WMPlayer 12.0.7601 mp4 reported
new (3) VLC 2.2.1 mp4 fixed
new (1) VLC 2.2.4 mp4 reported
new (2) iTunes 12.4.3.1 mp4 reviewing
new (1) ffmpeg c0cb53c mp4 CVE
new (6) QQPlayer 3.9(936) mp4 rewarded
new (1) QQMusic 11.5 m4a rewarded
new (1) BaiduPlayer 5.2.1.3 mp4 reviewing
new (2) RealPlayer 16.0.6.2 mp4 CVE
new (1) MPlayer r37802 mp4 reported
new (3) KMPlayer 3.9.1.138 mp4 fixed
new (4) KMPlayer 4.1.1.5 mp4 reported
new (7) Potplayer 1.6.60136 mp4 fixed
new (2) Potplayer 1.6.62949 mp4 reported
new (5) Splayer 3.7 mp4 reported
new (2) MS Word 2007,10,16 rtf reviewing
new (1) WPS Word 10.1.0.5803 doc reported
new (2) OpenOffice 4.1.2 doc reviewing
new (1) IrfanView 4.41 m3u fixed

The analysis environment is a Ubuntu 12.04 system run-
ning on a computer with 12G RAM and Intel Xeon (R)
CPU E5630 @ 2.53GHz*8.

5.1 Effectiveness

Table 1 shows previously unknown vulnerabilities found
by HOTracer in our experiment. The target applications
we tested are popular applications in Windows 7 operat-
ing system, including word document processing applica-
tions Microsoft Word and OpenOffice, video players KM-
Player and potplayer, and photo viewers IrfanView etc.

These applications are tested within QEMU, with some
selected testcases (Section 5.5). The traces collected by
QEMU are then analyzed by HOTracer. Although we
only demonstrated Windows applications here, the solu-
tion we proposed could be extended to other platforms
(including Linux on x86, Android on ARM), since they
are both supported by QEMU and our solution is general.

As shown in the table, we have found 47 previously
unknown vulnerabilities in 17 applications (of latest ver-
sions). All vulnerabilities are validated with proof-of-
concepts (i.e., PoC) inputs that could trigger crashes.

It is worth noting that, all vulnerabilities here are inves-
tigated manually and confirmed to be unique. We use two
factors to distinguish vulnerabilities, i.e., the overflow in-
structions along with the call context, and the key input
bytes’ roles (i.e., structure fields) in the input structures.

5.2 False Negatives and False Positives

In general, it is impossible to evaluate false negatives of
a vulnerability detection solution, since we do not have

Table 2: Known heap overflow vulnerabilities replayed
and validated by HOTracer.

ID Application version input
CVE-2010-1932 Xnview 1.97.4 mbm
CVE-2011-5233 irfanview 4.30 tif
OSVDB-83812 ZipItFast 3.0 pro zip
CVE-2014-1761 Microsoft Word 2010 rtf
EDB-ID-39353 VLC 2.2.1 mp4
EDB-ID-17363 1ClickUnzip 3.0.0 zip
CVE-2010-2553 MediaPlayer 9.00.00.4503 avi
CVE-2015-0327 Adobe Flash 13sa swf

the ground truth of how many vulnerabilities exist in pro-
grams.

Instead, we chose several known vulnerabilities and
their corresponding program paths as a ground truth. To
evaluate the false negatives, we gave some benign test-
cases that exercise the same program paths as the target
vulnerabilities to our tool, and then used it to analyze
these programs. It is worth noting that, in this experi-
ment, HOTracer does not have any other knowledge of
the vulnerabilities, except the benign testcase.

Table 2 shows 8 known vulnerabilities in 8 applica-
tions. HOTracer is able to discover 6 of them on its own,
except vulnerabilities CVE-2015-0327 and CVE-2010-
2553.

For vulnerability CVE-2015-0327 in Adobe Flash, it
requires to override a standard API, causing it behave dif-
ferently at heap allocation site and heap access site. Cur-
rently, our solution could not build and solve this type
of constraints. For vulnerability CVE-2010-2553 in Me-
dia Player, our prototype system missed a type-D1 heap
access (i.e., a loop), but only paid attention to one type-
D2 heap access (i.e., a REP instruction) inside this loop.
It shows that it is necessary to further improve our loop
recognition algorithm to deal with complex real world ap-
plications. However, HOTracer could validate these two
vulnerabilities if given the correct PoC samples.

More interestingly, when analyzing the program path
(with a benign input) of the vulnerability CVE-2014-1761
in Microsoft Word 2010, HOTracer found two new vul-
nerabilities, which even affect the latest version of Mi-
crosoft Word. We believe for known vulnerabilities like
CVE-2014-1761, vendors and researchers have already
performed many thorough testings. It thus shows that
even for known vulnerabilities in spotlight, existing so-
lutions may still miss potential vulnerabilities.

On the other hand, since HOTracer only reports vulner-
abilities with proof-of-concept (PoC) testcases that could
trigger crashes, there are no false positives. However, it
is possible that some reported vulnerabilities are not ex-
ploitable.
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Table 3: Metrics of the analysis performed by HOTracer, including the size of snapshot, changelog, traces and con-
straints, the instruction count in the traces, and the time spent to record, replay, analyze and extract traces.

ID
record-replay phase analysis phase resolve phase

snapshot changelog record replay trace trace analy. relev. constaint extr.
size size time time size #instr. time #instr. file size time

CVE-2010-1932 430.6MB 36.6MB 29s 486s 2.8GB 12.3M 99s 619 192KB 37s
CVE-2011-5233 516.1MB 18.5MB 37s 738s 9.8GB 43.9M 112s 795 251KB 96s
OSVDB-83812 819.3MB 13.6MB 83s 1257s 31.9GB 142.5M 787s 10 4.3kB 52s
CVE-2014-1761 855.3MB 52.3MB 178s 3712s 205.8GB 918.6M 6478s 183 17.8KB 198s
EDB-ID-39353 507.6MB 15.0MB 62s 271s 8.2GB 36.7M 10s 3082 331.1KB 674s
EDB-ID-17363 500.2MB 32.6MB 70s 889s 3.1GB 13.7M 45s 2313 191.2KB 502s
CVE-2010-2553 282.5MB 22.9MB 100s 806s 10.7GB 47.6M 565s - - -
CVE-2015-0327 610.8MB 13.8MB 34s 682s 25.2GB 112.4M 709s - - -

5.3 Bug Reports

We reported all the new vulnerabilities to vendors, and
most vendors are very active in responding. As shown in
Table 1, three vendors have completely fixed their prod-
ucts, i.e., IrfanView, ffmpeg and Realplayer. Two of them
have already been assigned with CVE ID 1.

During our experiments, we found that some tested pro-
grams (e.g., VLC, KMPlayer) have released new updates
for the bugs we reported. We then applied HOTracer to
the latest version and found that some vulnerabilities still
exist. In other words, three vendors have only partially
fixed their products.

Moreover, vendors of QQPlayer and QQMusic have
confirmed the vulnerabilities in their products and re-
warded us for the report. Five other vendors including
Microsoft, Apple, and OpenOffice are still reviewing the
issues.

In summary, vendors are willing to fix security bugs in
their products. However, during the communication, we
also found that vendors were more willing to fix vulner-
abilities which are sure to be of high risk or exploitable.
For vulnerability reports with only PoC crash inputs, they
do not take it seriously, especially for larger companies.
We believe one reason of this kind of negative attitude is
that, there are too many vulnerability reports waiting in
their pipelines. In other words, there are too many vulner-
abilities (or bugs) in daily applications, calling for solu-
tions like HOTracer to help.

Due to the time limit, we only manually checked 10 of
these vulnerabilities to see whether they are exploitable.
In general, it is challenging to conduct exploits against
a vulnerability, especially in the context of defenses de-
ployed in modern platform. We found 9 of them are likely
exploitable.

5.4 Efficiency

As we discussed, HOTracer first takes a snapshot of the
system, and then records changelog during execution. Af-

1CVE-2016-6164 for ffmpeg, CVE-2016-9931 for RealPlayer

ter that, HOTracer replays the snapshot and changelog to
generate traces, and then performs analysis on the traces
to find potential heap vulnerabilities. Finally, it extracts
relevant instructions from the trace and build the con-
straints to generate concrete inputs to prove vulnerabili-
ties. Table 3 shows some detailed metrics of these differ-
ent phases.

As we can see from the table, the record-replay mech-
anism works well. It will not break the target applica-
tions’ functionality, e.g., causing program timeout due
to a heavy runtime monitoring or recording. The traces
of real world applications are usually very large (e.g.,
205GB for CVE-2014-1761 in Microsoft Word), much
larger than the snapshot and changelog size. It also takes
much longer (e.g., 20 times longer) time to replay and
generate the traces than recording only changelogs.

HOTracer performs the offline analysis, including heap
attributes tracking and vulnerability modeling, on the
traces to discover heap vulnerabilities. As shown in the
table, the offline analysis time is close to the replay time,
varying from 2 minutes to 50 minutes. The analysis time
depends on the number of instructions in the traces. The
more instructions a trace has, the more time the analysis
needs.

After identifying potential heap vulnerabilities, HO-
Tracer will extract instructions relevant to the candidate
vulnerabilities and build the constraint files to query con-
straint solvers (e.g., Z3). As shown in the table, it requires
0.5 to 15 minutes to extract the related instructions and
build constraints, depending on the number of relevant in-
structions.

And for the vulnerability CVE-2015-0327 in Adobe
Flash and CVE-2010-2553 in Media Player, our proto-
type fail to find out the vulnerability. So we do not have
any data for its resolving phase in the table.

5.5 Testcases Selection

The testcases we use will affect the vulnerability assess-
ment HOTracer could provide to target applications. In
addition to utilizing fuzzing tools like AFL to generate
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testcases, we also crawl existing databases to find test-
cases.

In our experiment, we searched a public database 2 of
multimedia files with more than 10,000 testcases. Among
them, there are more than 800 MP4/MOV files in the
database. All of them contain the tag (i.e., sub-type) moov,
and only a few files have the tag avcC and trun. By pars-
ing the structures of these files and performing a min-set
coverage analysis, we reduce the number of files to 20,
without losing the path coverage.

5.6 Details of Trace Analysis

Table 4 and 5 show some detail evaluations of our trace
analysis. Due to the space limitation, only parts of the
results are shown in these tables.

After pre-processing, HOTracer selects input testcases
and generates corresponding program traces. As shown
in the table, the traces’ sizes are relatively large, but HO-
Tracer could still analyze them.

HOTracer groups heap allocation and heap access oper-
ations into pairs to discover potential heap vulnerabilities.
Each pair operates on a same heap object, and is related to
a set of input bytes. The number of heap operation pairs
is thus critical to the efficiency of our solution. We will
further demonstrate that the optimizations we performed
greatly reduced the number of heap operation pairs.

Accuracy of Heap Allocation Recognition. The accu-
racy of the heap allocation affects the number of heap op-
eration pairs. Table 4 shows the accuracy of our recogni-
tion algorithms.

On the left of the table, it shows some statistics of some
sample traces that are analyzed, including the snapshot
and record size, as well as the record and replay time.

On the right of the table, it shows the time cost to iden-
tify these heap allocators. In general, the identification
time is related to the trace size. A larger trace usually
consumes more time to identify heap allocators in it.

When considering the feature A (i.e., returning a heap
pointer) in Section 3.3.1, we could identify a set of can-
didate allocators, e.g., 43 allocators in Microsoft Word
2010. Further, after we apply other features, the set of
candidate allocators becomes smaller. For example, after
considering the group B features (i.e., use of allocation
size), we only get 11 candidate allocators. Furthermore,
only 5 candidate allocators are left after considering the
group C features (i.e., use of the returned pointer).

We also did some manual analysis to validate the ac-
curacy of these candidate allocators. Among the 5 candi-
date heap allocators in Microsoft Word, we figured 4 of
them have a name indicating that they are allocators. Af-
ter a further reverse engineering analysis, we confirmed

2http://samples.libav.org/

that they are heap allocators. Only one extra function is
wrongly identified as a heap allocator in this case.

Abstraction of Heap Access Operations. By recover-
ing the high-level heap access operations, we could re-
duce the number of heap operation pairs. Table 5 shows
some statistics of this abstraction. In addition to the trace
information, this table also shows the number of alloca-
tion sites in the sample traces. In a trace, an allocator may
be invoked several times, so there will be more allocation
sites than heap allocator functions shown in Table 4.

On the right side of the table, it shows the number of
heap access operations. Note that, for each heap access
operation, its heap allocation site is unique. So the num-
ber of heap operation pairs equals to the heap access op-
erations.

As shown in the table, there are too many low-level
heap access instructions (i.e., type-D3 access in the ta-
ble). The number of high-level heap access operations is
much smaller. Furthermore, after we consider the taint
attributes, the number of heap access operations drop
quickly. Finally, we sorted the remaining heap access op-
erations according to their type, taint attributes, constraint
complexity etc. as discussed in Section 3.4.2. The num-
ber of heap operation pairs that are likely to be vulnerable
is quite small, comparing to the number of low-level heap
operations.

5.7 Comparison with fuzzers

In order to evaluate the effectiveness of HOTracer, we
performed extra experiments, to compare it with exist-
ing vulnerability discovery solutions, especially fuzzing.
As our prototype worked in Windows 7, we chose two
representative fuzzers on Windows, i.e., WinAFL 3 and
Radamsa 4, to test vulnerable softwares with the same
seed inputs.

WinAFL is a fork of AFL on Windows, which relies on
dynamic instrumentation using DynamoRIO [5] to mea-
sure and extract target coverage. Radamsa is a black-box
fuzzer not guided by code coverage. Instead, it aims at
testing execution path thoroughly, similar to our solution.

Due to the time limitation, we tested all these solutions
on one application potplayer, with same seed inputs,
for one day. WinAFL found no crashes during this time
period, while Radamsa found 1144 crashes related to heap
overflows.

With a further analysis, we figured out there are only 11
crash points, and 3 vulnerability points. HOTracer found
all these 3 vulnerabilities, and 4 more heap overflows.

It is worth noting that, fuzzers and HOTracer both have
other advantages. For example, general-purpose fuzzers

3https://github.com/ivanfratric/winafl
4https://github.com/aoh/radamsa
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Table 4: Accuracy of the heap allocation recognition, including the statistics of the trace and the time of the heap
allocation identifications. Type-A allocators are ones that satisfy the heuristics A in Section 3.3.1, i.e., functions return
heap poitners. Type-A-B allocators are ones that satisfy both heuristics A and one of B1/B2/B3/B4. Similarly, type-
A-B-C allocators satisfy one of C1/C2/C3/C4 in addition to previous heuristics. Confirmed allocators are ones that
we manually validated to be real allocators, either from the symbol information of those functions, or from manual
reverse engineering.

App.
Trace Info Heap Allocations

Record Snapshot Record Replay Trace Identif. type-A type type confirmed
Time Size Size Time Size Time A A-B A-B-C allocators

demo 60s 632.5M 4.5M 444s 6.1M 1s 1 1 1 1
XnView 29s 430.6M 36.6M 486s 2.8G 125s 30 7 5 3
ZipItFast 83s 819.3M 13.6M 1257s 31.9G 4044s 28 9 3 3
MS Word 178s 539.8M 120.7M 3712s 35.9G 305s 43 11 5 4
Potplayer 131s 523.4M 40.6M 1676s 50.8G 714s 33 9 2 2
QQPlayer 150s 667.1M 138.2M 3320s 47.0G 630s 39 12 3 3
MPlayer 183s 519.7M 38.2M 1561s 16.6G 518s 22 4 2 2

Table 5: Abstraction of heap access operations. Type-D3 access operations are all low-level heap access instructions, as
discussed in Section 3.4.1. Type-D2 access operations are REP-prefixed instructions or a short sequence of continuous
heap access instructions. Type-D1 access operations are loops performing a single heap access.

App.
Trace Info Alloc. Sites Heap Access

Trace Analy. Alloc. Tainted type-D3 type-D2 type-D2 type-D1 Tainted Sorted
Size Time Sites Alloc. Access REP seq Access Access Pair

MS Word 35.9G 1097s 2,643 20 20,244,088 81,349 1,114,499 619,380 3,450 125
MS Word 535.6G 16210s 3,886 33 267,831,917 710,569 12,751,174 10 M. 29,718 1,258
Potplayer 21.9G 1231s 23,099 4,695 6,832,296 38,802 1,198,956 239,809 19,933 322
Potplayer 32.5G 695s 16,127 105 2,249,059 20,145 354,476 203,445 674 201
Potplayer 50.8G 2768s 18,773 154 2,061,109 14,435 405,334 130,501 1,078 254
Potplayer 63.9G 1267s 73,533 45 20,282,901 61,412 3,944,539 510,715 1070 109
Potplayer 106.1G 4312s 47,118 4,820 4,080,172 137,771 5,927,258 1 M. 27,466 630
QQPlayer 47.0G 2673s 28,749 10 6,488,402 141,384 1,375,956 910,115 12 10

could find other types of vulnerabilities, not only heap
overflows. Our solution HOTracer could be used to triage
the root cause of crashes, and help debugging and fixing
bugs which are time-consuming and important to vendors.

5.8 Case studies

In this section, we will study some vulnerabilities in de-
tails and show some findings during the analysis.

5.8.1 Tainted Access Offset

As discussed in the background, we merged the access
offset with the access size. In other words, the value of
access offset is included in the access size. And whenever
the access offset is tainted, we mark the access size as
tainted. In the experiment, we found a new vulnerability
in Feiq due to a tainted heap access offset.

5.8.2 Implicit Taint

Sometimes, the input does not directly affect the alloca-
tion size or access size. Instead, the sizes are control-
dependent on the inputs.

A common case is that, developers use strlen or cus-
tom loops to identify the length of an input string, and al-
locate buffers. The program will compare the input bytes
against the special character ’\0’, and increase the allo-
cation size accordingly.

Another example is that, the vulnerability CVE-2014-
1761 in Microsoft Word uses an access size that is con-
trolled by the number of lfolevel fields in the input.
The program will compare the input against lfolevel,
and set the access size accordingly.

Traditional taint analysis will not cover this type of im-
plicit data flow. However, HOTracer could detect them by
performing a backward data flow analysis on the access
size and allocation size. If we found the access size or al-
location size is control-dependent on the inputs, then we
could report a candidate vulnerability.

5.8.3 Mismatch Taint

Heap overflow vulnerabilities may exist if either the allo-
cation size or the access size is tainted. For developers,
it is easier to realize the existence of heap overflow and
deploy sanity checks when only allocation size or access
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size is tainted. However, it gets challenging when both
the allocation size and access size are tainted.

The allocation size and access size may be related to
different input bytes. In this case, it is prone to heap over-
flow. For example, the access size in vulnerability CVE-
2014-1761 is related to lfolevel, but its allocation size
is related to another field listoverridecount.

A more common case is that, the access size and allo-
cation size are relevant to the same input bytes, but they
mismatch due to several causes.

First, the allocation size may get smaller than expected
if there are integer overflows, e.g., two new vulnerabil-
ities we found in QQPlayer and PotPlayer. Second, the
access site may be so far from the allocation site that de-
velopers forget or fail to sanitize the inputs properly, e.g.,
the vulnerability CVE-2011-5233 in InfraView. Finally,
the access size and allocation size may change due to dy-
namic features of programming languages. For example,
in the vulnerability CVE-2015-0327 in Adobe Flash, the
allocation and access size are both relevant to the API
nextNameIndex. However, this API could be overridden
by users, to cause mismatches and trigger heap overflow.

5.8.4 Multiple Vulnerabilities in One Trace

In some cases, there may be multiple potential heap vul-
nerabilities in a program path. For example, when analyz-
ing the trace generated for the known vulnerability CVE-
2014-1761 in Microsoft Word, we found several potential
vulnerable points, and confirmed two of them are vulnera-
ble. We also confirmed that these two new bugs still exist
in the latest Microsoft Word (i.e., Office 2016). It shows
that HOTracer could find out all potential heap vulnera-
bilities in one path, while existing solutions only focus on
the first vulnerability.

5.8.5 Long Testing Time

Sometimes, the bugs will only be triggered after the pro-
gram has run for a while. For example, a new we found in
VLC could only be triggered after we play a video file for
several minutes. Existing solutions like AFL could hardly
find this type of vulnerabilities, because the throughput is
extremely low. HOTracer is better at handling this kind
of issues. It first filters seed inputs that could lead to dif-
ferent paths, and then analyzes each path once, no matter
how long that path takes.

6 Related Work
6.1 Heap Overflow Detection

6.1.1 Static Analysis

Static analysis could be used to analyze programs with-
out executing them. For example, Allamigeon et al. uti-
lizes abstract intepretation to ensure the absence of heap
overflow [2]. Chen et al. proposes a solution based on

FSM (finite state machine) to report potential heap over-
flows [11]. SIFT is a static analysis system to generate
input filters that nullify integer overflow errors associated
with critical program sites such as memory allocation or
block copy sites [27].

However, static analysis usually requires access to
source code. And it is challenging to predict the spatial at-
tributes of heap objects with static analysis, and thus hard
to find heap overflows with static analysis. They will usu-
ally introduce a high false positives and false negatives.
Moreover, static analysis solutions in general require a
precise reachability and alias analysis, limiting their scope
of use.

6.1.2 Online Dynamic Analysis

Dynamic analysis is more efficient to detect heap vulner-
abilities, since it could get a precise spatial attributes and
point-to relationship at runtime. There are also two types
of dynamic analysis solutions: online analysis and offline
analysis. Online dynamic analysis solutions usually first
instrument target applications with metadata before ex-
ecution, and then track the metadata and check security
violations during the execution.

Online detection: AddressSanitizer [40] is one of the
most effective solutions to detect heap (and other) vul-
nerabilities at runtime. It instruments redzones to each
heap object when the object is allocated, and marks red-
zones’ bytes as unaddressable while objects’ bytes are ad-
dressable. A heap overflow (or underflow) vulnerability is
reported if an unaddressable byte is accessed. This so-
lution introduces a high runtime performance overhead
(e.g., 73%), and is not suitable for production use. More-
over, it could only detect vulnerabilities when the given or
generated input testcases could trigger security violations.

SoftBound [30] tracks the size and base of every
pointer, and checks each pointer dereference operation.
BaggyBounds [1] uses a compact table to store ob-
ject sizes, adopts a fast algorithm to get object sizes
and base addresses from only pointers, and checks each
pointer arithmetic operation. Duck et al. tries to protect
heap bounds with low fat points [20]. Diehard [4] and
Dieharder [34] randomly allocate memory larger than re-
quired, and thus mitigate heap overflow vulnerabilities.

Online detection solutions rely on inputs to trigger vul-
nerabilities and help finding vulnerabilities in a passive
way. Also they have reasonable high performance over-
heads.

Fuzzing: Fuzzing is another type of state-of-art solu-
tions to detect vulnerabilities. Among them, AFL [51]
is one of the most popular fuzzers. TaintScope [49]
is a checksum-aware fuzzing tool which can identify
checksum-based checks and bypass such checks. SYM-
FUZZ [10] combines both black- and white-box tech-
niques to maximize the effectiveness of fuzzing. Zhiqiang
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et al. utilizes the results of static analysis, and filter
out sensitive input bytes using data lineage analysis [25].
Based on the analysis results, the fuzzer could only mu-
tate target bytes to increase the efficiency. Driller [44] and
VUzzer [38] are the most recent works on fuzzing. Driller
enables AFL to explore new paths in an alternative way
of fuzzing and concolic execution. And VUzzer enhances
the efficiency of general-purpose fuzzers with a smart mu-
tation feedback loop based on applications’ control- and
data-flow features.

Like other online detection solutions, fuzzers also rely
on input testcases to trigger vulnerabilities at runtime.
Moreover, they simply rely on program crashes to de-
tect vulnerabilities, due to the lack of runtime metadata
support. So they may not find vulnerabilities with strict
conditions even if they have reached a very high code
coverage. As they are general fuzzings tools and provide
few supports for triaging crashes, it requires many man-
ual efforts when further identifying root causes of found
crashes.

Symbolic execution: Symbolic execution is a well-
known technique used to reason applications. By mark-
ing inputs as symbolic values and propagateing them to
variables, it could be used to analyze all possible states
of one program path with only one-time analysis. Fea-
turing with path exploration and vulnerability condition
modeling, symbolic execution could be used to discover
vulnerabilities. Although they are successful in many
cases [7, 9, 14, 37], symbolic execution is rarely adopted
in practice due to the limitations of complex constraint
solving and path explosion. Traditional symbolic execu-
tion solutions mainly focus on how to explore new pro-
gram paths and reduce the complexity of constraints.

Concolic execution [22, 29] is an alternative way for
full symbolic execution. With concrete values, the analy-
sis engine could explore deeper and be more scalable. Our
solution adopts the similar offline trace-based constaint
generation. However, we concentrate only on heap over-
flow vulnerabilities, and thus apply some optimizations
to the symbolic execution and constraint solving process.
As symbolic execution on real world applications is an
open challenge, our solution does not improve it much,
but roughly use it as a tool to reason about the constraints
that we built with delicate data flow analysis.

6.1.3 Offline Dynamic Analysis

Offline dynamic analysis solutions usually analyze the
runtime execution’s results offline, and do not interfere
the runtime execution except for recording. Comparing
to online dynamic analysis, this type of solutions could
perform in-depth analysis for a single dynamic execution,
and explore potential vulnerabilities.

DIODE [41] targets heap allocation sites in a trace, and
extracts and solves integer overflow conditions for allo-

cation sizes to discover potential IO2BO (a special kind
of heap overflow) vulnerabilities. It only considers heap
allocation operations, but not heap access operations, and
thus will miss many heap vulnerabilities. Moreover, it
only considers integer overflow conditions, which is only
a subset of heap overflow conditions.

Dowser [23] is an offline solution to detect buffer over-
flow (including heap overflow). It relies on compile-time
information to filter pointer accesses in loops that are
more likely to be vulnerable to buffer overflow (includ-
ing heap overflow). It then uses dynamic taint analysis
to infer which input bytes will affect these operations,
and steers symbolic execution engine to explore the value
space of the relevant input bytes. However, it does not
support binary programs, and does not support precise
heap layout analysis and thus are not efficient to find heap
overflows. Moreover, it only considers heap access oper-
ations, but not heap allocation operations, and thus could
not find all heap vulnerabilities. BORG [31] is the binary
version of Dowser, facing a same set of limitations.

6.2 Related Program Analysis Techniques

MemBrush [13] proposes several heuristics to identify
custom memory allocators. The key observation is that
a malloc-like routine will return a heap address, and its
client will use this return value to access memory. It uses
dynamic testing to repeatedly validate candidate functions
against the expected behaviour, to filter out real allocators.
This solution could identify custom heap allocators more
accurately. However, it could not be integrated into our
offline analysis solution. We leave it as a future work.

Aligot [8] proposes a solution to identify loops in exe-
cution traces, and uses it to identify cryptographic func-
tions in obfuscated binary programs. A recent paper [50]
improves Aligot in identifying loop bodies. Jordi Tubella
et.al. also proposed a solution [45] to identify loops dy-
namically. These solutions could handle more compli-
cated loops than our solution. But they are over-qualified
for our target, i.e., identifying loops used for heap access
operations.

Recognizing structures in binary is also helpful for our
work. HOTracer can benefit from related works [26, 42,
48] to identify elements inside objects. These could make
HOTracer able to detect and discover sub-object overflow
vulnerabilities.

7 Discussion
It is challenging to recognize all custom heap manage-
ment functions, especially when analyzing the trace di-
rectly. Although the heuristics-based solution we took is
not perfect, it indeed helps us find more heap vulnerabili-
ties than state-of-art solutions. But our solution could def-
initely benefit from an improved recognition algorithm.
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It is also challenging to abstract all heap access oper-
ations. Complicated access operations could be missed,
and the access size and other attributes of these operations
are hard to retrieve, making our prototype miss potential
vulnerabilities. Related work (e.g., CryptoHunt [50]) on
program semantics comprehension could help HOTracer,
e.g., to handle more complex loops.

Some heap vulnerabilities may not crash target pro-
grams even if they are triggered. Our solution could find
out this type of vulnerabilities. However, they could still
be exploited in some cases. It would be interesting to as-
sess whether these vulnerabilities are exploitable. It is one
of our ongoing research to automatically analyze them.

Moreover, it is an open challenge to solve constraints.
Vulnerability conditions and path constraints generated
by HOTracer may be too complex to solve. In that
case, we make efforts to make it practical and may still
miss some potential heap vulnerabilities. Also there
are some more complex situations (e.g., checksum men-
tioned in TaintScope [49], blocking checks mentioned in
DIODE [41]) making it harder. In the evaluation we per-
formed, we did not have this type of problems. But in
general, it needs to be addressed. We could utilize the
vulnerability conditions and candidate pairs of heap allo-
cation and heap access operations, to perform other types
of analysis, e.g., fuzzing, or change the path carefully by
flipping like DIODE.

8 Conclusion
Heap overflows account for a big portion of real world
memory corruption based exploits. We pointed out the
root causes of heap vulnerabilities, and proposed a new
offline dynamic analysis solution to discover heap vulner-
abilities in program execution traces. It is able to explore
each program path in depth to find vulnerabilities that are
hard to detect and prone to miss by existing solutions. We
also proposed several optimizations, making our solution
more practical. Our prototype tool HOTracer found 47
new vulnerabilities in 17 real world applications, show-
ing that this solution is effective.

Acknowledgement
We would like to thank our shepherd Stelios Sidiroglou-
Douskos, and the anonymous reviewers for their insight-
ful comments. This research was supported in part by
the National Natural Science Foundation of China (Grant
No. 61572483, 61402125 and 61502469), and Young
Elite Scientists Sponsorship Program by CAST (Grant
No. 2016QNRC001).

References
[1] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand.

Baggy bounds checking: An efficient and backwards-compatible

defense against out-of-bounds errors. In Usenix Security Sympo-
sium, 2009.

[2] Xavier Allamigeon and Charles Hymans. Static analysis by ab-
stract interpretation: application to the detection of heap over-
flows. Journal in Computer Virology, 4(1):5–23, 2008.

[3] Arash Baratloo, Navjot Singh, and Timothy Tsai. Libsafe: Protect-
ing critical elements of stacks. White Paper http://www. research.
avayalabs. com/project/libsafe, 1999.

[4] Emery D Berger and Benjamin G Zorn. Diehard: probabilistic
memory safety for unsafe languages. In ACM SIGPLAN Notices,
volume 41, pages 158–168, 2006.

[5] Derek L. Bruening. Efficient, transparent and comprehensive run-
time code manipulation. Technical report, 2004.

[6] Juan Caballero, Gustavo Grieco, Mark Marron, and Antonio
Nappa. Undangle: early detection of dangling pointers in use-
after-free and double-free vulnerabilities. In ISSTA, 2012.

[7] Cristian Cadar, Daniel Dunbar, and Dawson Engler. Klee: Unas-
sisted and automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the 8th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’08,
2008.

[8] Joan Calvet, José M Fernandez, and Jean-Yves Marion. Aligot:
cryptographic function identification in obfuscated binary pro-
grams. In CCS, 2012.

[9] Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David
Brumley. Unleashing mayhem on binary code. In IEEE Sympo-
sium on Security and Privacy, 2012.

[10] Sang Kil Cha, Maverick Woo, and David Brumley. Program-
adaptive mutational fuzzing. In IEEE Symposium on Security and
Privacy, 2015.

[11] Shuo Chen, Jun Xu, Zbigniew Kalbarczyk, and K Iyer. Secu-
rity vulnerabilities: From analysis to detection and masking tech-
niques. Proceedings of the IEEE, 94(2):407–418, 2006.

[12] Xi Chen, Asia Slowinska, Dennis Andriesse, Herbert Bos, and
Cristiano Giuffrida. StackArmor: Comprehensive Protection From
Stack-based Memory Error Vulnerabilities for Binaries. In NDSS,
2015.

[13] Xi Chen, Asia Slowinska, and Herbert Bos. Who allocated my
memory? detecting custom memory allocators in c binaries. In
WCRE, pages 22–31. IEEE, 2013.

[14] Vitaly Chipounov, Volodymyr Kuznetsov, and George Candea.
S2e: A platform for in-vivo multi-path analysis of software sys-
tems. In Proceedings of the Sixteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, 2011.

[15] Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and
Heather Hinton. Stackguard: Automatic adaptive detection and
prevention of buffer-overflow attacks. In Usenix Security Sympo-
sium, 1998.

[16] Mark Daniel, Jake Honoroff, and Charlie Miller. Engineering heap
overflow exploits with javascript. WOOT, 8:1–6, 2008.

[17] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt
solver. In Tools and Algorithms for the Construction and Analysis
of Systems, pages 337–340. Springer, 2008.

[18] Brendan Dolan-Gavitt, Tim Leek, Josh Hodosh, and Wenke Lee.
Tappan zee (north) bridge: mining memory accesses for introspec-
tion. In CCS, 2013.

[19] Gregory J. Duck and Lorenzo Yap, Cavallaro. Stack Bounds Pro-
tection with Low Fat Pointers. In NDSS, 2017.

[20] Gregory J Duck and Roland HC Yap. Heap bounds protection with
low fat pointers. In Proceedings of the 25th International Confer-
ence on Compiler Construction, pages 132–142. ACM, 2016.

USENIX Association 26th USENIX Security Symposium    1005



[21] Josselin Feist, Laurent Mounier, and Marie-Laure Potet. Statically
detecting use after free on binary code. Journal of Computer Vi-
rology and Hacking Techniques, 10(3):211–217, 2014.

[22] Patrice Godefroid, Michael Y. Levin, and David Molnar. Sage:
Whitebox fuzzing for security testing. Queue, 10(1):20:20–20:27,
January 2012.

[23] Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and
Herbert Bos. Dowsing for overflows: A guided fuzzer to find
buffer boundary violations. In Usenix Security Symposium, 2013.

[24] Etoh Hiroaki and Yoda Kunikazu. ProPolice: Improved stack-
smashing attack detection. IPSJ SIG Notes, pages 181–188, 2001.

[25] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Convicting ex-
ploitable software vulnerabilities: An efficient input provenance
based approach. In 2008 IEEE International Conference on De-
pendable Systems and Networks With FTCS and DCC (DSN),
2008.

[26] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic re-
verse engineering of data structures from binary execution. In
NDSS, 2010.

[27] Fan Long, Stelios Sidiroglou-Douskos, Deokhwan Kim, and Mar-
tin Rinard. Sound input filter generation for integer overflow er-
rors. In Proceedings of the 41st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL ’14, pages
439–452, New York, NY, USA, 2014. ACM.

[28] Microsoft. Software vulnerability exploitation trends: Ex-
ploring the impact of software mitigations on patterns of
vulnerability exploitation (2013). http : / / download .
microsoft . com / download / F / D / F / FDFBE532 - 91F2 -
4216-9916-2620967CEAF4/Software%20Vulnerability%
20Exploitation%20Trends.pdf.

[29] David Molnar, Xue Cong Li, and David A. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux programs. In
Proceedings of the 18th Conference on USENIX Security Sympo-
sium, SSYM’09, 2009.

[30] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve
Zdancewic. SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C. In PLDI, 2009.

[31] Matthias Neugschwandtner, Paolo Milani Comparetti, Istvan
Haller, and Herbert Bos. The borg: Nanoprobing binaries for
buffer overreads. In Proceedings of the 5th ACM Conference on
Data and Application Security and Privacy, CODASPY ’15, 2015.

[32] Meining Nie, Purui Su, Qi Li, Zhi Wang, Lingyun Ying, Jinlong
Hu, and Dengguo Feng. Xede: Practical Exploit Early Detection.
In RAID, 2015.

[33] Nick Nikiforakis, Frank Piessens, and Wouter Joosen. Heapsen-
try: Kernel-assisted protection against heap overflows. In DIMVA,
2013.

[34] Gene Novark and Emery D Berger. Dieharder: securing the heap.
In CCS, pages 573–584. ACM, 2010.

[35] PaX-Team. PaX ASLR (Address Space Layout Randomization).
http://pax.grsecurity.net/docs/aslr.txt, 2003.

[36] Hendrik Post and Wolfgang Küchlin. Integrated static analysis for
linux device driver verification. In Integrated Formal Methods,
pages 518–537. Springer, 2007.

[37] David A. Ramos and Dawson Engler. Under-constrained symbolic
execution: Correctness checking for real code. In Usenix Security
Symposium, 2015.

[38] Sanjay Rawat, Vivek Jain, Ashish Kumar, and Herbert Bos.
VUzzer: Application-aware Evolutionary Fuzzing. In NDSS,
2017.

[39] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All
you ever wanted to know about dynamic taint analysis and forward
symbolic execution (but might have been afraid to ask). In IEEE
Symposium on Security and Privacy, 2010.

[40] Konstantin Serebryany, Derek Bruening, Alexander Potapenko,
and Dmitriy Vyukov. Addresssanitizer: A fast address sanity
checker. In the 2012 USENIX Annual Technical Conference, pages
309–318, 2012.

[41] Stelios Sidiroglou-Douskos, Eric Lahtinen, Nathan Rittenhouse,
Paolo Piselli, Fan Long, Deokhwan Kim, and Martin Rinard. Tar-
geted automatic integer overflow discovery using goal-directed
conditional branch enforcement. In ASPLOS, 2015.

[42] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard:
A dynamic excavator for reverse engineering data structures. In
NDSS, 2011.

[43] Alexander Sotirov. Heap feng shui in javascript. Black Hat Europe,
2007.

[44] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher,
Ruoyu Wang, Jacopo Corbetta, Yan Shoshitaishvili, Christopher
Kruegel, and Giovanni Vigna. Driller: Augmenting fuzzing
through selective symbolic execution. In NDSS, 2016.

[45] J. Tubella and A. Gonzalez. Control speculation in multithreaded
processors through dynamic loop detection. In High-Performance
Computer Architecture, 1998. Proceedings., 1998 Fourth Interna-
tional Symposium on, 1998.

[46] Arjan van de Ven and Ingo Molnar. Exec Shield. https:
//www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.
pdf, 2004.

[47] Vendicator. A "stack smashing" technique protection tool for
Linux. http://www.angelfire.com/sk/stackshield/,
2000.

[48] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind
Machiry, John Grosen, Paul Grosen, Christopher Kruegel, and
Giovanni Vigna. Ramblr: Making Reassembly Great Again. In
NDSS, 2017.

[49] Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A
checksum-aware directed fuzzing tool for automatic software vul-
nerability detection. In IEEE Symposium on Security and Privacy,
2010.

[50] Dongpeng Xu, Jiang Ming, and Dinghao Wu. Cryptographic
Function Detection in Obfuscated Binaries via Bit-precise Sym-
bolic Loop Mapping. In IEEE Symposium on Security and Pri-
vacy, 2017.

[51] Michal Zalewski. American fuzzy lop.
[52] Qiang Zeng, Mingyi Zhao, and Peng Liu. Heaptherapy: An effi-

cient end-to-end solution against heap buffer overflows. In 2015
45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, pages 485–496. IEEE, 2015.

[53] Chao Zhang, Tielei Wang, Tao Wei, Yu Chen, and Wei Zou. Int-
patch: Automatically fix integer-overflow-to-buffer-overflow vul-
nerability at compile-time. In Computer Security–ESORICS 2010,
pages 71–86. 2010.

1006    26th USENIX Security Symposium USENIX Association

http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://download.microsoft.com/download/F/D/F/FDFBE532-91F2-4216-9916-2620967CEAF4/Software%20Vulnerability%20Exploitation%20Trends.pdf
http://pax.grsecurity.net/docs/aslr.txt
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
https://www.redhat.com/f/pdf/rhel/WHP0006US_Execshield.pdf
http://www.angelfire.com/sk/stackshield/


DR. CHECKER: A Soundy Analysis for Linux Kernel Drivers

Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens,
Christopher Kruegel, and Giovanni Vigna

{machiry, cspensky, jcorina, stephens, chris, vigna}@cs.ucsb.edu
University of California, Santa Barbara

Abstract

While kernel drivers have long been know to poses huge
security risks, due to their privileged access and lower
code quality, bug-finding tools for drivers are still greatly
lacking both in quantity and effectiveness. This is be-
cause the pointer-heavy code in these drivers present
some of the hardest challenges to static analysis, and
their tight coupling with the hardware make dynamic
analysis infeasible in most cases. In this work, we
present DR. CHECKER, a soundy (i.e., mostly sound)
bug-finding tool for Linux kernel drivers that is based on
well-known program analysis techniques. We are able to
overcome many of the inherent limitations of static anal-
ysis by scoping our analysis to only the most bug-prone
parts of the kernel (i.e., the drivers), and by only sac-
rificing soundness in very few cases to ensure that our
technique is both scalable and precise. DR. CHECKER is
a fully-automated static analysis tool capable of perform-
ing general bug finding using both pointer and taint anal-
yses that are flow-sensitive, context-sensitive, and field-
sensitive on kernel drivers. To demonstrate the scala-
bility and efficacy of DR. CHECKER, we analyzed the
drivers of nine production Linux kernels (3.1 million
LOC), where it correctly identified 158 critical zero-day
bugs with an overall precision of 78%.

1 Introduction

Bugs in kernel-level code can be particularly problem-
atic in practice, as they can lead to severe vulnerabil-
ities, which can compromise the security of the entire
computing system (e.g., Dirty COW [5]). This fact has
not been overlooked by the security community, and a
significant amount of effort has been placed on verify-
ing the security of this critical code by means of man-
ual inspection and both static and dynamic analysis tech-
niques. While manual inspection has yielded the best
results historically, it can be extremely time consuming,

and is quickly becoming intractable as the complexity
and volume of kernel-level code increase. Low-level
code, such as kernel drivers, introduce a variety of hard
problems that must be overcome by dynamic analysis
tools (e.g., handling hardware peripherals). While some
kernel-level dynamic analysis techniques have been pro-
posed [23, 25, 29, 46], they are ill-suited for bug-finding
as they were implemented as kernel monitors, not code
verification tools. Thus, static source code analysis has
long prevailed as the most promising technique for kernel
code verification and bug-finding, since it only requires
access to the source code, which is typically available.

Unfortunately, kernel code is a worst-case scenario
for static analysis because of the liberal use of pointers
(i.e., both function and arguments are frequently passed
as pointers). As a result, tool builders must make the
tradeoff between precision (i.e., reporting too many false
positives) and soundness (i.e., reporting all true posi-
tives). In practice, precise static analysis techniques have
struggled because they are either computationally infea-
sible (i.e., because of the state explosion problem), or too
specific (i.e., they only identify a very specific type of
bug). Similarly, sound static analysis techniques, while
capable of reporting all bugs, suffer from extremely high
false-positive rates. This has forced researchers to make
variety of assumptions in order to implement practical
analysis techniques. One empirical study [14] found that
users would ignore a tool if its false positive rate was
higher than 30%, and would similarly discredit the anal-
ysis if it did not yield valuable results early in its use
(e.g., within the first three warnings).

Nevertheless, numerous successful tools have been
developed (e.g., Coverity [14], Linux Driver Verifica-
tion [36], APISan [64]), and have provided invaluable
insights into both the types and locations of bugs that
exist in critical kernel code. These tools range from pre-
cise, unsound, tools capable of detecting very specific
classes of bugs (e.g., data leakages [32], proper fprintf
usage [22], user pointer deferences [16]) to sound, im-
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precise, techniques that detect large classes of bugs (e.g.,
finding all usages of strcpy [55]). One notable finding
early on was that a disproportionate number of errors in
the kernel were found in the drivers, or modules. It was
shown that drivers accounted for seven times more bugs
than core code in Linux [19] and 85% of the crashes
in Windows XP [49]. These staggering numbers were
attributed to lower overall code quality in drivers and im-
proper implementations of the complex interactions with
the kernel core by the third party supplying the driver.

In 2011, Palix et al. [39] analyzed the Linux kernel
again and showed that while drivers still accounted for
the greatest number of bugs, which is likely because
drivers make up 57% of the total code, the fault rates for
drivers where no longer the highest. Our recent analy-
sis of main line linux kernel commit messages found that
28% of CVE patches to the linux repository in the past
year involved kernel drivers (19% since 2005), which is
in line with previous studies [17]. Meanwhile, the mo-
bile domain has seen an explosion of new devices, and
thus new drivers, introduced in recent years. The lack of
attention being paid to these drivers, and their potential
danger to the security of the devices, has also not gone
unnoticed [47]. Recent studies even purport that mobile
kernel drivers are, again, the source of up to 85% of the
reported bugs in the Android [48] kernel. Yet, we are
unaware of any large-scale analysis of these drivers.

In this work, we present DR. CHECKER, a fully-
automated static-analysis tool capable of identifying
numerous classes of bugs in Linux kernel drivers.
DR. CHECKER is implemented as a completely modu-
lar framework, where both the types of analyses (e.g.,
points-to or taint) and the bug detectors (e.g., integer
overflow or memory corruption detection) can be eas-
ily augmented. Our tool is based on well-known pro-
gram analysis techniques and is capable of performing
both pointer and taint analysis that is flow-, context-, and
field-sensitive. DR. CHECKER employs a soundy [31]
approach, which means that our technique is mostly
sound, aside from a few well-defined assumptions that
violate soundness in order to achieve a higher precision.
DR. CHECKER, is the first (self-proclaimed) soundy
static-analysis-based bug-finding tool, and, similarly, the
first static analysis tool capable of large-scale analysis
of general classes of bugs in driver code. We evaluated
DR. CHECKER by analyzing nine popular mobile device
kernels, 3.1 million lines of code (LOC), where it cor-
rectly reported 3,973 flaws and resulted the discovery of
158 [6–10] previously unknown bugs. We also compared
DR. CHECKER against four other popular static analy-
sis tools, where it significantly outperformed all of them
both in detection rates and total bugs identified. Our re-
sults show that DR. CHECKER not only produces useful
results, but does so with extremely high precision (78%).

In summary, we claim the following contributions:

• We present the first soundy static-analysis technique
for pointer and taint analysis capable of large-scale
analysis of Linux kernel drivers.

• We show that our technique is capable of flow-
sensitive, context-sensitive, and field-sensitive anal-
ysis in a pluggable and general way that can easily
be adapted to new classes of bugs.

• We evaluated our tool by analyzing the drivers of
nine modern mobile devices, which resulted in the
discovery of 158 zero-day bugs.

• We compare our tool to the existing state-of-the-
art tools and show that we are capable of detecting
more bugs with significantly higher precision, and
with high-fidelity warnings.

• We are releasing DR. CHECKER as an open-source
tool at github.com/ucsb-seclab/dr_checker.

2 Background

Kernel bug-finding tools have been continuously evolv-
ing as both the complexity and sheer volume of code in
the world increases. While manual analysis and grep

may have been sufficient for fortifying the early versions
of the Linux kernel, these techniques are neither scalable
nor rigorous enough to protect the kernels that are on our
systems today. Ultimately, all of these tools are devel-
oped to raise warnings, which are then examined by a
human analyst. Most of the initial, and more successful
bug-finding tools were based on grep-like functionality
and pattern matching [45,55,57]. These tools evolved to
reduce user interaction (i.e., removing the need for man-
ual annotation of source code) by using machine learn-
ing and complex data structures to automatically identify
potential dangerous portions of code [41, 59–63]. While
these tools have been shown to return useful results, iden-
tifying a number of critical bugs, most of them are de-
veloped based on empirical observation, without strong
formal guarantees.

Model checkers (e.g., SLAM [13], BLAST [27],
MOPS [18]) provide much more context and were able
to provide more formalization, resulting in the detec-
tion of more interesting flaws. However, these tech-
niques soon evolved into more rigorous tools, capable
of more complex analyses (e.g., path-sensitive ESP [22])
and the more recent tools are capable of extracting far
more information about the programs being analyzed to
perform even more in-depth analysis (e.g., taint analy-
sis [61]). While some have been implemented on top of
custom tools and data structures (e.g., Joern [59–62]),
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others have been implemented as compiler-level opti-
mizations on top of popular open-source projects (e.g.,
LLVM [32]). In all cases, these tools are operating on
abstract representations of the program, such as the ab-
stract syntax tree (AST) or the control flow graph (CFG),
which permit a more rigorous formal analysis of the
properties of the program.

Motivation. Before delving into the details of
DR. CHECKER, we first present a motivating ex-
ample in the form of a bug that was discovered by
DR. CHECKER. In this bug, which is presented
in Listing 1, a tainted structure is copied in from
userspace using copy from user. A size field of
this structure is then multiplied by the size of another
driver structure (flow p.cnt * sizeof(struct

bst traffic flow prop)), which is vulnerable to an
integer overflow. This bug results in a much smaller
buffer being allocated that would actually be required
for the data. This overflow would not be particularly
problematic if it wasn’t for the fact that the originally
tainted length (i.e., the very large number) is later
used to determine how much data will be copied in

Listing 1: An integer overflow in Huawei’s Bastet driver
that was discovered by DR. CHECKER
1 s t r u c t b s t t r a f f i c f l o w p k g {
2 u i n t 3 2 t c n t ;
3 u i n t 8 t v a l u e [ 0 ] ;
4 } ;
5 . . .
6 u i n t 8 t ∗buf = NULL;
7 i n t b u f l e n = 0 ;
8 s t r u c t b s t t r a f f i c f l o w p k g f l o w p ;
9

10 i f ( c o p y f r o m u s e r (& f low p , a rgp ,
11 s i z e o f ( s t r u c t b s t t r a f f i c f l o w p k g ) ) ) {
12 b r e a k ;
13 }
14

15 i f (0 == f l o w p . c n t ) {
16 b a s t e t w a k e u p t r a f f i c f l o w ( ) ;
17 r c = 0 ;
18 b r e a k ;
19 }
20

21 / / ∗∗ I n t e g e r o v e r f l o w bug ∗∗
22 / / e . g . , 0 x80000001 ∗ 0 x20 = 0 x20
23 b u f l e n = f l o w p . c n t ∗
24 s i z e o f ( s t r u c t b s t t r a f f i c f l o w p r o p ) ;
25 buf = ( u i n t 8 t ∗) kma l loc ( b u f l e n , GFP KERNEL ) ;
26 i f (NULL == buf ) {
27 BASTET LOGE( ” kmal loc f a i l e d ” ) ;
28 r c = -ENOMEM;
29 b r e a k ;
30 }
31

32 i f ( c o p y f r o m u s e r ( buf ,
33 a rgp + s i z e o f ( s t r u c t b s t t r a f f i c f l o w p k g ) ,
34 b u f l e n ) ) {
35 BASTET LOGE( ” pkg c o p y f r o m u s e r e r r o r ” ) ;
36 k f r e e ( buf ) ;
37 b r e a k ;
38 }
39 / / M o d i f i e s f l o w p . cn t , n o t b u f l e n , b y t e s i n b u f !
40 r c = a d j u s t t r a f f i c f l o w b y p k g ( buf , f l o w p . c n t ) ;
41 . . .

the buffer (adjust traffic flow by pkg(buf,

flow p.cnt)), resulting in memory corruption.
There are many notable quirks in this bug that make

it prohibitively difficult for naı̈ve static analysis tech-
niques. First, the bug arises from tainted-data (i.e.,
argp) propagating through multiple usages into a dan-
gerous function, which is only detectable by a flow-
sensitive analysis. Second, the integer overflow oc-
curs because of a specific field in the user-provided
struct, not the entire buffer. Thus, any analysis
that is not field sensitive would over-approximate this
and incorrectly identify flow p as the culprit. Fi-
nally, the memory corruption in a different function (i.e.,
adjust traffic flow by pkg), which means that that
the analysis must be able to handle inter-procedural calls
in a context-sensitive way to precisely report the origin of
the tainted data. Thus, this bug is likely only possible to
detect and report concisely with an analysis that is flow-,
context-, and field-sensitive. Moreover, the fact that this
bug exists in the driver of a popular mobile device, shows
that it evaded both expert analysts and possibly existing
bug-finding tools.

3 Analysis Design

DR. CHECKER uses a modular interface for its analyses.
This is done by performing a general analysis pass over
the code, and invoking analysis clients at specific points
throughout the analysis. These analysis clients all share
the same global state, and benefit from each other’s re-
sults. Once the analysis clients have run and updated the
global state of the analysis, we then employ numerous
vulnerability detectors, which identify specific properties
of known bugs and raise warnings (e.g., a tainted pointer
was used as input to a dangerous function). The general
architecture of DR. CHECKER is depicted in Figure 1,
and the details of our analysis and vulnerability detec-
tors are outlined in the following sections.

Below we briefly outline a few of our core assump-
tions that contribute to our soundy analysis design:

Assumption 1. We assume that all of the code in the
mainline Linux core is implemented perfectly, and we do
not perform any inter-procedural analysis on any kernel
application program interface (API) calls.

Assumption 2. We only perform the number of traver-
sals required for a reach-def analysis in loops, which
could result in our points-to analysis being unsound.

Assumption 3. Each call instruction will be traversed
only once, even in the case of loops. This is to avoid cre-
ating additional contexts and limit false positives, which
may result in our analysis being unsound.
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Figure 1: Pluggable static analysis architecture implemented by DR. CHECKER.

3.1 Terminology and Definitions
In this section we define the various terms and concepts
that we use in the description of our analysis.

Definition 3.1. A control flow graph (CFG) of a func-
tion is a directed graph where each node represents a ba-
sic block (i.e., a contiguous sequence of non-branch in-
structions) and the edges of the graph represent possible
control flow between the basic blocks.

Definition 3.2. A strongly connected component (SCC)
of a graph is a sub-graph, where there exists a bi-
directional path between any pair of nodes (e.g., a loop).

Definition 3.3. Topological sort or ordering of nodes in
a directed graph is an ordering of nodes such that, for ev-
ery edge from node v to u, v is traversed before u. While
this is well-defined for acyclic graphs, it is less straight-
forward for cyclic graphs (e.g., a CFG with loops). Thus,
when performing a topological sort on a CFG, we em-
ploy Tarjan’s algorithm [50], which instead topologically
sorts the SCCs.

Definition 3.4. An entry function, ε , is a function that
is called with at least one of its arguments containing
tainted data (e.g., an ioctl call).

Definition 3.5. The context, ∆, of a function in our anal-
ysis is an ordered list of call sites (e.g., function calls on
the stack) starting from an entry function. This list in-
dicates the sequence of function calls and their locations
in the code that are required to reach the given function.
More precisely, ∆ = {ε,c1,c2, ...} where c1 is call made
from within the entry function (ε) and for all i > 1, ci
is a call instruction in the function associated with the
previous call instruction (ci−1).

Definition 3.6. The global taint trace map, τ , contains
the information about our tainted values in the analysis.
It maps a specific value to the sequence of instructions (I)
whose execution resulted in the value becoming tainted.

τ :

{
v→{I1, I2, I3, ...} if TAINTED
v→ /0 otherwise

Definition 3.7. An alias object, â= {ρ, t}, is a tuple that
consists of a map (ρ) between offsets into that object, n,
and the other corresponding alias objects that those off-
sets can point to, as well as a local taint map (t) for each
offset. For example, this can be used to represent a struc-
ture stored in a static location, representing an alias ob-
ject, which contains pointers at given offsets (i.e., offsets
into that object) to other locations on the stack (i.e., their
alias objects). More precisely, ρ : n → {â1, â2, â3, ...}
and t : n→{I1, I2, I3, ...}. We use both â(n) and ρ(n) in-
terchangeably, to indicate that we are fetching all of the
alias objects that could be pointed to by a field at offset
n. We use ât to refer to the taint map of location â, and
similarly ât(n) to refer to taint at a specific offset. These
maps allow us to differentiate between different fields of
a structure to provide field-sensitivity in our analysis.

The following types of locations are traced by our
analysis:

1. Function local variables (or stack locations): We
maintain an alias object for each local variable.

2. Dynamically allocated variables (or heap loca-
tions): These are the locations that are dynamically
allocated on the program heap (e.g., as retrieved by
malloc or get page). We similarly create one alias
object for each allocation site.

3. Global variables: Each global variable is assigned a
unique alias object.

Stack and heap locations are both context-sensitive
(i.e., multiple invocations of a function with different
contexts will have different alias objects). Furthermore,
because of our context propagation, heap locations are
call-site sensitive (i.e., for a given context, one object will
be created for each call site of an allocation function).

Definition 3.8. Our points-to map, φ , is the map between
a value and all of the possible locations that it can point
to, represented as a set of tuples containing alias objects
and offsets into those objects.

φ : v→{(n1, â1),(n1, â2),(n2, â3), ...}
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For example, consider the instruction val1 =

&info->dirmap, where info represents a structure on
the stack and member dirmap is at offset 8. This in-
struction would result in the value (val1) pointing to
the offset 8 within the alias object info (i.e., φ(val1) =
{(8,info)}).

Definition 3.9. The Global State, S, of our analysis con-
tains all of the information computed for every function,
at every context. We define it as

S = {φc,τc},

where φc : ∆→ φ is the map between a context and the
corresponding points-to map, and τc : ∆→ τ is the map
between a context and corresponding taint trace map.

3.2 Soundy Driver Traversal (SDT)
While most of the existing static analysis techniques [13,
28] run their abstract analysis until it reaches a fixed-
point before performing bug detection, this can be prob-
lematic when running multiple analyses, as the different
analyses may not have the same precision. Thus, by per-
forming analysis on the post-completion results, these
tools are fundamentally limiting the precision of all of
their analyses to the precision of the least precise analy-
sis. To avoid this, and ensure the highest precision for all
of our analysis modules, we perform a flow-sensitive and
context-sensitive traversal of the driver starting from an
entry point. Our specific analysis modules (i.e., taint and
points-to) are implemented as clients in this framework,
and are invoked with the corresponding context and cur-
rent global state as the code is being traversed. This also
allows all of the analyses, or clients, to consume each
other’s results whenever the results are needed, and with-
out loss of precision. Moreover, this allows us to perform
a single traversal of the program for all of the underlying
clients.

It is important to note that some of the client analy-
ses may actually need more traversals through the CFG
than others to reach a fixed point. For example, a points-
to analysis might need more traversals through a loop
to reach a fixed point than a taint analysis. However,
our code exploration is analysis-agnostic, which means
we must ensure that we always perform the maximum
number of traversals required by all of our analyses. To
ensure this property, we use reach-def analysis [38] as
a baseline (i.e., we traverse the basic blocks such that
a reaching definition analysis will reach a fixed point).
This ensures that all of the writes that can reach an in-
struction directly will be reached. This means that our
points-to analysis may not converge, as it would likely
require far more iterations. However, in the worst case,
points-to analysis could potentially grow unconstrained,

Algorithm 1: Soundy driver traversal analysis
function SDTraversal((S, ∆, F))

sccs← topo sort(CFG(F))
forall the scc ∈ sccs do

if is loop(scc) then
HANDLELOOP(S, ∆, scc)

else
VISITSCC(S, ∆, scc)

end
end

function VisitSCC((S, ∆, scc))
forall the bb ∈ scc do

forall the I ∈ bb do
if is call(I) then

HANDLECALL(S, ∆, I)
else

if is ret(I) then
S← S∪{φ∆(ret val),τ∆(ret val)}

else
DISPATCHCLIENTS(S, ∆, I)

end
end

end
end

function HandleLoop((S, ∆, scc))
num runs← LongestUseDe fChain(scc)
while num runs 6= 0 do

VISITSCC(S, ∆, scc)
num runs← num runs−1

end

function HandleCall((S, ∆, I))
if ¬is visited(S,∆, I) then

targets← resolve call(I)
forall the f ∈ targets do

∆new← ∆||I
φnew← (∆new→ (φc(∆)(args),φc(∆)(globals)))
τnew← (∆new→ (τc(∆)(args),τc(∆)(globals)))
Snew←{φnew,τnew}
SDTRAVERSAL(Snew, ∆new, f )

end
mark visited(S,∆, I)

end

resulting in everything pointing to everything. Thus, we
make this necessary sacrifice to soundness to ensure con-
vergence and a practical implementation.

Loops. When handling loops, we must ensure that we
iterate over the loop enough times to ensure that every
possible assignment of every variable has been exercised.
Thus, we must compute the number of iterations needed
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for a reach-def analysis to reach a fix-point on the loop
and then perform the corresponding number of iterations
on all the basic blocks in the loop. Note that, the num-
ber of iterations to converge on a loop for a standard
reach-def analysis is upper-bounded by the longest use-
def chain in the loop (i.e., the longest number of instruc-
tions between the assignment and usage of a variable).
The intuition behind this is that, in the worst case, every
instruction could potentially depend on the variable in
the use-def chain, such that their potential values could
update in each loop. However, this can only happen as
many times as their are instructions, since an assignment
can only happen once per instruction.

Function calls. If a function call is a direct invoca-
tion and the target function is within the code that we
are analyzing (i.e., it is part of the driver), it will be
traversed with a new context (∆new), and the state will
be both updated with a new points-to map (ρnew) and
a new taint trace map (τnew), which contains informa-
tion about both the function arguments and the global
variables. For indirect function calls (i.e., functions
that are invoked via a pointer), we use type-based tar-
get resolution. That is, given a function pointer of type
a = (rettype)(arg1Type, arg2Type,..), we find
all of the matching functions in the same driver that are
referenced in a non-call instruction (e.g., void *ptr =

&fn). This is implemented as the function resolve call
in Algorithm 1. Each call site or call instruction will be
analyzed only once per context. We do not employ any
special handlers for recursive functions, as recursion is
rarely used in kernel drivers.

The complete algorithm, SDTraversal, is depicted in
Algorithm 1. We start by topologically sorting the CFG
of the function to get an ordered list of SCCs. Then, each
SCC is handled differently, depending on whether it is a
loop or not. Every SCC is traversed at the basic-block
level, where every instruction in the basic block is pro-
vided to all of the possible clients (i.e., taint and points-
to), along with the context and global state. The client
analyses can collect and maintain any required informa-
tion in the global state, making the information immedi-
ately available to each other.

To analyze a driver entry point ε , we first create an
initial state: Sstart = {φstart , /0}, where φstart contains the
points-to map for all of the global variables. We then
traverse all of the .init functions of the driver (i.e.,
the functions responsible for driver initialization [44]),
which is where drivers will initialize most of their global
objects. The resulting initialized state (Sinit ) is then ap-
pended with the taint map for any tainted arguments
(Sinit = Sinit ∪ τinit ). We describe how we determine
these tainted arguments in Section 5.3. Finally, we in-

voke our traversal on this function, SDTraversal(Sinit,

∆init, ε), where the context ∆init = {e}.
We use the low-level virtual machine (LLVM) inter-

mediate representation (IR), Bitcode [30], as our IR for
analysis. Bitcode is a typed, static single assignment
(SSA) IR, and well-suited for low-level languages like
C. The analysis clients interact with our soundy driver
traversal (SDT) analysis by implementing visitors, or
transfer functions, for specific LLVM IR instructions,
which enables them to both use and update the informa-
tion in the global state of the analysis. The instructions
that we define transfer functions for in the IR are:

1. Alloca (v = alloca typename) allocates a stack
variable with the size of the type typename and as-
signs the location to v (e.g., %1 = alloca i32).
SDT uses the instruction location to reference the
newly allocated instruction. Since SDT is context-
sensitive, the instruction location is a combination
of the current context and the instruction offset
within the function bitcode.

2. BinOp ( v = op op1, op2) applies op to op1 and
op2 and assigns the result to v (e.g., %1 = add

val, 4). We also consider, the flow-merging in-
struction in SSA, usually called phi [21], to be the
same as a binary operation. Since SDT is not path-
sensitive, this does not affect the soundness.

3. Load (v = load typename op) is the standard
load instruction, which loads the contents of type
typename from the address represented by the
operand op into the variable v (e.g., %tmp1 = load

i32* %tmp).

4. Store (store typename v, op) is the standard
store instruction, which stores the contents of
type typename represented by the value v into
the address represented by op (e.g., store i8

%frombool1, %y.addr).

5. GetElementPtr (GEP) is the instruction used by the
IR to represent structure and array-based accesses
and has fairly complex semantics [53]. A simpli-
fied way to represent this is v = getelementptr

typename ob, off, which will get the ad-
dress of the field at index off from the ob-
ject ob of type typename, and store the refer-
enced value in v (e.g., %val = getelementptr

%struct.point %my point, 0).

Both our points-to and taint analysis implement trans-
fer functions based on these five instructions.
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Algorithm 2: Points-to analysis transfer functions
function updatePtoAlloca (φc,τc,δ , I,v, locx)

mappt ← φc(δ )
locx← (x, /0, /0)
mappt(v)← (0, locx)

function updatePtoBinOp (φc,τc,δ , I,v,op1,op2)
mappt ← φc(δ )
pto1← mappt(op1)
pto2← mappt(op2)
set1←{(0,ob) | ∀( ,ob) ∈ pto1}
set2←{(0,ob) | ∀( ,ob) ∈ pto2}
mappt(v)← mappt(v)∪ set1∪ set2

function updatePtoLoad (φc,τc,δ , I,v,op)
mappt ← φc(δ )
ptoop← mappt(op)
set1←{ob(n) | ∀(n,ob) ∈ ptoop}
set2←{(0,ob) | ∀ob ∈ set1}
mappt(v)← mappt(v)∪ set2

function updatePtoStore (φc,τc,δ , I,v,op)
mappt ← φc(δ )
ptoop← mappt(op)
ptov← mappt(v)
setv←{ob | ∀( ,ob) ∈ ptov}
∀(n,ob) ∈ ptoop do ob(n)← ob(n)∪ setv

function updatePtoGEP (φc,τc,δ , I,v,op,o f f )
mappt ← φc(δ )
ptoop← mappt(op)
setop←{ob(n) | ∀(n,ob) ∈ ptoop}
setv←{(o f f ,ob) | ∀ob ∈ setop}
mappt(v)← mappt(v)∪ setv

3.3 Points-to Analysis

The result of our points-to analysis is a list of values and
the set of all of the possible objects, and offsets, that
they can point to. Because of the way in which we con-
structed our alias location objects and transfer functions,
we are able to ensure that our points-to results are field-
sensitive. That is, we can distinguish between objects
that are pointed to by different fields of the same object
(e.g., different elements in a struct). Thus, as imple-
mented in SDT, we are able to obtain points-to results
that are flow-, context-, and field-sensitive.

Dynamic allocation. To handle dynamic allocation in
our points-to analysis, we maintain a list of kernel func-
tions that are used to allocate memory on the heap (e.g.,
kmalloc, kmem cache alloc, get free page). For

each call-site to these functions, we create a unique alias
object. Thus, for a given context of a function, each allo-
cation instruction has a single alias location, regard-
less of the number of times that it is visited. For example,
if there is a call to kmalloc in the basic block of a loop,
we will only create one alias location for it.

Algorithm 3: Taint analysis transfer functions
function updateTaintAlloca (φc,τc,δ , I,v, locx)

Nothing to do

function updateTaintBinOp (φc,τc,δ , I,v,op1,op2)
mapt ← τc(δ )
setv← mapt(op1)∪mapt(op2)
mapt(v)← setv||I

function updateTaintLoad (φc,τc,δ , I,v,op)
mappt ← φc(δ )
ptoop← mappt(op)
setop←{obt(n)||I | ∀(n,ob) ∈ ptoop}
mapt ← τc(δ )
mapt(v)← mapt(v)∪ setop

function updateTaintStore (φc,τc,δ , I,v,op)
mappt ← φc(δ )
ptoop← mappt(op)
mapt ← τc(δ )
trv← mapt(v)
∀(n,ob) ∈ ptoop do obt(n)← obt(n)∪ (trv||I)

function updateTaintGEP (φc,τc,δ , I,v,op,o f f )
UPDATETAINTBINOP(φc,τc,δ , I,v,op,o f f )

Internal kernel functions. Except for few kernel API
functions, whose effects can be easily handled (e.g.,
memcpy, strcpy, memset), we ignore all of the other
kernel APIs and core kernel functions. For exam-
ple, if the target of a call instruction is the function
i2c master send, which is part of the core kernel, we
do not follow the call. Contrary to the other works, which
check for valid usage of kernel API functions [12,64], we
assume that all usages of these functions are valid, as we
are only concerned with analyzing the more error-prone
driver code. Thus, we do no follow any function calls
into the core kernel code. While, we may miss some
points-to information because of this, again sacrificing
soundness, this assumption allows us to be more precise
within the driver and scale our analysis.

The update points-to transfer functions (updatePto*)
for the various instructions are as shown in Algorithm 2.

3.4 Taint Analysis
Taint analysis is a critical component of our system, as
almost all of our bug detectors use its results. Similar to
our points-to analysis, the results of our taint analysis are
flow-, context-, and field-sensitive.

The taint sources in our analysis are the arguments of
the entry functions. Section 5.3 explains the different
types of entry functions and their correspondingly tainted
arguments. We also consider special kernel functions
that copy data from user space (e.g., copy from user,
simple write to buffer) as taint sources and taint all
of the fields in the alias locations of the points-to map for
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Listing 2: A buffer overflow bug detected in Mediatek’s
Accdet driver by ITDUD where buf is assumed to be a
single character but the use of “%s” will continue read-
ing the buffer until a null-byte is found.
1 s t a t i c c h a r c a l l s t a t u s ;
2 . . .
3 s t a t i c s s i z e t
4 a c c d e t s t o r e c a l l s t a t e
5 ( s t r u c t d e v i c e d r i v e r ∗d d r i ,
6 c o n s t c h a r ∗buf , s i z e t c o u n t )
7 {
8 / / ∗∗ Improper use o f t a i n t e d da ta ∗∗
9 / / b u f can c o n t a i n more than one char !

10 i n t r e t = s s c a n f ( buf , ”%s ” , &c a l l s t a t u s ) ;
11

12 / / The r e t u r n v a l u e i s checked , b u t i t ’ s t o o l a t e
13 i f ( r e t != 1 ) {
14 ACCDET DEBUG( ” a c c d e t : I n v a l i d v a l u e s\n ” ) ;
15 r e t u r n -EINVAL ;
16 }
17

18 s w i t c h ( c a l l s t a t u s ) {
19 c a s e CALL IDLE :
20 . . .
21 }

the destination operands of these functions. Our taint
propagators are implemented as various transformation
functions (updateTaint* in Algorithm 3). Similar to
our points-to analysis, we do not propagate taint for any
core kernel function calls, aside from a few exceptions
(e.g., memcpy). The taint sinks in our analysis are depen-
dent on the vulnerability detectors, as every detector has
its own taint policy. These detectors will raise warnings
if any tainted data violates a specified policy (e.g., if a
tainted value is used as the length in a memcpy).

4 Vulnerability Detectors

This section describes the various vulnerability detectors
that were used in our analysis. These detectors are highly
configurable and are able to act on the results from both
our points-to and taint analysis. They are implemented
as plugins that are run continuously as the code is being
analyzed, and operate on the results from our analysis
clients (i.e., taint and points-to analysis). Our architec-
ture enables us to very quickly implement new analyses
to explore new classes of vulnerabilities. In fact, in the
process of analyzing our results for this paper, we were
able to create the Global Variable Race Detector (GVRD)
detector and deploy it in less than 30 minutes.

Almost all of the detectors use taint analysis results to
verify a vulnerable condition and produce a taint trace
with all of their emitted warnings. The warnings also
provide the line numbers associated with the trace for
ease of triaging. The various bug detectors used by
DR. CHECKER in our analysis are explained below:

Improper Tainted-Data Use Detector (ITDUD) checks
for tainted data that is used in risky functions (i.e.,
strc*, strt*, sscanf, kstrto, and simple strto

Listing 3: A zero-day vulnerability discovered by
DR. CHECKER in Mediatek’s mlog driver using our
TAD and TLBD analysis. First TAD identified an integer
overflow bug (len - MLOG STR LEN). TLBD then iden-
tified that this tainted length was being used as a bound
condition for the while loop where data is being copied
into kernel space.
1 # d e f i n e MLOG STR LEN 16
2 . . .
3 i n t mlog doread ( c h a r u s e r ∗buf , s i z e t l e n )
4 {
5 u n s i g n e d i ;
6 i n t e r r o r = -EINVAL ;
7 c h a r m l o g s t r [MLOG STR LEN ] ;
8 . . .
9 / / l e n i s u n s i g n e d

10 i f ( ! buf | | l e n < 0)
11 go to o u t ;
12 e r r o r = 0 ;
13 / / l e n n o t checked a g a i n s t MLOG STR LEN
14 i f ( ! l e n )
15 go to o u t ;
16 / / b u f o f l e n c o n f i r m e d t o be i n u s e r space
17 i f ( ! a c c e s s o k ( VERIFY WRITE , buf , l e n ) ) {
18 e r r o r = -EFAULT ;
19 go to o u t ;
20 }
21 . . .
22 i = 0 ;
23 . . .
24 / / ∗∗ I n t e g e r u n d e r f l o w bug ∗∗
25 / / l e n - MLOG STR LEN ( 1 6 ) can be n e g a t i v e
26 / / and i s compared w i t h u n s i g n e d i
27 w h i l e ( ! e r r o r && ( m l o g s t a r t != mlog end )
28 && i < l e n - MLOG STR LEN) {
29 i n t s i z e ;
30 . . .
31 s i z e = s n p r i n t f ( m l o g s t r , MLOG STR LEN ,
32 s t r f m t l i s t [ s t r f m t i d x ++] , v ) ;
33 . . .
34 / / t h i s f u n c t i o n i s an u n s a f e copy
35 / / t h i s r e s u l t s i n w r i t i n g p a s t b u f
36 / / p o t e n t i a l l y i n t o k e r n e l a d d r e s s space
37 i f ( c o p y t o u s e r ( buf , m l o g s t r , s i z e ) )
38 e r r o r = -EFAULT ;
39 e l s e {
40 buf += s i z e ;
41 i += s i z e ;
42 }
43 }
44 }

family functions). An example of a previously un-
known buffer overflow, detected via ITDUD, is shown
in Listing 2.
Tainted Arithmetic Detector (TAD) checks for tainted
data that is used in operations that could cause an over-
flow or underflow (e.g., add, sub, or mul). An example
of a zero-day detected by TAD is shown in Listing 3.
Invalid Cast Detector (ICD) keeps tracks of allocation
sizes of objects and checks for any casts into an object of
a different size.
Tainted Loop Bound Detector (TLBD) checks for
tainted data that is used as a loop bound (i.e., a loop guard
in which at least one of the values is tainted). These
bugs could lead to a denial of service or even an arbi-
trary memory write. The example in Listing 3 shows this
in a real-world bug, which also triggered on TAD.
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Listing 4: An information leak bug via padded fields de-
tected by our ULD in Mediatek’s FM driver where a
struct’s memory is not sanitized before being copied back
to user space leaking kernel stack data.
1 fm s32 f m g e t a u d i n f o ( f m a u d i o i n f o t ∗ d a t a )
2 {
3

4 i f ( fm low ops . b i . g e t a u d i n f o ) {
5 r e t u r n fm low ops . b i . g e t a u d i n f o ( d a t a ) ;
6 } e l s e {
7 d a t a ->a u d p a t h = FM AUD ERR ;
8 d a t a -> i 2 s i n f o . mode = FM I2S MODE ERR ;
9 d a t a -> i 2 s i n f o . s t a t u s = FM I2S STATE ERR ;

10 d a t a -> i 2 s i n f o . r a t e = FM I2S SR ERR ;
11 r e t u r n 0 ;
12 }
13 }
14 . . .
15 c a s e FM IOCTL GET AUDIO INFO :
16 f m a u d i o i n f o t a u d d a t a ;
17 / / ∗∗ no memset o f a u d d a t a ∗∗
18 / / Not a l l f i e l d s o f a u d d a t a are i n i t i a l i z e d
19 r e t = f m g e t a u d i n f o (& a u d d a t a ) ;
20 i f ( r e t ) {
21 WCN DBG(FM ERR |MAIN, ” f m g e t a u d i n f o e r r \n ” ) ;
22 }
23 / / Copying t h e s t r u c t r e s u l t s i n da ta - l e a k a g e
24 / / f rom padding and u n i n i t i a l i z e d f i e l d s
25 i f ( c o p y t o u s e r ( ( vo id ∗) arg , &a u d d a t a ,
26 s i z e o f ( f m a u d i o i n f o t ) ) ) {
27 WCN DBG(FM ERR |MAIN, ” c o p y t o u s e r e r r o r \n ” ) ;
28 r e t = -EFAULT ;
29 go to o u t ;
30 }
31 . . .

Tainted Pointer Dereference Detector (TPDD) detects
pointers that are tainted and directly dereferenced. This
bug arises when a user-specified index into a kernel struc-
ture is used without checking.

Tainted Size Detector (TSD) checks for tainted data that
is used as a size argument in any of the copy to or
copy from functions. These types of bugs can result
in information leaks or buffer overflows since the tainted
size is used to control the number of copied bytes.

Uninit Leak Detector (ULD) keeps tracks of which
objects are initialized, and will raise a warning if
any src pointer for a userspace copy function (e.g.,
copy to user) can point to any uninitialized objects. It
also detects structures with padding [40] and will raise
a warning if memset or kzalloc has not been called on
the corresponding objects, as this can lead to an infor-
mation leak. An example of a previously unknown bug
detected by this detector is as shown in Listing 4

Global Variable Race Detector (GVRD) checks for
global variables that are accessed without a mutex. Since
the kernel is reentrant, accessing globals without syn-
cronization can result in race conditions that could lead
to time of check to time of use (TOCTOU) bugs.

5 Implementation

DR. CHECKER is built on top of LLVM 3.8 [30]. LLVM
was chosen because of its flexibility in writing analy-
ses, applicability to different architectures, and excellent
community support. We used integer range analysis as
implemented by Rodrigues et al. [42]. This analysis is
used by our vulnerability detectors to verify certain prop-
erties (e.g., checking for an invalid cast).

We implemented DR. CHECKER as an LLVM mod-
ule pass, which consumes: a bitcode file, an entry

function name, and an entry function type. It
then runs our SDT analysis, employing the various anal-
ysis engines and vulnerability detectors. Depending on
the entry function type, certain arguments to the
entry functions are tainted before invoking the SDT (See
Section 5.3).

Because our analysis operates on LLVM bitcode, we
must first identify and build all of the driver’s bitcode
files for a given kernel (Section 5.1). Similarly, we
must identify all of the entry points in these drivers
(Section 5.2) in order to pass them to our SDT analysis.

5.1 Identifying Vendor Drivers

To analyze the drivers independently, we must first dif-
ferentiate driver source code files from that of the core
kernel code. Unfortunately, there is no standard location
in the various kernel source trees for driver code. Making
the problem even harder, a number of the driver source
files omit vendor copyright information, and some ven-
dors even modify the existing sources directly to imple-
ment their own functionality. Thus, we employ a com-
bination of techniques to identify the locations of the
vendor drivers in the source tree. First, we perform a
diff against the mainline sources, and compare those
files with a referenced vendor’s configuration options
to search for file names containing the vendor’s name.
Luckily, each vendor has a code-name that is used in all
of their options and most of their files (e.g., Qualcomm
configuration options contain the string MSM, Mediatek is
MTK, and Huawei is either HISI or HUAWEI), which helps
us identify the various vendor options and file names. We
do this for all of the vendors, and save the locations of the
drivers relative to the source tree.

Once the driver files are identified, we compile them
using clang [51] into both Advanced RISC Machine
(ARM) 32 bit and 64 bit bitcode files. This necessi-
tated a few non-trivial modifications to clang, as there
are numerous GNU C Compiler (GCC) compiler op-
tions used by the Linux kernel that are not supported
by clang (e.g., the -fno-var-tracking-assignments
and -Wno-unused-but-set-variable options used
by various Android vendors). We also added additional
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compiler options to clang (e.g., -target) to aid our anal-
ysis. In fact, building the Linux kernel using LLVM is an
ongoing project [52], suggesting that considerable effort
is still needed.

Finally, for each driver, we link all of the dependent
vendor files into a single bitcode file using llvm-link,
resulting in a self-contained bitcode file for each driver.

5.2 Driver Entry Points

Linux kernel drivers have various ways to interact with
the userspace programs, categorized by 3 operations:
file [20], attribute [35], and socket [37].

File operations are the most common way of interact-
ing with userspace. In this case, the driver exposes
a file under a known directory (e.g., /dev, /sys, or
/proc) that is used for communication. During ini-
tialization, the driver specifies the functions to be in-
voked for various operations by populating function
pointers in a structure, which will be used to han-
dle specific operations (e.g., read, write, or ioctl).
The structure used for initialization can be different
for each driver type. In fact, there are at least 86
different types of structures in Android kernels (e.g.,
struct snd pcm ops, struct file operations, or
struct watchdog ops [3]). Even worse, the entry
functions can be at different offset in each of these
structures. For example, the ioctl function pointer is
at field 2 in struct snd pcm ops, and at field 8 in
struct file operations. Even for the same struc-
ture, different kernels may implement the fields differ-
ently, which results in the location of the entry function
being different for each kernel. For example, struct
file operations on Mediatek’s mt8163 kernel has its
ioctl function at field 11, whereas on Huawei, it ap-
pears at field 9 in the structure.

To handle these eccentricities in an automated way,
we used c2xml [11] to parse the header files of each
kernel and find the offsets for possible entry function
fields (e.g., read or write) in these structures. Later,
given a bitcode file for a driver, we locate the different
file operation structures being initialized, and identify the
functions used to initialize the different entry functions.

Listing 5: An initialization of a file operations structure
in the mlog driver of Mediatek
1 s t a t i c c o n s t s t r u c t f i l e o p e r a t i o n s
2 p r o c m l o g o p e r a t i o n s = {
3 . owner = NULL,
4 . l l s e e k = NULL,
5 . r e a d = mlog read ,
6 . p o l l = m l o g p o l l ,
7 . open = mlog open ,
8 . r e l e a s e = m l o g r e l e a s e ,
9 . l l s e e k = g e n e r i c f i l e l l s e e k ,

10 } ;

Table 1: Tainted arguments for each driver entry function
type wether they are directly and indirectly tainted.

Entry Type Argument(s) Taint Type
Read (File) char *buf, size t len Direct
Write (File) char *buf, size t len Direct
Ioctl (File) long arg Direct

DevStore (Attribute) const char *buf Indirect
NetDevIoctl (Socket) struct *ifreq Indirect

V4Ioctl struct v4l2 format *f Indirect

These serve as our entry points for the corresponding op-
erations. For example, given the initialization as shown
in Listing 5, and the knowledge that read entry func-
tion is at offset 2 (zero indexed), we mark the function
mlog read as a read entry function.

Attribute operations are operations usually exposed by
a driver to read or write certain attributes of that driver.
The maximum size of data read or written is limited to a
single page in memory.

Sockets operations are exposed by drivers as a socket
file, typically a UNIX socket, which is used to commu-
nicate with userspace via various socket operations (e.g.,
send, recv, or ioctl).

There are also other drivers in which the kernel
implements a main wrapper function, which performs
initial verification of the user parameters and par-
tially sanitizes them before calling the corresponding
driver function(s). An example of this can be seen
in the V4L2 Framework [66], which is used for video
drivers. For our implementation we consider only
struct v4l2 ioctl ops, which can be invoked by
userspace via the wrapper function video ioctl2.

5.3 Tainting Entry Point Arguments
An entry point argument can contain either directly
tainted data (i.e., the argument is passed directly by
userspace and never checked) or indirectly tainted data
(i.e., the argument points to a kernel location, which con-
tains the tainted data). All of the tainted entry point
functions can be categorized in six categories, which are
shown in Table 1, along with the type of taint data that
their arguments represent.

An explicit example of directly tainted data is shown
in Listing 6. In this snippet, tc client ioctl is
an ioctl entry function, so argument 2 (arg) is di-
rectly tainted. Thus, the statement char c=(char*)arg

would be dereferencing tainted data and is flagged
as a warning. Alternatively, argument 2 (ctrl) in
iris s ext ctrls is a V4Ioctl and is indirectly
tainted. As such, the dereference (data = (ctrl-

>controls[0]).string) is safe, but it would taint
data.
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Listing 6: Example of tainting different arguments
where tc client ioctl has a directly tainted argument
and iris s ext ctrls’s argument is indirectly tainted.
1 s t a t i c l ong t c c l i e n t i o c t l ( s t r u c t f i l e ∗ f i l e ,
2 u n s i g n e d cmd , u n s i g n e d long a r g ) {
3 . . .
4 c h a r c =( c h a r ∗) a r g
5 . . .
6 }
7 s t a t i c i n t i r i s s e x t c t r l s ( s t r u c t f i l e ∗ f i l e ,
8 vo id ∗p r i v , s t r u c t v 4 l 2 e x t c o n t r o l s ∗ c t r l ) {
9 . . .

10 c h a r ∗ d a t a = ( c t r l ->c o n t r o l s [ 0 ] ) . s t r i n g ;
11 . . .
12 c h a r c u r r c h = d a t a [ 0 ] ;
13 }

6 Limitations

Because of the DR. CHECKER’s soundy nature, it cannot
find all the vulnerabilities in all drivers. Specifically, it
will miss following types of vulnerabilities:

• State dependent bugs: Since DR. CHECKER is a
stateless system, it treats each entry point indepen-
dently (i.e., taint does not propagate between mul-
tiple entry points). As a result, we will miss any
bugs that occur because of the interaction between
multiple entry points (e.g., CVE-2016-2068 [4]).

• Improper API usage: DR. CHECKER assumes that
all the kernel API functions are safe and correctly
used (Assumption 1 in Section 3). Bugs that oc-
cur because of improper kernel API usage will be
missed by DR. CHECKER. However, other tools
(e.g., APISan [64]) have been developed for find-
ing these specific types of bugs and could be used
to complement DR. CHECKER.

• Non-input-validation bugs: DR. CHECKER specif-
ically targets input validation vulnerabilities. As
such, non-input validation vulnerabilities (e..g, side
channels or access control bugs) cannot be detected.

7 Evaluation

To evaluate the efficacy of DR. CHECKER, we performed
a large-scale analysis of the following nine popular mo-
bile device kernels and their associated drivers (437 in
total). The kernel drivers in these devices range from
very small components (31 LOC), to much more com-
plex pieces of code (240,000 LOC), with an average of
7,000 LOC per driver. In total, these drivers contained
over 3.1 million lines of code. However, many of these
kernels re-use the same code, which could result in ana-
lyzing the same entry point twice, and inflate our results.
Thus, we have grouped the various kernels based on their
underlying chipset, and only report our results based on
these groupings:

Table 2: Summary of warnings produced by popular bug-
finding tools on the various kernels that we analyzed.

Number of Warnings
Kernel cppcheck flawfinder RATS Sparse
Qualcomm 18 4,365 693 5,202
Samsung 22 8,173 2,244 1,726
Hauwei 34 18,132 2,301 11,230
Mediatek 168 14,230 3,730 13,771

242 44,900 8,968 31,929

Mediatek:
• Amazon Echo (5.5.0.3)
• Amazon Fire HD8 (6th Generation, 5.3.2.1)
• HTC One Hima (3.10.61-g5f0fe7e)
• Sony Xperia XA (33.2.A.3.123)

Qualcomm
• HTC Desire A56 (a56uhl-3.4.0)
• LG K8 ACG (AS375)
• ASUS Zenfone 2 Laser (ZE550KL / MR5-

21.40.1220.1794)
Huawei
• Huawei Venus P9 Lite (2016-03-29)

Samsung
• Samsung Galaxy S7 Edge (SM-G935F NN)

To ensure that we had a baseline comparison for
DR. CHECKER, we also analyzed these drivers us-
ing 4 popular open-source, and stable, static analysis
tools (flawfinder [57], RATs [45], cppcheck [34], and
Sparse [54]). We briefly describe our interactions with
each below, and a summary of the number of warnings
raised by each is shown in Table 2.

Flawfinder & RATs Both Flawfinder and RATs are
pattern-matching-based tool used to identify potentially
dangerous portions of C code. In our experience, the
installation and usage of each was quite easy; they
both installed without any configuration and used a sim-
ple command-line interface. However, the criteria that
they used for their warnings tended to be very simplis-
tic, missed complex bugs, and where overly general,
which resulted in an extremely high number of warn-
ings (64,823 from Flawfinder and 13,117 from RATs).
For example, Flawfinder flagged a line of code with the
warning, High: fixed size local buffer. However, after
manual investigation it was clear this code was unreach-
able, as it was inside of an #if 0 definition.

We also found numerous cases where the string-
matching algorithm was overly general. For exam-
ple, Flawfinder raised a critical warning ([4] (shell)
system), incorrectly reporting that system was be-
ing invoked for the following define: #define

system cluster(system, clusterid).
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Table 3: Comparison of the features provided by popular bug-finding tools and DR. CHECKER, where
√

indicates
availability of the feature.

Feature cppcheck flawfinder RATS Sparse DR. CHECKER
Extensible

√
- - -

√

Inter-procedural - - - -
√

Handles pointers - - - -
√

Kernel Specific - - -
√ √

No Manual Annotations
√ √ √

-
√

Requires compilable sources
√

- -
√ √

Sound - - - - -
Traceable Warnings - - -

√ √

Ultimately, the tools seemed reasonable for basic code
review passes, and perhaps for less-security minded pro-
grams, as they do offer informational warning messages:

Flawfinder: Statically-sized arrays can be im-
properly restricted, leading to potential overflows
or other issues (CWE-119:CWE-120). Perform
bounds checking, use functions that limit length, or
ensure that the size is larger than the maximum pos-
sible length.

RATs: Check buffer boundaries if calling this func-
tion in a loop and make sure you are not in danger
of writing past the allocated space

Sparse Sparse was developed by Linus Torvalds and
is specifically targeted to analyze kernel code. It is
implemented as a compiler front end (enabled by the
flag C=2 during compilation) that raises warnings about
known problems, and even allows developers to pro-
vide static type annotations (e.g., user and kernel).
The tool was also relatively easily to use. Although,
Sparse is good at finding annotation mis-matches like
unsafe user pointer dereferences [16]. Its main draw-
back was the sheer number of warnings (64,823 in to-
tal) it generated, where most of the warnings gener-
ated were regarding non-compliance to good kernel code
practices. For example, warnings like, “warning: Us-
ing plain integer as NULL pointer” and “warning: sym-
bol ’htc smem ram addr’ was not declared. Should it be
static?,” were extremely common.

cppcheck Cppcheck was the most complicated to use
of the tools that we evaluated, as it required manual iden-
tification of all of the includes, configurations, etc. in the
source code. However, this knowledge of the source code
structure did result in much more concise results. While
the project is open-source, their analysis techniques are
not well-documented. Nevertheless, it is clear that the
tool can handle more complex interactions (e.g., macros,
globals, and loops) than the other three. For example, in
one of the raised warnings it reported an out-of-bounds
index in an array lookup. Unfortunately, after manual
investigation there was a guard condition protecting the

array access, but this was still a much more valuable
warning that those returned by other tools. It was also
able to identify an interesting use of snprintf on over-
lapped objects, which exhibits undefined behavior, and
appeared generally useful. It also has a configurable en-
gine, which allows users to specify additional types of
vulnerability patterns to identify. Despite this function-
ality, it still failed to detect any of the complex bugs that
DR. CHECKER was able to help us discover.

To summarize our experience, we provide a side-
by-side feature comparison of the evaluated tools and
DR. CHECKER in Table 3. Note that cppcheck and
DR. CHECKER where the only two with an extensible
framework that can be used to add vulnerability detec-
tors. Similarly, every tool aside from Sparse, which
needs manual annotations, was more-or-less completely
automated. As previously mentioned, Sparse’s annota-
tions are used to find unsafe user pointer dereferences,
and while these annotations are used rigorously in the
mainline kernel code, they are not always used in the
vendor drivers. Moreover, typecasting is frequently used
in Linux kernel making Sparse less effective. Pattern-
based tools like flawfinder and RATS do not require com-
pilable source code, which results in spurious warnings
because of pre-processor directives making them unus-
able. Of the evaluated features, traceability of the warn-
ings is potentially the most important for kernel bug-
finding tools [26], as these warnings will ultimately be
analyzed by a human. We consider a warning to be trace-
able if it includes all of the information required to un-
derstand how a user input can result in the warning. In
DR. CHECKER, we use the debug information embedded
in the LLVM bitcode to provide traceable warnings. An
example of a warning produced by DR. CHECKER is as
shown in Listing 7.

7.1 DR. CHECKER

The summarized results of all of the warnings that were
reported by DR. CHECKER are presented in Table 4. In
this table, we consider a warning as correct if the report
and trace were in fact true (e.g., a tainted variable was be-
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Table 4: Summary of the bugs identified by DR. CHECKER in various mobile kernel drivers. We list the total number
of warnings raised, number correct warnings, and number of bugs identified as a result.

Warnings per Kernel (Count / Confirmed / Bug)
Detector Huawei Qualcomm Mediatek Samsung Total
TaintedSizeDetector 62 / 62 / 5 33 / 33 / 2 155 / 153 / 6 20 / 20 / 1 270 / 268 / 14
TaintedPointerDereferenceChecker 552 / 155 / 12 264 / 264 / 3 465 / 459 / 6 479 / 423 / 4 1760 / 1301 / 25
TaintedLoopBoundDetector 75 / 56 / 4 52 / 52 / 0 73 / 73 / 1 78 / 78 / 0 278 / 259 / 5
GlobalVariableRaceDetector 324 / 184 / 38 188 / 108 / 8 548 / 420 / 5 100 / 62 / 12 1160 / 774 / 63
ImproperTaintedDataUseDetector 81 / 74 / 5 92 / 91 / 3 243 / 241 / 9 135 / 134 / 4 551 / 540 / 21
IntegerOverflowDetector 250 / 177 / 6 196 / 196 / 2 247 / 247 / 6 99 / 87 / 2 792 / 707 / 16
KernelUninitMemoryLeakDetector 9 / 7 / 5 1 / 1 / 0 8 / 5 / 5 6 / 2 / 1 24 / 15 / 11
InvalidCastDetector 96 / 13 / 2 75 / 74 / 1 9 / 9 / 0 56 / 13 / 0 236 / 109 / 3

1,449 / 728 / 78 901 / 819 / 19 1,748 / 1,607 / 44 973 / 819 / 24 5,071 / 3,973 / 158

ing used by a dangerous function). All of these warnings
were manually verified by the authors, and those that are
marked as a bug were confirmed to be critical zero-day
bugs, which we are currently in the process of disclosing
to the appropriate vendors. In fact, 7 of the 158 identified
zero-days have already been issued Common Vulnerabil-
ities and Exposures (CVE) identifiers [6–10]. Of these,
Sparse correctly identified 1, flawfinder correctly identi-
fied 3, RATs identified 1 of the same ones as flawfinder,
and cppcheck failed to identify any of them. These bugs
ranged from simple data leakages to arbitrary code ex-
ecution within the kernel. We find these results very
promising, as 3,973 out of the 5,071 were confirmed,
giving us a precision of 78%, which is easily within the
acceptable 30% range [14].

While the overall detection rate of DR. CHECKER
is quite good (e.g., KernelUninitMemoryLeakDetector
raised 24 warnings, which resulted in 11 zero-day bugs),
there a few notable lessons learned. First, because our
vulnerability detectors are stateless, they raise a warning
for every occurrence of the vulnerable condition, which
results in a lot of correlated warnings. For example, the
code i = tainted+2; j = i+1; will raise two Inte-
gerOverflowDetector warnings, once for each vulnera-
ble condition. This was the main contributor to the huge
gap between our confirmed warnings and the actual bugs
as each bug was the result of multiple warnings. The
over-reporting problem was amplified by our context-
sensitive analysis. For example, if a function with a vul-
nerable condition is called multiple times from different
contexts, DR. CHECKER will raise one warning for each
context.

GlobalVariableRaceDetector suffered from numerous
false positives because of granularity of the LLVM in-
structions. As a result, the detector would raise a
warning for any access to a global variable outside
of a critical section. However, there are cases where
the mutex object is stored in a structure field (e.g.,
mutex lock(&global->obj)). This results in a false
positive because our detector will raise a warning on the

access to the global structure, despite the fact that it is
completely safe, because the field inside of it is actually
a mutex.

TaintedPointerDerefenceDetectors similarly struggled
with the precision of its warnings. For example, on
Huawei drivers (row 2, column 1), it raised 552 warn-
ings, yet only 155 were true positives. This was due
to the over-approximation of our points-to analysis. In
fact, 327 of these are attributed to only two entry points
rpmsg hisi write and hifi misc ioctl, where our
analysis over-approximated a single field that was then
repeatedly used in the function. A similar case hap-
pened for entry point sc v4l2 s crop in Samsung,
which resulted in 21 false warnings. The same over-
approximation of points-to affected InvalidCastDetector,
with 2 entry points (picolcd debug flash read and
picolcd debug flash write) resulting in 66 (80%)
false positives in Huawei and a single entry point
(touchkey fw update.419) accounting for a major-
ity of the false positives in Samsung. IntegerOver-
flowDetector also suffered from over-approximation at
times, with 30 false warnings in a single entry point
hifi misc ioctl for Hauwei.

One notable takeaway from our evaluation was that
while we expected to find numerous integer overflow
bugs, we found them to be far more prevalent in 32 bit ar-
chitectures than 64 bites, which is contrary to previously
held beliefs [58]. Additionally, DR. CHECKER was able
to correctly identify the critical class of Boomerang [33]
bugs that were recently discovered.

7.2 Soundy Assumptions

DR. CHECKER in total analyzed 1207 entry points and
90% of the entry points took less than 100 seconds to
complete. DR. CHECKER’s practicality and scalability
are made possible by our soundy assumptions. Specifi-
cally, not analyzing core kernel functions and not wait-
ing for loops to converge to a fixed-point. In this sec-
tion, we evaluate how these assumptions affected both
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Table 5: Runtime comparison of 100 randomly selected
entry points with our analysis implemented a “sound”
analysis (Sound), a soundy analysis, without analyz-
ing kernel functions (No API), and a soundy analy-
sis without kernel functions or fixed-point loop analysis
(DR. CHECKER).

Runtime (seconds)
Analysis Avg. Min. Max. St. Dev.
Sound∗ 175.823 0.012 2261.468 527.244
No API 110.409 0.016 2996.036 455.325

DR. CHECKER 35.320 0.008 978.300 146.238

∗ Only 18/100 sound analyses completed successfully.

our precision (i.e., practicality) and runtime (i.e., scala-
bility). This analysis was done by randomly selecting 25
entry points from each of our codebases (i.e., Huawei,
Qualcomm, Mediatek, and Samsung), resulting 100 ran-
domly selected driver entry points. We then removed our
two soundy assumptions, resulting in a “sound” analysis,
and ran our analysis again.

Kernel Functions Our assumption that all kernel func-
tions are bug free and correctly implemented is critical
for the efficacy of DR. CHECKER for two reasons. First,
the state explosion that results from analyzing all of the
core kernel code makes much of our analysis compu-
tationally infeasible. Second, as previously mentioned,
compiling the Linux kernel for ARM with LLVM is still
an ongoing project, and thus would require a significant
engineering effort [52]. In fact, in our evaluation we
compiled the 100 randomly chosen entry with best-effort
compilation using LLVM, where we created a consol-
idated bitcode file for each entry point with all the re-
quired kernel API functions, caveat those that LLVM
failed to compile. We ran our “sound” analysis with
these compiled API functions and evaluated all loops un-
til both our points-to and taint analysis reached a fixed
point, and increased our timeout window to four hours
per entry point. Even with the potentially missing ker-
nel API function definitions, only 18 of these 100 entry
points finished within the 4 hours. The first row (Sound)
in Table 5 shows the distribution of time over these 18
entry points. Moreover, these 18 entry points produced
63 warnings and took a total of 52 minutes to evaluate,
compared to 9 warnings and less than 1 minute of evalu-
ation time using our soundy analysis.

Fixed-point Loop Analysis Since we were unable to
truly evaluate a sound analysis, we also evaluated our
second assumption (i.e., using a reach-def loop analysis
instead of a fixed-point analysis) in isolation to exam-
ine its impact on DR. CHECKER. In this experiment,

we ignored the kernel API functions (i.e., assume cor-
rect implementation), but evaluated all loops until they
reached a fixed point on the same 100 entry points. In
this case, all of the entry points were successfully ana-
lyzed within our four hour timeout window. The second
row (No API) in Table 5 shows the distribution of eval-
uation times across these entry points. Note that this ap-
proach takes 3× more time than the DR. CHECKER ap-
proach to analyze an entry point on average. Similarly,
our soundy analysis returned significantly fewer warn-
ings, 210 compared to the 474 warnings that were raised
by this approach.

A summary of the execution times (i.e., sound, fixed-
point loops, and DR. CHECKER) can be found in
Table 5, which shows that ignoring kernel API functions
is the main contributor of the DR. CHECKER’s scalabil-
ity. This is not surprising because almost all the ker-
nel drivers themselves are written as kernel modules [2],
which are small (7.3K lines of code on average in the
analyzed kernels) and self-contained.

8 Discussion

Although DR. CHECKER is designed for Linux kernel
drivers, the underlying techniques are generic enough to
be applied to other code bases. Specifically, as shown
in Section 7.1, ignoring external API functions (i.e., ker-
nel functions) is the major contributor to the feasibility of
DR. CHECKER on the kernel drivers. DR. CHECKER in
principle can be applied to any code base, which is mod-
ular and has well-defined entry points (e.g., ImageMag-
ick [1]). While our techniques are portable, some en-
gineering effort is likely needed to change the detectors
and setup the LLVM build environment. Specifically, to
apply DR. CHECKER, one needs to:

1. Identify the source files of the module, and compile
them in to a consolidated bitcode file.

2. Identify the function names, which will serve as en-
try points.

3. Identify how the arguments to these functions are
tainted.

We provided more in-depth documentation of how this
would be done in practice on our website.

9 Related Work

Zakharov et al. [65] discuss many of the existing tools
and propose a pluggable interface for future static-
analysis techniques, many of which are employed in
DR. CHECKER. A few different works looked into the
API-misuse problem in kernel drivers. APISan [64] is
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Listing 7: Example of output from DR. CHECKER

At C a l l i n g C o n t e x t :
%c a l l 2 5 = c a l l i 6 4 @ged d i spa t ch (% s t r u c t . GED BRIDGE PACKAGE∗ %sBridgePackageKM ) , ! dbg !27823 ,
s r c l i n e :187 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / ged main . c

Found : 1 warn ing .

Warning : 1
P o t e n t i a l v u l n e r a b i l i t y d e t e c t e d by : I n t e g e r O v e r f l o w D e t e c t o r :

P o t e n t i a l ove r f low , u s i n g t a i n t e d v a l u e i n a b i n a r y o p e r a t i o n a t :
%add = add i 3 2 %2, %3, ! dbg !27792 ,

s r c l i n e :101 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / ged main . c , Func : g e d d i s p a t c h
T a i n t Trace :

%c a l l 2 = c a l l i 6 4 @ c o p y f r o m u s e r ( i 8∗ %pvTo , i 8∗ %pvFrom , i 6 4 %u l B y t e s ) , ! dbg !27796 ,
s r c l i n e : 4 3 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / g e d b a s e . c , Func : g e d c o p y f r o m u s e r

%2 = l o a d i32 , i 3 2∗ %i 3 2 I n B u f f e r S i z e 3 , a l i g n 8 , ! dbg !27790 ,
s r c l i n e :101 d r i v e r s / misc / m e d i a t e k / gpu / ged / s r c / ged main . c , Func : g e d d i s p a t c h

a symbolic-execution-based approach, and Static Driver
Verifier (SDV) [12] similarly identified API-misuse us-
ing static data-flow analysis. However, these techniques
are contrary to DR. CHECKER, as we explicitly assume
that the kernel APIs are implemented properly.

SymDrive [43] uses symbolic execution to verify
properties of kernel drivers. However, it requires de-
velopers to annotate their code and relies heavily on
the bug finder to implement proper checkers. Johnson
et al. [28] proposed a sound CQUAL-based [24] tool,
which is context-sensitive, field-sensitive, and precise
taint-based analysis; however, this tool also requires user
annotations of the source code, which DR. CHECKER
does not.

KINT [56] uses taint analysis to find integer errors in
the kernel. While KINT is sound, their techniques are
specialized to integer errors, whereas DR. CHECKER at-
tempts to find general input validation errors by compro-
mising soundness.

Linux Driver Verification (LDV) [36] is a tool based
on BLAST [27] that offers precise pointer analysis; how-
ever, it is still a model-checker-based tool, whereas we
built our analysis on well-known static analysis tech-
niques. Yamaguchi et al. have done a significant amount
of work in this area, based on Joern [59–62], where they
use static analysis to parse source code into novel data
structures and find known vulnerable signatures. How-
ever, their tool is similar to a pattern-matching model-
checking type approach, whereas we are performing gen-
eral taint and points-to analysis with pluggable vulner-
ability detectors. VCCFinder [41] also used a simi-
lar pattern-matching approach, but automatically con-
structed their signatures by training on previously known
vulnerabilities to create models that could be used to de-
tect future bugs.

MECA [63] is a static-analysis framework, capable of
taint analysis, that will report violations based on user
annotations in the source code, and similarly aims to re-
duce false positives by sacrificing soundness. ESP [22] is

also capable of fully path-sensitive partial analysis using
“property simulation,” wherein they combine data-flow
analysis with a property graph. However, this approach
is not as robust as our more general approach.

Boyd-Wickizer et al. [15] proposed a potential defense
against driver vulnerabilities that leverages x86 hardware
features; however, these are unlikely to be easily ported
to ARM-based mobile devices. Nooks [49] is a similar
defense; however, this too has been neglected in both the
mainline and mobile deployments thus far, due to similar
hardware constraints.

10 Conclusion

We have presented DR. CHECKER, a fully-automated
static analysis bug-finding tool for Linux kernels that
is capable of general context-, path-, and flow-sensitive
points-to and taint analysis. DR. CHECKER is based
on well-known static analysis techniques and employs
a soundy analysis, which enables it to return precise
results, without completely sacrificing soundness. We
have implemented DR. CHECKER in a modular way,
which enables both analyses and bug detectors to be eas-
ily adapted for real-world bug finding. In fact, during
the writing of this paper, we identified a new class of
bugs and were able to quickly augment DR. CHECKER
to identify them, which resulted in the discovery 63
zero-day bugs. In total, DR. CHECKER discovered 158
previously undiscovered zero-day bugs in nine popular
mobile Linux kernels. All of the details and disclo-
sures for these bugs can be found online at github.
com/ucsb-seclab/dr_checker. While these results
are promising, DR. CHECKER still suffers from over-
approximation as a result of being soundy, and we have
identified areas for future work. Nevertheless, we feel
that DR. CHECKER exhibits the importance of analyzing
Linux kernel drivers and provides a useful framework for
adequately handling this complex code.
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Abstract
Dead store elimination is a widely used compiler op-
timization that reduces code size and improves perfor-
mance. However, it can also remove seemingly useless
memory writes that the programmer intended to clear
sensitive data after its last use. Security-savvy develop-
ers have long been aware of this phenomenon and have
devised ways to prevent the compiler from eliminating
these data scrubbing operations.

In this paper, we survey the set of techniques found
in the wild that are intended to prevent data-scrubbing
operations from being removed during dead store elim-
ination. We evaluated the effectiveness and availabil-
ity of each technique and found that some fail to pro-
tect data-scrubbing writes. We also examined eleven
open source security projects to determine whether their
specific memory scrubbing function was effective and
whether it was used consistently. We found four of the
eleven projects using flawed scrubbing techniques that
may fail to scrub sensitive data and an additional four
projects not using their scrubbing function consistently.
We address the problem of dead store elimination remov-
ing scrubbing operations with a compiler-based approach
by adding a new option to an LLVM-based compiler
that retains scrubbing operations. We also synthesized
existing techniques to develop a best-of-breed scrubbing
function and are making it available to developers.

1 Introduction
Concerns over memory disclosure vulnerabilities in C
and C++ programs have long led security application
developers to explicitly scrub sensitive data from mem-
ory. A typical case might look like the following:

char * password = malloc(PASSWORD_SIZE);

// ... read and check password

memset(password, 0, PASSWORD_SIZE);

free(password);

The memset is intended to clear the sensitive password
buffer after its last use so that a memory disclosure vul-
nerability could not reveal the password. Unfortunately,
compilers perform an optimization—called dead store
elimination (DSE)—that removes stores that have no
effect on the program result, either because the stored
value is overwritten or because it is never read again.
In this case, because the buffer is passed to free after

being cleared, the compiler determines that the memory
scrubbing memset has no effect and eliminates it.

Removing buffer scrubbing code is an example of
what D’Silva et al. [30] call a “correctness-security gap.”
From the perspective of the C standard, removing the
memset above is allowed because the contents of un-
reachable memory are not considered part of the seman-
tics of the C program. However, leaving sensitive data in
memory increases the damage posed by memory disclo-
sure vulnerabilities and direct attacks on physical mem-
ory. This leaves gap between what the standard considers
correct and what a security developer might deem cor-
rect. Unfortunately, the C language does not provide a
guaranteed way to achieve what the developer intends,
and attempts to add a memory scrubbing function to the
C standard library have not seen mainstream adoption.
Security-conscious developers have been left to devise
their own means to keep the compiler from optimizing
away their scrubbing functions, and this has led to a pro-
liferation of “secure memset” implementations of vary-
ing quality.

The aim of this paper is to understand the current state
of the dead store elimination problem and developers’
attempts to circumvent it. We begin with a survey of ex-
isting techniques used to scrub memory found in open
source security projects. Among more than half a dozen
techniques, we found that several are flawed and that
none are both universally available and effective. Next,
using a specially instrumented version of the Clang com-
piler, we analyzed eleven high-profile security projects to
determine whether their implementation of a scrubbing
function is effective and whether it is used consistently
within the project. We found that only three of the eleven
projects did so.

To aid the current state of affairs, we developed a
single best-of-breed scrubbing function that combines
the effective techniques we found in our survey. We
have shared our implementation with developers of the
projects we surveyed that lacked a reliable scrubbing
function and have made it available to the public. While
not a perfect solution, we believe ours combines the best
techniques available today and offers developers a ready-
to-use solution for their own projects.

We also developed a scrubbing aware C compiler
based on Clang. Our compiler protects scrubbing oper-
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ations by inhibiting dead store elimination in case where
a store operation may have been intended as a scrubbing
operation by the developer. Our solution does not com-
pletely disable DSE, minimizing the performance impact
of our mechanism. Our performance evaluation shows
that our modified compiler introduces virtually no per-
formance penalty.

In total, our contributions are as follows:

v We survey scrubbing techniques currently found in
the wild, scoring each in terms of its availabil-
ity and reliability. In particular, we identify several
flawed techniques, which we reported to developers
of projects relying on them. We also report on the per-
formance of each technique, where we found an order
of magnitude difference between the best and worst
performing techniques.

v We present a case study of eleven security projects
that have implemented their own scrubbing function.
We found that no two projects’ scrubbing functions
use the same set of techniques. We also identify com-
mon pitfalls encountered in real projects.

v We develop and make publicly available a best-of-
breed scrubbing function that combines the most reli-
able techniques found in use today.

v We develop a scrubbing-safe dead store elimination
optimization pass that protects memory writes in-
tended to scrub sensitive data from being eliminated.
Our mechanism has negligible performance overhead
and can be used without any source code changes.

The rest of the paper is organized as follows. Section 2
provides background for the rest of the paper and de-
scribes the related work. Section 3 surveys the existing
techniques that are used to implement reliable scrubbing
functions and then Section 4 evaluates their performance.
Section 5 examines the reliability and usage of scrub-
bing functions of eleven popular open source applica-
tions. Section 6 describes our secure_memzero imple-
mentation. Section 7 describes our secure DSE imple-
mentation and evaluates its performance. Section 8 dis-
cusses our results. Section 9 concludes the paper.

2 Background and Related Work
D’Silva et al. [30] use the term correctness-security gap
to describe the gap between the traditional notion of
compiler correctness and the correctness notion that a
security-conscious developers might have. They found
instances of a correctness-security gap in several opti-
mizations, including dead store elimination, function in-
lining, code motion, common subexpression elimination,
and strength reduction.

Lu et al. [32] investigate an instance of this gap in
which the compiler introduces padding bytes in data
structures to improve performance. These padding bytes

may remain uninitialized and thus leak data if sent to the
outside world. By looking for such data leakage, they
found previously undiscovered bugs in the Linux and
Android kernels. Wang et al. [38] explore another in-
stance of the correctness-security gap: compilers some-
times remove code that has undefined behavior that, in
some cases, includes security checks. They developed a
static checker called STACK that identifies such code in
C/C++ programs and they used it to uncover 160 new
bugs in commonly deployed systems.

Our work examines how developers handle the
correctness-security gap introduced by aggressive dead
store elimination. While the soundness and security of
dead store elimination has been studied formally [28, 31,
29], the aim of our work is to study the phenomenon em-
pirically.

Bug reports are littered with reports of DSE negatively
affecting program security, as far back as 2002 from Bug
8537 in GCC titled “Optimizer Removes Code Neces-
sary for Security” [3], to January 2016 when OpenSSH
patched CVE-2016-0777, which allowed a malicious
server to read private SSH keys by combining a memory
disclosure vulnerability with errant memset and bzero

memory scrubs [10]; or February 2016 when OpenSSL
changed its memory scrubbing technique after discussion
in Issue 445 [22]; or Bug 751 in OpenVPN from October
2016 about secret data scrubs being optimized away [26].

Despite developers’ awareness of such problems, there
is no uniformly-used solution. The CERT C Secure Cod-
ing Standard [37] recommends SecureZeroMemory as
a Windows solution, memset_s as a C11 solution, and
the volatile data pointer technique as a C99 solution. Un-
fortunately, each of these solutions has problems. The
Windows solution is not cross-platform. For the rec-
ommended C11 memset_s solution, to the best of our
knowledge, there is no standard-compliant implemen-
tation. Furthermore, while the CERT solution for C99
solution may prevent most compilers from removing
scrubbing operations, the standard does not guarantee
its correctness [36]. Furthermore, another common tech-
nique, using a volatile function pointer, is not guaran-
teed to work according to the standard because although
the standard requires compilers to access the function
pointer, it does not require them to make a call via that
pointer [35].

3 Existing Approaches
Until recently, the C standard did not provide a way to
ensure that a memset is not removed, leaving developers
who wanted to clear sensitive memory were left to
devise their own techniques. We surveyed
security-related open source projects to determine what
techniques developers were using to clear memory, and
in this section we present the results of our survey. For
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each technique, we describe how it is intended to work,
its availability on different platforms, and its
effectiveness at ensuring that sensitive data is scrubbed.
We rate the effectiveness of a technique on a three-level
scale:

� Effective. Guaranteed to work (barring flaws in
implementation).

� Effective in practice. Works with all
compilation options and on all the compilers we
tested (GCC, Clang, and MSVC), but is not
guaranteed in principle.

� Flawed. Fails in at least one configuration.

In Section 4 we also compare the performance of a
subset of the surveyed techniques.

The scrubbing techniques we found can be divided
into four groups based on how they attempt to force
memory to be cleared:

� Rely on the platform. Use a function offered
by the operating system or a library that
guarantees memory will be cleared.

� Disable optimization. Disable the optimization
that removes the scrubbing operation.

� Hide semantics. Hide the semantics of the
clearing operation, preventing the compiler from
recognizing it as a dead store.

� Force write. Directly force the compiler to
write to memory.

In the remainder of this section, we describe and discuss
each technique in detail.

3.1 Platform-Supplied Functions
The easiest way to ensure that memory is scrubbed
is to call a function that guarantees that memory will
be scrubbed. These deus ex machina techniques rely
on a platform-provided function that guarantees the de-
sired behavior and lift the burden of fighting the op-
timizer from the developers’ shoulders. Unfortunately,
these techniques are not universally available, forcing de-
velopers to come up with backup solutions.

3.1.1 Windows SecureZeroMemory
On Windows, SecureZeroMemory is designed to be a
reliable scrubbing function even in the presence of opti-
mizations. This is achieved by the support from the Mi-
crosoft Visual Studio compiler, which never optimizes
out a call to SecureZeroMemory. Unfortunately, this
function is only available on Windows.
Used in: Kerberos’s zap, Libsodium’s sodium_mem-

zero, Tor’s memwipe.
Availability: Windows platforms.
Effectiveness: Effective.

3.1.2 OpenBSD explicit_bzero
Similarly OpenBSD provides explicit_bzero, a
optimization-resistant analogue of the BSD bzero func-
tion. The explicit_bzero function has been available
in OpenBSD since version 5.5 and FreeBSD since ver-
sion 11. Under the hood, explicit_bzero simply calls
bzero, however, because explicit_bzero is defined
in the C standard library shipped with the operating sys-
tem and not in the compilation unit of the program using
it, the compiler is not aware of this and does not elimi-
nate the call to explicit_bzero. As discussed in Sec-
tion 3.3.1, this way of keeping the compiler in the dark
only works if definition and use remain separate through
compilation and linking. This is the case with OpenBSD
and FreeBSD, which dynamically link to the C library at
runtime.
Used in: Libsodium’s sodium_memzero, Tor’s mem-

wipe, OpenSSH’s explicit_bzero.
Availability: FreeBSD and OpenBSD.
Effectiveness: Effective (when libc is a shared library).

3.1.3 C11 memset_s
Annex K of the C standard (ISO/IEC 9899-2011) intro-
duced the memset_s function, declared as

errno_t memset_s(void* s, rsize_t smax,

int c, rsize_t n);

Similar to memset, the memset_s function sets a num-
ber of the bytes starting at address s to the byte value c.
The number of bytes written is the lesser of smax or n.
By analogy to strncpy, the intention of having two size
arguments is prevent a buffer overflow when n is an un-
trusted user-supplied argument; setting smax to the size
allocated for s guarantees that the buffer will not be over-
flowed. More importantly, the standard requires that the
function actually write to memory, regardless of whether
or not the written values are read.

The use of two size arguments, while consistent stylis-
tically with other _s functions, has drawbacks. It differs
from the familiar memset function which takes one size
argument. The use of two arguments means that a devel-
oper can’t use memset_s as a drop-in replacement for
memset. It may also lead to incorrect usage, for exam-
ple, by setting smax or n to 0, and thus, while preventing
a buffer overflow, would fail to clear the buffer as in-
tended.

While memset_s seems like the ideal solution, it’s
implementation has been slow. There may be several
reasons for this. First, memset_s is not required by the
standard. It is part of the optional Appendix K. C11
treats all the function in the Annex K as a unit. That
is, if a C library wants to implement the Annex K in a
standard-conforming fashion, it has to implement all
of the functions defined in this annex. At the time of
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this writing, memset_s is not provided by the GNU C
Library nor by the FreeBSD, OpenBSD, or NetBSD
standard libraries. It’s poor adoption and perceived flaws
have led to calls for its removal from the standard [33].
Used in: Libsodium’s sodium_memzero, Tor’s
memwipe, OpenSSH’s explicit_bzero, CERT’s
Windows-compliant solution [37].
Availability: No mainstream support.
Effectiveness: Effective.

3.2 Disabling Optimization
Since the dead store elimination problem is caused by
compiler optimization, it is possible to prevent scrubbing
stores from being eliminated by disabling compiler op-
timization. Dead store elimination is enabled (on GCC
and Clang) at optimization level -O1, so code compiled
with no optimization would retain the scrubbing writes.
However, disabling optimization completely can signifi-
cantly degrade performance, and is eschewed by devel-
opers. Alternatively, some compilers allow optimizations
to be enabled individually, so, in principle, a program
could be compiled with all optimizations except dead
store elimination enabled. However, some optimization
passes work better when dead stores have already been
eliminated. Also, specifying the whole list of optimiza-
tion passes instead of a simple optimization level like O2
is cumbersome.

Many compilers, including Microsoft Visual C, GCC
and Clang, provide built-in versions of some C library
functions, including memset. During compilation, the
compiler replaces calls to the C library function with its
built-in equivalent to improve performance. In at least
one case we found, developers attempted to preserve
scrubbing stores by disabling the built-in memset in-
trinsic using the -fno-builtin-memset flag. Unfortu-
nately, while this may disable the promotion of standard
C library functions to intrinsics, it does not prevent the
compiler from understanding the semantics of memset.
Furthermore, as we found during our performance mea-
surements (Section 4), the -fno-builtin-memset flag
does not not prevent the developer from calling the
intrinsic directly, triggering dead store elimination. In
particular, starting with glibc 2.3.4 on Linux, defining
_FORTIFY_SOURCE to be an integer greater than 0 en-
ables additional compile-time bounds checks in common
functions like memset. In this case, if the checks succeed,
the inline definition of memset simply calls the built-in
memset. As a result, the -fno-builtin-memset option
did not protect scrubbing stores from dead store elimina-
tion.
Used in: We are not aware of any programs using this
technique.
Availability: Widely available.
Effectiveness: Flawed (not working when newer versions

of glibc and GCC are used and optimization level is O2
or O3).

3.3 Hiding Semantics
Several scrubbing techniques attempt to hide the seman-
tics of the scrubbing operation from the compiler. The
thinking goes, if the compiler doesn’t recognize that an
operation is clearing memory, it will not remove it.

3.3.1 Separate Compilation
The simplest way to hide the semantics of a scrubbing
operation from the compiler is to implement the scrub-
bing operation (e.g. by simply calling memset) in a sep-
arate compilation unit. When this scrubbing function is
called in a different compilation unit than the defining
one, the compiler cannot remove any calls to the scrub-
bing function because the compiler does not know that
it is equivalent to memset. Unfortunately, this technique
is not reliable when link-time optimization (LTO) is en-
abled, which can merge all the compilation units into
one, giving the compiler a global view of the whole pro-
gram. The compiler can then recognize that the scrub-
bing function is effectively a memset, and remove dead
calls to it. Thus, to ensure this technique works, the de-
veloper needs to make sure that she has the control over
how the program is compiled.

3.3.2 Weak Linkage
GCC and some compilers that mimic GCC allow
developers to define weak definitions. A weak defini-
tion of a symbol, indicated by the compiler attribute
__attribute__((weak)), is a tentative definition
that may be replaced by another definition at link
time. In fact, the OpenBSD explicit_bzero function
(Section 3.1.2) uses this technique also:

__attribute__((weak)) void

__explicit_bzero_hook(void *buf, size_t len) { }

void explicit_bzero(void *buf, size_t len) {

memset(buf, 0, len);

__explicit_bzero_hook(buf, len);

}

The compiler can not eliminate the call to
memset because an overriding definition of
__explicit_bzero_hook may access buf. This
way, even if explicit_bzero is used in the same com-
pilation unit where it is defined, the compiler will not
eliminate the scrubbing operation. Unfortunately, this
technique is also vulnerable to link-time optimization.
With link-time optimization enabled, the compiler-linker
can resolve the final definition of the weak symbol,
determine that it does nothing, and then eliminate the
dead store.
Used in: Libsodium’s sodium_memzero, libressl’s
explicit_bzero [14].
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Availability: Available on GCC and Clang.
Effectiveness: Flawed (defeated by LTO).
3.3.3 Volatile Function Pointer
Another popular technique for hiding a scrubbing
operation from the compiler is to call the mem-
ory scrubbing function via a volatile function pointer.
OPENSSL_cleanse of OpenSSL 1.0.2, shown below, is
one implementation that uses this technique:

typedef void *(*memset_t)(void *,int,size_t);

static volatile memset_t memset_func = &memset;

void OPENSSL_cleanse(void *ptr, size_t len) {

memset_func(ptr, 0, len);

}

The C11 standard defines an object of volatile-qualified
type as follows:

An object that has volatile-qualified type may be
modified in ways unknown to the implementation
or have other unknown side effects. Therefore any
expression referring to such an object shall be eval-
uated strictly according to the rules of the abstract
machine, as described in 5.1.2.3. Furthermore, at ev-
ery sequence point the value last stored in the ob-
ject shall agree with that prescribed by the abstract
machine, except as modified by the unknown fac-
tors mentioned previously. What constitutes an ac-
cess to an object that has volatile-qualified type is
implementation-defined.

The effect of declaring memset_func as volatile means
that the compiler must read its value from memory each
time its used because the value may have changed. The
reasoning goes that because the compiler does not know
the value of memset_func at compile time, it can’t rec-
ognize the call to memset and eliminate it.

We have confirmed that this technique works on GCC,
Clang and Microsoft Visual C, and we deem it to be
effective. It is worth noting, however, that while the
standard requires the compiler to read the value of
memset_func from memory, it does not require it to call
memset if it can compute the same result by other means.
Therefore, a compiler would be in compliance if it in-
lined each call to OPENSSL_cleanse as:

memset_t tmp_fptr = memset_func;

if (tmp_fptr == &memset)

memset(ptr, 0, len);

else

tmp_fptr(ptr, 0, len);

If the memory pointed to by ptr is not read again, then
the direct call to memset, the semantics of which are
known, could be eliminated, removing the scrubbing op-
eration. We know of no compiler that does this and con-
sider such an optimization unlikely.
Used in: OpenSSL 1.0.2’s OPENSSL_cleanse (also

used in Tor and Bitcoin); OpenSSH’s explicit_bzero,
quarkslab’s memset_s [4].
Availability: Universally available.
Effectiveness: Effective in practice.

3.3.4 Assembly Implementation
Because optimizations often take place at compiler’s in-
termediate representation level, it is possible to hide the
semantics of a memory scrubbing operation by imple-
menting it in assembly language. In some cases, this may
also be done as a way to improve performance, how-
ever, our results indicate that the compiler’s built-in in-
trinsic memset performs as well as the assembly imple-
mentation we examined. So long as the compiler does
not perform assembly-level link-time optimization, this
technique is effective at ensuring scrubbing stores are
preserved.
Used in: OpenSSL’s OPENSSL_cleanse (also used by
Tor and Bitcoin); Crypto++’s SecureWipeBuffer.
Availability: Target-specific.
Effectiveness: Effective.

3.4 Forcing Memory Writes
The fourth set of techniques we found attempts to force
the compiler to include the store operation without hiding
its nature.

3.4.1 Complicated Computation
Several related techniques attempt to force the compiler
to overwrite sensitive data in memory by forcing the
compiler to carry out a computation. OPENSSL_cleanse
from OpenSSL prior to version 1.0.2 is one example:

unsigned char cleanse_ctr = 0;

void OPENSSL_cleanse(void *ptr, size_t len) {

unsigned char *p = ptr;

size_t loop = len, ctr = cleanse_ctr;

if (ptr == NULL) return;

while (loop--) {

*(p++) = (unsigned char)ctr;

ctr += (17 + ((size_t)p & 0xF));

}

p = memchr(ptr, (unsigned char)ctr, len);

if (p) ctr += (63 + (size_t)p);

cleanse_ctr = (unsigned char)ctr;

}

This function reads and writes the global variable
cleanse_ctr, which provides varying garbage data to
fill the memory to be cleared. Because accesses to the
global variable have a global impact on the program,
the compiler cannot determine that this function is use-
less without extensive interprocedural analysis. Since
such interprocedural analysis is expensive, the compiler
most likely does not perform it, thus it cannot figure
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out that OPENSSL_cleanse is actually a scrubbing func-
tion. However, this particular implementation is notori-
ously slow (see the performance numbers in Section 4).
OpenSSL gave up this technique in favor of the volatile
function pointer technique (Section 3.3.3) starting with
version 1.0.2.

Another way to scrub sensitive data is to simply rerun
the computation that accesses sensitive data again. This
is used in the musl libc [17] implementation of bcrypt,
which is a popular password hashing algorithm. musl’s
bcrypt implementation __crypt_blowfish calls the
hashing function BF_crypt twice: the first time it passes
the actual password to get the hash, the second time
it passes a test password. The second run serves two
purposes. First, it is a self-test of the hashing code.
__crypt_blowfish compares the result of the second
run with the hardcoded hash value in the function. If they
do not match, there is something wrong in the hashing
code. (In fact, the developers of musl libc found a bug
in GCC that manifested in their hashing code [11].) Sec-
ond, the second run of BF_crypt can also clear sensitive
data left on the stack or in registers by the first run. Since
the same function is called twice, the same registers will
be used, thus the sensitive data left in registers will be
cleared. Since the two calls to BF_crypt are in the same
scope and the stack pointer points to the same position
of the stack before the two calls, the sensitive data left
on the stack by the first run should be cleared by the sec-
ond run. The advantage of this solution is that it clears
sensitive data not only on the stack but also in registers.

While the complicated computation technique appears
effective in practice, there is no guarantee that a com-
piler will not someday see through the deception. This
technique, especially re-running the computation, has a
particularly negative performance impact.
Used in: OPENSSL_cleanse from OpenSSL 1.0.1 (also
used in Tor and Bitcoin), crypt_blowfish from musl
libc [17].
Availability: Universal.
Effectiveness: Effective in practice.

3.4.2 Volatile Data Pointer

Another way to force the compiler to perform a store
is to access a volatile-qualified type. As noted in Sec-
tion 3.3.3, the standard requires accesses to objects that
have volatile-qualified types to be performed explicitly.
If the memory to be scrubbed is a volatile object, the
compiler will be forced to preserve stores that would
otherwise be considered dead. Cryptography Coding
Standard’s Burn [9] is one of the implementations based
on this idea:

void burn( void *v, size_t n ) {

volatile unsigned char *p =

( volatile unsigned char * )v;

while( n-- ) *p++ = 0;

}

In the function above, the memory to be scrubbed is writ-
ten via a pointer-to-volatile p in the while loop. We have
found that this technique is effective on GCC, Clang,
and Microsoft Visual C. Unfortunately, this behavior is
not guaranteed by the C11 standard: “What constitutes
an access to an object that has volatile-qualified type is
implementation-defined.” This means that, while access-
ing an object declared volatile is clearly an “access to an
object that has volatile-qualified type” (as in the case of
the function pointer that is a volatile object), accessing
a non-volatile object via pointer-to-volatile may or may
not be considered such an access.
Used in: sodium_memzero from Libsodium, in-

secure_memzero from Tarsnap, wipememory from
Libgcrypt, SecureWipeBuffer from the Crypto++
library, burn from Cryptography Coding Stan-
dard [9], David Wheeler’s guaranteed_memset [39],
ForceZero from wolfSSL [27], sudo_memset_s from
sudo [23], and CERT’s C99-compliant solution [37].
Availability: Universal.
Effectiveness: Effective in practice.

3.4.3 Memory Barrier

Both GCC and Clang support a memory barrier ex-
pressed using an inline assembly statement. The clobber
argument "memory" tells the compiler that the inline
assembly statement may read or write memory that
is not specified in the input or output arguments [1].
This indicates to the compiler that the inline assembly
statement may access and modify memory, forcing it
to keep stores that might otherwise be considered dead.
GCC’s documentation indicates that the following inline
assembly should work as a memory barrier [1]:

__asm__ __volatile__("":::"memory")

Our testing shows the above barrier works with GCC,
and since Clang also supports the same syntax, one
would expect that the barrier above would also work
with Clang. In fact, it may remove a memset call before
such a barrier [6]. We found that Kerberos (more in
Section 5.2) uses this barrier to implement its scrubbing
function, which may be unreliable with Clang. A more
reliable way to define memory barrier is illustrated by
Linux’s memzero_explicit below:
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#define barrier_data(ptr) \

__asm__ __volatile__("": :"r"(ptr) :"memory")

void memzero_explicit(void *s, size_t count) {

memset(s, 0, count);

barrier_data(s);

}

The difference is the "r"(ptr) argument, which
makes the pointer to the scrubbed memory visible to the
assembly code and prevents the scrubbing store from be-
ing eliminated.
Used in: zap from Kerberos, memzero_explicit from
Linux [16].
Availability: Clang and GCC.
Effectiveness: Effective in practice.

3.5 Discussion
Our survey of existing techniques indicates that there is
no single best technique for scrubbing sensitive data.
The most effective techniques are those where the in-
tegrity of scrubbing operation is guaranteed by the plat-
form. Unfortunately, this means that creating a scrubbing
function requires relying on platform-specific functions
rather than a standard C library or POSIX function.

Of the remaining techniques, we found that the volatile
data pointer, volatile function pointer, and compiler
memory barrier techniques are effective in practice with
the compilers we tested. The first two of these, relying
on the volatile storage type, can be used with any com-
piler but are not guaranteed by the standard. The memory
barrier technique is specific to GCC and Clang and its
effectiveness may change without notice as it has done
already.

4 Performance
When it comes to security-sensitive operations like data
scrubbing, performance is a secondary concern. Never-
theless, given two equally good choices, one would pre-
fer one that is more efficient. In this section, we present
our results of benchmarking the scrubbing techniques we
described above under Clang 3.9 and GCC 6.2. Our base-
line is the performance of ordinary memset, both the C li-
brary implementation and the built-in intrinsics in Clang
and GCC. The performance of the C library implementa-
tion represents the expected performance of non-inlined
platform-provided solutions (Section 3.1) and the sepa-
rate compilation (Section 3.3.1) and weak linkage (Sec-
tion 3.3.2) techniques without link-time optimization.
The performance of GCC and Clang intrinsics represents
the expected performance of inlined platform-provided
solutions (Section 3.1) as well as the memory barrier
technique (Section 3.4.3), assuming the scrubbing func-
tion is inlined. We also measured the performance of the
volatile function pointer technique (Section 3.3.3), the

volatile data pointer technique (Section 3.4.2), the cus-
tom assembly implementation of OpenSSL 1.1.0b (Sec-
tion 3.3.4), and the complicated computation technique
of OpenSSL prior to version 1.0.2 (Section 3.4.1).

4.1 Methodology
We compiled a unique executable for each technique and
block size on GCC 6.2 and Clang 3.9 with the -O2 op-
tion targeting the x86_64 platform. A scrubbing routine’s
performance is the median runtime over 16 program exe-
cutions, where each execution gives the median runtime
over 256 trials, and each trial gives the mean runtime of
256 scrubbing calls. Program executions for a given test
case were spaced out in order to eliminate any affects
caused by the OS scheduler interrupting a particular pro-
gram execution. We left the testing framework code un-
optimized. Scrubbing calls were followed by inline as-
sembly barriers to ensure that optimizations to scrubbing
routines did not affect benchmarking code. The bench-
marking code calls a generic scrub function, which then
calls the specific scrubbing routine to be tested; this code
is allowed to be optimized, so as a result the scrubbing
routine is typically inlined within the generic scrub func-
tion. The scrubbing function and scrubbed buffer size
are defined at compile time, so optimizations can be ex-
haustive. The time to iterate through a loop 256 times
containing a call to a no-op function and memory bar-
rier was subtracted from each trial in order to eliminate
time spent executing benchmarking code and the generic
scrub function call. The runtime for a scrubbing routine
was calculated with the rdtsc and rdtscp instructions
which read the time stamp counter, with the help of the
cpuid instruction which serializes the CPU and thus en-
sures that no other code is benchmarked [34]. Instruction
and data caches were warmed up by executing the bench-
marking code 4 times before results were recorded. Pro-
gram executions were tied to the same CPU core to en-
sure that consistent hardware was used across tests.

The tests were done on an Intel Xeon E5-2430 v2 pro-
cessor with x86_64 architecture and a 32KB L1d cache,
32KB L1i cache, and 256K L2 cache running Ubuntu
14.04 with Linux kernel 3.13.0-100-generic.

4.2 Results
Figures 1 shows the results of our benchmarks. The left
plot (Figure 1a) shows the result of compiling each tech-
nique using Clang 3.9, the right plot (Figure 1b) shows
the result of compiling each technique using GCC 6.2.
In each plot, the x-axis shows the block size being ze-
roed and the y-axis the bytes written per cycle, computed
by dividing the number of cycles taken by the block
size. The heavy solid grey line shows the performance
of plain memset when it is not removed by the optimizer.
The fine solid black line is performance of plain memset
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(b) Compiled with GCC 6.2.

Figure 1: Performance of various scrubbing implementations compiled at optimization level -O2. The x-axis shows the
block size being zeroed and the y-axis the bytes written per cycle, computed by dividing the number of cycles taken
by the block size.

when compiled with the -fno-builtin-memset op-
tion, which instructs the compiler not to use its own built-
in intrinsic memset instead of calling the C standard li-
brary implementation. The remaining dashed lines show
the performance of the volatile function pointer tech-
nique (red line), the custom assembly implementation
from OpenSSL (orange line), the volatile data pointer
technique (blue line), and the complicated computation
technique from OpenSSL (green line).
Large block sizes. At large block sizes, performance
is dominated by the efficiently of each implementation.
The largest determining factor of an implementation’s
efficiency is the size of its move instructions: “plain
memset” and “volatile function pointer” both jump to
libc’s memset, which performs a loop of movdqa instruc-
tions (24 bytes/instruction); “custom assembly” performs
a loop of movq instructions (23 bytes/instruction); and
“volatile data pointer” performs a loop of movb instruc-
tions (20 byte/instruction). Further, “complicated com-
putation” performs several unnecessary obfuscating in-
structions in order to trick the compiler. Its poor per-
formance reflects the numerous developers reports com-
plaining about its slow speed, for example Tor Ticket
#7419 titled “Choose a faster memwipe implementa-
tion” [2].

Additionally, implementations which align the block
pointer see improved efficiency. Libc’s memset is able
to perform movdqa instructions after it dqword-aligns its
pointer. “custom assembly” improves from 23 to 24 byte
block sizes because above that threshold it qword-aligns
its pointer in order to perform movq instructions.

Furthermore, at some point (≥ 29 bytes for Clang; ≥
214 bytes for GCC) the built-in memset defers to using

libc’s memset, hence it is identical to “volatile function
pointer” given large block sizes.
Small block sizes. At small block sizes, performance is
dominated by whether or not loop unrolling occurred.
The scrubbing routine is given the block size at compile-
time, so it is able to optimize accordingly. Thus, for
“plain memset”, move instructions are unrolled for sizes
≤ 28 bytes on Clang and sizes ≤ 25 bytes on GCC. Ad-
ditionally, for the “volatile data pointer” technique, un-
rolling occurs for sizes ≤ 26 bytes on Clang and sizes
≤ 22 bytes on GCC. Note that the performance of imple-
mentations’ unrolled loops are different because differ-
ent types of move instructions may be unrolled (such as
a movb versus a movq).

The large magnitude of spikes in the graph can be at-
tributed to the superscalar nature of the CPU it is run on,
which essentially gives it those instructions for free for
small block sizes. Both Clang and GCC-compiled “plain
memset” code see a major performance drop between
32- and 64-byte block sizes. Although for GCC, this is
the point at which unrolling no longer occurs—it is not
so for Clang, whose dropoff is less severe. We suspect
this is due to L1 caching of smaller size blocks. (The L1
cache line size is 64 bytes on our architecture.)
GCC’s builtin. Upon first examining our results, we
were surprised to find that the GCC-compiled “plain
memset” with -fno-builtin-memset did as well as
“plain memset” with the built-in intrinsic memset.
After examining the produced assembly code, we
found that the scrubbing function was not calling the
libc memset function as expected (and the Clang-
compiled version was). As a result, we found that
string.h (where memset is declared) changes its be-
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havior based on the value of the _FORTIFY_SOURCE

macro, as described in Section 3.2. Thus, even with
the -fno-builtin-memset option, GCC generated its
built-in memset. Under normal circumstances, such code
would be subject to dead-store elimination, causing the
scrubbing operation to be removed.

4.3 Discussion
Our performance measurements found that techniques
vary drastically in performance. This may make some
techniques preferable to others.

5 Case Studies
To understand the use of memory scrubbing in practice,
we examined the eleven popular security libraries and ap-
plications listed in Table 1. Our choices were guided by
whether or not the code handled sensitive data (e.g. se-
cret keys), availability of the source code and our own
judgement of the project’s relevance. For each project,
we set out to determine whether a memory scrubbing
function is available, effective, and used consistently by
the projects’ developers. We used the latest stable version
of each project as of October 9, 2016.
Availability. To determine whether a scrubbing function
is available, we manually examined the program source
code. All eleven projects used one or more of the tech-
niques described in Section 3 to clear sensitive data, and
seven of them relied on a combination of at least two
techniques.

If a project relied on more than one technique, it
automatically chose and used the first technique avail-
able on the platform in order of preference specified
by the developer. Columns under the Preference head-
ing in Table 1 show the developer preference order
for each technique, with 1 being highest priority (first
chosen if available). The scrubbing techniques listed
under the Preference heading are: Win is Windows’
SecureZeroMemory, BSD is BSD’s explicit_bzero,
C11 is C11’s memset_s, Asm. is a custom assembly im-
plementation, Barrier is the memory barrier technique,
VDP is the volatile data pointer technique, VFP is the
volatile function pointer technique, Comp. is the com-
plicated computation technique, WL is the weak linkage
technique, and memset is a call to plain memset. If a
project used a function that can be one of many tech-
niques depending on the version of that function—for ex-
ample, projects that use OpenSSL’s OPENSSL_cleanse,
which may either be VFP or Comp. depending on if
OpenSSL version ≥1.0.2 or <1.0.2 is used—the newer
version is given a higher preference. An ∗ indicates an
incorrectly implemented technique.

For example, Tor uses Windows’ SecureZeroMemory
if available, then BSDs’ explicit_bzero if
available, and so on. Generally, for projects that

used them, all chose a platform-supplied function
(SecureZeroMemory, explicit_bzero, or memset_s)
first before falling back to other techniques. The most
popular of the do-it-yourself approaches are the volatile
data pointer (VDP) and volatile function pointer (VFP)
techniques, with the latter being more popular with
projects that attempt to use a platform-provided function
first.
Effectiveness. To answer the second question—whether
the scrubbing function is effective—we relied on the
manual analysis in Section 3. If a project used an un-
reliable or ineffective scrubbing technique in at least one
possible configuration, we considered its scrubbing func-
tion ineffective, and scored it flawed, denoted # in the
Score column. If the scrubbing function was effective
and used consistently, we scored it effective, denoted  .
If it was effective but not used consistently, we scored it
inconsistent, denoted G#.
Consistency. To determine whether a function was used
consistently, we instrumented the Clang 3.9 compiler to
report instances of dead store elimination where a write
is eliminated because the memory location is not used
afterwards. We did not report writes that were eliminated
because they were followed by another write to the same
memory location, because in this case, the data would
be cleared by the second write. Additionally, if sensitive
data is small enough to be fit into registers, it may be
promoted to a register, which will lead to the removal
of the scrubbing store 1. Since the scrubbing store is not
removed in the dead store elimination pass, our tool does
not report it. We would argue such removals have less
impact on security since the sensitive data is in a register.
However, if that register spilled when the sensitive data
in it, it may still leave some sensitive data in memory.
Appendix A.1 provides additional details of our tool. We
compiled each project using this compiler with the same
optimization options as in the default build of the project.
Then we examined the report generated by our tool and
manually identified cases of dead store elimination that
removed scrubbing operations.

Of the eleven projects we examined, all of them sup-
ported Clang. We note, however, that our goal in this part
of our analysis is to identify sites where a compiler could
eliminate a scrubbing operation, and thus identify sites
where sensitive variables were not being cleared as in-
tended by the developer. We then examined each case to
determine whether the memory contained sensitive data,
and whether dead store elimination took place because
a project’s own scrubbing function was not used or be-
cause the function was ineffective. If cases of the latter,

1For example, at the end of OpenSSH’s SHA1Transform function,
“a=b=c=d=e=0;” is used to scrub sensitive data. Because all the five
variables are in virtual registers in the IR form, no store is eliminated
in the DSE pass.
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NSS 15 9 3 12 0 - - - - - - - - - 1 #
OpenVPN 8 8 2 6 0 - - - - - - - - - 1 #
Kerberos 10 2 9 0 1 1 - - - 2* - - - - 3 #
Libsodium 0 0 0 0 0 1 3 2 - - 5 - - 4 - #
Tarsnap 11 10 10 1 0 - - - - - 1 - - - - G#
Libgcrypt 2 2 0 2 0 - - - - - 1 - - - - G#
Crypto++ 1 1 0 1 0 - - - 1 - 2 - - - - G#
Tor 4 0 4 0 0 1 2 3 4 - - 5 6 - - G#
Bitcoin 0 0 0 0 0 - - - 1 - - 2 3 - -  
OpenSSH 0 0 0 0 0 - 1 2 - - - 3 - - -  
OpenSSL 0 0 0 0 0 - - - 1 - - 2 3 - -  

Table 1: Summary of open source projects’ removed scrubbing operations and the scrubbing techniques they use.
Removed ops. columns show the total number of removed scrubs, the number of removed scrubs dealing with sensitive
data, and the locations of memory that failed to be scrubbed. Preference columns show the developer preference order
for each technique, with 1 being highest priority (first chosen if available). The ∗ in the row for Kerberos indicates that
its barrier technique was not implemented correctly; see Section 3.4.3 for discussion. A project’s Score shows whether
its scrubbing implementation is flawed (#), inconsistent (G#), or effective ( ).

we determined why the function was not effective; these
findings are reflected in the results reported in Section 3.
Columns under the heading Removed ops. in Table 1
show the number of cases where a scrubbing operation
was removed. The Total column shows the total num-
ber of sites where an operation was removed. The Sensi-
tive column shows the number of such operations where
we considered the data to be indeed sensitive. (In some
cases, the scrubbing function was used to clear data that
we did not consider sensitive, such as pointer addresses.)
The Heap, Stack, and H/S columns indicate whether or
not the cleared memory was allocated on the heap, on
the stack stack, or potentially on either heap or stack.

Of the eleven projects examined, four had an effec-
tive scrubbing function but did not use it consistently,
resulting in a score of inconsistent, denotedG# in Table 1.
As the results in Table 1 show, only three of the eleven
projects had a scrubbing function that was effective
and used consistently.

We notified the developers of each project that we
scored flawed or inconsistent. For our report to the devel-
opers, we manually verified each instance where a scrub-
bing operation was removed, reporting only valid cases
to the developers. Generally, as described below, devel-
opers acknowledged our report and fixed the problem.
Note that none of the issues resulted in CVEs because
to exploit, they must be used in conjunction with a sepa-
rate memory disclosure bug and these types of bugs are
outside the scope of this work.

In the remainder of this section, we report on the open
source projects that we analyzed. Our goal is to iden-

tify common trends and understand how developers deal
with the problem of compilers removing scrubbing oper-
ations.

5.1 OpenVPN
OpenVPN is an TLS/SSL-based user-space VPN [21].
We tested version 2.3.12. OpenVPN 2.3.12 does not have
a reliable memory scrubbing implementation since it
uses a CLEAR macro which expands to memset. We found
8 scrubbing operations that were removed, all of which
deal with sensitive data. Each of the removed operations
used CLEAR, which is not effective.
Sample case. Function key_method_1_read in Fig-
ure 2 is used in OpenVPN’s key exchange function to
process key material received from an OpenVPN peer.
However, the CLEAR macro fails to scrub the key on the
stack since it is a call to plain memset.
Developer response. The issues were reported, al-
though OpenVPN developers were already aware of the
problem and had a ticket on their issue tracker for it that
was opened 12 days prior to our notification [26]. The
patch does not change the CLEAR macro since it is used
extensively throughout the project, but it does replace
many CLEAR calls with our recommended fix discussed
in Section 6 [7].

5.2 Kerberos
Kerberos is a network authentication protocol that pro-
vides authentication for client/server applications by us-
ing secret-key cryptography [12]. We tested Kerberos re-
lease krb5-1.14.4. The Kerberos memory scrubbing im-
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1 /* From openvpn-2.3.12/src/openvpn/basic.h */
2 #define CLEAR(x) memset(&(x), 0, sizeof(x))
3

4 /* From openvpn-2.3.12/src/openvpn/ssl.c */
5 static bool key_method_1_read (struct buffer *buf, struct
6 tls_session *session) {
7

8 struct key key;
9 /* key is allocated on stack to hold TLS session key */

10 ...
11 /* Clean up */
12 CLEAR (key);
13 ks->authenticated = true;
14 return true;
15 }

Figure 2: A removed scrubbing operation in OpenVPN
2.3.12.

plementation, zap, is unreliable. First, it defaults to Win-
dows’ SecureZeroMemory, which is effective. Other-
wise it uses a memory barrier that may not prevent the
scrubbing operation from being removed when the code
is compiled with Clang (see Section 3.4.3). Finally, if the
compiler is not GCC, it uses a function that calls memset.
While this is more reliable than a macro, memset may
be removed if LTO is enabled (see Section 3.3.1). Fur-
thermore, even though zap is available (and reliable on
Windows), plain memset is still used throughout the code
to perform scrubbing. We found 10 sites where scrubbing
was done using memset, which is not effective; 2 of these
sites deal with sensitive data.
Sample case. Function free_lucid_key_data in Fig-
ure 3 is used in Kerberos to free any storage associated
with a lucid key structure (which is typically on the heap)
and to scrub all of its sensitive information. However it
does so with a call to plain memset, which is then re-
moved by the optimizer.
Developer response. The issues have been patched with
calls to zap. In addition, zap has been patched according
to our recommended fix discussed in Section 6.

1 static void free_lucid_key_data(gss_krb5_lucid_key_t *key) {
2 if (key) {
3 if (key->data && key->length) {
4 memset(key->data,0,key->length);
5 xfree(key->data);
6 memset(key,0,sizeof(gss_krb5_lucid_key_t));
7 }
8 }
9 }

Figure 3: A removed scrubbing operation in Kerberos re-
lease krb5-1.14.4.

5.3 Tor
Tor provides anonymous communication via onion
routing [25]. We tested version 0.2.8.8. Tor de-
fines memwipe, which reliably scrubs memory:
it uses Windows’ SecureZeroMemory if avail-
able, then RtlSecureZeroMemory if available, then
BSD’s explicit_bzero, then memset_s, and then
OPENSSL_cleanse, which is described below. Despite

the availability of memwipe, Tor still uses memset to
scrub memory in several places. We found 4 scrubbing
operations that were removed, however none dealt with
sensitive data.
Sample case. Function MOCK_IMPL in Figure 4 is used
to destroy all resources allocated by a process han-
dle. However, it scrubs the process handle object with
memset, which is then removed by the optimizer.
Developer response. The bugs were reported and have
yet to be patched.

1 MOCK_IMPL(void, tor_process_handle_destroy,(process_handle_t
2 *process_handle, int also_terminate_process)) {
3

4 /* process_handle is passed in and allocated on heap to
5 * hold process handle resources */
6 ...
7 memset(process_handle, 0x0f, sizeof(process_handle_t));
8 tor_free(process_handle);
9 }

Figure 4: A removed scrubbing operation in Tor 0.2.2.8.

5.4 OpenSSL
OpenSSL is a popular TLS/SSL implementation as well
as a general-purpose cryptographic library [20]. We
tested version 1.1.0b. OpenSSL uses OPENSSL_cleanse
to reliably scrub memory. OPENSSL_cleanse defaults
to its own assembly implementations in various archi-
tectures unless specified otherwise by the no-asm flag
at configuration. Otherwise, starting with version 1.0.2,
it uses the volatile function pointer technique to call
memset. Prior to version 1.0.2, it used the complicated
computation technique. We found no removed scrubbing
operations in version 1.1.0b.

5.5 NSS
Network Security Services (NSS) is an TLS/SSL imple-
mentation that traces its origins to the original Netscape
implementation of SSL [18]. We tested version 3.27.1.
NSS does not have a reliable memory scrubbing imple-
mentation since it either calls memset or uses the macro
PORT_Memset, which expands to memset. We found 15
scrubbing operations that were removed, 9 of which deal
with sensitive data. Of the 15 removed operations, 6 were
calls to PORT_Memset and 9 were calls to plain memset.
Sample case. Function PORT_ZFree is used through-
out the NSS code for freeing sensitive data and is based
on function PORT_ZFree_stub in Figure 5. However
PORT_ZFree_stub’s call to memset fails to scrub the
pointer it is freeing.
Developer response. The bugs have been reported and
Mozilla Security forwarded them to the appropriate
team, however they have not yet been patched.

5.6 Libsodium
Libsodium is a cross-platform cryptographic li-
brary [15]. We tested version 1.0.11. Libsodium defines
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1 extern void PORT_ZFree_stub(void *ptr, size_t len) {
2 STUB_SAFE_CALL2(PORT_ZFree_Util, ptr, len);
3 memset(ptr, 0, len);
4 return free(ptr);
5 }

Figure 5: A removed scrubbing operation in NSS 3.27.1.

sodium_memzero, which does not reliably scrub mem-
ory. First, it defaults to Windows’ SecureZeroMemory,
then memset_s, and then BSD’s explicit_bzero if
available, which are all reliable. Then if weak symbols
are supported, it uses a technique based on weak
linkage, otherwise it uses the volatile data pointer
technique. Techniques based on weak linkage are not
reliable, because they can be removed during link-
time optimization. All memory scrubbing operations
used sodium_memzero, and since Libsodium is not
compiled with link-time optimization, no scrubbing
operations using sodium_memzero were removed.

5.7 Tarsnap
Tarsnap is a online encrypted backup service whose
client source code is available [24]. We tested
version 1.0.37. Tarsnap’s memory scrubbing im-
plementation, called insecure_memzero, uses the
volatile data pointer scrubbing technique. Although
insecure_memzero is an effective scrubbing function,
Tarsnap does not use it consistently. We found 10 cases
where memset was used to scrub memory instead of
insecure_memzero in its keyfile.c, which handles
sensitive data.
Sample case. Function read_encrypted in Figure 6
attempts to scrub a buffer on the heap containing a de-
crypted key. It is used throughout the project for reading
keys from a Tarsnap key file. However, instead of using
insecure_memzero, it uses plain memset, and is thus
removed by the optimizer.
Developer response. Out of the eleven reported issues,
the 10 in keyfile.c were already patched on July 2,
2016 but were not in the latest stable version. The one
non-security issue does not require a patch, since the re-
moved memset was redundant as insecure_memzero is
called right before it.

1 static int read_encrypted(const uint8_t * keybuf, size_t
2 keylen, uint64_t * machinenum, const char * filename,
3 int keys) {
4

5 uint8_t * deckeybuf;
6 /* deckeybuf is allocated on heap to hold decrypted key */
7 ...
8 /* Clean up */
9 memset(deckeybuf, 0, deckeylen);

10 free(deckeybuf);
11 free(passwd);
12 free(pwprompt);
13 return (0);
14 }

Figure 6: A removed scrubbing operation in Tarsnap
1.0.37.

5.8 Libgcrypt
Libgcrypt is a general purpose cryptographic library used
by GNU Privacy Guard, a GPL-licensed implementa-
tion of the PGP standards [13]. We tested version 1.7.3.
Libgcrypt defines wipememory, which is a reliable way
of scrubbing because it uses the volatile data pointer
technique. However, despite wipememory’s availability
and reliability, memset is still used to scrub memory in
several places. We found 2 cases where scrubs were re-
moved, and for both, memset is used to scrub sensitive
sensitive data instead of wipememory.
Sample case. Function invert_key in Figure 7 is used
in Libgcrypt’s IDEA implementation to invert a key for
its key setting and block decryption routines. However,
invert_key uses memset to scrub a copy of the IDEA
key on the stack, which is removed by the optimizer.
Developer response. The bugs have been patched with
calls to wipememory.

1 static void invert_key(u16 *ek, u16 dk[IDEA_KEYLEN]) {
2 u16 temp[IDEA_KEYLEN];
3 /* temp is allocated on stack to hold inverted key */
4 ...
5 memcpy(dk, temp, sizeof(temp));
6 memset(temp, 0, sizeof(temp));
7 }

Figure 7: A removed scrubbing operation in Libgcrypt
1.7.3.

5.9 Crypto++
Crypto++ is a C++ class library implementing sev-
eral cryptographic algorithms [8]. We tested version
5.6.4. Crypto++ defines SecureWipeBuffer, which re-
liably scrubs memory by using custom assembly if the
buffer contains values of type byte, word16, word32, or
word64; otherwise it uses the volatile data pointer tech-
nique. Despite the availability of SecureWipeBuffer,
we found one scrubbing operation dealing with sensi-
tive data that was removed because it used plain memset

rather than its own SecureWipeBuffer.
Sample case. The UncheckedSetKey function, shown
in Figure 8, sets the key for a CAST256 object.
UncheckedSetKey uses plain memset to scrub the user
key on the stack, which is removed by the optimizer.
Developer response. The bug was patched with a call to
SecureWipeBuffer.

1 void CAST256::Base::UncheckedSetKey(const byte *userKey,
2 unsigned int keylength, const NameValuePairs &) {
3

4 AssertValidKeyLength(keylength);
5 word32 kappa[8];
6 /* kappa is allocated on stack to hold user key */
7 ...
8 memset(kappa, 0, sizeof(kappa));
9 }

Figure 8: A removed scrubbing operation in Crypto++
5.6.4.
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5.10 Bitcoin
Bitcoin is a cryptocurrency and payment system [5]. We
tested version 0.13.0 of the Bitcoin client. The project
defines memory_cleanse, which reliably scrubs mem-
ory by using OPENSSL_cleanse, described below. The
source code uses memory_cleanse consistently; we
found no removed scrubbing operations.

5.11 OpenSSH
OpenSSH is a popular implementation of the SSH pro-
tocol [19]. We tested version 7.3. OpenSSH defines its
own explicit_bzero, which is a reliable way of scrub-
bing memory: it uses BSD’s explicit_bzero if avail-
able, then memset_s if available. If neither are avail-
able, it uses the volatile function pointer technique to call
bzero. We found no removed scrubbing operations.

5.12 Discussion
Our case studies lead us to two observations. First, there
is no single accepted scrubbing function. Each project
mixes its own cocktail using existing scrubbing tech-
niques, and there is no consensus on which ones to use.
Unfortunately, as we discussed in Section 3, some of the
scrubbing techniques are flawed or unreliable, making
scrubbing functions that rely on such techniques poten-
tially ineffective. To remedy this state of affairs, we de-
veloped a single memory scrubbing technique that com-
bines the best techniques into a single function, described
in Section 6.

Second, even when the project has reliable scrubbing
function, developers do not use their scrubbing func-
tion consistently. In four of the eleven projects we exam-
ined, we found cases where developers called memset in-
stead of their own scrubbing function. To address this, we
developed a scrubbing-safe dead-store elimination pass
that defensively compile bodies of code, as discussed in
Section 7.

6 Universal Scrubbing Function
As we saw in Section 3, there is no single memory
scrubbing technique that is both universal and guaran-
teed. In the next section, we propose a compiler-based
solution based on Clang, that protects scrubbing opera-
tions from dead-store elimination. In many cases, how-
ever, the developer can’t mandate a specific compiler
and must resort to imperfect techniques to protect scrub-
bing operations from the optimizer. To aid developers in
this position, we developed our own scrubbing function,
called secure_memzero, that combines the best effec-
tive scrubbing techniques in a simple implementation.
Specifically, our implementation supports:

v Platform-provided scrubbing functions
(SecureZeroMemory and memset_s) if available,

v The memory barrier technique if GCC or Clang
are used to compile the source, and

v The volatile data pointer technique and the
volatile function pointer technique.

Our secure_memzero function is implemented in a
single header file secure_memzero.h that can be in-
cluded in a C/C++ source file. The developer can spec-
ify an order of preference in which an implementa-
tion will be chosen by defining macros before including
secure_memzero.h. If the developer does not express
a preference, we choose the first available implementa-
tion in the order given above: platform-provided function
if available, then memory barrier on GCC and Clang,
then then volatile data pointer technique. Our defaults
reflect what we believe are the best memory scrubbing
approaches available today.

We have released our implementation into the pub-
lic domain, allowing developers to use our function re-
gardless of their own project license. We plan to keep
our implementation updated to ensure it remains ef-
fective as compilers evolve. The current version of
secure_memzero.h is available at

https://compsec.sysnet.ucsd.edu/secure_memzero.h.

7 Scrubbing-Safe DSE
While we have tested our secure_memzero function
with GCC, Clang, and Microsoft Visual C, by its very na-
ture it cannot guarantee that a standard-conforming com-
piler will not remove our scrubbing operation. To address
these cases, we implemented a scrubbing-safe dead store
elimination option in Clang 3.9.0.

7.1 Inhibiting Scrubbing DSE
Our implementation works by identifying all stores that
may be explicit scrubbing operations and preventing the
dead store elimination pass from eliminating them. We
consider a store, either a store IR instruction, or a call
to LLVM’s memset intrinsic, to be a potential scrubbing
operation if

v The stored value is a constant,
v The number of bytes stored is a constant, and
v The store is subject to elimination because the

variable is going be out of scope without being
read.

The first two conditions are based on our observation
how scrubbing operations are performed in the real code.
The third allows a store that is overwritten by a later one
to the same location before being read to be eliminated,
which improves the performance. We note that our tech-
niques preserves all dead stores satisfying the conditions
above, regardless of whether the variables are considered
sensitive or not. This may introduce false positives, dead

USENIX Association 26th USENIX Security Symposium    1037



stores to non-sensitive variables in memory that are pre-
served because they were considered potential scrubbing
operations by our current implementation. We discuss
the performance impact of our approach in Section 7.2.

It is worth considering an alternative approach to en-
suring that sensitive data is scrubbed: The developer
could explicitly annotate certain variables as secret, and
have the compiler ensure that these variables are zeroed
before going out of scope. This would automatically pro-
tect sensitive variables without requiring the developer
to zero them explicitly. It would also eliminate poten-
tial false positives introduced by our approach, because
only sensitive data would be scrubbed. Finally, it could
also ensure that spilled registers containing sensitive data
are zeroed, something our scrubbing-safe DSE approach
does not do (see Section 8 for a discussion of this issue).

We chose our approach because it does not require any
changes to the source code. Since developers are already
aware of the need to clear memory, we rely on scrubbing
operations already present in the code and simply ensure
that they are not removed during optimization. Thus, our
current approach is compatible with legacy code and can
protect even projects that do not use a secure scrubbing
function, provided the sensitive data is zeroed after use.

7.2 Performance
Dead store elimination is a compiler optimization in-
tended to reduce code size and improve performance. By
preserving certain dead stores, we are potentially pre-
venting a useful optimization from improving the qual-
ity emitted code and improving performance. To de-
termine whether or not this the case, we evaluated the
performance of our code using the SPEC 2006 bench-
mark. We compiled and ran the SPEC 2006 bench-
mark under four compiler configurations: -O2 only, -O2
and -fno-builtin-memset, -O2 with DSE disabled,
and -O2 with our scrubbing-safe DSE. In each case,
we used Clang 3.9.0, modified to allow us to disable
DSE completely or to selectively disable DSE as de-
scribed above. Note that -fno-builtin-memset is not
a reliable means of protecting scrubbing operations, as
discussed in Section 3.2. The benchmark was run on
a Ubuntu 16.04.1 server with an Intel Xeon Processor
X3210 and 4GB memory.

Our results indicate that the performance of our
scrubbing-safe DSE option is within 1% of the base case
(-O2 only). This difference is well within the variation
of the benchmark; re-running the same tests yielded dif-
ferences of the same order. Disabling DSE completely
also did not affect performance by more than 1% over
base in all but one case (483.xalancbmk) where it was
within 2%. Finally, with the exception of the 403.gcc

benchmark, disabling built-in memset function also does
not have a significant adverse effect on performance. For

the 403.gcc benchmark, the difference was within 5%
of base.

8 Discussion
It is clear that, while the C standard tries to help by defin-
ing memset_s, in practice the C standard does not help.
In particular, memset_s is defined in the optional Annex
K, which is rarely implemented. Developers are then left
on their own to implement versions of secure memset,
and the most direct solution uses the volatile quantifier.
But here again, the C standard does not help, because
the corner cases of the C standard actually give the im-
plementation a surprising amount of leeway in defining
what constitutes a volatile access. As a result, any im-
plementation of a secure memset based on the volatile
qualifier is not guaranteed to work with every standard-
compliant compiler.

Second, it’s very tricky in practice to make sure that
a secure scrubbing function works well. Because an in-
correct implementation does not break any functionality,
it cannot be caught by automatic regression tests. The
only reliable way to test whether an implentation is cor-
rect or not is to manually check the generated binary,
which can be time-consuming. What’s worse, a seem-
ingly working solution may turn out to be insecure under
a different combination of platform, compiler and opti-
mization level, which further increases the cost to test
an implementation. In fact, as we showed in Section 5.2,
developers did make mistakes in the implementing of se-
cure scrubbing functions. This is why we implemented
secure_memzero and tested it on Ubuntu, OpenBSD
and Windows with GCC and Clang. We released it into
the public domain so that developers can use it freely and
collaborate to adapt it to future changes to the C standard,
platforms or compilers.

Third, even if a well-implemented secure scrubbing
function is available, developers may forget to use it,
instead using the standard memset which is removed
by the compiler. For example, we found this hap-
pened in Crypto++ (Section 5.9). This observation makes
compiler-based solutions, for example the secure DSE,
more attractive because they do not depend on develop-
ers correctly calling the right scrubbing function.

Finally, it’s important to note that sensitive data may
still remain in on the stack even after its primary storage
location when it is passed as argument or spilled (in reg-
isters) onto the stack. Addressing this type of data leak
requires more extensive support from the compiler.

9 Conclusion
Developers have known that compiler optimizations may
remove scrubbing operations for some time. To combat
this problem, many implementations of secure memset
have been created. In this paper, we surveyed the ex-
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isting solutions, analyzing the assumptions, advantages
and disadvantages of them. Also, our case studies have
shown that real world programs still have unscrubbed
sensitive data, due to incorrect implementation of se-
cure scrubbing function as well as from developers sim-
ply forgetting to use the secure scrubbing function. To
solve the problem, we implemented the secure DSE, a
compiler-based solution that keeps scrubbing operations
while remove dead stores that have no security impli-
cations, and secure_memzero, a C implementation that
have been tested on various platforms and with different
compilers.
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A Appendix
A.1 Instrumenting Clang to Report DSE
To investigate how common it is for scrubbing operations
to be removed by the compiler in open source projects,
we developed a tool called Scrubbing Finder. Our case
studies in Section 5 were performed with this tool.

Since scrubbing operations are removed in a com-
piler’s dead store elimination optimization pass, we in-
strumented the DSE pass in LLVM/Clang 3.9.0 to re-
port these instances. In order to differentiate removed
scrubs from other dead stores, it is necessary to differ-
entiate the different kinds of dead stores: (1) a store
that is overwritten by another store with no read in be-
tween; (2) a store to an object that is about to be out
of scope (a dead store to a stack object); (3) a store
to an object that is about to be freed (a dead store

to a heap object). There is no need to report the first
case because even though the earlier store is indeed a
scrubbing operation, it is safe to remove it. In addi-
tion, we noticed that all but one secure scrubbing im-
plementation store a constant value to the buffer (typi-
cally zero). The only exception is the complicated com-
putation technique of OpenSSL’s OPENSSL_cleanse

(see Section 3.4.1), which stores non-constants values—
however, those stores are not dead stores. Thus the scrub-
bing finder only reports dead stores of (2) and (3) where
a constant is stored.

Thus, when dead store belonging to one of the two
categories described above is removed, Scrubbing Finder
reports: (1) the Location of the removed scrub, including
file and line number; (2) the Removed IR Instruction; and
(3) Additional Info describing any instances where the
removed scrub was inlined. Figure 9 is an example we
found in Kerberos, which has since been fixed.

1 Location: src/lib/gssapi/krb5/lucid_context.c:269:13
2 Removed IR Instruction: call void @llvm.memset.p0i8.i64
3 (i8* nonnull %call.i9.i, i8 0, i64 %conv.i8.i,
4 i32 1, i1 false)
5 Additional Info:
6 src/lib/gssapi/krb5/lucid_context.c:269:13 inlined at
7 [src/lib/gssapi/krb5/lucid_context.c:285:13 inlined at
8 [src/lib/gssapi/krb5/lucid_context.c:233:9 inlined at
9 [src/lib/gssapi/krb5/lucid_context.c:94:16 ] ] ]

Figure 9: Example of a removed scrub in Kerberos re-
ported by Scrubbing Finder.

In this example, the removed scrub is on line 269,
column 13 of krb5-1.14.4/src/lib/gssapi/

krb5/lucid_context.c. Furthermore, the enclos-
ing function of the removed operation is inlined
at krb5-1.14.4/src/lib/gssapi/krb5/lucid_

context.c:285:13. The function containing line 285
of lucid_context.c is inlined at krb5-1.14.4/src/
lib/gssapi/krb5/lucid_context.c:233:9. The
function containing line 233 of lucid_context.c is
inlined at krb5-1.14.4/src/lib/gssapi/krb5/

lucid_context.c:94:16.
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Abstract

Protected module architectures, such as Intel SGX, en-
able strong trusted computing guarantees for hardware-
enforced enclaves on top a potentially malicious operat-
ing system. However, such enclaved execution environ-
ments are known to be vulnerable to a powerful class of
controlled-channel attacks. Recent research convincingly
demonstrated that adversarial system software can extract
sensitive data from enclaved applications by carefully
revoking access rights on enclave pages, and recording
the associated page faults. As a response, a number of
state-of-the-art defense techniques has been proposed that
suppress page faults during enclave execution.

This paper shows, however, that page table-based
threats go beyond page faults. We demonstrate that an
untrusted operating system can observe enclave page ac-
cesses without resorting to page faults, by exploiting other
side-effects of the address translation process. We con-
tribute two novel attack vectors that infer enclaved mem-
ory accesses from page table attributes, as well as from
the caching behavior of unprotected page table memory.
We demonstrate the effectiveness of our attacks by recov-
ering EdDSA session keys with little to no noise from the
popular Libgcrypt cryptographic software suite.

1 Introduction

Enclaved execution, or support for protected modules, is
a promising new security paradigm that makes it possible
to execute application code on a platform without having
to trust the underlying operating system or hypervisor.
With the advent of Intel SGX [32], support for Protected
Module Architectures (PMAs) is now available on main-
stream consumer hardware, and can be used to defend
against malicious or compromised system software, both
in an untrustworthy cloud environment [3, 36] as well as
for desktop applications [18]. In particular, one line of
research has developed techniques and supporting soft-

ware to make it relatively easy to run unmodified legacy
applications within an enclave [3, 2, 41, 45].

An essential aspect of enclaved execution is that the
hardware prevents privileged system software from read-
ing or writing a module’s private memory directly, or
from tampering with its internal control flow. However,
the OS remains in charge of allocating platform resources
(memory pages and CPU time) to protected modules, such
that the platform can be protected against misbehaving
or buggy enclaves. One consequence of this interaction
between privileged system software and enclaves is an en-
tirely new class of powerful, indirect attacks on enclaved
applications. Xu et al. [48] first showed how a malicious
OS can use page faults as a noise-free controlled-channel
to extract rich information (full text and images) from
a single run of a victim enclave. This is particularly
dangerous when legacy software is running within an
enclave, as these applications have not been hardened
against side-channel attacks. As a result, several authors
have expressed their concerns on side-channel vulnera-
bilities in a PMA setting in general, and the page fault
channel in particular [12, 9, 43, 39, 7].

The research community has since proposed a num-
ber of compile-time and hardware-enabled defense tech-
niques [40, 10, 39] that hide enclave page accesses from
the OS. We argue, however, that page faults are but one
side-effect of the address translation process that is ob-
servable by untrusted system software. More specifically,
the main contribution of this paper is that we show that an
adversarial OS can infer page accesses from an enclaved
execution that never suffers a page fault. Our attacks ex-
ploit the key property that the SGX design leaves page
table memory under explicit control of the untrusted OS.
As such, other side-effects of the page table walk in en-
clave mode can be observed by the OS with very little to
no noise. We identify and successfully exploit straightfor-
ward effects such as the setting of “accessed” and “dirty”
bits, as well as less obvious effects such as the caching of
page table memory itself. An important consequence is
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that our novel attack vectors bypass recent defenses that
focus exclusively on suppressing page faults [40, 39].

In summary, the contributions of this paper are:

• We advance the state-of-the-art by defeating recently
proposed defense techniques, showing that we can
infer page accesses without resorting to page faults.

• We present a page table-based technique to precisely
interrupt an enclave at instruction-level granularity.

• We implement our novel attack vectors as an exten-
sion to Graphene-SGX’s untrusted runtime, facilitat-
ing eavesdropping on unmodified applications.

• We demonstrate the effectiveness of our attacks by
extracting private EdDSA session keys from the
widely used Libgcrypt cryptographic library.

Our attack framework and evaluation scenarios are
available as free software, licensed under GPLv3, at
https://github.com/jovanbulck/sgx-pte.

2 Background

In this section, we provide the necessary background on
Intel SGX, refine the attacker model, and discuss previous
research results on controlled-channel attacks.

2.1 Intel SGX
Recent Intel x86 processors from Skylake onwards are be-
ing shipped with Software Guard eXtensions (SGX) [32,
1, 23] that enable strong, hardware-enforced trusted com-
puting guarantees in an untrusted execution environment.
SGX extends the instruction set and memory access logic
of the Intel architecture to allow the execution of security-
sensitive application logic in protected enclaves in isola-
tion from the remainder of the system, including privi-
leged OS or hypervisor.

Memory Protection. An SGX-enabled processor sets
aside a contiguous physical memory area, referred to as
Processor Reserved Memory (PRM). A hardware-level
memory encryption engine guarantees the confidentiality,
integrity, and freshness of PRM memory while it resides
outside of the processor package. The PRM region is
subdivided into two data structures: the Enclave Page
Cache (EPC) and the Enclave Page Cache Map (EPCM).
Protected 4 KB enclave code and data pages are allocated
from the EPC, while every EPC page has a shadow entry
in the EPCM to track ownership, type, address translation,
and permission meta data. EPCM memory is exclusively
managed by the processor, and is never directly accessible
to software.

Page
walk?

Enclave
mode?

padrs in
PRM? Allow

Page fault vadrs in
enclave?

Abort page

padrs in
EPC?

EPCM
checks?

ok no

yes

no

yesfail

no

yes

fail
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Figure 1: Additional memory access checks performed by
SGX for a virtual address vadrs that maps to a physical
address padrs.

SGX enclaves are instantiated as part of the virtual ad-
dress space of a conventional OS process. Since PRM is
a limited system resource, untrusted system software is in
charge of assigning protected memory pages to enclaves,
and is allowed to oversubscribe the EPC. At enclave cre-
ation time, the OS can instruct the processor to initialize
newly allocated EPC pages with unprotected code or data.
After finalizing the enclave, and before it can be entered,
the hardware calculates a secure hash of the enclave’s
initial state. This allows the integrity of the untrusted
loading process to be attested to a remote stakeholder [1].
SGX furthermore offers dedicated ring-zero instructions
to securely evict and reload enclave pages between EPC
memory and untrusted storage.

An important design decision of SGX is that it leaves
page tables under explicit control of the untrusted oper-
ating system. Instead, SGX implements an additional,
independent layer of access control on top of the legacy
page table-based memory protection mechanism. Fig-
ure 1 summarizes the additional checks performed when
accessing enclave memory. First, in order to translate
the provided virtual address to a physical one, the pro-
cessor traverses the OS-managed page tables, as well as
the extended page tables set up by the hypervisor, if any.
As usual, a page fault is signaled to the untrusted OS in
case of a permission mismatch or missing page table en-
try during address translation. Any attempt to access the
PRM region in non-enclave mode results in abort page
semantics, i.e., read 0xFF and ignore writes. Likewise, in
enclave mode, the processor is allowed to reference all
memory that falls outside of the executing enclave’s vir-
tual address range, but abort page semantics apply when
such an address resolves into PRM memory. Further-
more, a page fault is signaled to the untrusted OS for EPC
accesses that either do not belong to the currently execut-
ing enclave, are accessed through an unexpected virtual

1042    26th USENIX Security Symposium USENIX Association

https://github.com/jovanbulck/sgx-pte


address, or do not comply with the read/write/execute
permissions imposed by the EPCM.

To speed up subsequent memory accesses, SGX em-
ploys the processor’s Translation Lookaside Buffer (TLB)
as a trusted cache of already checked page permissions.
That is, SGX’s memory access protection is entirely im-
plemented in the Memory Management Unit (MMU)
hardware that consults the untrusted page tables and the
EPCM whenever a provided virtual address was not found
in the TLB [32, 9]. SGX’s security argument is based on
the key observation that untrusted system software needs
to interrupt the logical processor core before it can affect
TLB entries. SGX therefore flushes the TLB and internal
paging-structure caches whenever entering or exiting an
enclave, and requires the OS to engage in a hardware-
verified protocol that ensures proper TLB invalidation
before evicting an EPC page.

SGX’s dual permission lookup scheme prevents ma-
licious system software from mounting active memory
mapping attacks [9]. The output of the address translation
process is considered untrusted, and the most restrictive
of both permissions is applied. However, this design also
implies that an attacker controlling page table permissions
can cause enclave code to cause page faults, and be noti-
fied when certain pages are accessed. This property lies at
the basis of the page fault attacks described in Section 2.3.

Enclave Entry and Exit. SGX enclaves are embedded
in the address space of an untrusted user mode applica-
tion, and can be internally multithreaded. They have to
be explicitly entered by means of a dedicated eenter
instruction that switches the logical processor to enclave
mode, and transfers control to a predetermined entry point
in the enclave’s code section. The untrusted application
context can exchange data with the enclave via unpro-
tected memory. A processor running in enclave mode
can be switched back programmatically by invoking the
eexit instruction, or in case of a fault or external inter-
rupt, through a process known as Asynchronous Enclave
Exit (AEX). Upon AEX, the processor securely stores
the execution context and exit reason (exception number)
in a predetermined State Save Area (SSA) inside the en-
clave, and replaces CPU registers with a synthetic state
before transferring control to the untrusted OS exception
handler specified in the Interrupt Descriptor Table (IDT).
In case of a page fault, SGX also takes care of zeroing
out the twelve least significant bits of the faulting address,
revealing only the page number, but not the 12-bit offset
within that page.

Importantly, SGX enclave threads are unaware of in-
terrupts by design, and have to be resumed explicitly by
invoking eresume from the unprotected application con-
text. The eresume instruction takes care of restoring the
previously saved processor state, and redirects control

flow to the instruction pointer specified in the SSA frame.
SGX allows an enclave to register trusted in-enclave ex-
ception handlers with a cooperative OS. For this to work,
eenter has to be explicitly called before eresume, so as
to allow the previously interrupted enclave to inspect and
modify its internal SSA frame. Since eresume cannot be
intercepted however, an enclave has no way of enforcing
its internal exception handler to be actually called.

SGX’s exception model ensures that the untrusted op-
erating system remains in control of shared platform re-
sources such as memory or CPU time, and prevents direct
information leakage of register contents. However, partial
information on the enclave’s internal state still leaks to the
OS via exception vectors, and the access type and page
base address in case of a page fault.

2.2 Attacker Model and Assumptions

The adversary’s goal is to derive sensitive application data
processed in an enclave. We assume the standard SGX
threat model where an attacker has full control over privi-
leged system software including the operating system and
hypervisor. The attacker has full control over OS schedul-
ing decisions; she can pin specific threads to specific CPU
cores, and interrupt enclaves repeatedly. She can further-
more modify all non-enclaved parts of the application.
Like previous SGX attacks [48, 40, 13, 37, 28], we finally
assume knowledge of the (compiled) source code of the
target application.

At the system level, we assume a classical MMU-based
architecture where the system software maintains a multi-
level page table data structure in OS memory to control
virtual to physical page mappings. We assume the OS is
in control of enclave page mappings, whereas the PMA
guarantees the confidentiality and integrity of enclave
pages, and properly verifies address translations to protect
against page remapping attacks. Importantly, in contrast
to previously published controlled-channel attacks dis-
cussed below, we assume a PF-oblivious attacker model
where any page faults in enclave mode are hidden from
untrusted system software. Our notion of stealthiness
thus requires an attacker to infer page access patterns
from an enclaved execution that never suffers a page fault.
In addition, to stay under the radar of remote attestation
schemes [39] that require the user’s approval for each
enclave invocation, our stealthy adversary should extract
information from a single run of the victim enclave.

2.3 Controlled-Channel Attacks

This section briefly revisits previous research on page
fault-driven attacks and defenses. We first explain how
sensitive information can be derived from an enclave’s
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page fault behavior, and thereafter elaborate on recently
proposed state-of-the-art defense techniques.

Tracking Page Faults. As explained above, a page
fault during enclave execution triggers an AEX that hands
over control to the untrusted operating system, reveal-
ing the base address of the faulting page. A malicious
OS can exploit this property to obtain a page-level trace
of enclave execution by clearing the “present” bit in the
Page Table Entries (PTEs) that form the enclave’s virtual
address space. For maximal information leakage, an ad-
versary allocates at most one code page and up to two
operand data pages at all times. Furthermore, the access
type can be inferred by manipulating the “writable” and
“execute disable” PTE attributes.

Seminal work by Xu et al. [48] first showed how to
exploit the page fault side-channel in a deterministic way.
Their controlled-channel attacks exploit secret-dependent
control flow and data accesses in unmodified legacy ap-
plications running on top of the SGX-based Haven [3]
architecture. To overcome the coarse-grained page-level
granularity, they observe that the sequence of preceding
page faults can be used to uniquely identify a specific
memory access. The controlled-channel attack relies on
an exhaustive offline analysis of the target application
binary to identify page fault sequences, and afterwards
uses this information to extract rich information (full text
and images) without noise from a single run of the victim
enclave. Subsequent work by Shinde et al. [40] demon-
strated that the page fault channel is sufficiently strong to
extract cryptographic key bits from unmodified versions
of OpenSSL and Libgcrypt.

Proposed Defenses. Ferraiuolo et al. [12] propose the
use of dedicated CPU instructions to prevent certain pages
from being swapped out of the protected memory area.
This defense technique overlooks however that page faults
can also be caused by directly modifying PTE attributes
controlled by the OS. Shinde et al. [40] introduce the
notion of PF-obliviousness which requires that any infor-
mation leaked via page fault patterns can also be learned
from running the program without inducing any page
faults. They propose a compiler-based solution called
deterministic multiplexing to generate PF-oblivious pro-
grams that unconditionally access all code and data pages
at the same level of the execution tree. Without developer-
assisted optimizations however, their approach exhibits
unacceptable performance overheads [40] in practical ap-
plication scenarios, which is why they also propose a
hardware-assisted solution. In the contractual execution
model, an enclave agrees with the untrusted OS that a
number of sensitive pages remain mapped in its address
space. The hardware is modified to report page faults
directly to the enclave, without OS intervention, so as

to enable protected enclave programs to detect contract
violations. The enclave’s fault handler can decide to ei-
ther forward the page fault to the OS, abort the enclave
program, or perform a fake execution to hide the page
fault completely.

It seems that Intel made a first step towards supporting
contractual execution on SGX platforms. As per revision
2 of the SGX specification [21], AEX can optionally store
information about page faults in the interrupted enclave’s
SSA frame. This allows an SGX enclave to register a
trusted exception handler for page faults. As explained
in Section 2.1, however, the unprotected application can
trivially eresume an enclave without first calling its des-
ignated exception handler. That is, the SGX v2 design still
leaves enclaves explicitly unaware of interrupts or page
faults. In response, Shih et al. [39] present a pragmatic ap-
proach to contractual execution on SGX platforms. Their
solution, called T-SGX, leverages hardware support for
Transactional Synchronization eXtensions (TSX) in re-
cent Intel processors [23]. TSX was designed to syn-
chronize the critical sections of multiple threads without
the overhead of software-based locks. Code executing
in a TSX transaction is aborted and automatically rolled
back whenever encountering a cache conflict or exception.
The security argument of T-SGX relies on the impor-
tant property that a page fault during a TSX transaction
immediately transfers control to a user-level transaction
abort handler, without first notifying the OS. In case of
an external interrupt on the contrary, the normal AEX
procedure vectors to the OS, but TSX ensures that the
in-enclave transaction abort handler is called on eresume.
The T-SGX compiler wraps each basic block in a TSX
transaction, and uses a carefully designed springboard
page to hide page faults across transactions. Since TSX
lacks hardware support to distinguish between page faults
and regular interrupts in the abort handler, T-SGX restarts
transactions by default, and only terminates the enclave
program after counting too many consecutive aborts of
the same transaction. Since the OS is made unaware of
page faults, an adversary learns at most one page access
by observing early program termination. T-SGX prevents
reruns by requiring the remote enclave owner’s consent
before starting the enclaved application.

Note that T-SGX does not consider frequent enclave
preemptions suspicious (up to 10 consecutive transac-
tion aborts are allowed for each individual basic block).
Between the submission and acceptance of this paper,
however, more recent work was published [7] that lever-
ages TSX to not only hide page faults, but also monitor
suspicious interrupt rates. We discuss this heuristic de-
fense technique and its implications for our attacks in
more detail in Section 6.

Finally, Costan et al. [10] present a hardware-software
co-design called Sanctum that represents a more radical
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approach to eliminate controlled-channel attacks. Not
only does Sanctum dispatch page faults directly to en-
claves, but it also allows them to maintain their own
virtual-to-physical mappings in a separate page table hi-
erarchy in enclave-private memory. As further explored
in Section 6, this design decision effectively prevents
directed page table-based attacks from the OS. While
Sanctum explicitly identifies information leakage from
“accessed” and “dirty” page table attributes as a motiva-
tion for enclave-private page tables, we are the first to
provide an exploitation strategy and to explore the impli-
cations of this side-channel.

3 Stealthy Page Table-Based Attacks

In this section, we present the design of our novel page
table-based attacks. We first introduce two distinct ways
in which a PF-oblivious attacker can detect page accesses
after the enclave has programmatically been exited. Next,
we present our approach to dealing with cached TLB
entries for subsequent accesses to the same page. We
finally explain how to infer conditional control or data
flow in large programs by correlating subsequent page
accesses in page sets as a more stealthy alternative to the
page fault sequences introduced by Xu et al. [48].

3.1 Monitoring Page Table Entries
As a running example, consider the leftmost code snippet
in Fig. 2, where we assume that a and b reference different
data pages. In the classical controlled-channel attack [48,
40], an adversary would revoke access rights on both
pages before entering the enclave, and learn the secret
input by observing a page fault on either a or b.

1 void inc_secret (int s) {
2 if (s)
3 ∗a += 1;
4 else
5 ∗b += 1;
6 }

1 int compare_and_swap (
int old, int new) {

2 if (∗a == old)
3 return (∗a=new);
4 else return ∗a;
5 }

Figure 2: Example code with secret-dependent data flow.

Our attacks are based on the important observation
that a processor in enclave mode accesses unprotected
page table memory during the address translation process.
The key intuition is to exploit side-effects of the page
table walk to identify which page has been accessed. In
the following, we show that an adversary with access to
unprotected page table memory can learn the secret input
without resorting to page faults, either explicitly via page
table attributes, or implicitly by observing cache misses.

A/D Bits. Since memory is a limited system resource,
swapping out pages is benign OS behavior. To help
memory-management software make an informed deci-
sion, Intel x86 processors [23] explicitly provide insight
into an application’s memory usage via page table at-
tributes. The CPU’s address translation logic sets a ded-
icated Accessed (A) bit whenever reading a page table
entry, and takes care to set the Dirty (D) flag the first
time a page has been written to. A/D attributes are stored
in kernel-space memory, alongside the physical address
of the page being referenced by the corresponding PTE
entry, and need to be explicitly cleared by software.

We experimentally confirmed that A/D bits are also
updated in enclave mode. An adversary inspecting these
PTE attributes after enclave execution is thus provided
with a perfect, noise-free information channel regarding
the accessed memory pages. She can furthermore unam-
biguously distinguish between read and write accesses to
the same page. In our inc_secret example, the secret
input is directly revealed through the “accessed” bit of
the PTEs referenced by a respectively b. The right-hand
side of Fig. 2 provides a more subtle example where the
data page referenced by a is first accessed, and thereafter
either written to, or read again. An adversary can distin-
guish between these cases using the “dirty” PTE attribute.
Note that a page fault-based attack could derive the same
information using the “writable” attribute, if stealthiness
is not a concern.

Cache Misses. Since modern CPUs can process data
an order of magnitude faster than it can be fetched from
DRAM, they rely on on an intricate cache hierarchy to
speed up repeated code and data accesses. Contemporary
Intel CPUs [23] feature three levels of multi-way, set-
associative caches for instruction/data memory, and a
separate TLB plus specialized paging-structure caches to
accelerate address translation. Cache memories introduce
a measurable timing difference for DRAM accesses and
enable a powerful class of microarchitectural side-channel
attacks, for they are shared among all software running
on the platform.

A reliable and powerful class of access-driven cache
attacks based on the FLUSH+RELOAD [50] technique
exploits the availability of physical shared memory be-
tween the attacker and the victim, as is often the case with
shared libraries. FLUSH+RELOAD relies on the clflush
instruction that invalidates from the entire cache hierar-
chy all entries corresponding to a specified virtual address.
To spy on a victim application, an adversary explicitly
flushes a specified address in the shared memory region.
Afterwards, she carefully times the amount of time it takes
to reload the data, so as to determine whether or not the
address has been accessed by the victim in the meantime.

One cannot directly apply FLUSH+RELOAD techniques
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to SGX enclaves, since the clflush instruction requires
read permissions on the provided memory location [23].
So it seems that properly implemented SGX enclaves do
not share physical memory with their untrusted environ-
ment. We make the important observation, however, that
an SGX enclave still implicitly shares unprotected page
table memory with the operating system. Since page table
entries are stored in regular DRAM, they are subject to
the same caching mechanisms as any other memory lo-
cation [23, 15] Additionally, modern Intel CPUs employ
an internal paging-structure cache for page table entries
that reference other paging structures (but not those that
map pages), and cache physical addresses in the TLB. As
explained in Section 2.1, the processor’s internal TLB and
paging-structure caches are cleared whenever entering or
exiting an enclave. However, since the data cache hierar-
chy remains explicitly untouched, an adversarial OS can
perform a FLUSH+RELOAD-based cache timing attack
on the page table itself.

In our inc_secret running example, a kernel-space
attacker uses clflush to evict the last-level PTEs refer-
enced by a as well as b, before entering the enclave. After
the enclave has returned, she learns the secret input by
carefully recording the amount of time it takes to reload
the relevant PTEs. The latter can easily be achieved on
x86 processors using the rdtsc instruction. We exper-
imentally ascertained a timing penalty of at least 150
cycles for PTE entries that miss the cache, practically
turning our FLUSH+RELOAD page table attack into a
reliable way to decide enclave page accesses.

Discussion. Cache timing attacks on page table mem-
ory reveal a fundamental flaw in the SGX design. That
is, walking the untrusted page table during enclave execu-
tion discloses memory accesses at page-level granularity,
even when faults would be suppressed and A/D bits are
masked. However, as compared to the A/D channel, a
cache-based attack suffers from a few limitations. First,
one cannot distinguish between read and write accesses to
the same page. This is not really a practical concern, how-
ever, since previous fault-based attacks [48, 40] do not
rely specifically on write accesses. A second limitation
considers the processor’s prefetch unit [22, 17] that loads
adjacent data speculatively into the cache. Specifically,
during the reload phase of FLUSH+RELOAD, subsequent
measurements might be destroyed. We develop a strategy
to robustly infer page access patterns in the presence of
false positives in Section 3.3.

A more severe limitation affects the granularity at
which we can see page accesses. Since CPU caches ex-
ploit spatial locality, they fetch data from DRAM more
than one byte at a time. The atomic unit of cache orga-
nization is called a cache line and measures 64 bytes on
recent Intel processors [23]. A PTE entry on the other

1 point ec_mul (int d, point P) {
2 point Q = 0; int n = nbits(d);
3 for (int i = n−1; i >= 0; i−−) {
4 Q = point_double(Q);
5 if (d & (0x1 << i))
6 Q = point_add(Q, P);
7 }
8 return Q;
9 }

point_double

ec_mul

point_add

Page P1

P2

P3

Figure 3: Elliptic curve scalar point multiplication.

hand occupies only 8 bytes, implying that eight adjacent
PTEs share the same cache line. PTE monitoring at a
cache line granularity can thus conveniently be modelled
as spying on enlarged (8∗4 KB= 32 KB) pages.

3.2 Monitoring Repeated Accesses
So far, we only described how to detect memory page
accesses after the enclave program has returned to its un-
trusted execution context. This suffices to extract secrets
from the elementary code snippets in Fig. 2. More realis-
tic scenarios, however, repeatedly operate over the same
code or data in a single start-to-end run.

As an example, consider the pseudocode for elliptic
curve scalar point multiplication in Fig. 3, where a pro-
vided point P is multiplied with a secret scalar d to obtain
another point Q. The algorithm uses the double-and-add
method, a variation of square-and-multiply used for mod-
ular exponentiation in a.o. RSA, and widely studied in
side-channel analysis research [26, 8, 49, 50, 40]. We
elaborate more on elliptic curve cryptography, and suc-
cessfully attack Libgcrypt’s implementation of the algo-
rithm in Section 5.2. For now, we assume the ec_mul
function is situated on code page P1, whereas the subrou-
tines point_double and point_add are located on dis-
tinct pages P2 and P3. Previous fault-driven attacks [40]
recovers the private scalar by observing different page
fault sequences for iterations corresponding to a one
(P1,P2,P1,P3,P1,P2) or zero (P1,P2,P1,P2) bit.

The key difference in our stealthy attacker model, as
compared to the page fault channel, is that we are not
notified in case of a memory access. Instead, page ta-
ble entries should be explicitly monitored to establish
whether they have been accessed or not. If the adversary
only probes PTEs after enclave execution, she is left with
aggregated information only (e.g., all pages P1, P2, and P3
have been accessed). We therefore introduce a dedicated
spy thread that monitors PTE entries in real-time, while
the victim executes. The main challenge now becomes
that SGX caches address translations in the TLB, imply-
ing that only the first access to a specific page results in a
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page table walk. Subsequent accesses to the same page
most likely hit the TLB, and will not be observed by a spy
thread monitoring page table memory. In the following,
we present our approach to overcoming this challenge.

Flushing the TLB. We explicitly interrupt the enclaved
victim application in order to reliably evict cached ad-
dress translations without provoking page faults. Note
that we don’t even have to invalidate TLB entries explic-
itly, since an SGX-enabled processor automatically takes
care of this during the AEX process. An adversary is left
with two choices. She can either periodically interrupt
the enclave with a timer-based preemption, or she can
conditionally interrupt the victim CPU from a snooping
thread. The timer-based approach would have to inter-
rupt the victim enclave at a high frequency to minimize
the risk of missing page accesses. Since SGX leaves
enclaves interrupt-unaware by design, they have no way
of detecting these frequent preemptions. Some of the
enhanced PMA designs [10, 39] targeted by our stealthy
attacker, however, redirect interrupts as well as page faults
to a trusted enclave entry stub. Such fortified enclaves
could recognize suspicious interrupt rates as an artefact
of the attack, defeating our argument for stealthiness. We
therefore opted for the second option that conditionally
interrupts the victim CPU minimally. In this respect, note
that concurrent, unpublished work [46] has demonstrated
that Intel’s HyperThreading technology can be abused to
evict TLB entries from a co-resident logical processor in
real-time, without interrupting the victim enclave.

Our spy thread monitors one or more page table entries
in a tight loop, preempting the victim enclave CPU after
a page access has been detected. The latter can be easily
achieved in multiprocessor systems through a directed
Inter-Processor Interrupt (IPI), specifically designed to
a.o., synchronize address translations across cores. From
the point of view of the enclave, IPIs are directly handled
by the CPU’s local Advanced Programmable Interrupt
Controller (APIC), and are thus indistinguishable from
regular interrupts sent by a benign operating system.

Monitoring A/D Bits. We experimentally confirmed
that the “accessed” PTE attribute is only updated during
the first page walk, since subsequent accesses hit the
TLB. Furthermore, we found that the “dirty” attribute
is independently set once for the first subsequent write
access to that page. In the A/D implementation of our spy
thread, an IPI is sent as soon as the A bit of the monitored
PTE entry flips. Alternatively, an adversary can choose to
only interrupt the victim enclave when the D flag changes.
This might allow for a slightly stealthier attack, which
interrupts the victim minimally, as pages are typically
more often read than written to.

(a) Victim PTE access maccess

(b) FLUSH+RELOAD hit

(c) FLUSH+RELOAD miss reload

(d) FLUSH+FLUSH hit flush

time

Figure 4: FLUSH+FLUSH as a high-resolution, low-
latency channel to spy on victim PTE memory accesses.

Monitoring PTE Memory Accesses. In a classical
FLUSH+RELOAD attack [50], time is divided into slots.
The spy program flushes the monitored cache lines at the
start of each time slot, and reloads them at the end to find
out whether they have been accessed by the concurrent
victim program executing independently. When the vic-
tim’s memory access overlaps with the flush or reload
phases of the spy thread however, the measurement might
be lost, as illustrated in Fig. 4c. Naturally, the probability
of an overlapping victim access increases as the length
of the time slot decreases, whereas a longer time slot
increases detection latency and might miss subsequent
memory accesses by the victim. As such, a trade-off is
presented between attack resolution and accuracy.

When reloading PTEs after the enclave has been exited,
as in the start-to-end examples of Fig. 2, our measure-
ment cannot be destroyed by a concurrent victim access.
This is not the case, however, when monitoring page table
memory in real-time from a spy thread. Moreover, the
victim only makes a single memory access to the mon-
itored PTE entry, for subsequent accesses to the same
page hit the TLB. In a classical FLUSH+RELOAD attack
on the other hand, a missed memory access can be com-
pensated for by subsequent accesses in the next time slot.
We therefore chose to adopt a novel technique called
FLUSH+FLUSH [16] that abuses microarchitectural tim-
ing differences in the execution time of the x86 clflush
instruction, which depends on whether the data is cached
or not. A spy thread that repeatedly flushes a specific
PTE entry will observe a slightly higher execution time
when the page has been accessed by the victim, as il-
lustrated in Fig. 4d. Spying on page table memory the
FLUSH+FLUSH way thus ensures we can see all page
accesses with a minimal detection latency.

FLUSH+FLUSH also confronts us with a new challenge
however, since the microarchitectural timing differences
of the clflush instruction are inherently more subtle
than the apparent timing penalty for a DRAM access in
FLUSH+RELOAD [16]. On the bright side, clflush does
not trigger the processor’s prefetcher, and therefore does
not destroy subsequent measurements, a known concern
for FLUSH+RELOAD [17]. We furthermore remark that,
if needed, the spy thread can be made more robust by
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monitoring multiple code or data PTEs that each should
be accessed before sending the IPI.

3.3 Inferring Page Access Patterns
An essential ingredient of the attack procedure outlined so
far, is that we interrupt the victim enclave via a targeted
IPI from the spy thread. Some time passes however before
the victim is interrupted, since the spy CPU cannot instan-
taneously detect PTE accesses and send the IPI. During
this time interval, the victim enclave continues to exe-
cute instructions that may access additional code and data
pages. Previous controlled-channel attacks on the con-
trary instantaneously trap to the OS in case of a page fault.
This enables a PF-aware adversary to unambiguously dis-
tinguish two successive enclave instructions, whereas the
accuracy at which we can see subsequent page accesses is
constrained by IPI latency. In this respect, a fault-driven
attack can be modelled as having zero latency between
detecting a page access and interrupting the victim.

Page Fault Sequences. Naturally, page table-based at-
tacks have to deal with the limitation that they can only
see memory accesses at a page-level granularity. Since
functions as well as data objects typically share the same
memory page with other functions or data objects, one
cannot directly identify specific function or data accesses
in a large enclave program. Xu et al. [48] overcome this
challenge by identifying unique page fault sequences that
lead to a particular code or data access. Since a PF-aware
attacker does not have to cope with latency in the measure-
ment process, she may construct page access sequences
at instruction-level granularity.

In the running example of Fig. 3, the ec_mul function
on P1 serves as a trampoline to redirect control flow to
either point_double on page P2 or point_add on page
P3, based on the secret scalar bit under consideration. A
one bit can be identified by the sequence (P2,P1,P3,P1,P2).
An observed page fault sequence of (P2,P1,P2) on the
other hand, corresponds to an iteration with a zero bit.
One approach would be to implement a state machine in
the spy thread to recognize such sequences. However, as
the intermediate P1 accesses are only a few instructions
long, they could be easily missed by a stealthy spy that
has to take IPI latency into account. Moreover, page
fault sequences presuppose a completely noise-free way
of establishing enclave page accesses. Recall from the
above discussion, however, that FLUSH+RELOAD may
suffer from occasional false positives by triggering the
processor’s prefetcher.

Page Sets. To correlate subsequent page accesses in
large enclave programs, we introduce the notion of page
sets as a robust alternative to page fault sequences. Our

spy thread continuously monitors one or more PTEs, from
here on referred to as the trigger page(s), and interrupts
the victim enclave as soon as an access is detected. Upon
IPI arrival, the spy establishes the set of pages (not) ac-
cessed by the victim, using one of the techniques from
Section 3.1. Since the TLB is cleared whenever enter-
ing or exiting the enclave, these pages must have been
accessed at least once by the victim from the previous
interrupt up to now. We make the key observation that
specific points in the execution trace of a large enclave
program can be uniquely identified by matching the pat-
tern of all pages accessed or not accessed in between two
successive accesses to a trigger page. Note that informa-
tion recovery via page sets is inherently stealthier than
the previously proposed page fault sequences [48, 40] in
that victim enclaves are only interrupted when accessing
the trigger page. Where a page fault only leaks one bit
of information (i.e., the trigger page was accessed), our
notion of page sets allows a spy to capture the maximum
information for every trigger page interrupt.

Applying our page set theory to the running exam-
ple of Fig. 3, the spy thread monitors the trigger page
P2 holding a.o., point_double, and matches the page
set {P1,P3} on every interrupt. If both P1 (ec_mul) and
P3 (point_add) have been accessed, the iteration corre-
sponds to a one bit. Likewise, if P1 has been accessed, but
not P3, the iteration processed a zero bit. Finally, in case
P1 as well as P3 were both not accessed, P2 must have
been accessed from an execution context other than the
targeted point_double invocation, and we classify the
interrupt as a false positive.

After identifying secret-dependent control flow or data
accesses in the victim application, a successful attack
comes down to designating specific pages to be tracked in
the spy thread, and recognizing the associated page set pat-
terns. Analogous to previous fault-based attacks [48, 40],
we first perform a detailed offline analysis of the enclaved
application binary to extract an ideal trace of instruction-
granular page accesses for a known input. From this ideal
trace, we select a suitable candidate trigger page, and we
construct the sets of all pages accessed or not accessed in
between two hits on the trigger page. By comparing the
resulting page sets, we are left with a page set pattern that
(uniquely and robustly) identifies a specific point in the
victim’s execution trace.

4 Implementation

Similar to previous controlled-channel attacks [48, 40],
our exploits target unmodified legacy applications running
under the protection of a PMA. The enclaved application
binary is protected from the untrusted host operating sys-
tem by means of a shielding system that provides trusted
library services, and interposes on system calls. Previ-
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ous controlled-channel attacks on Intel SGX were imple-
mented for the Haven [3] shielding system. Since Haven
is not publicly available, we implemented our attacks on
the open-source1 Graphene-SGX library OS [45]. We
first briefly overview the internals of Graphene-SGX, and
thereafter explain how we extended the untrusted runtime
with a reusable attacker framework.

Graphene-SGX. Library OSs such as Graphene [44]
repackage conventional OS kernel services into a user-
mode application library. System calls made by the legacy
application are transparently transformed into libOS func-
tion calls, which are then either processed locally, or
translated into a minimal host kernel ABI that provides
core OS primitives. The libOS relies on a small Platform
Adaptation Layer (PAL) to translate platform-independent
host ABI calls into a narrow set of system calls to the un-
derlying host operating system, which remains, however,
explicitly trusted from a security perspective.

Graphene-SGX [45] – like other recently proposed
SGX-based shielding systems including Haven [3],
Panoply [41], and SCONE [2] – improves over this situ-
ation by not only protecting libOS instances from each
other, but also from a malicious host operating system.
To this end, Graphene-SGX encapsulates the entire li-
bOS, including the unmodified application binary and
supporting libraries, inside an SGX enclave. Graphene
also inserts a trusted runtime with a customized C library
and ELF loader in the enclave. Since SGX prohibits en-
claves from making system calls directly, the PAL is split
into a trusted part that calls out to an untrusted runtime
in the containing application to perform the system call
to the untrusted host OS. Graphene-SGX furthermore re-
lies on an untrusted Linux driver for enclave creation/tear
down and protected memory management via the dedi-
cated ring-zero SGX instruction set.

Attack Framework. We implemented our attacks as
an extension to Graphene’s untrusted runtime, leaving
the trusted in-enclave components unchanged. Our im-
plementation is conceived as a reusable framework to
facilitate eavesdropping on different application binaries.

Figure 5 summarizes the steps undertaken by our attack
framework. 1 The untrusted user space runtime creates
a separate spy thread just before entering the enclave’s
main function. We affinitize the spy and victim threads
to their own physical CPU cores to avoid any noise from
page table shoot downs by the OS scheduler. 2 The
newly created spy thread continues its execution in kernel
space by calling to our modified Graphene-SGX driver.
We run our core attacker code in kernel mode to be able to
easily send IPIs, inspect PTE attributes, and monitor page

1https://github.com/oscarlab/graphene
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Figure 5: Graphene-SGX attack framework interaction.

table memory. 3 The spy first goes through a pluggable,
attack-specific initialization phase that creates the page
sets to be monitored. 4 After synchronizing with the
victim thread, which is still waiting to enter the enclave,
the spy enters a tight probing loop that measures either
clflush execution time, or A/D attributes of one or more
page table entries. 5 Victim thread enters the enclave.
6 Upon detecting an access on the trigger page, the spy

interrupts the victim thread as soon as possible. 7 The
IPI handler on the victim CPU now establishes the ac-
cess pattern for the monitored page set using either the
noise-free FLUSH+RELOAD or A/D mechanism. Page set
access patterns are logged for later parsing by an attack-
-specific post-processing script. 8 Spy and victim threads
synchronize once more before resuming the enclave.

So far, we assumed the attacker obtained the page ad-
dresses to be monitored from an objdump of the applica-
tion binary. Graphene, like other SGX-based shielding
systems [3, 41, 2], does not randomize the base address
of loaded executables. Instead, applications and support-
ing libraries (including libc) are loaded at deterministic
memory locations. To easily discover executable base
addresses, we propose to first deploy the target applica-
tion binary in an attacker-controlled libOS instance that
we minimally modified to leak load addresses. SGX’s
remote attestation scheme properly prevents us from de-
ploying the modified libOS instance when running the
application for the remote stakeholder, but the observed
load addresses will be identical. Note that it has been
shown [48] that hypothetical support for conventional ad-
dress space layout randomization, which only randomizes
the application’s base address, could be easily defeated
by observing page access patterns.

Inter-Processor Interrupts. In a page fault-driven at-
tack, the victim enclave is exited immediately when ac-
cessing a monitored page. For our PF-oblivious attacks
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on the contrary, we define IPI latency as the number of
instructions executed by the victim enclave after access-
ing a trigger page, and before being interrupted by the spy
thread. Reducing IPI latency is an important implementa-
tion consideration in that it defines the accuracy at which
we can see subsequent page accesses. Before quantifying
latency in the evaluation section, we present some general
implementation techniques to minimize IPI latency.

Our driver hooks into an unused IPI vector of Linux’s
KVM subsystem by registering the address of our inter-
rupt handler in the system-wide IDT. This allows us to
send the IPI promptly from assembly code in the spy
thread by writing to the relevant memory-mapped APIC
address, instead of having to rely on Linux’s IPI subsys-
tem that performs bookkeeping on shared data structures
before sending the interrupt. To further reduce IPI latency,
we considered a previously proposed [28] technique that
sets the “cache disable” bit in the CR0 control register to
disable the L1, L2, and L3 cache on the CPU running the
victim enclave. We experimentally confirmed that this
technique dramatically slows down the victim thread, and
substantially reduces the number of instructions executed
after accessing a trigger page. However, setting CR0.CD
on the victim CPU invalidates our cache-based PTE tim-
ing attack vector. Moreover, the aforementioned T-SGX
defense [39] would be able to detect this technique, for
TSX relies on the CPU cache to start transactions [23].

Analyzing Page Sets. With our attack framework in
place, the main challenge left is to select the pages that
need to be tracked in the spy thread. To study the be-
havior of target applications, previous controlled-channel
attacks [48] record a complete, byte-granular trace of
page fault addresses by running the application outside of
the enclave with at most one code and data page allocated
at all times. We simplify this process via a GNU debugger
script that extracts an instruction-granular code page trace
by single-stepping through the unprotected application
binary, recording the symbolic name and virtual page ad-
dress of the instruction pointer. Furthermore, by placing
strategic breakpoints, the debugger script can easily be
instrumented to mark individual loop iterations.

To construct the most stealthy attack, we select a trig-
ger page that is minimally accessed in the extracted trace,
and we compose a set of remaining pages that unambigu-
ously identifies the code page access of interest. When
running the attack on an enclaved application binary, our
driver dumps page set patterns for all accesses on the
trigger page. Afterwards, we use a small, attack-specific
post-processing script to match the desired patterns in
the driver output. If needed, the pattern to be matched,
can also include the page sets of previous or succeeding
trigger page accesses, and can be made more robust by
means of a regular expression.

Table 1: IPI latency in terms of the number of instructions
executed by the victim after accessing the trigger page.

ACCESSED FLUSH+FLUSH

Experiment Mean σ Mean σ Zero %

nop 431.70 34.11 0.65 17.65 99.84
add register 176.30 14.60 0.15 6.18 99.94
add memory 32.45 2.79 0.06 1.92 99.88
nop nocache 0.02 0.39 – – –

5 Evaluation

In this section, we evaluate our attack framework. We
first provide microbenchmarks to quantify IPI latency,
and thereafter demonstrate the effectiveness of our attacks
by extracting EdDSA session keys from an unmodified
binary of the widely used Libgcrypt cryptographic library.

All experiments were conducted on publicly available
off-the-shelf SGX hardware. We used a commodity Dell
Inspiron 13 7359 laptop with a Skylake dual-core Intel
i7-6500U processor and 8 GB of RAM. The machine runs
Ubuntu 15.10, with a generic 64-bit Linux 4.2.0 kernel.
To prevent any noise from OS scheduling decisions, we
disabled HyperThreading and reserved a dedicated CPU
for the spy thread using Linux’s isolcpus boot option.
We based our attack framework on a recent master check-
out of the Graphene project, compiled with gcc v5.2.1.

5.1 IPI Latency Microbenchmarks
Recall from Section 4 that we want to minimize the num-
ber of instructions executed by the victim enclave after
accessing a trigger page, and before being interrupted by
a targeted IPI from the spy thread. In order to reliably
quantify IPI latency, we wrote a small microbenchmark
application that first accesses an isolated memory page,
and immediately thereafter starts executing an instruction
slide of 5,000 identical x86 instructions. For the mi-
crobenchmark experiments, we instrumented our driver to
retrieve the instruction pointer stored in the SSA frame of
the interrupted debug enclave through the edbgrd SGX
instruction. The exact number of instructions executed in
the microbenchmark application can be inferred by com-
paring the retrieved instruction pointer with the known
start address of the instruction slide.

Interrupt Granularity. Table 1 records IPI latencies
for different x86 instructions. We repeat all experiments
10,000 times for a spy thread that monitors the trigger
page through the “accessed” PTE attribute, as well as
for a spy that repeatedly flushes page table memory lo-
cations. We present the mean and the standard deviation
(σ ) to characterize IPI latency distributions. In the first
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experiment, we prepare an instruction slide with ordi-
nary no-operations. The upper row of Table 1 reveals
a first important result. That is, our benchmark enclave
can only be interrupted by an A/D spy at a relatively
coarse-grained granularity of about 430 nops, whereas
the novel FLUSH+FLUSH technique immediately inter-
rupts the victim thread. Note that interrupts with zero
IPI latency arrive within the instruction that accessed
the trigger page, even before the next enclave instruc-
tion started executing. The last column, which lists the
percentage of interrupts with zero IPI latency, distinctly
shows that a victim thread monitored by a FLUSH+FLUSH
spy is interrupted within the trigger instruction with very
high probability (99.84%). As such, FLUSH+FLUSH
represents a precise, instruction-granular, technique to
interrupt victim enclaves, improving significantly over
related state-of-the-art enclave execution control propos-
als [47, 28, 33]. We furthermore found the technique to
be reliable, for FLUSH+FLUSH recorded all 10,000 page
accesses, without false positives, and with significantly
less noise (smaller standard deviation) than an A/D spy.

The increased advantage of a FLUSH+FLUSH spy, as
opposed to a spy monitoring A/D bits, can be understood
from the effects on the caching behavior of the page table
walk. A PTE memory location that is continuously probed
by an A/D spy will be cached when the victim CPU per-
forms the page table walk, whereas a FLUSH+FLUSH spy
actively ensures the victim CPU misses the cache. As
such, instructions that access the trigger page will take
longer to complete, providing a wider time frame for IPI
arrival. This effect is further aggravated when the proces-
sor needs to update the “accessed” page table attribute.
For the victim CPU needs to perform another memory
access to reload the PTE entry from DRAM when the
A bit was not set, and the corresponding cache line has
been flushed by a concurrent spy thread. Interestingly,
we found that the victim’s second PTE memory access,
where the A bit is updated, is more noticeable from a
FLUSH+FLUSH spy thread. Intel’s software optimization
manual [22] indeed confirms that “flushing cache lines in
modified state are more costly than flushing cache lines
in non-modified states”.

Instruction Latency. The second and third experi-
ments investigate the influence of the microbenchmark
instruction type on IPI latency. We start from the intu-
ition that an individual nop instruction is trivial to execute
and can easily be pipelined, allowing many instructions
to be executed in the limited time period after accessing
the trigger page and before IPI arrival. The second row
of Table 1 confirms that a victim program can make sig-
nificantly less progress on an instruction slide with add
instructions that sequentially increment a processor regis-
ter. Likewise, the third row shows that IPI latency drops

even further when the victim executes a sequence of add
instructions that increment a memory location. The latter
can be explained from the additional page table walk that
retrieves the physical memory address of the data operand
for the first add instruction.

Finally, we performed an experiment that entirely dis-
ables instruction and data caching on the victim CPU by
setting the CR0.CD bit, as explained in Section 4. The
last row of Table 1 clearly shows that this approach can
almost completely eliminate IPI latency (mean and stan-
dard deviation near zero) for an A/D spy. This confirms
our hypothesis that the observed IPI latency differences
stem from the caching behavior of the page table walk. Of
course, a FLUSH+FLUSH spy cannot see page accesses
when the cache is disabled on the victim CPU.

5.2 Attacking Libgcrypt EdDSA
To illustrate the applicability of our attacks on real-world
applications, we extract private EdDSA session keys
from a general purpose cryptographic library Libgcrypt,
which used in a.o., the popular GnuPG cryptographic soft-
ware suite. More specifically, we reproduce a previously
published [40] page fault-driven attack on Libgcrypt,
showing that our stealthy attack vectors can extract the
same information without triggering any page faults.
Since Libgcrypt is officially distributed from source code,
we built unmodified binaries for Libgcrypt v1.6.3 and
v1.7.5 as well as the accompanying error-reporting library
Libgpg-error v1.26 through the default ./configure &&
make invocation, using gcc v5.2.1.

EdDSA Implementation. The Edwards-curve Digital
Signature Algorithm (EdDSA) [4] is an efficient, high-
security signature scheme over a twisted Edwards elliptic
curve with public reference point G. The security of el-
liptic curve public key crypto systems critically relies
on the computational intractability of the elliptic curve
discrete logarithm problem: given an elliptic curve with
two points A and B, find a scalar k such that A = kB.
Recall that our running example in Fig. 3 provides an
efficient algorithm for the inverse operation, i.e., multiply
a point with a known scalar. EdDSA uses scalar point
multiplication for public key generation, as well as in the
signing operation. The private key d is derived from a ran-
domly chosen large scalar value, and the corresponding
public key is calculated as Q = dG. To sign a message
M, EdDSA first generates a secret session key r, also
referred to as nonce, by hashing the long-term private
key d together with M. Next, the signature is calculated
as the tuple (R = rG,S = r + hash(R,Q,M)d). It can
be seen that an adversary who learns the secret session
key r from side-channel observation during the signing
process, can easily recover the long-term private key as
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1 if (mpi_is_secure (scalar)) {
2 /∗ If SCALAR is in secure memory we assume that it is the
3 secret key we use constant time operation. ∗/
4 point_init (&tmppnt);
5

6 for (j=nbits−1; j >= 0; j−−) {
7 _gcry_mpi_ec_dup_point (result, result, ctx);
8 _gcry_mpi_ec_add_points (&tmppnt, result, point, ctx);
9 if (mpi_test_bit (scalar, j)) /∗ ← eliminated in v1.7.5 ∗/

10 point_set (result, &tmppnt);
11 }
12 point_free (&tmppnt);
13 } else {
14 for (j=nbits−1; j >= 0; j−−) {
15 _gcry_mpi_ec_dup_point (result, result, ctx);
16 if (mpi_test_bit (scalar, j))
17 _gcry_mpi_ec_add_points (result, result, point, ctx);
18 }
19 }

Figure 6: Scalar point multiplication in Libgcrypt v1.6.3.

d = (S− r)/hash(R,Q,M), with (R,S) a valid signature
for a known message M [4, 49].

Figure 6 provides the relevant section of the scalar
point multiplication routine in Libgcrypt v1.6.3. Lines
14 to 18 are a straightforward implementation of Fig. 3,
and have previously been successfully targeted in a page
fault-aware attacker model [40]. We remark however that
Libgcrypt provides some protection against side-channel
attacks by tagging sensitive data, including the EdDSA
long-term private key, as “secure memory” [25]. Lines 1
to 12 show how a hardened, add-always scalar point mul-
tiplication algorithm is applied when the provided scalar
is tagged as secure memory. However, while the hardened
algorithm of Libgcrypt v1.6.3 greatly reduces the attack
surface by cutting down the amount of secret-dependent
code, we show that even the short if branch on line 9
remains vulnerable to page table side-channel attacks dur-
ing the public key generation phase. We verified that this
defect has been addressed in the latest version v1.7.5 by
replacing the if branch with a truly constant time swap
operation. We also found, however, that Libgcrypt v1.6.3
as well as v1.7.5 do not tag the secret EdDSA session
key as secure memory, resulting in the non-hardened path
being taken during the signing phase.2

Monitoring A/D Bits. We first explain how we at-
tacked the hardened multiplication (lines 6 to 11) in
Libgcrypt v1.6.3. We found that every loop iteration ac-
cesses 21 distinct code pages, regardless of whether a one
or a zero bit was processed. Our stealthy spy thread moni-
tors the A attribute of the trigger page table entry holding
the physical page address of point_set, which is ac-
cessed 126 or 127 times each iteration, depending on the
scalar bit under consideration. We rely on a robust PTE

2 To address this shortcoming, we contributed a patch that has been
merged in Libgcrypt v1.7.7.

set of nine additional code pages whose combined A bits
unambiguously identify an unconditional execution point
in add_points as well as the conditional point_set
invocation on line 10. We refer the interested reader to
Appendix A for the complete page sets of the Libgcrypt
attacks. Our post-processing script reliably recovers the
full 512-bit EdDSA session key by counting the number
of IPIs (i.e., trigger page accesses) in between two page
set pattern hits. PTE set hits are classified as belonging to
a different iteration when the number of IPIs in between
them exceeds a certain threshold value. As such, itera-
tions that processed a one bit are easily recognized by
two page set hits, whereas zero iterations hit only once.
Our A/D attack on Libgcrypt v1.6.3 interrupts the victim
enclave about 60,000 times.

To attack the standard multiplication (lines 14 to 18)
in the latest Libgcrypt v1.7.5, we spy on the A attribute
of the PTE that references the test_bit code page. Our
offline analysis shows that the trigger page is accessed 93
or 237 times for iterations that respectively process a zero
or a one bit. The spy thread records a PTE set of four
additional code pages whose combined access patterns
uniquely identify the if branch on line 16. We reliably
recover all 512 secret scalar bits at post-processing time
by observing that the PTE set pattern repeats exactly once
every loop iteration, and the page set value for the first
subsequent trigger page access depends on whether the if
branch was taken or not. We counted only about 40,000
IPIs for our A/D attack on Libgcrypt v1.7.5.

Monitoring Cache Misses. Recall from Section 3 that
spying on page table memory at a cache line granularity
is challenging in that we can only see accesses for con-
ceptually enlarged 32 KB pages. Our offline analysis on
Libgcrypt v1.7.5 shows that every loop iteration accesses
22 code pages, belonging to three different application
libraries: Libgcrypt, Libgpg-error, and the trusted libc
included by Graphene. Only 11 of these 22 code pages
fall in distinct cache lines. Interestingly, we found that the
free wrapper function used by Libgcrypt stores/restores
the errno memory location of the trusted in-enclave libc
46 or 102 times for zero respectively one iterations. The
address of the error number for the current thread can be
retrieved via the __errno_location function, residing
at a remote location within the libc memory layout.

Our stealthy FLUSH+FLUSH spy uses the code page for
the __errno_location libc function as a reliable trig-
ger page that does not share a cache line with any of the
other pages accessed in the loop. Our cache-based attack
on Libgcrypt interrupts the victim enclave about 130,000
times for a single, start-to-end run. We furthermore con-
struct a page set covering 7 distinct PTE cache lines that
are recorded by the spy on every trigger page access, us-
ing the FLUSH+RELOAD technique after interrupting the
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enclave. While the extracted page set value sequences
themselves appear quite noisy at first sight, we found that
certain values unmistakably repeat more often in itera-
tions that processed a one bit. Furthermore, the number of
IPIs (i.e., errno accesses) in between these values exhibit
clear repetitions. Our post-processing script uses a regular
expression to identify a robust pattern that repeats once
every iteration. Again, key bits can be inferred straightfor-
wardly from the number of IPIs in between pattern hits.
Using this technique, we were able to correctly recover
485 bits of a 512-bit secret EdDSA session key in a single
run of the victim enclave. Moreover, using the number
of IPIs in between two recovered scalar bits as a heuris-
tic measure, our post-processing script is able to give an
indication of which bit positions are missing.

6 Discussion and Mitigations

Frequent Enclave Preemption. Our work shows that
enclave memory accesses can be learned by spying on un-
protected page tables, without triggering any page faults.
This observation is paramount for the development of de-
fenses against page table-based threats. Specifically, state-
of-the-art PF-oblivious defenses [40, 39] do not achieve
the required guarantees. We only interrupt the enclave
when successive accesses to the same page need to be
monitored. Importantly, our attacks remain undetected by
T-SGX [39], since it allows up to 10 consecutive trans-
action aborts (interrupts) for each individual basic block.
We do acknowledge, however, that the number of inter-
rupts reported for our Libgcrypt attacks in Section 5.2
is substantially higher than what is to be expected under
benign circumstances. We can therefore see improved,
heuristic defenses using suspicious interrupt rates as an
artefact of an ongoing attack.

Indeed, Déjà Vu [7], which was first published after
we submitted this work, explores the use of TSX to con-
struct an in-enclave reference clock thread that cannot
be silently stopped by the OS. The enclave program is
instrumented to time its own activity, so as to detect the
execution slowdown associated with an unusual high num-
ber of AEXs. While Déjà Vu would likely recognize fre-
quent enclave preemptions as a side-effect of our current
attack framework, we argue that heuristic defenses do not
address the root causes of page table-based information
leakage. That is, our novel attack vectors are still appli-
cable, and depending on the victim program, interrupts
may not even be required. The knowledge that a specific
page is accessed, can reveal security-sensitive information
directly, or enable an attacker to launch a second phase
of her attack [47]. Furthermore, as part of the continuous
attacker-defender race, we expect the contributed attack
vectors to trigger improved, stealthier attacks that remain
under the radar of Déjà Vu-like defenses.

In this regard, during the preparation of the camera-
ready version of this paper, we became aware of concur-
rent, non-peer-reviewed research [46] that independently
developed page table-based attacks similar to ours. In con-
trast, their work focusses on the A/D channel rather than
PTE caching, and shows that HyperThreading technology
allows TLB entries to be evicted without interrupting the
victim enclave. As such, they effectively demonstrate
that Déjà Vu-like defenses are inherently insufficient to
eliminate page table-based threats.

Hiding Enclave Page Accesses. At the system level,
some lightweight embedded PMAs [34, 27] avoid page
table-based threats altogether by implementing hardware-
enforced isolation in a single-address-space. Alterna-
tively, some higher-end PMA research prototypes [10, 11,
30, 42] place enclave page tables out of reach of an at-
tacker. Unfortunately, we believe such an approach is un-
acceptable for Intel SGX, especially when protecting sen-
sitive application data from potentially malicious cloud
providers [3, 36]. In such use cases, the cloud provider
must be able to quickly regulate different cloud users
competing for scarce platform resources including EPC
memory. Fortified PMA designs such as Sanctum [10] on
the other hand move page tables within the enclave, and
require the OS to engage in a lengthy protocol whenever
reclaiming a physical page. Furthermore, when applying
Sanctum’s enclave-private page table design to modern
x86 processors [23], an adversary could still leverage the
Extended Page Tables (EPTs) set up by the hypervisor.
That is, any access to guest-physical pages, including the
enclave and its private page tables, results in an EPT walk
that sets accessed and dirty bits accordingly. Masking
A/D attributes in enclave mode is neither sufficient nor
desirable, as it cannot prevent our cache-based attacks,
and disrupts benign OS memory management decisions.

At the application level, we believe the academic com-
munity should investigate different defense strategies
based on the type of enclave. For small enclaves that
must be offered the highest security guarantees, auto-
mated compiler-based solutions [8] are to be considered.
Good practices applied to cryptographic software (e.g.,
not branching on a secret) may be extended to more gen-
eral approaches, such as the deterministic multiplexing de-
fense proposed by Shinde et al. [40]. For uses cases where
unmodified application binaries are loaded in an enclave,
however, such approaches would likely lead to unaccept-
able performance overhead. In such situations, the use
of more probabilistic security measures may be accept-
able. Note that previous page fault-driven research [48]
successfully defeated conventional Address Space Layout
Randomization (ASLR) schemes that randomize an appli-
cation’s base address. SGX-Shield [38], on the other hand,
implements fine-grained ASLR by compiling enclaved
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application code into small 32- or 64-byte randomization
units that can subsequently be re-shuffled at load time.

7 Related Work

A recent line of work has developed PMA security archi-
tectures that support secure isolated execution of protected
modules with a minimal trusted computing base, either via
a small hypervisor [31, 30, 42, 19], or with trusted hard-
ware [29, 32, 11, 10, 34, 27]. Intel SGX represents the
first widespread PMA solution, included in off-the-shelf
consumer hardware, and has recently been put forward
to protect sensitive application data from untrusted cloud
providers [3, 36]. As such, SGX has received consid-
erable attention from the research community, and one
line of work, including Graphene-SGX [45], Haven [3],
Panoply [41], and SCONE [2] has developed small libOSs
that facilitate running unmodified legacy applications in
SGX enclaves. However, Xu et al. [48] recently pointed
out that enclaved execution environments are vulnerable
to a new class of powerful controlled-channel attacks con-
ducted by an untrusted host operating system. We have
discussed previous research results on page table-based
attacks and defenses extensively in Section 2.3. Iago at-
tacks [6] furthermore exploit legacy applications via the
system call interface, and AsyncShock [47] demonstrates
that an adversarial OS can more easily exploit thread
synchronization bugs within SGX enclaves. Finally, be-
tween submission and publication of this paper, the SGX
research community has witnessed a steady stream of
microarchitectural side-channel attacks; either by abusing
the branch prediction unit [28], or in the form of fine-
grained PRIME+PROBE [13, 37, 5, 33] cache attacks.

In a more general, non-PMA context, there exists a
vast amount of research on microarchitectural cache tim-
ing vulnerabilities [35, 50, 17]. Especially relevant to
our work is the FLUSH+FLUSH [16] channel which was
only proposed very recently, and attack research [49] that
applies FLUSH+RELOAD to partially recover OpenSSL
ECDSA nonces. Furthermore, timing differences from
TLB misses have been exploited to break kernel space
ASLR [20]. More recently, it has been shown that kernel
ASLR can also be bypassed by exploiting timing differ-
ences in the prefetch instruction [15], or by leverag-
ing TSX [24]. Finally, recent concurrent work [14] on
JavaScript environments has independently demonstrated
a page table-based cache side-channel attack that com-
pletely compromises application-level ASLR.

8 Conclusion

Our work shows that page table walks in unprotected
memory leak enclave page accesses to untrusted system

software. We demonstrated that our stealthy attack vectors
can circumvent current state-of-the-art defenses that hide
page faults from the OS. As such, page table-based threats
continue to be worrisome for enclaved execution.
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A Libgcrypt Page Sets

For completeness, we provide the full page sets for the
different versions of our Libgcrypt attacks below. The
PTE sets are based on plain Libgcrypt, Libgpg-error, and
Graphene-libc binaries, as generated by gcc v5.2.1 from
the default ./configure && make invocation. The pro-
vided addresses are relative to the load addresses used by
Graphene, as explained in Section 4.

1 #if CONFIG_SPY_GCRY && (CONFIG_SPY_GCRY_VERSION == 163)
2 #define SET_ADRS (GCRYLIB_ADRS + 0xa7780) // _gcry_mpi_set
3 #define TST_ADRS (GCRYLIB_ADRS + 0xa0a00) // _gcry_mpi_test_bit
4 #define MULP_ADRS (GCRYLIB_ADRS + 0xa97c0) // _gcry_mpi_ec_mul_point
5 #define TDIV_ADRS (GCRYLIB_ADRS + 0xa1310) // _gcry_mpi_tdiv_qr
6 #define ERR_ADRS (GPG_ERR_ADRS + 0x0b6d0) // gpg_err_set_errno
7 #define FREE_ADRS (GCRYLIB_ADRS + 0x0ce90) // _gcry_free
8 #define PFREE_ADRS (GCRYLIB_ADRS + 0x110a0) // _gcry_private_free
9 #define XMALLOC_ADRS (GCRYLIB_ADRS + 0x0d160) // _gcry_xmalloc

10 #define MUL_ADRS (GCRYLIB_ADRS + 0xa6920) // _gcry_mpih_mul
11 #define PMALLOC_ADRS (GCRYLIB_ADRS + 0x10f80) // _gcry_private_malloc
12
13 #define MONITOR_ADRS SET_ADRS
14
15 void construct_pte_set(spy_pte_set_t *set)
16 {
17 pr_info("gsgx-spy: constructing A/D PTE set for gcry v1.6.3\n");
18 add_to_pte_set(set, TST_ADRS);
19 add_to_pte_set(set, MULP_ADRS);
20 add_to_pte_set(set, TDIV_ADRS);
21 add_to_pte_set(set, ERR_ADRS);
22 add_to_pte_set(set, FREE_ADRS);
23 add_to_pte_set(set, PFREE_ADRS);
24 add_to_pte_set(set, XMALLOC_ADRS);
25 add_to_pte_set(set, MUL_ADRS);
26 add_to_pte_set(set, PMALLOC_ADRS);
27 }
28
29 #elif CONFIG_SPY_GCRY && (CONFIG_SPY_GCRY_VERSION == 175)
30 #if CONFIG_FLUSH_FLUSH
31 #define ERRNOLOC_ADRS (LIBC_ADRS + 0x20590) // __errno_location
32 #define MULP_ADRS (GCRYLIB_ADRS + 0xca220) // _gcry_mpi_ec_mul_point
33 #define TST_ADRS (GCRYLIB_ADRS + 0xc10d0) // _gcry_mpi_test_bit
34 #define _GPGRT_ADRS (GPG_ERR_ADRS + 0x2bb0) // _gpgrt_lock_lock
35 #define GPGRT_ADRS (GPG_ERR_ADRS + 0xb750) // gpgrt_lock_lock
36 #define INT_FREE_ADRS (LIBC_ADRS + 0x7b110) // _int_free
37 #define PLT_ADRS (GCRYLIB_ADRS + 0xab30) // __errno_location@plt
38 #define DO_MALLOC_ADRS (GCRYLIB_ADRS + 0xe380) // do_malloc
39
40 #define MONITOR_ADRS ERRNOLOC_ADRS
41
42 void construct_pte_set(spy_pte_set_t *set)
43 {
44 pr_info("gsgx-spy: constructing F+R PTE set for gcry v1.7.5\n");
45 add_to_pte_set(set, MULP_ADRS);
46 add_to_pte_set(set, TST_ADRS);

47 add_to_pte_set(set, _GPGRT_ADRS);
48 add_to_pte_set(set, GPGRT_ADRS);
49 add_to_pte_set(set, INT_FREE_ADRS);
50 add_to_pte_set(set, PLT_ADRS);
51 add_to_pte_set(set, DO_MALLOC_ADRS);
52 }
53
54 #else /* !CONFIG_FLUSH_FLUSH */
55 #define TST_ADRS (GCRYLIB_ADRS + 0xc10d0) // _gcry_mpi_test_bit
56 #define ADDP_ADRS (GCRYLIB_ADRS + 0xc9bc0) // _gcry_mpi_ec_add_p
57 #define MULP_ADRS (GCRYLIB_ADRS + 0xca220) // _gcry_mpi_ec_mul_p
58 #define FREE_ADRS (GCRYLIB_ADRS + 0x0f390) // _gcry_free
59 #define ADD_ADRS (GCRYLIB_ADRS + 0xc0a10) // _gcry_mpi_add
60
61 #define MONITOR_ADRS TST_ADRS
62
63 void construct_pte_set(spy_pte_set_t *set)
64 {
65 pr_info("gsgx-spy: constructing A/D PTE set for gcry v1.7.5\n");
66 add_to_pte_set(set, ADDP_ADRS);
67 add_to_pte_set(set, MULP_ADRS);
68
69 add_to_pte_set(set, FREE_ADRS);
70 add_to_pte_set(set, ADD_ADRS);
71 }
72 #endif
73 #endif
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Abstract
The need for power- and energy-efficient computing has
resulted in aggressive cooperative hardware-software en-
ergy management mechanisms on modern commodity
devices. Most systems today, for example, allow soft-
ware to control the frequency and voltage of the under-
lying hardware at a very fine granularity to extend bat-
tery life. Despite their benefits, these software-exposed
energy management mechanisms pose grave security im-
plications that have not been studied before.

In this work, we present the CLKSCREW attack,
a new class of fault attacks that exploit the security-
obliviousness of energy management mechanisms to
break security. A novel benefit for the attackers is that
these fault attacks become more accessible since they can
now be conducted without the need for physical access to
the devices or fault injection equipment. We demonstrate
CLKSCREW on commodity ARM/Android devices. We
show that a malicious kernel driver (1) can extract secret
cryptographic keys from Trustzone, and (2) can escalate
its privileges by loading self-signed code into Trustzone.
As the first work to show the security ramifications of en-
ergy management mechanisms, we urge the community
to re-examine these security-oblivious designs.

1 Introduction

The growing cost of powering and cooling systems has
made energy management an essential feature of most
commodity devices today. Energy management is cru-
cial for reducing cost, increasing battery life, and im-
proving portability for systems, especially mobile de-
vices. Designing effective energy management solutions,
however, is a complex task that demands cross-stack de-
sign and optimizations: Hardware designers, system ar-
chitects, and kernel and application developers have to
coordinate their efforts across the entire hardware/soft-
ware system stack to minimize energy consumption and

maximize performance. Take as an example, Dynamic
Voltage and Frequency Scaling (DVFS) [47], a ubiq-
uitous energy management technique that saves energy
by regulating the frequency and voltage of the proces-
sor cores according to runtime computing demands. To
support DVFS, at the hardware level, vendors have to de-
sign the underlying frequency and voltage regulators to
be portable across a wide range of devices while ensur-
ing cost efficiency. At the software level, kernel devel-
opers need to track and match program demands to oper-
ating frequency and voltage settings to minimize energy
consumption for those demands. Thus, to maximize the
utility of DVFS, hardware and software function cooper-
atively and at very fine granularities.

Despite the ubiquity of energy management mecha-
nisms on commodity systems, security is rarely a consid-
eration in the design of these mechanisms. In the absence
of known attacks, given the complexity of hardware-
software interoperability needs and the pressure of cost
and time-to-market concerns, the designers of these
mechanisms have not given much attention to the secu-
rity aspects of these mechanisms; they have been focused
on optimizing the functional aspects of energy manage-
ment. These combination of factors along with the per-
vasiveness of these mechanisms makes energy manage-
ment mechanisms a potential source of security vulnera-
bilities and an attractive target for attackers.

In this work, we present the first security review of a
widely-deployed energy management technique, DVFS.
Based on careful examination of the interfaces between
hardware regulators and software drivers, we uncover
a new class of exploitation vector, which we term as
CLKSCREW. In essence, a CLKSCREW attack exploits
unfettered software access to energy management hard-
ware to push the operating limits of processors to the
point of inducing faulty computations. This is dangerous
when these faults can be induced from lower privileged
software across hardware-enforced boundaries, where
security sensitive computations are hosted.
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We demonstrate that CLKSCREW can be conducted
using no more than the software control of energy
management hardware regulators in the target devices.
CLKSCREW is more powerful than traditional physi-
cal fault attacks [19] for several reasons. Firstly, un-
like physical fault attacks, CLKSCREW enables fault at-
tacks to be conducted purely from software. Remote ex-
ploitation with CLKSCREW becomes possible without
the need for physical access to target devices. Secondly,
many equipment-related barriers, such as the need for
soldering and complex equipment, to achieve physical
fault attacks are removed. Lastly, since physical attacks
have been known for some time, several defenses, such
as special hardened epoxy and circuit chips that are hard
to access, have been designed to thwart such attacks. Ex-
tensive hardware reverse engineering may be needed to
determine physical pins on the devices to connect the
fault injection circuits [45]. CLKSCREW sidesteps all
these risks of destroying the target devices permanently.

To highlight the practical security impact of our attack,
we implement the CLKSCREW attack on a commodity
ARMv71 phone, Nexus 6. With only publicly available
knowledge of the Nexus 6 device, we identify the operat-
ing limits of the frequency and voltage hardware mecha-
nisms. We then devise software to enable the hardware to
operate beyond the vendor-recommended limits. Our at-
tack requires no further access beyond a malicious kernel
driver. We show how the CLKSCREW attack can sub-
vert the hardware-enforced isolation in ARM Trustzone
in two attack scenarios: (1) extracting secret AES keys
embedded within Trustzone and (2) loading self-signed
code into Trustzone. We note that the root cause for
CLKSCREW is neither a hardware nor a software bug:
CLKSCREW is achievable due to the fundamental design
of energy management mechanisms.

We have responsibly disclosed the vulnerabilities
identified in this work to the relevant SoC and device
vendors. They have been very receptive to the disclosure.
Besides acknowledging the highlighted issues, they were
able to reproduce the reported fault on their internal test
device within three weeks of the disclosure. They are
working towards mitigations.

In summary, we make the following contributions in
this work:

1. We expose the dangers of designing energy man-
agement mechanisms without security in mind by
introducing the concept of the CLKSCREW attack.
Aggressive energy-aware computing mechanisms
can be exploited to influence isolated computing.

2. We present the CLKSCREW attack to demonstrate a
new class of energy management-based exploitation

1As of Sep 2016, ARMv7 devices capture over 86% of the world-
wide market share of mobile phones [7].

vector that exploits software-exposed frequency and
voltage hardware regulators to subvert trusted com-
putation.

3. We introduce a methodology for examining and
demonstrating the feasibility of the CLKSCREW at-
tack against commodity ARM devices running a full
complex OS such as Android.

4. We demonstrate that the CLKSCREW attack can be
used to break the ARM Trustzone by extracting se-
cret cryptographic keys and loading self-signed ap-
plications on a commodity phone.

The remainder of the paper is organized as follows.
We provide background on DVFS and its associated
hardware and software support in § 2. In § 3, we de-
tail challenges and steps we take to achieving the first
CLKSCREW fault. Next, we present two attack case
studies in § 4 and § 5. Finally, we discuss countermea-
sures and related work in § 6, and conclude in § 7.

2 Background

In this section, we provide the required background in
energy management to understand CLKSCREW. We first
describe DVFS and how it relates to saving energy. We
then detail key classes of supporting hardware regulators
and their software-exposed interfaces.

2.1 Dynamic Voltage & Frequency Scaling

DVFS is an energy management technique that trades off
processing speed for energy savings. Since its debut in
1994 [60], DVFS has become ubiquitous in almost all
commodity devices. DVFS works by regulating two im-
portant runtime knobs that govern the amount of energy
consumed in a system – frequency and voltage.

To see how managing frequency and voltage can save
energy, it is useful to understand how energy consump-
tion is affected by these two knobs. The amount of en-
ergy2 consumed in a system is the product of power and
time, since it refers to the total amount of resources uti-
lized by a system to complete a task over time. Power3,
an important determinant of energy consumption, is di-
rectly proportional to the product of operating frequency
and voltage. Consequently, to save energy, many energy
management techniques focus on efficiently optimizing
both frequency and voltage.

2Formally, the total amount of energy consumed, ET , is the integral
of instantaneous dynamic power, Pt over time T : ET =

∫ T
0 Pt dt.

3In a system with a fixed capacitative load, at any time t, the instan-
taneous dynamic power is proportional to both the voltage, Vt and the
frequency Ft as follows: Pt ∝ V 2

t ×Ft .
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Figure 1: Shared voltage regulator for all Krait cores.

DVFS regulates frequency and voltage according to
runtime task demands. As these demands can vary dras-
tically and quickly, DVFS needs to be able to track these
demands and effect the frequency and voltage adjust-
ments in a timely manner. To achieve this, DVFS re-
quires components across layers in the system stack. The
three primary components are (1) the voltage/frequency
hardware regulators, (2) vendor-specific regulator driver,
and (3) OS-level CPUfreq power governor [46]. The
combined need for accurate layer-specific feedback and
low voltage/frequency scaling latencies drives the preva-
lence of unfettered and software-level access to the fre-
quency and voltage hardware regulators.

2.2 Hardware Support for DVFS

Voltage Regulators. Voltage regulators supply power
to various components on devices, by reducing the volt-
age from either the battery or external power supply to a
range of smaller voltages for both the cores and the pe-
ripherals within the device. To support features, such as
camera and sensors that are sourced from different ven-
dors and hence operating at different voltages, numerous
voltage regulators are needed on devices. These regu-
lators are integrated within a specialized circuit called
Power Management Integrated Circuit (PMIC) [53].

Power to the application cores is typically supplied
by the step-down regulators within the PMIC on the
System-on-Chip (SoC) processor. As an example, Fig-
ure 1 shows the PMIC that regulates the shared voltage
supply to all the application cores (a.k.a. Krait cores) on
the Nexus 6 device. The PMIC does not directly ex-
pose software interfaces for controlling the voltage sup-
ply to the cores. Instead, the core voltages are indirectly
managed by a power management subsystem, called the
Subsystem Power Manager (SPM) [2]. The SPM is a
hardware block that maintains a set of control registers
which, when configured, interfaces with the PMIC to ef-
fect voltage changes. Privileged software like a kernel
driver can use these memory-mapped control registers

Clock
MUX Core

Clock Domain (per-core)

PLL
(fixed rate)

HFPLL
(variable rate)

Half 
Divider

300 MHz

N * 19.2 MHz

N/2 * 19.2 MHz

N Multiplier Source Selector

0

1

2

SoC Processor
(Nexus 6)

Figure 2: Separate clock sources for each Krait core.

to direct voltage changes. We highlight these software-
exposed controls as yellow-shaded circles in Figure 1.

Frequency PLL-based Regulators. The operating fre-
quency of application cores is derived from the frequency
of the clock signal driving the underlying digital logic
circuits. The frequency regulator contains a Phase Lock
Loop (PLL) circuit, a frequency synthesizer built into
modern processors to generate a synchronous clock sig-
nal for digital components. The PLL circuit generates an
output clock signal of adjustable frequency, by receiving
a fixed-rate reference clock (typically from a crystal os-
cillator) and raising it based on an adjustable multiplier
ratio. The output clock frequency can then be controlled
by changing this PLL multiplier.

For example, each core on the Nexus 6 has a dedicated
clock domain. As such, the operating frequency of each
core can be individually controlled. Each core can oper-
ate on three possible clock sources. In Figure 2, we illus-
trate the clock sources as well as the controls (shaded in
yellow) exposed to the software from the hardware reg-
ulators. A multiplexer (MUX) is used to select amongst
the three clock sources, namely (1) a PLL supplying a
fixed-rate 300-MHz clock signal, (2) a High-Frequency
PLL (HFPLL) supplying a clock signal of variable fre-
quency based on a N multiplier, and (3) the same HFPLL
supplying half the clock signal via a frequency divider
for finer-grained control over the output frequency.

As shown in Figure 2, the variable output frequency of
the HFPLL is derived from a base frequency of 19.2MHz
and can be controlled by configuring the N multiplier.
For instance, to achieve the highest core operating fre-
quency of 2.65GHz advertised by the vendor, one needs
to configure the N multiplier to 138 and the Source Se-
lector to 1 to select the use of the full HFPLL. Similar
to changing voltage, privileged software can initiate per-
core frequency changes by writing to software-exposed
memory-mapped PLL registers, shown in Figure 2.
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2.3 Software Support for DVFS

On top of the hardware regulators, additional software
support is needed to facilitate DVFS. Studying these sup-
porting software components for DVFS enables us to
better understand the interfaces provided by the hard-
ware regulators. Software support for DVFS comprises
two key components, namely vendor-specific regulator
drivers and OS-level power management services.

Besides being responsible for controlling the hardware
regulators, the vendor-provided PMIC drivers [5, 6] also
provide a convenient means for mechanisms in the up-
per layers of the stack, such as the Linux CPUfreq power
governor [46] to dynamically direct the voltage and fre-
quency scaling. DVFS requires real-time feedback on
the system workload profile to guide the optimization
of performance with respect to power dissipation. This
feedback may rely on layer-specific information that may
only be efficiently accessible from certain system layers.
For example, instantaneous system utilization levels are
readily available to the OS kernel layer. As such, the
Linux CPUfreq power governor is well-positioned at that
layer to initiate runtime changes to the operating voltage
and frequency based on these whole-system measures.
This also provides some intuition as to why DVFS can-
not be implemented entirely in hardware.

3 Achieving the First CLKSCREW Fault

In this section, we first briefly describe why erroneous
computation occurs when frequency and voltage are
stretched beyond the operating limits of digital circuits.
Next, we outline challenges in conducting a non-physical
probabilistic fault injection attack induced from soft-
ware. Finally, we characterize the operating limits of
regulators and detail the steps to achieving the first
CLKSCREW fault on a real device.

3.1 How Timing Faults Occur

To appreciate why unfettered access to hardware regula-
tors is dangerous, it is necessary to understand in general
why over-extending frequency (a.k.a. overclocking) or
under-supplying voltage (a.k.a. undervolting) can cause
unintended behavior in digital circuits.

Synchronous digital circuits are made up of mem-
ory elements called flip-flops (FF). These flip-flops store
stateful data for digital computation. A typical flip-flop
has an input D, and an output Q, and only changes the
output to the value of the input upon the receipt of the
rising edge of the clock (CLK) signal. In Figure 3, we
show two flip-flops, FFsrc and FFdst sharing a com-
mon clock signal and some intermediate combinatorial

TFF

common
clock signal

provider

clk

...input output

clk

FFsrc FFdst

... ...

Dsrc Qsrc QdstDdst

Intermediate 
combinatorial logic

clock pulse

input (0    1)

Qsrc

Ddst

output (0    1)

1

Tclk

Tmax_path

0

1

0

1

0

1

0

1

0

TFF
Tsetup

common clock
signal

Figure 3: Timing constraint for error-free data propaga-
tion from input Qsrc to output Ddst for entire circuit.

logic elements. These back-to-back flip-flops are build-
ing blocks for pipelines, which are pervasive throughout
digital chips and are used to achieve higher performance.
Circuit timing constraint. For a single flip-flop to
properly propagate the input to the output locally, there
are three key timing sub-constraints. (1) The incoming
data signal has to be held stable for T setup during the re-
ceipt of the clock signal, and (2) the input signal has to be
held stable for T FF within the flip-flop after the clock sig-
nal arrives. (3) It also takes a minimum of T max_path for
the output Qsrc of FFsrc to propagate to the input Ddst of
FFdst. For the overall circuit to propagate input Dsrc →
output Qdst, the minimum required clock cycle period4,
T clk, is bounded by the following timing constraint (1)
for some microarchitectural constant K:

T clk ≥ T FF +T max_path +T setup +K (1)

Violation of timing constraint. When the timing con-
straint is violated during two consecutive rising edges
of the clock signal, the output from the source flip-flop
FFsrc fails to latch properly in time as the input at the
destination flip-flop FFdst. As such, the FFdst continues
to operate with stale data. There are two situations where
this timing constraint can be violated, namely (a) over-
clocking to reduce T clk and (b) undervolting to increase
the overall circuit propagation time, thereby increasing
Tmax_path. Figure 4 illustrates how the output results in
an unintended erroneous value of 0 due to overclocking.
For comparison, we show an example of a bit-level fault
due to undervolting in Figure 15 in Appendix A.1.

4T clk is simply the reciprocal of the clock frequency.
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Figure 4: Bit-level fault due to overclocking: Reducing
clock period T clk → T clk

′ results in a bit-flip in output
1→ 0.

3.2 Challenges of CLKSCREW Attacks

Mounting a fault attack purely from software on a real-
world commodity device using its internal voltage/fre-
quency hardware regulators has numerous difficulties.
These challenges are non-existent or vastly different
from those in traditional physical fault attacks (that com-
monly use laser, heat and radiation).

Regulator operating limits. Overclocking or under-
volting attacks require the hardware to be configured far
beyond its vendor-suggested operating range. Do the op-
erating limits of the regulators enable us to effect such
attacks in the first place? We show that this is feasible
in § 3.3.

Self-containment within same device. Since the attack
code performing the fault injection and the victim code to
be faulted both reside on the same device, the fault attack
must be conducted in a manner that does not affect the
execution of the attacking code. We present techniques
to overcome this in § 3.4.

Noisy complex OS environment. On a full-fledged OS
with interrupts, we need to inject a fault into the tar-
get code without causing too much perturbation to non-
targeted code. We address this in § 3.4.

Precise timing. To attack the victim code, we need to
be relatively precise in when the fault is induced. Using
two attack scenarios that require vastly different degrees
of timing precision in § 4 and § 5, we demonstrate how
the timing of the fault can be fine-tuned using a range of
execution profiling techniques.

Fine-grained timing resolution. The fault needs to be
transient enough to occur during the intended region of
victim code execution. We may need the ability to tar-
get a specific range of code execution that takes orders
of magnitude fewer clock cycles within an entire oper-
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Figure 5: Vendor-stipulated voltage/frequency Operat-
ing Performance Points (OPPs) vs. maximum OPPs
achieved before computation fails.

ation. For example, in the attack scenario described in
Section § 5.3, we seek to inject a fault into a memory-
specific operation that takes roughly 65,000 clock cycles
within an entire RSA certificate chain verification opera-
tion spanning over 1.1 billion cycles.

3.3 Characterization of Regulator Limits

In this section, we study the capabilities and limits of
the built-in hardware regulators, focusing on the Nexus
6 phone. According to documentation from the vendor,
Nexus 6 features a 2.7GHz quad-core SoC processor. On
this device, DVFS is configured to operate only in one
of 15 possible discrete5 Operating Performance Points
(OPPs) at any one time, typically by a DVFS OS-level
service. Each OPP represents a state that the device can
be in with a voltage and frequency pair. These OPPs are
readily available from the vendor-specific definition file,
apq8084.dtsi, from the kernel source code [3].

To verify that the OPPs are as advertised, we need
measurement readings of the operating voltage and fre-
quency. By enabling the debugfs feature for the reg-
ulators, we can get per-core voltage6 and frequency7

measurements. We verify that the debugfs measurement
readings indeed match the voltage and frequency pairs
stipulated by each OPP. We plot these vendor-provided
OPP measurements as black-star symbols in Figure 5.

No safeguard limits in hardware. Using the software-
exposed controls described in § 2.2, while maintaining a
low base frequency of 300MHz, we configure the volt-
age regulator to probe for the range during which the de-

5A limited number of discrete OPPs, instead of a range of continu-
ous voltage/frequency values, is used so that the time taken to validate
the configured OPPs at runtime is minimized.

6/d/regulator/kraitX/voltage
7/d/clk/kraitX_clk/measure
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vice remains functional. We find that when the device
is set to any voltage outside the range 0.6V to 1.17V, it
either reboots or freezes. We refer to the phone as be-
ing unstable when these behaviors are observed. Then,
stepping through 5mV within the voltage range, for each
operating voltage, we increase the clock frequency until
the phone becomes unstable. We plot each of these max-
imum frequency and voltage pair (as shaded circles) to-
gether with the vendor-stipulated OPPs (as shaded stars)
in Figure 5. It is evident that the hardware regulators
can be configured past the vendor-recommended limits.
This unfettered access to the regulators offers a powerful
primitive to induce a software-based fault.

ATTACK ENABLER (GENERAL) #1: There are no safe-
guard limits in the hardware regulators to restrict the
range of frequencies and voltages that can be configured.

Large degree of freedom for attacker. Figure 5 illus-
trates the degree of freedom an attacker has in choos-
ing the OPPs that have the potential to induce faults.
The maximum frequency and voltage pairs (i.e. shaded
circles in Figure 5) form an almost continuous upward-
sloping curve. It is noteworthy that all frequency and
voltage OPPs above this curve represent potential candi-
date values of frequency and voltage that an attacker can
use to induce a fault.

This “shaded circles” curve is instructive in two ways.
First, from the attacker’s perspective, the upward-sloping
nature of the curve means that reducing the operating
voltage simultaneously lowers the minimum required
frequency needed to induce a fault in an attack. For ex-
ample, suppose an attacker wants to perform an over-
clocking attack, but the frequency value she needs to
achieve the fault is beyond the physical limit of the fre-
quency regulator. With the help of this frequency/voltage
characteristic, she can then possibly reduce the operating
voltage to the extent where the overclocking frequency
required is within the physical limit of the regulator.

ATTACK ENABLER (GENERAL) #2: Reducing the op-
erating voltage lowers the minimum required frequency
needed to induce faults.

Secondly, from the defender’s perspective, the large
range of instability-inducing OPPs above the curve sug-
gests that limits of both frequency and voltage, if any,
must be enforced in tandem to be effective. Combination
of frequency and voltage values, while individually valid,
may still cause unstable conditions when used together.
Prevalence of Regulators. The lack of safeguard lim-
its within the regulators is not specific to Nexus 6. We
observe similar behaviors in devices from other ven-
dors. For example, the frequency/voltage regulators in
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5

Fault

6

Figure 6: Overview of CLKSCREW fault injection setup.

the Nexus 6P and Pixel phones can also be configured be-
yond their vendor-stipulated limits to the extent of seeing
instability on the devices. We show the comparison of
the vendor-recommended and the actual observed OPPs
of these devices in Figures 16 and 17 in Appendix A.3.

3.4 Containing the Fault within a Core
The goal of our fault injection attack is to induce errors
to specific victim code execution. The challenge is doing
so without self-faulting the attack code and accidentally
attacking other non-targeted code.

We create a custom kernel driver to launch separate
threads for the attack and victim code and to pin each
of them to separate cores. Pinning the attack and vic-
tim code in separate cores automatically allows each of
them to execute in different frequency domains. This
core pinning strategy is possible due to the deployment
of increasingly heterogeneous processors like the ARM
big.LITTLE [12] architecture, and emerging technolo-
gies such as Intel PCPS [35] and Qualcomm aSMP [48].
The prevailing industry trend of designing finer-grained
energy management favors the use of separate frequency
and voltage domains across different cores. In particular,
the Nexus 6 SoC that we use in our attack is based on a
variant of the aSMP architecture. With core pinning, the
attack code can thus manipulate the frequency of the core
that the victim code executes on, without affecting that
of the core the attack code is running on. In addition to
core pinning, we also disable interrupts during the entire
victim code execution to ensure that no context switch
occurs for that core. These two measures ensure that our
fault injection effects are contained within the core that
the target victim code is running on.

ATTACK ENABLER (GENERAL) #3: The deployment
of cores in different voltage/frequency domains isolates
the effects of cross-core fault attack.

3.5 CLKSCREW Attack Steps
The CLKSCREW attack is implemented with a kernel
driver to attack code that is executing at a higher priv-
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Parameter Description

Fvolt Base operating voltage
Fpdelay Number of loops to delay/wait before the fault
Ffreq_hi Target value to raise the frequency to for the fault
Ffreq_lo Base value to raise the frequency from for the fault
Fdur Duration of the fault in terms of number of loops

Table 1: CLKSCREW fault injection parameters.

ilege than the kernel. Examples of such victim code are
applications running within isolation technologies such
as ARM Trustzone [11] and Intel SGX [9]. In Figure 6,
we illustrate the key attack steps within the thread ex-
ecution of the attack and victim code. The goal of the
CLKSCREW attack is to induce a fault in a subset of an
entire victim thread execution.

1 Clearing residual states. Before we attack the vic-
tim code, we want to ensure that there are no microarchi-
tectural residual states remaining from prior executions.
Since we are using a cache-based profiling technique in
the next step, we want to make sure that the caches do
not have any residual data from non-victim code before
each fault injection attempt. To do so, we invoke both
the victim and attack threads in the two cores multiple
times in quick succession. From experimentation, 5-10
invocations suffice in this preparation phase.

2 / 3 Profiling for an anchor. Since the victim code
execution is typically a subset of the entire victim thread
execution, we need to profile the execution of the victim
thread to identify a consistent point of execution just be-
fore the target code to be faulted. We refer to this point
of execution as a timing anchor, T anchor to guide when
to deliver the fault injection. Several software profiling
techniques can be used to identify this timing anchor. In
our case, we rely on instruction or data cache profiling
techniques in recent work [40].

4 Pre-fault delaying. Even with the timing anchor, in
some attack scenarios, there may still be a need to fine-
tune the exact delivery timing of the fault. In such cases,
we can configure the attack thread to spin-loop with a
predetermined number of loops before inducing the ac-
tual fault. The use of these loops consisting of no-op
operations is essentially a technique to induce timing de-
lays with high precision. For this stage of the attack, we
term this delay before inducing the fault as Fpdelay.

5 / 6 Delivering the fault. Given a base operating
voltage Fvolt, the attack thread will raise the frequency of
the victim core (denoted as F freq_hi), keep that frequency
for Fdur loops, and then restore the frequency to F freq_lo.

To summarize, for a successful CLKSCREW attack,
we can characterize the attacker’s goal as the following
sub-tasks. Given a victim code and a fault injection tar-

Voltage and Frequency Regulators

Trusted mode Normal mode 
(Insecure)

Core0

Trusted 
code

Untrusted 
code

Hardware-enforced 
isolation

Regulator 
HW-SW interface

voltage/frequency changes

Shared power domain

Figure 7: Regulators operate across security boundaries.

get point determined by T anchor, the attacker has to find
optimal values for the following parameters to maximize
the odds of inducing the desired fault. We summarize the
fault injection parameters required in Table 1.

Fθ |T anchor
= {Fvolt, Fpdelay, F freq_hi, Fdur, F freq_lo}

3.6 Isolation-Agnostic DVFS
To support execution of trusted code isolated from un-
trusted one, two leading industry technologies, ARM
Trustzone [11] and Intel SGX [9], are widely deployed.
They share a common characteristic in that they can
execute both trusted and untrusted code on the same
physical core, while relying on architectural features
such as specialized instructions to support isolated exe-
cution. It is noteworthy that on such architectures, the
voltage and frequency regulators typically operate on
domains that apply to cores as a whole (regardless of
the security-sensitive processor execution modes), as de-
picted in Figure 7. With this design, any frequency or
voltage change initiated by untrusted code inadvertently
affects the trusted code execution, despite the hardware-
enforced isolation. This, as we show in subsequent sec-
tions, poses a critical security risk.

ATTACK ENABLER (GENERAL) #4: Hardware regula-
tors operate across security boundaries with no physical
isolation.

4 TZ Attack #1: Inferring AES Keys

In this section, we show how AES [43] keys stored
within Trustzone (TZ) can be inferred by lower-
privileged code from outside Trustzone, based on the
faulty ciphertexts derived from the erroneous AES en-
cryption operations. Specifically, it shows how lower-
privileged code can subvert the isolation guarantee by
ARM Trustzone, by influencing the computation of
higher-privileged code using the energy management
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mechanisms. The attack shows that the confidentiality
of the AES keys that should have been kept secure in
Trustzone can be broken.

Threat model. In our victim setup, we assume that there
is a Trustzone app that provisions AES keys and stores
these keys within Trustzone, inaccessible from the non-
Trustzone (non-secure) environment. The attacker can
repeatedly invoke the Trustzone app from the non-secure
environment to decrypt any given ciphertext, but is re-
stricted from reading the AES keys directly from Trust-
zone memory due to hardware-enforced isolation. The
attacker’s goal is to infer the AES keys stored.

4.1 Trustzone AES Decryption App

For this case study, since we do not have access to a
real-world AES app within Trustzone, we rely on a text-
book implementation of AES as the victim app. We
implement a AES decryption app that can be loaded
within Trustzone. Without loss of generality, we re-
strict the decryption to 128-bit keys, operating on 16-
bit plaintext and ciphertext. A single 128-bit encryp-
tion/decryption operation comprises 10 AES rounds,
each of which is a composition of the four canon-
ical sub-operations, named SubBytes, ShiftRows,
MixColumns and AddRoundKey [43].

To load this app into Trustzone as our victim pro-
gram, we use a publicly known Trustzone vulnerabil-
ity [17] to overwrite an existing Trustzone syscall han-
dler, tzbsp_es_is_activated, on our Nexus 6 device
running an old firmware8. A non-secure app can then ex-
ecute this syscall via an ARM Secure Monitor Call [26]
instruction to invoke our decryption Trustzone app. This
vulnerability serves the sole purpose of allowing us to
load the victim app within Trustzone to simulate a AES
decryption app in Trustzone. It plays no part in the at-
tacker’s task of interest – extracting the cryptographic
keys stored within Trustzone. Having the victim app ex-
ecute within Trustzone on a commodity device allows us
to evaluate CLKSCREW across Trustzone-enforced se-
curity boundaries in a practical and realistic manner.

4.2 Timing Profiling

As described in § 3.5, one of the crucial attack steps to
ensure reliable delivery of the fault to a victim code ex-
ecution is finding ideal values of Fpdelay. To guide this
parameter discovery process, we need the timing profile
of the Trustzone app performing a single AES encryp-
tion/decryption operation. ARM allows the use of hard-
ware cycle counter (CCNT) to track the execution dura-
tion (in clock cycles) of Trustzone applications [10]. We

8Firmware version is shamu MMB29Q (Feb, 2016)
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Figure 8: Execution duration (in clock cycles) of the vic-
tim and attack threads.

enable this cycle counting feature within our custom ker-
nel driver. With this feature, we can now measure how
long it takes for our Trustzone app to decrypt a single
ciphertext, even from the non-secure world.

ATTACK ENABLER (TZ-SPECIFIC) #5: Execution tim-
ing of code running in Trustzone can be profiled with
hardware counters that are accessible outside Trustzone.

Using the hardware cycle counter, we track the dura-
tion of each AES decryption operation over about 13k in-
vocations in total. Figure 8 (left) shows the distribution
of the execution length of an AES operation. Each op-
eration takes an average of 840k clock cycles with more
than 80% of the invocations taking between 812k to 920k
cycles. This shows that the victim thread does not exhibit
too much variability in terms of its execution time.

Recall that we want to deliver a fault to specific region
of the victim code execution and that the faulting param-
eter Fpdelay allows us to fine-tune this timing. Here, we
evaluate the degree to which the use of no-op loops is
useful in controlling the timing of the fault delivery. Us-
ing a fixed duration for the fault Fdur, we measure how
long the attack thread takes in clock cycles for different
values of the pre-fault delays Fpdelay. Figure 8 (right)
illustrates a distinct linear relationship between Fpdelay
and the length of the attack thread. This demonstrates
that number of loops used in Fpdelay is a reasonably good
proxy for controlling the execution timing of threads, and
thus the timing of our fault delivery.

4.3 Fault Model
To detect if a fault is induced in the AES decryption, we
add a check after the app invocation to verify that the de-
crypted plaintext is as expected. Moreover, to know ex-
actly which AES round got corrupted, we add minimal
code to track the intermediate states of the AES round
and return this as a buffer back to the non-secure environ-
ment. A comparison of the intermediate states and their
expected values will indicate the specific AES round that
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Figure 9: Fault model: Characteristics of observed faults
induced by CLKSCREW on AES operation.

is faulted and the corrupted value. With these validation
checks in place, we perform a grid search for the param-
eters for the faulting frequency, F freq_hi and the duration
of the fault, Fdur that can induce erroneous AES decryp-
tion results. From our empirical trials, we found that the
parameters F freq_hi = 3.69GHz and Fdur = 680 can most
reliably induce faults to the AES operation.

For the rest of this attack, we assume the use of these
two parameter values. By varying Fpdelay, we investigate
the characteristics of the observed faults. A total of about
360 faults is observed. More than 60% of the faults are
precise enough to affect exactly one AES round, as de-
picted in Figure 9 (left). Furthermore, out of these faults
that induce corruption in one AES round, more than half
are sufficiently transient to cause random corruptions of
exactly one byte, shown in Figure 9 (right). Being able to
induce a one-byte random corruption to the intermediate
state of an AES round is often used as a fault model in
several physical fault injection works [18, 56].

4.4 Putting it together

Removing use of time anchor. Recall from § 3.5 that
CLKSCREW may require profiling for a time anchor to
improve faulting precision. In this attack, we choose not
to do so, because (1) the algorithm of the AES operation
is fairly straightforward (one KeyExpansion round, fol-
lowed by 10 AES rounds [43]) to estimate Fpdelay, and
(2) the execution duration of the victim thread does not
exhibit too much variability. The small degree of vari-
ability in the execution timing of both the attack and vic-
tim threads allows us to reasonably target specific AES
rounds with a maximum error margin of one round.

Differential fault attack. Tunstall et al. present a dif-
ferential fault attack (DFA) that infers AES keys based
on pairs of correct and faulty ciphertext [56]. Since AES
encryption is symmetric, we leverage their attack to infer
AES keys based on pairs of correct and faulty plaintext.
Assuming a fault can be injected during the seventh AES
round to cause a single-byte random corruption to the
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Figure 10: Controlling pre-fault delay, Fpdelay, allows us
to control which AES round the fault affects.

intermediate state in that round, with a corrupted input
to the eighth AES round, this DFA can reduce the num-
ber of AES-128 key hypotheses from the original 2128 to
212, in which case the key can be brute-forced in a trivial
exhaustive search. We refer readers to Tunstall et al.’s
work [56] for a full cryptanalysis for this fault model.
Degree of control of attack. To evaluate the degree of
control we have over the specific round we seek to in-
ject the fault in, we induce the faults using a range of
Fpdelay and track which AES rounds the faults occur in.
In Figure 10, each point represents a fault occurring in
a specific AES round and when that fault occurs during
the entire execution of the victim thread. We use the ratio
of CCNT attack/CCNT target as an approximation of latter.
There are ten distinct clusters of faults corresponding to
each AES round. Since CCNT target can be profiled be-
forehand and CCNT attack is controllable via the use of
Fpdelay, an attacker is able to control which AES round
to deliver the fault to for this attack.
Actual attack. Given the faulting parameters,
Fθ , AES-128 = {Fvolt = 1.055V, Fpdelay = 200k, F freq_hi =
3.69GHz, Fdur = 680, F freq_lo = 2.61GHz}, it took, on
average, 20 faulting attempts to induce a one-byte fault to
the input to the eighth AES round. Given the pair of this
faulty plaintext and the expected one, it took Tunstall et
al.’s DFA algorithm about 12 minutes on a 2.7GHz quad-
core CPU to generate 3650 key hypotheses, one out of
which is the AES key stored within Trustzone.

5 TZ Attack #2: Loading Self-Signed Apps

In this case study, we show how CLKSCREW can sub-
vert the RSA signature chain verification – the primary
public-key cryptographic method used for authenticating
the loading of firmware images into Trustzone. ARM-
based SoC processors use the ARM Trustzone to provide
a secure and isolated environment to execute security-
critical applications like DRM widevine [28] trustlet9 and

9Apps within Trustzone are sometimes referred to as trustlets.
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Algorithm 1 Given public key modulus N and exponent
e, decrypt a RSA signature S. Return plaintext hash, H.

1: procedure DECRYPTSIG(S, e, N)
2: r← 22048

3: R← r2 mod N
4: Nrev← FLIPENDIANNESS(N)
5: r−1←MODINVERSE(r, Nrev)
6: f ound_ f irst_one_bit← f alse
7: for i ∈ {bitlen(e)−1 .. 0} do
8: if f ound_ f irst_one_bit then
9: x←MONTMULT(x, x, Nrev, r−1)

10: if e[i] == 1 then
11: x←MONTMULT(x, a, Nrev, r−1)
12: end if
13: else if e[i] == 1 then
14: Srev← FLIPENDIANNESS(S)
15: x←MONTMULT(Srev, R, Nrev, r−1)
16: a← x
17: f ound_ f irst_one_bit← true
18: end if
19: end for
20: x←MONTMULT(x, 1, Nrev, r−1)
21: H← FLIPENDIANNESS(x)
22: return H
23: end procedure

key management keymaster [27] trustlet. These vendor-
specific firmware are subject to regular updates. These
firmware update files consist of the updated code, a sig-
nature protecting the hash of the code, and a certificate
chain. Before loading these signed code updates into
Trustzone, the Trusted Execution Environment (TEE)
authenticates the certificate chain and verifies the in-
tegrity of the code updates [49].

RSA Signature Validation. In the RSA cryptosystem
[51], let N denote the modulus, d denote the private ex-
ponent and e denote the public exponent. In addition,
we also denote the SHA-256 hash of code C as H(C)
for the rest of the section. To ensure the integrity and
authenticity of a given code blob C, the code originator
creates a signature Sig with its RSA private key: Sig←
(H(C))d mod N. The code blob is then distributed to-
gether with the signature and a certificate containing the
signing modulus N. Subsequently, the code blob C can
be authenticated by verifying that the hash of the code
blob matches the plaintext decrypted from the signature
using the public modulus N: Sige mod N == H(C). The
public exponent is typically hard-coded to 0x10001; only
the modulus N is of interest here.

Threat model. The goal of the attacker is to provide
an arbitrary attack app with a self-signed signature and
have the TEE successfully authenticate and load this
self-signed app within Trustzone. To load apps into
Trustzone, the attackers can invoke the TEE to authen-

ticate and load a given app into Trustzone using the
QSEOS_APP_START_COMMAND [4] Secure Channel Man-
ager10 command. The attacker can repeatedly invoke this
operation, but only from the non-secure environment.

5.1 Trustzone Signature Authentication
To formulate a CLKSCREW attack strategy, we first ex-
amine how the verification of RSA signatures is im-
plemented within the TEE. This verification mechanism
is implemented within the bootloader firmware. For
the Nexus 6 in particular, we use the shamu-specific
firmware image (MOB31S, dated Jan 2017 [1]), down-
loaded from the Google firmware update repository.

The RSA decryption function used in the signature
verification is the function, DECRYPTSIG11, summarized
in Algorithm 1. At a high level, DECRYPTSIG takes, as
input, a 2048-bit signature and the public key modulus,
and returns the decrypted hash for verification. For ef-
ficient modular exponentiation, DECRYPTSIG uses the
function MONTMULT to perform Montgomery multipli-
cation operations [38,44]. MONTMULT performs Mont-
gomery multiplication of two inputs x and y with respect
to the Montgomery radix, r [38] and modulus N as fol-
lows: MONTMULT(x, y, N, r−1)← x · y · r−1 mod N.

In addition to the use of MONTMULT, DECRYPTSIG
also invokes the function, FLIPENDIANNESS12, multiple
times at lines 4, 14 and 21 of Algorithm 1 to reverse the
contents of memory buffers. FLIPENDIANNESS is re-
quired in this implementation of DECRYPTSIG because
the inputs to DECRYPTSIG are big-endian while MONT-
MULT operates on little-endian inputs. For reference, we
outline the implementation of FLIPENDIANNESS in Al-
gorithm 2 in Appendix A.2.

5.2 Attack Strategy and Cryptanalysis

Attack overview. The overall goal of the attack is to de-
liver a fault during the execution of DECRYPTSIG such
that the output of DECRYPTSIG results in the desired
hash H(CA) of our attack code CA. This operation can be
described by Equation 2, where the attacker has to sup-
ply an attack signature S

′
A , and fault the execution of DE-

CRYPTSIG at runtime so that DECRYPTSIG outputs the
intended hash H(CA). For comparison, we also describe
the typical decryption operation of the original signature
S to the hash of the original code blob, C in Equation 3.

Attack : DECRYPTSIG(S
′

A , e, N)
f ault−−−→ H(CA) (2)

Original : DECRYPTSIG(S, e, N)−−→ H(C) (3)

10This is a vendor-specific interface that allows the non-secure world
to communicate with the Trustzone secure world.

11DECRYPTSIG loads at memory address 0xFE8643C0.
12FLIPENDIANNESS loads at memory address 0xFE868B20
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For a successful attack, we need to address two ques-
tions: (a) At which portion of the runtime execution of
DECRYPTSIG(S

′
A , e, N) do we inject the fault? (b) How

do we craft S
′

A to be used as an input to DECRYPTSIG?

5.2.1 Where to inject the runtime fault?

Target code of interest. The fault should target op-
erations that manipulate the input modulus N, and ide-
ally before the beginning of the modular exponentiation
operation. A good candidate is the use of the function
FLIPENDIANNESS at Line 4 of Algorithm 1. From ex-
perimentation, we find that FLIPENDIANNESS is espe-
cially susceptible to CLKSCREW faults. We observe that
N can be corrupted to a predictable NA as follows:

NA,rev
f ault←−−− FLIPENDIANNESS(N)

Since NA,rev is NA in reverse byte order, for brevity, we
refer to NA,rev as NA for the rest of the section.
Factorizable NA. Besides being able to fault N to NA,
another requirement is that NA must be factorizable. Re-
call that the security of the RSA cryptosystem depends
on the computational infeasibility of factorizing the mod-
ulus N into its two prime factors, p and q [21]. This
means that with the factors of NA, we can derive the
corresponding keypair {NA, dA, e} using the Carmichael
function in the procedure that is described in Razavi et
al.’s work [50]. With this keypair {NA, dA, e}, the hash
of the attack code CA can then be signed to obtain the
signature of the attack code, SA← (H(CA))

dA mod NA.
We expect the faulted NA to be likely factorizable due

to two reasons: (a) NA is likely a composite number of
more than two prime factors, and (b) some of these fac-
tors are small. With sufficiently small factors of up to
60 bits, we use Pollard’s ρ algorithm to factorize NA
and find them [42]. For bigger factors, we leverage
the Lenstra’s Elliptic Curve factorization Method (ECM)
that has been observed to factor up to 270 bits [39]. Note
that all we need for the attack is to find a single NA that
is factorizable and reliably reproducible by the fault.

5.2.2 How to craft the attack signature S
′

A ?

Before we begin the cryptanalysis, we note that the attack
signature S

′
A (an input to DECRYPTSIG) is not the signed

hash of the attack code, SA (private-key encryption of the
H(CA)). We use S

′
A instead of SA primarily due to the

pecularities of our implementation. Specifically, this is
because the operations that follow the injection of the
fault also use the parameter values derived before the
point of injected fault. Next, we sketch the cryptanal-
ysis of delivering a fault to DECRYPTSIG to show how
the desired S

′
A is derived, and demonstrate why S

′
A is not

trivially derived the same way as SA.

Cryptanalysis. The goal is to derive S
′

A (as input to
DECRYPTSIG) given an expected corrupted modulus NA,
the original vendor’s modulus N, and the signature of the
attack code, SA. For brevity, all line references in this
section refer to Algorithm 1. The key observation is that
after being derived from FLIPENDIANNESS at Line 4,
Nrev is next used by MONTMULT at Line 15. Line 15
marks the beginning of the modular exponentiation of
the input signature, and thus, we focus our analysis here.

First, since we want DECRYPTSIG(S
′

A , e, N) to result
in H(CA) as dictated by Equation 2, we begin by ana-
lyzing the invocation of DECRYPTSIG that will lead to
H(CA). If we were to run DECRYPTSIG with inputs SA
and NA, DECRYPTSIG(SA, e, NA) should output H(CA).
Based on the analysis of this invocation of DECRYPTSIG,
we can then characterize the output, xdesired , of the oper-
ation at Line 15 of DECRYPTSIG(SA, e, NA) with Equa-
tion 4. We note that the modular inverse of r is computed
based on NA at Line 5, and so we denote this as r−1

A .

xdesired ← SA · (r2 mod NA) · r−1
A mod NA (4)

Next, suppose our CLKSCREW fault is delivered in
the operation DECRYPTSIG(S

′
A , e, N) such that N is cor-

rupted to NA at Line 4. We note that while N is faulted
to NA at Line 4, subsequent instructions continue to in-
directly use the original modulus N because R is derived
based on the uncorrupted modulus N at Line 3. Herein
lies the complication. The attack signature S

′
A passed

into DECRYPTSIG gets converted to the Montgomery
representation at Line 15, where both moduli are used:

x f ault ←MONTMULT(S
′

A , r2 mod N, NA, r−1
A )

We can then characterize the output, x f ault , of
the operation at the same Line 15 of a faulted
DECRYPTSIG(S

′
A , e, N) as follows:

x f ault ← S
′

A · (r2 mod N) · r−1
A mod NA (5)

By equating x f ault = xdesired (i.e. equating results from
(4) and (5)), we can reduce the problem to finding S

′
A for

constants K = (r2 mod N) · r−1
A and xdesired , such that:

S
′

A ·K mod NA ≡ xdesired mod NA

Finally, subject to the condition that xdesired is divis-
ible13 by the greatest common divisor of K and NA, de-
noted as gcd(K, NA), we use the Extended Euclidean Al-
gorithm14 to solve for the attack signature S

′
A , since there

exists a constant y such that S
′

A ·K + y ·NA = xdesired . In
summary, we show that the attack signature S

′
A (to be

used as an input to DECRYPTSIG(S
′

A , e, N)) can be de-
rived from N, NA and SA.

13We empirically observe that gcd(K, NA) = 1 in our experiments,
thus making xdesired trivially divisible by gcd(K, NA) for our purpose.

14The Extended Euclidean Algorithm is commonly used to compute,
besides the greatest common divisor of two integers a and b, the inte-
gers x and y where ax+by = gcd(a, b).
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5.3 Timing Profiling

Each trustlet app file on the Nexus 6 device comes with
a certificate chain of four RSA certificates (and signa-
tures). Loading an app into Trustzone requires validating
the signatures of all four certificates [49]. By incremen-
tally corrupting each certificate and then invoking the
loading of the app with the corrupted chain, we measure
the operation of validating one certificate to take about
270 million cycles on average. We extract the target
function FLIPENDIANNESS from the binary firmware
image and execute it in the non-secure environment to
measure its length of execution. We profile its invoca-
tion on a 256-byte buffer (the size of the 2048-bit RSA
modulus) to take on average 65k cycles.

To show the feasibility of our attack, we choose to at-
tack the validation of the fourth and final certificate in
the chain. This requires a very precise fault to be in-
duced within in a 65k-cycle-long targeted period within
an entire chain validation operation that takes 270 mil-
lion x 4 = 1.08 billion cycles, a duration that is four or-
ders of magnitude longer than the targeted period. Due to
the degree of precision needed, it is thus crucial to find a
way to determine a reliable time anchor (see Steps 2 / 3

in § 3.5) to guide the delivery of the fault.

Cache profiling To determine approximately which re-
gion of code is being executed during the chain vali-
dation at any point in time, we leverage side-channel-
based cache profiling attacks that operate across cores.
Since we are profiling code execution within Trustzone
in a separate core, we use recent advances in the cross-
core instruction- and data-based Prime+Probe15 cache
attack techniques [31,40,62]. We observe that the cross-
core profiling of the instruction-cache usage of the vic-
tim thread is more reliable than that of the data-cache
counterpart. As such, we adapt the instruction-based
Prime+Probe cache attack for our profiling stage.

Within the victim code, we first identify the code ad-
dress we want to monitor, and then compute the set
of memory addresses that is congruent to the cache set
of our monitored code address. Since we are doing
instruction-based cache profiling, we need to rely on
executing instructions instead of memory read opera-
tions. We implement a loop within the fault injection
thread to continuously execute dynamically generated
dummy instructions in the cache-set-congruent memory
addresses (the Prime step) and then timing the execu-
tion of these instructions (the Probe step) using the clock
cycle counter. We determine a threshold for the cycle

15Another prevalent class of cross-core cache attacks is the
Flush+Reload [61] cache attacks. We cannot use the Flush+Reload
technique to profile Trustzone execution because Flush+Reload re-
quires being able to map addresses that are shared between Trustzone
and the non-secure environment. Trustzone, by design, prohibits that.
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Figure 11: Cache eviction profile snapshot with cache-
based features.

count to indicate that the associated cache lines have
been evicted. The eviction patterns of the monitored
cache set provides an indication that the monitored code
address has been executed.

ATTACK ENABLER (TZ-SPECIFIC) #6: Memory ac-
cesses from the non-secure world can evict cache lines
used by Trustzone code, thereby enabling Prime+Probe-
style execution profiling of Trustzone code.

While we opt to use the Prime+Probe cache pro-
filing strategy in our attack, there are alternate side-
channel-based profiling techniques that can also be used
to achieve the same effect. Other microarchitectural
side channels like branch predictors, pipeline contention,
prefetchers, and even voltage and frequency side chan-
nels can also conceivably be leveraged to profile the vic-
tim execution state. Thus, more broadly speaking, the at-
tack enabler #6 is the presence of microarchitectural side
channels that allows us to profile code for firing faults.
App-specific timing feature. For our timing anchor, we
want a technique that is more fine-grained. We devise a
novel technique that uses the features derived from the
eviction timing to create a proxy for profiling program
phase behavior. First, we maintain a global increment-
ing count variable as an approximate time counter in the
loop. Then, using this counter, we track the duration be-
tween consecutive cache set evictions detected by our
Prime+Probe profiling. By treating this series of evic-
tion gap duration values, g, as a time-series stream, we
can approximate the execution profile of the chain vali-
dation code running within Trustzone.

We plot a snapshot of the cache profile characterizing
the validation of the fourth and final certificate in Fig-
ure 11. We observe that the beginning of each certifi-
cation validation is preceded by a large spike of up to
75,000 in the g values followed by a secondary smaller
spike. From experimentation, we found that FLIPENDI-
ANNESS runs after the second spike. Based on this obser-
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Figure 12: Observed faults using the timing features.

vation, we change the profiling stage of the attack thread
to track two hand-crafted timing features to characterize
the instantaneous state of victim thread execution.

Timing anchor. We annotate the two timing features
on the cache profile plot in Figure 11. The first feature,
feat_cache1, tracks the length of the second spike minus
a constant k1. The second feature, feat_cache2, tracks
the cumulative total of g after the second spike, until the
g > k2. We use a value of k1 = 140 and k2 = 15 for
our experiments. By continuously monitoring values of
g after the second spike, the timing anchor is configured
to be the point when g > k2.

To evaluate the use of this timing anchor, we need a
means to assess when and how the specific invocation of
the FLIPENDIANNESS is faulted. First, we observe that
the memory buffer used to store Nrev is hard-coded to an
address 0x0FC8952C within Trustzone, and this buffer is
not zeroed out after the validation of each certificate. We
downgrade the firmware version to MMB29Q (Feb, 2016),
so that we can leverage a Trustzone memory safety viola-
tion vulnerability [17] to access the contents of Nrev after
the fourth certificate in the chain has been validated16.
Note that this does not affect the normal operation of the
chain validation because the relevant code sections for
these operations is identical across version MMB29Q (Feb,
2016) and MOB31S (Jan, 2017).

With this timing anchor, we perform a grid search for
the faulting parameters, F freq_hi, Fdur and Fpdelay that can
best induce faults in FLIPENDIANNESS. The parame-
ters F freq_hi = 3.99GHz and Fdur = 1 are observed to be
able to induce faults in FLIPENDIANNESS reliably. The
value of the pre-fault delay parameter Fpdelay is crucial
in controlling the type of byte(s) corruption in the tar-
get memory buffer Nrev. With different values of Fpdelay,
we plot the observed faults and failed attempts based on
the values of feat_cache1 and feat_cache2 in Figure 12.

16We are solely using this vulnerability to speed up the search for
the faulting parameters. They can be replaced by more accurate and
precise side-channel-based profiling techniques.
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Figure 13: Variability of faulted byte(s) position.

Each faulting attempt is considered a success if any bytes
within Nrev are corrupted during the fault.
Adaptive pre-delay. While we see faults within the tar-
get buffer, there is some variability in the position of the
fault induced within the buffer. In Figure 13, each value
of Fpdelay is observed to induce faults across all parts of
the buffer. To increase the precision in faulting, we mod-
ify the fault to be delivered based on an adaptive Fpdelay.

5.4 Fault Model
Based on the independent variables feat_cache1 and
feat_cache2, we build linear regression models to predict
Fpdelay that can best target a fault at an intended posi-
tion within the Nrev buffer. During each faulting attempt,
Fpdelay is computed only when the timing anchor is de-
tected. To evaluate the efficacy of the regression models,
we collect all observed faults with the goal of injecting a
fault at byte position 141. Figure 14 shows a significant
clustering of faults around positions 140 - 148.

More than 80% of the faults result in 1-3 bytes be-
ing corrupted within the Nrev buffer. Many of the faulted
values suggest that instructions are skipped when the
fault occurs. An example of a fault within a segment of
the buffer is having corrupted the original byte sequence
from 0xa777511b to 0xa7777777.

5.5 Putting it together
We use the following faulting parameters to target faults
to specific positions within the buffer: Fθ , RSA = {Fvolt =
1.055V, Fpdelay = adaptive, F freq_hi = 3.99GHz, Fdur =
1, F freq_lo = 2.61GHz}.
Factorizable modulus NA. About 20% of faulting at-
tempts (1153 out of 6000) result in a successful fault
within the target Nrev buffer. This set of faulted N values
consists of 805 unique values, of which 38 (4.72%) are
factorizable based on the algorithm described in § 5.2.
For our attack, we select one of the factorizable NA,
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Figure 14: Histogram of observed faults and where the
faults occur. The intended faulted position is 141.

where two bytes at positions 141 and 142 are corrupted.
We show an example of this faulted and factorizable
modulus in Appendix A.4.

Actual attack. Using the above selected NA, we embed
our attack signature S

′
A into the widevine trustlet. Then

we conduct our CLKSCREW faulting attempts while in-
voking the self-signed app. On average, we observe one
instance of the desired fault in 65 attempts.

6 Discussion and Related Works

6.1 Applicability to other Platforms
Several highlighted attack enablers in preceding sections
apply to other leading architectures. In particular, the
entire industry is increasingly moving or has moved to
fine-grained energy management designs that separate
voltage/frequency domains for the cores. We leave the
exploration of these architectures to future research.

Intel. Intel’s recent processors are designed with the
base clock separated from the other clock domains for
more scope of energy consumption optimization [32,35].
This opens up possibilities of overclocking on Intel pro-
cessors [23]. Given these trends in energy management
design on Intel hardware and the growing prevalence
of Intel’s Secure Enclave SGX [34], a closer look at
whether the security guarantees still hold is warranted.

ARMv8. The ARMv8 devices adopt the ARM
big.LITTLE design that uses non-symmetric cores (such
as the “big” Cortex-A15 cores, and the “LITTLE”
Cortex-A7 cores) in same system [36]. Since these cores
are of different architectures, they exhibit different en-
ergy consumption characteristics. It is thus essential that
they have separate voltage/frequency domains. The use
of separate domains, like in the 32-bit ARMv7 architec-
ture explored in this work, expose the 64-bit ARMv8
devices to similar potential dangers from the software-
exposed energy management mechanisms.

Cloud computing providers. The need to improve en-
ergy consumption does not just apply to user devices; this

extends even to cloud computing providers. Since 2015,
Amazon AWS offers EC2 VM instances [16] where
power management controls are exposed within the vir-
tualized environment. In particular, EC2 users can fine-
tune the processor’s performance using P-state and C-
state controls [8]. This warrants further research to as-
sess the security ramifications of such user-exposed en-
ergy management controls in the cloud environment.

6.2 Hardware-Level Defenses

Operating limits in hardware. CLKSCREW requires
the hardware regulators to be able to push voltage/fre-
quency past the operating limits. To address this, hard
limits can be enforced within the regulators in the form
of additional limit-checking logic or e-fuses [55]. How-
ever, this can be complicated by three reasons. First,
adding such enforcement logic in the regulators requires
making these design decisions very early in the hardware
design process. However, the operational limits can only
be typically derived through rigorous electrical testing in
the post-manufacturing process. Second, manufacturing
process variations can change operational limits even for
chips of the same designs fabricated on the same wafer.
Third, these hardware regulators are designed to work
across a wide range of SoC processors. Imposing a one-
size-fits-all range of limits is challenging because SoC-
specific limits hinder the portability of these regulators
across multiple SoC. For example, the PMIC found on
the Nexus 6 is also deployed on the Galaxy Note 4.

Separate cross-boundary regulators. Another mitiga-
tion is to maintain different power domains across secu-
rity boundaries. This entails using a separate regulator
when the isolated environment is active. This has two
issues. First, while trusted execution technologies like
Trustzone and SGX separate execution modes for secu-
rity, the different modes continue to operate on the same
core. Maintaining separate regulators physically when
the execution mode switches can be expensive. Sec-
ond, DVFS components typically span across the system
stack. If the trusted execution uses dedicated regulators,
this implies that a similar cross-stack power manage-
ment solution needs to be implemented within the trusted
mode to optimize energy consumption. Such an imple-
mentation can impact the runtime of the trusted mode
and increase the complexity of the trusted code.

Redundancy/checks/randomization. To mitigate the
effects of erroneous computations due to induced faults,
researchers propose redesigning the application core chip
with additional logic and timing redundancy [13], as well
as recovery mechanisms [33]. Also, Bar-El et al. suggest
building duplicate microarchitectural units and encrypt-
ing memory bus operations for attacks that target mem-

1070    26th USENIX Security Symposium USENIX Association



ory operations [13]. Luo et al. present a clock glitch
detection technique that monitors the system clock sig-
nal using another higher frequency clock signal [41].
While many of these works are demonstrated on FP-
GAs [58] and ASICs [54], it is unclear how feasible it
is on commodity devices and how much chip area and
runtime overhead it adds. Besides adding redundancy,
recent work proposes adding randomization using recon-
figurable hardware as a mitigation strategy [59].

6.3 Software-Level Defenses

Randomization. Since CLKSCREW requires some de-
gree of timing precision in delivering the faults, one
mitigation strategy is to introduce randomization (via
no-op loops) to the runtime execution of the code to
be protected. However, we note that while this miti-
gates against attacks without a timing anchor (AES at-
tack in § 4), it may have limited protection against at-
tacks that use forms of runtime profiling for the timing
guidance (RSA attack in § 5).
Redundancy and checks. Several software-only de-
fenses propose compiling code with checksum integrity
verification and execution redundancy (executing sensi-
tive code multiple times) [13, 15]. While these defenses
may be deployed on systems requiring high dependabil-
ity, they are not typically deployed on commodity de-
vices like phones because they impact energy efficiency.

6.4 Subverting Cryptography with Faults
Boneh et al. offer the first DFA theoretical model to
breaking various cryptographic schemes using injected
hardware faults [22]. Subsequently, many researchers
demonstrate physical fault attacks using a range of so-
phisticated fault injection equipment like laser [24, 25]
and heat [29]. Compared to these attacks including all
known undervolting [14,45] and overclocking [20] ones,
CLKSCREW does not need physical access to the tar-
get devices, since it is initiated entirely from software.
CLKSCREW is also the first to demonstrate such at-
tacks on a commodity device. We emphasize that while
CLKSCREW shows how faults can break cryptographic
schemes, it does so to highlight the dangers of hard-
ware regulators exposing software-access interfaces, es-
pecially across security trust boundaries.

6.5 Relation to Rowhammer Faults
Kim et al. first present reliability issues with DRAM
memory [37] (dubbed the “Rowhammer” problem).
Since then, many works use the Rowhammer is-
sue to demonstrate the dangers of such software-
induced hardware-based transient bit-flips in practical

scenarios ranging from browsers [30], virtualized en-
vironments [50], privilege escalation on Linux ker-
nel [52] and from Android apps [57]. Like Rowham-
mer, CLKSCREW is equally pervasive. However,
CLKSCREW is the manifestation of a different at-
tack vector relying on software-exposed energy man-
agement mechanisms. The complexity of these cross-
stack mechanisms makes any potential mitigation against
CLKSCREW more complicated and challenging. Fur-
thermore, unlike Rowhammer that corrupts DRAM
memory, CLKSCREW targets microarchitectural oper-
ations. While we use CLKSCREW to induce faults in
memory contents, CLKSCREW can conceivably affect a
wider range of computation in microarchitectural units
other than memory (such as caches, branch prediction
units, arithmetic logic units and floating point units).

7 Conclusions

As researchers and practitioners embark upon increas-
ingly aggressive cooperative hardware-software mecha-
nisms with the aim of improving energy efficiency, this
work shows, for the first time, that doing so may create
serious security vulnerabilities. With only publicly avail-
able information, we have shown that the sophisticated
energy management mechanisms used in state-of-the-art
mobile SoCs are vulnerable to confidentiality, integrity
and availability attacks. Our CLKSCREW attack is able
to subvert even hardware-enforced security isolation and
does not require physical access, further increasing the
risk and danger of this attack vector.

While we offer proof of attackability in this paper, the
attack can be improved, extended and combined with
other attacks in a number of ways. For instance, using
faults to induce specific values at exact times (as opposed
to random values at approximate times) can substan-
tially increase the power of this technique. Furthermore,
CLKSCREW is the tip of the iceberg: more security vul-
nerabilities are likely to surface in emerging energy opti-
mization techniques, such as finer-grained controls, dis-
tributed control of voltage and frequency islands, and
near/sub-threshold optimizations.

Our analysis suggests that there is unlikely to be a
single, simple fix, or even a piecemeal fix, that can en-
tirely prevent CLKSCREW style attacks. Many of the
design decisions that contribute to the success of the at-
tack are supported by practical engineering concerns. In
other words, the root cause is not a specific hardware or
software bug but rather a series of well-thought-out, nev-
ertheless security-oblivious, design decisions. To pre-
vent these problems, a coordinated full system response
is likely needed, along with accepting the fact that some
modest cost increases may be necessary to harden en-
ergy management systems. This demands research in a
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number of areas such as better Computer Aided Design
(CAD) tools for analyzing timing violations, better val-
idation and verification methodology in the presence of
DVFS, architectural approaches for DVFS isolation, and
authenticated mechanisms for accessing voltage and fre-
quency regulators. As system designers work to invent
and implement these protections, security researchers
can complement these efforts by creating newer and ex-
citing attacks on these protections.
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A Appendix

A.1 Timing Violation due to Undervolting
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Figure 15: Glitch due to undervolting: Increasing propa-
gation time of the critical path between the two consecu-
tive flip-flops, clock period T max_path→ T max_path

′ results
in a bit-flip in output 1→ 0.

A.2 FLIPENDIANNESS Implementation

Algorithm 2 Reverse the endianness of a memory buffer.
1: procedure FLIPENDIANNESS(src)
2: d← 0
3: dst←{0}
4: for i ∈ {0 .. len(src)/4−1} do
5: for j ∈ {0 .. 2} do
6: d← (src[i∗4+ j] | d)� 8
7: end for
8: d← src[i∗4+3] | d
9: k← len(src)− i∗4−4

10: dst[k .. k+3]← d
11: end for
12: return dst
13: end procedure

A.3 Vendor-Stipulated vs Observed OPPs
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Figure 16: Vendor-stipulated vs maximum voltage/fre-
quency OPPs for Nexus 6P.
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Figure 17: Vendor-stipulated vs maximum voltage/fre-
quency OPPs for Pixel.

A.4 Example Glitch in RSA Modulus
Original Modulus N:
...f35a...

Corrupted Modulus NA:
c44dc735f6682a261a0b8545a62dd13df4c646a5ede482cef85892

5baa1811fa0284766b3d1d2b4d6893df4d9c045efe3e84d8c5d036

31b25420f1231d8211e2322eb7eb524da6c1e8fb4c3ae4a8f5ca13

d1e0591f5c64e8e711b3726215cec59ed0ebc6bb042b917d445288

87915fdf764df691d183e16f31ba1ed94c84b476e74b488463e855

51022021763a3a3a64ddf105c1530ef3fcf7e54233e5d3a4747bbb

17328a63e6e3384ac25ee80054bd566855e2eb59a2fd168d3643e4

4851acf0d118fb03c73ebc099b4add59c39367d6c91f498d8d607a

f2e57cc73e3b5718435a81123f080267726a2a9c1cc94b9c6bb681

7427b85d8c670f9a53a777511b

Factors of NA:
0x3, 0x11b, 0xcb9, 0x4a70807d6567959438227805b12a19...

Private Exponent dA:
04160eecc648a3da19abdc42af4cfb41a798e5eb8b1b49c2c29...
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Abstract
Attacks on the microarchitecture of modern processors
have become a practical threat to security and privacy
in desktop and cloud computing. Recently, cache at-
tacks have successfully been demonstrated on ARM
based mobile devices, suggesting they are as vulner-
able as their desktop or server counterparts. In this
work, we show that previous literature might have left
an overly pessimistic conclusion of ARM’s security as
we unveil AutoLock : an internal performance enhance-
ment found in inclusive cache levels of ARM proces-
sors that adversely affects Evict+Time, Prime+Probe,
and Evict+Reload attacks. AutoLock’s presence on
system-on-chips (SoCs) is not publicly documented, yet
knowing that it is implemented is vital to correctly as-
sess the risk of cache attacks. We therefore provide a de-
tailed description of the feature and propose three ways
to detect its presence on actual SoCs. We illustrate how
AutoLock impedes cross-core cache evictions, but show
that its effect can also be compensated in a practical at-
tack. Our findings highlight the intricacies of cache at-
tacks on ARM and suggest that a fair and comprehen-
sive vulnerability assessment requires an in-depth under-
standing of ARM’s cache architectures and rigorous test-
ing across a broad range of ARM based devices.

1 Introduction

The rapid growth of mobile computing illustrates the
continually increasing role of digital services in our daily
lives. As more and more information is processed digi-
tally, data privacy and security are of utmost importance.
One of the threats known today aims directly at the fab-
ric of digital computing. Attacks on processors and their
microarchitecture exploit the very core that handles our
data. In particular, processor caches have been exploited
to retrieve sensitive information across logic boundaries
established by operating systems and hypervisors. As

caches speed up the access to data and instructions, tim-
ing measurements allow an adversary to infer the activity
of other applications and the data processed by them. In
fact, cache attacks have been demonstrated in multiple
scenarios in which our personal data is processed, e.g.,
web browsing [41] or cloud computing [26, 58]. These
attacks have severe security implications, as they can re-
cover sensitive information such as passwords, crypto-
graphic keys, and private user behavior. The majority of
attacks have been demonstrated on classic desktop and
server hardware [25, 30, 42, 51], and with Intel’s market
share for server processors being over 98% [31], their
platforms have been targeted most frequently.

With mobile usage skyrocketing, the feasibility of
cache attacks on smartphone and IoT processors – which
are predominantly ARM-based – has become a rele-
vant issue. Attacks that rely on the existence of a
cache flush instruction, i.e., Flush+Reload [51] and
Flush+Flush [23], work efficiently across a broad range
of x86 processors, but have limited applicability on ARM
devices. In general, cache flush instructions serve the
legitimate purpose of manually maintaining coherency,
e.g., for memory mapped input-output or self-modifying
code. On any x86 processor implementing the SSE2
instruction set extension, this flush instruction is avail-
able from all privilege levels as clflush. A similar in-
struction was introduced for ARM processors only in the
most recent architecture version, ARMv8. In contrast to
clflush, it must be specifically enabled to be accessi-
ble from userspace. This leaves a significant number of
ARM processors without a cache flush instruction.

For all processors with a disabled flush instruction or
an earlier architecture version, e.g., ARMv7, only evic-
tion based cache attacks can be deployed. In particular,
these attacks are Evict+Time [42], Prime+Probe [42],
and Evict+Reload [24]. On multi-core systems, they
target the last-level cache (LLC) to succeed regardless of
which core a victim process is running on. This requires
the LLC to be inclusive, i.e., to always contain the con-
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tents of all core-private cache levels. On Intel processors,
the entire cache hierarchy fulfills the inclusiveness prop-
erty and is therefore a viable target for eviction based
attacks. ARM devices, on the contrary, implement inclu-
sive and non-inclusive caches alike. Both properties can
co-exist, even in the same cache hierarchy. This renders
eviction based attacks to be practicable only on a limited
number of devices, in particular those that implement
inclusive last-level caches. Yet, our findings show that
an internal performance enhancement in inclusive last-
level caches, dubbed AutoLock, can still impede evic-
tion based cache attacks. In short, AutoLock prevents
a processor core from evicting a cache line from an in-
clusive last-level cache, if said line is allocated in any
of the other cores’ private cache levels. This inhibits
cross-core LLC evictions, a key requirement for practi-
cal Evict+Time, Prime+Probe, and Evict+Reload at-
tacks on multi-core systems, and further limits the num-
ber of ARM based attack targets in practice.

In literature, Lipp et al. [37], Zhang et al. [54], and
Zhang et al. [56] confirmed the general feasibility of
flush and eviction based cache attacks from unprivileged
code on ARM processors. Given the lack of flush in-
structions on a large selection of ARM devices and the
deployment of non-inclusive LLCs or inclusive LLCs
implementing AutoLock, the authors might have left an
overly pessimistic conclusion of ARM’s security against
cache attacks. In addition, ARM’s highly flexible licens-
ing ecosystem creates a heterogeneous market of system-
on-chips (SoCs) that can exhibit significant differences
in their microarchitectural implementations. Demme et
al. [17] illustrate that already small changes to the cache
architecture can have considerable impact on the side-
channel vulnerability of the processor. Consequently,
judging the true impact of cache attacks on a broad range
of ARM based platforms remains to be a challenge. Our
work adds another step in this process. It is a contribu-
tion to an in-depth understanding of microarchitectural
features on ARM in general and an extension to our cur-
rent knowledge of cache implementations in particular.

1.1 Contribution

This work unveils AutoLock, an internal and undocu-
mented performance enhancement feature found in in-
clusive cache levels on ARM processors. It prevents
cross-core evictions of cache lines from inclusive last-
level caches, if said lines are allocated in any of the
core-private cache levels. Consequently, it has a direct
and fundamentally adverse effect on all eviction based
cache attacks launched from unprivileged code on multi-
core systems. Understanding AutoLock and determin-
ing its existence on a given system-on-chip is vital to as-
sess the SoC’s vulnerability to those attacks. Yet, neither

technical reference manuals (TRMs) nor any other pub-
lic product documentation by ARM mention AutoLock.
We therefore provide a detailed description of the fea-
ture and propose three methodologies to test for it: using
a hardware debugging probe, reading the performance
monitoring unit (PMU), and conducting simple cache-
timing measurements. Each test strategy has different
requirements and reliability; having multiple of them
is vital to test for AutoLock under any circumstances.
With the proposed test suite, we verify AutoLock on
ARM Cortex-A7, A15, A53, and A57 processors. As
AutoLock is likely implemented on a larger number of
ARM processors, we discuss its general implications and
how our results relate to previous literature.

Despite its adverse effect on eviction based cache at-
tacks, the impact of AutoLock can be reduced. We dis-
cuss generic circumvention strategies and execute the
attack by Irazoqui et al. [29] in a practical cross-core
Evict+Reload scenario on a Cortex-A15 implementing
AutoLock. We successfully recover the secret key from
a table based implementation of AES and show that at-
tacks can tolerate AutoLock if multiple cache lines are
exploitable. Furthermore, the presented circumvention
strategies implicitly facilitate cross-core eviction based
attacks also on non-inclusive caches. This is because in
the context of cross-core LLC evictions, inclusive last-
level caches with AutoLock behave identically to non-
inclusive ones. In summary, our main contributions are:

• the disclosure and description of AutoLock, an un-
documented and previously unknown cache imple-
mentation feature with adverse impact on practical
eviction based cache attacks on ARM devices,

• a comprehensive test suite to determine the exis-
tence of AutoLock on actual devices, as its presence
is not documented publicly,

• a discussion of AutoLock’s implications and its re-
lation to previous literature demonstrating cache at-
tacks on ARM, and

• a set of strategies to circumvent AutoLock to-
gether with a practical demonstration of a cross-
core Evict+Reload attack on a multi-core SoC im-
plementing AutoLock.

The rest of this paper is organized as follows. Sec-
tion 2 describes AutoLock. A theoretical methodology
to test for it is presented in Section 3. We evaluate SoCs
for AutoLock in Section 4 and address how recent lit-
erature relates to it in Section 5. The implications of
AutoLock are discussed in Section 6. Circumvention
strategies together with a practical cross-core attack are
presented in Section 7. We conclude in Section 8.
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2 AutoLock: Transparent Lockdown of
Cache Lines in Inclusive Cache Levels

Processor caches can be organized in levels that build up
a hierarchy. Higher levels have small capacities and fast
response times. L1 typically refers to the highest level.
In contrast, lower levels have increased capacities and
response times. The lowest cache level is often referred
to as the last-level cache, or LLC. Data and instructions
brought into cache reside on cache lines, the smallest
logical storage unit. In set-associative caches, lines are
grouped into sets of fixed size. The number of lines or
ways per cache set is called the associativity of the cache
level. It can be different for every level. Whether a cache
level can hold copies of cache lines stored in other lev-
els is mainly defined by the inclusiveness property. If a
cache level x is inclusive with respect to a higher level
y, then all valid cache lines contained in y must also be
contained in x. If x is exclusive with respect to y, valid
lines in y must not be contained in x. If any combination
is possible, the cache is said to be non-inclusive.

Inclusive caches enforce two rules. If a cache line
is brought into a higher cache level, a copy of the line
must be stored in the inclusive lower level. Determin-
ing whether a line is stored anywhere in the hierarchy
can then be achieved by simply looking into the LLC.
Vice versa, if a line is evicted from the lower level, any
copy in the higher levels must subsequently be evicted as
well. This is an implicit consequence of the inclusiveness
property that has been successfully exploited in cross-
core cache attacks that target inclusive LLCs [26, 27, 39].

Evictions in higher cache levels to maintain inclusive-
ness can add substantial performance penalties in prac-
tice. In a patent publication by Williamson and ARM
Ltd., the authors propose a mechanism that protects a
given line in an inclusive cache level from eviction, if any
higher cache level holds a copy of the line [50]. An indi-
cator storage element that is integrated into the inclusive
cache level tracks which lines are stored in higher lev-
els. The element can be realized with a set of indicator
or inclusion bits per cache line, or a tag directory. If an
indicator is set, the corresponding line is protected. This
mechanism therefore prevents said performance penal-
ties, because subsequent evictions in higher cache levels
are prohibited. We refer to this transparent protection
of cache lines in the LLC as Automatic Lockdown or
AutoLock.

The impact of AutoLock during eviction is illustrated
in Figure 1. For simplicity, the illustration is based on a
two-level cache hierarchy: core-private L1 caches and a
shared inclusive last-level cache (L2) with one inclusion
bit per cache line. S and L are placeholders for any avail-
able cache set and line in the two cache levels. The left
side of the figure shows how a cache line is evicted in L1.

Figure 1: Simplified example of evicting a cache line
from level 1 (left) and level 2 (right) cache sets. The
level 2 cache is inclusive with respect to level 1 and im-
plements AutoLock.

First, an allocation request for set S is received. Then, a
target line L is selected by the replacement algorithm for
eviction. If a copy of L is present in any other of the core-
private L1 caches, it can immediately be evicted without
updating the inclusion bit in L2. Because other L1 copies
exist, the bit does not need to be changed. If no other L1
cache holds a copy of L, the inclusion bit must be reset
in L2, which unlocks the copy of L in L2. After the bit is
reset, L is evicted from L1.

Similarly, an allocation request in L2 triggers the re-
placement algorithm to select a line in set S for eviction.
Before L is evicted in L2, its inclusion bit is checked. If
a copy of L exists in any L1 cache, the replacement al-
gorithm is called again to select another target line. This
is repeated until one line is found whose inclusion bit is
not set. This line is then evicted to allow the allocation
of a new one.

If the number of ways in the inclusive lower cache
level, Wl , is higher than the sum of ways in all higher
cache levels, i.e., Wh,sum = ∑

N
i=1 Wh,i, it can be guaran-

teed that at least one line is always selectable for evic-
tion. If Wl = Wh,sum, all lines of a set in the lower cache
level can be auto-locked. In this case, the patent pro-
poses to fall back to the previous behavior, i.e., evict all
copies of a line from higher level caches. This unlocks
the line in the lower cache level and subsequently en-
ables its eviction. If the number of ways in the lower
cache level is further reduced, such that Wl <Wh,sum, ad-
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ditional measures must be taken to implement inclusive-
ness and Automatic Lockdown. While not impossible
per se, this case is not covered by the patent authors.

If an inclusive LLC with AutoLock is targeted in a
cache attack, the adversary is not able to evict a target’s
data or instructions from the LLC, as long as they are
contained in the target’s core-private cache. In theory,
the adversary can only succeed, if the scenario is reduced
to a same-core attack. Then, it is possible once again
to directly evict data and instructions from core-private
caches. Note that the same attack limitation is encoun-
tered on systems with non-inclusive last-level caches, be-
cause cache lines are allowed to reside in higher lev-
els without being stored in lower levels. In both cases,
AutoLock and non-inclusive LLC, the attacks do not
work cross-core because the attacking core cannot in-
fluence the target core’s private cache. Note that it is
possible, and indeed common on ARM processors, that
there are separate L1 caches for instructions and data and
that the LLC is inclusive with respect to one of them, but
non-inclusive with respect to the other. In Section 7, we
discuss possible strategies to circumvent AutoLock and
re-enable cross-core cache attacks. Because of said sim-
ilarities, those strategies also facilitate cross-core attacks
on non-inclusive LLCs.

Distinct from Automatic Lockdown, there exists
programmable lockdown in some ARM processors. Re-
gardless of inclusiveness, it allows the user to explicitly
lock and unlock cache lines by writing to registers of the
cache controller. This has the same effect as AutoLock,
i.e., the locked cache line will not be evicted until it is un-
locked. In contrast, however, programmable lockdown
must be actively requested by a (privileged) user. Of the
four Cortex-A processors we study in this paper, the tech-
nical reference manuals do not mention programmable
lockdown for any of them [5, 6, 8, 9]. AutoLock, how-
ever, is found in all of them.

3 How to Test for AutoLock

AutoLock is neither mentioned in ARM’s architecture
reference manuals [7, 10] nor in the technical refer-
ence manuals of the Cortex-A cores considered in this
work [5, 6, 8, 9]. To the best of our knowledge, it is
not publicly documented other than in patent form [50].
Based on official information, it is therefore impossi-
ble to determine which Cortex-A or thereto compliant
processor cores implement AutoLock, let alone whether
an actual system-on-chip features it. The presence of
AutoLock, however, is crucial to assess the risk of cache
attacks, in particular those that rely on cross-core evic-
tions in the LLC. We therefore propose the following test
methodology to determine the existence of AutoLock.
On any device under test, two processes are spawned on

distinct cores of the processor implementing an inclusive
last-level cache. The first process allocates a cache line in
the private cache level of the core it is running on. This
allocation is done with a simple memory access. The
inclusiveness property ensures that a copy of the cache
line must also be allocated in the last-level cache. The
second process then tries to evict the line from the LLC
by filling the corresponding cache set with dummy data.
If the cache line remains in the LLC and core-private
cache after the cross-core eviction, the test concludes that
AutoLock is implemented. If the line is removed from
both, the test concludes that AutoLock is not present.

Test Requirements and Intricacies. The proposed
test strategy requires that the eviction itself works re-
liably, because otherwise AutoLock cannot be distin-
guished from a failed eviction and false positives are the
consequence. We ensure a working eviction by veri-
fying it in the same-core scenario before executing the
AutoLock tests. Another requirement is that the LLC
is inclusive, because AutoLock is defined only in the
context of inclusive cache levels [50]. If the inclusive-
ness property is not documented for a processor, it must
be determined experimentally. For these inclusiveness
tests we recommend to refrain from using cross-core
evictions, as AutoLock might interfere, which leads to
wrong conclusions. Instead, hardware debugger or cache
maintenance operations should be used to confidently de-
termine whether caches are inclusive or not. If neither
of those are available, cross-core evictions still allow to
draw a conclusion, but only for a certain outcome. As-
sume the same scenario as in the AutoLock tests. The
first process allocates memory on a cache line in its pri-
vate cache level. The second process then fills the cor-
responding LLC set, after which the first process tries
to re-access its memory. If the access is fulfilled from
RAM, then it can be concluded that the LLC is inclu-
sive and that AutoLock is not present. If the access is
fulfilled from either private or last-level cache, no con-
clusion can be drawn, because either the LLC is not in-
clusive or AutoLock interfered. Once the inclusiveness
property of the LLC is ensured, AutoLock can be tested
as described in the following sections.

3.1 Cache Eviction
In order to evict a cache line from the LLC, we imple-
ment the method described by Gruss et al. [22] and Lipp
et al. [37]. Assume that an address T is stored on line L
in cache set S. In order to evict L from S, one has to ac-
cess a number of addresses distinct from T that all map
to S. These memory accesses fill up S and eventually re-
move L from the set. The addresses that are accessed in
this process are said to be set-congruent to T . They are
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collected in the eviction set C. Whenever C is accessed,
T is forced out of the set S. The sequence of accesses
to addresses in C is referred to as the eviction strategy.
The strategy proposed by Gruss et al. [22] is shown in
Algorithm 1.

Algorithm 1: Sliding window eviction of the form
N-A-D [22, 37].

Input:
C ... list of set-congruent addresses

1 for i = 0..N-1 do /* # of windows */
2 for j = 0..A-1 do /* # reps/window */
3 for k = 0..D-1 do /* # addrs/window */
4 access(C[i+ k]);
5 end
6 end
7 end

The idea is to always access a subset of the addresses
in C for a number of repetitions, then replace one address
in the subset with a new one, and repeat. This essen-
tially yields a window that slides over all available set-
congruent addresses. We therefore refer to this method as
sliding window eviction. In the algorithm, N denotes the
total number of generated windows, A defines the repeti-
tions per window, and D denotes the number of addresses
per window. The required size of C is given by the sum
of N and D. The final eviction strategy is then written
as the triple N-A-D. The strategy 23-4-2, for example,
comprises 23 total windows, each iterated 4 consecutive
times and containing 2 addresses. Lipp et al. [37] demon-
strate that sliding window eviction can successfully be
applied to ARM processors.

The parameters N-A-D must be determined once for
each processor. This is done by creating a list of set-
congruent addresses C and exhaustively iterating over
multiple choices of N, A, and D. By continuously check-
ing the success of the eviction, the strategy with the
least number of memory accesses that still provides re-
liable eviction can be determined. Generating the list
of set-congruent addresses C requires access to physi-
cal address information. This is because the last-level
caches on our test devices use bits of the physical address
as the index to the cache sets. If the parameter search
for N, A, and D is done in a bare-metal setting, physi-
cal address information is directly available. Operating
systems typically employ virtual addresses that must be
translated to physical ones. Applications on Linux, for
instance, can consult the file /proc/[pid]/pagemap to
translate virtual addresses [37]. Although accessing the
pagemap is efficient, access to it can be limited to priv-
ileged code or deactivated permanently. Alternatively,
huge pages reveal sufficient bits of the physical address

to derive the corresponding cache set [27]. To find ad-
dresses set-congruent to T , new memory is allocated and
the containing addresses are compared to T . If the least
significant address bits match while the most significant
bits differ, the address will map to T ’s cache set but will
be placed on a different line within the set. If access to
physical address information is entirely prohibited, tim-
ing measurements can still be used to find set-congruent
addresses [41].

Once C is filled with addresses, they are accessed
according to Algorithm 1. If a processor core imple-
ments separated data and instruction caches, the manner
in which a set-congruent address ought to be accessed
differs. Data addresses can be accessed by loading their
content to a register with the LDR assembly instruction.
Instruction addresses can be accessed by executing a
branch instruction that jumps to it. When determining
N-A-D on devices that might implement AutoLock, all
memory accesses to T and all evictions of it must be per-
formed on a single core. This ensures that AutoLock is
not interfering with the parameter search. Once the evic-
tion with a triple N-A-D works reliably in the same-core
setting, the AutoLock tests can be commenced.

3.2 AutoLock Tests

In the subsequent sections we propose three tests that
have been designed to prove or disprove the existence of
AutoLock. All of them follow the general methodology
of determining the success of a cross-core eviction strat-
egy that is known to succeed in the same-core scenario.
For simplicity, all tests are explained in a dual-core set-
ting. For a system with more processor cores, each test
can either be repeated multiple times or extended in order
to determine the presence of AutoLock simultaneously
on all but one core. In the dual-core setting, core 0 is ac-
cessing the target address T and core 1 is trying to evict
it by using the eviction set C and the processor specific
eviction parameters N-A-D. Table 1 contains the param-
eters for the processors considered in this work. For all
tests, both T and C are listed as inputs required for evic-
tion, while the triple N-A-D is assumed to be correctly
set according to Table 1. As currently nothing indicates

Table 1: List of ARM and ARM-compliant processors
under test, including the number of inclusive L1 and L2
ways, as well as the eviction strategy parameters N-A-D.

Processor L1 Ways L2 Ways N-A-D
Cortex-A7 2 (Instr.) 8 23-4-2
Cortex-A15 2 (Data) 16 36-6-2
Cortex-A53 2 (Instr.) 16 25-2-6
Cortex-A57 2 (Data) 16 30-4-6
Krait 4501 4 (Data) 8 50-1-1
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that AutoLock can be en- or disabled from software, its
presence on a processor has to be determined only once.

3.2.1 Hardware Debugger

The first method to test for AutoLock is through the us-
age of a hardware debugger. It allows to halt a processor
at will and directly monitor the cache content. A break-
point is inserted after the eviction of T and the contents
of the caches are analyzed. Through this visual inspec-
tion, it is possible to determine with very high confidence
whether or not T remains in the cache after the eviction
strategy is run. Given an inclusive LLC, it is sufficient to
confirm that T either remains in L1 or in L2 to prove that
AutoLock is present. Algorithm 2 outlines this test.

Algorithm 2: Hardware Debugger Test
Input:
T ... target address
C ... corresponding eviction set

1 Core 0 brings T to L1 and L2.
2 Core 1 runs eviction strategy using C.
3 Halt processor and inspect caches.
4 if T in L1 of Core 0 or L2 then AutoLock is present
5 else AutoLock is not present

The hardware debugger test requires a debugging unit,
a target platform that supports it, and physical access
to the target device. In our experiments, we use the
DSTREAM debugging unit [11] in combination with the
ARM DS-5 development studio. Of course, the test can
also be run with other debugging hardware.

3.2.2 Performance Monitoring Unit (PMU)

The second test utilizes the performance monitoring
unit, which can count the occurrence of microarchitec-
tural events in a processor. The PMU of ARMv7- and
ARMv8-compliant processors can be configured to count
the number of accesses (hit or miss) to the last-level
cache. The corresponding event is defined under the ID
0x16 in the architectural reference manuals [7, 10]. The
difference of the access counts before and after reloading
the target address T indicates whether the reload fetched
the address from the L1 or the L2 cache. A fetch from
L1 indicates that the eviction strategy failed and suggests
that AutoLock is implemented. If the eviction strategy is
successful, the target address has to be fetched from ex-
ternal memory. Before querying the slow external mem-
ory, the L2 cache is accessed and checked for the tar-
get address. This access is counted and indicates that
AutoLock is not implemented. To determine this extra
access to the L2, a reference value R must be obtained
before the test. This is done by reading the L2 access

counter for a reload with no previous run of the evic-
tion strategy, which guarantees a fetch from core-private
cache. The PMU test can the be conducted as outlined in
Algorithm 3.

Algorithm 3: PMU Test
Input:
T ... target address
C ... corresponding eviction set
R ... L2 access reference count

1 Core 0 brings T to L1 and L2.
2 Core 1 runs eviction strategy using C.
3 Save PMU count of L2 accesses.
4 Core 0 reloads T .
5 Save PMU count again and calculate difference d.
6 if d ≈ R then AutoLock is present
7 else AutoLock is not present

This test requires access to the PMU, which on ARM
is typically limited to privileged code, unless other-
wise configured. Some operating systems, however,
allow userspace applications to access hardware per-
formance events. On Linux, for instance, the perf
subsystem of the kernel provides this access via the
perf_event_open system call [36]. In general, the
PMU test can be used when the target processor is
not supported by a hardware debugger, or if physical
access to the device is not given. Since PMU event
counts can be affected by system activity unrelated to the
AutoLock test, it is recommended to repeat the experi-
ment multiple times. The best results can be obtained
in a bare-metal setting, where the test code is executed
without a full-scale operating system.

3.2.3 Cache-timing Measurements

The third experiment uses timing measurements to infer
from where in the memory hierarchy the target address T
is reloaded after the supposed eviction. If external mem-
ory access times are known, the reload time of T can
indicate whether AutoLock is implemented or not. This
test approach is outlined in Algorithm 4.

Algorithm 4: Cache-timing Test
Input:
T ... target address
C ... corresponding eviction set
M ... external memory access time

1 Core 0 brings T to L1 and L2.
2 Core 1 runs eviction strategy using C.
3 Core 0 reloads T and measures reload time t.
4 if t < M then AutoLock is present
5 else AutoLock is not present
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If after the eviction strategy the reload time is smaller
than what is expected for an external memory access, the
target address is likely fetched from cache, thus indicat-
ing AutoLock. If the reload time is equal to an external
memory access, the eviction strategy was successful and
AutoLock is likely not present.

This test has no further requirements other than run-
ning code on the system from userspace and having
access to a sufficiently accurate timing source. Com-
monly used timing sources include hardware based time-
stamp counters (PMCCNTR for ARM), the perf subsys-
tem of Linux [36], the POSIX clock_gettime() func-
tion [45], and a custom thread based timer. If available, a
hardware based time-stamp counter is preferred due to its
high precision. Further discussions about timing sources
can be found in the work by Lipp et al. [37] and Zhang
et al. [56]. Similar to PMU event counts, timing mea-
surements can significantly be affected by noise. It is
therefore advisable to repeat the proposed test multiple
times to get a robust conclusion about whether address
T is fetched from cache or external memory. Due to the
versatility of this test, we recommend its use in situa-
tions where either adequate debugging equipment is not
available or the abilities to conduct the other, more ro-
bust experiments are not given (e.g., when root access on
a device cannot be gained due to vendor restrictions).

4 Finding AutoLock in Existing SoCs

In this work, we evaluate the presence of AutoLock on
four test devices and their corresponding system-on-
chips. They are illustrated in Table 2. The Samsung
Exynos 5422 and the ARM Juno r0 SoCs feature two
processors with multiple cores each. They are so-called
ARM big.LITTLE platforms, on which a powerful pro-
cessor is paired with an energy efficient one. Together
with the Samsung Exynos 5250, these SoCs are part of
dedicated development boards or single-board comput-
ers. In contrast, the Qualcomm Snapdragon 805 is part
of an off-the-shelf mobile phone. In total, the four test
devices comprise five different processors: the ARM
Cortex-A7, A15, A53, A57, and the Qualcomm Krait
450. Table 1 provides details about their cache hierar-
chies. It shows the number of ways in L1 and L2 caches,
and the eviction strategy parameters for all of them. The
illustrated processors implement separate L1 instruction
and data caches. The number of L1 ways is given only
for the side which the L2 cache is inclusive to. The
LLCs on the Cortex-A7 and A53 are inclusive to the
L1 instruction caches, while the LLCs on the Cortex-
A15, A57, and the Krait 450 are inclusive to the L1 data
caches. The inclusiveness properties of the A15 and A57
are explicitly stated in their respective reference manu-
als [5, 8] (Section Level 2 Memory System). The A7 and

Table 2: Platforms used for the evaluation of AutoLock.
For each device, the corresponding SoC and processor
cores are given.

Device System-on-Chip Core(s)
Arndale Samsung Exynos 5250 2x Cortex-A15

ODROID XU4 Samsung Exynos 5422 4x Cortex-A7
4x Cortex-A15

ARM Juno ARM Juno r0 4x Cortex-A53
2x Cortex-A57

Nexus 6 Qualcomm Snapdragon 805 4x Krait 450

A53 manuals imply inclusiveness on the instruction side,
but do not explicitly state it [6, 9] (e.g. in Section Op-
tional integrated L2 cache). For the A53, however, the
lead architect confirmed it in an interview [47]. Pub-
lic documentation of the Krait 450 is scarce and infor-
mation about cache inclusiveness could only be obtained
for earlier Krait generations [34]. We therefore infer its
inclusiveness from successful cross-core eviction exper-
iments that at the same time disprove the existence of
AutoLock.

The tests on the Cortex-A processors are initially done
in a bare-metal setting. The lack of an operating system
eliminates interfering cache activity from system pro-
cesses and significantly reduces noise. The experiments
are then repeated on Linux for verification. On the Krait
450, the experiments are conducted on Linux only. For
each processor, we verify that the eviction parameters
listed in Table 1 can successfully evict cache lines in a
same-core setting. More precisely, we verify successful
eviction when evicting data cache lines using data ad-
dresses, and when evicting instruction cache lines using
instruction addresses. We then test for AutoLock in the
cross-core case with the experiments proposed in the pre-
vious section.

4.1 Test Results
The subsequent sections present the results for all test
methodologies described in Section 3. Along with the
conclusions about the presence of AutoLock on the test
devices, details about the practical execution of the ex-
periments are discussed.

4.1.1 Hardware Debugger

The SoCs on the ARM Juno and the Arndale develop-
ment boards are the only ones among the test devices
that are supported by DSTREAM2. It is therefore possi-
ble to visually inspect the L1 caches of the Cortex-A15,
A53, and A57 processors, and the L2 caches of the A15
and A57. A hardware limitation of the Cortex-A53 in
the ARM Juno r0 SoC prevents the visual inspection of
its L2 cache. To still test for AutoLock on the A53, we
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Figure 2: Memory access times with and without cross-
core eviction on the Krait 450 processor. A threshold of
700 clock cycles clearly separates the two timing distri-
butions, which indicates that AutoLock is not present.

leverage the inclusiveness property to surmise L2 con-
tents. According to Algorithm 2, AutoLock can still be
concluded, if the target address is contained in the core-
private cache of core 0. This is derived from the inclu-
siveness property of the L2 cache.

To conduct the tests, we connect each supported board,
in turn, to the DSTREAM and use breakpoints to tem-
porarily halt program execution after the eviction algo-
rithm is run. When halted, we use the Cache View of
the DS-5 development studio to visually determine if the
target cache line is present in the respective caches. For
the A53, we infer the contents of the L2 based on the in-
clusive L1. We ran the experiments several times on the
A15, A53, and A57 processors. All trials indicate each
processor’s inclusive cache implements AutoLock.

4.1.2 Performance Monitoring Unit (PMU)

To verify to results of the Cortex-A53, we conduct the
experiment described in Algorithm 3 with it. The PMU
is configured to count accesses to the L2 cache. We then
execute a target instruction on core 0 and run a 25-2-6
eviction strategy on core 1. Before and after reloading
the target instruction, we insert 10 NOP instructions. This
reduces the effects of pipelining, as the A53 has an 8-
stage pipeline. To ensure we only measure exactly the
reload of the target instruction, we execute a DSB and ISB
instruction before each set of NOPs. These instructions
function as memory barriers, guaranteeing that memory
access instructions will execute sequentially. This is nec-
essary because the ARM architecture allows memory ac-
cesses to be reordered to optimize performance.

As a result, we observe that reloading the target in-
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Figure 3: Memory access times with and without cross-
core eviction on the ARM Cortex-A57 processor. The
two timing distributions clearly overlap, which indicates
that AutoLock inhibits the eviction.

struction after executing the eviction algorithm causes
no additional L2 access. This indicates that the eviction
failed and the reload was served from L1. If the evic-
tion had succeeded, the event counter would have been
incremented by the L2 cache miss. We ran the exper-
iment multiple times and observed consistent results in
each trial. This confirms the presence of AutoLock on
the Cortex-A53.

4.1.3 Cache-timing Measurements

To determine the presence of AutoLock on the Cortex-
A7 and the Krait 450, we execute the cache-timing ex-
periment described in Algorithm 4. In addition, tim-
ing measurements are used to verify the results obtained
for the Cortex-A15, A53, and A57. In all experiments,
the perf subsystem of the Linux kernel, accessible from
userspace, is used to measure access times with a hard-
ware based clock cycle counter. This was taken from
Lipp et al. [37]3.

Figure 2 shows the timing data collected with two sep-
arate executions of Algorithm 4 on the Krait 450. The
first execution performed the eviction step as defined in
the algorithm. The timings measured during the reload
phase are shown in red. The second execution skipped
the eviction step. These timings are shown in blue, for
comparison. When the eviction step is skipped, the tar-
get address remains in the cache, and thus the access time
is significantly lower, as pictured. This indicates that the
Krait 450 does not implement AutoLock.

The same timing measurements are performed on the
Cortex-A57. The results are shown in Figure 3. Since
the timings for each execution virtually overlap in the
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graph, it is clear that the target address is never evicted.
This confirms the results for the A57 derived with the
hardware debugger, i.e., that it implements AutoLock.
For both the Krait 450 and the A57, we performed 50,000
measurements to ensure that clear trends can be seen.

Corresponding experiments on the Cortex-A7 indicate
that its instruction cache side implements AutoLock.
The measurements on the Cortex-A15 and A53 proces-
sors confirm the previous results and indicate once more
that they implement AutoLock.

4.2 Discussion of the Test Results
The summary of the test results is shown in Table 3. All
ARM Cortex-A processors on our test devices exhibit
AutoLock in their inclusive last-level caches, whereas
no evidence of AutoLock can be found on the Qual-
comm Krait 450. The practical impact of AutoLock is
that cache lines in the LLC are transparently locked dur-
ing runtime. On a multi-core system, this can be trig-
gered simultaneously in multiple cores. For each core,
AutoLock essentially reduces the number of lines per
LLC set that are available to store new data and instruc-
tions. Depending on the associativity of the core-private
cache levels the LLC is inclusive to, a significant fraction
of cache lines can be locked in an LLC set. Referring to
Table 1, it can be seen that the Cortex-A7 features 2-way
L1 instruction caches and an inclusive 8-way L2 cache.
This means that on a quad-core A7 it is possible to lock
all ways of an L2 cache set with instructions held in the
core-private caches. Requests to store lines from L1 data
caches in such a set subsequently fail, but do not vio-
late inclusiveness, as the L2 is non-inclusive to L1 data
caches. On the other Cortex-A processors, L2 cache sets
cannot fully be locked. In quad-core Cortex-A15, A53,
and A57 processors, up to 8 ways can be locked in an
L2 set at once. As the Krait 450 does not implement
AutoLock, the number of ways in the L2 does not need
to match the sum of ways in the L1 caches. Hence, the
L1 data caches contain 4 ways while the L2 contains 8.

5 Related Work

The field of cache attacks finds its origins in the early
anticipation of varying memory access times compro-
mising the security of cryptographic software [32, 35].
Ever since, this field has seen significant development
in both attack and defense strategies. Tsunoo [48] and
Bernstein [13] first introduced practical attacks based
on the varying execution time of block ciphers. As
the targeted implementations performed key-dependent
memory accesses that resulted in key-dependent num-
bers of cache hits and misses, the execution time con-
tained sufficient information to recover (parts of) the se-

Table 3: Evaluation results for the ARM and ARM-
compliant processors of the test devices.

Processor System-on-Chip AutoLock
Cortex-A7 Samsung Exynos 5422 Present

Cortex-A15 Samsung Exynos 5250/5422 Present
Cortex-A53 ARM Juno r0 Present
Cortex-A57 ARM Juno r0 Present
Krait 450 Qualcomm Snapdragon 805 Not Present

cret key. The works of Tsunoo and Bernstein belong to
the group of time-driven attacks that exploit the link be-
tween overall processing time and cache activity. Similar
attacks have subsequently been demonstrated by Bon-
neau and Mironov [15], Acıiçmez et al. [3], and Bog-
danov et al. [14]. An alternative attack vector is intro-
duced in the work of Page [43], where the sequence of
cache hits and misses is observed during the execution
of the cipher. Knowing how the key is involved in the
memory accesses, this sequence (or trace) allows to in-
fer bits of the key, which is the basis of so-called trace-
driven attacks that have been studied further by Acıiçmez
and Koç [2], Fournier and Tunstall[19], and Gallais and
Kizhvatov [20]. While AutoLock can in theory affect
both time- and trace-driven attacks, we consider its prac-
tical impact to be limited. First, both attack types typ-
ically do not require active and fine-grained manipula-
tion of the cache. Instead, attacks rely on background
activity on the target system, limited sizes of cache lev-
els, self-evictions, and the fact that unused data will typ-
ically be removed from cache after some time. These
building blocks are hardly affected by AutoLock. Sec-
ond, attacks often employ statistical analyses and thereby
implicitly account for erroneous observations. As such,
AutoLock will most likely act as an additional source
of noise. The situation changes for attacks that exploit
individual accesses to the cache. These so-called access-
driven attacks have proven to be considerable threats in
practice and consequently gained significant attention in
literature over the past decade. What access-driven at-
tacks have in common is that data or instructions are se-
lectively removed from the cache hierarchy at some point
during the attack. While a large number of attack papers
have been published, only a few basic attack strategies
exist that can be categorized depending on how this re-
moval is implemented.

Flush-based Attacks. The first group of attacks relies
on cache flushing, i.e., the removal of cache contents
with dedicated flush instructions that are part of the pro-
cessor’s instruction set. Gullasch et al. [25] introduced
a flush based attack on x86 processors and used it to
retrieve an AES key from a core co-resident victim by
abusing the flush instruction clflush as well as mem-
ory deduplication and the Completely Fair Scheduler of
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Linux. Yarom and Falkner [51] extended the work by
Gullasch et al. and proposed the Flush+Reload at-
tack, with which they recovered RSA keys across pro-
cessor cores and virtual machines. This work was ex-
panded by Irazoqui et al. [29, 30], who demonstrated
the recovery of AES keys and TLS session messages.
The Flush+Reload technique was concurrently used by
Benger et al. [12] to recover ECC secret keys, by Zhang
et al. [58] to launch cross-tenant attacks on PaaS clouds,
and by Gruss et al. [24] to implement template attacks.
Based on the timing variations of clflush, Gruss et
al. [23] also proposed the Flush+Flush attack. We cur-
rently believe that none of the flush based attacks are af-
fected by AutoLock, because cache maintenance opera-
tions such as cache flushing seem to override AutoLock.

Eviction-based Attacks. The second group of attacks
relies on cache eviction, i.e., the removal of cache con-
tents by filling the corresponding parts of the cache with
dummy or unrelated content. Osvik et al. [42] intro-
duced two eviction based attacks, called Evict+Time
and Prime+Probe, which both target software imple-
mentations of AES. As the underlying attack strategies
are more generic, Acıiçmez [1] and Percival [44] uti-
lized Prime+Probe to steal an RSA key while Neve and
Seifert used it to perform an efficient last round attack
on AES [40]. Ristenpart et al. [46] used the same tech-
nique to recover keystrokes from co-resident virtual ma-
chines (VMs) in the Amazon EC2 cloud. This work
was later expanded by Zhang et al. [57], proving the ef-
fectiveness of Prime+Probe to recover El Gamal keys
across VMs. Liu et al. [39] and Irazoqui et al. [27]
showed the feasibility of Prime+Probe via the last-level
cache. Both studies opened a range of scenarios in which
cache attacks could be applied. For instance, Oren et
al. [41] executed Prime+Probe in JavaScript and Inci
et al. [26] demonstrated the applicability of the tech-
nique in commercial IaaS clouds. As a cross-over to
the flush based attacks, Gruss et al. [24] proposed the
Evict+Reload attack, which removes cache contents
through evictions but other than that remains identical to
the Flush+Reload technique. All of the eviction based
attacks are inherently affected by AutoLock, if they are
executed in a cross-core scenario. While this might not
hold for the same-core attacks proposed in early litera-
ture, it very much applies to the most recent attacks that
pose greater threats in practice.

Cache Internals. Besides the generic structure and
behavior of caches, literature has also exploited more
implementation specific aspects. Irazoqui et al. [28]
demonstrated the applicability of cache attacks across
CPUs through the cache coherency protocol, which al-
lows the execution of Flush+Reload style attacks by

forwarding cache flush and data request messages be-
tween two CPU clusters. Yarom et al. [52] showed that
cache bank contentions introduce timing variations of ac-
cesses to different words on a single cache line. This un-
dermines the general assumption in other work that dif-
ferent words on one cache line have the same timing be-
havior. Gruss et al. [21] introduced prefetching instruc-
tions as a way to load memory into cache without explic-
itly accessing it. This can be used to circumvent supervi-
sor mode access prevention and address space layout ran-
domization. As the exact impact of AutoLock on these
attacks is unclear, we leave a more detailed assessment
of AutoLock’s intricacies in these cases to future work.

Countermeasures. The threat posed by cache attacks
has been addressed from both hardware and software
side in the form of countermeasures. Hardware based
approaches often leverage programmable lockdown, i.e.,
the ability to actively lock cache lines. Cache contents
belonging to sensitive applications are then locked and
therefore protected from eviction by other, e.g., ma-
licious applications. In literature, this programmable
lockdown is for instance used by Wang and Lee [49]
and by Liu et al. [38] to counter cache attacks. Al-
though AutoLock also prevents cache lines from being
evicted and therefore behaves in a similar way, there are
two main differences compared to the proposed coun-
termeasures. First, there is no means of controlling
AutoLock, as it can neither be configured nor disabled.
Second, AutoLock only protects lines in the LLC under
certain conditions, i.e., if they are kept in core-private
cache levels. Once these lines are removed from core-
private levels, the protection immediately stops. As such,
AutoLock cannot provide any guarantee to impede cache
attacks. It is rather an additional layer of complexity
that an adversary has to overcome during a cache attack.
Software based countermeasures often try to separate the
cache footprints of applications, such that each applica-
tion gets a separate portion of the cache, which prevents
interferences at the cache level. In literature, this strategy
has for instance been applied by Kim et al. [33] and Zhou
et al. [59]. Ultimately, applications that handle sensitive
data should be designed such that both execution flow
and memory accesses are independent of any sensitive
input that is processed. As this is not a trivial task, several
tools have been proposed that help to detect cache leaks
and fix vulnerable code [4, 18, 53]. If applications cannot
be fixed, other approaches try to detect and stop cache
attacks in real-time, before any harm is caused [55]. For
these system- and application-level countermeasures, we
do not expect any particular impact from AutoLock.

Most of the previous cache attack literature is dedicated
to the x86 architecture. Recent works [37, 54, 56] have
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Table 4: Utility of known cache attacks in different
scenarios on ARM Cortex-A processors with inclusive
caches implementing AutoLock. ‘3’ indicates the attack
is unaffected by AutoLock, while ‘7’ denotes obstruc-
tion by AutoLock. Flush+Reload and Flush+Flush
are uninhibited by AutoLock but only apply to a limited
number of ARMv8-A SoCs and are thus listed as ‘*’.

Attack Same-core Cross-core Cross-CPU
Evict + Time [42] 3 7 7
Prime + Probe [42] 3 7 7
Flush + Reload [51] * * *
Evict + Reload [24] 3 7 7
Flush + Flush [23] * * *

made several contributions to overcome the challenges
of applying known userspace cache attacks from x86 to
ARM processors. AutoLock is not recognized or men-
tioned in any of them. The following section is dedicated
to discuss how AutoLock relates to these publications
and why it might have stayed undetected.

5.1 AutoLock in Previous Work

Lipp et al. [37] were the first to demonstrate the feasibil-
ity of Prime+Probe, Flush+Reload, Evict+Reload,
and Flush+Flush attacks on ARM devices. Despite
their extensive experiments, the authors did not mention
any encounter of a feature similar to AutoLock. We be-
lieve this can mainly be explained with their selection of
test devices: the OnePlus One, the Alcatel One Touch
Pop 2, and the Samsung Galaxy S6. Respectively, these
mobile phones feature the Krait 400, the Cortex-A53,
and a big.LITTLE configuration of the Cortex-A53 and
Cortex-A57. We assume that the Krait 400, like the Krait
450 we experimented on, does not feature AutoLock.
The Samsung Galaxy S6 features a full-hierarchy flush
instruction that is available from userspace by default.
Thus, the authors bypassed AutoLock on this device by
flushing cache lines instead of evicting them. In contrast,
the Alcatel One Touch Pop 2 features a Cortex-A53 that
would potentially be affected by AutoLock according to
our results. Yet, Lipp et al. successfully demonstrate
a covert channel based on cross-core evictions on this
chip. A possible explanation could be that the SoC man-
ufacturers are different. While Lipp et al. experiment
on a Qualcomm Snapdragon 410, we perform our tests
on an ARM built Juno SoC. This could mean that the
existence of AutoLock is yet more fragmented than our
results might indicate. If this should be true, testing for
AutoLock on a specific device is more important than
ever. Another explanation is that the authors relied on
evictions caused by background activity or by the mea-
surement program itself (self-evictions).

Zhang et al. [56] implemented a variant of the
Flush+Reload attack in a zero-permission Android ap-
plication. The authors also experimented on processors
we expect to feature AutoLock, but they did not mention
any encounter with it either. In fact, they used the same
processors analyzed in this work, namely, the Cortex-A7,
A15, A53, A57, and the Krait 450. Since their work
was focused solely on Flush+Reload, one of the two
cache attacks unaffected by AutoLock, we assume they
never encountered it during their experiments. One of
the main contributions of their work was to implement
an instruction-side Reload in a return-oriented manner,
i.e., by executing small blocks of instructions. This con-
tribution stemmed from using the cacheflush syscall
in the Flush step, as it only invalidates the instruction
side. As a prerequisite for their final target device se-
lection, the authors experimentally determined the inclu-
siveness property of the last-level caches on all devices.
Surprisingly, they concluded that all of the L2 caches in
the aforementioned processors are inclusive with respect
to the L1 data and instruction caches. This contradicts
our experiments, which found the Cortex-A7 and A53 to
only be inclusive on the instruction side, and the Cortex-
A15 and A57 to only be inclusive on the data side. Fur-
ther, the official ARM documentation of the Cortex-A7,
for example, explains that “Data is only allocated to the
L2 cache when evicted from the L1 memory system, not
when first fetched from the system." [6]. We understand
this to mean that the L2 cache of the Cortex-A7 is not in-
clusive with respect to the L1 data caches. This complies
with our observations.

In other previous work, Zhang et al. [54] implemented
a Prime+Probe attack in an unprivileged Android appli-
cation on an ARM Cortex-A8. Since we did not con-
duct experiments on this processor model, it is unclear
whether AutoLock is implemented on it. However, the
test system used by Zhang et al. comprised only a sin-
gle Cortex-A8 processor core. As AutoLock does not
affect same-core attacks, the experiments of the authors
would not have been affected, even if the Cortex-A8 im-
plemented AutoLock.

6 Implications of AutoLock

Automatic Lockdown prevents the eviction of cache
lines from inclusive cache levels, if copies of that line
are contained in any of the caches said level is inclu-
sive to. Yet, the ability to evict data and instructions
from a target’s cache is a key requirement for practi-
cal cross-core cache attacks. Table 4 illustrates the im-
pact of AutoLock on state of the art cache attacks im-
plemented on ARM Cortex-A processors. Each row
shows one attack technique and the corresponding ef-
fect of AutoLock in three different scenarios: same-
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Table 5: Selection of recent smartphones from manu-
facturers with high global market share [16]. For each
listed device, the SoC, the contained processing cores,
and their assumed exposure to AutoLock are given. A
‘3’ indicates that AutoLock is currently expected to be
present, while a ‘-’ states unknown exposure.

Smartphone SoC Core(s) AutoLock
Assumed

Apple iPhone 6 Apple A8 Typhoon -
Apple iPhone 6s (Plus) Apple A9 Twister -
Apple iPhone 7 (Plus) Apple A10 Hurricane, Zephyr -
Huawei P9 Kirin 955 A72, A53 - (A72), 3(A53)
Huawei P10 (Plus) Kirin 960 A73, A53 - (A73), 3(A53)
Huawei P10 Lite Kirin 658 A53 3

Huawei Y7 Snapdragon 435 A53 3

LG Harmony Snapdragon 425 A53 3

LG V20 Snapdragon 820 Kryo -
LG G6 Snapdragon 821 Kryo -
Oppo A77 Mediatek MT6750T A53 3

Oppo R9s Snapdragon 625 A53 3

Oppo R9s Plus Snapdragon 653 A72, A53 - (A72), 3(A53)
Oppo R11 (Plus) Snapdragon 660 Kryo -
Samsung Galaxy S6 (Edge) Exynos 7420 A57, A53 3(A57), 3(A53)
Samsung Galaxy S7 Exynos 8890 M1, A53 - (M1), 3(A53)
Samsung Galaxy S8b Exynos 8895 M2, A53 - (M2), 3(A53)
Samsung Galaxy S7 Edgea Snapdragon 820 Kryo -
Samsung Galaxy S8+b Snapdragon 835 Kryo -
vivo V5 Mediatek MT6750 A53 3

vivo V5 Plus Snapdragon 625 A53 3

vivo Y55s Snapdragon 425 A53 3

Xiaomi Mi Max 2 Snapdragon 625 A53 3

Xiaomi Mi6 Snapdragon 835 Kryo -
Xiaomi Mi 5c Surge S1 A53 3

a . . . An alternative edition of the S7 Edge features an Exynos 8890.
b . . . The S8(+) can both feature either an Exynos 8895 or a Snapdragon 835.

core, cross-core, and cross-CPU. A ‘3’ or ‘*’ signi-
fies that an attack can be mounted, whereas a ‘7’ indi-
cates that AutoLock fundamentally interferes with the
attack. Given the nature of AutoLock, all same-core at-
tacks remain possible, as the adversary can evict target
memory from all core-private cache levels. All attacks
based on a full-hierarchy flush instruction are also not af-
fected by AutoLock. However, said flush instruction, un-
like on x86 processors, is not available on any ARMv7-
A compliant processor and must be enabled in control
registers on ARMv8-A compliant processors. Access
to these control registers is limited to privileged, i.e.,
kernel or hypervisor code. These flush based attacks,
namely Flush+Reload and Flush+Flush, are there-
fore denoted with ‘*’. In contrast to these attacks, all
techniques that rely on evicting a cache line, namely
Evict+Time, Prime+Probe, and Evict+Reload, are
impaired by AutoLock in cross-core scenarios.

While it’s possible to state AutoLock’s fundamental
impact on state of the art attack techniques, its effect
and presence on actual devices is more difficult to asses.
Based on our experiments, we currently assume that
AutoLock is primarily implemented on Cortex-A cores
designed by ARM itself. As the concept is protected
by US patent [50], ARMv7-A and ARMv8-A compli-
ant cores, such as Qualcomm’s Krait 450, would have
to pay royalties to implement AutoLock. We therefore
assume that compliant cores refrain from implementing

AutoLock. Based on these assumptions, Table 5 tries to
illustrate the impact of AutoLock on recent smartphones.
It lists devices from major manufacturers that have high
global market shares [16]. For each of them, we select
smartphones that have recently been introduced or an-
nounced. For every device, the corresponding SoC and
processor cores are shown. In addition, the table states
whether we expect AutoLock to be implemented (indi-
cated by a ‘3’) or whether a device’s exposure remains
unknown (indicated by a ‘-’). A significant fraction of
devices shown in Table 5 feature an ARM Cortex-A53,
which we found to implement AutoLock. While newer
cores such as the Cortex-A72 and A73 might be affected
as well, it remains unclear whether this also holds for the
ARM-compliant cores, such as the Kryo (the successor
of the Krait), the Mongoose (M1, M2), as well as the
cores integrated into the Apple SoCs.

If a device implements AutoLock, adversaries must
find and employ circumvention strategies to leverage the
full potential of eviction based cache attacks. In general,
such strategies can also be used to target non-inclusive
LLCs, where cross-core evictions are not possible, ei-
ther. In the upcoming section, we discuss circumvention
strategies and demonstrate that the attack proposed by
Irazoqui et al. [29] can still be mounted in a cross-core
Evict+Reload scenario with an inclusive LLC imple-
menting AutoLock.

7 Circumventing AutoLock

Despite the restrictions that Automatic Lockdown
poses to eviction based cache attacks, its effects can be
alleviated with the following strategies:

• Pre-select Target SoCs: Our findings suggest that
AutoLock is present on Cortex-A cores designed
by ARM itself, while it is not implemented by
ARM compliant cores, such as Qualcomm’s Krait
450. As previously stated, this might be due to
the protection of the concept by US patent [50].
By exclusively targeting Cortex-A compliant pro-
cessors not implemented by ARM, chances of not
encountering AutoLock might increase. Alterna-
tively, Flush+Reload or Flush+Flush based at-
tacks can still be mounted on ARMv8-A SoCs that
offer the cache flush instruction in userspace, i.e.
the Samsung Galaxy S6 [37].

• Achieve Same-core Scenario: Certain attack sce-
narios realistically allow the adversary to execute
code on the same core as the target program. Since
same-core attacks are not affected by AutoLock,
this entirely removes its impact. ARM TrustZone,
e.g., enables the secure execution of trusted code
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on an untrusted operating system. Given that the
untrusted OS is compromised by the adversary, the
trusted code can be scheduled to run on any given
processor core. By matching the core affinity of the
attacking process to the one of the respective trusted
target, the attack is reduced to a same-core setting
and can successfully be mounted, even across TEE
boundaries [54].

• Trigger Self-evictions: When AutoLock is active,
a cache line can only be evicted from the inclusive
LLC if no higher cache level contains a copy of it.
If the target program offers services to the rest of
the system, the adversary can try to issue requests
such that the core-private cache of the target is suf-
ficiently polluted and the cache line under attack is
evicted. The target program essentially performs
a ‘self-eviction’ and thus re-enables LLC evictions
and consequently cross-core attacks.

• Increase Load and Waiting Time: Inclusive
caches with AutoLock require that the number of
ways in lower levels are greater or equal than the
sum of ways in all higher cache levels. This limits
the associativity of core-private caches, which the
LLC is inclusive to, especially on multi-core sys-
tems. If the attack allows, an adversary can take ad-
vantage of the low associativity and simply prolong
the waiting time between reloads such that the target
line will automatically be evicted from core-private
caches by other system activity scheduled on the re-
spective core. To amplify the effect, the adversary
can also try to increase overall system load, e.g.,
by issuing requests to the OS aiming at increasing
background activity in the targeted core.

• Target Large Data Structures: Self-evictions,
high system load, and prolonged waiting times all
increase the chances that a cache line is evicted by
itself from core-private caches. The success rate
of an attack is further improved, if multiple cache
lines can be targeted. The more lines that are ex-
ploitable, the higher the chances that at least one
of them is automatically evicted from core-private
caches. For example, the transformation tables (T-
tables) of AES software implementations span mul-
tiple cache lines due to their size of several kilo-
bytes. The attack proposed by Irazoqui et al. [29]
observes the first line per table to recover an entire
AES key. The authors note that “any memory line of
the T table would work equally well.” In the upcom-
ing section, we pick up this idea and demonstrate
how the attack can be extended to exploit multiple
cache lines to successfully circumvent AutoLock.

Note that all of the presented strategies increase the
chances of successful attacks not only on inclusive
caches implementing AutoLock, but also on non-
inclusive caches.

7.1 Attack on AES
Irazoqui et al. [29] propose an attack on table based im-
plementations of AES using Flush+Reload. The basic
strategy is to flush one cache line per table before an en-
cryption and reload it afterwards. If any lookup table
value stored on the observed cache line is used during en-
cryption, the adversary will encounter fast reload times.
If said line is not accessed, it will be fetched from exter-
nal memory and reload times will be slow. With all table
lookups dependent on the secret key, the adversary can
infer bits of the key from the observed reload times.

In table based implementations of AES, each cache
line has a certain probability with which it is not used
during en- or decryption. This probability depends on
the size and the number of the tables as well as the size
of the cache lines. It is defined as

Pna =
(

1− t
256

)n
. (1)

Variable t denotes the number of table entries stored on
a cache line. For 4-byte entries and a 64-byte cache line,
t = 16. Variable n defines the number of accesses to the
table that a cache line is part of. Given an AES-128 im-
plementation that uses four 1 kiB T-tables and performs
160 lookups per encryption, which evenly spread over
the four tables, n = 40. With t = 16, this yields a no-
access probability of Pna = 0.0757. Note that the attack
exploits observations of not accessed cache lines. As a
result, the number of required observations increases, as
Pna gets smaller.

The attack targets the last round of AES, i.e., the 10th

round. It is shown in Equation 2. The ciphertext is de-
noted as ci (i = 0..15). The 10th round key is given as
k10

i , whereas the state of AES is defined as si. The target
lookup table used in the last round is denoted as T . For
each encryption, the adversary keeps track of the reload
times and the ciphertext. If successful, the attack recov-
ers the last round key. For the recovery phase, the last
round is re-written as

ci = k10
i ⊕T [si] → k10

i = ci⊕T [si] . (2)

Improvements The original attack targets one cache
line per table. If the observations of said line are of poor
quality, the attack is prolonged or fails. This can hap-
pen on a processor that implements AutoLock or non-
inclusive caches. If LLC evictions fail, the adversary
cannot determine whether the selected cache line has
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been used during encryption. Irazoqui et al. [29] state
that the attack works equally well with all cache lines
carrying lookup table entries. As discussed in the previ-
ous section, it is likely in practice that some of them are
automatically evicted from core-private caches, hence
re-enabling the attack despite AutoLock. To leverage
observations from all available cache lines, we propose
three improvements to the original attack:

1. Majority vote: All available cache lines l are at-
tacked (l = 0..L). This yields L recovered keys. For
each key byte, a majority vote is done over all L re-
covered values. The value with the most frequent
occurrence is assumed to be the correct one. If two
or more values occur equally frequently, the lowest
one is chosen. The majority vote ensures that wrong
hypotheses from noisy cache lines are compensated
for as long as the majority of lines yield correct re-
sults.

2. Probability filter: The reload times allow to calcu-
late the actual no-access probability for each cache
line, P̃l

na. For each table, the line closest to the ex-
pected theoretic probability, Pna, is taken and used
in the attack. Lines showing distorted usage statis-
tics due to noise and interference are discarded.

3. Weighted counting: Every cache line is assigned
an individual score Sl that is counted each time a
key byte hypothesis is derived from the line’s reload
times. The score is based on the absolute difference
of the no-access probabilities, dl = abs

(
Pna− P̃l

na
)
.

It is defined as Sl = 1− dl
1−Pna

. After all scores have
been added for all hypotheses, the recovery phase
proceeds as proposed.

We implement the original attack and all improve-
ments using Evict+Reload on a multi-core ARM
Cortex-A15 processor featuring a data-inclusive LLC
with AutoLock. We employ sliding window eviction
with parameters 36-6-2 (see Table 1). The targeted AES
implementation uses four 1 kiB T-tables. The adver-
sary and target processes are running on top of a full-
scale Linux operating system. In total, we perform five
different attacks. First, we implement the original at-
tack with adversary and target on the same core and
then on separate cores. This illustrates the impact of
AutoLock, which only affects cross-core attacks. The
rest of the attacks are conducted with adversary and tar-
get on separate cores and each demonstrate one of the
proposed improvements. The results are illustrated in
Figure 4. Each attack is repeated for 100 random keys
and the average number of correctly recovered key bytes
is shown over an increasing number of encryptions. It
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Figure 4: Evict+Reload attacks on an ARM Cortex-
A15 with AutoLock; performed for 100 random keys.
The number of key bytes recovered on average are dis-
played for an increasing number of encryptions.

can clearly be seen that AutoLock impairs the origi-
nal cross-core attack (orig_cross). After 400,000 en-
cryptions no more than 5 key bytes are correctly recov-
ered. The fact that at least some key bytes are correct
is owed to sporadic and automatic evictions of the ob-
served cache lines from the target’s core-private cache.
These evictions can be caused by stack and heap data ac-
cesses (such as AES state and key arrays as well as their
pointers), and possibly by unrelated processes sched-
uled on the same core. Attacks in the same-core set-
ting (orig_same) are not affected by AutoLock and al-
low full-key recovery. Our improvements clearly demon-
strate that cross-core attacks are still possible, if multiple
cache lines can be observed. Both majority vote (major-
ity) and weighted counting (weighted) recover the entire
key with less than 100,000 encryptions and therefore of-
fer similar success rates as the same-core attack. The
probability filter (prob_filter) still allows full-key recov-
ery within 100,000 encryptions, if a brute-force search
with complexity < 232 is added.

The results illustrate that even on processors imple-
menting AutoLock cache attacks can still be successful
in practice, if multiple cache lines are monitored. Note
that the proposed improvements are also beneficial on
processors without AutoLock or on systems with non-
inclusive caches. If attacks rely on observing a specific
cache line, the chances of success are significantly re-
duced on processors implementing AutoLock.
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8 Conclusion

The licensing ecosystem of ARM drives an increasingly
heterogeneous market of processors with significant mi-
croarchitectural differences. Paired with a limited under-
standing of how ARM’s cache architectures function in-
ternally, this makes assessing the practical threat of flush
and eviction based cache attacks on ARM a challenging
task. Although the feasibility of state of the art attacks
has been demonstrated, their requirements are far from
being fulfilled on all ARM processors. Flush instruc-
tions are supported only by the latest architecture ver-
sion and must explicitly be enabled for userspace appli-
cations. This limits the practical utility of flush based at-
tacks. Last-level caches can be non-inclusive, impeding
practical cross-core eviction attacks that require LLCs
to be inclusive. Our work shows that these attacks can
still fail even on inclusive LLCs, if AutoLock is im-
plemented. On the contrary, more sophisticated attack
techniques seem to overcome both AutoLock and non-
inclusive cache hierarchies. We therefore believe that a
fair and comprehensive assessment of ARM’s security
against cache attacks requires a better understanding of
the implemented cache architectures as well as rigorous
testing across a broad range of ARM and thereto compli-
ant processors.
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[26] İNCI, M. S., GÜLMEZOǦLU, B., IRAZOQUI, G., EISENBARTH,
T., AND SUNAR, B. Cache attacks enable bulk key recovery on
the cloud. In Cryptographic Hardware and Embedded Systems
– CHES 2016: 18th International Conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings (Berlin, Heidelberg,
2016), Springer Berlin Heidelberg, pp. 368–388.

[27] IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$a: A
shared cache attack that works across cores and defies vm sand-
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3 The timing measurement code can be retrieved from the GitHub
repository at https://github.com/IAIK/armageddon.
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Abstract
The Mirai botnet, composed primarily of embedded

and IoT devices, took the Internet by storm in late 2016
when it overwhelmed several high-profile targets with
massive distributed denial-of-service (DDoS) attacks. In
this paper, we provide a seven-month retrospective anal-
ysis of Mirai’s growth to a peak of 600k infections and
a history of its DDoS victims. By combining a variety
of measurement perspectives, we analyze how the bot-
net emerged, what classes of devices were affected, and
how Mirai variants evolved and competed for vulnerable
hosts. Our measurements serve as a lens into the fragile
ecosystem of IoT devices. We argue that Mirai may rep-
resent a sea change in the evolutionary development of
botnets—the simplicity through which devices were in-
fected and its precipitous growth, demonstrate that novice
malicious techniques can compromise enough low-end
devices to threaten even some of the best-defended targets.
To address this risk, we recommend technical and non-
technical interventions, as well as propose future research
directions.

1 Introduction

Starting in September 2016, a spree of massive distributed
denial-of-service (DDoS) attacks temporarily crippled
Krebs on Security [46], OVH [43], and Dyn [36]. The ini-
tial attack on Krebs exceeded 600 Gbps in volume [46]—
among the largest on record. Remarkably, this overwhelm-
ing traffic was sourced from hundreds of thousands of
some of the Internet’s least powerful hosts—Internet of
Things (IoT) devices—under the control of a new botnet
named Mirai.

While other IoT botnets such as BASHLITE [86] and
Carna [38] preceded Mirai, the latter was the first to
emerge as a high-profile DDoS threat. What explains
Mirai’s sudden rise and massive scale? A combination

∗Denotes primary, lead, or “first” author

of factors—efficient spreading based on Internet-wide
scanning, rampant use of insecure default passwords in
IoT products, and the insight that keeping the botnet’s
behavior simple would allow it to infect many hetero-
geneous devices—all played a role. Indeed, Mirai has
spawned many variants that follow the same infection
strategy, leading to speculation that “IoT botnets are the
new normal of DDoS attacks” [64].

In this paper, we investigate the precipitous rise of Mi-
rai and the fragile IoT ecosystem it has subverted. We
present longitudinal measurements of the botnet’s growth,
composition, evolution, and DDoS activities from Au-
gust 1, 2016 to February 28, 2017. We draw from a
diverse set of vantage points including network telescope
probes, Internet-wide banner scans, IoT honeypots, C2
milkers, DNS traces, and logs provided by attack vic-
tims. These unique datasets enable us to conduct the first
comprehensive analysis of Mirai and posit technical and
non-technical defenses that may stymie future attacks.

We track the outbreak of Mirai and find the botnet
infected nearly 65,000 IoT devices in its first 20 hours
before reaching a steady state population of 200,000–
300,000 infections. These bots fell into a narrow band of
geographic regions and autonomous systems, with Brazil,
Columbia, and Vietnam disproportionately accounting for
41.5% of infections. We confirm that Mirai targeted a
variety of IoT and embedded devices ranging from DVRs,
IP cameras, routers, and printers, but find Mirai’s ultimate
device composition was strongly influenced by the market
shares and design decisions of a handful of consumer
electronics manufacturers.

By statically analyzing over 1,000 malware samples,
we document the evolution of Mirai into dozens of vari-
ants propagated by multiple, competing botnet operators.
These variants attempted to improve Mirai’s detection
avoidance techniques, add new IoT device targets, and in-
troduce additional DNS resilience. We find that Mirai har-
nessed its evolving capabilities to launch over 15,000 at-
tacks against not only high-profile targets (e.g., Krebs
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Figure 1: Mirai Timeline—Major attacks (red), exploits (yellow), and events (black) related to the Mirai botnet.

on Security, OVH, and Dyn), but also numerous game
servers, telecoms, anti-DDoS providers, and other seem-
ingly unrelated sites. While DDoS was Mirai’s flavor
of abuse, future strains of IoT malware could leverage
access to compromised routers for ad fraud, cameras for
extortion, network attached storage for bitcoin mining,
or any number of applications. Mirai’s reach extended
across borders and legal jurisdictions, and it infected de-
vices with little infrastructure to effectively apply security
patches. This made defending against it a daunting task.

Finally, we look beyond Mirai to explore the security
posture of the IoT landscape. We find that the absence of
security best practices—established in response to desk-
top worms and malware over the last two decades—has
created an IoT substrate ripe for exploitation. However,
this space also presents unique, nuanced challenges in the
realm of automatic updates, end-of-life, and consumer no-
tifications. Without improved defenses, IoT-based attacks
are likely to remain a potent adversarial technique as bot-
net variants continue to evolve and discover new niches
to infect. In light of this, Mirai seems aptly named—it is
Japanese for “the future.”

2 The Mirai Botnet

Mirai is a worm-like family of malware that infected
IoT devices and corralled them into a DDoS botnet. We
provide a brief timeline of Mirai’s emergence and discuss
its structure and propagation.

Timeline of events Reports of Mirai appeared as
early as August 31, 2016 [89], though it was not until
mid-September, 2016 that Mirai grabbed headlines with
massive DDoS attacks targeting Krebs on Security [46]
and OVH [74] (Figure 1). Several additional high-profile
attacks later targeted DNS provider Dyn [36] and
Lonestar Cell, a Liberian telecom [45]. In early 2017, the
actors surrounding Mirai came to light as the Mirai author
was identified [49]. Throughout our study, we corroborate
our measurement findings with these media reports and
expand on the public information surrounding Mirai.

Another significant event in this timeline is the public

release of Mirai’s source code on hackforums.net [4]. We
rely on this code to develop our measurement method-
ology (Section 3). Furthermore, as we detail later (Sec-
tion 5), this source code release led to the proliferation
of Mirai variants with competing operators. One notable
variant added support for a router exploit through CPE
WAN Management Protocol (CWMP), an HTTP-based
protocol that enables auto-configuration and remote man-
agement of home routers, modems, and other customer-
premises equipment (CPE) [15]. This exploit led to an out-
age at Deutsche Telekom late November 2016 [47], with
the suspected attacker later arrested in February 2017 [13].
In this work, we track Mirai’s variants and examine how
they influenced Mirai’s propagation.

Botnet structure & propagation We provide a sum-
mary of Mirai’s operation in Figure 2, as gleaned from
the released source code. Mirai spread by first entering
a rapid scanning phase (¬) where it asynchronously and
“statelessly” sent TCP SYN probes to pseudorandom IPv4
addresses, excluding those in a hard-coded IP blacklist, on
Telnet TCP ports 23 and 2323 (hereafter denoted TCP/23
and TCP/2323). If Mirai identifies a potential victim, it en-
tered into a brute-force login phase in which it attempted
to establish a Telnet connection using 10 username and
password pairs selected randomly from a pre-configured
list of 62 credentials. At the first successful login, Mirai
sent the victim IP and associated credentials to a hard-
coded report server ().

A separate loader program (®) asynchronously in-
fected these vulnerable devices by logging in, determining
the underlying system environment, and finally, down-
loading and executing architecture-specific malware (¯).
After a successful infection, Mirai attempted to conceal
its presence by deleting the downloaded binary and ob-
fuscating its process name in a pseudorandom alphanu-
meric string. As a consequence, Mirai infections did not
persist across system reboots. In order to fortify itself,
the malware additionally killed other processes bound
to TCP/22 or TCP/23, as well as processes associated
with competing infections, including other Mirai vari-
ants, .anime [25], and Qbot [72]. At this point, the bot
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Figure 2: Mirai Operation—Mirai bots scan the IPv4 address
space for devices that run telnet or SSH, and attempt to log in us-
ing a hardcoded dictionary of IoT credentials. Once successful,
the bot sends the victim IP address and associated credentials to
a report server, which asynchronously triggers a loader to infect
the device. Infected hosts scan for additional victims and accept
DDoS commands from a command and control (C2) server.

listened for attack commands from the command and con-
trol server (C2) while simultaneously scanning for new
victims.

Malware phylogeny While not directly related to
our study, the Mirai family represents an evolution of
BASHLITE (otherwise known as LizardStresser, Torlus,
Gafgyt), a DDoS malware family that infected Linux
devices by brute forcing default credentials [86]. BASH-
LITE relied on six generic usernames and 14 generic pass-
words, while the released Mirai code used a dictionary
of 62 username/password pairs that largely subsumed
BASHLITE’s set and added credentials specific to con-
sumer routers and IoT devices. In contrast to BASHLITE,
Mirai additionally employed a fast, stateless scanning
module that allowed it to more efficiently identify vulner-
able devices.

3 Methodology

Our study of Mirai leverages a variety of network vantage
points: a large, passive network telescope, Internet-wide
scanning, active Telnet honeypots, logs of C2 attack
commands, passive DNS traffic, and logs from DDoS
attack targets. In this section, we discuss our data sources
and the role they play in our analysis. We provide a
high-level summary in Table 1.

3.1 Network Telescope

Mirai’s indiscriminate, rapid scanning strategy lends it-
self to tracking the botnet’s propagation to new hosts. We
monitored all network requests to a network telescope [9]
composed of 4.7 million IP address operated by Merit
Network over a seven month period from July 18, 2016
to February 28, 2017. On average, the network telescope
received 1.1 million packets from 269,000 IP addresses
per minute during this period. To distinguish Mirai traffic
from background radiation [94] and other scanning ac-
tivity, we uniquely fingerprinted Mirai probes based on
an artifact of Mirai’s stateless scanning whereby every
probe has a TCP sequence number—normally a random
32-bit integer—equal to the destination IP address. The
likelihood of this occurring incidentally is 1/232, and we
would expect to see roughly 86 packets demonstrating
this pattern in our entire dataset. In stark contrast, we
observed 116.2 billion Mirai probes from 55.4 million IP
addresses. Prior to the emergence of Mirai, we observed
only three IPs that perform scans with this fingerprint.
Two of the IP addresses generated five packets; two on
TCP/80 and three on TCP/1002. The third IP address be-
longs to Team Cymru [1], who conducts regular TCP/443
scans.

We caution that the raw count of IP addresses seen
scanning over time is a poor metric of botnet size due to
DHCP churn [87]. To account for this, we tracked the size
of the botnet by considering the number of hosts actively
“scanning” at the start of every hour. We detected scans
using the methodology presented by Durumeric et al. [23],
in which we group packets from a single IP address in
a temporal window into logical scans. We specifically
identified scans that targeted the IPv4 address space at an
estimated rate of at least five packets per second, expiring
inactive scans after 20 minutes. We geolocated IPs using
Maxmind [61].

3.2 Active Scanning

While Mirai is widely considered an IoT botnet, there
has been little comprehensive analysis of infected devices
over the botnet’s entire lifetime. In order to determine the
manufacturer and model of devices infected with Mirai,
we leveraged Censys [22], which actively scans the IPv4
space and aggregates application layer data about hosts on
the Internet. We focused our analysis on scans of HTTPS,
FTP, SSH, Telnet, and CWMP between July 19, 2016 and
February 28, 2017.

A number of challenges make accurate device labeling
difficult. First, Mirai immediately disables common out-
ward facing services (e.g., HTTP) upon infection, which
prevents infected devices from being scanned. Second,
Censys scans often take more than 24 hours to complete,
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Role Data Source Collection Site Collection Period Data Volume

Growth and size Network telescope Merit Network, Inc. 07/18/2016–02/28/2017 370B packets, avg. 269K IPs/min

Device composition Active scanning Censys 07/19/2016–02/28/2017 136 IPv4 scans, 5 protocols

Ownership & evolution Telnet honeypots AWS EC2 11/02/2016–02/28/2017 141 binaries
Telnet honeypots Akamai 11/10/2016–02/13/2017 293 binaries
Malware repository VirusTotal 05/24/2016–01/30/2017 594 binaries
DNS—active Georgia Tech 08/01/2016–02/28/2017 290M RRs/day
DNS—passive Large U.S. ISP 08/01/2016–02/28/2017 209M RRs/day

Attack characterization C2 milkers Akamai 09/27/2016–02/28/2017 64.0K attack commands
DDoS IP addresses Akamai 09/21/2016 12.3K IP addresses
DDoS IP addresses Google Shield 09/25/2016 158.8K IP addresses
DDoS IP addresses Dyn 10/21/2016 107.5K IP addresses

Table 1: Data Sources—We utilized a multitude of data perspectives to empirically analyze the Mirai botnet.

Protocol Banners Devices Identified

HTTPS 342,015 271,471 (79.4%)
FTP 318,688 144,322 (45.1%)
Telnet 472,725 103,924 (22.0%)
CWMP 505,977 35,163 (7.0%)
SSH 148,640 8,107 (5.5%)

Total 1,788,045 587,743 (31.5%)

Table 2: Devices Identified—We identified device type, model,
and/or vendor for 31.5% of active scan banners. Protocol ban-
ners varied drastically in device identifiability, with HTTPS
certificates being most descriptive, and SSH prompts being the
least.

during which devices may churn to new IP addresses. Fi-
nally, Censys executes scans for different protocols on
different days, making it difficult to increase label speci-
ficity by combining banners from multiple services. We
navigated these constraints by restricting our analysis
to banners that were collected within twenty minutes of
scanning activity (the time period after which we expire
a scan). This small window mitigates the risk of erro-
neously associating the banner data of uninfected devices
with Mirai infections due to DHCP churn.

Post-filtering, our dataset included 1.8 million banners
associated with 1.2 million Mirai-infected IP addresses
(Table 2). We had the most samples for CWMP, and
the least for SSH. We caution that devices with open
services that are not closed by Mirai (e.g., HTTPS and
FTP) can appear repeatedly in Censys banner scans during
our measurement window (due to churn) and thus lead to
over counting when compared across protocols. As such,
we intentionally explored protocols in isolation from one
another and limited ourselves to measurements that only
consider relative proportions rather than absolute counts
of infected hosts.

Finally, we processed each infected device’s banner to
identify the device manufacturer and model. We first ap-
plied the set of regular expressions used by Nmap service

probes to fingerprint devices [58]. Nmap successfully
handled 98% of SSH banners and 81% of FTP banners,
but matches only 7.8% of the Telnet banners. In order to
increase our coverage and also accommodate HTTPS and
CWMP (which Nmap lacks probes for), we constructed
our own regular expressions to map banners to device
manufacturers and models. Unfortunately, we found that
in many cases, there was not enough data to identify a
model and manufacturer from FTP, Telnet, CWMP, and
SSH banners and that Nmap fingerprints only provide
generic descriptions. In total, we identified device type
and/or model and manufacturer for 31.5% of banners
(Table 2). We caution that this methodology is suscepti-
ble to misattribution in instances where port-forwarding
and Universal Plug and Play (UPnP) are used to present
multiple devices behind a single IP address, making the
distinction between middlebox and end-device difficult.

3.3 Telnet Honeypots

To track the evolution of Mirai’s capabilities, we collected
binaries installed on a set of Telnet honeypots that mas-
queraded as vulnerable IoT devices. Mechanically, we
presented a BusyBox shell [92] and IoT-consistent device
banner. Our honeypots logged all incoming Telnet traf-
fic and downloaded any binaries that attackers attempted
to install on the host via wget or tftp (the methods of
infection found in Mirai’s original source). In order to
avoid collateral damage, we blocked all other outgoing
requests (e.g., scanning and DoS traffic).

We logged 80K connection attempts from 54K IP ad-
dresses between November 2, 2016 and February 28,
2017, collecting a total 151 unique binaries. We filtered
out executables unrelated to Mirai based on a YARA sig-
nature that matched any of the strings from the original
source code release, leaving us with 141 Mirai binaries.
We supplemented this data with 293 binaries observed by
honeypots operated by Akamai, which served a similar
purpose to ours, but were hosted on a different public
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cloud provider. As a final source of samples, we included
594 unique binaries from VirusTotal [90] that we scanned
for using the YARA rules mentioned above. In total, we
collected 1,028 unique Mirai samples.

We analyzed the binaries for the three most common ar-
chitectures—MIPS 32-bit, ARM 32-bit, and x86 32-bit—
which account for 74% of our samples. We extracted
the set of logins and passwords, IP blacklists, and C2 do-
mains from these binaries, identifying 67 C2 domains and
48 distinct username/password dictionaries (containing a
total 371 unique passwords).

3.4 Passive & Active DNS
Following the public release of Mirai’s source code, com-
peting Mirai botnet variants came into operation. We
disambiguated ownership and estimate the relative size
of each Mirai strain by exploring passive and active DNS
data for the 67 C2 domains that we found by reverse engi-
neering Mirai binaries. We also leveraged our DNS data
to map the IP addresses present in attack commands to
victim domain names.

From a large U.S. ISP, we obtained passive DNS data
consisting of DNS queries generated by the ISP’s clients
and their corresponding responses. More specifically,
we collected approximately 209 million resource records
(RRs)—queried domain name, and associated RDATA—
and their lookup volumes aggregated on a daily basis.
For our active DNS dataset, we obtained 290 million
RRs per day from Thales, an active DNS monitoring
system [44]. Both datasets cover the period of August 1,
2016 to February 28, 2017.

Using both passive and active DNS datasets, we per-
formed DNS expansion to identify shared DNS infrastruc-
ture by linking related historic domain names (RHDN)
and related historic IPs (RHIPs) [5]. This procedure be-
gan with the seed set of C2 domains and IPs extracted
during reverse engineering of our honeypotted binaries.
For a given seed foo.com, we identified the IP addresses
that foo.com previously resolved to and added them to
a growing set of domains and IPs. We additionally per-
formed the reverse analysis, starting from an IP and find-
ing any domain names that concurrently resolved it. Thus,
even from a single domain name, we iteratively expanded
the set of related domain names and IP addresses to con-
struct a graph reflecting the shared infrastructure used
by Mirai variants. In total, we identified 33 unique DNS
clusters that we explore in detail in Section 5.

3.5 Attack Commands
To track the DDoS attack commands issued by Mirai
operators, Akamai ran a “milker” from September 27,
2016–February 28, 2017 that connected to the C2 servers

found in the binaries uploaded to their honeypots. The
service simulated a Mirai-infected device and communi-
cated with the C2 server using a custom bot-to-C2 proto-
col, which was reverse engineered from malware samples
prior to source code release. In total, Akamai observed
64K attack commands issued by 484 unique C2 servers
(by IP address). We note that a naive analysis of attack
commands overestimates the volume of attacks and tar-
gets: individual C2 servers often repeat the same attack
command in rapid succession, and multiple distinct C2
servers frequently issued the same command. To account
for this, we heuristically grouped attack commands along
two dimensions: by shared C2 infrastructure and by tem-
poral similarity. We collapsed matching commands (i.e.,
tuples of attack type, duration, targets, and command op-
tions) that occur within 90 seconds of each other, which
yielded 15,194 attacks from 146 unique IP clusters. Our
attack command coverage includes the Dyn attack [36]
and Liberia attacks [45]. We did not observe attack com-
mands for Krebs on Security and OVH, which occurred
prior to the milker’s operation.

3.6 DDoS Attack Traces
Our final data source consists of network traces and ag-
gregate statistics from Akamai and Google Shield (the
providers for Krebs on Security) and Dyn. These attacks
cover two distinct periods in Mirai’s evolution. We used
this data to corroborate the IP addresses observed in at-
tacks versus those found scanning our passive network
telescope, as well as to understand the volume of traf-
fic generated by Mirai1. From Akamai, we obtained an
aggregate history of all DDoS attacks targeting Krebs
on Security from 2012–2016, as well as a small sam-
ple of 12.3K IPs related to a Mirai attack on September
21, 2016. For Google Shield, we shared a list of IP ad-
dresses observed by our network telescope and in turn
received aggregate statistics on what fraction matched
any of 158.8K IP addresses involved in a 1-minute Mirai
HTTP-flood attack on September 25, 2016. Finally, Dyn
provided us with a set of 107.5K IP addresses associated
with a Mirai attack on October 21, 2016.

4 Tracking Mirai’s Spread

As a first step towards understanding Mirai, we analyzed
how the botnet bootstrapped its initial infections, what
types of devices it targeted, and how it eventually infected
an estimated 600K hosts. To contextualize the properties
of Mirai, we compare it against prior botnets and worms.

1We overlapped attack traces with every Mirai scanning IPs on our
network telescope. The overlap may have been inflated by non-Mirai
attack IPs being assigned to Mirai devices over time through DHCP
churn.
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Figure 3: Temporal Mirai Infections—We estimate of the number of Mirai-infected devices over time by tracking the number of
hosts actively scanning with Mirai fingerprint at the start of every hour. Mirai started by scanning Telnet, and variants evolved to
target 11 additional protocols. The total population initially fluctuated between 200,000–300,000 devices before receding to 100,000
devices, with a brief peak of 600,000 devices.
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Figure 4: Bootstrap Scanning—Mirai scanning began on Au-
gust 1, 2016 from a single IP address in a bulletproof hosting
center. Mirai infection spread rapidly with a 76-minute dou-
bling time and quickly matched the volume of non-Mirai Telnet
scanning.

4.1 Bootstrapping

We provide a timeline of Mirai’s first infections in Fig-
ure 4. A single preliminary Mirai scan occurred on Au-
gust 1, 2016 from an IP address belonging to DataWagon,
a U.S.-based bulletproof hosting provider [48]. This
bootstrap scan lasted approximately two hours (01:42–
03:59 UTC), and about 40 minutes later (04:37 UTC) the
Mirai botnet emerged. Within the first minute, 834 de-
vices began scanning, and 11K hosts were infected within
the first 10 minutes. Within 20 hours, Mirai infected
64,500 devices. Mirai’s initial 75-minute doubling time
is outstripped by other worms such as Code Red (37-
minute doubling time [70]) and Blaster (9-minute dou-
bling time [10]). Mirai’s comparatively modest initial
growth may be due to the low bandwidth and computa-
tional resources of infected devices, a consequence of the
low-accuracy, brute-force login using a small number of
credentials, or simply attributable to a bottleneck in loader
infrastructure.

4.2 Steady State Size

We observed multiple phases in Mirai’s life: an initial
steady state of 200,000–300,000 infections in September
2016; a peak of 600,000 infections at the end of Novem-
ber 2016; and a collapse to roughly 100,000 infections at
the end of our observation window in late February 2017
(Figure 3). Even though hosts were initially compromised
via a simple dictionary attack, Mirai was able to infect
hundreds of thousands of devices. This is similar in scale
to historical botnets such as the prolific Srizbi spam bot-
net (400,000 bots [83]), which was responsible for more
than half of all global botnet spam [35], and the Carna
botnet (420,000 bots [38]), the first botnet of IoT devices
compromised using default credentials.

While the original Mirai variant infected devices by
attempting Telnet and SSH logins with a static set of
credentials, later strains evolved to scan for other types of
vulnerabilities. Most notably, Mirai-fingerprinted scans
targeting TCP/7547, the standard port for CWMP, began
appearing in our dataset on November 26, 2016. Mirai
compromised CWMP devices through an RCE exploit
in a SOAP configuration endpoint [41]. The new attack
vector led to a renewed spike of infections (Figure 3). The
decay that followed may be explained best by Deutsche
Telekom patching routers soon after the attack [21]. The
non-immediate decay may have been due to the devices
requiring a reboot for the patch to take effect.

To better understand the decrease in Mirai bots from
a steady state of 300,000 devices down to 100,000 de-
vices, we examined the ASes in which raw population
decreased most significantly between September 21, 2016
and February 28, 2017. The ASes with the largest reduc-
tion in devices were: Telefónica Colombia (−38,589 bots,
−98.5%), VNPT Corp (−16,791 bots, −90.2%), and Claro
S.A. (−14,150 bots, −80.2%). This suggests potential ac-
tion by certain network operators to mitigate Mirai. While
a handful of ASes increased in prevalence over time, no-
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tably Telefónica de Argentina (+3,287 bots, 3,365.1%)
and Ecuadorian telecom company CNT EP (+1,447 bots,
116.4%), the total increase (+10,500 bots) across all ASes
is eclipsed by the overall decrease (−232,698 bots).

Country Mirai
Infections

Mirai
Prevalence

Telnet
Prevalence

Brazil 49,340 15.0% 7.9%
Colombia 45,796 14.0% 1.7%
Vietnam 40,927 12.5% 1.8%
China 21,364 6.5% 22.5%
S. Korea 19,817 6.0% 7.9%
Russia 15,405 4.7% 2.7%
Turkey 13,780 4.2% 1.1%
India 13,357 4.1% 2.9%
Taiwan 11,432 3.5% 2.4%
Argentina 7,164 2.2% 0.2%

Table 3: Geographic Distribution— We compare countries
that harbored the most infections on 09/21/2016—when Krebs
on Security was attacked—with countries that hosted the most
telnet devices on 07/19/2016 prior to Mirai’s onset. Mirai infec-
tions occurred disproportionately in South America and South-
east Asia, accounting for 50% of infections.

4.3 Global Distribution

In order to understand where Mirai infections were geo-
graphically concentrated, we calculated the geolocation
of Mirai bots actively scanning at 00:00 UTC on Septem-
ber 21, 2016 (during the first Krebs on Security attack
and Mirai’s peak steady state infection period). As shown
in Figure 3, the bulk of Mirai infections stemmed from
devices located in Brazil (15.0%), Columbia (14.0%), and
Vietnam (12.5%). Mirai also exhibited a concentrated net-
work distribution—the top 10 ASes accounted for 44.3%
of infections, and the top 100 accounted for 78.6% of
infections (Table 4). Compared to the pre-Mirai global
distribution of telnet hosts, Mirai consisted of a dispropor-
tionate number of devices concentrated in South America

AS % AS %

Telefónica Colombia 11.9% Türk Telekom 3.2%
VNPT Corp. 5.7% Chunghwa Telecom† 2.9%
Claro S.A. 5.4% FPT Group 2.8%
China Telecom† 4.0% Korea Telecom† 2.6%
Telefônica Brasil 3.4% Viettel Corporation 2.5%

Table 4: AS Distribution—We list the 10 ASes with the largest
number of infections on 09/21/2016, the day Krebs on Security
was attacked and the initial peak infection. The top 10 ASes
accounted for 44.3% of infections, but only three of the top 10
are within the top 100 global ASes (denoted †) [16].

and Southeast Asia. This is possibly due to biases in man-
ufacturer and market penetration in those regions. This
is a stark contrast from many prior worms, which were
primarily concentrated in the U.S., including CodeRed
(43.9%), Slammer (42.9%), Witty (26.3%), and Conficker
(34.5%) [82]. Mirai largely infected regions the black
market considers to be low-quality hosts used for proxies
and DDoS [88] and may have limited potential avenues
for monetization.

We explored the dynamism of Mirai’s membership by
examining the correlation between the top Mirai scanning
ASes over time. We find that Mirai displayed general
stability outside of the rapid growth phase in September
2016 and when CWMP exploits were introduced in late
November (Figure 5a). During the September growth
period, the number of IPs in each AS rose across the
board with a few outliers. The growth of IPs belonging
to Telefónica Colombia exceeded all other ASes and was
eventually responsible for the largest number of Mirai
infections. Other new introductions to the top 10 included
India’s Bharti Airtel and Bharat Sanchar Nigam Limited,
Brazil’s Claro S.A., and Korea Telecom.

CWMP emergence also disrupted general network dis-
tribution stability. Between November 25–27, 7 of the
top 10 ASes decreased in rank to give rise to several previ-
ously unseen European ASes (e.g., Eircom and TalkTalk).
Their appearance was short-lived; by December 10, 2016,
these ASes fell back down in population. This suggests
that the vulnerable population of the CWMP exploit were
concentrated in Europe, but prompt patching returned
Mirai back to its original concentration in South Amer-
ica and Southeast Asia. The longterm stability of Mirai
ASes and geolocation demonstrates that Mirai has not
expanded significantly in the scope and scale of devices
that it infects. However, as the transient CWMP exploit
demonstrates, new infection vectors had the potential to
quickly add to Mirai’s already sizable membership.

4.4 Device Composition

While cursory evidence suggested that Mirai targets IoT
devices—Mirai’s dictionary of default usernames and
passwords included routers, DVRs, and cameras [50],
and its source compiled to multiple embedded hardware
configurations—we provide an in-depth analysis of both
the intended device targets and successful infections.

To understand the types of devices that Mirai targeted,
we analyzed the credentials hardcoded into the binaries
we collected. We observed a total 371 unique passwords,
and through manual inspection, we identified 84 devices
and/or vendors associated with these passwords. Many
passwords were too generic to tie to a specific device (i.e.,
“password” applies to devices from a large number of
manufacturers), while others only provided information
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(b) Device Stability

Figure 5: Stability of Measured Properties—From the temporal Pearson correlation of ASes (a) and device labels (b), we found
that our measurements were largely stable despite external factors like DHCP churn. Rapid growth of CWMP-based infections in
late November caused instability but calmed shortly thereafter.

Password Device Type

123456 ACTi IP Camera
anko ANKO Products DVR
pass Axis IP Camera
888888 Dahua DVR
666666 Dahua DVR
vizxv Dahua IP Camera
7ujMko0vizxv Dahua IP Camera
7ujMko0admin Dahua IP Camera
666666 Dahua IP Camera
dreambox Dreambox TV Receiver
juantech Guangzhou Juan Optical
xc3511 H.264 Chinese DVR
OxhlwSG8 HiSilicon IP Camera
cat1029 HiSilicon IP Camera
hi3518 HiSilicon IP Camera
klv123 HiSilicon IP Camera

Password Device Type

klv1234 HiSilicon IP Camera
jvbzd HiSilicon IP Camera
admin IPX-DDK Network Camera
system IQinVision Cameras
meinsm Mobotix Network Camera
54321 Packet8 VOIP Phone
00000000 Panasonic Printer
realtek RealTek Routers
1111111 Samsung IP Camera
xmhdipc Shenzhen Anran Camera
smcadmin SMC Routers
ikwb Toshiba Network Camera
ubnt Ubiquiti AirOS Router
supervisor VideoIQ
<none> Vivotek IP Camera

Password Device Type

1111 Xerox Printer
Zte521 ZTE Router
1234 Unknown
12345 Unknown
admin1234 Unknown
default Unknown
fucker Unknown
guest Unknown
password Unknown
root Unknown
service Unknown
support Unknown
tech Unknown
user Unknown
zlxx. Unknown

Table 5: Default Passwords—The 09/30/2016 Mirai source release included 46 unique passwords, some of which were traceable to
a device vendor and device type. Mirai primarily targeted IP cameras, DVRs, and consumer routers.

about underlying software (e.g., “postgres”) and not an as-
sociated device. The devices we identified were primarily
network-attached storage appliances, home routers, cam-
eras, DVRs, printers, and TV receivers made by dozens
of different manufacturers (Table 5).

Mirai’s intended targets do not necessarily reflect the
breakdown of infected devices in the wild. We leveraged
the device banners collected by Censys to determine the
models and manufacturers of infected devices. Our results
across all five protocols indicate that security cameras,
DVRs, and consumer routers represent the majority of
Mirai infections (Table 6). The manufacturers responsi-
ble for the most infected devices we could identify are:
Dahua, Huawei, ZTE, Cisco, ZyXEL, and MikroTik (Ta-
ble 7).

We note that these results deviate from initial media
reports, which stated that Mirai was predominantly com-
posed of DVRs and cameras [34,53,60]. This is likely due
to the evolution of the Mirai malware over time, which
changed the composition of infected devices. Looking at
the longitudinal Pearson correlation of top device vendors,

we observe modest stability with the exception of two
event periods: the rapid growth phase in mid-September
2016 and the onset of CWMP in late November 2016
(Figure 5b). During the rapid growth, the emergence of
consumer routers manufactured by ASUS, Netgear, and
Zhone supplanted D-Link routers and Controlbr DVRs
in the top 20 devices. Dahua, Huawei, ZyXEL, and ZTE
devices consistently remained in the Top 20.

Our data indicates that some of the world’s top man-
ufacturers of consumer electronics lacked sufficient se-
curity practices to mitigate threats like Mirai, and these
manufacturers will play a key part in ameliorating vul-
nerability. Unfortunately, as discussed in the previous
section, the menagerie of devices spanned both countries
and legal jurisdictions, exacerbating the challenge of co-
ordinating technical fixes and promulgating new policy to
safeguard consumers in the future.
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CWMP (28.30%) Telnet (26.44%) HTTPS (19.13%) FTP (17.82%) SSH (8.31%)

Router 4.7% Router 17.4% Camera/DVR 36.8% Router 49.5% Router 4.0%
Camera/DVR 9.4% Router 6.3% Storage 1.0% Storage 0.2%

Storage 0.2% Camera/DVR 0.4% Firewall 0.2%
Firewall 0.1% Media 0.1% Security 0.1%

Other 0.0% Other 0.1% Other 0.2% Other 0.0% Other 0.0%
Unknown 95.3% Unknown 73.1% Unknown 56.4% Unknown 49.0% Unknown 95.6%

Table 6: Top Mirai Device Types—We list the top types of infected devices labeled by active scanning, as a fraction of Mirai
banners found in Censys. Our data suggests that consumer routers, cameras, and DVRs were the most prevalent identifiable devices.

CWMP (28.30%) Telnet (26.44%) HTTPS (19.13%) FTP (17.82%) SSH (8.31%)

Huawei 3.6% Dahua 9.1% Dahua 36.4% D-Link 37.9% MikroTik 3.4%
ZTE 1.0% ZTE 6.7% MultiTech 26.8% MikroTik 2.5%

Phicomm 1.2% ZTE 4.3% ipTIME 1.3%
ZyXEL 2.9%
Huawei 1.6%

Other 2.3% Other 3.3% Other 7.3% Other 3.8% Other 1.8%
Unknown 93.1% Unknown 79.6% Unknown 20.6% Unknown 54.8% Unknown 94.8%

Table 7: Top Mirai Device Vendors—We list the top vendors of infected Mirai devices labeled by active scanning, as a fraction
of Mirai banners found by Censys. The top vendors across all protocols were primarily camera, router, and embedded device
manufacturers.

4.5 Device Bandwidth

As an additional confirmation of embedded composition,
we examined the bandwidth of infected devices as gleaned
from their scan rate, which is not artificially rate-limited
by the original source code. Starting with the observed
scanning rate and volume on our network telescope, we
extrapolate across the entire IPv4 Internet by factoring in
the size of our network telescope (4.7 million IPs) and
the size of Mirai’s default IP blacklist (340.2 million IPs).
We found about half of the Mirai bots that scanned our
network telescope sent fewer than 10,000 scan packets
(Figure 6). We further note that the majority of bots
scanned at an estimated rate below 250 bytes per second.
We note however this is a strict underestimate, as Mirai
may have interrupted scanning to process C2 commands
and to conduct brute force login attempts. In contrast,
SQL Slammer scanned at 1.5 megabytes/second, about
6000 times faster [68], and the Witty worm scanned even
faster at 3 megabytes/second [81]. This additionally hints
that Mirai was primarily powered by devices with limited
computational capacity and/or located in regions with low
bandwidth [3].

5 Ownership and Evolution

After the public release of Mirai’s source code in late
September 2016, multiple competing variants of the bot-
net emerged. We analyze the C2 infrastructure behind
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Figure 6: Network Capacity Distribution—Scan duration,
probes, and bandwidth were extrapolated to reflect scanning
network capacity across the full IPv4 Internet. A majority of
probes scan below 250 Bps for over 2,700 seconds.

Mirai in order to uncover the relationships between strains,
their relative sizes, and the evolution of their capabilities.

5.1 Ownership
In order to identify the structure of Mirai command and
control servers, we turned to active and passive DNS data,
which we used to cluster C2 IPs and domains based on
shared network infrastructure. Seeding DNS expansion
with the two IPs and 67 domains that we collected by
reverse engineering Mirai binaries, we identified 33 inde-
pendent C2 clusters that shared no infrastructure. These
varied from a single host to the largest cluster, which con-
tained 112 C2 domains and 92 IP addresses. We show
the connectivity of the top six clusters by number of C2
domains in Figure 7. The lack of shared infrastructure be-
tween these clusters lends credence to the idea that there
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ID Max Lookup Vol. Notes

6 61,440 Attacked Dyn, other gaming related attacks
1 58,335 The original botnet. Attacked Krebs on Security, OVH
2 36,378 Attacked Lonestar Cell. Scans TCP/7547 and TCP/5555, removes DoD from blacklist, adds DGA
13 9,657 —
7 9,467 Scans TCP/7547

Table 8: Cluster Size Estimate and Characteristics—We highlight the top five clusters by max single-day lookup volume within
a large U.S. ISP, which provides an indicator of their relative size. Each cluster is additionally labeled with observed evolutionary
patterns and associated attacks.
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Figure 7: C2 Domain Relationships—We visualize related
C2 infrastructure, depicting C2 domains as nodes and shared
IPs as edges between two domains. The top six clusters by C2
domain count consisted of highly connected components, which
represent agile, long-lived infrastructures in use by botmasters.

are multiple active bot operators during our study period.
While Figure 7 provides a rough sense of Mirai C2 com-

plexity, it does not indicate the number of bots that each
cluster controlled. To estimate botnet membership, we
measured the DNS lookup volume per cluster. In Figure 8,
we show the top clusters of domains based on the volume
of DNS lookups at a large, name-redacted ISP. This sin-
gle perspective is not comprehensive, but it allows us to
observe the rise and fall of different botnets over time,
and may provide a hint of their relative sizes. A prime
example is cluster 1, which was the initial version of the
Mirai botnet involved in the early, high-profile attacks on
Krebs on Security and OVH. Although it dominated in
lookup volume in late September and early October, it
gave way to newer clusters, 2 and 6, in mid-October. We
provide a list of the largest clusters by lookup and their
unique characteristics in Table 8.

While we cannot conclusively link each of these clus-
ters to distinct operators, we note that each cluster utilized
independent DNS infrastructure and evolving malware,
underscoring the challenge of defending against these
attacks through bespoke mitigations. Our results also
confirm the recent findings of Lever et al., who observed
that the naming infrastructure used by malware is often
active weeks prior to its operation [54]. In all cases, the
first occurrence of DNS/IP lookup traffic for a cluster far
preceded the date that the domains were used as C2 in-
frastructure for the botnet. For example, even though the
peak lookup for cluster 2 occurred on October 21, 2016,
the first lookup of a C2 domain in this cluster occurred
on August 1, 2016 (Table 8). This also significantly pre-
dated the first binary collected for this cluster (October 24,
2016), and the first attacks issued by the cluster (Octo-
ber 26, 2016). These results suggest that careful analysis
of DNS infrastructure can potentially guide preventative
measures.

5.2 Evolution

Although the Mirai ecosystem exploded after the public
source code release on September 30, 2016, this was not
the botnet’s first major evolutionary step. Between August
7, 2016 and September 30, 2016—when the source code
was publicly released—24 unique Mirai binaries were
uploaded to VirusTotal, which we used to explore the
botnet’s initial maturation. Several key developments oc-
curred during this period. First, we saw the underlying C2
infrastructure upgrade from an IP-based C2 to a domain-
based C2 in mid-September. Second, the malware began
to delete its executing binary, as well as obfuscate its pro-
cess ID, also in mid-September. We additionally saw a
number of features added to make the malware more vir-
ulent, including the addition of more passwords to infect
additional devices, the closing of infection ports TCP/23
and TCP/2323, and the aggressive killing of competitive
malware in a sample collected on September 29, 2016.

After the public release, we observed the rapid emer-
gence of new features, ranging from improved infection
capabilities to hardened binaries that slow reverse engi-
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Figure 8: C2 Cluster Lookup Volume—The DNS lookup volume of C2 DNS clusters in a large U.S. ISP establishes the relative
size of the botnet behind each cluster and chronicles its rise and fall. Note, for example, cluster 1 which represents the original botnet
in use for the early high profile attacks on Krebs and OVH and the emergence of a myriad of clusters after the public source release.

neering efforts. Between November 2, 2016 and February
28, 2017, we observed 48 new sets of usernames and
passwords, as well as changes to the IP blacklist. We note
that while many actors modified the set of credentials,
they often did so in different ways (Figure 9). This is
true for other features as well. In one example, a variant
evolved to remove U.S. Department of Defense blocks
from the initial scanning blacklist. The malware further
evolved to use new infection mechanisms. Most notably,
in late November 2016, Mirai variants began to scan for
TCP/7547 and TCP/5555, two ports commonly associated
with CWMP [15, 93]. Additionally, one malware strain
began to using domain generation algorithms (DGA) in
the place of a hardcoded C2 domain, though this feature
was short lived. By November 2016, packed binaries had
emerged.

Techniques to improve virulence and to aide in relia-
bility were not simply limited to the client binaries. We
found evidence of operators using DNS to avoid or at-
tempt to evade detection as well. Recent work by Lever
et al. demonstrated how attackers abuse the residual trust
inherited by domains to perform many, seemingly un-
connected types of abuse [55]. Mirai was no different
from other types of malware—we found evidence that at
least 17% of Mirai domains abused residual trust. Specif-
ically, these domains expired and were subsequently re-
registered before they were used to facilitate connections
between bots and C2 servers. This serves as a reminder
that although Mirai is unique in many ways, it still shares
much in common with the many threats that came before
it.

By combining the malware we observed with our DNS
data, we can also measure the evolution of the C2 clusters
in Table 8. We note that cluster 2—the third largest by
lookup volume—evolved to support many new features,
such as scanning new ports TCP/7547 and TCP/5555,
adding DGA, and modifying the source code blacklist to
exclude Department of Defense (DoD) blocks. This is
not to say, however, that evolution guaranteed success.

Figure 9: Password Evolution—The lineage of unique pass-
word dictionaries, labeled with their associated clusters, depicts
many malware strains modifying the default credential list to
target additional devices. The node marked (*) indicates the
released source code password dictionary and serves as the
foundation for the all divergent password variants

Cluster 23, which can be seen clearly in Figure 9, evolved
very rapidly, adding several new passwords over its active
time. Despite this evolution, this cluster was 19th out of
33 clusters in terms of lookup volume over time and was
unable to capture much of the vulnerable population. We
also note that not all successful clusters evolved either; for
example, cluster 6, which showed no evolutionary trend
from its binaries, received the highest lookup volume of
all the clusters.

6 Mirai’s DDoS Attacks

The Mirai botnet and its variants conducted tens of thou-
sands of DDoS attacks during our monitoring period. We
explore the strategies behind these attacks, characterize
their targets, and highlight case studies on high-profile
targets Krebs on Security, Dyn, and Liberia’s Lonestar
Cell. We find that Mirai bore a resemblance to booter ser-
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Attack Type Attacks Targets Class

HTTP flood 2,736 1,035 A
UDP-PLAIN flood 2,542 1,278 V
UDP flood 2,440 1,479 V
ACK flood 2,173 875 S
SYN flood 1,935 764 S
GRE-IP flood 994 587 A
ACK-STOMP flood 830 359 S
VSE flood 809 550 A
DNS flood 417 173 A
GRE-ETH flood 318 210 A

Table 9: C2 Attack Commands—Mirai launched 15,194 at-
tacks between September 27, 2016–February 28, 2017. These
include [A]pplication-layer attacks, [V]olumetric attacks, and
TCP [S]tate exhaustion, all of which are equally prevalent.

vices (which enable customers to pay for DDoS attacks
against desired targets), with some Mirai operators target-
ing popular gaming platforms such as Steam, Minecraft,
and Runescape.

6.1 Types of Attacks
Over the course of our five month botnet infiltration,
we observed Mirai operators issuing 15,194 DDoS at-
tack commands, excluding duplicate attacks (discussed
in Section 3). These attacks employed a range of dif-
ferent resource exhaustion strategies: 32.8% were vol-
umetric, 39.8% were TCP state exhaustion, and 34.5%
were application-layer attacks (Table 9). This breakdown
differs substantially from the current landscape of DDoS
attacks observed by Arbor Networks [7], where 65% of
attacks are volumetric, 18% attempt TCP state exhaus-
tion, and 18% are higher-level application attacks. While
amplification attacks [79] make up 74% of attacks issued
by DDoS-for-hire booter services [40], only 2.8% of Mi-
rai attack commands relied on bandwidth amplification,
despite built-in support in Mirai’s source code. This ab-
sence highlights Mirai’s substantial capabilities despite
the resource constraints of the devices involved.

6.2 Attack Targets
Studying the victims targeted by Mirai sheds light on its
operators. We analyzed the attack commands issued by
Mirai C2 servers (as detailed in Section 3) to examine who
Mirai targeted. In total, we observed 15,194 attacks issued
by 484 C2 IPs that overlapped with 24 DNS clusters (Sec-
tion 5). The attacks targeted 5,046 victims, comprised of
4,730 (93.7%) individual IPs, 196 (3.9%) subnets, and 120
(2.4%) domain names. These victims ranged from game
servers, telecoms, and anti-DDoS providers, to political
websites and relatively obscure Russian sites (Table 10).

The Mirai source code supports targeting of IPv4 sub-
nets, which spreads the botnet’s DDoS firepower across
an entire network range. Mirai issued 654 attacks (4.3%)
that targeted one or more subnets, with the three most
frequently targeted being Psychz Networks (102 attacks,
0.7%), a data center offering dedicated servers and DDoS
mitigation services, and two subnets belonging to Lones-
tar Cell (65 combined attacks, 0.4%), a Liberian telecom.
We also saw evidence of attacks that indiscriminately tar-
geted large swathes of the IPv4 address space, including
5 distinct /8 subnets and one attack on /0 subnet—the
entire IPv4 space. Each of the /8 and /0 subnets, (with
the exception of the local 10.0.0.0/8) contain a large
number of distributed network operators and total IP ad-
dresses, which drastically exceed the number of Mirai
bots. As such, the Mirai attacks against these subnets
likely had modest impact.

If we exclude targeted subnet (due to their unfocused
blanket dispersion across many networks), we find that
Mirai victims were distributed across 906 ASes and
85 countries. The targets were heavily concentrated in the
U.S. (50.3%), France (6.6%), the U.K. (6.1%), and a long
tail of other countries. Network distribution was more
evenly spread. The top 3 ASes—OVH (7.8%), Cloud-
flare (6.6%) and Comcast (3.6%)—only accounted for
18.0% of victims.

The three most frequently targeted victims were
Liberia’s Lonestar Cell (4.1%), Sky Network (2.1%), and
1.1.1.1 (1.6%). We examine Lonestar Cell in depth in
Section 6.3. Sky Network is a Brazilian company that
operates servers for Minecraft (a popular game), which is
hosted by Psychz Networks. The attacks against Psychz
began on November 15, 2016 and occurred sporadically
until January 26, 2017. 1.1.1.1 was likely used for test-
ing [95]. Additional game targets in the top 14 victims in-
cluded a former game commerce site longqikeji.com, and
Runescape, another popular online game. The prevalence
of game-related targets along with the broad range of other
otherwise unrelated victims shares many characteristics
with previously studied DDoS booter services [39].

For volumetric and TCP state exhaustion attacks, Mi-
rai optionally specified a target port, which implied the
type of service targeted. We find a similar prevalence
of game targets—of the 5,450 attacks with a speci-
fied port, the most commonly attacked were 80 (HTTP,
37.5%), 53 (DNS, 11.5%), 25565 (commonly Minecraft
servers [31,65], 9.2%), 443 (HTTPS, 6.4%), 20000 (often
DNP3, 3.4%), and 23594 (Runescape game server, 3.4%).

Interestingly, the 7th most common attack target was an
IP address hosted by Voxility that was associated with one
of the Mirai C2 servers, and we note that 47 of 484 Mirai
C2 IPs were themselves the target of a Mirai DDoS attack.
By clustering these 484 C2 IPs by attack command, we
identified 93 unique clusters, of which 26 (28%) were
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Target Attacks Cluster Notes

Lonestar Cell 616 2 Liberian telecom targeted by 102 reflection attacks.
Sky Network 318 15, 26, 6 Brazilian Minecraft servers hosted in Psychz Networks data centers.
1.1.1.1 236 1,6,7,11,15,27,28,30 Test endpoint. Subject to all attack types.
104.85.165.1 192 1,2,6,8,11,15,21,23,26,27,28,30 Unknown router in Akamai’s AS.
feseli.com 157 7 Russian cooking blog.
minomortaruolo.it 157 7 Italian politician site.
Voxility hosted C2 106 1,2,6,7,15,26,27,28,30 C2 domain from DNS expansion. Exists in cluster 2 seen in Table 8.
Tuidang websites 100 — HTTP attacks on two Chinese political dissidence sites.
execrypt.com 96 — Binary obfuscation service.
auktionshilfe.info 85 2,13 Russian auction site.
houtai.longqikeji.com 85 25 SYN attacks on a former game commerce site.
Runescape 73 — World 26 of a popular online game.
184.84.240.54 72 1,10,11,15,27,28,30 Unknown target hosted at Akamai.
antiddos.solutions 71 — AntiDDoS service offered at react.su.

Table 10: Mirai DDoS Targets—The top 14 victims most frequently targeted by Mirai run a variety of services. Online games, a
Liberian cell provider, DDoS protection services, political sites, and other arbitrary sites match the victim heterogeneity of booter
services. Many clusters targeted the same victims, suggesting a common operator.

Attack Target Date Sample Size Intersection

Akamai† 09/21/2016 12,847 96.4%
Google Shield† 09/25/2016 158,839 96.4%
Dyn� 10/21/2016 107,464 70.8%

Table 11: Mirai Attack IPs—Client IPs from attacks on Krebs
on Security (denoted †) and Dyn (denoted �) intersected signifi-
cantly with Mirai-fingerprinted scanning our network telescope,
confirming that both attacks were Mirai-based, but the lower
Dyn intersection hints that other hosts may have been involved.

targeted least once. This direct adversarial behavior reaf-
firms the notion of multiple, competitive botnet operators.

6.3 High Profile Attacks
Several high profile DDoS attacks brought Mirai into the
limelight beginning in September 2016. We analyze the
following three Mirai victims as case studies: Krebs on
Security, Dyn, and the Liberian telecom provider Lones-
tar.

Krebs on Security The popular Krebs on Security blog
has had a long history of being targeted by DDoS attacks
(Figure 10), and on September 21, 2016 was subject to
an unprecedented 623 Gbps DDoS attack—with Mirai as
the prime suspect. Placing this attack in context, it was
significantly larger than the previously reported largest
publicly-disclosed DDoS attack victim (i.e., Spamhaus at
300+ Gbps [77]), but we note that attacks to non-disclosed
targets of 500 Gbps and 800 Gbps were reported in 2015
and 2016 respectively [7]. To confirm the origin of the
attack, we intersected a list of 12,847 attack IPs observed
by Akamai with the Mirai IPs we saw actively scanning
during that period. We found a 96.4% overlap in hosts.
Google Shield, who later took over DDoS protection of
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Figure 10: Historical DDoS Attacks Targeting Krebs on Se-
curity—Brian Krebs’ blog was the victim of 269 DDoS attacks
from 7/24/2012–9/22/2016. The 623 Gbps Mirai attack on
9/21/2016 was 35 times larger than the average attack, and the
largest ever recorded for the site.

the site, separately maintained a larger sample of 158,839
attack IPs for an HTTP attack on September 25, 2016.
When given the Mirai scanning IPs from that day, they
found 96% of their attack IPs overlapped. Our results
illustrate the potency of the Mirai botnet, despite its com-
position of low-end devices concentrated in Southeast
Asia and South America. We also identified which C2
clusters were responsible for some of the largest attacks
by correlating attack commands with naming infrastruc-
ture, and we note that cluster 1 (Figure 7) was responsible
for this attack.

Dyn On October 21, 2016, Dyn, a popular DNS
provider suffered a series of DDoS attacks that disrupted
name resolution for their clients, including high-traffic
sites such as Amazon, Github, Netflix, PayPal, Reddit,
and Twitter [71]. Consistent with Dyn’s postmortem re-
port [36], we observed 23 attack commands that targeted
Dyn infrastructure, from 11:07–16:55 UTC. The first
21 attacks were primarily short-lived (i.e., 25 second)
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SYN floods on DNS port 53, along with a few ACK and
GRE IP attacks, and followed by sustained 1 hour and
5 hour SYN attacks on TCP/53. We note a 71% intersec-
tion between the 107K IPs that attacked Dyn and Mirai
scanning in our network telescope. This indicates that,
while the attack clearly involved Mirai, there may have
been other hosts involved as well.

Although the first several attacks in this period solely
targeted Dyn’s DNS infrastructure, later attack commands
simultaneously targeted Dyn and PlayStation infrastruc-
ture, potentially providing clues towards attacker mo-
tivation. Interestingly, the targeted Dyn and PlaySta-
tion IPs are all linked to PlayStation name servers—
the domain names ns<00–03>.playstation.net re-
solve to IPs with reverse DNS records pointing to
ns<1-4>.p05.dynect.net, and the domain names
ns<05–06>.playstation.net resolve to the targeted
PlayStation infrastructure IPs.

The attacks on Dyn were interspersed amongst other
attacks targeting Xbox Live, Microsoft DNS infrastruc-
ture, PlayStation, Nuclear Fallout game hosting servers,
and other cloud servers. These non-Dyn attacks are either
ACK/GRE IP floods, or VSE, which suggests that the
targets were Valve Steam servers. At 22:17 UTC, the
botnet issued a final 10 hour-long attack on a set of Dyn
and PlayStation infrastructure. This pattern of behavior
suggests that the Dyn attack on October 21, 2016 was not
solely aimed at Dyn. The attacker was likely targeting
gaming infrastructure that incidentally disrupted service
to Dyn’s broader customer base. The attack was carried
out by Cluster 6.

Lonestar Cell Attacks on Lonestar Cell, a large tele-
com operator in Liberia and the most targeted victim
of Mirai (by attack account), have received significant
attention due to speculation that Mirai substantially de-
teriorated Liberia’s overall Internet connectivity [14, 42].
Others have questioned these claims [45]. We cannot pro-
vide insight into Liberia’s network availability; instead,
we analyze attack commands we observed. Beginning
at 10:45 UTC on October 31, 2016 until December 13,
2016, a single botnet C2 cluster (id 2) issues a series of
341 attacks against hosts in the Lonestar AS. 87% of the
attacks are SYN or ACK floods and targeted both full sub-
nets and addresses within 168.253.25.0/24, 41.57.81.0/24,
and 41.57.85.0/24, all of which belong to Lonestar Cell
or its parent company, MTN Group.

In addition to IP targets, we observe an NXDO-
MAIN attack issued on November 8, 2016 that targeted
simregistration.lonestarcell.com. A single C2
IP never seen previously or subsequently issued a single
attack on December 14. Attacks on Lonestar infrastruc-
ture continued again at 09:24 UTC on January 16, 2017
and persisted until February 8, 2017, issuing 273 attacks

from a single C2 IP address. In total there were 616 at-
tacks, 102 of which used reflect traffic against Voxility,
Google, Facebook, and Amazon servers towards Lonestar
networks. The attack was carried out by C2 cluster 2
and used the C2 domains: “mufoscam.org”, “securityup-
dates.us”, “jgop.org”, and “zugzwang.me”.

As we have seen, Mirai primarily used direct, non-
reflective attacks on a wide range of protocols including
the less common GRE and VSE protocols. Even without
relying on amplification attacks, Mirai was still able to in-
flict serious damage as evidenced by high-profile attacks
against Krebs on Security, Dyn, and Lonestar Cell. Fur-
thermore, the juxtaposition of attacker geography (largely
Southeast Asia and South America) and victim geography
(majority in the U.S.) places a spotlight on the importance
of global solutions, both technical and non-technical, to
prevent the rise of similar botnets. Otherwise, adversaries
will continue to abuse the most fragile hosts to disrupt the
overall Internet ecosystem.

7 Discussion

Mirai has brought into focus the technical and regulatory
challenges of securing a menagerie of consumer-managed,
interfaceless IoT devices. Attackers are taking advantage
of a reversal in the last two decades of security trends
especially prevalent in IoT devices. In contrast to desktop
and mobile systems, where a small number of security-
conscious vendors control the most sensitive parts of the
software stack (e.g. Windows, iOS, Android)—IoT de-
vices are much more heterogeneous and, from a secu-
rity perspective, mostly neglected. In seeking appropri-
ate technical and policy-based defenses for today’s IoT
ecosystem, we draw on the experience of dealing with
desktop worms from the 2000s.

Security hardening The Mirai botnet demonstrated
that even an unsophisticated dictionary attack could com-
promise hundreds of thousands of Internet-connected de-
vices. While randomized default passwords would be a
first step, it is likely that attacks of the future will evolve
to target software vulnerabilities in IoT devices much like
the early Code Red and Confickr worms [8, 70]. To miti-
gate this threat before it starts, IoT security must evolve
away from default-open ports to default-closed and adopt
security hardening best practices. Devices should con-
sider default networking configurations that limit remote
address access to those devices to local networks or spe-
cific providers. Apart from network security, IoT de-
velopers need to apply ASLR, isolation boundaries, and
principles of least privilege into their designs. From a
compliance perspective, certifications might help guide
consumers to more secure choices as well as pressure
manufacturers to produce more secure products.
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Automatic updates Automatic updates—already
canonical in the desktop and mobile operating system
space—provide developers a timely mechanism to patch
bugs and vulnerabilities without burdening consumers
with maintenance tasks or requiring a recall. Automatic
updates require a modular software architecture by de-
sign to securely overwrite core modules with rollback
capabilities in the event of a failure. They also require
cryptographic primitives for resource-constrained devices
and building PKI infrastructure to support trusted updates.
Apart from these challenges, patching also requires the
IoT community to actively police itself for vulnerabilities,
a potentially burdensome responsibility given the sheer
diversity of devices. Bug bounties can help in this respect:
roughly 25% of all vulnerabilities patched by Chrome
and Firefox came from bug bounties in 2015 [28], while
Netgear launched a bug bounty for its router software in
January, 2017 [75]. In the event of a zero-day exploit that
disables automatic updates, IoT developers must provide
a secure fallback mechanism that likely requires physical
access and consumer intervention.

The Deutsche Telekom infection and subsequent fix
provide an excellent case study of this point. DT’s routers
had a vulnerability that enabled the botnet to spread via its
update mechanism, which provides a reminder that basic
security hardening should be the first priority. However,
since DT did have an automatic update mechanism, it was
also able to patch devices rather swiftly, requiring mini-
mal user intervention. Implementing automatic updates
on IoT devices is not impossible, but does take care to do
correctly.

Notifications Notifications via out-of-band channels
serve as a fallback mechanism to bring devices back into
security compliance or to clear infections. Recent ex-
amples include alerting device administrators via CERT
bulletins, emailing the abuse contact in WHOIS records,
and in-browser warnings to site owners that a page is
compromised [24, 56, 57]. Notifications in the IoT space
are complicated to say the least. IoT devices lack both a
public indication of ownership and an established com-
munication channel to reach consumers. Were consumers
reachable, there must also be a clear and simple update
path to address the problem. As a minimum alternative,
IoT devices could be required to register an email address
with the manufacturer or with a unified, interoperable
monitoring platform that can alert consumers of serious
issues. This is a space where IoT requires non-technical
intervention. The usability challenge of acting on notifi-
cations remains an open research problem.

Facilitating device identification Even when device
models or firmware versions are known to be vulnerable,
detecting such devices on the network can be extremely
difficult. This made our investigation more challenging,

but it also makes it hard for network operators to detect
vulnerabilities in their or their customers’ devices. To
mitigate this, IoT manufacturers could adopt a uniform
way of identifying model and firmware version to the
network—say, encoding them in a portion of the device’s
MAC address. Disclosing this information at layer 2
would make it visible to local network operators (or to
the user’s home router), which could someday take auto-
mated steps to disable remote access to known-vulnerable
hardware until it is updated. Achieving this in a uniform
way across the industry would likely require the adoption
of standards.

Defragmentation Fragmentation poses a security (and
interoperability) risk to maintaining and managing IoT de-
vices. We observed numerous implementations of Telnet,
FTP, and HTTP stacks during scanning. The IoT commu-
nity has responded to this challenge by adopting a handful
of operating systems, examples of which include Android
Thing, RIOT OS, Tock, and Windows for IoT [30]. This
push towards defragmentation would abstract away the
security nuances required of our prescriptive solutions.

End-of-life Even with security best practices in mind,
end-of-life can leave hundreds of thousands of in-use IoT
devices without support. Lack of long-term support will
yield a two class system of protected and unprotected
devices similar to the current state of Windows XP ma-
chines [63]. Over time, the risk that these devices pose to
the Internet commons will only grow unless taken offline.

8 Related Work

Since as early as 2005, the security community has
been working to understand, mitigate, and disrupt bot-
nets [17]. For example, Zand et al. proposed a detection
method based on identifying command and control sig-
natures [97], and Gu et al. focused on analyzing network
traffic to aid in detection and mitigation [32,33]. Unfortu-
nately, mitigation remains a difficult problem as botnets
often evolve to avoid disruption [6].

This work follows in a long line studies that have ana-
lyzed the structure, behavior, and evolution of the botnet
ecosystem [12,37,76,84,85,91,96]. Bailey et al. note that
each technique used in understanding botnets has a unique
set of trade offs, and only by combining perspectives can
we fully analyze the entire picture [11]. This observation
and the seminal work of Rajab et al., implicating botnet
activity in 27% of all network telescope traffic, inspire
our approach [2].

Botnets have historically been used to launch DDoS
attacks, and there exists a parallel set of studies focusing
on characterizing and defending against these attacks [66,
67], as well as estimating their effect [69]. In response to
the recent growth of amplification attacks, there have been
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several studies investigating vulnerable amplifiers [20, 51,
79]. As DDoS attacks and infrastructure are becoming
more commonplace, attention has turned to exploring the
DDoS for hire ecosystem [40].

Since the emergence of IoT devices, security re-
searchers have warned of their many inherent security
flaws [80]. Researchers have found that IoT devices con-
tain vulnerabilities from the firmware level [18, 19] up
to the application level [26, 29, 73, 78]. Mirai is also
not the first of its kind to target IoT devices—several
precursors to Mirai exist, all of which exploit the weak
password nature of these devices [38, 52, 59, 62, 72]. As a
result of these widespread security failures, the security
community has been quick to design systems to secure
these kinds of devices. In one example, Fernandes et al.
proposed Flowfence, which enables data flow protection
for emerging IoT frameworks [27]. Much more work
is needed if we are to understand and secure this new
frontier.

In this work, we utilize a multitude of well-established
botnet measurement perspectives, which substantiate con-
cerns about IoT security. We demonstrate the damage
that an IoT botnet can inflict upon the public Internet,
eclipsing the DDoS capabilities of prior botnets. We use
previously introduced solutions as guidelines for our own
proposals for combating the Mirai botnet, and IoT botnets
at large.

9 Conclusion

The Mirai botnet, composed primarily of embedded and
IoT devices, took the Internet by storm in late 2016 when
it overwhelmed several high-profile targets with some of
the largest distributed denial-of-service (DDoS) attacks
on record. In this work, we provided a comprehensive
analysis of Mirai’s emergence and evolution, the devices
it targeted and infected, and the attacks it executed. We
find that while IoT devices present many unique security
challenges, Mirai’s emergence was primarily based on
the absence of security best practices in the IoT space,
which resulted in a fragile environment ripe for abuse. As
the IoT domain continues to expand and evolve, we hope
Mirai serves as a call to arms for industrial, academic, and
government stakeholders concerned about the security,
privacy, and safety of an IoT-enabled world.
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Abstract

Traditional auditing techniques generate large and inac-
curate causal graphs. To overcome such limitations, re-
searchers proposed to leverage execution partitioning to
improve analysis granularity and hence precision. How-
ever, these techniques rely on a low level programming
paradigm (i.e., event handling loops) to partition execu-
tion, which often results in low level graphs with a lot of
redundancy. This not only leads to space inefficiency and
noises in causal graphs, but also makes it difficult to un-
derstand attack provenance. Moreover, these techniques
require training to detect low level memory dependencies
across partitions. Achieving correctness and complete-
ness in the training is highly challenging. In this paper,
we propose a semantics aware program annotation and
instrumentation technique to partition execution based
on the application specific high level task structures. It
avoids training, generates execution partitions with rich
semantic information and provides multiple perspectives
of an attack. We develop a prototype and integrate it with
three different provenance systems: the Linux Audit sys-
tem, ProTracer and the LPM-HiFi system. The evaluation
results show that our technique generates cleaner attack
graphs with rich high-level semantics and has much lower
space and time overheads, when compared with the event
loop based partitioning techniques BEEP and ProTracer.

1 Introduction

Provenance tracking is critical for attack investigation,
especially for Advanced Persistent Threats (APTs) that
are backed by organizations such as alien governments
and terrorists. APT attacks often span a long duration
of time with a low profile, and hence are difficult to
detect and investigate. A provenance tracking system
records the causality of system objects (e.g. files) and
subjects (e.g. processes). Once an attack symptom is
detected, the analyst can utilize the provenance data to

understand the attack including its root cause and ramifi-
cations. Such inspection is critical for timely response to
attacks and the protection of target systems. Most existing
techniques [38, 46, 49, 50, 59] entail hooking and record-
ing important system level events (e.g. file operations),
and then correlating these events during an offline inves-
tigation process. The correlations have multiple types:
between two processes such as a process creating a child
process through sys_clone(); between a process and a sys-
tem object, e.g., a process reads a file through sys_read().
However, these techniques suffer from the dependence
explosion problem, especially for long running processes.
The reason is that a long running process may have de-
pendencies with many objects and other processes during
its lifetime although only a small subset is attack related.
For instance, a Firefox process may visit numerous pages
over its lifetime while only one page is related to a drive-
by-download attack.

Researchers proposed to partition execution to units so
that only the events within a unit are considered causally
related [43, 46]. For instance, the execution of a long
running server is partitioned to individual units, each han-
dling a request. Although existing execution partitioning
based systems such as BEEP [43] and ProTracer [46] have
demonstrated great potential, they partitioned execution
based on event handling loops. That is, each iteration of
an event handling loop is considered a unit. Despite its
generality, such a partitioning scheme has inherent lim-
itations. (1) Event loop iterations are too low level and
cannot denote high level task structure. For instance, in UI
programs, an event loop iteration may be to handle some
user interaction. (2) There are often inter-dependencies
across units. Therefore, BEEP and ProTracer rely on a
training phase to detect such dependencies in the form
of low level memory reads and writes. Achieving com-
pleteness in training is highly challenging. Note that the
problem could not be addressed even when source code
is provided because there are typically a lot of program
dependencies across event loop iterations and only a sub-
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set of them are important. (3) A high level task is often
composed of many units (e.g., those denoting event loop
iterations in multiple worker threads that serve the same
high level task). Ideally, we would like to partition execu-
tion based on the high level task structure.

Note that high level task structure is application specific.
Therefore, developers’ input on what denotes a task/unit
is necessary. We observe that a high level task/unit has
its corresponding data structure in the software. Our pro-
posal is hence to allow the developer/user to inform our
system what task/unit structure they desire by annotating
a small number of data structures (e.g., the tab data struc-
ture in Firefox). Our system MPI1 takes the annotations
and automatically instruments (a large number of) pro-
gram locations that denote unit boundaries through static
program analysis. The analysis handles complex thread-
ing models in which the executions of multiple tasks/units
interleave. The instrumentation emits special syscalls
upon unit context switches so that the application specific
task/unit semantics is exposed to the underlying prove-
nance tracking systems. MPI allows annotating multiple
task/unit structures simultaneously so that the forensic an-
alyst can inspect an execution from multiple perspectives
(e.g., tab and domain perspectives for Firefox). This is
highly desirable for attack investigation as we will show
later in the paper. Asking for developers/users input in au-
dit logging is a strategy adopted in practice. For example,
the audit system on Windows, Event Tracing for Windows
(ETW) requires the developers to explicitly plant audit-
ing API calls in their source code if they would like to
perform any customized logging. Nonetheless, reducing
manual efforts is critical to the real world deployment of
the technique. MPI is highly automated as the user only
needs to annotate a few data structures and then the invo-
cations to logging commands are automatically inserted
through program analysis. Most of the programs we use
in our experiment require only 2-3 annotations for each
perspective. In addition, MPI provides a data structure
profiler, called the annotation miner, to recommend the
potential data structures to annotate. As shown in §4.2, it
makes the correct recommendations in most cases.

MPI is a general execution partitioning scheme or-
thogonal to the underlying OS-level provenance collec-
tion system. We integrate it with three different prove-
nance collection systems: the widely adopted Linux audit
framework, and two state-of-the-art research projects, Pro-
Tracer [46]2 and the LPM [23] enabled HiFi [55] system
(LPM-HiFi) which features secure audit logging.

In summary, we make the following contributions:

• We propose the novel idea of partitioning execution
based on data structures to support different granu-

1MPI is short for “Multiple Perspective attack Investigation”
2ProTracer is based on BEEP, we replace the BEEP with MPI.

larities and facilitate multi-perspective, application-
semantics-aware attack investigation.
• We develop program analysis and runtime tech-

niques to enable such partitioning. Given a small
number of annotations on data structure definitions,
program analysis is conducted to identify places that
need to be instrumented to emit events at runtime
that denote unit boundaries and unit inheritance. The
number of such places may be very large, rendering
manual instrumentation infeasible.
• We develop an annotation miner that can recommend

the data structures to annotate with high accuracy,
substantially alleviating the manual efforts.
• We develop a prototype based on LLVM. The evalu-

ation on a set of commonly used Linux applications
and three different provenance systems shows that
our approach can effectively partition program execu-
tion in different granularities. We also use a number
of case studies that simulate real-world attacks to
demonstrate the strength of the proposed technique,
in comparison with BEEP [43] and ProTracer [46].

2 Motivation

In this section, we use an example to illustrate the dif-
ferences between the classic provenance tracking sys-
tems [23, 49, 50, 55], the existing event loop based exe-
cution partitioning approaches [43, 46], and the proposed
approach. This example simulates an important kind of
real-world attacks, watering hole attack [18, 19],

2.1 Motivating Example

Watering hole is a popular attack strategy targeting large
enterprises such as Apple [11] and Google [12]. The ad-
versaries do not directly attack the enterprise networks or
websites, which are well protected. Instead, they aim to
compromise the websites that are frequently visited by
the employees of the target enterprise, which are usually
much less protected. Recently, there have been a number
of real incidents of watering hole attacks, e.g., by compro-
mising Github [8] and CSDN [3]. There are exploit kits
(e.g., BeEF [2]) to make it easy to conduct such attacks.

In our example case, a developer in an enterprise opens
Firefox, and then uses Bing to look for a utility program
for file copying. The search engine returns a number of
relevant links to technical forums, blogs, wikis and online
articles. Some of these links further lead to other rele-
vant resources such as pages comparing similar programs.
Some pages host software for download. In many cases,
the software was uploaded by other developers. After
intensive browsing and researching, the developer settles
down on a forum that hosts not only the wanted software,
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but also many other interesting resources, including tor-
rents for a few tutorial videos. The developer downloads
the program and also a few torrents from the forum. Af-
ter the download, he starts to use the program. He also
uses a p2p software Transmission to download the videos
described by the torrents.

Unfortunately, the forum website was compromised,
targeting enterprises whose developers tend to use the
forum for technical discussion and information sharing.
The program downloaded, fcopy, is malicious. In addition
to the expected functionality, the malware creates a re-
verse TCP connection and provides a shell to the remote
attacker. The malware causes unusual network bandwidth
consumption and is eventually noticed by the administra-
tor of the enterprise. To understand the attack and prepare
for response, the administrator performs forensic analysis,
trying to identify the root cause and assess the potential
damage to the system. At the very beginning, the binary
file fcopy is the only evidence. Hence, the creation of the
file is used as the symptom event.

2.2 Traditional Solutions

Traditional techniques such as backtrackers [38, 39], audit
systems [10] and provenance-aware file systems [50, 55]
track the lineage of system objects or subjects without
being aware by the applications. These techniques col-
lect system subjects (e.g. processes and threads) and
objects (e.g. files, network sockets and pipes) information
at run time with system call hooking or Linux Security
Modules (LSM) [62], and construct dependency graph or
causal graph for inspection. Note that these two terms
are interchangeable in this paper. While they use differ-
ent approaches to trace system information, the graphs
generated by these systems are similar.

A general workflow for these techniques is as follows.
Starting from the given symptom subject or object, they
identify all the subjects and objects that the symptom di-
rectly and indirectly depends on using backtracking. They
also allow identifying all the effects induced by the root
cause using forward tracking. For the case mentioned
in §2.1, the administrator identifies the Firefox process
and all its data sources by backtracking, and then dis-
closes the downloaded files and the operations on these
files with forward tracking. Figure 1 shows the simpli-
fied graph generated. In this graph and also the rest of
the paper, we use diamonds to represent sockets, oval
nodes to represent files, and boxes to represent processes
or execution units. In Figure 1, many network sockets
point to the Firefox process, and the process points to a
large number of files including the torrent files and others
like fcopy, which reflect the browsing and downloading
behaviors of Firefox.

While we only show part of the original graph in Fig-

ure 1 for readability, the original graph contains more than
500 nodes in total, with most files and network socket
accesses being (undesirably) associated with the Firefox
and Transmission nodes. These bogus dependencies make
manual inspection extremely difficult.

2.3 Loop Based Partitioning Solutions
It was observed in [43] that the inaccuracy of traditional
approaches is mainly caused by long running processes,
which interact with many other subjects and objects dur-
ing their lifetime. Traditional approaches consider the en-
tire process execution as a node so that all the input/output
interactions become edges to/from the process node, re-
sulting in considerably large and inaccurate graphs. Take
the Transmission process as an example. It has depen-
dencies with many torrent files and network sockets, ob-
fuscating the true causalities (e.g., a torrent file and the
corresponding downloaded file).

Event loop based partitioning techniques [43, 45, 46]
leverage the observation that long running processes are
usually event driven and the whole process execution
can be partitioned by the event handling loops (through
binary instrumentation). They proposed the concept of
execution unit, which denotes one iteration of an event
handling loop. This fine-grained execution abstraction en-
ables accurate tracing of dependency relationship. It was
shown that these techniques can generate much smaller
and more accurate dependency graphs. However, these
techniques still have the following limitations that hinder
their application in the real-world.

Units Are Too Low Level. Assume the administrator
applies BEEP/ProTracer to the motivation case in §2.1.
He constructs the causal graph starting from the file fcopy.
He acquires the download event in Firefox, which is asso-
ciated with the web socket a.a.a.a. Then, he traces back
to the forum website, and eventually the search engine.
As part of the investigation, the administrator applies for-
ward tracking from the search engine page to understand
if other (potentially malicious) pages were accessed and if
other (potentially malicious) programs were downloaded
and used. Since the developer visited many links returned
by the search engine, the forward tracking includes many
web pages and their follow-ups in the resulting graph.
The simplified graph is shown in Figure 2.

In this case, Firefox is used for 5 minutes with 11 tabs
containing 7 websites. There are thousands of nodes
in the graph. This is because all user interactions like
scrolling the web pages, moving mouse pointer over a
link and clicking links are processed by unique event loop
iterations, each leading to a unit/node. Moreover, Fire-
fox has internal events including timer events to refresh
pages. As these events operate on DOM elements, they
are connected in the dependency graph due to memory
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a.a.a.a

Figure 1: Simplified causal graph for the case in §2.1 generated by traditional solutions (Tool in [16]).

dependencies, making the graph excessive.
The root cause of the limitation lies in that BEEP ex-

poses very low level semantics (i.e., event loop iterations)
in partitioning. The onus is on the user to chain low
level units to form high level tasks. Unfortunately, BEEP
graphs have little information to facilitate this process as
they lack high level semantic information such as which
high level task (e.g., tab) a low level unit belongs to.

Depending on Training. BEEP and ProTracer are train-
ing based due to the difficulty of binary analysis. It re-
quires intensive training to identify the event handling
loops and memory accesses that disclose dependencies
across units (e.g., one event loop inserts a task to the
queue which is later loaded and processed by another
event loop). The completeness of the training inputs is
hence critical. Otherwise, there may be missing or even
wrong causal relations. Note that providing source code
does not address this problem as identifying event han-
dling loops and cross-unit dependencies requires in-depth
understanding of low level program semantics, which is
much easier through dynamic analysis by observing con-
crete states than static analysis, in which everything is
abstract. Specifically, there are a large number of loops in
a program. Statically determining which ones are event
handling loops is difficult. Furthermore, while static anal-
ysis can identify memory dependencies, a lot of cross-unit
dependencies should be ignored as they have nothing to
do with the high level work flow (e.g., those caused by
memory management or statistics collection).

In our motivating example, we did not use the “Go
back" button in the initial training of Firefox. As a result,
we were not able to get the full causal chain in Figure 2,
which was broken at one web page that contains a lot of
clicking-link and going-back actions. We had to enhance
our training set by providing a going-back case.

Excessive Units. Partitioning based on event handling
loops works nicely for server programs, in which one
event loop iteration handles an external request and hence
corresponds to a high level task. However, in many com-
plex programs, especially those that heavily use threads
to distribute workloads or involve intensive UI operations,
event loop iterations do not align well with the high level
tasks. As a result, it generates excessive small units that
do not have much meaning. For example, in GUI pro-
grams, units are generated to denote the large number
of GUI events (e.g., key strokes), even though all these

events may serve the same high level task.
Consider the p2p program Transmission. Figure 3

shows its event handling loop in the main function of the
daemon process. After parsing options, loading settings
and torrent files (line 2-3), the daemon goes to a loop
which exits only when the user closes the program (i.e.,
set closing to TRUE). In each iteration of the loop, it
waits for 1 second (line 6), updates the torrent status and
logs some information (line 7). Due to the nature of p2p
protocol, downloading a single file requires thousands of
loop iterations, leading to thousands of units in BEEP.

In many situations, there may not be any system events
within these small units. For example, GUI programs
monitor and handle frequent events such as page scroll.
However, not all of them lead to system calls. Thus BEEP
ends up with many “UNIT_ENTER” and “UNIT_EXIT”
events without any system calls in between. These useless
units waste a lot of space and CPU cycles. While existing
techniques [22, 44, 46, 67] can remove redundant events,
they cannot prevent these events from being generated in
the first place.

These limitations are rooted at the misalignment be-
tween the rigid and low level execution partitioning
scheme based on event loops. Ideally, the units gener-
ated by a partitioning scheme would precisely match with
the high level logic tasks. MPI aims to achieve this goal.

2.4 Our Approach

The overarching idea of this paper is that high level tasks
are reflected as data structures. MPI allows the user to
annotate the data structures that correspond to such tasks.
It then leverages program analysis to instrument a set of
places that indicate switches and inheritances of tasks to
achieve execution partitioning. Note that there may be
multiple perspectives of the high level tasks involved in
an execution, denoted by different data structures. Hence,
MPI allows annotating multiple data structures, each de-
noting an independent perspective. To reduce the annota-
tion efforts, MPI provides a profiler that can automatically
identify the critical data structures ( Figure 3.2). Note
that allowing developers/users to insert logging related
annotations/commands to software source code is a practi-
cal approach for system auditing. The Windows auditing
system, Event Tracing for Windows (ETW), requires the
developers to explicitly plan customized events to their
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Figure 2: Simplified backtracking causal graph for the case in §2.1 with event loop based partitioning technique. It only shows the
causal relationship within the Firefox process (runs for 5 minutes with 11 tabs and 7 websites). The tool used can be found in [16].

1 int main( int argc, char ** argv ) {
2 // parse options and session, load torrents
3 torrents = tr_sessionLoadTorrents(mySession, ctor, NULL);
4 // event loop
5 while( !closing ) {
6 tr_wait_msec( 1000 ); /* sleep one second */
7 // update and log and so on
8 }
9 // close program and sessions

10 return 0;
11 }

Figure 3: Event handling loop of Transmission (version 2.6)

software before deployment [5, 20]. These commands
generate system events at runtime. In our design, we only
require the developer to annotate (a few) task oriented
data structures, MPI automatically instruments a much
larger number of code places based on the annotations.

7: Process
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3: Website Instance

1: Same Source

ElementElement

Page

Website Instance

PagePage

5: One Tab
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4: Website

Element
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Window

Figure 4: Firefox Partitioning perspectives

Figure 4 presents a few possible perspectives of Firefox
execution. By annotating the appropriate data structures,
we can partition a Firefox execution into sub-executions
of various windows (perspective 6), tabs (perspective 5),
websites/domains (perspective 4), website instances (per-
spective 3), individual pages (perspective 2), and even
the sources of individual DOM elements (perspective 1).
Observe that some of the perspectives are cross-cutting.
For instance, a tab may show pages from multiple do-
mains whereas pages from the same domain may appear
in multiple tabs. A prominent benefit of such partitioning
is to expose the high level semantics of the application to
the underlying provenance tracking system.
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Figure 5: Simplified MPI causal graph for the case in §2.1 with
Firefox partitioned by tabs
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Figure 6: Simplified MPI causal graph for the case in §2.1 with
Firefox partitioned by web sites

Figure 5 shows the causal graph for the attack example
when we partition the execution of Firefox by its tabs
and Transmission by the files being downloaded. Each
rectangle represents the life time of a tab. Observe that the
Bing tab leads to the wordpress tab, which also shows the
forum main page. A number of forum pages are displayed
on separate tabs, each of which leads to the download of
a torrent file through a Transmission unit. In contrast
Figure 6 shows the causal graph when we partition the
execution of Firefox by the websites/domains it visits.
Observe that all the forum tabs are now collapsed to a
single forum node. It clearly indicates that fcopy and
the torrent files are downloaded from the same domain.
Compared to the BEEP graph in Figure 1, these graphs
are much smaller and cleaner, precisely capturing the high
level workflow of the execution. Note that these graphs
cannot be generated by directly querying/operating-on
the BEEP log, which has only very low level semantic
information (i.e., event loop iterations).
Advantages Over Event Loop Based Partitioning. We
can clearly see data structure based partitioning system
MPI addresses the limitations of event loop based parti-
tioning. 1 Units are no longer based on low level loop
iterations. The inspector does not need to manually chain
many such low level units to form a high level view of
the execution. 2 Dependency identification is made easy.
Training is no longer needed. The memory dependencies
that are needed to chain the low level event loop units
are no longer necessary because these low level units are
automatically classified to a high level unit in MPI. The
incidents of missing causality due to incomplete train-
ing can be avoided. For instance, Firefox uses multiple
threads to load and render the many elements on a page,
which induces lots of memory dependencies across event
loop units. But if we look at the execution from the tab
perspective, these memory dependencies are no longer
inter-unit dependencies that need to be explicitly cap-
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tured. 3 Excessive (small and non-informative) units are
prevented from being generated. All nodes representing
timer event for Transmission will be merged into one
node. Moreover, MPI provides great flexibility for attack
investigation by supporting multiple perspectives. En-
abling these perspectives is impossible if the appropriate
semantic information is not exposed through MPI.

One may argue that event loop based partitioning can
be enhanced by annotating event loops and cross-unit
memory dependencies. However, such annotations are so
low-level that (1) they require a lot of human efforts due to
the large number of places that need to be annotated (e.g.,
the memory dependencies), and (2) they expose low-level
and sometimes non-informative semantics such as mouse
moves and timer events. In addition, the partitioning is
solely based on event handling and hence cannot provide
multiple perspectives.

3 Design

3.1 Overview

The overall process of analysis and instrumentation is
shown in Figure 7. The user first annotates the program
source code to indicate unit related data structures under
the help of the annotation miner, which is essentially a
data structure profiler. The analysis component, imple-
mented as a LLVM pass, takes the annotations and ana-
lyzes the program to determine the places to instrument
(e.g., data structure accesses denoting unit boundaries).
The graph construction is using a standard algorithm, and
details can be found in Appendix B.

Source code

Programmer

LLVM PASS

Compiler Chain

Executable

Miner

Figure 7: MPI workflow

3.2 Annotations

Basic Annotations. Let us review how the Linux kernel
conducts context switching internally, which inspires our
approach to unit switching. Specifically, 1 a task_struct
with a unique pid identifies an individual process; 2 a
variable current is used to indicate the current active pro-
cess. Processes can communicate through inter-process
communication (IPC) channels like pipes. In order to
perform unit switching, we need to identify the unit data
structure that is analogous to task_struct and used to store
per-unit information, a field/expression that can be used to
differentiate unit instances as the identifier, and a variable
that stores the current active unit. Note that there may
not be an explicit task data structure in a program. Any

data structure that allows us to partition an execution to
disjoint autonomous units can serve as a unit data struc-
ture. Also, we need to know the variables that serve as
communication channels between different unit instances.
Thus we need the following types of annotations.
1 @indicator annotates the variable/field that is used
to indicate the possible switches between different unit
data structure instances (similar to the variable current in
Linux kernel). The user can choose to annotate multiple
indicator variables/fields, one for each perspective. A
unique id is assigned to each type of indicator.
2 @identifier is an expression used to differentiate the
instances of a unit data structure (similar to the data field
pid). This expression can be a field in the data structure
or a compound operation over multiple fields. Since an
identifier must be paired up with the corresponding indi-
cator, we allow providing an indicator id as part of the
identifier annotation.
3 @channel annotates the variables/fields that serve as

“IPC channels” between two different unit data structure
instances (similar to pipes). It contains a unique id num-
ber, and a parameter indicating which field stores the data
that induces inter-unit dependencies.

1 // in file src/globals.h
2 @indicator=1
3 EXTERN buf_T*curbuf INIT(= NULL);
4

5 // in file src/structs.h
6 typedef struct file_buffer buf_T;
7 // buffer: structure that holds information about one file
8 @identifier=b_ffname, indicator=1
9 struct file_buffer{

10 // associated memline
11 memline_T b_ml;
12 // buffers are orgnized as a linked list
13 buf_T *b_next;
14 buf_T *b_prev;
15 char_u *b_ffname; // full path file name
16 // TRUE if the file has been changed and not written out
17 int b_changed;
18 // variables for specific commands or local options
19 char_u *b_u_line_ptr; // for ’U’ command
20 int b_p_ai; // ’autoindent’, local opts
21 // other data field like change time or so
22 }; /* file_buffer */
23

24 // in file src/ops.c
25 @channel=channelID, data=(y_current->array)
26 static struct yankreg *y_current;

Figure 8: Vim data structure and our annotation

□ Example. Vim is a tabbed editor with each tab contain-
ing one or multiple windows. Each window is a viewpoint
of a buffer, with each buffer containing the in-memory text
of a file [17]. A file buffer can be shared by multiple win-
dows in the backend, and buffers are organized as a linked
list. A natural way to partition its execution is to partition
according to the file it is working on, each represented
by a file_buffer data structure. Figure 8 shows a piece
of code which demonstrates our annotations. Vim uses
the variable curbuf to represent the current active buffer.
Consequently, we use curbuf as our indicator variable.
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Line 2 shows the indicator annotation. The annotation
has an id to distinguish different indicators for various
granularities/perspectives. The id is used to match with
the corresponding @identifier annotation. Vim creates a
buffer for each file. We can hence use the absolute file
path in the OS to identify each file buffer instance. Line
8 shows the @identifier annotation. It has two parts: 1
an expression used to differentiate instances; and 2 an
indicator id used to match with the corresponding @in-
dicator annotation. In this case, field b_ffname is the
identifier with id 1. Vim maintains its own clip board to
support internal copy(cut)-and-paste operations. When
the user cuts or copies data from a file_buffer, it sets the
field y_current→array. When the user performs a paste
operation, it reads data from the variable and puts the data
to the expected position. In this case, y_current→array
can be considered as the IPC channel between the two
different file_buffer instances. Line 25 shows the channel
annotation. It contains a unique id for the channel (anal-
ogous to a file descriptor), and the reference path to the
field. Note that this is to support communication using
the Vim clip board. Our system also supports inter- or
intra-process operations through the system clip board by
tracking system level events.

Threading Support. In order to improve responsiveness,
modern complex applications heavily rely on threads to
perform asynchronous sub-tasks. More specifically, the
main thread divides a task into multiple subtasks that can
proceed asynchronously and dispatches them to various
(background) worker threads. A worker thread receives
sub-tasks from the main thread and also other threads
and processes them in the order of reception. It can also
further break a sub-task to many smaller sub-tasks and
dispatch them to other threads, including itself. This ad-
vanced execution model makes partitioning challenging
because we need to attribute the interleaved sub-tasks
to the appropriate top level units. In event loop based
partitioning techniques [43, 46], all the event handling
loops from various threads need to be recognized during
training. More importantly, multiple event loop iterations
(across multiple threads but within an application) may be
causally related as they belong to the same task. The cor-
relations are reflected by memory dependencies. As such,
the training process needs to discover all such dependen-
cies. Otherwise, the provenance may be broken. Unfor-
tunately, memory dependencies are often path-sensitive
and it is very difficult to achieve good path coverage. It
is hence highly desirable to directly recognize the logic
tasks, which are disclosed by corresponding data struc-
tures, instead of chaining low level event loop based units
belonging to a logic task through memory dependencies.
□ Example. Figure 9 illustrates a substantially simplified
example of the Firefox execution model. It corresponds
to an execution that loads two pages (in two respective
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Figure 9: Simplified Firefox execution model

tabs). Specifically, each box represents a thread and each
colored bar (inside a box) denotes an iteration of the event
handling loop (and hence a unit in BEEP/ProTracer). Ob-
serve that at step 1 , the loading of tab1 first dispatches
a Domain Name Server (DNS) query to a DNS thread,
and then (step 3 ) posts a connection request to the socket
thread to download the page. At step 4 , the socket thread
informs the main thread that the data is ready. The main
thread leverages other threads such as the image decode
thread, JS helper thread, and compositor thread to de-
code/execute/render the individual page elements. Note
that every thread has interleaved sub-tasks belonging to
various tabs. Edges denote memory dependencies across
sub-tasks that need to be disclosed during training and
instrumented at runtime in BEEP/ProTracer. □

Different from BEEP/ProTracer, our solution is to lever-
age annotations and static analysis to partition directly ac-
cording to the logic tasks (e.g. tabs). In order to precisely
determine the membership of a sub-task. We introduce
the @delegator annotation. This annotation is associated
with a data structure to denote a sub-task (e.g., the HTTP
connection request posted to the socket thread). Intu-
itively, it is a delegator of a top level task (e.g., the HTTP
connection request delegates the unit of its owner tab). At
runtime, upon the dispatching of a delegator data structure
instance (e.g., adding a sub-task to a worker thread event
queue), it inherits the current (top level) unit identification.
Later when the delegator is used (in a worker thread), the
system knows which top level unit the current execution
belongs to. There could be multiple layers of delegation.
Similar to a unit, a delegator data structure also has an
indicator, which is a variable like current whose updates
may indicate delegation switches. More details can be
found in Section 3.3.
□ Example. Consider the Firefox execution model. The
user can annotate a tab, a window, and/or an iframe as
a top level unit. Internally, these are all represented by
the same nsPIDOMWindow class. They are differentiated
by the internal field values. Hence, we provide multiple
perspectives by annotating the nsPIDOMWindow data
structure and using different expressions in the identifier
annotations to distinguish the perspectives. Figure 10
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1 @identifier=this->GetOuterWindow(2)->mWindowID, indicator=1

2 @identifier=this->GetTop()->mWindowID, indicator=2
3 class nsPIDOMWindow {
4 @indicator=1

5 @indicator=2
6 nsCOMPtr<nsIDocument> mDoc;
7 // Tracks activation state
8 bool mIsActive;
9 virtual already_AddRefed<nsPIDOMWindow> GetTop() = 0;

10 nsPIDOMWindow *GetOuterWindow()
11 { return mIsInnerWindow ? mOuterWindow.get() ? this; }
12 // The references between inner and outer windows
13 nsPIDOMWindow *mInnerWindow;
14 nsPIDOMWindow *mOuterWindow;
15 // A unique (64-bit counter)
16 // id for this window.
17 uint64_t mWindowID;
18 /* other methods and data fields */
19 };

Figure 10: Tab and window annotations in Firefox

shows the annotations for tabs and windows. The indica-
tor id 1 is for tabs and 2 for windows. Any tab or window
changes must entail the change of the mDoc field, which
is used as the indicator. The expressions in the correspond-
ing identifier annotations mean that we can acquire the
tab of any given window by getting the second layer outer
window, and the top level window by calling GetTop().

Main Thread Socket Thread

nsDocShell::LoadURI(string)

nsHttpConnectionMgr::PostEvent

nsresult nsHttpConnectionMgr::PostEvent(...) { 
  …

  nsCOMPtr<nsIRunnable> event =
    new nsConnEvent(this, handler, iparam, vparam);
  rv = mSocketThreadTarget->Dispatch(event, 
                               NS_DISPATCH_NORMAL);
  
  …
}

class nsConnEvent:  public nsRunnable  {};     

ProcessNextEvent

B

C

1

2

@delegator

class nsRunnable {};     

A

@delegator.indicator
workQueue.size;

D

3

Figure 11: Firefox main thread posts events to the socket thread

The connection request data structure (in the Socket-
Thread), the image data structure (in the image decoder
thread), etc. are annotated as delegators. As such, when a
connection request is created in the main thread, the re-
quest inherits the current tab/window id. When the request
is used/handled in a SocketThread, the execution duration
corresponding to the request belongs to the owner tab/win-
dow of the request. An example is shown in Figure 11.
In Firefox, all delegator data structure classes have the
same base class nsRunnable. As such, we only need to
annotate nsRunnable as the delegator class (box A). When
the main thread tries to load a new URI (step 1), it posts
an nsConnEvent to the SocketThread (step 2) by calling
the PostEvent method (box C). Since nsConnEvent is a
sub-class of nsRunnable (box B), the delegator class, the
newly created nsConnEvent inherits the tab/window id.
The nsRunnable class provides a function Run(), which is
implemented by its child classes to perform specific tasks.
And each thread maintains its own work queue containing

all such class instances. Thus the size of the worker queue
is annotated as the indicator of the delegator. Whenever it
changes, there may be a unit context switch. □

Annotation Miner. We develop an annotation miner to
recommend unit and delegator data structures to annotate.
The miner works as follows. The user provides a pair
of executions to denote an intended unit task, one exe-
cution containing one unit and the other containing two
units. Then, differential trace analysis is performed to
prune data structures that are common in both traces and
hence irrelevant to the unit (e.g., global data structures).
The miner leverages the points-to relations between data
structures to narrow down to the top data structures (i.e.,
those that are not pointed-to by other data structures).
PageRank is further used to determine the significance
of individual top data structures. A ranked list of data
structures is returned to the user. Note that this mining
stage is much less demanding than the training process
in BEEP/ProTracer, which requires extracting code loca-
tions that induce low level memory dependencies. Since
we focus on identifying high level data structures, which
are covered by the provided inputs, completeness is not
an issue for us in practice.

Test 1: Google

Test 2: GDrive

Test 3: LocalFile

TA TB=2TA ΔT: { e | TB.numberOf(e) = 2*TA.numberOf(e) }

T1 T1’ ΔT1: { SocketIO, Tabs, ScrollPos, LogItem… }

T2 T2’ ΔT2: { SocketIO, DiskIO, Tabs, ScrollPos, LogItem… }

T3 T3’ ΔT3: { DiskIO, Tabs, ScrollPos, LogItem… }

Intersection(ΔT)

{ Tabs,
ScrollPos,
LogItem,

… }

Figure 12: Annotation Miner

Next, we show how to mine the tab data structure in
Firefox ( Figure 12). We first use a pair of runs to visit the
Google main page. T1 has one tab and T1’ has two tabs.
∆T shows the data structures in the trace differences. Note
that there are data structures specific to the page content
but irrelevant to the intended unit, such as SocketIO. To
further prune those, we use another two pairs of execu-
tions that visit Google Drive and a local file, respectively.
The miner then takes the intersection of the trace differ-
ences to prune out SocketIO and DiskIO. The resulting
set contains the top level data structures and their sup-
porting meta data structures (e.g., the ScrollPos data
structure to support scrolling in a tab). The trace-based
points-to analysis then filters out the low level support-
ing data structures. There may be multiple top level data
structures remained, many not related to units (e.g., for
logging). Hence in the last step, PageRank is used to rank
the several top data structures. In our case, the tab data
structure is correctly ranked the top.

3.3 Runtime

Unit Context. At runtime, each thread maintains a vector
called the unit context. Each element of the vector denotes
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the current unit instance for each unit type (or each per-
spective). Note that MPI allows partitioning an execution
in different ways by annotating multiple unit data struc-
tures. If the user has annotated n unit data structures (with
n indicators and n identifiers), there are n elements in the
vector. Each time the indicator of a unit data structure is
updated, the identifier of the data structure is copied to
the corresponding vector element.

Delegation. MPI runtime provides a global hash map
that is shared across all threads, called the delegation
table. The delegation table projects a delegator data struc-
ture instance to a unit context vector value, denoting the
membership of the delegator. Upon the creation/initial-
ization of a delegator data structure instance, MPI inserts
a key-value pair into the delegation table associating the
delegator to the current unit context. Upon an update of
the indicator of a delegator data structure (in a worker
thread that handles the subtask represented by the dele-
gator), the unit context of the current thread is set to the
unit context of the delegator, which is looked up from
the delegation table. Intuitively, it means the following
execution belongs to the unit of the delegator until a dif-
ferent delegator is loaded to the indicator variable. The
optimization of this process can be found in Appendix A.
□ Example. Let us revisit the Firefox example in Figure 9.
We want to attribute all subtasks to their corresponding
tabs (shown in different colors). In Figure 11, we show
a detailed workflow of the main thread posting the con-
nection event to the socket thread. The main thread first
calls the LoadURI method (step 1), which invokes the
PostEvent method. Within PostEvent (box C), it creates
an nsConnEvnet and posts it to the socket thread. Since
data structure nsRunnable (box A) is annotated as a del-
egator and the HTTP connection request nsConnEvent
(box B) is a subclass of nsRunnable, MPI propagates the
current unit id in the main thread to the worker thread,
namely, the socket thread. Specifically, the request is asso-
ciated with the current unit context of the main thread in
the delegation table. Inside the socket thread that receives
and processes the request (i.e., step 3), loading the request
from the task queue causes the change of the queue size
indicating a possible unit context switch. As a result, the
current unit context of the socket thread is set to that of
the request, namely, tab1. With a chain of delegations,
MPI is able to recognize all the tab1 subtasks performed
by different threads, namely, all the red bars in Figure 9
belong to the same tab1 unit. □

3.4 Analysis
The analysis component of MPI is a pass in LLVM re-
sponsible for adding instrumentation to realize the run-
time semantics mentioned earlier. It takes a program with
the four kinds of annotations mentioned in §3.2, and pro-

duces an instrumented version of the program that emits
additional syscall events denoting unit context switches
and channel operations.

MPI needs to identify the following a few kinds of code
locations: (1) all the updates (i.e., definitions) to indicator
variables, including unit indicators and delegator indica-
tors, to add instrumentation for unit context updates; (2)
all the creation/initialization locations of delegator data
structures to add instrumentation for the inheritance of
unit context; (3) reads/writes of channel variables/fields to
add instrumentation for channel event emission and redun-
dancy detection; (4) all the system/library calls that may
lead to system calls to add instrumentation for unit event
emission and redundancy detection. We use a type based
analysis to identify (2) and (3). For (4), we pre-define
a list of library functions (e.g., libc functions) that may
lead to system calls of interest and then scan the LLVM
bitcode to identify all the system calls and the library calls
on the list. Details are elided. A naive solution to (1) is
to perform a walk-through of the LLVM bitcode to iden-
tify all definitions to indicator variables or to their aliases
(using the default alias analysis in LLVM). However, this
may lead to redundant instrumentation. Specifically, an
indicator may be defined multiple times and there may
not be any system calls (or library calls that can lead to
system calls) in between. As such, the unit context switch
instrumentations for those definitions are redundant.

1 /* Match a regexp against multiple lines. */
2 long im_regexec_multi(...) {
3 buf_T *save_curbuf = curbuf;
4 // initilize local variables
5 // switch to buffer "buf" to make vim_iswordc() work
6 curbuf = buf;
7 r = vim_regexec_both(NULL, col, tm);
8 curbuf = save_curbuf;
9 return r;

10 }

Figure 13: Instrumentation example (VIM, op_yank function)

□ Example. The function im_regexec_multi() in Figure 13
searches for a regular expression in Vim. The indicator
variable is updated at line 6, and then again at line 8. The
operations inside function vim_regexec_both() are all on
memory. In other words, it does not make any system
calls directly or indirectly. As such, the instrumentation
for line 6 is redundant. □

The problem is formulated as a reaching-definition
problem, which determines the set of definitions (of a
variable) that can reach a program point. We say a defini-
tion of variable x can reach a program point ℓ, if x is not
redefined along any paths from the definition to ℓ. In our
context, we only instrument the definitions that can reach
a system call or a library call that can lead to a system
call. In Figure 13, the definition at line 6 cannot reach
any point beyond line 8. Since line 7 does not denote
any system call, line 6 is not instrumented. Appendix B
discusses how to construct attack graphs from MPI logs.
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4 Evaluation

In this section, we present the evaluation results includ-
ing the annotation efforts needed, the runtime and space
overheads of the prototype, and a number of attack cases
to show the advantages of MPI compared to the event
loop based partitioning technique in BEEP [43] and Pro-
Tracer [46]. For comprehensive comparison, we integrate
both MPI and event loop based partitioning with three
underlying provenance tracking systems, the Linux Audit
system, ProTracer and LPM-HiFi.

4.1 Overhead

Space overhead: We measure the space overhead of
MPI and compare it with the overhead of event loop
based partitioning, on the aforementioned three prove-
nance tracking systems. We measure the overhead of
MPI and BEEP on Linux Audit and LPM-HiFi by com-
paring the logs generated by the original binaries and the
instrumented binaries. ProTracer requires unit informa-
tion to eliminate redundant system events (e.g., multiple
reads of a file within a unit). Therefore, it needs to work
with an execution partitioning scheme. We hence com-
pare the ProTracer logs by BEEP and by MPI. Note that
BEEP+ProTracer is equivalent to the original ProTracer
system [46] and in MPI+ProTracer we retain the efficient
runtime of the original ProTracer but replace the partition-
ing component with MPI. Since BEEP supports only one
low-level perspective, we only annotate one perspective
in MPI during comparison. The overhead of multiple
perspectives is in Appendix D.

The results are shown in Table 1. The table contains
the following information (column by column): 1) Ap-
plication. 2) Perspective for partitioning. 3) Overhead of
BEEP on Linux Audit, i.e., comparing the Linux Audit
log sizes with and without BEEP. 4) Overhead of BEEP on
LPM-HiFi with the raw log format. 5) Overhead of BEEP
on LPM-HiFi with its Gzip enabled user space reporter
tool. 6-8) Overhead of MPI on BEEP and LPM-HiFi. 9)
Log size of BEEP on (original) ProTracer. 10) Log size
of MPI on ProTracer. Note that Linux Audit and LPM-
HiFi have different provenance collection mechanisms,
i.e. system call interception for Linux Audit and LSM
for LPM-HiFi. This leads to different space overheads.
LPM-HiFi provides different user space reporters, and the
Gzip enabled reporter has less space overhead.

Observe that for most programs our approach has less
overhead on all the three platforms. For programs like
document readers and video players, both approaches
show very little overhead. These programs do not need to
switch between different tasks frequently, which means
they rarely trigger the instrumented code. Our approach
shows significant better results for many programs like

web browsers, P2P clients, HTTP and FTP programs in-
cluding servers and clients due to a few reasons. Firstly, in
these programs, the events handled by the event handling
loop are at a very low level, whereas MPI can partition ex-
ecution at a much higher level. Thus there are fewer unit
context switches in our system, and multiple execution
units in BEEP are grouped into one in our system without
losing precision. For example in Apache, a remote HTTP
request can lead to redirection, and the Apache server
needs a few BEEP execution units to handle it. This trig-
gers the instrumented code several times. But in MPI,
multiple requests, including their redirections, of a same
connection are grouped together. Thus, the instrumenta-
tion (for unit context switch) is triggered less frequently.
Another reason is that we avoid meaningless execution
units. For example in benchmark Transmission, BEEP
execution units are based on time events, leading to many
redundant units. This is avoided in MPI. Firefox has
high overhead in both systems. When multiple tabs are
opened, Firefox processes them in the background with
threads. Since most of the requests involve network or file
I/O, a lot of system/unit context switches are triggered,
leading to the overhead. Despite this, the overhead of
our system is about one third of that of BEEP. Note that
there is another advantage of MPI that cannot be quan-
tified –MPI does not require extensive training to detect
low level memory dependencies. During our experiments,
we had to add test inputs to the training sets of BEEP to
ensure the provenance was not broken for a number of
applications (e.g., Firefox).

We want to point out that with MPI, we can even re-
duce space overhead for the highly efficient ProTracer
system and the reduction is substantial for a few cases.
This is because MPI produces higher level execution units
(compared to BEEP/ProTracer), leading to fewer units,
more events in each unit and hence more redundancies
eliminated by the ProTracer runtime. Also note that all
the advantages of MPI over BEEP (e.g., without requir-
ing extensive training and rich high-level semantics) are
also advantages over ProTracer as the original ProTracer
system relies on BEEP. We have ran MPI for 24 hours
with a regular workload. The generated audit log has
680MB with 80MB by MPI. Details can be found in
Appendix D.

Run time overhead: We measure the run time overhead
caused by our instrumentation. For server programs, we
use standard benchmarks. For example, for the Apache
web server, we use the ab [1] benchmark. For programs
that do not have standard test benchmarks, but support
batch mode (e.g., Vim), we translate a number of typi-
cal use cases to test scripts to drive the executions. We
preclude highly interactive programs.

For each application, we choose the same perspectives
as the previous experiment, and the results are shown
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Table 1: Space Overhead

Application Level BEEP Space Overhead MPI Space Overhead BEEP MPI

Linux Audit LPM-HiFi (Raw - Gzip) Linux Audit LPM-HiFi (Raw - Gzip) ProTracer (MB)

Apache HTTP Connection 15.38% 12.87% 0.64% 5.37% 3.75% 0.16% 22.12 20.08
Bash Command 0.45% 0.34% 0.01% 0.41% 0.34% 0.01% 1.01 0.78

Evince Document File 3.72% 4.98% 0.25% 0.04% 0.04% 0.00% 0.22 0.21
Firefox Tab 42.16% 38.23% 1.01% 18.20% 13.24% 0.52% 593.23 228.54

Krusader Command 26.54% 24.53% 0.09% 5.71% 4.89% 0.24% 2.31 2.31
Wget Request 0.43% 0.33% 0.01% 0.42% 0.33% 0.01% 4.33 4.33
Most File 0.05% 0.04% 0.00% 0.05% 0.04% 0.00% 1.78 1.78
MC Command 0.93% 0.75% 0.01% 0.90% 0.75% 0.01% 3.43 1.89

Mplayer Video File 0.04% 0.04% 0.00% 0.04% 0.04% 0.00% 0.34 0.34
MPV Video File 0.09% 0.03% 0.00% 0.09% 0.03% 0.00% 0.58 0.58
Nano File 0.29% 0.11% 0.01% 0.01% 0.01% 0.00% 8.23 2.46
Pine Command 8.11% 6.09% 0.27% 7.28% 4.09% 0.13% 34.23 14.32

ProFTPd FTP Connection 4.61% 3.45% 0.17% 2.11% 1.27% 0.06% 24.98 20.35
SKOD FTP Connection 5.99% 3.89% 0.17% 2.68% 1.99% 0.10% 25.35 22.73

TinyHTTPd HTTP Connection 8.94% 5.32% 0.32% 2.72% 1.08% 0.04% 43.24 37.48
Transmission Torrent File 18.41% 18.33% 1.03% 0.12% 0.12% 0.01% 8.34 8.23

Vim File 2.23% 2.32% 0.12% 0.13% 0.13% 0.01% 17.23 9.48
W3M Tab 38.74% 30.45% 1.07% 24.67% 18.23% 0.19% 145.26 73.26
Xpdf Document File 0.03% 0.07% 0.00% 0.03% 0.07% 0.00% 0.45 0.45
Yafc FTP Connection 3.44% 1.78% 0.09% 2.60% 0.87% 0.04% 26.34 18.27

Figure 14: Run time overhead for each applications (Overhead percentage v.s. applications)

in Figure 14. For each program, we have eight bars.
1 MPI-Native: the overhead of MPI without any prove-
nance system over native run. 2 MPI-ProTracer: the
overhead of MPI over ProTracer. 3 MPI-LPM: the over-
head of MPI over LPM-HiFi. 4 MPI-Audit: the overhead
of MPI over Linux Audit. The other four bars denote the
overhead of BEEP. As we can see from the graph, most
applications have less than 1% run time overhead for all
situations, which is acceptable. Comparing with BEEP,
MPI shows less overhead in all cases. The low run time
overhead is due to the following factors. Firstly, compared
with the original program, the number of instrumented
instructions is quite small. Secondly, most of the instruc-
tions are rarely triggered. Thirdly, our instrumentation
mainly contains memory operations like comparing the
newly assigned identifier value with the cached value.

4.2 Annotation Efforts
Table 2: Annotation Efforts

Application LOC Annotation Inst
ID IND Chann DEL

Vim 313,283 3 3 2 0 878
Yafc 22,823 2 3 0 1 111

Firefox 8,073,181 3 32 0 1 6,867
TuxPaint 41,682 2 2 0 0 121

Pine 353,665 2 2 2 0 746
Apache 168,801 2 2 0 1 2,437

MC 135,668 2 2 1 0 3,332
ProFTPd 307,050 3 3 0 1 4,905

Transmission 111,903 2 4 0 1 66
W3M 67,291 2 2 0 1 3,718

In this experiment, we measure the effectiveness of the
annotation miner and the number of annotations even-
tually added. The annotation results are shown in Ta-
ble 2. We only show some representative programs as
the others have similar results. We present the applica-
tions in the first column, and their sizes (measured by
SLOCCount [13]) in the second column. In the next four
columns, we show the number of annotations needed for
@identifier, @indicator, @channel, and @delegator. For
each program, we provide two or more perspectives, as
denoted by the number of @identifier annotations. In the
last column, we show the instrumentation places automat-
ically identified by our compiler pass. Less than 20% of
these places were covered by our profiling runs. In other
words, a training based method like that in BEEP/Pro-
Tracer would not be able to cover all these places.
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Figure 15: Annotation miner results

To evaluate the annotation miner, we use the 20 pro-
grams in Table 1. For each program, we report the rank-
ing of the unit/delegator data structures that we eventually
choose to annotate. There are totally 52 of them. All the
6 delegator data structures are correctly ranked the top.
That is because they are mainly used in worker threads,
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which have relatively fewer data structures. For the 46
unit data structures that we eventually annotate, 36 of
them are ranked at the first place, 8 at the second place,
and the remaining 2 at the third place. Figure 15 shows
the reported data structures for Vim, Firefox and HTTPd.
Each plane denotes the results for a perspective. The
highlighted data structures are the ones that we eventually
choose to annotate. The reason why we do not always
annotate the top data structures is that they are typically
the shadow data structures of the real unit data structures.
They usually store meta-data related to units, causing
them to have higher ranks than the real unit data structure.
With the help of the miner, we spent minutes to hours to
finalize the annotations. We argue that such efforts are
manageable. More importantly, they are one-time efforts.

4.3 Attack Investigation

To evaluate MPI’s effectiveness in attack investigation,
we apply it on 13 realistic attack cases used in previous
works [32, 43, 44, 46]. The results show that MPI is able
to correctly identify the root causes with very succinct
causal graphs for all cases. Moreover, MPI generates
fewer execution units using the perspectives in Table 1,
when compared to BEEP/ProTracer. On average, the
number of units generated by MPI is only 25% of that
by BEEP/ProTracer. For attacks involving GUI programs
(e.g., Firefox), the number is 8%, and in an extreme at-
tack case involving Transmission, it is less than 1%. In
terms of the generated attack graphs, MPI can reduce
the number of nodes to 92% and the number of edges
to 83% on average. Note that it is because these attacks
have simple propagation paths such that the BEEP/Pro-
Tracer graphs are quite succinct. For complicated cases,
MPI can reduce the graphs to 76%(nodes)/62%(edges).
In addition, we evaluate it on a few other realistic attack
cases. Next, we show one such case. Two more cases are
presented in Appendix C to demonstrate the advantages
of MPI over BEEP/ProTracer in an insider threat and in
tracking complex browsing behaviors in Firefox.
Case: FTP Data Leak. Exploiting system misconfigura-
tion to acquire valuable sensitive information is a common
attack vector [9, 14]. It is important to assess and control
damages once the problem is noticed. In the following in-
cident, an FTP administrator accidentally configured the
root directory of many users to a folder containing clas-
sified files, and gave them read accesses. After noticing
the problem, he shut down the server and then conducted
investigation to figure out the significance of the potential
information leak. In the duration of the misconfiguration,
there are thousands of connections from a large number
of users. The number of classified files is also large.

In Figure 16, we show a number of possible investiga-
tion perspectives for the FTP server application. Event

3: FTP Process

2: Session Session

4: Directory

download 1: CommandHelp download

 Session

5: User

Figure 16: FTP server partitioning perspectives

loop based partitioning techniques are based on each com-
mand or user request (box 1), and traditional auditing
approaches are based on the whole process (box 3). MPI
provides choices that align better with the logical struc-
tures of the application, such as the session perspective
(box 2), i.e., all the commands/requests from a session
belong to a unit, the directory perspective (box 4), i.e., all
the commands on a given directory are considered a unit,
and the user perspective (box 5), i.e., all commands/re-
quests from a user (not limited to an IP address) belong to
a unit. Note that all FTP commands are associated with
some file or directory as part of its context, and hence we
can partition FTP execution based on this information.
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Figure 17: FTP server partitioned by BEEP
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Figure 18: FTP server partitioned by each connection

Part of the BEEP graph is shown in Figure 17. Ob-
serve that each user command is captured as a unit. The
simplified graph by MPI with connection based partition-
ing is shown in Figure 18, and user based partitioning
in Figure 19. The connection perspective alleviates the
inspector from going through the individual commands.
The user perspective can aggregate all the behaviors from
a specific user over multiple sessions so that the inspector
can hold individual users for responsibilities. Note that a
user can use various IP addresses to connect to the server.
Without MPI, such semantic information cannot be ex-
posed to the provenance tracking system. The number of
nodes in the BEEP, connection (MPI), and user (MPI)
graphs are 962, 224, and 78, respectively. We want to
point out that the MPI graphs cannot be generated from
the BEEP graph by post-processing because of the subtask
delegation in this program, i.e., it is difficult to attribute a
sub-task to the top level unit that it belongs to with only
the low level semantic information in the BEEP graph.

5 Discussion

Similar to many existing works [23, 43, 44, 46, 55], MPI
trusts the Linux kernel and the components associated
with the audit logging system. Attacks that can bypass the
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security mechanisms of these systems may cause prob-
lems for MPI. Moreover, attacks that target the underly-
ing audit system, such as audit log blurring and log filling,
may inject noise to logs, making log inspection difficult.
As our system is built on top of existing provenance and
operating systems, MPI leverages existing features pro-
vided by these systems to mitigate some of the problems.
For example, operating systems like Ubuntu now lever-
ages Ubuntu Software Center to deliver trustworthy soft-
ware which can be used to protect the MPI binaries for
benign software. Provenance systems like Hi-Fi uses ref-
erence monitor guarantees to protect audit logs, and LPM
provides a general framework for trustworthy provenance
collection. We argue these are orthogonal challenges to
all existing provenance tracking techniques and a com-
plete solution to all these challenges is not the focus of
our paper. Instead, the emphasis of MPI is to address
dependence explosion caused by long running processes
with accuracy and flexibility.

MPI is essentially an add-on service to the OS-level
provenance collection system (e.g. the Linux Audit sys-
tem, LPM-HiFi, and ProTracer). System calls can be too
coarse-grained. Fine-grained events, such as library calls
or even instruction level dependencies, may need to be
captured for some sophisticated attacks. We argue that the
multiple perspective partitioning enabled by MPI is or-
thogonal. It is independent of the granularity of the events
captured by the underlying provenance system. It can be
easily integrated with systems of various granularities.

MPI requires program source code. We believe that
the semantic information needed to enable multiple per-
spective partitioning is difficult to acquire through binary
analysis for complex programs such as Firefox. If it is
necessary to partition the execution of a binary, training
and event loop based approaches such as BEEP could
be used together with MPI. In the worst cases, MPI
treats the entire process execution as a unit. Note that
this approximation is only problematic for long running
processes. Many malware executables are likely not long
running such that treating a whole process as a unit does
not introduce a lot of bogus dependencies. Also note that
such approximation does not miss provenance so that the
attack path is still captured. It is just that more efforts
may be needed to go through the causal graph.

MPI relies on source code annotations, which are
widely used in practice. Windows developers explicitly
plant logging commands in their software source code to
customize ETW auditing. Both GCC and LLVM provide
advanced language features [4, 6, 7] that are triggered by

annotations. For example, Firefox has 926 different types
of annotations. The stack-only class annotation “NS_-
STACK_CLASS” has 406 uses through out the code base.
In contrast, we only introduce 36 annotations (of 4 types)
in Firefox. As MPI is based on source code level anno-
tation and compiler instrumentation, it cannot find units
within dynamic code. However, in practice, we find that
unit boundaries mostly lie in static code. For example,
JavaScript code can be grouped into different tabs. Thus,
dynamic code can be attributed to tab units.

6 Related work

Many approaches have been proposed for system level
provenance tracking. Detailed comparison of MPI with
existing audit systems [10, 31, 43–45] can be found in §2.
Another important approach is to monitor the internal ker-
nel objects (e.g., the file system [27, 49, 50, 59–61, 69],
or LSM objects [23, 32, 55]) to track lineages. The ca-
pabilities of these techniques are similar to those of the
audit systems. Thus MPI is complementary to such sys-
tems. For example in §4, we showed the integration
of MPI and LPM-HiFi. System wide record-and-replay
techniques [30, 37–39] can also track provenance. These
systems record the inputs for all programs, and replay the
whole system execution when needed. Such systems re-
quire deterministic record-and-replay techniques, which
are open research problems, and cause more space over-
head. Whole system tainting [28, 35, 52, 68] is another
method of tracking provenance. By tainting all inputs
to a system and tracking their propagation, such systems
can record the needed provenance data. These techniques
need to deal with the granularity problem as the taint set
may be explosive for a long living system objects/sub-
jects. MPI can be applied to such systems to overcome
the dependency explosion problem and enable multiple
perspective inspection.

In [48], researchers propose to develop provenance
aware applications. Muniswamy-Reddy et. al. [49] pro-
vide a library with provenance tracking APIs so that pro-
grammers can develop provenance aware applications.
Such an approach relies on the programmers to inten-
sively modify their code to leverage the APIs. In contrast,
MPI aims to address the partitioning problem. Prove-
nance tracking is through the underlying audit system.

Many works [22, 27, 44, 67] are proposed to reduce the
space overhead of provenance tracking based on reachabil-
ity analysis, Mandatory Access Control (MAC) policies
and so on. Provenance visualization [25, 26, 47, 53, 57]
and graph compression [34, 54, 58, 63–65] are also pro-
posed to correlate events and reduce graph size to fa-
cilitate investigation. These approaches work on gen-
erated graphs to compress them for better visualiza-
tion. As such, they are complementary to MPI, and
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can be directly applied to MPI, its provenance logs and
graphs. Researchers proposed many machine learning
methods [21, 24, 33, 40, 41, 51, 66] to investigate prove-
nance data to find abnormal behaviors. We envision that
the multiple perspectives provided by MPI may substan-
tially improve their effectiveness.

7 Conclusion

Execution partitioning is important for addressing de-
pendency explosion in audit logging. However, existing
techniques are event loop based. They generate too many
small units, require training to detect dependencies across
units, and lack information about high level logic tasks.
We propose MPI, a technique that partitions based on
high level tasks. It allows the user to annotate the data
structures corresponding to these task, and leverages com-
piler to instrument operations of the data structures in
order to capture unit context switches and delegations.
We implemented a prototype and evaluated it on three
existing systems: Linux Audit, ProTracer and LPM-HiFi.
The results show that MPI generates much smaller graphs
with lower overhead comparing to the state-of-the-art, and
avoids broken provenance due to incomplete training.
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A Run Time Optimization

MPI emits special syscall events to denote unit context
switches, and channel reads/writes. During causal graph
construction Appendix B, the unit context switch events
are used to derive unit boundaries and the channel events
are used to derive inter-unit dependencies. Note that chan-
nel operations are essentially memory reads and writes
that need to be exposed as system events. Otherwise, they
are invisible to MPI. Inter-unit communication through
system resources such as files, sockets, and the system
clipboard can be captured by the default underlying sys-
tem event tracking module without the intervention of
MPI.

A naive solution is to emit a unit context switch event
upon any indicator update and a channel event upon any
channel read/write. However in practice, we observe
that (1) an indicator update may not imply the change
of the unit context and (2) even though the unit context
changes, there may not be any system events that happen
in between the two unit context switches. Both cases
lead to redundant unit context switch events. Similarly,
there are often multiple accesses to the same channel
object within the same unit. These accesses must induce
the same causality and hence cause redundancy. Since
emitting an event entails a system call and hence a context
switch, preventing redundant event emission is critical
to the efficiency of MPI. We have two approaches to
address this problem. One is through the static analysis
( §3.4) and the other is runtime optimization. MPI does
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not emit any event upon an indicator update. Instead,
it simply updates the current unit context (in memory),
which has much lower overhead compared to a system
call. Upon a regular system call (e.g., file read), it checks
if the current unit context is the same as the previous
context that was emitted. If not, it emits a unit context
switch event right before the system call. Otherwise, it
does not emit. Similarly, upon a channel operation, MPI
checks if a channel operation by the same unit was logged
before. If so, it avoids logging the channel operation.

B Causal Graph Construction

In this section, we discuss the causal graph construction
algorithms for backward tracking starting from a symp-
tom event and forward tracking starting from a root cause
event. Algorithm 1 shows how to generate the backward
tracking causal graph for a specific perspective with a
given log file and a symptom event. Generating the graphs
for all perspectives only requires an easy extension.

Algorithm 1 Backward Causal Graph Construction
Input: L - the event log

l - unit type (i.e., perspective) given in the @indicator
annotation
es - symptom event

Output: Gl - the generated causal graph for perspective l

Variable: ob js - system objects/subjects relevant to es
se, pide - the system object/pid of event e
bUnit - if the current unit causally related with es
eventUnit[pid] - the events in the current unit of process
pid

1: ob js← { pides , ses}
2: bUnit ← true
3: for each event e ∈ L in reverse order, starting from es do
4: if e is not a unit context switch event then
5: eventUnit[pid].add(e)
6: if e updates any object or subject in ob js then
7: bUnit ← true
8: if e is a unit context switch event then
9: if e does not switch to a l unit then

10: continue
11: else
12: if bUnit then
13: add events in eventUnit[pide] to Gl
14: add accessed objects/subjects in eventUnit[pide] to

ob js
15: eventUnit[pide]← ∅
16: bUnit ← f alse
17: return Gl

We use an ob js set to represent the system objects,
subjects, and channels between units that are directly
or indirectly related to the symptom event. The overall
procedure of the algorithm is to traverse the log in a
reverse order to populate the set and identifies events
causally related to the symptom by correlating to some
entity in ob js. At line 1, the algorithm initializes the set to

contain the system object accessed by the symptom event
and the system subject (i.e., the process of the event). It
also marks the current unit as correlated to the symptom
(line 2). Then it traverses all the events in the log file in
a reverse order, starting from the symptom event (lines
3-17). If the current event e is not a unit context switch
event, the algorithm saves it in a temporary list of events
for the current unit (line 4-5). If e updates an object (e.g.,
file and pipe) or spawns a subject (i.e., process) that was
identified as related to the symptom (and hence in the
ob js set), a flag is set to indicate that the current unit
is correlated (lines 6-7). If e is a unit context switch,
the algorithm further tests if e switches to a unit in the
given perspective. If not, the switch event is irrelevant
and simply skipped (lines 9-10). Otherwise, it indicates
a unit boundary of our interest. The algorithm checks
the flag to see if the current unit is causally related to
the symptom (lines 11-12). If so, it adds all the events
in the current unit to the result graph. It also updates
ob js with all the objects read by any event in the current
unit and all the subjects spawned in the unit (lines 13-
14). The temporary event list and the flag are then reset
(lines 15-16). Note that when the events are added to the
graph, nodes are created and further connected to existing
nodes in the graph by the dependencies implied by the
events. For example, a file read event entails connecting
to the (previously created) file node. Details are elided
for brevity.

□ Example. Figure 20 shows an example of constructing
the backward causal graph. The simplified log entries
are shown on the left while the generated graph is shown
on the right. The graph is also annotated with events to
explain why nodes/edges are introduced. The algorithm
generates the graph starting from the symptom event at
line 8, which is a write event to the socket a.a.a.a. It
traverses back and reaches line 7, which is a unit context
switch (UCX) event whose indicator is 5 and the identifier
value is 7. Two nodes are hence created representing that
a process (node) wrote to a socket (node) whose value is
a.a.a.a. Going backward, the algorithm further identifies
another unit represented in lines 4-6 with the indicator
value 5 and the identifier value 3. This is a different unit
instance of the same type and it has no causal relation
with the object set that currently contains the socket object
and the process. Therefore, all the events in this unit are
dropped. The algorithm continues to traverse backward
and encounter another unit in lines 1-3. Line 2 indicates
that it reads file index.html, so the subgraph for lines 1-3
is file index.html being read by the process. Note that
the value of identifier indicates lines 1-3 and lines 7-8
belong to the same unit (instance), which means that the
application is working on the same task. Hence, the global
causal graph is updated by joining the two subgraphs. The
result graph is shown on the right hand side.
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UCX: IND=5, ID=7

FDR: index.html

……
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Figure 20: An example of constructing backward causal graph.
(UCX is short for Unit Context Switch, FDR is short for File
Descriptor Read, and SKW is short for Socket Write.)

The forward graph construction algorithm is similar
and hence omitted.

Essence of MPI and Memory Dependencies. From the
graph construction Algorithm 1, one can observe that all
the events in a unit are considered correlated. If there
is a single event (within a unit) that has any direct/indi-
rect dependency with the symptom, all the events in the
unit are added to the graph and all the objects/subjects
accessed by the unit are considered correlated. As such,
MPI does not need to track any fine-grained (memory)
dependencies within a unit. Dependencies across units
are either captured through system level dependencies
(e.g., file/socket reads and writes) or explicitly indicated
by the user through the channel annotation.

C Case Studies

Case: Insider Threat. In attacks such as watering hole
and phishing emails, the adversaries apply external in-
fluences and wait for the employees to make mistakes.
However, it is also very common that attacks are launched
from inside the enterprise (e.g., by malicious or former
employees). In fact, a large number of such cases had
been reported [29, 36, 42, 56]. Next, we simulate such an
attack.

A computer game development company noticed that
the graphical design of a to-be-announced game was
leaked on an online gaming forum. The company started
investigation, trying to understand how this design was
leaked and who should be held responsible. The inves-
tigator first conducted forward tracking from the design
file but found that the file was neither sent outside by any
email nor copied by any employee to their own devices.
She further suspected that some old version of the file
was leaked instead of the current version. Even though
the old versions of the design file did not explicitly exist
any more, the provenance of the file was tracked by the
audit system.

She first conducted backward tracking to disclose all
the past versions (with the name “p_v” plus the version
number) and then forward tracking to see how these ver-
sions were propagated/used. Assume that she used BEEP
first. She quickly noticed a number of problems in the
BEEP graph that makes manual inspection difficult.

p_v0.png

p_v12.png p_v13.png

p_v14.png

slogan.txt

title.txt

p_v19.png p_v20.png

p_v47.png

Figure 21: Event handling loop based solution

The resulting graphs by BEEP are shown in Figure 21.
White boxes represent units for TuxPaint [15], gray boxes
are for the editor, Vim, and red boxes are for other apps.
First of all, the graph is very large (containing 1832
nodes). This is because many people had contributed
to the file in the past using TuxPaint, a graph drawing
tool. There were a lot of interactions (e.g., copy & paste)
among multiple image files, some of which were from
Internet. The various historic versions of the design file
were propagated to other places. Second, there are many
“empty” execution units, which are execution units just
have boundary events. This is because many operations
in UI intensive program TuxPaint have no real effects on
the provenance. These operations include, but are not
limited to, switching painting tools (frequently), clicking
menu bars and so on. Third, she found that most execu-
tion units for TuxPaint only have memory dependency
events. This is because TuxPaint stores the image buffers
in memory, and flushes them to disk only when the user
clicks the save button. In the editing units (e.g., choosing
tools and drawing figures), TuxPaint only operates on the
image buffers. These units are only connected by memory
dependency and do not invoke any system calls. How-
ever, these units are important as they are responsible for
chaining up the important behaviors.

After inspecting such a large graph, the inspector still
could not spot any suspicious behavior. The reason is that
there are broken links in the graph such that some updates
to the design file are missing from the graph. Specifically,
some of the editing actions were not in the BEEP training
set such that the corresponding memory dependencies
are not visible, leading to broken provenance, e.g., “p_-
v14.png” and “p_v20.png”.
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p_v21.png p_v47.png
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bash
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Figure 22: MPI solution

The inspector switched to MPI. She used individual
image files as the perspective. The resulting (simplified)
graph is in Figure 22. Now each white box represents all
the editing operations on a single file. It can be clearly
seen that a version of the design file, “p_v20.png”, was
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read by a TuxPaint unit that operated on file “p_s.png”,
which was later archived with a number of text files. The
archive was renamed and sent through an email. The link
from the design file to file “p_s.png” was missed by BEEP
because the attacker opened the design file, conducted
a few editing actions whose memory dependencies are
missed by BEEP such that the later save-as unit is discon-
nected from the file read unit. Note that all these actions
are individual units in BEEP that need to be chained up by
memory dependencies, whereas they belong to the same
unit in MPI. Overall, the MPI graph is precise, much
smaller (152 nodes) and cleaner. We also want to point
out that a graph similar to the MPI graph cannot be gen-
erated by post-processing the BEEP graph as the missing
links cannot be inferred and it is difficult to determine
which low-level nodes belong to an image file.
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Figure 23: Firefox browsing history of page perspective

Case: Complex Browsing Behavior in Firefox. In this
case study, we show how MPI precisely captures the
causality of complex browsing behavior of Firefox. Dur-
ing browsing, the user first opened Bing from the book-
mark bar, and searched a key word, and then used dif-
ferent ways to open new pages including clicking links,
choosing “open page in a new tab/window” in the right-
click menu, going back to the previous page, and opening
new pages from Javascript code automatically. In the end,
the user downloaded a PDF file. We collected the log
with the page perspective and generated a causal graph by
conducting backward traversal starting from the PDF file.
The graph is shown in Figure 23. Observe that the entire
browsing history is precisely captured by the graph, in-
cluding visiting the LinkedIn page from the search result
page and then going back to the search result page. In
contrast, the BEEP’s graph only includes the page hosting
the PDF file, missing all the other pages along the causal
chain, due to missing memory dependencies.

D Additional Experimental Results
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Figure 24: Overhead for applications with different partitioning

We also conduct experiments to measure space over-
head for the same application with different partitioning
choices, and the results are shown in Figure 24. We se-
lect two programs, Firefox and Apache. For Firefox, we
choose three different ways to instrument: windows, i.e.,
a unit for a top level residence window for tabs (note that
multiple windows may be driven by the same Firefox pro-
cess internally); tabs and elements (inside a page). We do
not show the numbers for each web site instance, because
the instrumentations are similar to those of tabs, and the
only difference lies in the expressions used in the @iden-
tifier annotation (see §3). For Apache, we use two ways
to instrument: each connection (each client instance), and
each request. The results show that with different levels
of instrumentation, the overhead is significantly different.
Instrumenting the applications at a higher level causes
less overhead. For both cases, a lower level suggests 2-3
times overhead increase.
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Figure 25: Overhead for a whole day

The last space overhead experiment we did is to run
the instrumented applications on our machine for a whole
day with Linux audit system enabled and measure the
events generated by MPI. The workload includes regular
uses such as web surfing, checking and responding emails.
The result is shown in Figure 25. The black solid line
shows the log size generated by the Linux audit system,
and the dashed blue line shows the log size generated
by MPI. From the graph, we can see that the log size
generated by the Linux audit is more than 600 MB while
our instrumentation issues less than 80 MB.
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Abstract

Malware that are capable of rooting Android phones are
arguably, the most dangerous ones. Unfortunately, de-
tecting the presence of root exploits in malware is a very
challenging problem. This is because such malware typ-
ically target specific Android devices and/or OS versions
and simply abort upon detecting that an expected run-
time environment (e.g., specific vulnerable device driver
or preconditions) is not present; thus, emulators such
as Google Bouncer fail in triggering and revealing such
root exploits. In this paper, we build a system RootEx-
plorer, to tackle this problem. The key observation that
drives the design of RootExplorer is that, in addition to
malware, there are legitimate commercial grade Android
apps backed by large companies that facilitate the root-
ing of phones, referred to as root providers or one-click
root apps. By conducting extensive analysis on one-
click root apps, RootExplorer learns the precise precon-
ditions and environmental requirements of root exploits.
It then uses this information to construct proper analysis
environments either in an emulator or on a smartphone
testbed to effectively detect embedded root exploits in
malware. Our extensive experimental evaluations with
RootExplorer show that it is able to detect all malware
samples known to perform root exploits and incurs no
false positives. We have also found an app that is cur-
rently available on the markets, that has an embedded
root exploit.

1 Introduction

Android is currently the most popular mobile operating
system in the world, with 1.4 billion users worldwide and
87.5% of the market share [65]. Google, contrary to Ap-
ple (wrt iPhone), do not have complete control over ei-
ther the hardware or the software of Android phones. On
the positive side, this allows many hardware and other
third-party vendors to build a competitive, customized,

and diverse ecosystem. But on the other hand, the diver-
sity of Android devices also introduces security issues.
First, the OS update process varies from vendor to ven-
dor (some are faster than others). For example, at the
time of writing, only 29.6% of Android devices on the
market have Marshmallow [40], which was introduced
nearly 2 years ago. Second, the vendor customization of
Android often introduces vulnerabilities at different lev-
els of the software stack including application, OS ker-
nel, and drivers [81, 85, 75, 7, 82]. Consequently, mil-
lions of users are exposed to various critical security vul-
nerabilities that plague such customized, typically older
and unpatched devices [19, 27, 68].

Among all vulnerabilities, arguably the most perni-
cious are privilege escalation vulnerabilities that would
allow attackers to obtain the root privilege – the high-
est privilege on Android. Such attacks are usually re-
ferred to as root exploits. Once it has acquired the root
privilege, an attacker/malware can bypass the Android
sandbox, perform many kinds of malicious activities, and
even erase evidence of compromise. For this reason,
malware with embedded root exploits are on the rise. In-
deed, as apparent in recent news, it has become more
and more common that malware found in third party An-
droid markets or even in the official Google Play store,
contain root exploits. For instance, in June 2016, Trend
Micro reported GODLESS [55] , an Android malware
family that uses multiple root exploits to target a variety
of devices, affecting over 850,000 devices that were run-
ning Android 5.1 or earlier, worldwide. One month later
(July), another Android malware dubbed HummingBad
was reported to have infected more than 85 million de-
vices and was found in 46 different applications, 20 of
which were found on Google Play [45]. In September
2016, a Pokemon Go Guide app spotted in Google’s Play
Store, was found to contain root exploits as well [63];
the app had accumulated over 500,000 downloads by the
time it was spotted and taken down. Considering that
Google has already deployed a cloud-based app vetting
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service viz.,“Google Bouncer” [39], these repeated in-
stances demonstrate that it is both important and chal-
lenging to detect malware that carry out root exploits.

An even more concerning fact is that the number
of newly discovered privilege escalation vulnerabilities
(e.g.,, kernel vulnerabilities) is also on the rise [2]. Many
of such vulnerabilities, such as DirtyCow [27], can even
be used to root the latest versions of Android. So it is
simply a matter of time before they are leveraged by mal-
ware to attack (potentially a large number of) unpatched
devices.

In this paper, we aim to tackle the challenging prob-
lem of detecting malware that employ a variety of root
exploits. The key observation that drives our approach
is that, in the Android world, it is not just the malware
that carry root exploits. There are legitimate and pop-
ular Android applications, often called root providers
or one-click root apps, that root phones on behalf of
users [81]. Many of these apps are commercial-grade
and backed by large companies such as Tencent, Qihoo,
and Baidu. They are capable of rooting tens of thou-
sands of different Android devices using a hundred or
more root exploits [81]. Note that rooting (as well as jail-
break) is considered legal [21], and users do want to root
their phones to remove bloatware or unlock new features
that were otherwise not available. These root exploits
can serve as valuable resources towards aiding detection
since they are highly customized (towards specific de-
vices), reliable, and more importantly are likely to be
used as is, by malware developers (discussed later). This
means we can take advantage of these exploits to build
a system (RootExplorer) that automatically extracts sig-
natures from root exploits, and use those signatures for
runtime malware detection.

Unfortunately, this seemingly simple strategy is not
easy to realize in practice. The big obstacle is that al-
most all exploits are tailored towards specific Android
devices, models, and/or OS versions. Screening apps
in an emulator is unlikely to trigger and reveal the ex-
ploit, unless the environment matches exactly what the
exploit expects. This in turn means that one may need
tens of thousands of real Android devices to cover just
all known root exploits. To overcome this obstacle, Roo-
tExplorer also learns the environment requirements from
the aforementioned commercial root exploits and uses
this knowledge to create the “expected” runtime environ-
ment so that it is capable of interacting with the exploits
to drive their execution (e.g., by pretending that a partic-
ular vulnerable device exists).

We design, prototype and extensively evaluate Root-
Explorer to detect root exploits present in malware. It
consists of (a) an offline training phase where it extracts
useful information about root exploits from one-click
root apps using behavior analysis, and (b) an online de-

tection phase where it dynamically analyzes apps in spe-
cially tailored environments to detect root exploits. We
test our prototype with a large set of benign apps, known
malware, and apps from third-party app marketplaces.
Our evaluations show that RootExplorer yields an almost
perfect true positive rate with no false positives. RootEx-
plorer also found an app that is currently available on the
markets, that contains root exploits.

In summary, the contributions are as follows:

• We identify and address the fundamental challenge of
detecting Android root exploits that target a diverse
set of Android devices. In particular, we learn from
commercial one-click root apps which have done the
“homework” for us with regards to (a) what environ-
mental features are sought and (b) what pre-conditions
need to be met, for a root exploit to be triggered.

• We design and implement RootExplorer, a fully auto-
mated system that uses the learning from commercial
one-click root apps to detect malware carrying root
exploits. Specifically, in an offline phase, it conducts
extensive static analysis to understand the precise en-
vironment requirements and the attack profile of the
exploits. It then utilizes the learned information to
construct proper analysis environments and detects at-
tempted exploits.

• We evaluate RootExplorer via extensive experiments
and find that it can successfully detect all known mal-
ware that contain root exploits, including very recently
discovered exploits and the ones that are used in other
one-click root apps; RootExplorer results in no false
positives with our test set. Using RootExplorer, we
also find an app which is currently available on an An-
droid market, that contains root exploits.

2 Background & Related Work

2.1 Root Exploits and One-Click Root
Apps

As mentioned, one-click root apps are very popular
among users and they are competing against each other
to be able to root more phones and offer more reliable
results. One of the reasons that companies develop these
apps is that they also develop security apps or app man-
agement tools that also require the root privilege to func-
tion correctly (e.g., antivirus software must have higher
privileges than any malware [13]);

Interestingly, the competition between these one-click
root apps have driven them to include the most com-
prehensive and advanced root exploits. For example, in
2015, it was reported that there are 39 families of di-
rectly usable root exploits that can be found publicly
(with source code or binaries); in contrast, there were
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59 families of root exploits found in a popular commer-
cial one-click root apps, including exploits against pub-
licly unknown or zero-day vulnerabilities [81], and ex-
ploits that can bypass advanced defense mechanisms like
SELinux [41], Verified Boot [42], etc. On the contrary,
although researchers have detected several malware fam-
ilies with root exploits, none of them contain previously
unknown exploits [86]. We believe this is because most
malware authors, except the so-called state sponsored,
do not have the capability to develop new root exploits;
hence, they typically only embed exploits that are devel-
oped by others (e.g., one-click root apps).

While detecting malicious behaviors has been the fo-
cus of many prior efforts in the literature, detecting An-
droid root exploits faces unique challenges. One such
challenge is that specific preconditions (e.g., environ-
ment constraints) need to be satisfied in order for such
exploits to be triggered; this is hard because of the highly
fragmented Android hardware and software. Specifi-
cally, not only do different phones have different de-
vice(s) and corresponding driver(s), even with respect
to a universal kernel vulnerability such as the futex
bug [31], the root exploit has to be tailored for differ-
ent phones. This is because the actual kernels on differ-
ent phones are different (e.g., each has a different mem-
ory layout). As a matter of fact, one commercial one-
click root app contains 89 different exploit payloads for
the same underlying futex bug [81]. Consequently, mal-
ware carrying root exploits typically have specific en-
vironment checks to determine (1) what kinds of vul-
nerabilities are available and (2) how the attack should
be launched. Thus, in order to detect a root exploit, an
analysis environment must satisfy the necessary precon-
ditions.

We categorize these preconditions into two corre-
sponding types: (1) environment checks and (2) prepa-
ration checks. Environment checks gather information
with regards to the environment such as the device type,
model, and operating system versions. For instance,
many times a particular malware will check whether it
has a matching exploit for the current environment. If
so, the specific exploit is selected from either a set of lo-
cal exploits or a remote exploit database. This process
is in fact also used by one-click root apps [81]. Prepara-
tion checks verify that the interactions with the underly-
ing operating system are as expected, (e.g., a vulnerable
device file exists on the system and the driver returns ex-
pected results in response to specific commands). The
number of preparation checks can be large, depending
on the nature and complexity of the root exploits. This
makes it difficult to manually prepare the right environ-
ment for each root exploit and detect them.

2.2 Android Malware Analysis

A relatively large chunk of Android related literature, is
on malware analysis and malicious behavior detection.
However, most of this literature focuses on detecting ma-
licious behaviors like leaking/stealing private informa-
tion and financial charging [86]. Unfortunately, no ex-
isting work tackles root exploit detection. We roughly
categorize such work into three types: static analysis, dy-
namic analysis, and hybrid analysis.

Static Analysis: Static analysis is used to analyze an
Android app’s byte code and/or native code without run-
ning it inside an emulator or a real device. To detect
information/privilege leaks, a set of tools [52, 10, 59, 50,
72, 18, 43] has been developed to perform information-
flow analysis. Another popular direction is to model
and detect malicious behaviors that are unique to An-
droid. Pegasus [20] uses “Permission Event Graphs” to
detect sensitive operations performed without the user’s
consent. Apposcopy [29] uses “Inter-Component Call
Graphs” to detect Android malware. AppContext [79]
uses contextual information (UI events and environmen-
tal triggers) to check access to sensitive operations. The
advantage of static analysis is coverage and efficiency; it
may however face problems when analyzing apps with
heavy obfuscation. In fact, it has been shown that sim-
ple obfuscation techniques or transformations applied to
known malware samples can often easily evade static de-
tection by anti-virus software [62].

Dynamic Analysis: Dynamic analysis analyzes an An-
droid app by running it inside an emulator or a real de-
vice. Similar to static analysis, many dynamic malware
analysis systems also focus on information flow analysis
and leak detection [28, 61, 83]. Others use system calls
to model and detect malicious behaviors [17, 25, 78, 66].
Because malware can detect that it is being run in an
instrumented environment such as an Android emula-
tor [60, 46, 69], researchers have also proposed building
sandboxes on real devices [15, 12] for this purpose. Dy-
namic analysis can usually overcome obfuscation tech-
niques employed by malware, but a malicious behavior
can only be detected if it is executed during the analysis.
To overcome this, tools have been developed to system-
atically exercise the functionality of an app in the hope
of triggering its malicious behaviors [11, 74].

Hybrid Analysis: Hybrid analysis can be divided into
two categories. The first category combines static and
dynamic characteristics to detect malicious behaviors
[87, 76, 73]. The other category utilizes static analysis
to guide dynamic analysis [84, 80, 11, 74].
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2.3 Attack Modeling and Detection

Previous papers on attack modeling and detection mainly
focus on filtering remote exploits like those launched by
worms [23, 48, 58, 64, 51, 71, 24, 22]. Similar to those
systems, RootExplorer also leverages program analysis
techniques like symbolic execution to extract the attack
signature. However, there are a few differences. First,
due to fragmentation of the Android ecosystem, we do
not always have the targeted device, i.e., we need to de-
rive both the attack signature and the corresponding en-
vironment requirements without the corresponding target
system. Note that in aforementioned systems, in con-
trast, analysis is usually performed over the targeted soft-
ware. Second, for remote attacks, the malicious payload
usually contains shellcode; however, in local privilege
escalation attacks, shellcode is rarely used – ret2usr,
ret2dir, or direct kernel object modification (DKOM)
are more common. Finally, due to polymorphic or meta-
morphic payloads, finding a good balance between false
negatives and false positives is very challenging for net-
work filters. Android root exploits are more difficult to
morph (as shellcode is not part of the payload); more
importantly, even though it is possible to generate poly-
morphic exploits, as previously discussed, most Android
malware authors are not capable of doing so. For these
reason, we decide to pursue our current approach, i.e.,
derive system-call-based signatures purely from known
exploits.

2.4 Other Related Work

Android Emulator Evasion: Recent works have shown
how easy it is for malware authors to evade the Android
emulator. Petsas et al. [60] apply three different detec-
tion heuristics and manage to detect most Android dy-
namic analysis tools. Vidas et al. [69] derive four dif-
ferent techniques based on differences in behavior, per-
formance, hardware and software components and show
how they can easily detect existing malware scanner
tools that are based in emulators. Morpheus [46] is a
system that can create up to 10,000 different detection
heuristics for Android emulators. As a countermeasure,
researchers [56] have begun to use real phones instead of
emulators to analyze malware. We design our solution to
be operable on both real Android devices and emulators,
thereby making this issue orthogonal to our work.
Syscall-based Behavior Modeling: RootExplorer uses
system-call-based behaviors to model and detect root
exploit attempts. Syscall-based behavior modeling has
been widely used to model and detect malicious behav-
iors [49, 14]. Our model is derived from the behavior
graph proposed in [49], with adjustments to fit our sce-
nario.

Offline training
with one-click 

root apps

Environment 
preparation and 
dynamic analysis

Expected behavior 
signature

Detection 
results

Preconditions /
environment constraints

Figure 1: System overview

3 Threat Model and Problem Scope

The goal of RootExplorer is to detect Android apps that
carry root exploits. Detecting other malicious behaviors
is out-of-scope of this work and has been covered by
many previous papers (§2). We also do not attempt to
understand what the malware will do after acquiring the
root privilege; we defer such an analysis to future work.

We envision our system to operate in the cloud (sim-
ilar to Google Bouncer [39]), and that it will scan apps
by dynamically executing the samples on real Android
devices and/or emulators. For this reason, we restrict the
source of the analyzed apps to be either from the offi-
cial Google Play Store or from third-party marketplaces.
We do not consider malware involved in targeted attacks
such as APTs.

We assume that malware carrying root exploits
can be obfuscated to prevent static analysis, and
may be equipped with common anti-debugging/anti-
virtualization techniques to detect the analysis environ-
ment. They may also download root exploits dynami-
cally from a C&C server only when the desired Android
device is detected. For triggering root exploits, we focus
on understanding and providing the environment expec-
tations. However, we do not handle malware that de-
pends on specific user inputs (e.g., passing a game level)
to trigger the root exploit. We believe generating such
inputs is orthogonal to this work and has been covered
by other projects [11, 74].

Finally, we focus on detecting root exploits against
known vulnerabilities; detecting unknown or zero-day
exploits is out of scope of this work. We believe this
is a reasonable limitation as no malware that has propa-
gated through app marketplace has been found to contain
zero-day exploits.

4 RootExplorer Overview

Figure 1 depicts the operations of RootExplorer. There
are two key phases: (1) an offline training phase (static
analysis) that extracts useful information about root ex-
ploits from one-click root apps and, (2) a detection phase
(dynamic analysis) that dynamically analyzes apps in
specially tailored environments to detect root exploits.

During training, we gather information about as many
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different root exploits as possible. Since root exploits
target specific devices, it is not possible to trigger all of
their behaviors without proper environments. We thus
resort to static analysis. For each exploit, we collect
(1) sequence and dependencies of system calls that can
lead to a compromise of the device, i.e., behavior signa-
ture [14, 49], and (2) preconditions for deterministically
triggering the exploit.

The first step of our offline analysis is to identify a
feasible execution path that leads to the success of the
analyzed root exploit. We use guided symbolic execution
to solve this problem. In particular, we symbolize all
external “inputs” to each root exploit (binary) and aim to
find a shortest feasible path from the entry to the marked
successful end point. We build our prototype symbolic
execution engine based on IDA pro, which is capable of
handling all the instructions and libc functions that were
encountered in the training set of exploit binaries.

From the feasible execution path, we extract the se-
quence of system calls and the dependencies across sys-
tem calls from the output of symbolic execution as well.
This information is then used to construct the behav-
ior signature. Since we already collect constraints over
what information needs to be returned from the system
through system calls (i.e., preconditions) during sym-
bolic execution, we just consult an SMT solver to provide
a concrete instance of satisfying preconditions. Both
pieces of information (behavior signature and precon-
ditions) feed directly to the dynamic analysis phase to-
wards preparing the right environment and satisfying
necessary preconditions, to trigger and thereby detect
various root exploits.

For this purpose, besides utilizing root exploits from
one-click root apps, we could in theory utilize the many
exploits with PoC code available on the Internet, but they
all come in different “sizes and shapes”. Some contain
source code but often hard code values in certain vari-
ables; this renders the exploit suitable only for a specific
tested Android device. Some have binaries only, which
are obfuscated to prevent direct reuse. Therefore, We
choose to work with a popular one-click root app for the
purposes of training. The benefits are multi-fold: (1) the
quality of exploits is likely very good, as they are offered
in commercial products (e.g., they don’t contain unnec-
essary steps, and are unlikely to crash the system); (2)
there is a rich variety of exploits available (60 families of
exploits in our evaluation); (3) the exploits packaged in
the same one-click root app are likely to be obfuscated
in similar ways, making it possible to de-obfuscate all
exploits at once and conduct static analysis on them.
Learning the expected behavior signature: The be-
havior signature of an exploit is extracted by analyzing
the de-obfuscated exploit binaries. While there are many
possible models to construct malware signatures in gen-

eral, we favor system call based behavior signatures; this
is because root exploits interact with the operating sys-
tem through system calls in unique ways to exploit vul-
nerabilities. To this end, we build our behavior signature
largely based on prior work on extracting a malware be-
havior signature from system calls [14, 49]. This allows
our dynamic analysis to keep track of the progress of an
exploit and confirm it when all of its steps have been per-
formed. More details are provided in §5.
Learning preconditions: As discussed earlier in §2,
there are two types of preconditions that have to be sat-
isfied with regards to a root exploit in general: environ-
ment related and exploit preparation related. Environ-
ment preconditions dictate whether the underlying An-
droid device model and kernel version match what are
expected by the exploit. After training, our dynamic
analysis environment can provide the expected Android
device information to trigger an exploit. Normally it is
difficult to determine which exploits work against which
Android devices (because one needs to ideally test an ex-
ploit against real devices). Fortunately, one-click root
apps already provide this information to a large degree.
Specifically, the one-click root app we studied down-
loads a different set of exploit binaries depending on
the device information that is reported to its backend
server. By reverse engineering their protocol, we have
effectively built a mapping from a list of more than 20K
Android device types (available from [1]) to their cor-
responding exploits. The assumption is that a one-click
root app has a reasonably good idea of which exploits
can target which device.

For exploit preparation related preconditions, we give
the symbolic constraints collected along the feasible path
and ask the SMT solver to construct a concrete satisfying
instance such that when replayed during dynamic anal-
ysis, can deterministically trigger the analyzed root ex-
ploit. For instance, if an exploit expects to open a vul-
nerable device file successfully, the “input” to the exploit
program is the return value of the open() syscall, which
needs to take a non-negative value according to the sym-
bolic execution. Once we learn such preconditions, our
dynamic analysis environment can provide the same ex-
pected “input”. We will present the detailed design of the
symbolic execution framework in §6.

5 Behavior Graph Analysis

Since Android malware (especially those that contain
root exploits) typically obfuscate their payloads heav-
ily [86], dynamic analysis is the obvious choice over
static analysis, for the purposes of detection. However,
as discussed earlier, dynamic analysis wrt root exploits is
difficult as such exploits target specific Android devices.
Without the right environment, such exploits are likely to
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terminate prematurely, thereby preempting detection.
To overcome this hurdle, we leverage de-obfuscated

binaries from a one-click root app from our prior
study [81] to extract the behavior signatures of root ex-
ploits. A behavior signature is constructed by abstracting
the low-level operations into a high-level behavioral rep-
resentation [49, 14]. One can check for malware samples
that exhibit similar behaviors at runtime and thereby de-
tect the presence of the particular exploits. In the case of
root exploits, since they interact with the kernel (or de-
vice drivers) in unique ways to exploit an OS vulnerabil-
ity, we choose to capture behaviors by modeling system
call events. Instead of reinventing the wheel, we borrow
the system call modeling technique from ANUBIS [49]
with slight adjustments. Specifically, we follow the defi-
nition of “behavior graphs” [49] that are used to describe
OS objects, system calls that operate on these objects
and, relationships across system call events (e.g., the re-
sult of one system call is used as a parameter on another
system call).

The behavior graphs are directed acyclic graphs where
the nodes represent objects and system calls, and the
edges encode (1) the dependencies between objects and
system calls, and (2) the dependencies across system
calls. Compared to the traditional model of simply
looking at a sequence of system calls [44], a behavior
graph constrains the order of only dependent operations
through an explicit edge (and never constrains indepen-
dent operations).

While the high-level behavior graph is similar to that
proposed in [49], we highlight the main differences here:
(1) We statically extract the behavior graph instead of ex-
tracting it from a dynamic trace (as is done in ANUBIS).
This leads to different requirements as elaborated later.
(2) Since we target Android, the system calls are mostly
inherited from Linux and are different from Windows.

5.1 Generating Training Behavior Graphs

We now describe how we automatically generate the be-
havior graph statically, by analyzing de-obfuscated ARM
root exploit binaries [81]. The system call invocations,
and their hard-coded arguments are generally easy to
identify. This allows us to know what OS objects are
created (e.g., a file name), and how they are operated
on (e.g., Read-only or Read/Write). The main challenge
that we face is to extract the dependencies across system
calls.

Extracting data dependencies: To extract dependen-
cies across system calls, we look for cases where the ar-
guments for one system call is derived from a previous
system call. Previous work [49] utilized taint analysis
to derive such dependencies. In our system, since we
perform static analysis over de-obfuscated binaries, we

take a slight different approach. Specifically, when we
use symbolic execution to find a feasible success path,
we symbolize all the outputs of system calls. During the
analysis, symbolic values are propagated along the ex-
ecution path. To determine whether a path is feasible,
whenever we meet a conditional branch that depends on
symbolic value, we consult the solver to see if the corre-
sponding path constraints are solvable. If we consider a
symbolic value as tainted, then symbolic execution itself,
already constructs the data dependencies between system
calls, i.e., if the input argument(s) of a system call is a
symbolic value, then it must have a data dependency over
one or more previous system calls. More importantly, the
symbolic formulas of such input arguments also specify
how they are depend on each other. Based on this obser-
vation, we extract the data dependencies between system
calls by simply naming the symbolic values returned by
system calls according to the system call names and their
sequence in the feasible path (e.g., read2 buf).

Extracting control dependencies: Symbolic execu-
tion does not directly provide control dependencies. To
extract such information, we simply conduct a backward
analysis. In particular, when outputting the feasible path
discovered via symbolic execution, we also mark each
control point that directly depends on the symbolic value
with the system calls that introduced that value. Using
the path, we start from the end point and traverse the
trace backwards to look for system call invocations (e.g.,
BL mmap). Once we find a system call invocation, we
can extract its control dependencies over previous sys-
tem calls by searching for the closest “tainted” branch
that precedes this syscall invocation. Alternatively, we
could have used static binary taint analysis to extract both
data and control dependencies.

Modeling of libc functions: The exploit binaries in
our training set do not generally call the system calls di-
rectly (as typical with most native code). Instead, they
call the libc functions (in Android, it is called Bionic).
Fortunately, most are simply wrappers of system calls
and have the same exact semantics. In cases they are not
exactly the same, for example, fopen() vs. open(), we
model the Bionic version fopen() by mapping its ar-
guments and return values to open(). Furthermore, we
leverage function summaries to model most encountered
libc functions that need to be analyzed by symbolic exe-
cution.

5.2 Examples

Device Driver Exploit: To illustrate our behavior graph
analysis, we consider a popular device driver exploit
that targets the vulnerable Qualcomm camera driver,
“camera-isp”. This example is taken directly from our
training data set from a popular one click root app. In
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Figure 2: Behavior graph for the “camera-isp” exploit.

brief, the vulnerable device driver allows any program to
map any part of the physical address space into the user
space, which can subsequently allow the disabling of the
permission check in setresuid() system call. This al-
lows an attacker to change the running process into a root
process.

Figure 2 represents the behavior graph. The exploit
needs to open two separate files, the vulnerable device
file /dev/camera-isp and the helper file /proc/iomem
which has the information about where the kernel code
is located in the physical address space. Both files are
checked with the open() system call to ensure that they
can be successfully opened. The device file is checked
once more in the beginning, via a stat() system call,
for existence. The exploit then attempts to mmap()

the kernel code region into the user address space with
read/write permissions; however, the exact offset (argu-
ment in mmap()) is retrieved from the read result of the
/proc/iomem. After the mmap() is successful, the ex-
ploit searches for a particular sequence of bytes in the
mapped memory that corresponds to the code blocks for
setresuid(). Upon locating the code block, it patches
the code block by writing to a specific offset, which ef-
fectively eliminates the security check in setresuid()

(the above two steps are invisible in the behavior graph).
Then the exploit simply calls setresuid(0,0,0) to
change the uid of itself to root. Finally, as mentioned
earlier, all exploit binaries in our training set, end the ex-
ecution with a check through getuid() to verify that the
exploit process has obtained root.

Note that due to space constraints, we do not annotate
the graph with the exact arguments (e.g., file open with
a read/write permission or read-only). We also do not
label whether the system call succeeded or not. In most
exploits, all system calls need to be successful in order
to compromise the system and typically the failure of a
system call will immediately result in an abort.

Kernel Exploit: As a second example, we consider
Pingpong root [77], one of the most recent generic root
exploits that can target almost all Android devices re-
leased prior to mid-2015. The case also reflects one
where the exploit creates multiple processes. In par-
ticular, the key exploit logic [35] is conducted in the
main process, including mmap() at a specific address,

and invoking multiple connect() calls on the same
ICMP socket (we omit the complete behavior graph for
brevity). In addition, One or more child processes are
created as helpers to construct as many ICMP sockets as
possible for padding. Since the fork() occurs in a loop
(up to 1024 iterations), it is necessary for symbolic exe-
cution to identify and choose one feasible path. Specifi-
cally, the analysis output is that as long as the loop is ex-
ecuted once, a feasible exploit path can be constructed.
This means that we can simply unroll the loop once and
have a new behavior graph constructed for the child pro-
cess (which is connected to the parent behavior graph via
a fork() edge). Note that unrolling the fork loop more
times is also feasible which will cause identical behav-
ior graphs to be constructed. In this case, all behavior
graphs will need to be matched so that we can claim an
exploit is detected. It is worthwhile mentioning that the
precondition analysis (which will be described in more
detail in the next section) is conducted jointly, and will
ensure that the first fork() will succeed at runtime, thus
causing the exploit to match the behavior graph with one
child process only.

5.3 Using Behavior Graphs in Detection

Once the behavior graphs for different root exploits are
generated offline, we are able to use them for detection in
a scanner (similar to Google Bouncer). More precisely,
by monitoring system call invocations (and arguments),
our dynamic analysis environment determines if the be-
havior of the program under analysis matches any of the
learned behavior graphs. The matching algorithm is sim-
ilar to that in [49]. We only briefly describe the procedure
below and the design decisions that were made.

To find a match in the behavior graph, it is necessary to
ensure the following: (1) The order of system calls con-
forms to the dependencies represented in the learned be-
havior graph. In addition, the dependencies in the behav-
ior graph need to be maintained at runtime as well. This
can be checked using dynamic taint analysis [14, 49]. (2)
The exact values of the arguments for system calls match
(e.g., a file opened with read/write permission). For those
arguments whose values cannot be determined statically
during training, they will simply be considered as wild-
card values that can match any value at runtime. (3) A
system call’s status (either success or failure) matches
with the one in the learned behavior graph.

We observe that the root exploits typically have unique
inputs to the system via system call arguments, which
makes them easy to distinguish from legitimate pro-
grams. We therefore relax requirement (1) by only veri-
fying simple dependencies at runtime (e.g., a file read()
depends on the output of open()). Such cases can be
checked through the OS objects monitored in the ker-
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nel, without conducting an expensive taint analysis. For
more complex dependencies such as the values obtained
through read() affecting a system call mmap() as shown
in Figure 2, we only require that the order is the same as
constrained on the graph, i.e., read() happens before
mmap(). We plan to implement the dynamic taint anal-
ysis for stricter dependency enforcement in future work.
Alternatively to improve efficiency, we could also apply
the optimization proposed by Kolbitsch et al. [49].

6 Satisfying Exploit Preconditions

It is crucial to build an environment that can satisfy the
preconditions expected by root exploits. More impor-
tantly, because our behavior graph is constructed over
one successful path, if an analyzed app contains root ex-
ploits, our dynamic analysis environment must determin-
istically coerce the app to follow that path, i.e., the app
must be made to reveal the same set of malicious behav-
iors that match the learned signature. This means that
whenever the exploit asks the environment for certain re-
sults, we must return them as expected.

The problem naturally maps on to the common debug-
ging and testing problem of generating the proper inputs
to a program, so that it will reach a particular target state-
ment [53, 26, 22]. Here the target statement is the end
point of the root exploit, e.g., the getuid() call. The
“inputs” are the system call results, including (1) system
call return values and, (2) other return results through ar-
guments (e.g., a buffer filled in read()). Our solution
to this problem is symbolic execution. Specifically, we
symbolize all the “inputs” from system calls and lever-
age symbolic execution to find the shortest feasible path
that can reach the target instruction from the entry point.
Once we find such a path, we then ask the SMT solver to
generate a concrete instance of the inputs which will be
“replayed” during dynamic analysis.

With respect to the system call return values, we con-
sider two types of system calls: (1) Those that return a
reference to kernel object, e.g., open() and socket()

return a file descriptor; and mmap() returns the address of
the “memory-mapping object”. (2) The remaining ones
(e.g., stat()) that return either 0 (indicating success)
or an error code. For type (1), since file descriptors and
mapped addresses are determined dynamically by the OS
and the constraints are typically simple (just != 0), we
symbolize their return values as a Boolean during anal-
ysis and do not force a specific value during runtime.
Instead, we simply choose to force a success or failure
based on the Boolean and let the OS assign the concrete
return value. To allow expected interactions with the cor-
responding kernel objects, we use “decoy objects” (ex-
plained later) instead of tracking those references. For
type (2), we just symbolize their returned values nor-

fdIo = open("/proc/iomem");
// locate the kernel code offset in physical memory
while ((line = readline(fdIo)) > 0} {
    if((buf = strstr(line, "Kernel code")) != NULL) {
        addr = getAddress(buf);  
        break;
    }
}

int getAddress(buf) {
    return atoi[buf-20];
}

Figure 3: Pseudo code of proc/iomem read

mally as bit-vectors and ask the solver to generate a sat-
isfying value.

For system calls that return results through arguments,
they are always pointers passed in user programs (e.g.,
read buffer). We use these input pointers to symbolize
the corresponding memory content. Going back to the
first example exploit in §5.2, after reading from the file
/proc/iomem, the exploit attempts to read the starting
physical address of the kernel code. This procedure is
illustrated in Figure 3. As we can see, the exploit reads
the file line by line to look for the constant string “Ker-
nel code”. Once the line is located, it retrieves the kernel
code base address (through the getAddress() call) at
the -20 offset relative to the returned buffer of strstr().
There are effectively two loops in the program. The first
is the while loop; the second is inside strstr(). In this
particular case, the discovered feasible path says that the
while loop can iterate just once, indicating that we can
return the string containing “Kernel code” when the first
line is retrieved using the read() system call. However,
the feasible path also says that the loop in strstr()

needs to iterate at least 20 times1; in other words, “Ker-
nel code” needs to start at line [20]. This is because the
getAddress() call reads the location at buf-20. If buf
is at the beginning of line, then buf-20 would be reading
something out of bound.

In this case, the address returned from getAddress()

is not further constrained later, which means that
line[0] to line[19] are unconstrained and can take
any value. Therefore, the constraint solver will gener-
ate an output for line with something like “abcdefghi-
jklmnopqrstKernel code”. Further, since the read() sys-
tem call only reads one line, we will place the single line
content into the expected file object. There is a similar
case later on involving a search through the memory for
constants after mmap(), which can be resolved similarly.

Decoy Objects: During dynamic analysis, we can
provide the preconditions we learned by forcing/faking

1In our real implementation, we use function summary to handle all
encountered external library calls.
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Figure 4: Operational model of the detection system

all syscall results. However, to improve the robustness
of our environment (i.e., making it more real), we de-
cided to use decoy objects to provide expected results
for operations over certain type of kernel objects. Doing
so would allow us to “tolerate” certain operations (e.g.,
stats() that are not observed during our offline learn-
ing phase.

Currently we only support three types of decoy ob-
jects: files, socket, and device drivers. These are created
in two ways. If the target objects (such as a vulnera-
ble device driver) do not exist in our analysis environ-
ment, we simply create decoys. If the objects (such as
/proc/iomem) already exist in our environment, instead
of opening the real file, we “redirect” the file open oper-
ation to the alternative decoy object so that we can return
the expected content.

7 Detecting Root Exploits

Thus far, we have described the training phase, where we
generate both the behavior graph and the environment
constraints. In this section, we provide details about
the components of our detection system (testing phase).
We first present an overview of our system’s operational
model and then describe its components in detail.

7.1 Operational Model

As mentioned earlier, we envision RootExplorer to be
used as an app vetting tool for Android markets. When
a developer submits an app to the market via a web ser-
vice, we envision the market pushing it to RootExplorer,
as depicted in Figure 4. First, we employ a static ana-
lyzer (different from the static analysis during the train-
ing phase), which performs several checks to filter apps
that are unlikely to contain root exploits (details later).
Subsequently, it determines “with which kind of mobile
device(s) or emulator(s),” the dynamic analysis will be
performed. Upon completion of the dynamic analysis,
the detector collects the results and determines if the app
contains a root exploit and if so what exploit it is. If the
app does have root exploits, it informs the Android mar-
ket and saves the hash of the app to the central database;
otherwise the app is moved either to a different malware
scanner (e.g., Bouncer) that is orthogonal to our system

Native code 
detector

Known malware DB
and heuristics for 

dangerous native code

Device 
detector

Device 
initiator

Device/OS info

Figure 5: Static analyzer

or for publication in the Android market. The dynamic
analyzer can be run on either real phones or Android em-
ulators (or a mix of both), and can be easily integrated
into various malware analysis environments as needed.

7.2 Static Analyzer

The static analyzer consists of three components as
shown in Figure 5. The first component is the native code
detector. Since almost all root exploits are written in na-
tive code (certainly the case for the one-click root app we
study), it is natural to check whether the apps contain na-
tive code. Specifically, the native code detector does the
following checks to filter apps that are extremely unlikely
to contain root exploits: (1) Whether the app matches
signatures of known malware samples that contain root
exploits. If so, we abort any further analysis and flag
the malware. (2) Whether it has any native code or has
the capability of dynamically loading native code (e.g.,
through the network). If negative, we can safely skip the
analysis of this app. (3) If it contains native code, sim-
ilar to prior work [8], we use a list of custom heuristics
to decide if they can possibly contain root exploits (e.g.,
whether any dangerous system calls are being called). If
negative, we do not analyze the app further.

If the native code detector did not abort the analy-
sis, the app is moved to the device detector. This is re-
sponsible for determining “under which environment the
app should be dynamically analyzed.” The observation is
that since malware can embed different exploits target-
ing different Android devices, they usually contain logic
that detects the type of the Android environment. Thus,
we look for any such logic that performs checks against
hard-coded device types.

The last component is the device initiator, which gen-
erates the Android environment based on the output of
the device detector. We describe the device detector and
the device initiator in more details below.

Device detector: This component parses the de-
compiled bytecode (using androguard [9]) and finds
the methods (A) that contain code that check ei-
ther the Android version that resides in the static
class android.os.Build.VERSION, or the type of
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the device that resides in the android.os.Build
class, or the version of the Linux Kernel (e.g., by
Runtime.getRuntime().exec(‘‘uname’’) and
reading the /proc/version file). Furthermore, it finds the
methods (B) that either run an executable native file (e.g.,
Runtime.getRuntime().exec(‘‘/sdcard/foo’’))
or call a function in a native binary (e.g., library files).
If there is a program path from the methods that are
members of (A) to the ones in (B), it finds which con-
ditions should be satisfied and creates the appropriate
Android environment. Similarly, the same procedure is
performed in native code. In the case that the native code
is obfuscated or even downloaded via a C&C server, the
device detector simply picks a few popular candidate
device types randomly, with the view that the malware
will likely target one or more popular devices.

Device initiator: Android stores the device informa-
tion in system files such as /system/build.prop and
default.prop. /system/build.prop contains spe-
cific information about the mobile device such as the
Android OS version, the name and the manufacturer of
the device. In addition, there are also system files such
as /proc/version and /proc/sys/kernel/* inher-
ited from Linux that store information about the Linux
kernel. When the system boots, the Android’s property
system reads the information from these files and caches
them for future use. The device initiator monitors all
such interfaces via which an app can learn about the de-
vice and obtain OS information. Since we have collected
a database of Android devices from the online reposi-
tory [1], we know what values to modify in the system
files or what to return through the proc interfaces.

7.3 Dynamic Analyzer

The dynamic analyzer consists of two parts as illustrated
in Figure 6 viz., a Loadable Kernel Module (LKM) and
a background service process. The LKM hooks every
available system call in the Android Linux Kernel. In ad-
dition, it creates a character device that can be opened by
only the background service (to prevent malware from
tampering with the communication), and with which
a communication link is established between user-land
and kernel-land. The LKM tracks only a specific app
(under analysis) and its child processes at any moment in
time. The background service stores the training models
including behavior graphs and environment constraints,
as well as the state of the current running app (e.g., what
part of a behavior graph has been matched and what en-
vironment constraints are supposed to be returned next).

Once a hooked system call is called by the app un-
der analysis, the execution is directed to our LKM which
then transmits a specially crafted message that contains
the system call names as well as their arguments to the

Figure 6: Dynamic Analyzer.

background service through the character device. Based
on the behavior graph and environment constraints, the
background service is responsible for deciding what ac-
tion is going to be taken, and it returns that action to the
LKM. First, it checks the behavior graph to see if the sys-
tem call in question matches any new node. If not, it does
nothing and simply instructs the LKM to execute the sys-
tem call as is. If a new node is matched, it further checks
if it is an object creation system call such as open() or
socket(). If so, it deploys a decoy object to satisfy the
environment constraints as described in §6. Otherwise,
if it is a system call that operates on an existing object,
the return results will be served from the data prepared
ahead of time for the decoy object (e.g., file content).

Note that deploying decoy objects has to be done care-
fully. As mentioned, Android root exploits often need
to be adapted to work on different devices, even when
they target the same underlying vulnerability. For in-
stance, the device file /dev/camera-isp can be ex-
ploited slightly differently on different Android phones
that all have the vulnerable device driver; this will cause
slightly different behavior graphs and preconditions to
be generated (e.g., the input to a vulnerable device file
will look different), and the expected return results from
a system call may be different. Therefore, once we have
decided to disguise as a particular Android device (e.g.,
Samsung Galaxy S3), we will need to choose the behav-
ior graphs and preconditions accordingly (obtaining such
a Android device to exploit binary mapping is discussed
in §4). Otherwise, the decoy objects we deploy may be
for the wrong Android device which will in fact fail to
detect the exploit.

8 Evaluation

In this section we describe the evaluations of RootEx-
plorer. We focus on its effectiveness wrt the following
aspects: (1) can it detect synthetic and real malware con-
taining root exploits? (2) does it cause false alarms on
benign apps? (3) does it miss malware samples?
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8.1 Environment Setup

Training parameters: Our training database contains
168 different root exploits that were designed for differ-
ent devices and were obtained from a commercial one
click root app. The number of devices that we can
successfully emulate currently based on the root exploit
database is 211. We trained with all 60 families of root
exploits.

Testing dataset: We have the following categories of
apps for evaluation:

1. Samples that are known to contain root exploits.
This includes publicly distributed exploit PoCs [38, 36,
34, 33] and GODLESS malware [32], and seven other
one-click root apps (different from the one we trained
with) which also contain many different root exploits.

2. Samples that may contain root exploits. We ob-
tained a list of 1497 malware samples from an antivirus
company, and have crawled 2000 recently uploaded apps
between January and February 2017, from four unoffi-
cial Android app markets: 7723 [3], ANDROID life [4],
MoboMarket [6] and EOEMARKET [5]. We target
third-party markets because they are known to have more
malware than the official Google Play [87].

3. Samples that almost certainly do not contain root
exploits. This includes the top 1000 free apps from
Google play. As they are extremely popular, it is very
unlikely that they contain root exploits. This set is used
to evaluate the false positives (if any) with RootExplorer.

Analysis Testbed: The experiments are performed on
a Lenovo Laptop with a quad core Intel Core i7 2.00GHz
CPU, 16GB of RAM, and a hard drive of 1TB at 5400
rpm. We use an Android emulator for analyzing the mal-
ware2. To make the emulator appear as realistic as pos-
sible, it is loaded with real files, such as music, pictures
and videos. Furthermore, it contains a call log, SMS his-
tory and contacts, as well as various installed apps. We
have modified the binary image of the emulator, in order
to show that it has a real phone number and a real In-
ternational Mobile Equipment Identity (IMEI) number.
Finally, the build.prop file (containing the device in-
formation) is updated appropriately prior to each exper-
iment. Each app is analyzed starting with a clean image
of the emulator in order to avoid any side effects that a
previously tested malware app can have on the emulator.
A simple micro-benchmark on the open() system calls
shows that the system call monitor increases the execu-
tion time of open() by 75%, on average.

Input generator: To achieve as much code coverage
as possible when executing an app (in hope that root ex-
ploits will be triggered), we leverage DroidBot [37], a

2Even though the system runs on real phones, we choose an emu-
lator based approach since it is easier to run a large set of experiments
concurrently.

One-Click App Exploit
O1 /dev/camera-sysram
O2 /dev/graphics/fb5
O3 /dev/exynos-mem
O4 /dev/camera-isp
O5 /dev/camera-isp
O6 /dev/camera-isp
O7 towelroot

Table 1: One-Click apps with the discovered exploits.

lightweight test input generator for Android that gen-
erates pseudo-random streams of user events such as
clicks, as well as a number of system-level events. Droid-
Bot can generate random events on its own, or gener-
ate events based on the manifest file of the app, or can
take as input a file with predefined events. In our exper-
iments, we use randomly generated events (“black-box”
technique) and events based on the manifest file of the
app (“gray-box” technique).

8.2 Effectiveness
We evaluate RootExplorer against all the test datasets
mentioned earlier containing 4497 apps in total. Over-
all, we do not find any false positives, i.e., benign apps
are never mistakenly reported to contain root exploits.
For the known malware samples, we obtain the ground
truth either from the fact that github explicitly states that
it is a root exploit, or via cross-validation with VirusTo-
tal and the antivirus company that we work with. Out of
8 known malware families containing root exploits, we
do not find any false negative. We describe the details
below.

Unit testing: To obtain assurance that the training
phase works as expected, We execute the 60 families
of root exploits (from the training data) in our dynamic
analysis environment and see if they can be detected.
Note that this means that the training and testing data
are exactly the same. If any of these exploits cannot be
detected, it indicates that the behavior graphs or precon-
ditions that were prepared are in fact incorrect. The test-
ing results show that all of the exploits are successfully
detected.

Detecting other one-click root apps: Since we have
not trained RootExplorer with exploits from other one-
click root apps, this test allows us to further confirm that
the system works well. In particular, the exploits from
these apps may or may not be implemented exactly in
the same way as the ones in our training set, being able
to trigger and detect them is a promising sign. Table 1
lists the first exploit that was caught upon running 7 other
one-click root apps on an emulated Samsung Galaxy S3
device. Interestingly, different one-click root apps in
fact choose to launch different exploits against our de-
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Exploit VirusTotal RootExplorer
diag 1/57 X

exynos 4/57 X
pingpong 1/57 X
towelroot 3/57 X

Table 2: Detection rate for debug compilation.

Exploit VirusTotal RootExplorer
diag 0/57 X

exynos 1/57 X
pingpong 0/57 X
towelroot 1/57 X

Table 3: Detection rate for obfuscated compilation.

vice. For instance, with O1, we caught an exploit re-
lated to the /dev/camera-sysram driver, while O2 and
O3 triggered exploits against /dev/graphics/fb5 and
/dev/exynos-mem respectively. The results showcase
the effectiveness of RootExplorer in detecting a wide va-
riety of exploits.

Detecting Exploit PoCs from the Internet: We next
take four proof-of-concept root exploits (with source
code) that we can find on github [38, 36, 34, 33], and em-
bed them in a testing Android app we build, that simply
roots a phone upon touching a button. We first check the
effectiveness of current anti-virus programs against the
“malware” we built containing publicly available PoCs.
We scan the app using the virusTotal API [70] which con-
tains 57 anti-virus programs (e.g., Trend Micro) capable
of scanning Android apps . Table 2 shows the detection
rates for the case where we compiled the source code
with all the debug options on and without any obfus-
cation, while Table 3 shows the results when the com-
piled binaries are obfuscated using the O-LLVM obfus-
cator [47] and packed using UPX [67] (both are off-the-
shelf tools).

In brief, without obfuscation, all four exploits can be
detected by at least one antivirus. However, with sim-
ple obfuscation, only exynos (CVE-2012-6422) [30] and
towelroot (CVE-2014-3153) [31] can be successfully de-
tected and that too by only one antivirus. On the other
hand, RootExplorer, by preparing the right preconditions
and observing the exploit behaviors at runtime, can de-
tect every exploit regardless of the obfuscation and pack-
ing methods.

Detecting GODLESS: GODLESS [55] is a family
of malware that employs multiple root exploits, and has
caused havoc in the wild since mid-2016. RootExplorer
is extremely effective in detecting the exploits in the
GODLESS malware family. Its source code is largely
based on the open source repository on github [32].
Specifically, GODLESS checks the device type against a
predefined, populated database of supported exploitable
devices. Depending on which device it is running on,
it invokes a corresponding, appropriate exploit. The pro-
cess is iterative. It begins with exploit acdb and checks if
the device is in the database, and only if so, will continue
with the actual exploit. Upon failure, it moves on to next
exploit which is hdcp, and so on until it has tested the last
exploit viz., diag. We run GODLESS against 5 different
emulated devices to showcase that RootExplorer is effec-

tive in properly stimulating the right exploit for a device.
Table 4 shows the results (with the emulated devices).
The exploits with code name msm camera, put user

and fb mem can be caught using any emulated device;
this is because these exploits affect a large number of de-
vices and seemingly, the author of GODLESS does not
even know the complete list of devices they affect. In-
stead, GODLESS simply always tries to execute them
without checking the actual device type. Of course, if
a target device does not have the vulnerable device file
such as /dev/msm camera, the exploit will simply abort
and the next exploit is attempted. Since RootExplorer is
trained to prepare the preconditions for all the exploits at
all times including msm camera, it deploys the decoy file
/dev/msm camera on demand when GODLESS tries to
open it, and can therefore always trigger and detect its
complete malicious behavior with respect to this exploit.

Detecting Malware in the Antivirus malware
dataset and 3rd-party Android Markets: For each
app from the 1497 malware samples we received from
an anti-virus company and the 2000 apps downloaded
from four third-party Android markets, we apply Roo-
tExplorer for 10 minutes using Droidbot with an emu-
lated Samsung S3 device; the kernel version, build ID,
and the model of the device are set to 3.0.31-1083875,
JZO54K, and GT-I9300 respectively. Upon booting the
emulated device, Droidbot launches the main activity of
each app and generates random touch events and system
events such as BOOT COMPLETED every second. Mean-
while, our tool runs in the background and analyzes all
the system calls that the app uses. To measure the num-
ber of false positives and false negatives, we scan those
apps with VirusTotal. Among all the apps, RootExplorer
detected two true positives (and has no false positive).

The first app is named Wifi Analyzer from
the MoboMarket [6], which was discovered to
contain the pingpong root exploit [77] (md5
ea1118c2c0e81c2d9f4bd0f6bd707538). At the time
of writing, the app is still alive on the market. After
consulting with VirusTotal and an antivirus company, we
confirmed that it is an instance of the rootnik malware
family [57]. We have reported to the market and are
waiting for the app to be removed.

Another detected app is a Flashlight app
from the Antivirus malware dataset, containing
the camera-isp root exploit. It has an md5

of 1365ECD2665D5035F3AB52A4E698052D.

1140    26th USENIX Security Symposium USENIX Association



HTC J Butterfly Fujitsu Arrows Z Fujitsu Arrows X Galaxy Note LTE Samsung S3
acdb 3 7 7 7 7

hdcp 7 3 7 7 7

msm camera 3 3 3 3 3

put user 3 3 3 3 3

fb mem 3 3 3 3 3

perf swevent 7 7 3 7 7

diag 7 7 7 3 7

Table 4: Emulated devices and corresponding exploits caught by RootExplorer in GODLESS malware.

Upon starting, the app tries to access the files
/system/xbin/su and /system/bin/su. Root-
Explorer returns the appropriate errors to make the
app believe that it is running on an un-rooted de-
vice. Interestingly, only when DroidBot delivers the
BOOT COMPLETED event to the app, the root exploit is
triggered. In the beginning, it opens and reads the file
/proc/kallsyms four times to retrieve the address of
certain kernel symbols. After that, it opens the vulner-
able /dev/camera-isp device file3. It subsequently
invokes two different ioctl() system calls with request
types 0xC0086B03 and 0xC0186201 that effectively
compromise the driver. As expected, RootExplorer de-
ploys the decoy file /dev/camera-isp which returns a
real file descriptor for open(), and success for ioctl()
(to trick the exploit into believing that it has succeeded).
Finally, the exploit performs a setresuid(0,0,0) to
get root access. At that point, RootExplorer successfully
finds the root exploit and stops the execution of the app.

In addition to the above two malware samples, Virus-
Total also reports three additional malware samples that
carry root exploits. We analyzed these cases manually
and found that they in fact attempt to download the ex-
ploits from a specific URL which is no longer valid. In
other words, the exploits are never executed even though
the malware may have done it in the past.

9 Limitations and Discussion

Although RootExplorer is effective in practice, in the-
ory it has some limitations that would allow attackers to
bypass its detection. One obvious limitation is analysis
environment evasion (e.g., fingerprinting Android emu-
lator or real phones) which was already discussed in §2.
We consider this a general problem for any analysis en-
vironment and that this is orthogonal to our research.

There are other limitations specific to our work. First,
the signatures that we use are extracted from existing ex-
ploits instead of vulnerable code; therefore capable at-
tackers (e.g.,, state-sponsored attackers) may be able to
find alternative attack paths to exploit the same vulner-

3Note that in this case, the exploit targets a different vulnerability
in the same device driver from the example in Section 5.

ability [16]. To address this issue, a different behavior
graph thus needs to be learned.

Second, an attacker with knowledge of RootExplorer
can potentially counter our analysis environment. For
instance, without obtaining an actual copy of a device
driver (e.g., camera), it is impossible to answer all possi-
ble queries from an application. Malware can therefore
potentially tell if they are interacting with a real device
driver or not. However, we argue that it is also challeng-
ing for the malware authors to understand the complete
behaviors of a device driver.

Third, since we use syscall-based signatures to model
the exploits, RootExplorer is also vulnerable to special-
ized evasion techniques. For example, Ma et al. [54]
have demonstrated that by splitting the malicious behav-
iors into pieces that are executed in multiple processes, it
is possible to bypass signatures that target a single pro-
cess. Despite being more difficult, such an attack strat-
egy may also be applicable to certain root exploits and
may thus bypass RootExplorer’s detection.

We plan to further improve RootExplorer’s detection
by addressing these problems in the future.

10 Conclusions

In this paper, we tackle the challenging problem of de-
tecting the presence of embedded root exploits in mal-
ware. We build a system RootExplorer, that learns from
commercial-grade root exploits used for benign reasons
and backed by large companies such as Baidu and Ten-
cent, and detects such embedded root exploits. Specifi-
cally, it carefully analyzes these to determine what envi-
ronments root exploits expect, and what pre-conditions
are to be satisfied in order to trigger them. It uses this in-
formation to construct proper analysis environments for
malware and can effectively detect the presence of root
exploits. Our extensive evaluations shows that it can de-
tect all known malware samples carrying root exploits,
and has no false positives. We are also able to detect a
root exploit in a malware that seems to have bypassed
current vetting procedures, and is available on an An-
droid market.
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Abstract
The Universal Serial Bus (USB) is the most prominent
interface for connecting peripheral devices to computers.
USB-connected input devices, such as keyboards, card-
swipers and fingerprint readers, often send sensitive in-
formation to the computer. As such information is only
sent along the communication path from the device to the
computer, it was hitherto thought to be protected from
potentially compromised devices outside this path.

We have tested over 50 different computers and exter-
nal hubs and found that over 90% of them suffer from a
crosstalk leakage effect that allows malicious peripheral
devices located off the communication path to capture
and observe sensitive USB traffic. We also show that in
many cases this crosstalk leakage can be observed on the
USB power lines, thus defeating a common USB isola-
tion countermeasure of using a charge-only USB cable
which physically disconnects the USB data lines.

Demonstrating the attack’s low costs and ease of con-
cealment, we modify a novelty USB lamp to implement
an off-path attack which captures and exfiltrates USB
traffic when connected to a vulnerable internal or a ex-
ternal USB hub.

1 Introduction
Modern computer systems typically consist of hundreds
of components, each with a clear functionality and well-
defined input-output interfaces. Connecting all of these
components are buses, which transfer information be-
tween components. Since the internal hardware com-
ponents of a system are usually assumed to be trusted,
most buses carry no protections against malicious be-
havior. However, with the development of complicated
computer peripherals, buses are no longer kept inter-
nal. High-Definition Multimedia Interface (HDMI) [28],
DisplayPort [47], the external Serial AT Attachment
(eSATA) [43], the Universal Serial Bus (USB) [14], and
many others all connect to external devices of unknown
origin. Moreover, these buses often carry sensitive infor-

mation such as key strokes (including passwords), mouse
movements, file transfers, screen images, etc.

The security model of these buses does not follow the
standard methods of securing communication channels.
Rather than using common techniques, such as encryp-
tion and authentication, these buses seem to rely on a
unicast network model, where messages are physically
routed along the path from the sender to the receiver
instead of being broadcasted to all of the components
connected to the bus. This, coupled with short and sim-
ple routes that only have few intermediate components,
seems to provide a “good enough” security. As a result,
in order to externally monitor traffic such as the victim’s
keystrokes, the attacker has to corrupt one of the often
small number of components that are located between the
sender (the keyboard) and the receiver (the USB host).
Consequently, it is commonly assumed that “devices are
not able to snoop information sent from the Device to
Host since information flows only through Hubs until it
reaches the Host” [36].

In this paper we challenge this assumption. More
specifically, we investigate the following questions:

Are common communication buses vulnerable to
off-path attacks? How can such attacks be mounted and

at what cost?

1.1 Our Results
As a case study, in this paper we focus on the Univer-
sal Serial Bus (USB) interface, which is the predom-
inant interface used by modern computer parapherna-
lia. Compared with legacy interfaces such as serial port
(RS-232) [17], parallel port (IEEE 1284) [19] or key-
board jack (DIN 41524/IEC 60130-9) [29], USB has
wide range of advantages: it is hot pluggable, extensible
(via USB hubs) and capable of supporting many types of
equipment. A final feature of the USB interface is the
ability to provide both data communication and power to
peripheral devices.
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In this paper we demonstrate that in many cases, data-
dependent voltage fluctuations of the USB port’s data
lines can be monitored from adjacent ports on the USB
hub. Our results apply to both internal USB hubs which
are installed inside computers, as well as to external off-
the-shelf USB hubs. Moreover, this phenomena is not
limited to a small number of vulnerable hubs but seems
to be quite common, spanning various manufacturers and
hub designs. In our experiments, 94% of the internal
hubs in computers and in docking stations and 90% of the
external USB hubs we evaluated displayed some form of
exploitable leakage.

In the context of communication channels, this
phenomena is often referred to as channel-to-channel
crosstalk [38]. We demonstrate that this crosstalk effect
allows an off-path attacker to eavesdrop on USB com-
munication. In particular we show that a corrupted pe-
ripheral device can monitor the communication of other
peripheral devices connected to the same non-corrupted
USB hub, or just connected directly to the same com-
puter. Moreover, we show that common “ad-hoc” phys-
ical protections, such as physically disconnecting USB
data and power lines, are often ineffective in stopping
the discovered leakage.

Attack Scenario. As noted above, in addition to com-
munication, the USB bus can also provide power to var-
ious peripherals. Many “USB toys”, such as lamps, fans
or office foam rocket launchers [21], often of unknown
origin, have been designed to use the feature and are thus
routinely connected to USB ports. An attacker can thus
augment such a toy with the required equipment in order
to monitor the USB port crosstalk and subsequently sell
it at below-market-value prices. In Section 6 we show
how to cheaply construct such a probe which can moni-
tor and extract the communication of other devices.

We mainly focus on slow-speed USB 1.x input de-
vices, such as keyboards, card readers, fingerprint read-
ers, USB headsets, etc. Information sent from these de-
vices is often sensitive (e.g., passwords, credit card num-
bers, biometric data, voice conversations, etc.) and thus
should remain secret. While faster versions of the USB
standard were published almost two decades ago and are
in common use, these versions are backwards compatible
with USB 1.x and many input devices are manufactured
to the slower standard. We believe that in the forsee-
able future, slow speed-devices will continue to use the
USB 1.x interface.

While our proof-of-concept probe (Section 6) was de-
signed to attack USB 1.x devices (connected to any USB
hub, including 3.0 hubs), we do show that attacks on
devices using the faster USB 2.0 standard are feasible
(Section 3.3). We leave the task of attacking USB 3.0
devices connected to 3.0 hubs as an open problem (See
Section 7).

1.2 Related Work
For a summary of attacks on USB, see [16, 44] and ref-
erences therein.

USB Traffic Monitoring. Because USB traffic is not
encrypted, on-path devices can listen in to all of the com-
munication that passes through them. This capability is
exploited by commercial keyloggers, such as Key Grab-
ber [2] and KeyGhost [1]. Neugschwandtner et al. [34]
note that downstream traffic is broadcasted to all devices
connected to the bus, demonstrating recovery of all the
downstream traffic using a USB analyzer. They further
suggest encrypting downstream USB traffic to protect
against snooping attacks. Unlike their attack, we capture
upstream USB traffic, which is not broadcasted. Further-
more, because their countermeasure only encrypts down-
stream traffic, it does not prevent our attack.

Oberg et al. [36] describe a timing-based covert chan-
nel that creates an off-path information flow between col-
luding devices. To mitigate the channel they suggest
using deterministic time slots for serving each device.
We note that our attack allows capture of the actual data
transferred from a non-cooperating device and that the
suggested mitigation does not protect against our attack.

Exploiting Trust on Buses. Instead of monitoring traf-
fic, malicious devices can attack the host, exploiting
weaknesses in the host software [10, 50], firmware [39],
trust [15, 5] or protocol [42]. Similarly, malicious hosts
can attack attached devices [33, 35, 32, 52]. The attack
of the USB bus was also explored by Bratus et al. [12]
both at the hardware level and at the device driver level.

To protect the host from malicious devices, Tian et
al. [46, 45] and Angel et al. [7] suggest filtering the USB
traffic and implementing a permission mechanisms for
USB ports. Angel et al. [7] also suggests applying end-
to-end encryption between devices and the host to pro-
tect the confidentiality and the integrity of USB data in
transit.

A common method for protecting hosts from mali-
cious devices and vice versa is to cut the data lines be-
tween the two, connecting only the USB power lines.
Such an approach allows the host to power a device with-
out the risk of data interchange between the two. Avail-
able options for this approach include power-only USB
cables as well as dedicated devices such as the USB Con-
dom [3]. We note that such defenses do not protect
against our attack in the case that crosstalk leakage is
present on the power lines.

Attacks On The Physical Medium. USB Killer [18] is
a device designed to collect energy from the USB power
line and inject a high voltage pulse back into the com-
puter, to destroy sensitive electronic components.

Vuagnoux and Pasini [48] as well as Wang and Yu [49]
show that the electromagnetic (EM) emanations from
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PS/2 keyboards can be used to spy on key presses. How-
ever, the design of the USB port seems to make this leak-
age much harder to exploit with only partial information
being leaked about key presses, allowing the attack to
only narrow down the pressed key to a group of 5 poten-
tial keys [48]. EM attacks have also been shown effective
in recovering video signals [31] and Ethernet communi-
cation [41]. See [22] for a survey of EM-based surveil-
lance attacks. Similar attacks exploit acoustic emana-
tions from keyboards [8, 26] and printers [9].
Side Channel Attacks. Attacks on cryptographic im-
plementations by monitoring devices’ electromagnetic
emanations and power usage have been extensively
demonstrated. See [6, 30] and references therein. While
many such works have focused on small devices such as
smart cards or FPGAs, recent works have demonstrated
similar vulnerabilities in PCs [23] and smartphones [24].
Side Channel Attacks Using USB Ports. The USB
ports of various devices were also used for mounting
side channel attacks. For laptop and desktop comput-
ers, monitoring the USB power lines [37] can reveal in-
formation about the system’s activity. In addition, the
“far-end-of-cable” key extraction attack of [25, 23] can
be also mounted over USB ports. For mobile phones, the
USB port can be used for power analysis key extraction
attacks [24] and distinguishing websites [51].

1.3 Structure of this Paper
The rest of this paper is organized as follows: Section 2
introduces USB, including the bus topology and relevant
aspects of its physical and logical protocols. In Section 3
we discuss the crosstalk leakage on the USB data and
power lines. We show how to decode the leakage to re-
cover the transferred data in Section 4, and proceed to
describe the attacks on various devices in Section 5. Sec-
tion 6 demonstrates a practical attack using a subverted
USB lamp that captures key presses and exfiltrates the
information wirelessly via Bluetooth.

2 The USB Interface
USB Versions and Speeds. Since its introduction in
1996, the USB standard underwent three main upgrades.
Initially USB 1.x [13] used a single data path supporting
up to 127 peripheral devices and with 12 Mbps data rate
(also known as USB full-speed). This version currently
still powers a huge number HIDs (Human Interface De-
vices) such as keyboards, remotes and various card read-
ers. Next, in the early 2000’s USB 2.0 unified the com-
puter peripheral market, supporting speeds of up to 480
Mbps (also known as USB high-speed) while maintain-
ing backwards compatibility. USB 2.0 is commonly used
for devices requiring high data transfer rates, such as ex-
ternal storage devices and Web cameras. Finally, in 2008
another major upgrade of the USB family, USB 3.0, was

published [27]. In this version, the maximum bus speed
was increased to 5 Gbps (also known as USB super-
speed). In order to achieve such a speed and to support
full-duplex communication, five new pins were added to
the classic connectors and the cable material standard
was upgraded.

USB Hubs. USB hubs are commonly used to split a
single USB port to many (typically four) ports, thus al-
lowing the user to connect additional peripheral devices.
In addition to increasing the number of available USB
ports, USB hubs serve four functions. Each USB hub
may function as a signal repeater, extending the cable
length by five meters. Some hubs may include indepen-
dent power supply to ensure each downstream port has
enough power available. Hubs also function as protocol
translators: for example in case a USB 1.0 ticket printer
is plugged in a USB 3.0 hub, the hub translates the latest
USB 3.0 downstream signal back to the legacy USB 1.0
language and forwards to the printer. Finally, the USB
hub also protects the bus by isolating and disconnecting
malfunctioning devices which draw too much power or
do not obey the USB protocol.

USB Tiered Topology. All USB devices are connected
in a tree topology, up to 127 devices (including any hubs)
can be connected. At the root of the tree, there is a single
host (also known as USB root hub) which is directly ad-
dressable from CPU. The host coordinates the USB tree
network and in USB 1.0 and 2.0 it is the only one in
the network who can initiate communication. Up to five
additional hubs can be cascaded in series on each tree
branch. Each hub has one upstream port and up to seven
downstream ports. Downstream traffic is broadcasted to
all of the devices in the tree. However, upstream data
is only sent along the (single) path from the transmitting
peripheral device to the host. In particular, hubs which
are not located on the path between the transmitting pe-
ripheral and the host should not be able to observe the
peripheral’s upstream USB traffic.

Broadcasting USB downstream traffic is a risky design
decision [34]. For example, an attacker can use a simple
USB analyzer to monitor disk writes. However, because
upstream traffic is only transmitted along the path to the
host, much of the “interesting” data, such as keyboard
inputs and disk reads, seems to remain inaccessible to a
corrupted peripheral device outside that path.

USB 1.x and 2.0 Ports Structure. Both USB 1.x and
USB 2.0 use a two-wire differential communication bus.
We denote these wires as D+ and D-. In addition, each
USB connection also provides two power lines, denoted
as Vcc and GND, to supply 5 Volt power to peripheral
devices. See Figure 1.

USB 1.x and 2.0 Communication. Sharing the bus is
achieved through the use of Time-Division Multiplexing
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Figure 1: Structure of a USB port.

Figure 2: USB transaction, frame and packets.

(TDM). The bus protocol divides time into 1 ms frames,
as shown in Figure 2. Each frame comprises a Start
of Frame (SOF) packet followed by several transfers.
Transfers can be periodic, repeating in every frame as
long as the target device remains connected to the bus.
These are used, for example, for polling input devices
which are supposed to update as frequently as possible.

Otherwise, transfers are non-periodic. These include
control transfers assigning a bus address to a newly
plugged device, or occasional data-transfers such as up-
dating the print queue of a printer. Each transfer consists
of packets, which are the smallest building block of USB
traffic. At the bottom of Figure 2, we illustrate a key-
board report transfer. The transfer begins with a Token
packet that probes the keyboard for key presses. If un-
delivered key presses are present, the keyboard responds
with a Data packet that contains a 64 bit payload identi-
fying the pressed key. The host then responds to the Data
packet, sending a Handshake packet, which terminates
the transfer. If no key presses are available for delivery,
the keyboard responds to the initial Token packet with a
Handshake packet that terminates the transfer.

To protect data from corruption, packets include sev-
eral checksum mechanisms. The Packet Identifier (PID)
field is protected by requiring that the second half of
the field is the bitwise complement of the first half. To-
ken packets transmitted from the host to the device use
a 5 bits CRC (Cyclic Redundancy Check) to verify the
Address (ADDR) and Endpoint (ENDP) fields and Data
packets use a 16 bits CRC in order to verify the payload.

Oscilloscope

Root hub USB hub

Figure 3: Leakage can be observed at an unused port
adjacent to the USB device.

3 Leaky Hubs
We now turn our attention to the leakage between two
adjacent USB ports on the same USB hub. We investi-
gate both internal hubs, installed inside computers, and
external stand-alone hubs. As mentioned in Section 2,
downstream traffic from the PC to the peripherals con-
nected to the hub is broadcasted and thus readily avail-
able. However, upstream traffic, e.g. keyboard presses, is
not broadcasted and thus should remain out of reach for
an attacker monitoring the USB port. We evaluated the
crosstalk leakage between two downstream USB ports
on the same USB hub as follows. First, we connected
a USB input device, such as a keyboard, to one of the
ports of the hub. Next, we used an oscilloscope to mon-
itor the data sent from the device to the host while con-
currently measuring the leakage on a different USB port
of the same USB hub. See Figure 3.

As we described in Section 2, every USB port con-
tains a pair of data lines and a pair of power lines. Each
of these pairs is a potential source of leakage. Hence,
we can measure the crosstalk leakage present on the data
lines of an adjacent port and additionally, or alternatively,
we can measure it on power lines of the adjacent port.

In a typical scenario both data line and power line
leakage should be available on the same USB port, thus
allowing the attacker to choose the channel contain-
ing the best signal. However, common “ad-hoc” coun-
termeasures against untrusted USB devices are some-
times deployed. These include USB hubs with dedi-
cated switches, which power devices down by cutting the
power supply to them and power-only cables, a.k.a. USB
condoms [3], which disconnect the data lines in order
to prevent interaction between the device and the USB
host. Yet, because the crosstalk leakage is often present
on both the power and the data lines, to completely ren-
der the attacker ineffective, both pairs should be discon-
nected.

3.1 Data Line Leakage
Experimental Setup. In order to evaluate the data line
crosstalk leakage present on USB hubs we used an Ag-
ilent MSO6104A oscilloscope (1GHz, 4Gsps) and two
Agilent 10073C 500MHz passive probes. We then con-
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(a) Terminus Tech FE1.1s
(inside a Lenovo 100s laptop)

(b) Prolific MA8601 (c) SMSC USB2517-JZX
(inside an Apple Display)

(d) ASMedia Technology
ASM1074L

Figure 4: Top and middle row: Four tested USB hubs and their controller chips found to contain data line crosstalk
leakage. Bottom row: Corresponding leakage waveform, yellow (top) trace shows the USB traffic and purple (bottom)
trace shows the data line crosstalk leakage measured from an adjacent downstream USB port.
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Port 1

D+ D-
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GND

C

USB 
Port 1

USB 
Port 2

Figure 5: Typical schematic of a USB hub (left) and the RC differentiator created by C and R3 (right).

nected a USB keyboard (Lenovo KU-0225) to one of the
hub’s downstream ports. Next, we used one of the oscil-
loscope’s probes to monitor the communication between
the PC host and the keyboard by measuring the voltage
on the D+ line relative to the GND line. Finally, we ob-
served the data line crosstalk leakage (using the oscil-
loscope’s second probe) by measuring the voltage on the
D+ or D- line relative to the GND line on one of the hub’s
other downstream ports.1

Observing the Data Line Crosstalk. Figure 4 shows
four different devices, including both leaking comput-
ers and leaking external hubs. The correlation between
the actual keyboard data (yellow trace, top) and observed
data line crosstalk leakage (purple trace, bottom) can be
clearly seen. We find that such data line crosstalks are

1The choice between measuring the D+ or D- relative to the GND
line seems to depend on the specific port and hub used. In each experi-
ment below we actually attempted both options and present the option
which showed the clearest signal.

quite common. We evaluated 34 internal and 20 external
USB hubs. Out of these, 17 internal and 17 external were
found to have a data line crosstalk. Finally, we note that
data line crosstalk is not limited to USB 2.0 ports and is
also noticeable on USB 3.0 ports (see Figure 4(d)).

Leakage Mechanism. The leakage waveform of Fig-
ure 4(a) provides a hint into the physical reason for the
existence of crosstalk between two different USB ports.
A typical hub controller chip contains four USB logic
blocks, each responsible for a single downstream USB
port. See Figure 5. As part of the speed negotiation be-
tween the hub and downstream devices, the data lines
of the USB port are pulled down using 15kΩ resistors.
(These are marked as R1,R2,R3,R4 in Figure 5.) The-
oretically, the data lines of USB port 1 should be com-
pletely isolated from those of USB port 2. However,
we conjecture that the close proximity of the USB logic
blocks inside the controller chip creates some parasitic
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Figure 6: Monitoring the hub’s electromagnetic leakage as well as the data line crosstalk leakage. The right figure is
the experimental setup where a keyboard is connected to the hub’s leftmost port (silver wire), the crosstalk leakage is
monitored via the adjacent port (blue wire) and the electromagnetic field is measured using an EM probe (blue loop).
The left figure shows the corresponding signals where the top (yellow) trace is the actual USB data, the middle (purple)
trace is the data line crosstalk leakage and the bottom (green) trace is the observed EM signal. Although the crosstalk
signal is plotted with the same vertical scale as the EM signal, only the crosstalk signal (middle, purple) exhibits a
clear correlation with the actual USB data (top, yellow).

capacitance between data lines of adjacent ports (see C in
Figure 5). Thus, any signal present on D+ line of port 1
passes through the RC differentiator created by C and R3
and can be observed on the D+ line of port 2. See Fig-
ure 5. Similar crosstalk leakage also happens with the D-
lines with one option typically giving much better signal
than the other, depending on the USB hub and on indi-
vidual ports in it.
Crosstalk or EM? In order to ascertain that the ob-
served leakage indeed emanates from crosstalk and not
from electromagnetic interference, we have used an EM
probe (Langer LF R400) to measure the electromagnetic
field emitted by an external USB hub. As can be seen in
Figure 6, while there is a clear correlation between data
line crosstalk leakage (purple, middle) and the real USB
traffic (yellow, top), the hub’s electromagnetic radiation
(green, bottom) does not contain any observable infor-
mation. We thus conclude that the observed crosstalk
leakage indeed emanates from parasitic capacitance be-
tween the hub’s USB ports and not from the hub’s elec-
tromagnetic leakage.

3.2 Power Line Crosstalk Leakage
A common method for isolating potentially corrupted
USB devices while still supplying them with 5V power
is to physically disconnect the USB data lines. Indeed,
power-only USB cables and USB condoms guarantee to
isolate corrupted devices from the USB bus while still al-
lowing the use of the USB port as a source of power, e.g.
for plugging a mobile phone into an untrusted charging
station. In this section we show that by monitoring the
power lines of a USB port, it is possible to eavesdrop on
the communication of USB devices connected to differ-
ent USB ports. Thus, even if the attacker is connected

to the hub using a power-only USB cable, he can still
observe the communication of nearby USB devices.

Experimental Setup. We connected a USB keyboard to
one of the hub’s downstream ports. We then used one of
the oscilloscope’s probes in order to monitor the commu-
nication between the PC host and the keyboard by mea-
suring the voltage on the D+ line relative to the GND
line. Finally, using the oscilloscope’s second probe, we
observed the power line crosstalk leakage by measuring
the voltage on the Vcc line relative to the GND line on
one of the hub’s other downstream ports.

Observing the Power Line Crosstalk Leakage. Fig-
ure 7 shows four devices along with the observed signals,
confirming the existence of power line crosstalk leakage.
The correlation between the actual keyboard data (yel-
low, top) and the observed power line crosstalk leakage
(blue, bottom) is clearly visible. Overall, we found that
29 of the 34 internal and 17 of the 20 external hubs we
tested show power line crosstalk leakage. Overall, 32 in-
ternal hubs and 18 external hubs show at least one type
of crosstalk leakage.

Evaluating USB Condoms. We have also examined
the crosstalk leakage present on the USB power lines
measured through a PortaPow USB condom [4] which
promises to “block data transfer to / from a computer,
preventing data security breaches and viruses / hacking
when charging from a public USB socket”. As can be
seen in Figure 8, the power line crosstalk leakage can be
clearly observed.

Leakage Mechanism. Parasitic capacitances are
present not only between two proximate data lines, but
also exist across a data line and a nearby USB power line.
See Figure 9 with the parasitic capacitance marked as C1.
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Figure 7: Top row: four tested USB hubs found to contain power line crosstalk leakage. Bottom row: Corresponding
leakage waveform, yellow (top) trace shows the USB traffic and blue (bottom) trace shows the power line crosstalk
leakage measured from an adjacent downstream USB port. Notice the correlation between the sharp spikes in the
leakage trace and the USB traffic. The waveforms were captured using an Agilent MSO6104A oscilloscope (1GHz,
4Gsps) and two Agilent 10073C 500MHz passive probes.

Figure 8: Measuring powerline crosstalk leakage through a PortaPow USB condom. The right figure is the exprimen-
tal setup where a keyboard is connected to the USB hub via the silver wire and the powerline crosstalk leakage in
monitored through the PortaPow USB condom (red) via the blue wire. The left figure shows the correponding signals
(acquired using an Agilent Infiniium DSO 5454832B oscilloscope) where the top (yellow) trace is the actual USB data
and the bottom (blue) trace is the powerline crosstalk leakage. Notice the clear correlation between the two traces.

D+

GND

C1

USB 
Port 1

USB 
Port 2

USB logic
Port 1

5V DC

Figure 9: Power line crosstalk leakage mechanism. The
parasitic capacitance is marked by C1.

Next, since the power lines of all of the USB ports are
generally interconnected inside the hub controller chip,
the data-to-power crosstalk occurring in one port can be
also observed from another port.

3.3 Attacking USB 2.0 Devices
So far we have mainly focused on crosstalk leakage cre-
ated by USB 1.x devices (such as keyboards or other
human interface peripherals). Similar effects are also
present with high speed USB devices, such as USB stor-
age and webcam devices. However, since these devices
operate at a much greater speed, the experimental setup
used in Section 3.1 is no longer sufficient.

Experimental Setup. In order to observe the data
line crosstalk leakage from high speed USB 2.0 devices,
we used an Agilent DSO 90404A oscilloscope (6GHz,
20Gsps). We then connected a USB drive to one of the
hub’s downstream ports and used an Agilent N2795A
active probe in order to monitor the communication be-
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Figure 10: USB 2.0 data line crosstalk leakage from a
hub of the same make as the one used in Figure 6. The
yellow (top) trace shoes the USB traffic and the blue (bot-
tom) trace shows the observed data line crosstalk leakage
measured from an adjacent downstream port (manually
aligned with the yellow trace by subtracting 4ns).

tween the USB drive and the PC host while transferring
files from the USB drive to the PC host. Finally, we used
an Agilent N2752A differential probe in order to moni-
tor the voltage between the D+ and D- lines on one of the
hub’s other downstream ports.
Observing USB 2.0 Data Line Crosstalk Leakage.
Figure 10 shows that resulting data line crosstalk leak-
age while transferring data from the USB drive to the
host PC. The correlation between the actual data (yel-
low, top) and the observed data line crosstalk leakage
(blue, bottom) can clearly be seen. We recall that while
USB downstream traffic (from the PC host to the USB
devices) is broadcasted, USB upstream traffic (such as
transferring files from the USB drive to the PC host) is
not broadcasted. Thus, it should not be possible to ob-
serve the data being transferred from the USB drive to
the host PC.

4 Leakage Decoding
4.1 Decoding USB Traffic
Physical Layer. As mentioned in Section 2, both
USB 1.x and USB 2.0 use a two-wire differential com-
munication bus, whose wires we denote by D+ and D-.
Theoretically, the voltage of D+ relative to D- should be
one of two values, either ‘high’ (3.3V for USB 1.x and
300mV for USB 2.0) or ‘low’ (−3.3V for USB 1.x and
-300mV for USB 2.0).
Non Return to Zero Inverted (NRZI) Encoding. Both
USB 1.x and USB 2.0 use NRZI encoding in order to
transmit individual bits across the communication bus.
One bit is transmitted in each clock cycles, with zeroes
represented at the physical layer as transitions between
the low and the high voltage levels whereas ones are
represented as a lack of transition, i.e. keeping the volt-
age constant across the clock cycle. To maintain clock
synchronization, the USB bus avoids long periods of no

transitions using bit stuffing encoding [11]. More specif-
ically, it inserts a zero after every sequence of six con-
secutive ones. At the receiving end, voltage transitions
are used to maintain clock synchronization. The receiver
otherwise ignores the artificially inserted zeroes.

Decoding USB Packets. Figure 11 presents a USB
transfer between a host and a USB keyboard. It shows
the signal that represents the communication (blue, top)
alongside the corresponding leakage captured on the data
lines of another port of the hub (green, bottom). The
transfer consists of a clock synchronization followed by a
token packet from the host, requesting information about
keyboard presses. Following the token, we see the key-
board’s response which contains a payload with the key
press information.

Field SYNC PID ADDR ENDP CRC5
value 00000001 10010110 0101100 1000 10001

Comment – IN 0x0A 0x01 –

Note that the two halves of the PID field (1001 0110)
complement each other, signifying that the PID check
is correct and making it an incoming (IN) packet from
the PC to an attached peripheral with address ADDR at
endpoint ENDP. Next, as mentioned in Section 2, the to-
ken packet also contains a CRC5 field (using the poly-
nomial X5 +X2 +X0) of the ADDR and ENDP fields.
Indeed, performing long division of 010110 1000 over
100101 gives 10001, which is exactly the CRC5 field of
the packet. Finally, at the right bottom corner of Fig-
ure 11 there is a clip of payload carried in the DATA
packet whose value is 00010000. Since USB data is
transmitted least significant bit first, the transmitted value
is 0x08. This scancode matches the “E” key on the key-
board indicating that this key was pressed.

4.2 Decoding Data Line Crosstalk Leakage
We now present the signal processing techniques we use
to decode the information available via data line crosstalk
leakage. As Figure 11 shows, there is a clear correlation
between the data line crosstalk leakage (green, bottom)
and the actual USB communication (blue, top). How-
ever, the transition between signal levels in the leakage
trace are less clear than in the communication trace. In
order to automatically and reliably decode the informa-
tion present in the data line crosstalk leakage trace we
have performed the steps outlined below. These steps
are carefully chosen to allow implementation on cheap
and simple hardware that an adversary can conceal eas-
ily. See Section 6.

Step 1: Leakage Trace Cleanup. As can be seen
in Figure 12(top, black), the data line crosstalk leak-
age trace contains high frequency noise, making detect-
ing the bus transitions difficult. In order to remove this
high frequency noise, we have applied triangular window
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Figure 11: USB communication (blue, top) and data line crosstalk leakage (green, bottom) of a USB frame with a
keyboard attached to the USB hub. The data line crosstalk leakage was captured using the hub from Figure 6.

moving average filter. This removed the high frequency
spikes in the leakage trace, see Figure 12(top, blue).

Step 2: Transition Enhancement. To precisely locate
the bus transitions in the trace we produced at Step 1,
we calculated its derivative. That is, we want to find
V ′ = ∂V

∂ t where V denote the trace produced by Step 1
above. Simplifying this operation, we approximated the
derivative by subtracting from each sample at some lo-
cation t in V the sample present at location t−10 in V .2

Figure 12(middle) is the result of this derivative approx-
imation. Note that the rising edges appear as local max-
ima and the falling edges appears as local minima.

Step 3: Edge Detection. As mentioned in Section 4.1,
in the NRZI encoding the rising and the falling edges
are equivalent. Both represent a level toggle in physical
layer, which corresponds to a transmission of a zero bit.
Thus, we first compute the absolute value of the trace we
produced in Step 2, see Figure 12(black, bottom). Next,
in order to decode the data line crosstalk leakage accu-
rately, we need to know the exact times of the trace’s
edges. A naive approach would be to attempt to locate
all the local maxima of Figure 12(black, bottom). How-
ever this approach is unreliable as it might be distracted
by any noise, such as the glitches between samples 200
and 250 in Figure 12(black, bottom).

Instead, we apply a simple thresholding to locate the

2Note that (Vt −Vt−n)/n is a discrete approximation of the deriva-
tive at point t. In our case setting n = 10 seems to produce the best
results. Note further that because n is constant, discarding the division
does not affect the overall shape of the trace.

edges. As Figure 12(blue, bottom) shows, we used a
fixed threshold of 0.048 V.3 Next, every time the trace
(black) crosses the threshold low to high we consider
this to be a transition of the physical layer. See Fig-
ure 12(green, bottom).

Step 4: NRZI Decoding. As mentioned in Section 4.1,
in the USB protocol uses NRZI encoding. More specifi-
cally, the value of a transmitted bit is indicated by main-
taining a fixed signal level for a logical one and a transi-
tion between signal levels for a logical zero. To decode
the signal we use the timing of physical layer transitions
to find zeroes (Figure 12(green, bottom)). Next we use
the length of the intervals between transitions to find the
number of ones. Finally, to account for bit stuffing, we
remove any logical zero appearing after six consecutive
logical ones.

4.3 Decoding Power Line Crosstalk Leak-
age

We now turn to the signal processing techniques we
use to decode the information available via power line
crosstalk leakage. As can be seen from the red trace
in Figure 13, every transition between the high and low
levels on the USB communication lines creates a short,
sharp glitch on the USB power lines. Thus, to decode
the information present in the power line crosstalk leak-
age we performed the following.

As in Step 2 of Section 4.2, we approximated the first

3This value was set empirically and may vary between different
leaky hubs.
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Figure 12: Trace transformations performed to decode
the data line crosstalk leakage. (top, black) is the raw
data line crosstalk leakage from the hub in Figure 6 and
(top, blue) is the result of removing the high frequency
noise done in Step 1. (middle, red) is the result of ap-
plying the trace enhancement step (Step 2) on the results
of leakage trace cleanup step (Step 1). Finally, the (bot-
tom, black) trace is the absolute value of the (middle, red)
trace and the green markings denote all locations where
the bottom black trace crosses the blue threshold.

order derivative by subtracting each sample from the pre-
vious one. We then computed the absolute value of the
approximated derivative and smoothed the resulting trace
using a moving average filter of 10 samples. This re-
sulted in a relatively clean trace with the toggling in
physical layer clearly visible as sharp spikes. See Fig-
ure 14(blue). We then applied Steps 3 and 4 from Sec-
tion 4.2 using a threshold of 0.05 V for edge detection.
This resulted in a clear detection of the physical layer
toggling events. See Figure 14(green).

5 Leakage Crosstalk Attacks
In this section we present several crosstalk leakage at-
tacks against various peripheral USB devices.

Experimental Setup. We used an Agilent MSO6104A
oscilloscope (1GHz, 4Gsps) with Agilent 10073C
500MHz passive probes to monitor the communication
between the attacked peripheral and USB host while at
the same time monitoring either the data line or power
line crosstalk leakage.

Attacking USB Keyboards. Using data line crosstalk

leakage, we have successfully extracted keyboard
presses from USB keyboards, see Figure 15. Similar re-
sults were obtained using power line crosstalk leakage.
Finally, notice that in this case, the USB hub had two
additional USB devices connected to it (a USB mouse
and a USB headset) in additional to the USB keyboard.
Nonetheless, we have successfully extracted the key-
board presses, despite additional USB traffic from other
devices, functioning concurrently to USB keyboard.

Attacking USB Magnetic Card Readers. In addition
to USB keyboards, we have successfully extracted credit-
card data from a USB magnetic card reader (MagTek
21040140) using data line crosstalk leakage from an in-
ternal USB hub of a Lenovo Ideapad 100s laptop. See
Figure 16 for a picture of the experimental setup and Fig-
ure 17 for the extracted data. Similar results were also
obtained using power line crosstalk leakage.

Attacking USB Headsets and USB Fingerprint Read-
ers. Two other types of devices we successfully attacked
are USB headsets and USB Fingerprint Readers. For
the headsets, we captured the signals corresponding to
the microphone (see Figure 18). We have also success-
fully observed and decoded the USB communication of
a USB fingerprint reader during a finger swipe (see Fig-
ure 19). We did not attempt to decode either the voice
communication of the headset or the fingerprint data be-
cause these devices use propriety data-transfer formats,
and reverse engineering these is beyond the scope of this
paper. However, we did recover the USB traffic and with
the knowledge of the protocols, interpreting the captured
data should be straightforward.

Attacking USB Storage. In addition to attacking hu-
man interface devices, we have also mounted crosstalk
leakage attacks on USB 1.1 drives connected to both
internal and external USB 2.0 hubs. Indeed, we have
successfully recovered the communication during a file
transfer from a USB 1.1 drive to the PC host using data
line crosstalk leakage with both external and internal
USB 2.0 hubs. See Figure 20. Due to the complexity of
the USB driver stack and the file system, we did not at-
tempt to decode the obtained traffic. However, we claim
that since the USB communication was completely re-
covered from the crosstalk leakage, recovering the trans-
ferred file can be achieved as well. Finally, similar results
were also obtained using power line crosstalk leakage.

6 Exploiting Crosstalk Leakage via Mali-
cious Peripherals

In this section we show how to construct a malicious pe-
ripheral device (spy probe) which can successfully ex-
tract USB keyboard presses from the data line crosstalk
leakage. After extraction, the spy probe exfiltrates the
key presses via Bluetooth.
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6.1 Design Overview
Hardware. The spy probe is constructed from an Alinx
AX309 FPGA development board (30 USD) connected
to an AN108 analog to digital conversion (ADC) board
(15 USD) designed by heijin.org. Data is exfiltrated us-
ing a WeBee Bluetooth Low Energy (BLE) Board with
a Texas Instruments CC2540 chip (5 USD). All of the
probe’s components are concealed in a USB ghost lamp
(20 USD). See Figure 21. In case the 5V USB power is
not available (such as in the case where the power lines
are disconnected in an attempt to isolate a malicious de-
vice), the lamp also contains a battery pack.

The ADC Board. We have connected the ADC board
to a male A-type USB plug which should be plugged
into the leaky USB hub in order to monitor the data line
crosstalk leakage. We have connected the ADC’s input
to the D+ USB line and monitored its voltage relative to

Figure 15: Extracting keyboard presses using data line
crosstalk leakage. The scan code 0x07 corresponding to
the letter d is clearly visible in the leakage trace.

the GND line. We have also used the USB’s 5V power
line in order to power the probe.4 Our ADC board has
a clamp circuit, attenuator (AD8065), low pass filter and
an 8 bit 32 MSaps ADC in a chain. The clamp is a pro-
tective element consisting of two germanium diodes, to
ensure that the voltage of the signal feed into the ADC
never goes above 5 Volts or below GND. Immediately
after the clamp there is an attenuator, mapping the in-
put signal of ± 5 Volts into a 0–2 Volt range. In order
to remove high frequency noise, there a simple RC low-
pass filter ( fc = 723MHz) between the attenuator and the
ADC. Finally a AD9280 ADC is used to digitize the data

4As mentioned above, the spy probe also contains a battery pack for
the case where the 5V power is not available.
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Figure 16: (left) Experimental setup for extracting credit card data from a USB card reader (MagTek 21040140 card
reader and a Lenovo Ideapad 100s laptop) using data line crosstalk leakage (clearly visible on the oscilloscope’s
screen) from an internal USB hub. (right) MagTek 21040140 USB magnetic card reader.

Figure 17: Extracted credit card data using data line crosstalk leakage. (top) Observed data line crosstalk leakage
trace segment. Part of the credit card number is visible in hexadecimal encoding (marked in orange box). (middle)
hexadecimal to ascii conversion of the extracted data. Part of the credit card number is visible in ascii form (green).
(bottom) picture of the credit card used. Notice the correct extraction of the credit card number. In order to protect
owner’s privacy we have hidden all other card details.

line crosstalk leakage signal. The ADC receives its clock
from the FPGA board and transmits 8 bits of data per
sample back to the FPGA board. Because the signals we
measure are typically 30mV peak to peak, we bypassed
the attenuator with a jumper cable thereby improving the
measurement resolution. See Figure 22.

Software. In order to decode the data line crosstalk
leakage recorded by the probe’s ADC board, we have im-
plemented a highly optimized version of the signal pro-
cessing approach described in Section 4.2 on the probe’s
FPGA board, in Verilog HDL. After decoding the data

line crosstalk leakage, the spy probe filters out USB
packets which correspond to keyboard presses and ex-
filtrates them via a bluetooth connection.

6.2 Attack Performance
In this section we evaluate our spy probe’s ability to cor-
rectly recognize and exfiltrate USB keyboard presses.

Experimental Setup. We used a Microsoft SurfacePro
laptop as a USB host. This machine has only one USB
slot, forcing the end user to use an external USB hub in
order to simultaneously connect a keyboard and mouse.
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Figure 18: (left) Experimental setup for observing data line crosstalk leakage from a USB headset microphone (Log-
itech H340). The data line crosstalk leakage is clearly visible on the oscilloscope’s screen. (right) Logitech H340 USB
headset.

Figure 19: (left) Experimental setup for observing data line crosstalk leakage from a USB fingerprint reader (Eikon
Trueme). The data line crosstalk leakage is clearly visible on the oscilloscope’s screen. (right) Eikon Trueme finger-
print reader

Figure 20: Observing the data line crosstalk leakage during a file transfer from a USB 1.1 drive (blue), connected to
the laptop’s (Lenovo G550) internal USB 2.0 hub using an Agilent Infiniium DSO 54832B Oscilloscope. The data
line crosstalk leakage is clearly visible on the oscilloscope’s screen.

We then connected the keyboard, spy probe, mouse and
the USB drive via a 4 port USB hub. See Figure 23.

Key Recognition Rate. We measured the spy probe’s
key recognition rate under various typing speeds. Using

a digital metronome as a speed reference, we pressed a
random key on every metronome pulse. We evaluated the
spy probe’s ability to operate at various typing speeds.
As can be seen in Figure 24, the spy probe achieves 97%
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Figure 21: The external appearance of the spy probe, which is embedded inside a toy ghost lamp, size is compared
with a 375mL classic Coca-Cola can (left). Inside look of the spy probe, showing the ADC board, FPGA board, BLE
board and battery pack (right).

Figure 22: Analog front-end and ADC

accuracy rate for typing speeds from 150 KPM (Key-
press Per Minute) to 210 KPM. Notice that average adult
typing speed is between 36 and 45 words per minutes,
equivalent to 200 KPM.5

Figure 23 is a complete demonstration of our attack.
We typed “USB CROSSTALK” on the keyboard while
the spy probe was monitoring the data line crosstalk leak-
age, exfiltrating the key presses via bluetooth to the at-
tacker’s computer.

7 Conclusions
In this paper we present two attacks on the USB bus,
which expose upstream traffic hitherto considered safe
against off-path adversaries. The attacks exploit the elec-
trical properties of USB hubs and affect both internal
hubs and external hubs. Traditional countermeasures,
such as blocking the power or the data lines, do not pro-
tect against our attack. We now describe potential coun-
termeasures against the attacks.

Hardware Countermeasures. One possible solution
to completely remove any crosstalk leakage is optically
decoupling the USB data lines and constructing a ded-
icated 5V supply for each downstream port. However
such solutions are expensive and require careful design.
A cheap countermeasure which significantly reduces the
power line crosstalk leakage uses an LC low pass filter
and LDO (low dropout regulator) to decouple the USB
power lines from the data lines. Figure 25 presents an im-
proved USB condom which, in addition to disconnecting
the USB data lines, also attempts to suppress any signal

5http://typefastnow.com/average-typing-speed

above 300Hz. As can be seen in Figure 26, our improved
USB condom is able to significantly reduce the data line
crosstalk leakage, thus requiring far more sensitive mea-
surement equipment to exploit the small remaining leak-
age.

Frequency filtering cannot be used to protect the data
lines against crosstalk leakage. The leaked signal carries
the same basic frequencies as the original signal. Hence
any frequency-based filtering that removes the leakage
frequencies will also remove the signal frequencies. We
leave the problem of designing hardware countermea-
sures to data line leakage to future work.

Software Countermeasures. The lack of encryption in
the USB protocol is a major design limitation of the bus.
Without encryption, the design is unable to guarantee the
confidentiality and the integrity of messages. Adding
end-to-end encryption, for example using the methodol-
ogy of [7] would protect messages from eavesdropping
attacks such as those we describe in this work. Sim-
pler approaches, such as encryption with a session key
generated, for example, using the Diffie-Hellman key
exchange protocol [20], could also mitigate our attack.
Both approaches require devices to have sufficient com-
putational power to perform public key operations.

Future Work. Our spy probe implementation uses
commercial off-the-shelf components. Because these are
not optimized for the task of capturing USB traffic, they
require relatively large space and consume a lot of power.
Designing dedicated hardware carries the promise of a
small-sized implementation that can be embedded in in-
conspicuous looking devices and even within the USB
plug [40].

While our attack does apply to non-USB 3.0 devices
connected to USB 3.0 hubs (see Figure 4(d)), one limi-
tation of our work is that it does not apply to USB 3.0
devices connected to USB 3.0 hubs. This is because
USB 3.0 devices connected to USB 3.0 hubs simulta-
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Figure 23: Demonstration of our attack. (left) Phrase being typed on the Surface Pro via a USB keyboard. (right)
extracted key presses corresponding to the string “USB CROSSTALK”.
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Figure 24: Recognition rate over typing rate range from
150 KPM to 210 KPM.

neously use three differential wire pairs and employ a
much higher transmission rate. This configuration sig-
nificantly exceeds the specifications of our measurement
equipment (both in measurement speed and number of
channels). While more difficult to attack, USB 3.0 de-
vices connected to USB 3.0 hubs present a lucrative tar-
get, in particular because in this configuration the down-
stream communication, like upstream communication,
is unicasted from the host to the device. Exploiting
crosstalk effects on such configurations would therefore
expose downstream traffic (in addition to upstream traf-
fic) to off-path attackers. As we mentioned earlier, in-
put devices, which often send sensitive information to
the host, mostly use USB 1.x Hence, even though our at-
tack does not apply to the newest version of the protocol
(USB 3.0), it remains relevant.

The current research applies to USB devices. Further
research is required to check if other buses and commu-
nication networks are vulnerable to crosstalk attacks.
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Figure 25: A USB condom which attempts to suppress
power line crosstalk leakage.
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Abstract
Microcode is an abstraction layer on top of the phys-

ical components of a CPU and present in most general-
purpose CPUs today. In addition to facilitate complex and
vast instruction sets, it also provides an update mechanism
that allows CPUs to be patched in-place without requiring
any special hardware. While it is well-known that CPUs
are regularly updated with this mechanism, very little is
known about its inner workings given that microcode and
the update mechanism are proprietary and have not been
throughly analyzed yet.

In this paper, we reverse engineer the microcode seman-
tics and inner workings of its update mechanism of con-
ventional COTS CPUs on the example of AMD’s K8 and
K10 microarchitectures. Furthermore, we demonstrate
how to develop custom microcode updates. We describe
the microcode semantics and additionally present a set of
microprograms that demonstrate the possibilities offered
by this technology. To this end, our microprograms range
from CPU-assisted instrumentation to microcoded Tro-
jans that can even be reached from within a web browser
and enable remote code execution and cryptographic im-
plementation attacks.

1 Introduction

Similar to complex software systems, bugs exist in vir-
tually any commercial Central Processing Unit (CPU)
and can imply severe consequences on system security,
e.g., privilege escalation [22, 36] or leakage of cryp-
tographic keys [11]. Errata sheets from embedded to
general-purpose processors list incorrect behavior with
accompanying workarounds to safeguard program exe-
cution [4, 29]. Such workarounds contain instructions
for developers on how these bugs can be bypassed or
mitigated, e.g., by means of recompilation [40] or bi-
nary re-translation [26]. However, these interim solutions
are not suited for complex design errors which require

hardware modifications [48]. Dedicated hardware units
to counter bugs are imperfect [36, 49] and involve non-
negligible hardware costs [8]. The infamous Pentium fdiv
bug [62] illustrated a clear economic need for field up-
dates after deployment in order to turn off defective parts
and patch erroneous behavior. Note that the implementa-
tion of a modern processor involves millions of lines of
HDL code [55] and verification of functional correctness
for such processors is still an unsolved problem [4, 29].

Since the 1970s, x86 processor manufacturers have
used microcode to decode complex instructions into series
of simplified microinstructions for reasons of efficiency
and diagnostics [43]. From a high-level perspective, mi-
crocode is an interpreter between the user-visible Com-
plex Instruction Set Computer (CISC) Instruction Set Ar-
chitecture (ISA) and internal hardware based on Reduced
Instruction Set Computer (RISC) paradigms [54]. Al-
though microcode was initially implemented in read-only
memory, manufacturers introduced an update mechanism
by means of a patch Random Access Memory (RAM).

Once erroneous CPU behavior is discovered, manu-
facturers publish a microcode update, which is loaded
through the BIOS/UEFI or operating system during the
boot process. Due to the volatility of the patch RAM, mi-
crocode updates are not persistent and have to be reloaded
after each processor reset. On the basis of microcode
updates, processor manufacturers obtain flexibility and
reduce costs of correcting erroneous behavior. Note that
both Intel and AMD deploy a microcode update mecha-
nism since Pentium Pro (P6) in 1995 [15, 30] and K7 in
1999 [2, 15], respectively. Unfortunately, CPU vendors
keep information about microcode secret. Publicly avail-
able documentation and patents merely state vague claims
about how real-world microcode might actually look like,
but provide little other insight.

Goals. In this paper, we focus on microcode in x86
CPUs and our goal is to answer the following research
questions:
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1. What is microcode and what is its role in x86 CPUs?

2. How does the microcode update mechanism work?

3. How can the proprietary microcode encoding be
reverse engineered in a structured, semi-automatic
way?

4. How do real-world systems profit from microcode
and how can malicious microcode be leveraged for
attacks?

In order to answer question (1), we emphasize that in-
formation regarding microcode is scattered among many
sources (often only in patents). Hence, an important part
of our work is dedicated to summarize this prerequisite
knowledge forming the foundation to answer the more
in-depth research questions. Furthermore, we tackle short-
comings of prior attempted security analyses of x86 mi-
crocode, which were not able to reverse engineer mi-
crocode [6, 15]. We develop a novel technique to reverse
engineer the encoding and thus answer question (2). After
we obtain a detailed understanding of the x86 microcode
for several CPU architectures, we can address question (3).
As a result, we obtain an understanding of the inner work-
ings of CPU updates and can even generate our own up-
dates. In particular, we focus on potential applications of
microprograms for both defensive and offensive purposes
to answer question (4). We demonstrate how a micropro-
gram can be utilized to instrument a binary executable on
the CPU layer and we also introduce different kinds of
backdoors that are enabled via microcode updates.

Our analysis focuses on the AMD K8/K10 microarchi-
tecture since these CPUs do not use cryptographic signa-
tures to verify the integrity and authenticity of microcode
updates. Note that Intel started to cryptographically sign
microcode updates in 1995 [15] and AMD started to de-
ploy strong cryptographic protection in 2011 [15]. We
assume that the underlying microcode update mechanism
is similar, but cannot analyze the microcode updates since
we cannot decrypt them.

Contributions. In summary, our main contributions in
this paper are as follows:

• In-depth Analysis of Microcode. We provide an
in-depth overview of the opaque role of microcode
in modern CPUs. In particular, we present the funda-
mental principles of microcode updates as deployed
by vendors to patch CPU defects and errors.

• Novel RE Technique. We introduce the first semi-
automatic reverse engineering technique to disclose
microcode encoding of general-purpose CPUs. Fur-
thermore, we describe the design and implementa-
tion of our framework that allows us to perform this
reverse engineering.

• Comprehensive Evaluation. We demonstrate the
efficacy of our technique on several Commercial Off-
The-Shelf (COTS) AMD x86 CPU architectures. We
provide the microcode encoding format and report
novel insights into AMD x86 CPU internals. Addi-
tionally, we present our hardware reverse engineer-
ing findings based on delayering actual CPUs.

• Proof-of-Concept Microprograms. We are the
first to present fully-fledged microprograms for x86
CPUs. Our carefully chosen microprograms high-
light benefits as well as severe consequences of un-
veiled microcode to real-world systems.

2 Related Work

Before presenting the results of our analysis process, we
briefly review existing literature on microprogramming
and related topics.

Microprogramming. Since Wilkes’ seminal work in
1951 [61], numerous works in academia as well as in-
dustry adopted and advanced microprogrammed CPU
designs. Diverse branches of research related to micro-
programming include higher-level microcode languages,
microcode compilers and tools, and microcode verifica-
tion [5, 43, 56]. Other major research areas focus on
optimization of microcode, i.e., minimizing execution
time and memory space [32]. In addition, several applica-
tions of microprogramming were developed [27] such as
diagnostics [41].

Since microcode of today’s x86 CPUs has not been
publicly documented yet, several works attempted a high-
level security analysis for CPUs from both Intel and
AMD [6, 15]. Even though these works reported the
workings of the microcode update mechanism, the pur-
pose of fields within the microcode update header, and
the presence of other metadata, none of the works was
able to reverse engineer the essential microcode encoding.
Hence, they were not able to build microcode updates on
their own.

We want to note that Arrigo Triulzi presented at
TROOPERS’15 and ’16 that he had been able to patch
the microcode of an AMD K8 microarchitecture [59, 60].
However, he did neither publish the details of his reverse
engineering nor the microcode encoding.

Imperfect CPU Design. Although microcode updates
can be leveraged to rectify some erroneous behavior, it
is not a panacea. Microcode updates are able to degrade
performance due to additional condition checks and they
cannot be applied in all cases. An infamous example is
AMD’s K7, where the microcode update mechanism itself
was defective [2, 15]. In order to tackle these shortcom-
ings, diverse techniques have been proposed including dy-
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namic instruction stream editing [16], field-programmable
hardware [49], and hardware checks [8, 36].

Trusted Hardware. The security of applications and
operating systems builds on top of the security of the un-
derlying hardware. Typically software is not designed to
be executed on untrusted or potentially malicious hard-
ware [11, 20, 22]. Once hardware behaves erroneously
(regardless of whether deliberately or not), software se-
curity mechanisms can be invalidated. Numerous secure
processors have been proposed over the years [18, 23, 37].
Commercially available examples include technologies
such as Intel SGX [17] and AMD Pacifica [3].

However, the periodicity of security-critical faults [4,
29] and undocumented debug features [22] in closed-
source CPU architectures challenges their trustworthi-
ness [17, 45].

3 Microcode

As noted earlier, microcode can be seen as an abstraction
layer on top of the physical components of a CPU. In
this section, we provide a general overview of the mecha-
nisms behind microcode and also cover details about the
microcode structure and update mechanism.

3.1 Overview
The ISA provides a consistent interface to software and
defines instructions, registers, memory access, I/O, and
interrupt handling. This paper focuses on the x86 ISA,
and to avoid confusion, we refer to x86 instructions as
macroinstructions. The microarchitecture describes how
the manufacturer leveraged processor design techniques
to implement the ISA, i.e., cache size, number of pipeline
stages, and placement of cells on the die. From a high-
level perspective, the internal components of a processor
can be subdivided into data path and control unit. The data
path is a collection of functional units such as registers,
data buses, and Arithmetic Logic Unit (ALU). The con-
trol unit contains the Program Counter (PC), the Instruc-
tion Register (IR) and the Instruction Decode Unit (IDU).
The control unit operates diverse functional units in order
to drive program execution. More precisely, the control
unit translates each macroinstruction to a sequence of
actions, i.e., retrieve data from a register, perform a cer-
tain ALU operation, and then write back the result. The
control signal is the collection of electrical impulses the
control unit sends to the different functional unit in one
clock cycle. The functional units produce status signals
indicating their current state, i.e., whether the last ALU
operation equals zero, and report this feedback to the con-
trol unit. Based on the status signals, the control unit may
alter program execution, i.e., a conditional jump is taken
if the zero flag is set.

The IDU plays a central role within the control unit and
generates control signals based on the contents of the in-
struction register. We distinguish between two IDU imple-
mentation concepts: (1) hardwired and (2) microcoded.

Hardwired Decode Unit. A hardwired decode unit is
implemented through sequential logic, typically a Finite
State Machine (FSM), to generate the instruction-specific
sequence of actions. Hence, it provides high efficiency
in terms of speed. However, for complex ISAs the lack
of hierarchy in an FSM and state explosion pose chal-
lenging problems during the design and test phases [50].
Hardwired decode units inhibit flexible changes in the
late design process, i.e., correcting bugs that occurred
during test and verification, because the previous phases
have to be repeated. Furthermore, post-manufacturing
changes (to correct bugs) require modification of the hard-
ware, which is not (economically) viable for deployed
CPUs [62]. Hence, hardwired decode units are suited for
simple ISAs such as RISC processors like SPARC and
MIPS.

Microcoded Decode Unit. In contrast to the hard-
wired approach, the microcoded IDU does not generate
the control signals on-the-fly, but rather replays precom-
puted control words. We refer to one control word as
microinstruction. A microinstruction contains all con-
trol information required to operate all involved func-
tional units for one clock cycle. We refer to a plurality
of microinstructions as microcode. Microinstructions are
fetched from the microcode storage, often implemented
as on-chip Read-Only Memory (ROM). The opcode bytes
of the currently decoded macroinstruction are leveraged
to generate an initial address, which serves as the en-
try point into microcode storage. Each microinstruction
is followed by a sequence word, which contains the ad-
dress to the next microinstruction. The sequence word
may also indicate that the decoding process of the cur-
rent macroinstruction is complete. It should be noted that
one macroinstruction often issues more than one microin-
struction. The microcode sequencer operates the whole
decoding process, successively selecting microinstruc-
tions until the decode complete indicator comes up. The
microcode sequencer also handles conditional microcode
branches supported by some microarchitectures. Precom-
puting and storing control words introduces flexibility:
Changes, patches, and adding new instructions can be
moved to the late stages of the design process. The design
process is simplified because changes in decode logic
only require adaption of the microcode ROM content. On
the downside, decoding latency increases due to ROM
fetch and multistage decode logic. A microcoded IDU is
the prevalent choice for commercial CISC processors.
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3.2 Microcode Structure

Two common principles exist to pack control signals
into microinstructions. This choice greatly influences
the whole microarchitecture and has a huge impact on the
size of microcode programs.

Horizontal Encoding. The horizontal encoding desig-
nates one bit position in the microinstruction for each con-
trol signal of all functional units. For the sake of simple
logic and speed, no further encoding or compression is ap-
plied. This results in broad control words, even for small
processors. The historical IBM System/360 M50 pro-
cessor with horizontally-encoded microcode used 85-bit
control words [53]. The nature of horizontal microcode
allows the programmer to explicitly address several func-
tional units at the same time to launch parallel computa-
tions, thus using the units efficiently. One disadvantage is
the rather large microcode ROM due to the long control
words.

Vertical Encoding. Vertically encoded microcode may
look like a common RISC instruction set. The microin-
struction usually contains an opcode field that selects the
operation to be performed and additional operand fields.
The operand fields may vary in number and size depend-
ing on the opcode and specific flag fields. Bit positions
can be reused efficiently, thus the microinstructions are
more compact. The lack of explicit parallelism simplifies
the implementation of microcode programs, but may im-
pact performance. One encoded operation may activate
multiple control signals to potentially several functional
units. Hence, another level of decoding is required. The
microcode instruction set and encoding should be cho-
sen carefully to keep the second-level decoding overhead
minimal.

3.3 Microcode Updates

One particular benefit of microcoded microarchitectures
is the capability to install changes and bug fixes in the late
design process. This advantage can be extended even fur-
ther: With the introduction of microcode updates, one can
alter processor behavior even after production. Manufac-
turers leverage microcode patches for debugging purposes
and fixing processor errata. The well-known fdiv bug [62],
which affected Intel Pentium processors in 1994, raised
awareness that similarly to software, complex hardware is
error-prone, too. This arguably motivated manufacturers
to drive forward the development of microcode update
mechanisms. Typically, a microcode patch is uploaded
to the CPU by the motherboard firmware (e.g., BIOS
or UEFI) or the operating system during the early boot
process. Microcode updates are stored in low-latency,
volatile, on-chip RAM. Consequently, microcode patches
are not persistent. Usually, the microcode patch RAM

is fairly limited in size compared to microcode ROM.
A microcode patch contains a number of microinstruc-
tions, sequence words, and triggers. Triggers represent
conditions upon which the control is transferred from
microcode ROM to patch RAM. In a typical use case,
the microcode patch intercepts the ROM entry point of
a macroinstruction. During instruction decode, the mi-
crocode sequencer checks the triggers and redirects con-
trol to the patch RAM if needed. A typical microcode
program residing in patch RAM then may, for example,
sanitize input data in the operands and transfer control
back to the microcode ROM.

4 Reverse Engineering Microcode

In this section, we provide an overview of the AMD K8
and K10 microarchitecture families and describe our re-
verse engineering approach. Furthermore, we present our
analysis setup and framework that includes prototype im-
plementations of our concepts and supported our reverse
engineering effort in a semi-automated way.

Our analysis primarily covers AMD K8 and K10 pro-
cessors because—to the best of our knowledge—they are
the only commercially available, modern x86 microar-
chitectures lacking strong cryptographic protection of
microcode patches.

4.1 AMD K8 and K10
AMD released new versions of its K8 and K10 processors
from 2003 to 2008 and 2008 to 2013, respectively. Note
that the actual production dates may vary and in 2013 only
two low-end CPU models with K10 architecture were
released. K9 is the K8’s dual-core successor, hence the
difference is marginal from our point of view. Family 11h
and 12h are adapted K10 microarchitectures for mobile
platforms and APUs.

All of theses microarchitectures include a microcoded
IDU. The x86 instruction set is subdivided into direct
path and vector path macroinstructions. The former
mainly represent the frequently used, performance crit-
ical macroinstructions (e.g., arithmetic and logical op-
erations) that are decoded by hardware into up to three
microinstructions. The latter are uncommon or complex,
and require decoding by the microcode sequencer and
microcode ROM. Vector path macroinstructions may pro-
duce many microinstructions. During execution of the
microcode sequencer, hardware decoding is paused. The
microcode is structured in triads of three 64-bit microin-
structions and one 32-bit sequence word [15]. An ex-
ample microinstruction set is described in AMD’s patent
RISC86 [24] from 2002. The sequence word may contain
the address of the next triad or indicate that decoding
is complete. The microcode ROM is addressed in steps
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whose length is a triad. An example address space rang-
ing from 0x0 to 0xbff thus contains 3,072 triads. The
microcode is responsible for the decoding of vector path
macroinstructions and handling of exceptions, such as
page faults and divide-by-zero errors.

4.2 Update Mechanism

The K7, released in 1999, was AMD’s first microarchitec-
ture supporting microcode updates. The update mecha-
nism did not change throughout to the 12h family. AMD
kept the update feature secret until it was exposed along
with three K8 microcode patches in 2004. The patches
and the update mechanism were reverse engineered from
BIOS updates [6]. The microcode updates are stored
in a proprietary file format, although pieces of informa-
tion have been reverse engineered [6, 15]. With the K10
microarchitecture, AMD started to publicly release mi-
crocode updates, which benefits the Linux open-source
microcode update driver. Our view of the file format is
depicted in Table 1 including the header with checksum
and number of triads, match register fields, and triads.
It should be noted that triads in microcode updates are
obfuscated with an algorithm we do not specify further
due to ethical considerations.

B↓ Bit→ 0 31 32 63
0 date patch ID
8 patch block len init checksum
16 northbridge ID southbridge ID
24 CPUID magic value
32 match register 0 match register 1
40 match register 2 match register 3
48 match register 4 match register 5
54 match register 6 match register 7
64 triad 0, microinstruction 0
72 triad 0, microinstruction 1
80 triad 0, microinstruction 2
88 triad 0, sequence word triad 1 ...

Table 1: Microcode update file format.

Microcode Update Procedure. The microcode up-
date binary is uploaded to the CPU in the following way:
First, the patch must be placed in accessible virtual ad-
dress space. Then the 64-bit virtual address must be
written to Model-Specific Register (MSR) 0xc0010020.
Depending on the update size and microarchitecture, the
wrmsr instruction initiating the update may take around
5,000 cycles to complete. Rejection of a patch causes
a general protection fault. Internally, the update mecha-
nism verifies the checksum, copies the triads to microcode
patch RAM, and stores the match register fields in the
actual match registers. Patch RAM is mapped into the
address space of the microcode ROM, whereby the patch
triads directly follow the read-only triads.

Match Registers. The match registers are an integral
part of the update mechanism. They hold a microcode
ROM address, intercept the triad stored at that location,
and redirect control to the triad in patch RAM at the
offset match register index · 2. The shared address space
enables microcode in the patch RAM to jump back to
microcode ROM, e.g., to reuse existing triads. Due to the
complexity of the microcode update procedure we assume
it is implemented in microcode itself. We summarize
our understanding of the microcode update mechanism
in Figure 1. AMD’s patent [39] from 2002 describes an
example microcode patch device and provides an idea of
how the internals work.

Figure 1: Overview ofthe AMD microcode update mech-
anism.

4.3 Reverse Engineering Methods
Based on our insights into microcode and its update mech-
anism, we now detail our novel method used to reverse
engineer the microcode encoding. More precisely, we
employ a (1) low-noise environment as a foundation for
the novel (2) microcode ROM heat map generation, and
(3) the microcode encoding reverse engineering. Further-
more, we present (4) microcode hooking which ultimately
enables actual modification of CPU behavior.

We would like to emphasize that our methods were
developed when we did not have access to microcode
ROM, see Section 6.

Low-Noise Environment. Since we did not have ac-
cess to CPU internals, we had to be able to apply our
crafted microcode updates and carefully analyze the mod-
ified CPU’s behavior (e.g., register values and memory
locations). To pinpoint exactly where the changes caused
effects (down to a single macroinstruction), we had to
eliminate any noise from parallel or operating system
code executions out of our control. For example, com-
mon operating systems implement task switching or fully
symmetric multiprocessing, which is undesirable in our
setting. This code execution is capable of triggering ab-
normal behavior (because of our microcode update) and
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then most likely causes a system crash. Hence, we require
a low-noise environment where we have full control of all
code to realize accurate observation of the CPU state and
behavior.

Microcode ROM Heat Maps. As described in Sec-
tion 4.2, match registers hold microcode ROM addresses.
Since we did not know which microcode ROM addresses
belong to which macroinstructions, we were not able to
change the behavior for a specific microcoded macroin-
struction. Hence, we devised microcode ROM heat maps,
a method to discover the corresponding memory location
for microcoded macroinstructions.

The underlying idea is to generate distinct behavior
between the original and the patched macroinstruction ex-
ecution. More precisely, the patch contains a microcode
instruction that always crashes on execution. Thereby,
we generate a heat map for each macroinstruction in an
automated way: we store whether the microcode ROM
address causes a system crash or not. The comparison
between original and patched execution reveals which
microcode ROM addresses correspond to the macroin-
struction. We further automatically processed all heat
maps to exclude common parts among all macroinstruc-
tions.

Microcode Encoding Reverse Engineering. Based
on our automatically generated heat maps, we were able
to tamper with a specific microcoded macroinstruction.
However, we could not meaningfully alter an instruction
because of its proprietary encoding. Hence, we devel-
oped a novel technique to reverse engineer proprietary
microcode encoding in a semi-automatic way.

Since we did not have a large microcode update base
on which we could perform fine-grained tests, we merely
had a black box model of the CPU. However, since mi-
croinstructions control ALU and register file accesses, we
formed various general assumptions about the instruction
fields, which can be systematically tested using semi-
automatic tests (e.g., opcode, immediate value, source
and destination register fields).

In order to reverse engineer the encoding, we applied a
two-tiered approach. First, we identified fields by means
of bits that cause similar behavior, i.e., change of used reg-
isters, opcode, and immediate value. Second, we exhaus-
tively brute-forced each field to identify all addressable
values. Since corresponding fields are small (< 10 bits),
we combined the results together and gradually formed
a model of the encoding. Note that through detailed ex-
ception reporting and paging, we were able to gather
detailed information on why a specific microinstruction
caused a crash. Earlier in the reverse engineering process,
we set the three microinstructions in a triad to the same
value to avoid side effects from other unknown microin-
structions. Once we had a better understanding of the
encoding, we padded the triad with no-operation microin-

structions. Later in the reverse engineering process, we
designed tests that reuse microinstructions from existing
microcode updates. For that method to be successful, a
good understanding of the operand fields was required as
most of these microinstructions operate on internal reg-
isters. We had to rewrite the register fields to be able to
directly observe the effect of the microinstruction. Fur-
thermore, we designed automated tests that identified set
bits in unknown fields of existing microinstructions and
permuted the affected bit locations in order to provoke
observable differences in behavior that can be analyzed.

Microcode Hooks. After reverse engineering the mi-
crocode encoding, we can arbitrarily change CPU be-
havior for any microcoded macroinstruction and inter-
cept control for any microcode ROM address. Note that
we intercepted a macroinstruction at the entry point mi-
crocode ROM address. In order to realize a fully-fledged
microcode hook mechanism, we have to correctly pass
back control after interception through our microcode up-
date. This is indispensable in case macroinstructions are
extended with functionality, such as a conditional operand
check, while preserving original functionality.

We employed two basic concepts to resume macroin-
struction computation after interception: (1) pass control
back to ROM, and (2) implement the macroinstruction
computation. Note that we implemented both resume
strategies, see Section 7.

4.4 Framework

One fundamental requirement for our framework was
automated testing. Combined with the fact that microcode
updates potentially reset or halt the entire machine, it
became apparent that another controller computer was
needed. In the following, we describe both our hardware
setup and our framework implementation.

Hardware Setup. From a high-level point of view, the
hardware setup consists of multiple nodes and several de-
velopment machines. Each node represents one minimal
computer with an AMD CPU that runs our low-noise envi-
ronment and is connected to a Raspberry Pi via serial bus.
To enable monitoring and control, the mainboard’s power
and reset switch as well as the power supply’s +3.3V are
connected to GPIO ports. The Raspberry Pis run Linux
and can be remotely controlled from the Internet. The
development machines are used to design test cases and
extend the microcode API. Furthermore, test cases can be
launched from the development machines. This process
automatically transfers the test case and the latest API
version to the desired nodes, which then autonomously
execute the test case and store the results. Our test setup
consists of three nodes with K8 Sempron 3100+ (2004),
K10 Athlon II X2 260 (2010), and K10 Athlon II X2 280
(2013) processors.
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Low-Noise Environment. To fulfil our unusual re-
quirements regarding the execution environment (e.g.,
full control over interrupts and all code being executed),
we implemented a simple operating system from scratch.
It supports interrupt and exception handling, virtual mem-
ory, paging, serial connection, microcode updates, and
execution of streamed machine code. The streamed ma-
chine code serves the purpose of bringing the CPU to the
desired initial state, executing arbitrary macroinstructions,
and observing the final state of the CPU. We leveraged
this feature primarily to execute vector path instructions
intercepted by a microcode patch. This way, we can
infer the effects of triads, single microinstructions, and
the sequence word. Note that only the final state can be
observed in case no exception occurs.

We implemented interrupt and exception handling in
order to observe the intermediate state of the CPU and
the exception code such as general protection faults. The
error state includes the faulting program counter and stack
pointer as well as the x86 general-purpose registers. We
refined the preciseness of the error reporting by imple-
menting virtual memory and paging support. All excep-
tions related to memory accesses raise page faults with
additional information such as the faulting address and ac-
tion. This information, paired with the information about
the faulting program counter, allows us to distinguish be-
tween invalid read, write, and execution situations. We
also used the exception code and observed the interme-
diate state to infer the effects of microcode. A custom
message protocol exposes the following operating system
features via serial connection: (1) stream x86 machine
code, (2) send and apply microcode update, and (3) report
back the final or intermediate CPU state. Some of the
test processors support x86 64 long mode, which lets the
CPU access 64-bit instructions and registers. However,
our operating system runs in 32-bit protected mode.

Microcode API. Our controller software is imple-
mented in Python and runs on the Raspberry Pis. It pro-
cesses test cases in an automated fashion and makes heavy
use of the microcode API. Test cases contain an initial
CPU state, arbitrary x86 instructions, the final CPU state,
and an exception information filter plus a logger as well as
a high-level microcode patch description. The microcode
patch is generated with the high-level microcode patch
information that includes header fields, match register
values, and microcode in the form of bit vectors, Register
Transfer Level (RTL) machine language, or a mix. Test
cases incorporating automation must specify at least one
property that will be altered systematically. For example,
a test case that aims to iteratively intercept all triads in
microcode ROM may increment the match register value
in each pass. Another test case that attempts to infer con-
ditional behavior of microcode may alter streamed x86
machine code in order to induce different x86 eflags regis-

ter values and at the same time permute the bit vector of an
unknown field within a microinstruction. The microcode
API exposes all required underlying features such as serial
connection handling, serial message protocol, AMD com-
puter power state monitoring and control, x86 assembler,
parsing and generation of microcode updates, obfusca-
tion and deobfuscation of microcode updates, microcode
assembler and disassembler as well as required data struc-
tures. The framework runs through 190 test iterations per
minute and node in case there are no faults. One fault
adds a delay of 12 seconds due to the reboot.

5 Microcode Specification

In this section we present the results of our reverse engi-
neering effort such as heat maps, a detailed description
of the microcode instruction set, and intercepting x86 in-
structions. Furthermore, we present our microcode RTL.

DISCLAIMER. It should be noted that our results origi-
nate from reverse engineering include and indirectly mea-
sured behavior, assumptions about the microarchitecture,
and interpretation of the visible CPU state, which is small
in comparison to the whole unobservable CPU state. Thus,
we cannot guarantee that our findings are intended behav-
ior of AMD’s microcode engine.

5.1 Heat Maps
A heat map of a specific macroinstruction contains a map-
ping of all microcode ROM addresses to a boolean value
that indicates whether the specified triad is executed dur-
ing the decode sequence of that macroinstruction. During
the test cycle, our operating system executes vector in-
structions such as call and ret. We name a heat map
that only covers vector instructions from the operating
system reference heat map. In order to obtain a clean heat
map for a vector instruction, the reference heat map must
be subtracted from the instruction’s raw heat map. For
the interested reader we present a truncated, combined
K10 heat map in Table 4 in Appendix A.1. The heat maps
represent a fundamental milestone of our reverse engi-
neering effort. They indicate microcode ROM locations
to intercept macroinstructions and help infer logic from
triads. We designed test cases for all vector path instruc-
tions, which then generated clean heat maps in a fully
automated way.

5.2 Microcode Instruction Set
The microinstruction set presented in AMD’s patent
RISC86 [24] gave us a general understanding and valu-
able hints. However, we found that almost all details such
as microinstruction length, operand fields, operations, and
encoding differ. Furthermore, we could not confirm that
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single microinstructions can be addressed, which would
result in the preceding microinstructions of the triad be-
ing ignored. Instead, we found that only entire triads are
addressable. In the following, we reuse terminology from
the patent where appropriate. Unless stated otherwise,
all information given afterwards was obtained through
reverse engineering.

We found four operation classes, namely RegOp, LdOp,
StOp, and SpecOp, that are used for arithmetic and logic
operations, memory reads, memory writes, and special
operations such as write program counter, respectively.
The structure of the four operation classes is shown in
Table 2. The different operation classes can be distin-
guished by the op class field at bit locations 37 to 39.
RegOp and SpecOp share the same op class field encod-
ing but have disjunct encodings for the operation type
field. The unlabeled fields indicate unused or unknown
bit locations. RegOp supports operation types such as
arithmetic, comparators, and logic operations. The mul
and imul operation types must be the first microinstruc-
tion within a triad in order to work. SpecOp enables
to write the x86 program counter and to conditionally
branch to microcode. If the conditional branch is taken,
the microcode sequencer continues decoding at the given
address. In case the conditional branch is not taken, the
sequence word determines further execution. The con-
dition to be evaluated is encoded in the 4 high bits of
the 5-bit cc field. Bit 0 of the cc field inverts the con-
dition if set. The available condition encodings match
the ones given in patent RISC86 [24], p. 37. The write-
program-counter SpecOp must be placed third within a
triad in order to work. We found that LdOp and StOp
have their own operation types. Our collection of oper-
ation types is incomplete, because it was impossible to
observe the internal state of the CPU. We show encoding
details for the operation types we found in the Appendix
in Table 5. The fields reg1, reg2 and reg3 encode the
microcode registers. In addition to the general-purpose
registers, microcode can access a number of internal regis-
ters. Their content is only stored until the microinstruction
has been decoded. The special pcd register is read-only
and contains the address of the next macroinstruction to
decode. This is valuable information to implement rela-
tive x86 jumps in microcode. The microarchitecture also
contains a microcode substitution engine, which automat-
ically replaces operand fields in the microinstruction with
operands from the macroinstruction. The first two x86
operands can be accessed in microcode with the register
encodings regmd and regd. We refer to Table 6 in the
Appendix for encoding details of the microcode registers.
We did not find the substitution mechanism for imme-
diate values encoded in the macroinstruction. To solve
this issue, we read the x86 instruction bytes from main
memory and extract the immediate. The sw field swaps

source and destination registers. The 3o field enables
the three operand mode and allows RegOp microinstruc-
tions of the form reg2:= reg1 op reg3/imm. The flags
field decides whether the resulting flags of the current
RegOp microinstruction should be committed to the x86
flags register. The rmod field switches between reg3 and
a 16-bit immediate value. The sequence word, see Ta-
ble 3, contains an action field at bit locations 14 to 16 that
may indicate a branch to the triad at the given address,
a branch to the following triad, or stop decoding of the
current macroinstruction. Our disassembler has a cover-
age of approximately 40% of the instructions contained
in existing microcode patches. However, we ignored bits
in unknown fields of recognised microinstructions whose
meaning we could not determine. We designed automated
test cases that, e.g., permute the bits of an unknown mi-
croinstruction field to provoke observable differences in
the final CPU state. Our result filter discarded outputs
that match the expected CPU state. We then manually in-
spected the remaining interesting CPU states and inferred
the meaning of the new encoding.

5.3 Intercepting x86 Instructions

Currently, we can only intercept vector instructions by
writing related triad addresses from the heat maps into the
match registers. We are uncertain whether a mechanism
for hooking direct path instructions exists. It is relatively
simple to replace the logic of a vector path instruction;
however, it appeared challenging to add logic, because
the original semantics must be preserved. To solve this
issue, we leverage the two microcode hook concepts from
Section 4.3. In the following we describe in detail the
practical application of both concepts. (1) After executing
the added logic, we jump back to microcode ROM. (2)
After execution of the added logic we implement the
semantics of the macroinstruction in microcode ourselves
and indicate sequence complete in the last triad. This
way, we successfully hooked shrd and imul vector path
instructions.

We also successfully intercepted the div instruction
using the first method. One fundamental limitation of
hooking with match registers is that one cannot jump
back to the intercepted triad, because the match register
would redirect control again, essentially creating an end-
less loop. We are not aware of a feature to temporarily
ignore a match register. Thus we need to intercept a negli-
gible triad and, after execution of our logic, jump back to
the subsequent triad, essentially skipping one triad. We
inferred the observable part of the logic of div heat map
triads. We proceeded by iteratively branching directly
to the triads with a known CPU state with a match reg-
ister hook set to the following triad. With this method
we found one triad we can skip without visibly changing
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Index 63 62 54 53 52 51 46 45 40 39 37 36 30 29 24 23 22 16 15 0
RegOp - type sw 3o reg1 - flags - 000 - size reg2 rmod - imm16/reg3
LdOp - type sw 3o reg1 - 001 - reg2 rmod - imm16/reg3
StOp - type sw 3o reg1 - 010 - size reg2 rmod - imm16/reg3
SpecOp - type cc sw 3o reg1 - 000 - size reg2 - imm16/addr12

Table 2: The four operation classes and their microinstruction encoding.

Index 31 17 16 14 13 12 11 0
next triad - 000 -
branch - 010 - address
complete - 110 -

Table 3: Sequence word encoding.

the result. Specifically, we can intercept triad 0x7e5 per
match register, induce the desired behavior, and finally
jump back to address 0x7e6 via sequence word. It should
be noted that the hook is in the middle of the calculation.
Thus the source and destination general-purpose registers
as well as some internal microcode registers hold interme-
diate results, which need to be preserved if the correctness
of the final result matters.

5.4 Microcode RTL

We developed a microcode register transfer language
based on the syntax of Intel x86 assembly language, be-
cause for the implementation of microprograms it is im-
practical to manually assemble bit vectors. In the follow-
ing, we show a template for a typical microinstruction in
our microcode RTL:

insn op1, op2[, op3]

The insn field defines the operation. It is followed by
one to three operands of which the first one is always the
destination and only the last one may be an immediate.
In two-operand mode, the first operand is the destination
and the source. There are dedicated load and store instruc-
tions. Memory addressing currently supports only one
register, i.e., ld eax, [ebx]. The size of arithmetic oper-
ations is implicitly specified by the destination operand’s
size. Memory reads always fetch a whole native system
word, and the size of memory writes is specified by the
source operand’s size. The conditional microcode branch
encodes the condition in the first operand and the branch
target in the second operand, i.e. jcc nZF, 0xfe5. The
assembler automatically resolves constraints such as mul
must be placed first in a triad and write-program-counter
must be placed last. Strictly speaking the sequence words
are not instructions, thus we cover them by directives such
as .sw complete and .sw branch 0x7e6. The branch to
next triad sequence words are added implicitly.

6 Hardware Analysis

In addition to the black box microcode reverse engineer-
ing presented in the previous section, we analyzed the
CPU’s hardware in a parallel approach. The goal of hard-
ware analysis was to read and analyze the non-volatile
microcode ROM to support reverse engineering of the mi-
crocode encoding. Furthermore, this allows us to analyze
the actual implementation of microcoded macroinstruc-
tions.

Our chosen Device Under Test (DUT) is a Sempron
3100+ (SDA3100AIP3AX) with a 130nm technology size,
since it features the largest size of the target CPU fam-
ily (which facilitates our analysis). Note that the larger
technology size allows for additional tolerance margins
in both the delayering and the imaging of the individual
structures. Similar to any common microcontroller or
CPU, the DUT is built using a CMOS process with mul-
tiple layers. In contrast to traditional microcontrollers,
general-purpose x86 CPUs feature a much larger die size
and are stacked up to 12 layers, which increases hardware
reverse engineering effort.

We expected the targeted non-volatile microcode ROM
to be stored in a cell array architecture. Other mem-
ory types to implement microcode ROM, such as flash,
Electrically Erasable Programmable Read-only Mem-
ory (EEPROM), and RAM, are either too slow, unnec-
essarily large, or volatile.
Note that the general die structure is almost identical to
the die shot provided in [21], which helped our initial anal-
ysis identify our Region Of Interest (ROI), the microcode
ROM.

6.1 Delayering

After removing the heat sink with a drill, we fully decap-
sulated the die with fuming nitric acid [46]. In order to
visualize the ROM array, we delayered (e.g., removed in-
dividual stacked layers) from the top of the die. The main
challenge during delayering is to uniformly skim planar
surfaces parallel to the individual layers. Typically, the
delayering process alternates between removing a layer
and imaging the layer beneath it [46]. Focusing on our
ROI, we were able to neglect other areas of the chip re-
sulting in a more planar surface in important region(s).
Note that hardware reverse engineering of the whole CPU
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microarchitecture would require a more controlled delay-
ering process and several months to acquire and process
the whole layout. The interested reader is referred to our
die shot in Figure 3 in the Appendix.

In order to remove layers, we used a combined ap-
proach of Chemical Mechanical Polishing (CMP) and
plasma etching. During inspection of the seventh layer,
we encountered the expected ROM array structure. We
acquired images of individual layers using a Scanning
Electron Microscope (SEM) since optical microscopy
reaches diffraction limits at this structure size. Compared
to colored and more transparent images from optical mi-
croscopy, SEM images only provide a gray-scale channel,
but with higher magnification. In SEM images, different
materials can be identified due to brightness yield.

We encountered multiple regular NOR ROM arrays
using contact layer (vias) for programming. In NOR
ROM with active layer programming, the logic state is
encoded by the presence or absence of a transistor [52].
In our case an advanced bitline-folding architecture [31]
encodes the logic state by either placing a via on the right
or the left bitline. Note another property of this ROM type
is that only a single via may be set at any time; setting
both will result in a short circuit.

Overall, we identified three ROM blocks consisting of 8
subarrays. Each of the 3 ROM blocks has the capability to
store 30 kB. Note that our results match the visible blocks
in [21]. It is important to note that the vias’ positions
are hardwired and cannot be changed after shipping. The
only possible way to patch bugs in the ROM is to employ
the microcode update procedure described in Section 3.3.

6.2 Microcode Extraction

In Figure 2, we highlighted how bits are programmed
by this memory type. Bright spots represent a via going
down from a metal line, which is either connected to GND
or VCC. We chose to represent the individual cells as set
to logical ’1’ if the left via was set and ’0’ if the right one
was set. This convention does not necessarily correspond
to the correct runtime interpretation. However, permuta-
tions are commonly applied to the ROM memory, hence a
misinterpretation can be corrected in a later analysis step.

In order to analyze the microcode ROM bits for any
permutations, we processed the acquired SEM images
with rompar [7]. Using its image processing capabilities,
we transformed the optical via positions into bit values.

Microcode ROM Bit Analysis. In order to group the
bit values into microinstructions, we carefully analyzed
the ROM structure and we made two crucial observations:
(1) Each alternating column of bits is inverted due to
mirroring of existing cells, which saves space on the die.
(2) Since the memory type employs a transposed bitline

Figure 2: Partially interpreted bits in one ROM subarray.

architecture [31], the bit inversion has to be adjusted to
each segment.

With both observations in mind, we were able to derive
microinstructions from the images. Note that we also had
to interleave the subarrays respectively to acquire 64 bits
(size of a microinstruction) per memory row. Hence, the
ROM allows us to find more complex microinstructions
and experimentally reverse engineer their meaning.

7 Microprograms

In this section, we demonstrate the effectiveness of our re-
verse engineering effort by presenting microprograms that
successfully augment existing x86 instructions and add
foreign logic. With this paper, we also publish microcode
patches [42] that are compiled from scratch and run on
unmodified AMD CPUs, namely K8 Sempron 3100+ and
K10 Athlon II X2 260/280. We found that the microcode
ROM content varies between different processors, but the
macroinstruction entry points into the microcode ROM
are constant. Thus we assume our microcode patches are
compatible with a wider range of K8/K10-based CPUs.
We discuss additional applications of microcode in Sec-
tion 8.

7.1 Instrumentation
Instrumentation monitors the execution of a program and
may produce metadata or instruction traces. It is used
by program analysis, system defenses, antivirus software,
and performance optimization during software develop-
ment. It has been proven challenging to implement perfor-
mant instrumentation for COTS binaries. Several mech-
anisms exist such as function hooking, binary rewriting,
virtual machine introspection, and in-place emulation.
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However, they come with drawbacks such as coarse gran-
ularity, uncertain coverage, and high performance over-
head. An instrumentation framework with CPU support
based on microcode may evade many of the disadvantages.
It should be noted that microcode also has limitations
such as only 8 match registers. Currently we can only
intercept vector path x86 instructions and the hooks are
machine-wide, i.e., not limited to one user-space process.
For demonstration purposes we implemented a simple
instrumentation that counts the occurrences of the div
instruction during execution. See Listing 1 for a high-
level representation of the instrumentation logic; we refer
the interested reader to Listing 7 in Appendix A.3 for a
detailed RTL implementation.

if (esi == magic) {
temp = dword [edi]
temp += 1
dword [edi] = temp

}

Listing 1: High-level description of the instrumentation
logic implemented in microcode that counts the div
instructions during execution.

7.2 Remote Microcode Attacks

Executing microcode Trojans is not limited to a local at-
tacker. An injected microcode hook may lie dormant
within a vector path macroinstruction, such as a div
reg32, and it is triggered as soon as a specific trig-
ger condition is met within an attacker-controlled web
page. This is possible due to Just-in-Time (JIT) and
Ahead-of-Time (AOT) compilers embedded in modern
web browsers. They allow to emit specific machine code
instructions only utilizing JavaScript (JS). Consider a
microcode Trojan for the div instruction. We provide a
high-level description of the Trojan logic in Listing 2.

if (eax == A && ebx == B)
eip = eip + 1

Listing 2: High-level description of the microcode
Trojan implemented in microcode that increments the
eip to execute x86 instructions in a disaligned fashion.

If a div ebx instruction is executed while eax con-
tains the value A (dividend) and ebx contains the value
B (divisor), then the instruction pointer eip is in-
creased, and execution continues in a misaligned way
after the first byte of the instruction following the
div ebx instruction. If the trigger condition is not
met, the division is executed as expected. Hence, le-
gitimate machine instructions as shown in Listing 3

may be misused to hide and execute arbitrary code.

B8 0A000000 mov eax , 0xA
BB 0B000000 mov ebx , 0xB
F7F3 div ebx
05 909090 CC add eax , 0xCC909090

Listing 3: x86 machine code to trigger the div Trojan
in Listing 2.

Due to the microcode Trojan within div ebx, which
is triggered when the condition eax == A && ebx == B
is met, the instruction following the division is executed
starting at its second byte (Listing 4).

B8 0A000000 mov eax , 0xA
BB 0B000000 mov ebx , 0xB
F7F3 div ebx
05 /* SKIPPED */
90 nop
90 nop
90 nop
CC int3

Listing 4: x86 hidden payload executed due to the
triggered microcode Trojan.

As shown in Listing 4, the hidden nop and int3 instruc-
tions within the constant value of the add instruction are
executed instead of the legitimate add itself. Note that
many add instructions can be used to hide an arbitrary
payload (i.e., execve()) instead of nop and int3.

We were able to emit appropriate machine code in-
structions using the ASM.JS subset of the JS language
in Mozilla Firefox 50. ASM.JS compiles a web page’s
JS code before it is actually transformed into native ma-
chine code. We hide our payload within four-byte JS
constants of legitimate instructions similar to previous
JIT Spraying attacks [12, 51]. Since we also control the
dividend and divisor of the division, we eventually trigger
the microcode Trojan in the div instruction, which in turn
starts to execute our payload. Thus, we achieved to re-
motely activate the microcode hook and use it to execute
remotely controlled machine code. We refer the interested
reader to the ASM.JS code in Listing 9 in Appendix A.4.
While usually constant blinding is used in JIT compilers
to prevent the injection of valid machine code into JS con-
stants, recent research has shown that browsers such as
Microsoft Edge or Google Chrome fail to blind constants
in certain cases [38]. Hence, we assume that remotely
triggering a microcode Trojan and executing hidden code
within other browsers (i.e., Edge or Chrome) is possible,
too.

7.3 Cryptographic Microcode Trojans
In order to demonstrate further severe consequences of
microcode Trojans, we detail how such Trojans facili-
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tate implementation attacks on cryptographic algorithms.
More precisely, we present how microcode Trojans en-
able both (1) a bug attack (representative for Fault Injec-
tion (FI) [13]) and (2) a timing attack for Side-Channel
Analysis (SCA) [34].

7.3.1 Preliminaries and Goal

Elliptic Curve Cryptography (ECC) has become the preva-
lent public-key cryptographic primitive in real-world sys-
tems. In particular, numerous cryptographic libraries, e.g.,
OpenSSL and libsodium, employ Curve25519 [10]. Note
that the critical scalar multiplication is generally imple-
mented through a Montgomery ladder whose execution is
expected to be constant time, see RFC7748 [1].

Bug Attack. Bug attacks [9, 11] are associated with
FI; however, they are conceptionally distinct. While FI
mainly considers faults injected by an adversary, bug
attacks rely on inherent computation bugs [47] and do
neither suppose environmental tampering nor physical
presence.

Timing Attack. Timing attacks [34] against crypto-
graphic implementations are based on careful analysis of
their execution time [14, 57]. Nowadays most libraries
employ constant-time implementations as an effective
countermeasure.

Our goal for each attack is to enable disclosure of the
private key from ECDH key exchange. In order to realize
microcode Trojans which facilitate such attacks, we have
to arm a microcoded x86 instruction (used in scalar mul-
tiplication) with (1) an input-dependent trigger and (2) a
payload inducing a conditional fault or additional time,
see Listing 5.

if (regmd == A)
regmd = regmd + C

Listing 5: High-level microcode Trojan description
within an x86 instruction to trigger a conditional bug
using the first operand (regmd) of the x86 instruction
and the immediate constants A and C.

7.3.2 Implementation

For both attacks, we use the constant-time ECC reference
implementation from libsodium [35] compiled for 32-bit
architectures. Since Curve25519 employs reduced-degree
reduced-coefficient polynomials for arithmetic and the
implementation uses 64-bit data types, the following C
code is compiled to assembly in Listing 6:

carry = (h + (i64) (1L << 25)) >> 26;

mov eax , dword [esp+0xd0]
add eax , 0x2000000
mov ebx , dword [esp+0xd4]
adc ebx , 0x0
shrd eax , ebx , 0x1a

Listing 6: x86 machine code implementing 64-bit right
shift using the shrd instruction.

This line of code processes internal (key-dependent)
data as well as adversary-controlled (public-key depen-
dent) data. We can remotely trigger the condition in the
microcoded shrd instruction to apply both the bug attack
and the timing attack. Note that in case of a timing-attack,
we conditionally execute several nop instructions to in-
duce a data-dependent timing difference.

For a detailed RTL implementation of the bug attack,
we refer the interested reader to Listing 8 in Appendix A.3.
We emphasize that the necessary primitives for bug at-
tacks and timing side channel attacks can be created via
microcode Trojans. This way, even state-of-the-art cryp-
tographic implementations can be undermined.

8 Discussion

8.1 Security Implications
We demonstrated that malware can be implemented in
microcode. Furthermore, malicious microcode updates
can be applied to unmodified K8 and K10-based AMD
CPUs. This poses a certain security risk. However, in a re-
alistic attack scenario, an adversary must overcome other
security measures. A remote attacker has to bypass ap-
plication and operating system isolation in order to apply
a microcode update. An attacker with system privileges
might as well leverage less complex mechanisms with
better persistence and stealth properties than microcode
malware. An attacker with physical access may be able
to embed a malicious microcode update into the BIOS
or UEFI, i.e., in an evil maid scenario [44]. However,
she has to overcome potential security measures such as
TPM or signing of the UEFI firmware. Physical access
also enables alternative attack vectors such as cloning
the entire disk, or in case of full disk encryption, tamper
with the MBR or bootloader. Other adversary models
to provide malicious microcode (either through updates
or directly in microcode ROM) become more realistic,
i.e., intelligence agencies or untrusted foundries. From
a hardware Trojan’s perspective [58], microcode Trojans
provide post-manufacturing versatility, which is indis-
pensable for the heterogeneity in operating systems and
applications running on general-purpose CPUs.

Even though AMD emphasizes that their chips are
secure [25], the microcode update scheme of K8 and K10
shows once more that security by obscurity is not reliable
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and proper encryption, authentication, and integrity have
to deployed.
It should be noted that attacks leveraging microcode will
be highly hardware-specific. Current AMD processors
employ strong cryptographic algorithms to protect the
microcode update mechanism [15]. Microcode and its
effects on system security for current CPUs are unknown
with no verifiable trust anchor. Both experts and users are
unable to examine microcode updates for (un)intentional
bugs.

8.2 Constructive Microcode Applications

We see great potential for constructive applications of
microcode in COTS CPUs. We already discussed that
microcode combines many advantages for binary instru-
mentation, see Section 7.1. This could aid program trac-
ing, bug finding, tainting, and other applications of dy-
namic program analysis. Furthermore, microcode could
boost the performance of existing system defenses. Mi-
crocode updates could also enable domain-specific in-
struction sets, e.g., special instructions that boost program
performance or trustworthy security measures (similar to
Intel SGX [17]).

Hence, the view on microcode and its detailed embed-
ding in the overall CPU architecture are a relevant topic
for future research.

8.3 Generality

In addition to x86 CISC CPUs from Intel, AMD, and
VIA, microcode is also used in CPUs based on RISC
methodologies. For example, reverse engineering of an
ARM1 processor [33] disclosed the presence of a decode
Programmable Logic Array (PLA) storing microinstruc-
tions. The Intel i960 used microcode to implement several
instructions [28]. Another noteworthy CPU is the EAL
7 certified AAMP7G by Rockwell Collins [19]. Its sepa-
ration kernel microcode to realize Multiple Independent
Levels of Security (MILS) is accompanied with a formal
proof.

8.4 Future Work

In future work we aim to further explore the microarchi-
tecture and its security implications on system security.
We want to highlight microcode capabilities and foster
the security and computer architecture communities to
incorporate this topic into their future research. We re-
quire further knowledge of implemented microarchitec-
tures and update mechanisms to address both attack- and
defense-driven research. For example, an open-source
CPU variant for the security community can lead to in-

strumentation frameworks and system defenses based on
performant microprograms.

9 Conclusion

In this paper we successfully changed the behavior of
common, general-purpose CPUs by modification of the
microcode. We provided an in-depth analysis of mi-
crocode and its update mechanism for AMD K8 and K10
architectures. In addition, we presented what can be ac-
complished with this technology: First, we showed that
augmenting existing instructions allows us to implement
CPU-assisted instrumentation, which can enable high-
performance defensive solutions in the future. Second,
we demonstrated that malicious microcode updates can
have security implications for software systems running
on the hardware.
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A Appendix

A.1 Microcode Specification
As explained in Section 5.1, we designed automated test
cases to record which locations of the microcode ROM
contain triads used to implement a certain x86 instruc-
tion. We then cleared the artefacts caused by our test
environment and combined the heat maps of all vector
path instructions. Table 4 shows an excerpt of the result.

ROM Address vector instruction
0x900 - 0x913 -
0x900 - 0x913 -
0x914 - 0x917 rep cmps mem8
0x918 - 0x95f -
0x960 mul mem16
0x961 idiv
0x962 mul reg16
0x963 -
0x964 imul mem16
0x965 bound
0x966 imul reg16
0x967 -
0x968 bts imm
0x969 - 0x971 -
0x972 - 0x973 div
0x974 - 0x975 -
0x976 - 0x977 idiv
0x978 -
0x979 - 0x97a idiv
0x97b - 0x9a7 -
0x9a8 btr imm
0x9a9 - 0x9ad -
0x9ae mfence
0x9af - 09ff -

Table 4: Truncated microcode ROM heat map.
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In Section 5.2 we presented the microcode instruction
set structure, which is one major result of our reverse
engineering effort. We found four operation classes that
separate operations of different domains. The operation
type determines the exact operation such as add or mul.
Our collection of operation types and their encodings are
listed in Table 5.

Op Class Mnem Encoding
RegOp add 000000000
RegOp or 000000001
RegOp adc 000000010
RegOp sbb 000000011
RegOp and 000000100
RegOp sub 000000101
RegOp xor 000000110
RegOp cmp 000000111
RegOp test 000001000
RegOp rll 000010000
RegOp rrl 000010001
RegOp sll 000010100
RegOp srl 000010101
RegOp mov 001100000
RegOp mul 001110000
RegOp imul 001110001
RegOp bswap 111000000
RegOp not 111110101
SpecOp writePC 001000000
SpecOp branchCC 0101CCCCC
LdOp ld 001111111
StOp st 101010000

Table 5: Collection of microcode operation types.

The microinstruction structure provides two dedicated
register fields. One additional register field can be un-
locked by enabling register mode, which replaces the
16-bit immediate field. The register fields can encode a
number of registers including x86 general-purpose reg-
isters and microcode registers. The microcode registers
cannot be accessed by x86 instructions. The contents
of the microcode registers are only persistent while one
macroinstruction is decoded. Most of the microcode regis-
ters serve as general-purpose space for immediate values.
However, special microcode registers exist that hold the
next decode program counter (pcd) or always read as zero
(zerod). We listed the microcode registers with mnemon-
ics and encoding in Table 6.

Size Encoding
00 01 10 11
al ax eax rax 000000
cl cx ecx rcx 000001
dl dx edx rdx 000010
bl bx ebx rbx 000011
ah sp esp rsp 000100
ch bp ebp rbp 000101
dh si esi rsi 000110
bh di edi rdi 000111
t1l t1w t1d t1q 001000
t2l t2w t2d t2q 001001
t3l t3w t3d t3q 001010
t4l t4w t4d t4q 001011
t1h t5w t5d t5q 001100
t2h t6w t6d t6q 001101
t3h t7w t7d t7q 001110
t4h t8w t8d t8q 001111
regmb regmw regmd regmq 101000
regb regw regd regq 101100
pcb pcw pcd pcq 111000
zerob zerow zerod zeroq 111111

Table 6: General-purpose and microcode register encod-
ings.

1178    26th USENIX Security Symposium USENIX Association



A.2 Hardware Analysis
In Section 6 we investigate the hardware of the AMD K8
Sempron 3100+. Hence, we decapsulated and backside-
thinned a die to obtain a high-level view of the CPU struc-
ture. The marked areas are adopted from [21], since they
show multiple similarities with our die shot in Figure 3.
Note that we focus on the microcode ROM (marked in
green) and neglect the rest of the chip.

Figure 3: Die shot of AMD K8 Sempron 3100+ with
different CPU parts. The image was taken with an optical
microscope with low magnification. The die is corrugated
due to a remaining thickness below 10 micrometers.

A.3 Microprograms
In Section 7.1 we present a constructive application of
microcode updates, namely program instrumentation. To
demonstrate the feasibility, we implemented a proof-of-
concept instrumentation that counts the occurrences of the
x86 instruction div during execution. It should be noted
that the current implementation has some drawbacks, such
as reserving two general-purpose registers to steer the in-
strumentation. However, this is not a fundamental limita-
tion but an engineering issue. The implementation of our
proof-of-concept instrumentation is given in Listing 7.

1 // set match register 0 to 0x7e5
2

3 .start 0x0
4 // load magic constant
5 mov t1d , 0x0042
6 sll t1d , 16
7 add t1d , 0xf00d
8

9 // compare and condense
10 sub t1d , esi
11 srl t2d , t1d , 16
12 or t1d , t2d
13 srl t2d , t1d , 8
14 or t1d , t2d
15 srl t2d , t1d , 4
16 or t1d , t2d
17 srl t2d , t1d , 2
18 or t1d , t2d
19 srl t2d , t1d , 1
20 or t1d , t2d
21 and t1d , 0x1
22

23 // invert result
24 xor t1d , 0x1
25

26 // conditionally count
27 ld t2d , [edi]
28 add t2d , t1d
29 st [edi], t2d
30

31 .sw_branch 0x7e6

Listing 7: Microprogram that instruments the x86
instruction div and counts the occurrences.
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As explained in Section 7.3, we exploit the x86 shrd in-
struction to implement both the bug attack and the timing
attack. The bug attack in our RTL is shown in Listing 8.
Note that in order to hook the shrd instruction, we have
to set a match register to the address 0xaca. The magic
constant as well as the bug value added to the final com-
putation can be arbitrarily chosen.

1 // set match register 0 to 0xaca
2

3 .start 0x0
4 // load magic constant
5 mov t1d , 0x0042
6 sll t1d , 16
7 add t1d , 0xf00d
8

9 // compare and condense
10 sub t1d , esi
11 srl t2d , t1d , 16
12 or t1d , t2d
13 srl t2d , t1d , 8
14 or t1d , t2d
15 srl t2d , t1d , 4
16 or t1d , t2d
17 srl t2d , t1d , 2
18 or t1d , t2d
19 srl t2d , t1d , 1
20 or t1d , t2d
21 and t1d , 0x1
22

23 // invert result
24 xor t1d , 0x1
25

26 // read immediate
27 sub t2d , pcd , 0x1
28 ld t2d , [t2d]
29 and t2d , 0xff
30

31 // implement semantics of shrd
32 srl regmd4 , t2d
33 mov t3d , 32
34 sub t3d , t2d
35 sll t2d , regmd6 , t3d
36 or regmd4 , t2d
37

38 // conditionally insert bug
39 add regmd4 , t1d
40

41 .sw_complete

Listing 8: Microprogram that intercepts the x86
instruction shrd and inserts a bug that can be
leveraged for a bug attack.

A.4 Using ASM.JS to remotely trigger a
x86 div microcode Trojan

As explained in Section 7.2, we use ASM.JS code in
Firefox 50 to trigger the implemented x86 div Trojan.
It is shown in Listing 9. Instead of using nop and int3
instructions, arbitrary payloads can be implemented. For
example, the attacker might deploy a remote shell as soon
as the microcode Trojan is triggered, which establishes a
connection to her remote control server.

1 <!DOCTYPE HTML >
2 <html >
3 <script >
4 /*
5 Firefox 50.0 32-bit on Linux
6 We use a non -weaponized payload. Instructions
7

8 offset: opcodes assembly
9 ======= ======= ========

10 0x00000000: 05909090 a8 add eax , 0xa8909090
11 0x00000005: 05909090 cc add eax , 0xcc909090
12

13 become a nop -sled with a breakpoint at the
14 end , if the first instruction is executed
15 from offset 1:
16

17 offset: opcodes assembly
18 ======= ======= ========
19 0x00000001: 90 nop
20 0x00000002: 90 nop
21 0x00000003: 90 nop
22 0x00000004: a805 test al, 5
23 0x00000006: 90 nop
24 0x00000007: 90 nop
25 0x00000008: 90 nop
26 0x00000009: cc int3
27 */
28 function generate_microcode_trigger (){
29 "use asm";
30 function exec_payload(dividend , divisor){
31 dividend = dividend |0;
32 divisor = divisor |0;
33 var val = 0;
34 /* div ebx */
35 val = ((dividend >>>0)/(divisor >>>0)) >>>0;
36 /* add eax , 0xA8909090 */
37 val = (val + 0xa8909090)|0;
38 /* add eax , 0xCC909090 */
39 val = (val + 0xcc909090)|0;
40 return val|0;
41 }
42 return exec_payload;
43 }
44

45 function main(){
46 /* trigger condition: */
47 /* dividend */
48 eax = 0xa1a2a3a4
49 /* divisor */
50 ebx = 0xb1b2b3b4
51

52 trigger_microcode_trojan =
generate_microcode_trigger ();

53 trigger_microcode_trojan(eax , ebx);
54 }
55 </script >
56 <body onload=main()>
57 </body >
58 </html >

Listing 9: ASM.JS code within a remote web page
which emits a div ebx instruction and an attacker-
controlled payload in Firefox 50.0.
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Abstract
Additive Manufacturing is an increasingly integral part
of industrial manufacturing. Safety-critical products,
such as medical prostheses and parts for aerospace and
automotive industries are being printed by additive man-
ufacturing methods with no standard means of verifica-
tion. In this paper, we develop a scheme of verifica-
tion and intrusion detection that is independent of the
printer firmware and controller PC. The scheme incorpo-
rates analyses of the acoustic signature of a manufactur-
ing process, real-time tracking of machine components,
and post production materials analysis. Not only will
these methods allow the end user to verify the accuracy
of printed models, but they will also save material costs
by verifying the prints in real time and stopping the pro-
cess in the event of a discrepancy. We evaluate our meth-
ods using three different types of 3D printers and one
CNC machine and find them to be 100% accurate when
detecting erroneous prints in real time. We also present
a use case in which an erroneous print of a tibial knee
prosthesis is identified.

1 Introduction

Additive Manufacturing (AM), also known as 3D print-
ing, is an emerging field that shows promise in reducing
waste, time, and infrastructure needed in a manufactur-
ing process. Many major companies including Ford, GE,
Airbus, SpaceX, Koenigsegg, and NASA are currently
utilizing AM for both prototyping and production-quality
manufacturing [43, 2, 1, 25, 15, 24]. Additionally, AM
has been employed as a useful tool for printing medi-
cal implants [9], and cutting edge research is underway
on producing food, drugs, and living tissue using AM
techniques [4, 21]. Across industries, AM is expected to
reach a market potential of 50% by 2038 [53].

Because of this potential for wide-spread use of AM
in the coming decades, work has begun on understanding

the security challenges that are unique compared to tradi-
tional manufacturing and cyber-physical security. Mark
Yampolskiy, et al. [55] outlined a taxonomy for the po-
tential of the misuse of a 3D printer as a weapon (3D-
PaaW). In their paper, they identify the elements which
may compromise or manipulate an AM environment, the
targets of attack (printed object, printers, or environ-
ment), and the parameters for understanding the potential
effectiveness of a given attack.

In this paper, we focus on the use of a 3D-PaaW to
manipulate the physical properties of a printed object
through manipulation of the object specifications, manu-
facturing parameters, and/or source material. According
to the taxonomy described by Yampolskiy, et al. each
of these are classified as attacks which would be achiev-
able by an adversary through the manipulation of printer
firmware or the controller PC. It has been shown that
structural integrity can easily be compromised by intro-
ducing slight modifications in the model, e.g., a minus-
cule void injected into a manufactured dog bone can re-
duce the yield load by 14 percent [48].

In order to combat these forms of attack, we propose
three methods of verification of design parameters that
utilize analysis of the acoustic signal, embedded materi-
als, and spatial position of machine components. These
are chosen because they provide information about the
manufactured design without access to the STL file or the
G-code instructions1 read by the printer. We do not con-
sider our techniques to be a panacea for all verification
needs. They are meant to be complementary to domain-
specific verification methods. In some cases, this may be
means of saving costs, e.g., by detecting malicious prints
in real-time and ending them at the onset of a detection.
In other cases, this may be a means of ensuring safety,
e.g., by detecting malicious materials or designs before

1An STL file is a STereoLithography file for CAD software used
in 3D printing. G-code is the set of actual instructions for 3D printers
that are generated for particular models given an STL file and the print
configuration, e.g., print speed and infill density.
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the print is used. Throughout the course of this paper, we
will consider the use case of printing the tibial portion of
a knee prosthesis.

Our contributions are as follows:

• A multi-layered approach to the verification of de-
sign specifications, manufacturing parameters, and
materials used in an AM.

• Proposed implementations of aforementioned ap-
proach for in-house and third-party AM producers.

• A case study of a scenario in which a malicious print
of a medical prosthetic is identified.

The paper is organized as follows. We first provide
a background in AM verification along with a system
overview and threat model in section 2. We then provide
details for the different types of verification methods that
we proposed in section 3. In section 4, we evaluate the
effectiveness of the combined verification scheme on a
malicious print of a tibial knee implant. In section 5 we
discuss the implementation and limitations of the veri-
fication scheme. We conclude in section 6 and discuss
future work.

2 Background and System Model

In this section we discuss the previous efforts related to
side-channel analysis of AM and verification of the phys-
ical models. We then provide a system overview of our
approach as well as the threat model that will be used for
the rest of the paper.

2.1 Side-Channel Analysis
In this paper we provide a means of verification by utiliz-
ing the various side-channels of the printing process. We
also use materials science based verification to verify that
the intended physical model is printed. As such, we first
review previous efforts that have been made for the anal-
ysis of the side-channels involved in the AM process. We
then provide a brief review on materials-based verifica-
tion techniques like Raman spectroscopy and computed
tomography (CT).
Acoustic, Magnetic, and Motion Sensing. KCAD [11]
provided the first method of using the analog emissions
of AM processes for the purpose of detecting so-called
zero-day kinetic cyber-attacks. However, the work uti-
lizes only one 3D printer and only investigates attacks
in which simple variations in the exterior design. The
paper also lacks any means of verifying the printed ma-
terials post-manufacturing. The focus of the majority of
previous work on the analysis of side-channels from 3D
printers used in AM has been its usefulness in obtaining

intellectual property. Chen Song, et al. [44] and Avesta
Hojjati, et al. [22] each showed that the array of sen-
sors available on a modern smart phone can be leveraged
to re-create designs produced from 3D printers or CNC
machines. The sensors used in each study to collect side-
channel data included the microphone, magnetometer,
and accelerometer. Each group was able to reconstruct
simple printed designs using supervised machine learn-
ing and manual analysis of sensor signals respectively.
However, each group was only able to reconstruct very
simple shapes such as two-dimensional outlines of air-
planes or keys with no fill structure.

Beyond 3D printing and manufacturing, acoustic sig-
nals have also been shown to be useful in a growing
number of security applications. As an example, Guri
Mordechai, et al. [19] showed that information can be
transmitted from a speakerless PC using information em-
bedded in the sound of a cooling fan. Likewise, ac-
celerometers have been used across industries as quality
control sensors in CNC machines [31].

2.2 Physical Model Verification

The physical model that is printed from the AM ma-
chines are typically verified in a manner specific to the
domain, such as mechanical strength testing [48]. Chien,
et al. [12] use several techniques such as surface mor-
phology characterization to verify 3D-printed tissue scaf-
folds. Furthermore, several solutions have been pre-
sented as preventative measures to future physical fail-
ures, such as the solution presented by Stava, et al.
[45] for detecting and correcting models prior to being
printed. However, these only correct the models that are
being sent to the printer and do not verify the actual phys-
ical model in the event that the printer itself is compro-
mised.
Imaging Analysis. We will now discuss the background
for two modalities used for observing the composition of
materials that will be explored in this paper for the veri-
fication of 3D printed models. It is important to note that
we do not consider these modalities to be the most effec-
tive imaging techniques nor the most cost-effective solu-
tions. As we will discuss in section 4, we chose these two
modalities as they were readily available and are general-
izable. Both solutions will act as a template for imaging
techniques that are used to identify embedded materials.
The choices for both the imaging technique and the asso-
ciated embedded materials will be specific to the context
in which they are applied.
Raman Spectroscopy. Surface-enhanced Raman spec-
troscopy (SERS) has been shown to be sensitive to
single-molecule detection [35, 28, 34, 30]. Nie, et al.
[35] have shown that silver colloidal nanoparticles can
be used to amplify the spectroscopic signature of ad-
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Figure 1: System Model.

sorbed Rhodamine 6G (R6G) and enable the single R6G
molecule detection at room temperature. Furthermore,
the sizes and shapes of the colloids enhance the spectral
responses at different plasmon bands [36, 37]. We find
that this technique can be utilized for post-production
verification of 3D printed objects. By embedding a se-
ries of detectable markers of contrast agents in SERS at
specific location within the 3D printed object, the SERS
process would be able to reconstruct the model and ver-
ify the integrity of the internal structure of an object.
Computed Tomography. CT is typically used in medi-
cal applications to enable doctors to view precise images
of their patients’ internal organs [26]. Additionally, CT
scanning also has been used in a wide variety of appli-
cations for verifying structural integrity. Cnudde, et al.
[13] discuss the application of CT scanning in the con-
text of geomaterials. Akin, et al. [5] also discuss the
use of CT as a non-destructive method for imaging mul-
tiphase flow in porous media in the context of petroleum
engineering research. Similarly, Alymore [7] discusses
how CT scanning was used as a non-destructive method
for studying soil behavior and soil/plant/water relations
in space and time. In this study, we utilize CT in a simi-
lar fashion to construct models and verify the integrity of
completed objects.

2.3 System Model
Figure 1 provides an overview of the system model that
includes all verification techniques presented in this pa-
per. Our system assumes that there is an end user with
a 3D model design. The design will be printed on a
3D printer that is controlled by a controller PC. The 3D
printer may or may not be controlled by a third party
entity. The end user will send her design to be printed.
Throughout the printing process, the object will be ver-

ified using three verification layers. The first two lay-
ers are achieved through acoustic side-channel analysis
and spatial sensing which analyze the sound and physical
position of printing components respectively. The third
layer is that of materials verification in which imaging
techniques are used to verify that the print is made from
the proper material and printed correctly.

The end user may supply her own modified set of ma-
terials to the printer so that physical model verification
may be performed upon completion. The goal is to em-
bed special materials into the filament that is used in 3D
printing. The modified filament can be used for materials
verification purposes.

For the remainder of the paper, acoustic side-channel
verification, spatial side-channel verification and materi-
als verification are referred to as the acoustic layer, spa-
tial layer, and material layer respectively.

2.4 Threat Model
The threat model assumes that the attacker has full
knowledge of both the printer and its control software.
If a third party manufacturer or affiliate of the user is in-
volved, they are trusted as an organization. Therefore,
they are willing to provide information about the print
for verification. However, malicious entities may in-
clude network intruders, disgruntled employees, or other
insider threats. The attack is carried out such that the
printer behaves maliciously despite being sent G-code 2

for a non-malicious print. Meanwhile, the controller PC
indicates that the print is being carried out correctly. This
attack is feasable using a a cyber-physical rootkit such as
Harvey described by Garcia, et al. [18].

2G-code is the set of instructions interpreted by a 3D-Printer, CNC,
or other machine that includes information about motion direction,
speed, and other operations.

USENIX Association 26th USENIX Security Symposium    1183



It is also assumed that training prints may be per-
formed under supervised circumstances in which it may
be reasonably assumed that no attack is taking place.
This may be achieved by a direct connection between
the controlling machine and the printer via USB. The
materials supplier shown in Figure 1 is assumed to be
trusted. Untrusted materials suppliers are beyond the
scope of this paper. For the materials-based verification,
the modified filaments with the embedded materials are
to be supplied directly by the end user. Furthermore, all
communication channels among trusted entities are as-
sumed to be secure.

2.5 Use Case: Prosthetic Tibial Implant
For a specific use case example, the tibial implant por-
tion of a prosthetic knee was chosen. Unlike the titanium
alloy component of the prosthetic knee that attaches to
the femur, the tibial portion of the implant is made from
polyethylene and has been identified as a component that
could easily be manufactured through AM [9, 3]. Fur-
thermore, the knee undergoes more mechanical stress
than any joint [42]. Thus much research has been con-
ducted which describes the medical implications of its
wear and tear [50, 27]. Therefore, an attack is considered
in which alterations are made to the internal structure of
tibial knee implant that would dramatically increase the
rate of wear.

3 Verification Layers and Implementation

The main focus of this paper is to verify the unseen inter-
nal fill structure present in all 3D printed objects. When a
print is converted from a design on a computer to G-code
instructions for a 3D printer or CNC, an internal struc-
ture for the physical product must be generated. These
can range from low density for prototyping or non-load
bearing prints to high density for load bearing or indus-
trial use. The fill itself may take on a honeycomb pattern,
rectilinear pattern, or other various patterns as specified
by the user. Failure to produce the proper internal fill will
render a final product that may externally look like the
design intends, but fails to provide other required physi-
cal characteristics.

In order to develop a robust verification scheme, meth-
ods were needed that would allow for real-time identifi-
cation and visualization of potentially malicious prints
as well as visualization of a completed print to ensure
its usability. Analysis of the acoustic side-channel was
chosen as a non-intrusive method of identification. In-
stead of using traditional machine learning methods as
have been used before, we use an audio classification
scheme similar to popular apps used for identifying mu-
sic. For real-time visualization, a method of tracking the

moving components of a printer or CNC machine was
determined to be a useful way of understanding the pro-
cess without relying on control software. Finally, meth-
ods were borrowed from materials science by which the
internal structure of an already completed print may be
observed in a non-destructive way.

3.1 Side-Channel Verification

The side-channel analysis verification layers provide a
means of verifying printed models in real-time. The goal
is to infer as much information as possible from the given
side-channels, but we do not expect each modality to be
able to verify the entire print in itself. We will first dis-
cuss the experimental setup for each side-channel modal-
ity.
Acoustic Layer. As a physical byproduct of nearly any
mechanical process, acoustic signals have been explored
as a method of understanding information being pro-
cessed by both traditional printers [8] and 3D Printers
used in AM [44, 22, 11]. Because traditional printing
methods now rely on lasers or ink jets, the information
obtained from these is minimal. However, 3D printers
will continue to rely on various actuators and fans for the
foreseeable future which produce useful acoustic data.
This is especially true for large-scale implementations of
the technology.

In this verification layer, we assume that a particular
design with a given infill structure will be printed multi-
ple times. We use an open source audio classifier similar
to the Shazaam [6] or SoundHound Applications. Using
a training audio file, it locates noise-resistant peak fre-
quencies and their temporal location within the file. It
then locates frequency peaks in the test data that match
the location, frequency, and spacing from other peaks.
When a test file is identified, it is accompanied by a con-
fidence score among other information. The confidence
score indicates the number of peaks that the test has in
common with the training data.

For AM verification, we use a single print as a train-
ing set by recording it with a microphone to obtain an
audio file. Because even a simple print can take many
minutes, the resulting file is separated into a number of
segments of a given length (some number of seconds)
and indexed in ascending order. Each indexed segment
of the print is then trained as a different “song” and stored
in a database. In many machine learning schema, com-
mon practice is to train multiple sets of data. However,
because acoustic classification involves one-to-one com-
parison of audio files, a single-file training set is appro-
priate.

Test data is collected using the same method as train-
ing data and split into segments of the same length. Each
indexed segment is then classified independently and a
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confidence score is returned. The confidence score rep-
resents the number of frequency peaks that a given file
has in common with the training file. Verification that a
repeated print is unaltered from the training set is deter-
mined in two ways:

1. The classification results are such that the index val-
ues appear in ascending order. If they are out of
order, it is likely that a change has been made.

2. The confidence score of one or more indexed classi-
fication results falls below a given threshold value.
The threshold value is referred to as the confidence
threshold (CTh) for the remainder of the paper. Its
value is optimized manually for each printer to max-
imize the true positive rate and minimize the false
positive rate.

With this, a print will be considered verified if each in-
dexed audio file is classified correctly, in the correct or-
der, and with confidence values greater than the CTh. A
non-verified print conversely will be classified but out of
order or with one or more confidence values less than
CTh.

To test this method, two designs, shown in Figure 2
are used throughout this paper. They are described as
a Rectangular Prism (right) and a Top Hat (left). Each
was printed several times with “Honeycomb” and “Rec-
tilinear” fill patterns of 20%, 40%, and 60% density. For
each print style, a single set of audio data was split and
stored in a unique database as described above.

In order to derive quantitative results to the test clas-
sifications, we assign a “score” to each segment of the
audio data which are defined as follows:

• If a segment is in proper sequence and the confi-
dence value is greater than CTh, its score is equal to
that of the confidence value.

• If a segment is out of sequence, its score is equal to
−1∗ confidence value.

• If a segment is in sequence, but the confidence
value is less than CTh, its score is set equal to
−1∗ confidence value.

Figure 2: 3D Printed models described as (left) Top Hat
and (right) Rectangular Prism.

If a negative score is calculated for any segment of the
sliced audio file, a positive error classification may be
determined. If no negative values are calculated, a nega-
tive error classification is determined.

Sample results are shown in Figure 3. The print is
a Rectangular Prism with a 20% density Honeycomb
fill pattern. The top chart shows the averaged results
of three known negative error classifications (true nega-
tives). Each bar represents a 90 second slice of the print-
ing data, and CTh is set to 35. Likewise, the bottom chart
represents various positive error classifications (true pos-
itives) caused by incorrect fill densities or patterns. Each
type of error is printed four times and the results are av-
eraged. For errors involving the Honeycomb fill pattern
with erroneous densities, a positive error classification is
achieved within 270s or the first 60% of the print. For
the erroneous Rectilinear fill pattern, positive error clas-
sification is achieved within 180s or 40% of the print.
In each case, the first 90s slice is always receives high
scores due to the fact that the design always starts with a
100% density fill of the first three layers. This is standard
in 3D printing to ensure that the exterior is solid.

Figure 3: Classification example.

Spatial Sensing Layer. When performing 3D prints,
it was found that the software used to monitor print
progress simply displayed the progress of the G-code in-
structions being sent to the printer. This is regardless of
the actual actions of the printer. The goal in setting up
a spatial sensing verification scheme was to physically
monitor the position of the printing nozzle with respect
to the printing base, in order to observe their actual posi-
tions throughout the printing process.

The first consideration was to use a ride-along ac-
celerometer such as those described in section 2. How-
ever, due to the double integration from acceleration to
position and the noisiness of the accelerometer data, vi-
sual representations of the printer’s path became pro-
hibitively difficult to obtain.

With this in mind, a scheme was developed in which
the a gyroscopic sensor was paired with a linear poten-
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Figure 4: Spatial sensing setup with Unimeasure lin-
ear potentiometer model number LA-PA-10-N1N-NPC,
SparkFun Triple Axis Accelerometer and Gyro Break-
out, and Teensy 3.2 board.

tiometer in order to construct a set of spherical coordi-
nates to describe the printer’s motion. This proved more
effective because no integration was needed for the data,
and only simple moving average filtering was necessary
to reduce noise.

To obtain these measurements, the following devices
were used: a Unimeasure linear potentiometer model
number LA-PA-10-N1N-NPC, a SparkFun Triple Axis
Accelerometer and Gyro Breakout MPU-6050, and a
Teensy 3.2 board. The experiments were conducted in a
setup as shown in Figure 4 with a Dobot Magician desk-
top CNC and 3D Printer. For experimental purposes, the
actual 3D printing extruder was removed and “dummy”
prints were performed. The test prints were a single layer
of a circular disk printed with Honeycomb and Rectan-
gular fills each with a 20% and 40% density. Data is
collected at a rate of 100Hz. In Figure 5, each print is
shown as the G-code representation next to the recon-
structed path of the printer. The data shown is smoothed
using a moving average filter with a window of five.

3.2 Materials Verification

The objective of our materials-based verification is to
embed contrast agents that will act as signature mark-
ers for particular prints without compromising the struc-
tural integrity of the original model. The contrast agents
are chosen based on the materials as well as the scan-
ning modalities. This approach is similar to the approach
presented by Le, et al. [29] for privacy-preserving tech-
niques for secure point-of-care medical diagnostics in
which they used synthetic beads with different dielectric
properties for user identification. In our case, we em-
bed a single type of nanoparticle at different points in the
printed model to generate a pattern specific to the model.
This will allow us to ensure that the model was not modi-

Figure 5: Comparison of G-code reconstruction to gyro-
scopic sensing reconstruction of single layers of various
fill types and densities.

fied by either an attacker who compromised the firmware
and is duping the manufacturer, or a malicious insider
who has physical access to the printing process. While
it is arguable that embedded markers would change the
integrity of the material itself, numerous studies have
shown that the use of nanoparticles actually improves the
materials’ mechanical strength [54, 14, 17, 33].

Here, we explore two types of scanning modali-
ties: Raman spectroscopy and computed tomography
(CT). Although both modalities are not necessarily cost-
effective, our goal is to explore their effectiveness in our
verification techniques. In both cases, we assume that the
end user will provide the necessary materials to the man-
ufacturer, who will be responsible for printing the model.
The design sent to the manufacturer will not include any
information about the embedded materials. We will now
briefly discuss the different scanning modalities in detail.
Raman Spectroscopy. The first of the aforemen-
tioned modalities is Raman spectroscopy, which has been
shown to be applicable for specific target identification
and quantification [35, 28, 34, 30, 39, 47, 56]. The target
sample is irradiated with a monochromatic light source
such as laser. The majority of the scattering light has the
same frequency of the incident light. This elastic scat-
tering is called Rayleigh scattering. A small fraction of
the scattering is inelastic. It has a small shift in pho-
ton frequency due to the energy transfer with the target
molecules. When excited at a specific frequency, the tar-
get molecules can either increase or decrease in vibra-
tional energy. Thus, the small fraction of the scattering
light reduces (Stokes shift) or gains (anti-Stokes shift)
equally the energy of the molecule vibration.
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Due to to the unique covalent bonds and atomic mass
of the each molecule, different molecules require specific
excitation energy to change the molecule vibration [32].
The combination of multiple energy shifts creates the
unique spectrum for each target molecule. The distinct
spectra can be use to identify the target molecule in Ra-
man spectroscopy.
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Figure 6: Raman scattering measurement of Sil-
icon wafer with gold nanorods (GNRs) and 3,3’-
Diethylthiatricarbocyanine iodide (DTTCI). The Raman
spectrum of Si is amplified when using the enhancers.

Contrast agents in Surface enhanced Raman spec-
troscopy (SERS) can be used to amplify the Raman spec-
tra of the target samples. As the electromagnetic wave
(laser) irradiates the contrast agent molecules, it excites
the localized surface plasmons on the rough surface. This
results in the enhancement of electromagnetic fields near
the surface [16, 10, 46]. The increase in intensity of the
electromagnetic fields would also increase the intensity
of Raman scattering. Thus, the Raman spectra is ampli-
fied. As a result, by coupling the contrast agents with
the target molecules, SERS technique can be applied for
identification of target molecules. Furthermore, SERS is
also shown to be applicable for in vivo studying [40, 23].
Qian, et al. has shown that pegylated gold nanoparticles
can be used to target tumor cells in live animals in an in
vivo study.

In this study, we utilize gold nanorods (GNRs -
Sigma Aldrich) and 3,3’-Diethylthiatricarbocyanine io-
dide (DTTCI - Sigma Aldrich) as the two different con-
trast agents in SERS detections to verify the material of
the 3D printed object. The contrast agent can be embed-
ded in the filament at specific locations for material iden-
tification. The internal structure of the 3D printed object
can be verified using the embedded materials. Figure 6
shows the result of the standard Raman scattering mea-

surement of the Silicon (Si) wafer and the Raman scatter-
ing of GNRs and DTTCI drop coat on top of the wafer.
The Si wafer is used to calibrate the Raman instrument
prior to the experiments. The Si Raman spectra has been
studied thoroughly [38, 49, 41]. In Figure 6, the GNRs
and the DTTCI amplified the signal response of the Si
Raman scattering intensity.
Computed Tomography. The second scanning modal-
ity is a computed tomography (CT) scan. Just as in the
SERS experiment, we needed to find an effective contrast
agent that would allow us to view the embedded materi-
als within the 3D printed model. Because it has been
shown that gold works as an excellent contrast agent due
to its X-ray density [20] and because we already had the
materials at our disposal, we decided to reuse the GNRs
as our contrast agent. Furthermore, the GNRs’ biocom-
patability will allow us to apply our verification proce-
dures to the tibial prosthesis.

(a) Skyscan 1172 MicroCT scanner.

(b) ABS control print. (c) GNR layer print.

Figure 7: CT scan of ABS cylindrical tube with embed-
ded GNRs.

We initially experimented with the use of GNRs as a
contrast agent for CT scanning by embedding them in a
simple 3D printed model. We developed and printed a
cylindrical 3D model using a standard acrylonitrile buta-
diene styrene (ABS) filament as the control material of
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the model. Multiple layers of ABS filament with embed-
ded GNRs were deposited in between the bulk material.

Figure 7 shows the initial results of the 3D printed
model with a layer of injected GNR filament. We per-
formed a CT scan using a Skyscan 1172 MicroCT scan-
ner. As the figure shows, the GNRs did indeed contrast
with the ABS filament. This was sufficient to prove that
GNRs could be used as a contrast agent for our printing
use case. However, we will discuss in subsection 4.2 the
limitations of the custom filament and as well as why we
did not use the GNRs in our final evaluation.

4 Evaluation

In this section we evaluate the three-layered verification
method. We describe the identification of a malicious
print, the observation of the detected error, and the post-
production materials verification. Then, we evaluate the
effectiveness of the acoustic and spatial verification on
the use case of a 3D printed tibial knee implant.

To quantify the accuracy of the results of the vari-
ous tests, the data is fit into a logistic regression model
with the binary dependent variable of “malicious print
detected” or “no malicious print detected”. From the
model, we extract the probabilistic classification out-
comes and create a receiver operating characteristic
(ROC) curve. The area under the ROC curve (AUROC)
is the metric used to predict classification accuracy.

Also, it is important to note that due to the fact that
these machines are used to produce real 3D prints, large
amounts of data were not practical to obtain. Further-
more, the imaging analysis techniques used for the mate-
rials verification were also time-consuming with limited
availability. Therefore, sample sizes in this section will
be significantly smaller than papers dealing with com-
puter simulations.

4.1 Identification of Malicious Prints

In this section, we evaluate the usefulness of the pro-
posed verification method in simply identifying an error
in a potentially malicious print. This initial identification
will be carried out primarily by the acoustic layer with
redundancy in the spatial layer to reduce false classifica-
tions.
Classification Accuracy. In order to gain initial un-
derstanding of the parameters that affect the accuracy
of the acoustic layer, several experiments were carried
out with a small number of trials. The printers used in
the tests were a Lulzbot Taz6, Lulzbot TazMini, and an
Orion Delta. The AKG P170 condenser microphone was
placed on a stand as close to the moving extruder head
without being knocked over by the moving components

of the printer. The audio classifier is called dejavu [52]
and is an open-source project written in python.

In order to generate data useful for logistic regression,
a vector of scores, S, is generated using the exact method
as is described in subsection 3.1. For example, the com-
ponents of S are what are shown in Figure 3. The vector
S is of length n where n = b audio length

audio slice lengthc. We then cal-
culate a print score, p, where

p = ∑
n

Sn . (1)

The value p associated with a given print now determines
how likely the print is to be the same as the training print
with higher values meaning more likely and lower values
meaning less likely.

In Figure 8, the ROC curves are shown for the classifi-
cation results of the Rectangular Prism design with Hon-
eycomb and Rectilinear fills. The audio is segmented
to 90 second and 120 second segments, each CTh = 35.
The same original audio files are used whether the audio
files are segmented to 90 seconds or 120 seconds. The
Honeycomb and Rectilinear tests each consist of nine tar-
get prints and sixty malicious prints. The reason for the
large number of known positive error classifications was
that each print is considered an erroneous version of each
other print.

Figure 8: ROC Curve for Rectangular Prism, CTh = 35.

The poorest performance was an AUROC of 0.7815 for
the rectilinear fill with the audio segmented at 90 sec-
onds. That was determined to be unacceptable especially
considering the high likelihood of false positives. To find
an explanation for the poor classification, the G-code was
inspected. Upon investigation of the G-code which was
generated by Slic3r, it was found 9 lines which specified
x and y coordinates along with the extrusion rate were
repeated 12 times each out of 15 layers needed to com-
plete the print in both the Rectilinear and Honeycomb fill
patterns. Also, upon investigating sequentially repeated
blocks of code, it was found that blocks of G-code de-
scribing three entire layers were repeated twice during
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the course of the print. This symmetry was hypothesized
to be the cause of the classification confusion.

To test this hypothesis, a second set of tests were con-
ducted with the Top Hat design, which is asymmetrical
along the z axis. The same number of prints was per-
formed with Honeycomb and Rectilinear fill being sliced
to 90s and 120s each and CTh set to 35. The ROC curve
of these experiments are shown in Figure 9. Each sample
consists of nine target prints and sixty malicious prints,
and the same data is used for the 90 second audio slice
length as the 120 second slice.

Upon investigation of the G-code, the only repeated
lines were those that define the nozzle speed at the be-
ginning and do not include extrusion. Furthermore, there
are no blocks of G-code or layers that are entirely re-
peated verbatim. This is suspected to contribute greatly
to the increased performance seen in Figure 9. Here,
least AUROC is 0.9852 which is suitable for verification
purposes. Between the 120 second and 90 second slice
lengths, we see little change in performance. Although

Figure 9: ROC Curves for Top Hat.

audio classification is shown here to be effective in iden-
tifying malicious prints, it is still susceptible to both false
positives. By introducing data from the spatial layer,
these may be reduced. For instance, Figure 10 compares
the data from the x, y, and z axes of the 40% Honeycomb
and 40% Rectilinear fills from Figure 5. Here, we see a
significant difference between the two prints. Each fre-
quency response has a similar shape, but the major fea-
tures of the 40% Rectilinear fill are shifted to the right
because the back-and-forth motion is not impeded by the
creation of small Honeycomb structures.

For classification, the four most prominent peaks are
used as features along with their locations. We conducted
a test in which the target print was chosen to be the disk
with 20% density Rectilinear fill shown above. All other
prints were considered malicious. With this, we had 10
target prints and 12 malicious prints. Training using the
linear regression model, an AUROC of 1.0 was achieved
in differentiating between malicious and target prints.

Figure 10: Comparison of the frequency response be-
tween a single layer of Honeycomb 40% fill and Recti-
linear 40% fill. Four samples of each fill are compared.

While the spatial sensing layer is primarily for the pur-
pose of print visualization, its role in conjunction with
the acoustic layer allows for 100% accuracy in detecting
malicious prints.

Varied Printer Models. In order to understand the effec-
tiveness of audio classification for print verification on
different printer models, several prints were performed
on a Lulzbot TazMini and Orion Delta. Acoustic data
recordings are obtained using the same microphone. In
each print, a Top Hat design identical to the one de-
scribed above was printed and the audio was sliced to
120s. The optimized CTh for the TazMini, Orion Delta,
and Taz6 are 150, 20, and 35 respectively. The ROC
curve results are shown in Figure 11. Because the Hon-
eycomb and Rectilinear fill patterns are considered to-
gether, each data set consists of 18 target prints and 120
malicious prints. Consequently, the acoustic verification
method is generalizable to printers of different sizes and
configurations. The AUROC does not fall below 0.9542
in these tests.

Figure 11: ROC curves for top hat design printed using
a TazMini, Orion Delta, and Taz6 perint. Prints audio
was sliced to 120 seconds and the confidence threshold
is 150, 20, and 35 respectively.
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Classification in Noisy Environments. Other experi-
ments were conducted using an Afina H40 3D Printer
with an eBoTrade Digital Voice Recorder wide-range mi-
crophone. This setup was in a noisy university mak-
erspace with people talking near the printer. In this
experiment, the classification accuracy suffered greatly
(AUROC ≈ 0.5). Because it is shown that acoustic veri-
fication is useful on different types of printers above, we
assume that the loss of classification accuracy is due to
the noise in the environment. Also, because the micro-
phone was wide range and not directional, the talking
near the printer can be clearly heard. Therefore, in the
implementation of this verification scheme it is impor-
tant to use a directional microphone and noise isolation
as much as possible.

4.2 Visualization of Malicious Prints

When a potentially malicious print is identified as de-
scribed above, it is important to have the capability to
visualize the potential threat. This visualization must
be independent of the intended G-code which may be
interpreted differently by malicious firmware. This is
achieved in real time through use of the spatial sensing
layer and in post-production by the materials inspection
layer.
Real-Time Visualization. In the event that a potential
malicious print is identified, a user has the capability of
viewing the real-time print in progress through the spa-
tial sensing as seen in Figure 5. By viewing the layer
in progress, significant fill pattern changes such as those
between the 20% Honeycomb and 20% Rectilinear fill
are obvious. However, less obvious changes made to
the print such as those between the 40% Honeycomb and
Rectilinear fills are identifiable through FFT Analysis as
in Figure 10. This is particularly true, as will be shown
in subsection 4.3, if the user has access to the frequency
response of a reference print.

While the spatial sensing layer is useful for identify-
ing the type of fill pattern that is being maliciously gen-
erated, it is less useful for identifying if the design itself
has been altered due to the warping that occurs in the
data. This, however, is an easy issue to solve through the
use of a webcam which can easily identify the shape of
the design. In this sense, it may seem that spatial sensing
may be replaced altogether by a webcam, but it is impor-
tant that the latter uses far more data and does not readily
provide information about the frequency response.
Post Production Visualization. The aforementioned
materials-based verification methods are meant to be
generalized for any scanning method that can detect the
embedded contrast material within a 3D model. In our
case, we chose Raman spectroscopy and computed to-
mography because those modalities were readily avail-

able to us at the time of evaluation.
Given the results shown in Figure 6, we concluded that

the GNRs and DTTCI can be combined for use as a con-
trast agent in Raman spectroscopy. The contrast agents
amplify the photon count across the Silicon spectrum in
Raman spectroscopy. To echo the results shown in Fig-
ure 6 for the 3D printed disk, we use 10 nm diameter
GNRs 780 nm absorption, and DTTCI 765 nm absorp-
tion (Sigma Aldrich) diluted in ethanol as the two distinct
contrast agents. Each contrast agent is drop coated on the
surface of the 3D printed disk. The Raman spectra of the
blank 3D printed disk is also taken as the control data.

To emulate the filament with the embedded contrast
agent, we produced the filament from ABS pellets us-
ing the filament maker (Filabot). For the GNRs embed-
ded filament, the ABS pellets are submerged in a GNR
solution and left to dry. In this test, a 4 mL GNR solu-
tion was mixed with 12 g of pellets. Based on the infor-
mation from the manufacturer, we naively calculated the
number of GNRs per mL of solution to be approximately
7.284e11. Per 12 g of pellets, we can produce approxi-
mately 2 m of filament with a 2.5 mm diameter. The 3D
printed disk has 50 µm in layer thickness. Therefore, for
the area of 1 µm2 on each layer of the 3D printed disk,
there are approximately 4 GNRs particles. This approxi-
mation only serves as the estimation of the GNRs within
the measurement area. Due to the non-uniform mixing
of the the GNRs in the pellets, the distribution of GNRs
within the 3D printed disk varies considerably. For the
DTTCI embedded filament, while the quantity of DTTCI
in the filament is not estimated, larger quantities of the
DTTCI enhancer were available to produce the modified
filament. The blank ABS filament is extruded using only
ABS pellets.
Precise Embedding of Contrast Agents. In an ideal
case, we would have the ability to embed the contrast
agents or markers at precise Cartesian coordinates within
the 3D printed models. However, for our proof of con-
cept, we chose to simply create an ABS filament that was
saturated in the GNRs or DTTCI throughout the entire
spool of filament. The precise embedding of markers lo-
cation is beyond the scope of current work. It can be
explored in the near future. We then used a Lulzbot Taz
dual extruder tool head to provide the capability of local-
ize the embedded filament at precise locations.

In the following subsection, we evaluate the Raman
spectra of the blank 3D printed disk, the 3D disk with
GNRs or DTTCI drop coat on the surface, and the 3D
printed disk with GNRs or DTTCI embedded filament.
We wrote a simple C++ program that allowed the user
to embed filament at desired locations by modifying the
G-code where necessary, i.e., switching between the ex-
truder nozzle containing the normal filament and the noz-
zle containing the GNR filament. The user can spec-
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ify the beginning and end points of embedded material
within the normal print path. This method was used for
both the initial CT scan results as well as the final evalu-
ation.

Imaging Analysis. In the evaluation using Raman
spectroscopy, the 3D printed disk is excited with with
785 nm infrared light for 20 s per accumulation of data
at 100 % power setting in Renishaw InVia micro-Raman
system. Figure 12 shows the mean measurement results
all data spectra of the 3D printed disks. Similar to the re-
sults from Figure 6, the spectrum of the 3D printed disk
with DTTCI coated surface has significant improvement
of photons counts across the spectrum comparing to the
control data of the blank 3D printed disk. The spectra of
the 3D printed disk from DTTCI embedded filament also
shows the elevation of photons counts comparing to the
control data. These spectra fall in between the spectra of
the control data and the surface coated 3D printed disk.
This conforms with the fact that the surface coated would
accumulate more contrast agent at the measurement site
comparing to the embedded filament. While the Raman
spectroscopy can be used to quantify the concentration
of the target particles, the elevation of the photons count
in Figure 12 does not reflect the approximate distribution
of contrast agent embedded in the filament. The mea-
surement site in Raman spectroscopy might be a clus-
ter or spare of contrast agent or markers. As mentioned
above, the markers might not be uniformly distributed in
the filament. This is confirmed in Figure 7c as a result
of the MicroCT scanner. The high reflection in the CT
scan shows the large cluster of the GNRs in the embed-
ded filament. Due to the low resolution of the MicroCT
scanner, the scan would not highlight the areas where the
GNRs are sparsely distributed. While the Raman spec-
troscopy results of the GNRs embedded filament are not
shown, the similar response can be discerned.

In classification of 3D printed blank ABS, GNRs em-
bedded, and DTTCI embedded disk, mean and standard
deviation of the spectra are used to distinguish the clus-
ter of data set. Figure 12 shows the mean of the typi-
cal response of Raman spectra of 3D printed disk with
blank ABS, DTTCI coated disk, and DTTCI embedded
ABS filament. By observation, the greatest change of
Raman shift is in the range of 100cm−1 and 800cm−1.
The details of the Raman scattering separation can be
seen in Figure 20 in Appendix A. This is in the range of
791.21nm and 837.60nm scattering; whereas the sample
is irradiated at 785nm. Therefore, this is the reasonable
range of interest for Raman scattering for all data selec-
tion. By training the logistic regression model, the classi-
fication using mean and standard deviation shows 100 %
accuracy against the blank ABS (226 samples) filament
for both GNRs (179 samples) and DTTCI (71 samples)
embedded filaments.
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Figure 12: Mean measurement of Raman scattering of
3D printed disks using acrylonitrile butadiene styrene
(ABS) filament and ABS with gold naonorods (GNRs)
and 3,3’-Diethylthiatricarbocyanine iodide (DTTCI) em-
bedded.

In Raman spectroscopy, the maximum setting depth
penetration for the Renishaw InVia micro-Raman sys-
tem is approximately 300 µm, we cannot verify the 3D
printed object where the GNRs or DTTCI embedded fil-
ament is implanted further inside the object. Therefor,
the Raman spectroscopy would not be sufficient for the
verification that require depth. In further analysis, we use
the MicroCT scanner to evaluate the internal structure of
3D printed objects.

The initial results for the CT scan approach presented
in Figure 7 showed that although the GNRs embedded
filament contrasted well in the CT scan, we could not
rely on the custom filament due to the sparse distribution
of the GNRs. We did not have the equipment nor the
expertise to manufacture a heavily saturated filament.

Figure 13: Classification of blank acrylonitrile butadi-
ene styrene (ABS), gold nanorods (GNRs), and 3,3’-
Diethylthiatricarbocyanine iodide (DTTCI) dye embed-
ded filament in 3D printed disks.
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(a) PLA filament. (b) Stainless steel filament.

Figure 14: Comparison of X-ray densities of PLA and
stainless steel filaments.

For a more precise proof of concept, we used commer-
cially available stainless steel filaments where the fila-
ment is heavily saturated with stainless steel particles.
Under the CT scanning, the steel particles would produce
similar response to the GNRs due to high X-ray den-
sity. Although stainless steel is not biocompatible, it will
serve as a substitute for the GNRs in order to provide pre-
cise visibility in the CT scan. Furthermore, we changed
the control filament from ABS to polylactic acid (PLA)
after comparing the densities in the CT scan. The X-ray
properties of PLA versus ABS have been studied [51],
but we confirmed our assumption after simple trial and
error. Figure 14 highlights the contrast in X-ray densi-
ties between the PLA filament and the stainless steel fil-
ament. We will discuss in the subsequent section how we
evaluated this approach on a tibial prosthesis.

4.3 Case Study: Prosthetic Knee
As described in subsection 2.5, a model of the tibial com-
ponent of a prosthetic knee implant was used as a design
for a use case test. Prosthetics differ slightly between pa-
tients, so we assume that malicious print identification is
performed periodically with a known standard prosthetic
design. Real-Time and post-production visualization are
still performed on each print.

Figure 15: Comparison of target 60% Rectilinear Fill
Tibial Prosthetic print acoustic classification (Top) vs.
malicious 20% Honeycomb Fill (bottom). CTh = 0.

Error Identification. The acoustic verification results

are shown in Figure 15 which shows the confidence val-
ues of both the target print and the malicious print. These
results are gathered using the same technique as those
described in section 3 with audio slices of length 120s
and CTh = 0. By setting CTh = 0, we see that a posi-
tive error classification can be made within the first 360s
of the print or the first 4% of the total known print time
by only observing out-of-sequence index classifications.
The CTh may be set to anything less than 18 without
causing a false positive. Overall, acoustic error detec-
tion itself saves over 2 hours of print time and prevents
a potentially harmful print from being completed. A de-
tailed table of the results shown here can be found in Ap-
pendix B.

In Figure 16, the FFT of a target print and a malicious
print are compared to a training print. Similar to Fig-
ure 10, the malicious print shows a different frequency
response near 0.2Hz as highlighted by the lower box.
The upper box highlights the closeness of the peaks be-
tween the training and target prints and the difference
between those and the malicious print. The full print of
the object requires 111 layers, so it would take less 1% of
the time of the total print to identify the erroneous pattern
once it begins.

Figure 16: Comparison of x-axis frequency response for
a layer of a layer of the tibial knee implant design.

Real-Time Visualization. In this test, the target print
uses a 60% Rectilinear fill and the malicious print uses a
20% Honeycomb fill. In the attack, the visualization of
the intended G-code remains unaltered for the user while
the instructions sent to the printer are altered. The con-
sequences of this attack would be to cause accelerated
wear in the implant causing pain and financial loss for
the victim who has the implant.

For the print identification and real-time visualization
tests, a full sized prosthetic design is used. However, due
to the size limitations of the MicroCT scanner, a signifi-
cantly scaled down version of the same design is used.

The training, target, and attack prints were each
recorded on the Lulzbot Taz6 printer. Due to the avail-
ability of the experimental setup, a single layer of each
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of these prints was performed by the Dobot Magician for
the visualization tests. The exact same G-code was used
for the Dobot prints as in the Taz6 with the exception of
the extruder being disabled and the speeds decreased to
suit the capabilities of Dobot. It should be noted that spa-
tial verification testing is entirely plausible on the Taz6
which has a moving base because the measurements de-
scribe the relative position between the nozzle and the
base. This is regardless of whether that base is a station-
ary table or a moving part of the printer. It should also
be noted that both acoustic and spatial verification would
ideally be performed in tandem, but for testing purposes
here, they are not.

Figure 17 shows the spatial verification visualization
of, in order of left to right, a G-code visualization of the
training print, a spatial reconstruction of the target print,
and a spatial reconstruction of the malicious print. It is
clear that the recreated target print uses a rectilinear fill
at approximately the correct density while the malicious
print differs significantly from the intended G-code. Due
to the warping that occurs in the spatial reconstruction,
a user would not be made aware if the shape of the print
were altered by using this method alone.

Post Production Visualization. We only considered the
CT scan approach for the post production visualization as
the Raman spectroscopy would not be able to verify the
internal structure of the tibial prosthesis due to its depth
limitations. Figure 18 shows an X-ray scan of the front
of a PLA tibial prosthesis with 2 infill layers of steel. Be-
cause we had to use a MicroCT scanner, the part of the
tibial insert was scaled down to fit within a diameter of
about 30 mm. The two large blotches of stainless steel
are simple imperfections that mark points where the sec-
ond extruder began printing.

Figure 19 compares the G-Code representation of the
intended print of the top stainless steel layer–with the
stainless steel path highlighted in red–versus the CT scan
of that layer at a 15 µm/voxel resolution. The CT scan
image is rotated about 45 degrees in comparison to the
intended print. Furthermore, the small model had to be
mounted on a bed of silicone polymer to hold it in place,
so it is not completely level. Despite the imperfections
of the printed model and the scans, it can be seen that
the steel was properly embedded within the walls of the
model and is clearly detectable against the PLA filament.

5 Discussion

In this section, we discuss the various methods of im-
plementing the proposed verification scheme. We then
briefly discuss its limitations.

Implementation. The three layer verification and ma-
licious print detection scheme described here is most
readily suited for a mass production AM scenario. In
this setting, many different standard designs may be
produced using the same equipment. If each design is
printed identically, then the acoustic layer, spatial sens-
ing layer, and materials verification layer may be applied
to each individual print.

In a setting such as the one described for the case study
in subsection 4.3, a base design may be modified for each
print in order to adjust for biological parameters, etc. In
this scenario, the user could train a known standard print
and periodically test the printer for any malicious activ-
ity. This periodic test could include all three layers. Each
specialized design, then, could be monitored using spa-
tial and materials verification for real time and post pro-
duction detection of malicious activity.

Finally, this verification scheme may be used in a sce-
nario in which an end user sends a design to a third party
to be printed. For the materials verification layer, she
may send a specialized filament with embedded track-
ers to be used. If the object returns without the trackers
or with trackers in the wrong locations, malicious activ-
ity may be detected. Also, using a secure live streaming
connection, the user may receive data from the print in
progress and perform any classification or analysis her-
self.

The experiments presented in this paper focus primar-
ily on on the detection of subtle changes in the internal
fill pattern. Therefore, it is logical that more significant
changes such as holes in the fill pattern or changes in the
overall design will be easily detected.

Limitations. As with any verification schema, the sys-
tem proposed here is not without limitations. The imme-
diately obvious limitation is that the ability to detect a
deviation from a training print decreases as the similarity
to the print increases. However, drawn to its logical con-
clusion, this means that an attacker wishing to exploit
this limitation would be forced to change the design in
such a small way as to not affect its usefulness. Another
limitation could be the need for a training print. This
may be a minor issue in the mass production scheme de-
scribed above. In a scenario such as the production of
prosthetics, however, the periodic checks for malicious
activity may be seen as time consuming. Finally, if a
third party printing service implements these methods,
some cost overhead will incur from the purchase of mi-
crophones, sensors, etc. However, these costs are rela-
tively cheap considering that any major equipment such
as a spectroscope or CT scanner would be in the domain
of the end user.
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Figure 17: Comparison of target and malicious tibial knee implant prints. Left: G-code reconstruction of 60% Rec-
tilinear fill, Middle: Spatial reconstruction of 60% Rectilinear fill, Right: Spatial reconstruction of malicious 20%
Honeycomb fill.

2 
1 

Figure 18: X-ray scan of front of PLA tibia with em-
bedded stainless steel at a 15 µm/voxel size resolution.
The first label shows the side view of the cross-sectional
stainless steel infill, while the second label shows the two
blotches where the stainless steel print began.

G-Code CT Scan: Upper Layer

Figure 19: Comparison of G-code simulation of embed-
ded steel (shown as red lines) versus CT scan of the
printed model. The CT scan image is rotated about 45
degrees.

6 Conclusion

Three layers of verification for AM are presented for a
case in which either a control PC or printer firmware is
compromised. Acoustic verification uses audio classifi-
cation to determine whether a print matches a previously
known print. Spatial verification provides a visualization
of the print in real time along with data for frequency
analysis of the printing process. Materials verification
determines whether the correct materials were used and
whether indicator patterns appear in the proper locations.
Each layer is independent of firmware or a controller PC.

Acoustic and spatial verification are found to be useful
for confirming the intended fill pattern and density in a
print, and material verification is found to be most useful
in determining that the correct material is used and that
the design is free of tampering.

Future work will include improving the acoustic and
spatial classification methods so that they work indepen-
dently of human interaction and in real-time. Similarly,
the materials verification methods presented in this paper
could be tuned for domain-specific solutions to be more
precise. This would facilitate automated materials verifi-
cation solutions.
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APPENDIX

A Raman Spectroscopy Measurements

Figure 20 shows the Raman spectroscopy measurements
of 3D printed disks of Raman scattering enhancers gold
nanorods (GNRs), and Diethylthiatricarbocyanine iodide
(DTTCI) embedded in acrylonitrile butadiene styrene
(ABS) filament.
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Figure 20: (a) Raman spectra GNRs embedded ABS fil-
ament. The GNRs amplifies Raman scattering of ABS.
Inset figure shows the separation between the blank ABS
and GNRs embedded ABS Raman spectra. (b) Raman
spectra of ABS and DTTCI embedded ABS filaments.
Large separation is due to the large quantity of enhancer
embedded in ABS filament.
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Abstract

We present Loopix, a low-latency anonymous commu-
nication system that provides bi-directional ‘third-party’
sender and receiver anonymity and unobservability.
Loopix leverages cover traffic and Poisson mixing—brief
independent message delays—to provide anonymity and
to achieve traffic analysis resistance against, including
but not limited to, a global network adversary. Mixes and
clients self-monitor and protect against active attacks via
self-injected loops of traffic. The traffic loops also serve
as cover traffic to provide stronger anonymity and a mea-
sure of sender and receiver unobservability. Loopix is
instantiated as a network of Poisson mix nodes in a strat-
ified topology with a low number of links, which serve to
further concentrate cover traffic. Service providers medi-
ate access in and out of the network to facilitate account-
ing and off-line message reception.

We provide a theoretical analysis of the Poisson mix-
ing strategy as well as an empirical evaluation of the
anonymity provided by the protocol and a functional im-
plementation that we analyze in terms of scalability by
running it on AWS EC2. We show that mix nodes in
Loopix can handle upwards of 300 messages per sec-
ond, at a small delay overhead of less than 1.5ms on
top of the delays introduced into messages to provide se-
curity. Overall message latency is on the order of sec-
onds – which is relatively low for a mix-system. Fur-
thermore, many mix nodes can be securely added to the
stratified topology to scale throughput without sacrific-
ing anonymity.

1 Introduction

In traditional communication security, the confidential-
ity of messages is protected through encryption, but this
exposes meta-data, such as who is sending messages to
whom, to network eavesdroppers. As illustrated by re-

cent leaks of extensive mass surveillance programs1, ex-
posing such meta-data leads to significant privacy risks.

Since 2004, Tor [20], a practical manifestation of
circuit-based onion routing, has become the most popu-
lar anonymous communication tool, with systems such
as Herd [33], Riposte [11], HORNET [10] and Vu-
vuzela [46] extending and strengthening this paradigm.
In contrast, message-based architectures, based on mix
networks, have become unfashionable due to perceived
higher latencies, that cannot accommodate real-time
communications. However, unless cover traffic is em-
ployed, onion routing is susceptible to traffic analysis at-
tacks [7] by an adversary that can monitor network links
between nodes. Recent revelations suggest that capabili-
ties of large intelligence agencies approach that of global
passive observers—the most powerful form of this type
of adversary.

It is not sufficient to provide strong anonymity against
such an adversary while providing low-latency commu-
nication. A successful system additionally needs to re-
sist powerful active attacks and use an efficient, yet se-
cure way of transmitting messages. Moreover, the sys-
tem needs to be scalable to a large number of clients,
which makes classical approaches based on synchro-
nized rounds infeasible.

For this reason we reexamine and reinvent mix-based
architectures, in the form of the Loopix anonymity sys-
tem. Loopix is resists powerful adversaries who are ca-
pable of observing all communications and performing
active attacks. We demonstrate that such a mix archi-
tecture can support low-latency communications that can
tolerate small delays, at the cost of using some extra
bandwidth for cover traffic. Message delay and the ra-
tio of cover to real traffic can all be flexibly traded-off
against each other to offer resistance to traffic analysis.
Loopix provides ‘third-party’ anonymity, namely it hides
the sender-receiver relationships from third parties, but

1See EFF’s guide at https://www.eff.org/files/2014/05/
29/unnecessary_and_disproportionate.pdf
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senders and recipients can identify one another. This
simplifies the design of the system, prevents abuse, and
provides security guarantees against powerful active ad-
versaries performing (n−1) attacks [41].

Loopix provides anonymity for private email or instant
messaging applications. For this reason, we adopt and
leverage an architecture by which users of Loopix are
associated with service providers that mediate their ac-
cess to a stratified anonymity system. Such providers are
only semi-trusted2, and are largely present to maintain
accounting, enforce rate limiting, and ensure messages
sent to off-line users can be retrieved at a later time. To
provide maximal flexibility, Loopix only guarantees un-
reliable datagram transmission and is carried over UDP.
Reliable transport is left to the application as an end-to-
end concern [39].

Contributions. In this paper we make the following con-
tributions:
• We introduce Loopix, a new message-based anony-

mous communication system. It allows for a tun-
able trade-off between latency and genuine and
cover traffic volume to foil traffic analysis.
• As a building block of Loopix we present the Pois-

son Mix, and provide novel theorems about its prop-
erties and ways to analyze it as a pool-mix. Pois-
son mixing does not require synchronized rounds,
can be used for low-latency anonymous communi-
cation, and provides resistance to traffic analysis.
• We analyze the Loopix system against a strong,

global passive adversary. Moreover, we show that
Loopix provides resistance against active attacks,
such as trickling and flooding. We also present a
methodology to empirically estimate the security
provided by particular mix topologies and other se-
curity parameter values.
• We provide a full implementation of Loopix and

measure its performance and scalability in a cloud
hosting environment.

Outline. The remainder of this paper is organized as
follows. In Section 2, we present a brief, high-level
overview of Loopix and define the security goals and
threat model. In Section 3, we detail the design of Loopix
and describe Poisson mixes, upon which Loopix is based
and introduce their properties. In Section 4, we present
the analysis of Loopix’s security properties and discuss
the resistance against traffic analysis and active attacks.
In Section 5, we discuss the implementation of Loopix
and evaluate its performance. In Section 6, we survey
related works and compare Loopix with recent designs
of anonymity systems. In Section 7, we discuss remain-
ing open problems and possible future work. Finally, we
conclude in Section 8.

2Details about the threat model are in Section 2.3

2 Model and Goals

In this section, we first outline the design of Loopix.
Then we discuss the security goals and types of adver-
saries that Loopix guarantees users’ privacy against.

2.1 High-level overview

Loopix is a mix network [8] based architecture allow-
ing users, distinguished as senders and receivers, to route
messages anonymously to each other using an infrastruc-
ture of mix servers, acting as relays. These mix servers
are arranged in a stratified topology [21] to ensure both
horizontal scalability and a sparse topology that concen-
trates traffic on a few links [13]. In a stratified topology,
mixes are arranged in a fixed number of layers. Each
mix, at any given time, is assigned to one specific layer.
Each mix in layer i is connected with every mix in layers
i−1 and i+1. Each user is allowed to access the Loopix
network through their association with a provider, a spe-
cial type of mix server. Each provider has a long-term
relationship with its users and may authenticate them,
potentially bill them, or discontinue their access to the
network. Each provider is connected to each mix in the
first layer, in order to inject packets into the mix net-
work, and also to every mix in the last layer, to receive
egress packets. The provider not only serves as an access
point, but also stores users’ incoming messages. In con-
trast to previous anonymous messaging designs [46, 11],
Loopix does not operate in deterministic rounds, but runs
as a continuous system. This means that incoming mes-
sages can be retrieved at any time, hence users do not
have to worry about lost messages when they are off-
line. Additionally, Loopix uses the Poisson mixing tech-
nique that is based on the independent delaying of mes-
sages, which makes the timings of packets unlinkable.
This approach does not require the synchronization of
client-provider rounds and does not degrade the usability
of the system for temporarily off-line clients. Moreover,
Loopix introduces different types of cover traffic to foil
de-anonymization attacks.

2.2 Threat Model

Loopix assumes sophisticated, strategic, and well-
resourced adversaries concerned with linking users to
their communications and/or their communication part-
ner(s). As such, Loopix considers adversaries with three
distinct capabilities, that are described next.

Firstly, a global passive adversary (GPA) is able to ob-
serve all network traffic between users and providers and
between mix servers. This adversary is able to observe
the entire network infrastructure, launch network attacks
such as BGP re-routing [4], or conduct indirect observa-
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GPA Corrupt mixes Corrupt provider Insider
Sender-Recipient Third-Party Unobservability X X X X
Sender online unobservability X X X •
Sender anonymity X X X X
Receiver unobservability X X •
Receiver anonymity X X •

Table 1: The summary of security properties of the Loopix system in face of different threats. For the insider column we write • to
denote that this concept doesn’t apply to the respective notion.

tions such as load monitoring and off-path attacks [25].
Thus, the GPA is an abstraction that represents many dif-
ferent classes of adversaries able to observe some or all
information between network nodes.

Secondly, the adversary has the ability to observe all
of the internal state of some corrupted or malicious mix
relays. The adversary may inject, drop, or delay mes-
sages. She also has access to, and leverages, all se-
crets of those compromised parties. Furthermore, such
corrupted nodes may deviate from the protocol, or in-
ject malformed messages. A variation of this ability is
where the mix relay is also the provider node meaning
that the adversary additionally knows the mapping be-
tween clients and their mailboxes. When we say that a
provider node is corrupt, we restrict that node to being
honest but curious. In Loopix, we assume that a fraction
of mix/provider relays can be corrupted or are operated
by the adversary.

Finally, the adversary has the ability to participate in
the Loopix system as a compromised user, who may
also deviate from the protocol. We assume that the ad-
versary can control a limited number of such users—
effectively excluding Sybil attacks [22] from the Loopix
threat model—since we assume that honest providers are
able to ensure that at least a large fraction of their users
base are genuine users faithfully following all Loopix
protocols. Thus, the fraction of users controlled by the
adversary may be capped to a small known fraction of the
user base. We further assume that the adversary is able
to control a compromised user in a conversation with an
honest user, and become a conversation insider.

An adversary is always assumed to have the GPA ca-
pability, but other additional capabilities depend on the
adversary. We evaluate the security of Loopix in refer-
ence to these capabilities.

2.3 Security Goals
The Loopix system aims to provide the following secu-
rity properties against both passive and active attacks—
including end-to-end correlation and (n − 1) attacks.
These properties are inspired by the formal definitions
from AnoA [3]. All security notions assume a strong ad-
versary with information on all users, with up to one bit

of uncertainty. In the following we write {S→ R} to de-
note a communication from the sender S to the receiver
R, {S→} to denote that there is a communication from S
to any receiver and {S 6→} to denote that there is no com-
munication from S to any receiver (S may still send cover
messages). Analogously, we write {→ R} to denote that
there is a communication from any sender to the receiver
R and {6→ R} to denote that there is no communication
from any sender to R (however, R may still receive cover
messages).

Sender-Receiver Third-party Unlinkability. The
senders and receivers should be unlinkable by any unau-
thorized party. Thus, we consider an adversary that
wants to infer whether two users are communicating. We
define sender-receiver third party unlinkability as the in-
ability of the adversary to distinguish whether {S1→ R1,
S2 → R2} or {S1 → R2,S2 → R1} for any online honest
senders S1,S2 and honest receivers R1,R2 of the adver-
sary’s choice.

Loopix provides strong sender-receiver third-party un-
linkability against the GPA even in collaboration with
corrupt mix nodes. We refer to Section 4.1.3 for
our analysis of the unlinkability provided by individ-
ual mix nodes, Section 4.3 for a quantitative analysis
of the sender-receiver third-party unlinkability of Loopix
against the GPA and honest-but-curious mix nodes, and
Section 4.2 for our discussion on malicious mixes per-
forming active attacks.

Sender online unobservability. Whether or not senders
are communicating should be hidden from an unautho-
rized party. We define sender online unobservability as
the inability of an adversary to decide whether a specific
sender S is communicating with any receiver {S→} or
not {S 6→}, for any concurrently online honest sender S
of the adversary’s choice.

Loopix provides strong sender online unobservability
against the GPA and even against a corrupt provider. We
refer to Section 4.1.2 for our analysis of the latter.

Note, that sender online unobservability directly im-
plies the notion of sender anonymity where the adver-
sary tries to distinguish between two possible senders
communicating with a target receiver. Formally, {S1 →
R,S2 6→} or {S1 6→,S2→ R} for any concurrently online
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honest senders S1 and S2 and any receiver of the adver-
sary’s choice. Loopix provides sender anonymity even
in light of a conversation insider, i.e., against a corrupt
receiver.

Receiver unobservability. Whether or not receivers are
communicating should be hidden from an unauthorized
party. We define receiver unobservability as the inability
of an adversary to decide whether any sender is commu-
nicating with a specific receiver R {→ R} or not {6→ R},
for any online or offline honest receiver R of the adver-
sary’s choice.

Loopix provides strong receiver unobservability
against the GPA, under the condition of an honest
provider. We show in Section 4.1.2 how an honest
provider assists the receiver in hiding received messages
from third party observers.

Note, that receiver unobservability directly implies the
notion of receiver anonymity where the adversary tries to
distinguish between two possible receivers in communi-
cation with a target sender. Formally, {S→ R1, 6→ R2}
or {6→ R1,S→ R2} for any concurrently online honest
sender S and any two honest receivers R1,R2 of the ad-
versary’s choice. 3

Non-Goals. Loopix provides anonymous unreliable
datagram transmission and facilities replying to sent
messages (through add-ons). This choice allows for flex-
ible traffic management, cover traffic, and traffic shap-
ing. On the downside, higher-level applications using
Loopix need to take care of reliable end-to-end trans-
mission and session management. We leave the detailed
study of those mechanisms as future work.

The provider-based architecture supported by Loopix
aims to enable managed access to the network, anony-
mous blacklisting to combat abuse [27], and payments
for differential access to the network [2]. However, we
do not discuss these aspects of Loopix in this work, and
concentrate instead on the core anonymity features and
security properties described above.

3 The Loopix Architecture

In this section we describe the Loopix system in detail—
Figure 1 provides an overview. We also introduce the no-
tation used further in the paper, summarized in Table 2.

3.1 System Setup
The Loopix system consists of a set of mix nodes, N,
and providers, P. We consider a population of U users

3If the receiver’s provider is honest, Loopix provides a form of
receiver anonymity even in light of a conversation insider: a corrupt
sender that only knows the pseudonym of a receiver cannot learn which
honest client of a provider is behind the pseudonym.

Symbol Description

N Mix nodes
P Providers
λL Loop traffic rate (user)
λD Drop cover traffic rate (user)
λP Payload traffic rate (user)
l Path length (user)
µ The mean delay at mix Mi
λM Loop traffic rate (mix)

Table 2: Summary of notation

communicating through Loopix, each of which can act as
sender and receiver, denoted by indices Si, Ri, where i ∈
{1, . . . ,U} respectively. Each entity of the Loopix infras-
tructure has its unique public-private key pair (sk, pk). In
order for a sender Si, with a key pair (skSi , pkSi), to send
a message to a receiver R j, with a key pair (skR j , pkR j),
the sender needs to know the receiver’s Loopix network
location, i.e., the IP address of the user’s provider and
an identifier of the user, as well as the public encryption
key pkR j . Since it is out of scope for this work, we will
assume this information can be made available through a
privacy-friendly lookup or introduction system for initi-
ating secure connections [32].

3.2 Format, Paths and Cover Traffic

Message packet format. All messages in Loopix are
end-to-end encrypted and encapsulated into packets to be
processed by the mix network. We use the Sphinx packet
design [16], to ensure that intermediate mixes learn no
additional information beyond some routing information.
All messages are padded to the same length, which hides
the path length and the relay position and guarantees un-
linkability at each hop of the messages’ journey over the
network. The Sphinx packet format allows for detection
of tagging attacks and replay attacks.

Each message wrapped into the Sphinx packet consists
of a concatenation of two separate parts: a header, car-
rying the layered encryption of meta-data for each hop,
and the encrypted payload, which allows for confidential
message exchange. The header provides each mix server
on the path with confidential meta-data, which is neces-
sary to verify packet integrity and correctly process the
packet. The structure of the header consists of (I) a single
element of a cyclic group that is re-randomized at each
hop, (II) an onion-encrypted vector, with each layer con-
taining the routing information for one hop, and (III) the
message authentication code MACi, which allows header
integrity checking. The payload is encrypted using the
LIONESS cipher [1], which guarantees that in case the
adversary modifies the payload in transit, any informa-
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Figure 1: The Loopix Architecture. Clients pass the messages
to the providers, which are responsible for injecting traffic into
the network. The received messages are stored in individual
inboxes and retrieved by clients when they are online.

tion contained in it becomes irrecoverable. Thanks to the
message authentication code in the header and the LI-
ONESS encryption the Sphinx packet format thus allows
for detection of tagging attacks.
Sphinx packet generation: The sender, given the public
keys of the recipient and the nodes in the path, computes
the sequence of shared secrets and blinded group ele-
ments. Next, the sender encrypts with the derived secret
keys the vector of routing information and corresponding
message authentication codes. The sender concatenates
the computed header and onion-encrypted payload en-
capsulating confidential message to send to the recipient.
Sphinx packet processing: Each node after receiv-
ing the packet proceeds as follows. First, it computes
a shared key using the group element included in the
packet header and its private key. Next, using the com-
puted shared key, the node validates the integrity of the
packet by computing the hash of the encrypted routing
information vector and comparing it with the received
MAC. If the MAC is correct, the node, using the obtained
key, strips off a single layer of encryption from the rout-
ing information and payload. The decryption operation
returns the routing commands and a new packet, which
should be forwarded to the next hop.

We extend the Sphinx packet format to carry addi-
tional routing commands in the header to each interme-
diate relay, including a delay and additional flags.

Path selection. As opposed to circuit-based onion
routing, in Loopix the communication path for every sin-
gle message is chosen independently, even between the
same pair of users.

Messages are routed through l layers of mix nodes, as-
sembled in a stratified topology [13, 21]. Each mix node
is connected only with all the mix nodes from adjacent

layers. This ensures that few links are used, and those
few links are well covered in traffic; stratified topologies
mix well in few layers [21]. Providers act as the first and
last layer of mix servers.

Preparing message for sending. To send a message,
the sender generates a random path, as described above.
For each hop in the path the sender samples a delay
from an exponential distribution with parameter µ , and
includes it in the vector of routing commends, together
with any other auxiliary information, to the correspond-
ing relay. Given the message, recipient, path and rout-
ing commends the client encapsulates them into a Sphinx
packet format.

Sending messages and cover traffic. Users and mix
servers continuously generate a bed of real and cover
traffic that is injected into the network. Our design guar-
antees that all outgoing traffic sent by users can by mod-
eled by a Poisson process.

To send a message, a user packages their message into
a mix packet and places it into their buffer—a first-in-
first-out (FIFO) queue that stores all the messages sched-
uled to be sent.

Each sender periodically checks, following the expo-
nential distribution with parameter 1

λP
, whether there is

any scheduled message to be sent in their buffer. If there
is a scheduled message, the sender pops this message
from the buffer queue and sends it, otherwise a drop
cover message is generated (in the same manner as a reg-
ular message) and sent (depicted as the four middle blue,
solid arrows in Figure 1). Cover messages are routed
through the sender’s provider and a chain of mix nodes to
a random destination provider. The destination provider
detects the message is cover based on the special drop
flag encapsulated into the packet header, and drops it.
Thus, regardless of whether a user actually wants to send
a message or not, there is always a stream of messages
being sent according to a Poisson process Pois(λP).

Moreover, independently from the above, all users
emit separate streams of special indistinguishable types
of cover messages, which also follow a Poisson process.
The first type of cover messages are Poisson distributed
loops emitted at rate λL. These are routed through the
network and looped back to the senders (the upper four
red arrows in Figure 1), by specifying the sending user as
the recipient. These “loops” inspire the system’s name.
Users also inject a separate stream of drop cover mes-
sages, defined before, following the Poisson distribution
Pois(λD). Additionally, each user sends a stream of pull
requests at a fixed frequency to its provider in order to
retrieve received messages, described in Section 3.2.
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• Packs message m in
the Sphinx packet
format and put it
into the outbox
buffer;

• Continuously gener-
ates loop and drop
cover traffic;

• When the buffer is
checked, pops the
encrypted message
and sends to the
provider.

Sender
• Processes the

received packet,
checks the in-
tegrity and detects
replays,

• If the processing
succeeded, injects
the packet into the
mix network after
the required delay.

Ingress Provider

• Processes the
received packet,
checks the in-
tegrity and detects
replays,

• If the process-
ing succeeded,
forwards the de-
crypted packet to
the next hop after
the required delay.

Mix
• Processes the

received packet,
checks the in-
tegrity and detects
replays,

• Stores the packet in
the client’s inbox.

Egress Provider

• Retrieves a fixed
number of mes-
sages from the
inbox,

• Unwraps the last
layer of encryption
and reads the
content.

Recipient

Figure 2: Sending a single message between two users using the Loopix system. For simplicity, we present the mix network
as a single mix; however, all mixes in the network perform the same operations. The mail client, besides sending the messages,
generates constant streams of loop and drop cover traffic, independently of the user activity. The dotted line depicts retrieving of
messages.

Each mix also injects its own loop cover traffic, drawn
from a Poisson process with rate Pois(λM), into the net-
work. Mix servers inject mix packets that are looped
through a path, made up of a subset of other mix servers
and one randomly selected provider, back to the sending
mix server, creating a second type of “loop”. This loop
originates and ends in a mix server (shown as the lower
four green arrows in Figure 1). In Section 4 we exam-
ine how these loops and the drop cover messages help
protect against passive and active attacks.

Processing messages. Upon receiving a packet, each
node, i.e., each mix and provider, performs the opera-
tion of processing the Sphinx packet. While processing
the packet, the server recomputes the shared secret and
checks the MAC’s correctness. If this integrity test fails,
the packet is dropped. Otherwise, the unwrapping func-
tion returns the replay detection tag and the vector of
routing commands, as well the new packet. The vector
of routing commands includes, among others, the rout-
ing flag, the address of the next hop and the delay. After
unwrapping the packet, the node checks whether the re-
turned replay detection tag has been already seen and if
so, drops the packet. This allows for detection and pro-
tection against replay attacks. Otherwise, the node saves
the tag in a data structure that stores previously observed
tags. Next, it checks whether the routing flag is set to
Relay or Dest. The Dest flag means that the received
message is a loop message transferred back to the node.
In the case of the Relay flag, we consider two scenarios
depending on whether the processing node is a mix or a
provider. In the case of a mix, the decrypted new packet
is send to the next hop, specified by address, after the de-
lay has elapsed. In the case of a provider, the new packet

is either forwarded as before or saved in the inbox of one
of the provider’s clients specified by the address.

Message storing and retrieving. Providers do not for-
ward the incoming mix packets to users but instead
buffer them in clients’ inboxes. Users, when online, poll
providers or register their online status to download a
fixed subset of stored messages, allowing for the recep-
tion of the off-line messages. Recall that cover loops are
generated by users and traverse through the network and
come back to the sender. Cover loops serve as a cover
set of outgoing and incoming real messages. Whenever
a user requests messages, their provider responds with a
constant number of messages, which includes their cover
loop messages and real messages. If the inbox of a par-
ticular user contains fewer messages than this constant
number, the provider generates and sends dummy mes-
sages to the sender up to that number.

3.3 The Poisson Mix Strategy

Loopix leverages cover traffic to resist traffic analysis
while still achieving low- to mid-latency. To this end
Loopix employs a mixing strategy that we call a Pois-
son Mix, to foil observers from learning about the cor-
respondences between input and output messages. The
Poisson Mix is a simplification of the Stop-and-go mix
strategy [29]. A similar strategy has been used to model
traffic in onion routing servers [12]. In contrast, recall
that in Loopix each message is source routed through an
independent route in the network.

The Poisson Mix functions as follows: mix servers lis-
ten for the incoming mix packets and received messages
are checked for duplication and decoded using the mix
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Figure 3: The Poisson Mix strategy mapped to a Pool mix
strategy. Each single message sending or receiving event leads
to a new pool of messages that are exchangeable and indistin-
guishable with respect to their departure times.

node’s private keys. The detected duplicates are dropped.
Next, the mix node extracts a subsequent mix packet.
Decoded mix packets are not forwarded immediately,
but each of them is delayed according to a source pre-
determined delay di. Honest clients chose these delays,
independently for each hop, from an exponential distri-
bution with a parameter µ that is assumed to be public
and the same for all mix nodes. This parameter deter-
mines how long the message is queued in the mix. Thus,
the end-to-end latency of the messages depends on the
selected parameter µ .

Mathematical model of a Poisson Mix. Honest
clients and mixes generate drop cover traffic, loop traf-
fic, and messaging traffic following a Poisson process.
Aggregating Poisson processes results in a Poisson pro-
cess with the sum of their rates, therefore we may model
the streams of traffic received by a Poisson mix as a Pois-
son process. It is the superposition of traffic streams from
multiple clients. It has a rate λn depending on the number
of clients and the number of mix nodes.

Since this input process is a Poisson process and each
message is independently delayed using an exponential
distribution with parameter µ , the Poisson Mix may be
modeled as an M/M/∞ queuing system – for which we
have a number of well known theorems [5]. We know
that output stream of messages is also a Poisson process
with the parameter λn as the the input process. We can
also derive the distribution of the number of messages
within a Poisson Mix in a steady state [34]. By the steady
state we mean the state of the system in which all entities
have already generated and processed messages for some
reasonable period of time. By the convergence of the sys-
tem to the equilibrium, this guarantees that the observed
traffic closely follows the assumed distribution.

Lemma 1. The mean number of messages in the Poisson
Mix with input Poisson process Pois(λ ) and exponential
delay parameter µ at a steady state follows the Poisson
distribution Pois(λ/µ).

These characteristics, which give the Poisson Mix its
name, allow us to calculate the mean number of mes-

sages perfectly mixed together at any time, as well as the
probability that the number of messages falls below or
above certain thresholds.

The Poisson Mix, under the assumption that it approx-
imates an M/M/∞ queue is a stochastic variant of a pool
mixing strategy [42]. Conceptually, every message sent
or received leads to a pool within which messages are
indistinguishable due to the memoryless property of the
exponential delay distribution.

Lemma 2 (Memoryless property [34]). For an exponen-
tial random variable X with parameter µ holds Pr[X >
s+ t|X > t] = Pr[X > s].

Intuitively, any two messages in the same pool are
emitted next with equal probability – no matter how long
they have been waiting. As illustrated in Figure 3, the
receiving event i− 1 leads to a pool of messages i− 1,
until the sending event i. From the perspective of the ad-
versary observing all inputs and outputs, all messages in
the pool i−1 are indistinguishable from each other. Only
the presence of those messages in the pool is necessary to
characterize the hidden state of the mix (not their delay
so far). Relating the Poisson mix to a pool mix allows
us to compute easily and exactly both the entropy metric
for the anonymity it provides [40] within a trace (used in
Section 4.1.3). It also allows us to compute the likelihood
that an emitted message was any specific input message
used in our security evaluation.

Synchronous variant of Loopix. While Loopix oper-
ates asynchronously by design, we now consider a syn-
chronous Loopix variant that operates in discrete rounds
and thus cannot use the exponential mixing strategy,
where delays attached to the packets are drawn from a
continuous distribution. However, note that in a sin-
gle round of the synchronous system the mixes gather
packets - thus creating pools of packets - which are then
flushed following the mixing strategy. All the messages
gathered in the pool during a single round are indistin-
guishable from each other. Hence, since we have shown
earlier that the Poisson mix can be modeled as a pool
mix, the security analysis of mixing we present next can
be applied both in the asynchronous and synchronous de-
sign.

4 Analysis of Loopix security properties

In this section we present the analytical and experimental
evaluation of the security of Loopix and argue its resis-
tance to traffic analysis and active attacks.
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4.1 Passive attack resistance

4.1.1 Message Indistinguishability

Loopix relies on the Sphinx packet format [16] to provide
bitwise unlinkability of incoming and outgoing messages
from a mix server; it does not leak information about the
number of hops a single message has traversed or the
total path length; and it is resistant to tagging attacks.

For Loopix, we make minor modifications to Sphinx
to allow auxiliary meta-information to be passed to dif-
ferent mix servers. Since all the auxiliary information is
encapsulated into the header of the packet in the same
manner as any meta-information was encapsulated in the
Sphinx design, the security properties are unchanged. An
external adversary and a corrupt intermediate mix node
or a corrupt provider will not be able to distinguish real
messages from cover messages of any type. Thus, the
GPA observing the network cannot infer any information
about the type of the transmitted messages, and interme-
diate nodes cannot distinguish real messages, drop cover
messages or loops of clients and other nodes from each
other. Providers are able to distinguish drop cover mes-
sage destined for them from other messages, since they
learn the drop flag attached in the header of the packet.
Each mix node learns the delay chosen by clients for this
particular mix node, but all delays are chosen indepen-
dently from each other.

4.1.2 Client-Provider unobservability

In this section, we argue the sender and receiver un-
observability against different adversaries in our threat
model. Users emit payload messages following a Pois-
son distribution with parameter λP. All messages sched-
uled for sending by the user are placed within a first-in-
first-out buffer. According to a Poisson process, a sin-
gle message is popped out of the buffer and sent, or a
drop cover message is sent in case the buffer is empty.
Thus, from an adversarial perspective, there is always
traffic emitted modeled by Pois(λP). Since clients send
also streams of cover traffic messages with rates λL for
loops and λD for drop cover messages, the traffic sent by
the client follows Pois(λP +λL +λD). Thus, we achieve
perfect sender unobservability, since the adversary can-
not tell whether a genuine message or a drop cover mes-
sage is sent.

When clients query providers for received messages,
the providers always send a constant number of messages
to the client. If the number of messages in client’s inbox
is smaller than a constant threshold, the provider gen-
erates additional dummy messages. Thus, the adversary
observing the client-provider connection, as presented on
Figure 4, cannot learn how many messages were in the
user’s inbox. Note that, as long as the providers are hon-

Inbox I

Inbox II

Inbox III

Figure 4: Provider stores messages destined for assigned
clients in a particular inbox. When users pull messages from
the mix node, the provider generates cover messages to guar-
antee that the adversary cannot learn how many messages are
in the users inbox. The messages from the inbox and dummies
are indistinguishable.

est, the protection and receiver unobservability is perfect
and the adversary cannot learn any information about the
inbox and outbox of any client.

Corrupt providers: We distinguish the sender’s and
recipient’s providers by calling them the ingress and
egress providers respectively. If the ingress provider is
compromised, all security properties of the Loopix sys-
tem are still preserved, since the ingress provider ob-
serves a rate of traffic shaped by the Poisson distribution
coming from the client and cannot distinguish whether
the received packets carry real, loop or drop messages.

If the egress provider is malicious it can reveal to the
adversary whether a particular client is receiving mes-
sages or not since the provider is responsible for man-
aging the clients’ inboxes. However, even an egress
provider is still uncertain whether a received message is
genuine or the result of a client loop – this cannot be
determined from their bit pattern alone. Further statis-
tical attacks may be possible, and we leave quantifying
the exact information leakage against this threat model
as future work. Thus, Loopix does not guarantee perfect
receiver unobservability in the presence of a corrupted
egress provider.

4.1.3 Poisson mix security

We first show that a single honest Poisson mix provides a
measure of sender-receiver unlinkability. From the prop-
erties of Poisson mix, we know that the number of mes-
sages in the mix server at a steady state depends on the
ratio of the incoming traffic (λ ) and the delay parameter
(µ) (from Section 3.3). The number of messages in each
mix node at any time will on average be λ

µ
. However, an

adversary observing the messages flowing into and out
of a single mix node could estimate the exact number of
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messages within a mix with better accuracy – hindered
only by the mix loop cover traffic.

We first consider, conservatively, the case where a mix
node is not generating any loops and the adversary can
count the exact number of messages in the mix. Let us
define on,k,l as an adversary A observing a mix in which
n messages arrive and are mixed together. The adversary
then observes an outgoing set of n− k messages and can
infer that there are now k < n messages in the mix. Next,
l additional messages arrive at the mix before any mes-
sage leaves, and the pool now mixes k+ l messages. The
adversary then observes exactly one outgoing message
m and tries to correlate it with any of the n+ l messages
which she has observed arriving at the mix node.

The following lemma is based on the memoryless
property of the Poisson mix. It provides an upper bound
on the probability that the adversary A correctly links the
outgoing message m with one of the previously observed
arrivals in observation on,k,l .

Theorem 1. Let m1 be any of the initial n messages in
the mix node in scenario on,k,l , and let m2 be any of the l
messages that arrive later. Then

Pr(m = m1) =
k

n(l + k)
, (1)

Pr(m = m2) =
1

l + k
. (2)

Note that the last l messages that arrived at the mix
node have equal probabilities of being the outgoing mes-
sage m, independently of their arrival times. Thus, the
arrival and departure times of the messages cannot be
correlated, and the adversary learns no additional infor-
mation by observing the timings. Note that 1

l+k is an
upper bound on the probability that the adversary A cor-
rectly links the outgoing message to an incoming mes-
sage. Thus, continuous observation of a Poisson mix
leaks no additional information other than the number
of messages present in the mix. We leverage those re-
sults for a single Poisson Mix to simulate the information
propagated withing a the whole network observed by the
adversary (c.f. Section 4.3).

We quantify the anonymity of messages in the mix
node empirically, using an information theory based met-
ric introduced in [40, 18]. We record the traffic flow
for a single mix node and compute the distribution of
probabilities that the outgoing message is the adversary’s
target message. Given this distribution we compute the
value of Shannon entropy (see Appendix A), a measure
of unlinkability of incoming to outgoing messages. We
compute this using the simpy package in Python. All
data points are averaged over 50 simulations.

Figure 5 depicts the change of entropy against an in-
creasing rate of incoming mix traffic λ . We simulate the

Figure 5: Entropy versus the changing rate of the incoming
traffic for different delays with mean 1

µ
. In order to measure

the entropy we run a simulation of traffic arriving at a single
Loopix mix node.

dependency between entropy and traffic rate for differ-
ent mix delay parameter µ by recording the traffic flow
and changing state of the mix node’s pool. As expected,
we observe that for a fixed delay, the entropy increases
when the rate of traffic increases. Higher delay also re-
sults in an increase in entropy, denoting a larger potential
anonymity set, since more messages are mixed together.

In case the mix node emits loop cover traffic, the ad-
versary with observation on,k,l , tries to estimate the prob-
ability that the observed outgoing message is a particular
target message she observed coming into the mix node.
An outgoing message can be either input message or a
loop message generated by the mix node – resulting in
additional uncertainty for the adversary.

Theorem 2. Let m1 be any of the initial n messages in
the mix node in scenario on,k,l , and let m2 be any of the
l messages that arrive later. Let λM denote the rate at
which mix node generates loop cover traffic. Then,

Pr(m = m1) =
k
n
· µ

(l + k)µ +λM
,

Pr(m = m2) =
µ

(l + k)µ +λM
.

We refer to Appendix A for the proof. We conclude
that the loops generated by the mix node obfuscate the
adversary’s view and decrease the probability of success-
fully linking input and output of the mix node. In Sec-
tion 4.2 we show that those types of loops also protect
against active attacks.

4.2 Active-attack Resistance
Lemma 1 gives the direct relationship between the ex-
pected number of messages in a mix node, the rate of in-
coming traffic, and the delay induced on a message while
transiting through a mix. By increasing the rate of cover
traffic, λD and λL, users can collectively maintain strong
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anonymity with low message delay. However, once the
volume of real communication traffic λP increases, users
can tune down the rate of cover traffic in comparison
to the real traffic, while maintaining a small delay and
be confident their messages are mixed with a sufficient
number of messages.

In the previous section, we analyze the security prop-
erties of Loopix when the adversary observes the state
of a single mix node and the traffic flowing through it.
We show, that the adversary’s advantage is bounded due
to the indistinguishability of messages and the memory-
less property of the Poisson mixing strategy. We now in-
vestigate how Loopix can protect users’ communications
against active adversaries conducting the (n−1) attack.

4.2.1 Active attacks

We consider an attack at a mix node where an adversary
blocks all but a target message from entering in order
to follow the target message when it exits the mix node.
This is referred to as an (n-1) attack [41].

A mix node needs to distinguish between an active at-
tack and loop messages dropped due to congestion. We
assume that each mix node chooses some public param-
eter r, which is a fraction of the number of loops that
are expected to return. If the mix node does not see this
fraction of loops returning they alter their behavior. In
extremis such a mix could refuse to emit any messages
– but this would escalate this attack to full denial-of-
service. A gentler approach involves generating more
cover traffic on outgoing links [17].

To attempt an (n-1) attack, the adversary could simply
block all incoming messages to the mix node except for a
target message. The Loopix mix node can notice that the
self-loops are not returning and deduce it is under attack.
Therefore, an adversary that wants to perform a stealthy
attack has to be judicious when blocking messages, to
ensure that a fraction r of loops return to the mix node,
i.e. the adversary must distinguish loop cover traffic from
other types of traffic. However, traffic generated by mix
loops is indistinguishable from other network traffic and
they cannot do this better than by chance. Therefore
given a threshold r = λM

s ,s ∈ R>1 of expected returning
loops when a mix observes fewer returning it deploys ap-
propriate countermeasures.

We analyze this strategy: since the adversary cannot
distinguish loops from other traffic the adversary can do
no better than block traffic uniformly such that a fraction
R = λ

s = λR+λM
s enter the mix, where λR is the rate of

incoming traffic that is not the mix node’s loops. If we
assume a steady state, the target message can expect to
be mixed with λR

s·µ messages that entered this mix, and
λM
µ

loop messages generated at the mix node. Thus, the
probability of correctly blocking a sufficient number of

messages entering the mix node so as not to alter the be-
havior of the mix is:

Pr(x = target) =
1

λR/s ·µ +λM/µ
=

sµ

sλM +λR

Due to the stratified topology, providers are able to dis-
tinguish mix loop messages sent from other traffic, since
they are unique in not being routed to or from a client.
This is not a substantial attack vector since mix loop
messages are evenly distributed among all providers, of
which a small fraction are corrupt and providers do not
learn which mix node sent the loop to target it.

4.3 End-to-End Anonymity Evaluation
We evaluate the sender-receiver third-party unlinkability
of the full Loopix system through an empirical analysis
of the propagation of messages in the network. Our key
metric is the expected difference in likelihood that a mes-
sage leaving the last mix node is sent from one sender
in comparison to another sender. Given two probabilities
p0 = Pr[S0] and p1 = Pr[S1] that the message was sent by
senders S0 and S1, respectively, we calculate

ε = |log(p0/p1)| . (3)

To approximate the probabilities p0 and p1, we pro-
ceed as follows. We simulate U = 100 senders that gen-
erate and send messages (both payload and cover mes-
sages) with a rate λ = 2. Among them are two challenge
senders S0 and S1 that send payload messages at a con-
stant rate, i.e, they add one messages to their sending
buffer every time unit.

Whenever a challenge sender S0 or S1 sends a payload
message from its buffer, we tag the message with a la-
bel S0 or S1, respectively. All other messages, including
messages from the remaining 98 clients and the cover
messages of S0 and S1 are unlabeled. At every mix we
track the probability that an outgoing message is labeled
S0 or S1, depending on the messages that entered the mix
node and the number of messages that already left the
mix node, as in Theorem 1. Thus, messages leaving a
mix node carry a probability distribution over labels S0,
S1, or ‘unlabeled’. Corrupt mix nodes, assign to outgoing
messages their input distributions. The probabilities nat-
urally add up to 1. For example, a message leaving a mix
can be labeled as {S0 : 12%,S1 : 15%,unlabeled : 73%}.

In a burn-in phase of 2500 time units, the 98 senders
without S0 or S1 communicate. Then we start the two
challenge senders and then simulate the network for an-
other 100 time units, before we compute the expected
difference in likelihood metric. We pick a final mix node
and using probabilities of labels S0 and S1 for any mes-
sage in the pool we calculate ε as in Equation (3).
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Figure 6: Likelihood difference ε depending on the delay pa-
rameter µ of mix nodes. We use λ = 2, a topology of 3 layers
with 3 nodes per layer and no corruption.

This is a conservative approximation: we tell the ad-
versary which of the messages leaving senders S0 and S1
are payload messages; and we do not consider mix or
client loop messages confusing them. 4 However, when
we calculate our anonymity metric at a mix node we as-
sume this mix node to be honest.

4.3.1 Results

We compare our metric for different parameters: depend-
ing on the delay parameter µ , the number of layers in
our topology l and the percentage of corrupt mix nodes
in the network. All simulations are averaged over 100
repetitions and the error bars are the standard deviation.

Delay. Increasing the average delay (by decreasing pa-
rameter µ) with respect to the rate of message sending
λ immediately increases anonymity (decreases ε) (Fig-
ure 6). For µ = 2.0 and λ/µ = 1, Loopix still provides a
weak form of anonymity. As this fraction increases, the
log likelihood ratio grow closer and closer to zero. We
consider values λ/µ ≥ 2 to be a good choice in terms of
anonymity.

Number of layers. By increasing the number of layers
of mix nodes, we can further strengthen the anonymity of
Loopix users. As expected, using only one or two layers
of mix nodes leads to high values of adversary advantage
ε . For a increasing number of layers, ε approaches zero
(Figure 7). We consider a number of 3 or more layers
to be a good choice. We believe the bump between 5–8
layers is due to messages not reaching latter layers within
100 time units. Results from experiments with increased
duration do not display such a bump.

4The soundness of our simplification can be seen by the fact that we
could tell the adversary which messages are loops and the adversary
could thus ignore them. This is equivalent to removing them, as an
adversary could also simulate loop messages.

Figure 7: Likelihood difference ε depending on the number of
layers of mix nodes with 3 mix nodes per layer. We use λ = 2,
µ = 1, and no corruption.

Figure 8: Likelihood difference ε depending on the percentage
of (passively) corrupted mix nodes. We use λ = 2, µ = 1 and
a topology of 3 layers with 3 nodes per layer.

Corruption. Finally, we analyze the impact that cor-
rupt mix nodes have on the adversary advantage ε (Fig-
ure 8). We assume that the adversary randomly corrupts
mix nodes. Naturally, the advantage ε increases with the
percentage of corrupt mix nodes in the network. In a
real-world deployment we do not expect a large fraction
of mix nodes to be corrupt. While the adversary may
be able to observe the entire network, to control a large
number of nodes would be more costly.

5 Performance Evaluation

Implementation. We implement the Loopix system
prototype in 4000 lines of Python 2.7 code for mix
nodes, providers and clients, including unit-tests, de-
ployment, and orchestration code. Loopix source code
is available under an open-source license5. We use the
Twisted 15.5.0 network library for networking; as well
as the Sphinx mix packet format6 and the cryptographic
tools from the petlib7 library. We modify Sphinx to
use NIST/SEGS-p224 curves and to accommodate addi-
tional information inside the packet, including the delay

5https://github.com/UCL-InfoSec/loopix
6http://sphinxmix.readthedocs.io/en/latest/
7http://petlib.readthedocs.org
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for each hop and auxiliary flags. We also optimize the
Sphinx implementation leading to processing times per
packet of less than 1ms.

The most computationally expensive part of Loopix
is messages processing and packaging, which involves
cryptographic operations. Thus, we implement Loopix
as a multi-thread system, with cryptographic processing
happening in a thread pool separated from the rest of the
operations in the main thread loop. To recover from con-
gestion we implement active queue management based
on a PID controller and we drop messages when the size
of the queue reaches a (high) threshold.

Experimental Setup. We present an experimental per-
formance evaluation of the Loopix system running on
the AWS EC2 platform. All mix nodes and providers
run as separate instances. Mix nodes are deployed on
m4.4xlarge instances running EC2 Linux on 2.3GHz
machines with 64GB RAM memory. Providers, since
they handle more traffic, storage and operations, are de-
ployed on m4.16xlarge instances with 256GB RAM.
We select large instances to ensure that the providers
are not the bottleneck of the bandwidth transfer, even
when users send messages at a high rate. This reflects
real-world deployments where providers are expected to
be well-resourced. We also run one m4.16xlarge in-
stance supporting 500 clients. We only show results for
500 clients, due to limitations of our experimental hard-
ware setup such as ports and memory. A real world de-
ployment of Loopix would scale to a larger client base.
We believe that our empirical analysis is a more accu-
rate assessment of real-world performance than those re-
ported by other works, e.g. [45, 46], which depend on
simplish extrapolation. In order to measure the system
performance, we run six mix nodes, arranged in a strat-
ified topology with three layers, each layer composed
of two mix nodes. Additionally, we run four providers,
each serving approximately 125 clients. The delays of
all the messages are drawn from an exponential distri-
bution with parameter µ , which is the same for all mix
servers in the network. All measurements are taken from
network traffic dumps using tcpdump.

Bandwidth. First, we evaluate the increase of band-
width of mix nodes by measuring the rate at which a
single mix node processes messages, for an increasing
overall rate at which users send messages.

We set up the fixed delay parameter µ = 1000 (s.t.
the average delay is 1ms). We have 500 clients ac-
tively sending messages at rate λ each, which is the
sum of payload, loop and drop rates, i.e., Pois(λ ) =
Pois(λL + λD + λP). We start our simulation with pa-
rameters λL = λD = 1 and λP = 3 messages per minute
for a single client. Mix nodes send loop cover traffic at

Figure 9: Overall bandwidth and good throughput per second
for a single mix node.

rate starting from λM = 1. Next, we periodically increase
each Poisson rate by another 2 messages per minute.
Each packet sent through the network has a size of a few
kilobytes only, but this size is a parameter that can, of
course, be increased to fit the needs of a particular appli-
cation.

In order to measure the overall bandwidth, i.e. the
number of all messages processed by a single mix node,
we use the network packet analyzer tcpdump. Since
real and cover message packets are indistinguishable, we
measure the good throughput by encapsulating an addi-
tional, temporary, typeFlag in the packet header for this
evaluation, which leaks to the mix the message type—
real or cover—and is recorded. Knowing the parameters
λP, λL, and λD the adversary can try to estimate how
many messages on average in the outgoing stream are
real, loop or drop messages. However, the average es-
timation does not give the adversary any significant in-
formation, since the outgoing traffic may contain various
numbers of each type of message which an adversary is
not able to distinguish between.

Figure 9 illustrates the number of total messages and
the number of payload messages that are processed by
a single mix node versus the overall sending rate λ of a
single user. We observe that the bandwidth of the mix
node increases linearly until it reaches around 225 mes-
sages per second. After that point the performance of
the mix node stabilizes and we observe a much smaller
growth. We highlight that the amount of real traffic in the
network depends on the parameter λP within λ . A client
may chose to tune up the rate of real messages sent, by
tuning down the rate of loops and drop messages – at
the potential loss of security in case less cover traffic is
present in the system overall. Thus, depending on the
size of the honest user population in Loopix, we can in-
crease the rate of goodput.

Latency Overhead & Scalability. End-to-end latency
overhead is the cost of routing and decoding relayed mes-
sages, without any additional artificial delays. We run
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Figure 10: Latency overhead of the system where 50 to 500
users simultaneously send traffic at rates λP = λL = λD = 10
per minute and mix nodes generate loop cover traffic at rate
λM = 10 per minute. We assume that there is not additional
delay added to the messages by the senders.

simulations to measure its sensitivity to the number of
users participating in the system.

We measure the time needed to process a single packet
by a mix node, which is approximately 0.6ms. This cost
is dominated by the scalar multiplication of an elliptic
curve point and symmetric cryptographic operations. For
the end-to-end measurement, we run Loopix with a setup
where all users have the same rates of sending real and
cover messages, such that λP = λD = λL = 10 messages
per minute and mix servers generate loops at rate λM =
10 messages per minute. All clients set a delay of 0.0
seconds for all the hops of their messages – to ensure
we only measure the system overhead, not the artificial
mixing delay.

Figure 10 shows that increasing the number of online
clients, from 50 to 500, raises the latency overhead by
only 0.37ms. The variance of the processing delay in-
creases with the amount of traffic in the network, but
more clients do not significantly influence the average
latency overhead. Neither the computational power of
clients nor mix servers nor the communication between
them seem to become bottlenecks for these rates. Those
results show that the increasing number of users in the
network does not lead to any bottleneck for our parame-
ters. The measurements presented here are for a network
of 6 mix nodes, however we can increase the system ca-
pacity by adding more servers. Thus, Loopix scales well
for an increasing number of users.

We also investigate how increasing the delays through
Poisson Mixing with µ = 2 affects the end-to-end la-
tency of messages. We measure this latency through tim-
ing mix heartbeat messages traversing the system. Fig-
ure 11 illustrates that when the mean delay 1/µ sec. is
higher than the processing time (∼ 1ms−2ms), the end-
to-end latency is determined by this delay, and follows
the Gamma distribution with parameter being the sum of
the exponential distribution parameter over the number
of servers on the path. The good fit to a gamma distribu-

Figure 11: End-to-end latency histogram measured through
timing mix node loops. We run 500 users actively commu-
nicating via Loopix at rates λP = λL = λD = 60 per minute and
λM = 60 per minute. The delay for each hop is drawn from
Exp(2). The latency of the message is determined by the as-
signed delay and fits the Gamma distribution with mean 1.93
and standard deviation 0.87.

tion provides evidence that the implementation of Loopix
is faithful to the queuing theory models our analysis as-
sumes.

6 Related Work

All anonymous communication designs share the com-
mon goal of hiding users’ communication patterns
from adversaries. Simultaneously minimizing latency
and communication overhead while still providing high
anonymity is challenging. We survey other anonymous
systems and compare them with Loopix (a summary is
provided in Table 3).

Early designs. Designs based on Chaum’s mixes [8]
can support both high and low latency communication;
all sharing the basic principles of mixing and layered
encryption. Mixmaster [35] supports sender anonymity
using messages encryption but does not ensure receiver
anonymity. Mixminion [15] uses fixed sized messages
and supports anonymous replies and ensures forward
anonymity using link encryption between nodes. As a
defense against traffic analysis, but at the cost of high-
latencies, both designs delay incoming messages by col-
lecting them in a pool that is flushed every t seconds (if
a fixed message threshold is reached).

In contrast, Onion routing [26] was developed for low-
latency anonymous communication. Similar to mix de-
signs, each packet is encrypted in layers, and is decrypted
by a chain of authorized onion routers. Tor [20], the
most popular low-latency anonymity system, is an over-
lay network of onion routers. Tor protects against sender-
receiver message linking against a partially global adver-
sary and ensures perfect forward secrecy, integrity of the

USENIX Association 26th USENIX Security Symposium    1211



messages, and congestion control. However, Tor is vul-
nerable to traffic analysis attacks, if an adversary can ob-
serve the ingress and egress points of the network. A
great number of works have studied how mix networks
and onion routing leak information, and how better de-
sign such systems [36, 38, 44, 48].
Recent designs. Vuvuzela [46] protects against both
passive and active adversaries as long as there is one
honest mix node. Since Vuvuzela operates in rounds, of-
fline users lose the ability to receive messages and all
messages must traverse a single chain of relay servers.
Loopix does not operate in rounds, thus the end-to-end
latency can be significantly smaller than in Vuvuzela,
depending on the delay parameter the senders choose.
Moreover, Loopix allows off-line users to receive mes-
sages and uses parallel mix nodes to improve the scala-
bility of the network.

Stadium [45] and AnonPop [24] refine Vuvuzela; both
operating in rounds making the routing of messages de-
pendent on the dynamics of others. Stadium is scalable,
but it lacks offline storage, whereas AnonPop does pro-
vide offline message storage. Loopix also provides both
properties, and because it operates continuously avoids
user synchronization issues. Additionally, Loopix, in
comparison to AnonPop, protects against active attacks.

Riposte [11] is based on a write PIR scheme in which
users write their messages into a database, without re-
vealing the row into which they wrote to the database
server. Riposte enjoys low communication-overhead and
protects against traffic analysis and denial of service at-
tacks, but requires long epochs and a small number of
clients writing into the database simultaneously. In con-
trast to Loopix, it is suitable for high-latency applica-
tions.

Dissent [9], based on DC-networks [9], offers re-
silience against a GPA and some active attacks, but at sig-
nificantly higher delays and scales to only several thou-
sand clients.

Riffle [31] introduces a new verifiable shuffle tech-
nique to achieve sender anonymity. Using PIR, Rif-
fle guarantees receiver anonymity in the presence of an
active adversary, as well as both sender and receiver
anonymity, but it cannot support a large user base. Riffle
also utilizes rounds protect traffic analysis attacks. Riffle
is not designed for Internet-scale anonymous communi-
cation, like Loopix, but for supporting intra-group com-
munication.

Finally, Atom [30] combines a number of novel tech-
niques to provide mid-latency communication, strong
protection against passive adversaries and uses zero
knowledge proofs between servers to resist active at-
tacks. Performance scales horizontally, however latency
comparisons between Loopix and Atom are difficult due
to the dependence on pre-computation in Atom. Un-

like Loopix, Atom is designed for latency tolerant uni-
directional anonymous communication applications with
only sender anonymity in mind.

7 Discussion & Future Work

As shown in Section 4.1, the security of Loopix heavily
depends on the ratio of the rate of traffic sent through the
network and the mean delay at every mix node. Opti-
mization of this ratio is application dependent. For ap-
plications with small number of messages and delay tol-
erance, a small amount of cover traffic can guarantee se-
curity.

Loopix achieves its stated security and performance
goals. However, there are many other facets of the design
space that have been left for future work. For instance,
reliable message delivery, session management, and flow
control while avoiding inherent risks, such as statistical
disclosure attacks [14], are all fruitful avenues of pursuit.

We also leave the analysis of replies to messages as
future work. Loopix currently allows two methods if
the receiver does not already know the sender a priori:
we either attach the address of the sender to each mes-
sage payload, or provide a single-use anonymous reply
block [15, 16], which enables different use-cases.

The Loopix architecture deliberately relies on estab-
lished providers to connect to and authenticate end-users.
This architecture brings a number of potential benefits,
such as resistance to Sybil attacks, enabling anonymous
blacklisting [27] and payment gateways [2] to mitigate
flooding attacks and other abuses of the system, and pri-
vacy preserving measurements [23, 28] about client and
network trends and the security stance of the system. All
of this analysis is left for future work.

It is also apparent that an efficient and secure pri-
vate lookup system, one that can deliver network state
and keying information to its users, is necessary to sup-
port modern anonymous communications. Proposals
of stand-alone ‘presence’ systems such as DP5 [6] and
MP3 [37] provide efficient lookup methods, however,
we anticipate that tight integration between the lookup
and anonymity systems may bring mutual performance
and security benefits, which is another avenue for future
work.

8 Conclusion

The Loopix mix system explores the design space fron-
tiers of low-latency mixing. We balance cover traffic
and message delays to achieve a tunable trade-off be-
tween real traffic and cover traffic, and between latency
and good anonymity. Low-latency incentivizes early
adopters to use the system, as they benefit from good
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Low Low Communication Scalable Asynchronous Active Offline Resistance
Latency Overhead Deployment Messaging† Attack Resistant Storage* to GPA

Loopix X X X X X X X

Dissent [47] X X

Vuvuzela [46] X X X

Stadium [45] X X X X

Riposte [11] X X X

Atom [30] X X X X

Riffle [31] X X X X

AnonPoP [24] X X X X

Tor [20] X X X X

Table 3: Comparison of popular anonymous communication systems. By *, we mean if the design intentionally incorporates
provisions for delivery of messages when a user is offline, perhaps for a long period of time. By †, we mean that the system
operates continuously and does not depend on synchronized rounds for its security properties and users do not need to coordinate
to communicate together.

performance. Moreover, the cover traffic introduced by
both clients and mix servers provides security in the pres-
ence of a smaller user-base size. In turn this promotes
growth in the user-base leading on one hand to greater
security [19], and on the other a tuning down of cover
traffic over time.

Loopix is the first system to combine a number of
best-of-breed techniques: we provide definitions inspired
by AnoA [3] for our security properties; improve the
analysis of simplified variants of stop-and-go-mixing
as a Poisson mix [29]; we use restricted topologies
to promote good mixing [21]; we deploy modern ac-
tive attack mitigations based on loops [17]; and we use
modified modern cryptographic packet formats, such as
Sphinx [16], for low information leakage. Our design,
security and performance analysis, and empirical eval-
uation shows they work well together to provide strong
security guarantees.

The result of composing these different techniques –
previously explored as separate and abstract design op-
tions – is a design that is strong against global net-
work level adversaries without the very high-latencies
traditionally associated with mix systems [35, 15].
Thus, Loopix revitalizes message-based mix systems and
makes them competitive once more against onion rout-
ing [26] based solutions that have dominated the field
of anonymity research since Tor [20] was proposed in
2004.

Acknowledgments In memory of Len Sassaman. We
thank Claudia Diaz and Mary Maller for the helpful dis-
cussions. This work was supported by NSERC through
a Postdoctoral Fellowship Award, the Research Coun-
cil KU Leuven: C16/15/058, the European Commis-
sion through H2020-DS-2014-653497 PANORAMIX,

the EPSRC Grant EP/M013-286/1, and the UK Govern-
ment Communications Headquarters (GCHQ), as part of
University College London’s status as a recognised Aca-
demic Centre of Excellence in Cyber Security Research.

References
[1] ANDERSON, R., AND BIHAM, E. Two practical and provably

secure block ciphers: Bear and lion. In Fast Software Encryption
(1996), Springer, pp. 113–120.

[2] ANDROULAKI, E., RAYKOVA, M., SRIVATSAN, S., STAVROU,
A., AND BELLOVIN, S. M. PAR: Payment for Anonymous Rout-
ing. In Privacy Enhancing Technologies, 8th International Sym-
posium, PETS 2008, Leuven, Belgium, July 23-25, 2008, Pro-
ceedings (2008), pp. 219–236.

[3] BACKES, M., KATE, A., MANOHARAN, P., MEISER, S., AND
MOHAMMADI, E. AnoA: A Framework for Analyzing Anony-
mous Communication Protocols. In Computer Security Founda-
tions Symposium (CSF), 2013 IEEE 26th (2013), IEEE, pp. 163–
178.

[4] BALLANI, H., FRANCIS, P., AND ZHANG, X. A study of
prefix hijacking and interception in the Internet. In ACM SIG-
COMM Computer Communication Review (2007), vol. 37, ACM,
pp. 265–276.

[5] BOLCH, G., GREINER, S., DE MEER, H., AND TRIVEDI, K. S.
Queueing networks and Markov chains: modeling and perfor-
mance evaluation with computer science applications. John Wi-
ley & Sons, 2006.

[6] BORISOV, N., DANEZIS, G., AND GOLDBERG, I. DP5: A pri-
vate presence service. Proceedings on Privacy Enhancing Tech-
nologies 2015, 2 (2015), 4–24.

[7] CAI, X., ZHANG, X. C., JOSHI, B., AND JOHNSON, R. Touch-
ing from a distance: Website fingerprinting attacks and defenses.
In Proceedings of the 2012 ACM conference on Computer and
communications security (2012), ACM, pp. 605–616.

[8] CHAUM, D. Untraceable Electronic Mail, Return Addresses, and
Digital Pseudonyms. Commun. ACM 24, 2 (1981), 84–88.

[9] CHAUM, D. The dining cryptographers problem: Unconditional
sender and recipient untraceability. Journal of cryptology 1, 1
(1988), 65–75.

USENIX Association 26th USENIX Security Symposium    1213



[10] CHEN, C., ASONI, D. E., BARRERA, D., DANEZIS, G., AND
PERRIG, A. HORNET: High-speed Onion Routing at the Net-
work Layer. In Proceedings of the 22nd ACM SIGSAC Confer-
ence on Computer and Communications Security, Denver, CO,
USA, October 12-6, 2015 (2015), pp. 1441–1454.

[11] CORRIGAN-GIBBS, H., BONEH, D., AND MAZIÈRES, D. Ri-
poste: An anonymous messaging system handling millions of
users. In 2015 IEEE Symposium on Security and Privacy (2015),
IEEE, pp. 321–338.

[12] DANEZIS, G. The Traffic Analysis of Continuous-Time Mixes.
In Privacy Enhancing Technologies, 4th International Workshop,
PET 2004, Toronto, Canada, May 26-28, 2004, pp. 35–50.

[13] DANEZIS, G. Mix-networks with restricted routes. In Inter-
national Workshop on Privacy Enhancing Technologies (2003),
Springer, pp. 1–17.

[14] DANEZIS, G. Statistical disclosure attacks. In Security and Pri-
vacy in the Age of Uncertainty. Springer, 2003, pp. 421–426.

[15] DANEZIS, G., DINGLEDINE, R., AND MATHEWSON, N.
Mixminion: Design of a type III anonymous remailer protocol.
In Security and Privacy, 2003. Proceedings. 2003 Symposium on
(2003), IEEE, pp. 2–15.

[16] DANEZIS, G., AND GOLDBERG, I. Sphinx: A compact and
provably secure mix format. In Security and Privacy, 2009 30th
IEEE Symposium on (2009), IEEE, pp. 269–282.

[17] DANEZIS, G., AND SASSAMAN, L. Heartbeat traffic to counter
(n-1) attacks: red-green-black mixes. In Proceedings of the 2003
ACM workshop on Privacy in the electronic society (2003), ACM,
pp. 89–93.

[18] DIAZ, C., SEYS, S., CLAESSENS, J., AND PRENEEL, B. To-
wards measuring anonymity. In International Workshop on Pri-
vacy Enhancing Technologies (2002), Springer, pp. 54–68.

[19] DINGLEDINE, R., AND MATHEWSON, N. June 2006. anonymity
loves company: Usability and the network effect. In Proceedings
of the Fifth Workshop on the Economics of Information Security
(WEIS 2006).

[20] DINGLEDINE, R., MATHEWSON, N., AND SYVERSON, P. Tor:
The second-generation onion router. In Proceedings of the 13th
conference on USENIX Security Symposium-Volume (2004).

[21] DINGLEDINE, R., SHMATIKOV, V., AND SYVERSON, P. Syn-
chronous batching: From cascades to free routes. In International
Workshop on Privacy Enhancing Technologies (2004), Springer,
pp. 186–206.

[22] DOUCEUR, J. R. The sybil attack. In International Workshop on
Peer-to-Peer Systems (2002), Springer, pp. 251–260.

[23] ELAHI, T., DANEZIS, G., AND GOLDBERG, I. PrivEx: Private
Collection of Traffic Statistics for Anonymous Communication
Networks. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, Arizona,
November 3-7, 2014 (2016), pp. 1068–1079.

[24] GELERNTER, N., HERZBERG, A., AND LEIBOWITZ, H. Two
cents for strong anonymity: The anonymous post-office protocol.
Proceedings on Privacy Enhancing Technologies 2 (2016), 1–20.

[25] GILAD, Y., AND HERZBERG, A. Spying in the dark: TCP and
Tor traffic analysis. In International Symposium on Privacy En-
hancing Technologies Symposium (2012), Springer, pp. 100–119.

[26] GOLDSCHLAG, D., REED, M., AND SYVERSON, P. Onion rout-
ing. Communications of the ACM 42, 2 (1999), 39–41.

[27] HENRY, R., AND GOLDBERG, I. Thinking inside the BLAC box:
smarter protocols for faster anonymous blacklisting. In Proceed-
ings of the 12th ACM workshop on Workshop on privacy in the
electronic society (2013), ACM, pp. 71–82.

[28] JANSEN, R., AND JOHNSON, A. Safely Measuring Tor. In Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016
(2016), pp. 1553–1567.

[29] KESDOGAN, D., EGNER, J., AND BÜSCHKES, R. Stop-and-go-
mixes providing probabilistic anonymity in an open system. In
International Workshop on Information Hiding (1998), Springer,
pp. 83–98.

[30] KWON, A., CORRIGAN-GIBBS, H., DEVADAS, S., AND FORD,
B. Atom: Scalable Anonymity Resistant to Traffic Analysis.
CoRR abs/1612.07841 (2016).

[31] KWON, Y. H. Riffle: An efficient communication system with
strong anonymity. PhD thesis, Massachusetts Institute of Tech-
nology, 2015.

[32] LAZAR, D., AND ZELDOVICH, N. Alpenhorn: Bootstrapping
secure communication without leaking metadata. In Proceedings
of the 12th Symposium on Operating Systems Design and Imple-
mentation (OSDI), Savannah, GA (2016).

[33] LE BLOND, S., CHOFFNES, D., CALDWELL, W., DRUSCHEL,
P., AND MERRITT, N. Herd: A Scalable, Traffic Analysis Re-
sistant Anonymity Network for VoIP Systems. In ACM SIG-
COMM Computer Communication Review (2015), vol. 45, ACM,
pp. 639–652.

[34] MITZENMACHER, M., AND UPFAL, E. Probability and com-
puting: Randomized algorithms and probabilistic analysis. Cam-
bridge university press, 2005.

[35] MÖLLER, U., COTTRELL, L., PALFRADER, P., AND SAS-
SAMAN, L. Mixmaster Protocol-Version 2. Draft. July, available
at: www. abditum. com/mixmaster-spec. txt (2003).

[36] NIPANE, N., DACOSTA, I., AND TRAYNOR, P. Mix-in-place
anonymous networking using secure function evaluation. In
Proceedings of the 27th Annual Computer Security Applications
Conference (2011), ACM, pp. 63–72.

[37] PARHI, R., SCHLIEP, M., AND HOPPER, N. MP3: A More Effi-
cient Private Presence Protocol. arXiv preprint arXiv:1609.02987
(2016).

[38] REBOLLO-MONEDERO, D., PARRA-ARNAU, J., FORNÉ, J.,
AND DIAZ, C. Optimizing the design parameters of threshold
pool mixes for anonymity and delay. Computer networks 67
(2014), 180–200.

[39] SALTZER, J. H., REED, D. P., AND CLARK, D. D. End-to-end
arguments in system design. ACM Transactions on Computer
Systems (TOCS) 2, 4 (1984), 277–288.

[40] SERJANTOV, A., AND DANEZIS, G. Towards an information
theoretic metric for anonymity. In International Workshop on
Privacy Enhancing Technologies (2002), Springer, pp. 41–53.

[41] SERJANTOV, A., DINGLEDINE, R., AND SYVERSON, P. From
a trickle to a flood: Active attacks on several mix types. In In-
ternational Workshop on Information Hiding (2002), Springer,
pp. 36–52.

[42] SERJANTOV, A., AND NEWMAN, R. E. On the anonymity of
timed pool mixes. In Security and Privacy in the Age of Uncer-
tainty. Springer, 2003, pp. 427–434.

[43] SHANNON, C. E. A mathematical theory of communication.
ACM SIGMOBILE Mobile Computing and Communications Re-
view 5, 1 (2001), 3–55.

[44] SHMATIKOV, V., AND WANG, M.-H. Timing analysis in low-
latency mix networks: Attacks and defenses. Computer Security–
ESORICS 2006 (2006), 18–33.

[45] TYAGI, N., GILAD, Y., ZAHARIA, M., AND ZELDOVICH,
N. Stadium: A Distributed Metadata-Private Messaging Sys-
tem. Cryptology ePrint Archive, Report 2016/943, 2016. http:
//eprint.iacr.org/2016/943.

1214    26th USENIX Security Symposium USENIX Association

http://eprint.iacr.org/2016/943
http://eprint.iacr.org/2016/943


[46] VAN DEN HOOFF, J., LAZAR, D., ZAHARIA, M., AND ZEL-
DOVICH, N. Vuvuzela: Scalable private messaging resistant to
traffic analysis. In Proceedings of the 25th Symposium on Oper-
ating Systems Principles (2015), ACM, pp. 137–152.

[47] WOLINSKY, D. I., CORRIGAN-GIBBS, H., FORD, B., AND
JOHNSON, A. Dissent in numbers: Making strong anonymity
scale. In Presented as part of the 10th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 12)
(2012), pp. 179–182.

[48] ZHU, Y., FU, X., BETTATI, R., AND ZHAO, W. Anonymity
analysis of mix networks against flow-correlation attacks. In
Global Telecommunications Conference, 2005. GLOBECOM’05.
IEEE, vol. 3, IEEE, pp. 5–pp.

A Appendix

A.1 Incremental Computation of the En-
tropy Metric

Let X be a discrete random variable over the finite set X
with probability mass function p(x) = Pr(X = x). The
Shannon entropy H(X) [43] of a discrete random vari-
able X is defined as

H(X) =− ∑
x∈X

p(x) log p(x). (4)

Let on,k,l be an observation as defined in Section 4.1.3
for a pool at time t. We note that any outgoing message
will have a distribution over being linked with past input
messages, and the entropy Ht of this distribution is our
anonymity metric. Ht can be computed incrementally
given the size of the pool l (from previous mix rounds)
and the entropy Ht−1 of the messages in this previous
pool, and the number of messages k received since a mes-
sage was last sent:

Ht =H
({

k
k+ l

,
l

k+ l

})
+

k
k+ l

logk+
l

k+ l
Ht−1,

(5)

for any t > 0 and H0 = 0. Thus for sequential obser-
vations we can incrementally compute the entropy met-
ric for each outgoing message, without remembering the
full history of the arrivals and departures at the Poisson
mix. We use this method to compute the entropy metric
illustrated in Figure 5.

A.2 Proof of Theorem 2
Let us assume, that in mix node Mi there are n′ mes-
sages at a given moment, among which is a target mes-
sage mt . Each message has a delay di drawn from the ex-
ponential distribution with parameter µ . The mix node
generates loops with distribution Pois(λM). The adver-
sary observes an outgoing message m and wants to quan-
tify whether this outgoing message is her target message.

The adversary knows, that the output of the mix node can
be either one of the messages inside the mix or its loop
cover message. Thus, for any message mt , the following
holds

Pr [m = mt ] = Pr [m 6= loop] ·Pr [m = mt |m 6= loop] (6)

We note that the next message m is a loop if and only if
the next loop message is sent before any of the messages
within the mix, i.e., if the sampled time for the next loop
message is smaller than any of the remaining delays of all
messages within the mix. We now leverage the memory-
less property of the exponential distribution to model the
remaining delays of all n′ messages in the mix as fresh
random samples from the same exponential distribution.

Pr [m 6= loop] = 1−Pr [m = loop]

= 1−Pr [X < d1∧X < d2∧ . . .∧X < dn′ ]

= 1−Pr [X < min{d1,d2, . . .dn′}]
(7)

We know, that di ∼ Exp(µ) for all i ∈ {1, . . . ,n′} and
X ∼ Exp(λM). Moreover, we know that the minimum
of n independent exponential random variables with rate
µ is an exponential random variable with parameter
∑

n′
i µ . Since all the delays di are independent expo-

nential variables with the same parameter, we have for
Y = min{d1,d2, . . .dn′}, Y ∼ Exp(n′µ). Thus, we obtain
the following continuation of Equation (7).

Pr [m 6= loop] = 1−Pr [X < Y ]

= 1−
∫

∞

0
Pr [X < Y |X = x]Pr [X = x]dx

= 1−
∫

∞

0
Pr [x < Y ]λMe−λMxdx

= 1−
∫

∞

0
e−n′µx

λMe−λMxdx

= 1− λM

λM +nµ

=
n′µ

n′µ +λM

(8)

Since the probability to send a loop depends only on the
number of messages in a mix, but not on which messages
are in the mix, this probability is independent of the prob-
ability from Theorem 1. Theorem 2 follows directly by
combining Theorem 1 and Equation (8), with n′ = k+ l.
We get for messages m1 that previously were in the mix,

Pr [m = m1] = Pr [m 6= loop] ·Pr [m = m1|m 6= loop]

=
(k+ l)µ

(k+ l)µ +λM
· k

n(k+ l)

=
k
n
· µ

(k+ l)µ +λM
.
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Analogously, we get for m2,

Pr [m = m2] = Pr [m 6= loop] ·Pr [m = m2|m 6= loop]

=
(k+ l)µ

(k+ l)µ +λM
· 1

k+ l

=
µ

(k+ l)µ +λM
.

This concludes the proof.
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Abstract
We present MCMix, an anonymous messaging system
that completely hides communication metadata and can
scale in the order of hundreds of thousands of users. Our
approach is to isolate two suitable functionalities, called
dialing and conversation, that when used in succession,
realize anonymous messaging. With this as a starting
point, we apply secure multiparty computation (“MC”
or MPC) and proceed to realize them. We then present
an implementation using Sharemind, a prevalent MPC
system. Our implementation is competitive in terms of
latency with previous messaging systems that only offer
weaker privacy guarantees. Our solution can be instan-
tiated in a variety of different ways with different MPC
implementations, overall illustrating how MPC is a vi-
able and competitive alternative to mix-nets and DC-nets
for anonymous communication.

1 Introduction

In an era in which privacy in communications is becom-
ing increasingly important, it is often the case that two
parties want to communicate anonymously, that is to ex-
change messages while hiding the very fact that they are
in conversation. A major problem in this setting is hid-
ing the communication metadata: while existing crypto-
graphic techniques (e.g., secure point-to-point channels
implemented with TLS) are sufficiently well developed
to hide the communication content, they are not intended
for hiding the metadata of the communication such as its
length, its directionality, and the identities of the commu-
nicating end points. Metadata are particularly important,
arguably some times as important to protect as the com-
munication content. The importance of metadata is re-
flected in General Michael Hayden’s quote “We kill peo-
ple based on metadata”1 and in the persistence of secu-

1Complete quote: “We kill people based on metadata. But that’s
not what we do with this metadata.” General M. Hayden. The Johns

rity agencies with programs like PRISM (by the NSA)
and TEMPORA (by the GCHQ) in collecting metadata
for storage and mining.

Anonymous communication has been pioneered in the
work of Chaum, with mix-nets [16] and DC-nets [14]
providing the first solutions to the problem of sender-
anonymous communication. In particular, a mix-net en-
ables the delivery of a set of messages from n senders
to a recipient so that the recipient is incapable of map-
ping outgoing messages to their respective senders. A
DC-net on the other hand, allows n parties to imple-
ment an anonymous broadcast channel so that any one of
them can use it to broadcast a message to the set of par-
ties without any participant being able to distinguish the
source. While initially posed as theoretical constructs,
these works have evolved to actual systems that have
been implemented and tested, for instance in the case
of Mixminion [25], that applies the mix-net concept to
e-mail, in the case of Vuvuzela [49] that applies the mix-
nets concept to messaging and in the case of Dissent [51]
that implements DC-nets in a client-server model.

It is important to emphasize that the adversarial set-
ting we wish to protect against is a model where the
adversary has a global view of the network, akin say to
what a global eavesdropper would have if they were pas-
sively observing the Internet backbone, rather than a lo-
calized view that a specific server or sub-network may
have. Furthermore, the adversary may manipulate mes-
sages as they are transmitted and received from users as
well as block users adaptively. Note that in a more “lo-
calized” adversary setting one may apply concepts like
Onion routing [48], e.g., as implemented in the Tor sys-
tem [27], or Freenet [20] to obtain a reasonable level of
anonymity with very low latency. Unfortunately such
systems are susceptible to traffic analysis, see e.g., [34],
and, in principal, they cannot withstand a global adver-
sary.

Hopkins Foreign Affairs Symposium. 1/4/2014.
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Given the complexity of the anonymous communica-
tion problem in general, we focus our application objec-
tive to the important special case of anonymous messag-
ing, i.e., bidirectional communication with both sender
and receiver anonymity that requires moderately low la-
tency and has relatively small payloads (akin to SMS text
messaging). The question we ask is whether it is possi-
ble to achieve it with simulation-based security2 while
scaling to hundreds of thousands of users. In particular,
we consider two types of entities in our problem spec-
ification, clients and servers, and we ask how is it pos-
sible that the servers assist the clients that are online to
communicate privately without leaking any type of meta-
data to a global adversary, apart from the fact that they
are using the system. Furthermore, we seek a decentral-
ized solution, specifically one where no single entity in
the system can break the privacy of the clients even if it
is compromised. We allow the adversary to completely
control the network as well as a subset of the servers and
adaptively drop clients’ messages or manipulate them as
it wishes.

Our Contributions. We present MCMix, the first anony-
mous messaging service that offers simulation-based se-
curity, under a well specified set of assumptions, and can
scale to hundreds of thousands of users. In our solution,
we adopt a different strategy compared to previous ap-
proaches to anonymous communication. Specifically, we
provide a way to cast the problem of anonymous mes-
saging natively in the setting of secure multiparty com-
putation (MPC). MPC, since its initial inception [31], is
known to be able to distribute and compute securely any
function, nevertheless, it is typically considered to be not
particularly efficient for a large number of parties and
thus inconsistent with problems like anonymous messag-
ing. However, the commodity-based approach for MPC
[7] (client-server model), and more recent implementa-
tion efforts such as Fairplay [10], VIFF [23], Sharemind
[11], PICCO [53], ObliVM [40], Araki et al. [5] and [30]
increasingly suggest otherwise.

We first propose two ideal functionalities that corre-
spond to the dialing operation and the conversation op-
eration. The MCMix system proceeds in rounds, where
in each round an invocation of either the dialing or the
conversation ideal functionality is performed. The dial-
ing functionality enables clients to either choose to dial
another client or check whether anyone is trying to dial
them (in practice in most dialing rounds the overwhelm-
ing majority of clients will be in dial-checking mode). If
a matching pair is determined by the ideal functionality,

2We use this term to refer to a level of metadata hiding that en-
sures, in a simulation based sense, that no information is leaked to an
adversary. This is distinguished from weaker levels of privacy, such as
e.g., a differential privacy setting where some controlled but non-trivial
amount of information is leaked to the adversary.

then the caller will be notified that the other client has
accepted their call and the callee will be notified about
the caller. Moreover, the ideal functionality will deliver
to both clients a random tag that can be thought of the
equivalent of a “dead drop” or “rendezvous” point. Sub-
sequently, the clients can access the conversation func-
tionality using the established random tag. When two
clients use the same random tag in the conversation func-
tionality, their messages are swapped and thus they can
send messages to each other (even concurrently).

The two ideal functionalities provide a useful abstrac-
tion of the anonymous messaging problem. We proceed
now to describe how they can be implemented by an
MPC system. It is easy to see that a straightforward
implementation of the functionality programs results in
a circuit of size Θ(n2), where n is the number of on-
line users accessing the functionalities. Such a solution
would be clearly not scalable. We provide more effi-
cient implementations that achieve O(n logn) complex-
ity in both cases with very efficient constants using state
of the art oblivious sorting algorithms [33, 13].

Given our high level functionality realizations, we pro-
ceed to an explicit implementation in the Sharemind sys-
tem [11] using its SecreC programming language [12].
We provide benchmarks for the Dialing and Conversa-
tion solutions. The Sharemind platform provides a 3-
server implementation of information theoretically se-
cure MPC. Our results showcase that our system can
handle hundreds of thousands of users in a reasonable
latency (little over a minute), that is consistent with mes-
saging.

In order to provide theoretical evidence of fur-
ther improving performance and scaling to even larger
anonymity sets, we provide a parallelized version of the
conversation functionality. Parallelization is a non-trivial
problem in our setting since we would like to maintain
anonymity across the whole user set; thus, a simplis-
tic approach that breaks users into chunks solving dial-
ing and conversation independently will isolate them to
smaller “communication islands”; if two users have to
be on the same island in order to communicate, this will
lead to privacy loss that is non-simulatable and we would
like to avoid. Our parallelized solution manages to make
the interaction between islands, in a way that maintains
strong privacy guarantees, at the cost of a correctness er-
ror that can become arbitrarily small. In this way, by
utilizing a large number of servers, we provide evidence
that the system can scale up to anonymity sets of up to
half a million of users. To sum up, our contributions can
be expressed by the following points:
- A model for simulation-based anonymous messaging.
- A realization of this model with a set of programs that
are provably secure and expressed in a way so that they
can be implemented in any MPC platform.
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- An implementation of our programs in Sharemind that
can accomodate anonymity sets of hundreds of thou-
sands of users.
- A novel parallelization technique that allows our system
to scale, in theory, even beyond the order of hundreds of
thousands of users.

Organization. After shortly presenting some prelim-
inary topics in section 2, we formalize the concept of
anonymous messaging via an ideal MPC functionality
and introduce the Dialing and Conversation programs in
an abstract form that together solve the sender and re-
ceiver anonymous messaging problem (cf. Section 3). In
Section 4, we present the general architecture of MCMix
and in Sections 5 and 6, we propose a way to realize the
Dialing and Conversation programs, using MPC. Then,
in Section 7, we give more details regarding how the
MCMix system implements anonymous messaging in a
provably secure and privacy-preserving way. In Sec-
tion 8, we present the results of benchmarking our proto-
type and in Section 9, we account for the client-side load
of our system. In Section 10, we provide an overview
of noticeable anonymous communication systems and
when applicable, we compare their performance and se-
curity level to MCMix. Finally, in Section 11, we intro-
duce a novel way to parallelize our conversation protocol
in order to achieve even better scalability.

2 Background

Secure Multiparty Computation. Secure Multiparty
Computation (MPC), is an area of cryptography con-
cerned with methods and protocols that enable a set of
users U = u1, . . . ,un with private data d1, . . . ,dn from a
domain set D, to compute the result of a public function
f (d1, . . . ,dn) in a range set Y , without revealing their pri-
vate inputs. For clarity, we also assume that f accepts ⊥
as input, which denotes abstain behavior.

Sharemind. Sharemind [11] is an MPC framework that
offers a higher level representation of the circuit being
computed in the form of a program written in a C-like
language, namely the SecreC language [12]. It uses
three-server protocols that offer security in the presence
of an honest server majority. That is, we assume that
no two servers will collude in order to break the sys-
tems privacy. Our implementation is designed over the
Sharemind system, but the general approach that we in-
troduce for anonymous messaging can also be deployed
over other MPC protocols. The security of Sharemind
has been analyzed several settings including semi-honest
and active attacks (e.g., [11, 43]).

Oblivious Sorting. Sorting is used as a vital part of
many algorithms. In the context of MPC, sorting an
array of values without revealing their final position,

is called oblivious sorting. The first approach to sort-
ing obliviously is using a data-independent algorithm
and performing each compare and exchange execution
obliviously. This approach uses sorting networks to per-
form oblivious sorting. Sorting networks are circuits that
solve the sorting problem on any set with an order re-
lation. What sets sorting networks apart from general
comparison sorts is that their sequence of comparisons
is set in advance, regardless of the outcome of previous
comparisons. Various algorithms exist to construct sim-
ple and efficient networks of depth O(log2 n) and size
O(n log2 n). The three more used ones are Batcher’s odd-
even mergesort and bitonic sort [6] and Shellsort [46].
All three of these networks are simple in principle and
efficient. Sorting networks that achieve the theoretically
optimal O(logn) and O(n logn) complexity in depth and
total number of comparisons, such as the AKS-network
[1] exist, but the constants involved are so large that make
them impractical for use. Note that even for 1 billion val-
ues, i.e., n = 109, it holds that logn < 30 so, in practice,
the extra log factor is preferable to the large constants.
A major drawback of all sorting network approaches is
that sorting a matrix by one of its columns would require
oblivious exchange operations of complete matrix rows,
which would be very expensive.

In recent years, techniques have been proposed from
Hamada et. al [33] to use well known data-dependent
algorithms, such as quicksort, in an oblivious manner to
achieve very efficient implementations, especially when
considering a small number of MPC servers, which is
very often the case. This approach uses the “shuffling
before sorting” idea, which means that if a vector has
already been randomly permuted, information leaked
about the outcome of comparisons does not leak infor-
mation about the initial and final position of any element
of the vector. More specifically, the variant of quick-
sort proposed in [33], needs on average O(logn) rounds
and a total of O(n logn) oblivious comparisons. Com-
plete privacy is guaranteed when the input vector con-
tains no equal sorting keys, and in the case of equal keys,
their number leaks. Furthermore, performance of the al-
gorithm is data-dependent and generally depends on the
number of equal elements, with the optimal case being
that no equal pairs exist. Practical results have shown
[13] that this quicksort variant is the most efficient obliv-
ious sorting algorithm available, when the input keys are
constructed in a way that makes them unique.

In our algorithms, we utilize the Quicksort algorithm
together with a secret-shared index vector as described
in [13]. This way, each sortable element becomes a
unique value-index pair, providing us the optimal Quick-
sort performance and complete privacy. In addition, it
has the added benefit of making the sorting algorithm
stable.

USENIX Association 26th USENIX Security Symposium    1219



Identity-Based Key Agreement Protocols. Like in [39],
we make use of identity-based cryptography [45] to cir-
cumvent the need for a Public Key Infrastructure (PKI),
here, for the computation of the dead drops3. In identity-
based cryptography, a Key Generation Center (KGC) us-
ing a master secret key, generates the users’ secret keys,
while the users’ public keys are a deterministic function
of their identity. In an identity-based key agreement (ID-
KA) protocol (e.g. [32, 44, 47, 18, 52, 29, 50]), any pair
of users can execute a GenerateKey algorithm to agree
on a shared key value, on input their obtained secret keys
and the other user’s identity.

In our setting, we will apply ID-KA for the compu-
tation of the dead drops, where now the users compute
their secret keys by combining partial secret keys issued
by the MPC servers. Therefore, we adjust ID-KA to a
multiple KGC setting where each MPC server plays the
role of a KGC. In general, we can manage distributed
key generation in a fault tolerant manner, using thresh-
old secret-sharing techniques. However, since our threat
model considers a passive (semi-honest adversary), we
consider an m-out-of-m instantiation, keeping protocol
description simple. In particular, we can naturally extend
a single KGC ID-KA protocol to a setting with m KGCs
denoted by KGC1, . . . ,KGCm. In the full version of our
paper, we present at length two multiple KGC ID-KA
constructions based on ID-KA protocols that use crypto-
graphic pairings.

In the first construction, we build upon the SOK
ID-KA protocol introduced in [44] and proven secure
in [42]. The key agreement in SOK is non-interactive
and the shared key between two fixed users is fixed and
can be computed only by knowing the other user’s iden-
tity.

In the second construction, we build upon the ID-
KA protocol introduced in [47] as modified in [18] that
achieves security and forward secrecy as proven in [17].
In this construction, the users must additionally exchange
some additional random values in every new session that
is necessary for forward secure key agreement.

Both constructions match the original single ID-KA
protocols, when m = 1. Therefore, it is straightforward
that the first construction (resp. the second construction)
preserves security (resp. security and forward secrecy)
against any polynomially bounded semi-honest adver-
sary that corrupts all-but-one of the m KGCs.

In the current version of MCMix, we do not focus
on forward security. Hence, our system’s description
(cf. Dialing protocol in Section 5) is based on the sim-
pler first ID-KA construction, where knowledge of the
users’ usernames is enough for shared key computation.

3If users’ public keys have been distributed in a PKI setting, then we
can turn to the easier solution of classic Diffie-Hellman key exchange
for dead drop computation.

Nonetheless, in Section 7 (cf. Remark 5), we briefly dis-
cuss on how the second construction could be adopted to
a forward-secure version of our system, leaving detailed
description for future work.

3 Ideal Anonymous Messaging

We formalize the concept of anonymous messaging in
line with standard MPC security modeling. In particu-
lar, we capture the notion of an ideal MPC functionality
F that in presence of an ideal adversary S receives inputs
from a number of n users and computes the desired result
w.r.t. some program f . An MPC protocol is said to be
secure w.r.t. a class of programs, if its execution running
in the presence of a real-world adversary results in in-
put/output transcripts that are indistinguishable from the
ideal setting that F specifies for program f .

Subsequently, inspired by Tor, Vuvuzela and other re-
lated systems, we make use of the “rendezvous points”
idea. Specifically, we instantiate F w.r.t. two distinct
“abstract” programs DLNabs and CNVabs that reflect the
Dialing and Conversation functionalities respectively;
the two programs are abstract in the sense that, in this
section, they will be described at a high level algorith-
mic way that we will make concrete in the coming sec-
tions. The use of a random rendezvous point in the es-
tablishment of a communication channel between two
users averts any denial of service attacks targeting spe-
cific users by other users at the conversation phase.

Notation. We write x $← X to denote that x is sam-
pled uniformly at random from set X . For a positive
integer n, the set {1, . . . ,n} is denoted by [n]. The j-
th component of n-length tuple a is denoted by a[ j],
i.e. a := (a[1], . . . ,a[n]). We use

c≈ to express indis-
tinguishability between transcripts, seen as random vari-
ables. By negl(·) we denote that a function is negligible,
i.e. asymptotically smaller than the inverse of any poly-
nomial. We use λ as the security parameter.

Let x = 〈x1, . . . ,xn〉 be a vector of users’ inputs. We
denote by EXECF, f

S,x (λ ) the transcript of input/outputs in
an ideal MPC execution of F interacting with the ideal
adversary S, and by EXECP, f

A,x(λ ) the transcript of in-
puts/outputs in a real-world execution of MPC protocol
P w.r.t. f under the presence of adversary A. By PPT,
we mean that A runs in probabilistic polynomial time.

Entities and threat model. We consider a client-server
MPC setting. Namely, the entities involved in an MPC
protocol P are (i) a number of n users u1, . . . ,un that
provide their inputs 〈x1, . . . ,xn〉 and (ii) a number of m
servers Ser1, . . . ,Serm that collectively compute an eval-
uation on the users’ inputs w.r.t. a program f . The users
engaged in a specific MPC execution round form an ac-
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tive set Uact. We consider an ad-hoc setting [8] of secure
computation, where the program f is known in advance,
but not the active user set Uact.

An adversary against P is allowed to have a global
view of the protocol network. In addition, it may cor-
rupt up to a fixed subset of θ servers and has limited
computational resources preventing it from breaking the
security of the underlying cryptographic primitives.

In standard MPC cryptographic modeling, the security
of P is argued w.r.t. the functionality F that specifies an
“ideal” evaluation of f , where the privacy leakage is the
minimum possible for the honest users. Thus, indistin-
guishability between the ideal and the real world setting
implies that an adversary against P obtains essentially
no more information than this minimum leakage. In our
description, F merely leaks whether an honest user is on-
line or not. This information is impossible to hide against
a network adversary and hence it is a minimum level of
leakage. On the other hand, information that can be typ-
ically inferred by traffic analysis, is totally protected by
F. This level of anonymity, sometimes referred to as un-
observability, requires the participation of all online par-
ties and the generation of “dummy traffic” independently
of whether or not they wish to send a message in a par-
ticular round. As a result, any protocol P that securely
realizes F where f represents a dialing or conversation
program, should incorporate such a methodology. As we
demonstrate, using MPC to realize P is a natural way
to determine the appropriate level and form of “dummy
traffic” needed to realize this level of anonymity.
An ideal MPC functionality for a family of programs.
In a messaging system, dialing and conversation among
users are operations where conflicts are likely to appear,
e.g. two users may dial the same person, or conversation
may be accidentally established on colluding communi-
cation channels (three equal rendezvous points are com-
puted). One can think several other examples of opera-
tions where conflicts are possible, such as election tally
where exactly one out of multiple ballots per voter must
be counted, or deciding on the valid sequence of transac-
tions on a blockchain ledger when forking occurs. Any
program implementing this type of an operation must be
able to resolve these conflicts. The way that conflict res-
olution is achieved, may depend on parameters like com-
putation efficiency, communication complexity or user
priority, yet in any case, a set of programs that imple-
ment the same operation are in some sense equivalent
and may be clustered under the same family. A plausible
requirement is that the choice of the family member that
will be utilized should not affect the security standards
of the operation implementation.

Consequently, in an MPC setting that supports the re-
alization of any program in the family, it is desirable that
security is preserved w.r.t. to the entire family, so that

one can choose the family member that suits their cus-
tom requirements. To express this formally, we introduce
a relaxation of the usual MPC functionality. Namely,
the relaxed ideal MPC functionality F is for a family of
programs { fz}z in the presence of an ideal adversary S

that chooses the index z (this is the relaxation), where z
can be parsed as the “code” that determines the family
member fz. The program fz accepts as input a vector
x = 〈x1, . . . ,xn〉 of (i) valid messages from some domain
D or (ii) ⊥, if the user is inactive, i.e. not in Uact. In our
description, computation takes place even when a subset
of users abstain from the specific execution by not pro-
viding inputs. To formalize the abstain behavior of user
ui, for every i ∈ [n] we define an ‘abstaini(·)’ predicate
over D∪{⊥} as follows:

abstaini(xi) :=
{

1, if xi =⊥
0, if xi ∈ D (1)

The ideal MPC functionality F is presented in Fig. 1.
Note that the relaxation suggests that the users will re-
ceive output from a program fz for z that will be the ideal
adversary’s choosing.

Ideal MPC functionality F for programs { fz}z

– Upon receiving ‘start’ from S, it sets the status to
‘input’ and initializes two lists Linput and Lcorr as empty.

– Upon receiving (corrupt,ui) from S, it adds ui to Lcorr.

– Upon receiving (send input,xi) from ui, if ui ∈ Lcorr,
then it sends (send input,ui,xi) to S. If ui /∈ Lcorr, then
it sends (i)

(
send input,ui,abstaini(xi)

)
to S, where

abstaini(·) is defined in Eq. (1).

– Upon receiving (receive input,ui, x̃i) from S, if (i) the
status is ‘input’ and (ii) (ui, ·) /∈ Linput, then if ui /∈ Lcorr,
it adds (ui,xi) to Linput, else it adds (ui, x̃i) to Linput.

– Upon receiving (compute,z) from S, if Linput contains
records for all users in Uact, it executes the following
steps: first, then it computes the value vector

y = 〈y1, . . . ,yn〉 ← fz(x1, . . . ,xn) .

Then, it sends yi to ui for i, . . . ,n, (hence, S obtains
{yi}ui∈Lcorr ).

Figure 1: The ideal MPC functionality F for family of
programs { fz :

(
D∪{⊥}

)n −→ Y}z, interacting with the
ideal adversary S.

The security of a real-world MPC protocol P is defined
w.r.t. a class of programs F as well as a family selected
from F as follows:

Definition 1. Let P be an MPC protocol with n users and
m servers and let F be a class of programs. We say that
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P is a (θ ,m)-secure MPC protocol w.r.t. { fz}z ⊆ F, if for
every active user set Uact ∈ U, every program fz, every
input vector x = 〈x, . . . ,xn〉 and every PPT adversary A

corrupting up to θ out of m servers, there is an ideal
adversary S s.t.

EXECF
S,x(λ )

c
≈ EXECP, fz

A,x(λ ) .

The family of programs DLNabs and CNVabs. An anony-
mous messaging scheme comprises the following two
functionalities: (i) the Dialing functionality, which con-
sists of the computation of a rendezvous point for a given
pair of users who want to communicate, and (ii) the Con-
versation functionality, which represents the actual ex-
change of messages. For the families DLNabs and CNVabs,
the parameter z, enables the adversary to choose (i) how
to handle collisions between multiple dialers in the case
of DLNabs, and (ii) how to handle the presence of three
or more equal dead drops in the case CNVabs (which hap-
pens only in the case of malicious users). We note that
this minimum level of adversarial manipulation does not
affect the security features of the anonymity system, yet
it allows for substantial performance gains in terms of
the implementation.

We formally express the above functionalities by in-
stantiating the generic MPC functionality F w.r.t. the Di-
aling program family DLNabs and the Conversation pro-
gram family CNVabs (i.e. we set f as DLNabs and CNVabs).
We note that for both the dialing and conversation pro-
gram families, the verification that the parameter z has
the proper structure can be suitably restricted so that it is
tested efficiently by the program. For brevity, we omit
further details.
The Dialing program family DLNabs. In the Dialing func-
tionality, a rendezvous point for users ui and u j is
set when two requests of the form (DIAL,ui,u j) and
(DIALCHECK,u j) have been produced. Thus, the Di-
aling program family DLNabs receives inputs that are vec-
tors of (DIAL, ·, ·) or (DIALCHECK, ·) requests, as well
as ⊥ to denote user inactivity. That is, Uact is the set
of users that do not provide a ⊥ input. The program
DLNabs is parameterized by z, that specifies a determin-
istic program Rz

DLN(·, ·) over pairs of inputs to resolve the
case where more than one dial requests address the same
user/dial checker. The Dialing program family DLNabs is
presented formally in Figure 2.

By the definition of DLNabs, two active users ui,u j
that have submitted matching dialing and dial check re-
quests are going to be provided the same random integer
ti = t j ∈ {ti, j, t j,i}, which establishes a rendezvous point.
We will refer to these non-⊥ values in t1, . . . , tn as dead
drops. In addition, DLNabs returns to each dialchecker
ui a bit ci which is 1 iff ui has succesfully established a
rendezvous with some dialer. Such information is rea-
sonable to be provided to a dialchecker, as ti might be

a random value that is not an actual dead-drop. Hence,
the bit ci communicates to the dialchecker that she has an
incoming call (if nobody calls the dialchecker, then a ran-
dom dead drop value is returned that nobody else shares
with her). On the other hand, a dialer should not be able
to infer information about the dial traffic and availability
concerning some dialchecker, therefore DLNabs does not
provide this success check to the dialers.

The Conversation program family CNVabs. Given the es-
tablishment of the dead drops, as set by DLNabs, the Con-
versation program family CNVabs realizes the operation
of message exchange, where messages lie in some space
M. The program family CNVabs is presented in Figure 3.

Program family DLNabs parameterized by z

– Domain: (DDLNabs ∪{⊥})n, where

DDLNabs :=
{{

(DIAL,ui,u j)
}
,(DIALCHECK,ui)

}
ui 6=u j∈U

Namely, let Uact := {ui ∈ U | xi 6= ⊥}; a valid input xi
for user ui ∈ Uact consists of either (i) a (DIAL,ui,u j)
request for some user u j that ui wants to dial, or (ii) a
(DIALCHECK,ui) request.
For a vector of inputs x = 〈x1, . . . ,xn〉, if
xi = (DIALCHECK,ui) then Mi(x) = { j | x j =
(DIAL,u j,ui)}, else is /0. Parse z as a deterministic
program Rz

DLN, such that for any x if Mi(x) 6= /0, then
Rz
DLN(i,x) ∈Mi(x), else it is equal to ⊥.

– Range: YDLNabs := 〈{yi | yi ∈ [a,b]}〉ui∈Uact
, where

[a,b] is a predetermined integer interval.

– Function: On input a vector x = 〈x1, . . . ,xn〉 where
each non-⊥ value xi is either a (DIAL,ui,u j) request, or
a (DIALCHECK,ui) request, DLNabs computes a vector
y = 〈yi〉ui∈Uact

, as follows:

• Let Iact := {i | ui ∈Uact} be the set of indices that refer
to active users. For i, j ∈ Iact, DLNabs samples distinct
random integers ti, j from range [a,b].

• For every i ∈ Iact:

◦ If xi = (DIAL,ui,u j), then if there is a j ∈ Iact such
that x j = (DIALCHECK,u j) and i = Rz

DLN( j,x), then it
sets ti = ti, j. Otherwise (i.e., there is no such j), it sets
ti = ti,i. In both cases, it sets yi = ti.

◦ If xi = (DIALCHECK,u j), then if there is a j ∈ Iact
such that j = Rz

DLN(i,x) 6=⊥, then it sets ti = ti, j and a bit
ci = 1. Otherwise (i.e., there is no such j), it sets ti = ti,i
and a bit ci = 0. In both cases, it sets yi = (ti,ci).

• It returns the value vector y := 〈yi〉ui∈Uact
.

Figure 2: The Dialing program family DLNabs : (DDLNabs ∪
{⊥})n −→ YDLNabs with parameter z, where non-⊥ range
values are integers sampled from range [a,b].
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By the definition of CNVabs, if every dead drop is not
shared among three or more users, then two users ui,u j
are going to exchange their messages mi,m j only if they
provide the same dead drop ti = t j. Recall that if the
dead drops are computed as outputs of the Dialing pro-
gram family DLNabs w.r.t. the same active set Uact, then
no more than two users share the same dead drop, which
implies the correctness of CNVabs. In the other cases, ei-
ther (i) there is no matching dead drop or (ii) more than
2 matching dead drops exist. In case (ii), the parame-
ter z specifies a deterministic program Rz

CNV among in-
puts which in turn determines the pair of matching dead
drops. In any case, when a message exchange fails for
some user, then CNVabs returns back this message to the
user for resubmission in an upcoming round.

Program family CNVabs parameterized by z

– Domain: (DCNVabs ∪{⊥})n, where

DCNVabs :=
{
(CONV, ti,mi)

}ti∈[a,b],mi∈M
ui∈U

Namely, let Uact := {ui ∈ U | xi 6= ⊥}; a valid input
for user ui consists of a (CONV, ti,mi) request for ren-
dezvous point tagged by ti for sending message mi.
For a vector of inputs x, define Ni(x) = { j | x j =
(CONV, ti,m j)}. Parse z as a deterministic program
Rz
CNV, such that for any x if Ni(x) 6= /0 then Rz

CNV(i,x) ∈
Ni(x), else it is equal to ⊥.

– Range: 〈{mi | mi ∈ Uact}〉ui∈Uact
.

– Function: On input a vector 〈x1, . . . ,xn〉 where each
non-⊥ value xi is a (CONV, ti,mi) request, CNVabs re-
turns a value y = 〈yi〉ui∈Uact

, as follows:

• Let Iact := {i | ui ∈Uact} be the set of indices that refer
to active users. For every i ∈ Iact: if j = Rz

CNV(i,x) 6=⊥,
then it sets yi = m j. Otherwise, it sets yi = mi.

• It returns the value vector y := 〈y1, . . . ,yn〉.

Figure 3: The Conversation program family CNVabs :
(DCNVabs ∪ {⊥})n −→ YCNVabs with parameter z, where
non-⊥ dead drop values are integers sampled from a pre-
determined interval [a,b] and messages are taken from
space M.

Anonymous Messaging Systems. An anonymous mes-
saging system is a pair of protocols that realize any two
members of the families DLNabs and CNVabs under the se-
curity guarantee provided in Definition 1. Given such
realization, anonymous communication can be achieved
as a continuous sequence of interleaved invocations of
dialing and conversation. In principle, dialing can be
more infrequent compared to conversation, e.g., perform
only a single dialing every certain number of conversa-

tion “rounds.” We note that the value of our relaxation
of MPC security is on the fact that we can realize any
member of the respective families.

Sharemind as a secure MPC platform. As already dis-
cussed, Sharemind will be the building platform for the
implementation of our anonymous messaging scheme.
As shown in [11], Sharemind is information theoreti-
cally secure against a passive (honest-but-curious) adver-
sary that corrupts 1-out-of-3 MPC servers. Subsequent
work [43] provides interesting directions regarding the
active security of Sharemind, even specifically for novel
oblivious sorting algorithms [38]. However, in our im-
plementation, we consider the case of passive security.

In more detail, let S be the class of programs that
can be written in Sharemind’s supporting language Se-
creC. In our analysis, we claim that Sharemind operates
as a (1,3)-secure MPC platform for any program family
member of the class S against passive adversaries, as in
Definition 1. Using the above claim, we provide two Se-
creC programs and prove that they realize two members
of the families DLNabs and CNVabs, (cf. Sections 5 and 6)
hence obtaining an anonymous messaging system.

Alternative MPC platforms. For the purpose of the pro-
posed anonymous messaging, Sharemind can be viewed
as a black box providing MPC functionality. Hence,
it is also possible to swap Sharemind for another MPC
implementation providing different deployment or secu-
rity properties. For example, recently, Furukawa et al.
proposed a highly-optimised protocol for computation
with an honest majority and security for malicious ad-
versaries [30], that was further improved by Araki et al.
[4]. Similarly, it is possible to support more than three
computation parties. SPDZ [24] is a practical MPC im-
plementation that provides statistical security against an
active adversary that corrupts up to m− 1 parties. Its
online computation and communication complexities are
both O(m |C|+m3), where |C| stands for the computable
arithmetic circuit size. In our setting, the lower bound for
this circuit size is the number of users, n. Both actively
secure MPC implementations mentioned here work in a
preprocessing (i.e. offline/online) model.

4 System Architecture

Our work is presented in a manner that makes it easy to
implement using any of the aforementioned MPC proto-
cols in Section 2 and with any number of servers. How-
ever, for the sake of presentation, we assume three MPC
servers, denoted by Ser1,Ser2,Ser3. As a general idea,
the protocol works in rounds, where in each round users
break their input into shares and forward the shares to the
servers, with each server receiving one share. Then, the
servers interactively compute the desired output shares,
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which are in turn returned to the respective users. In
our description, for simplicity we choose additive secret
sharing, but other sharing schemes would not affect the
functionality of our architecture.

Besides the MPC servers, the complete architecture of
our system comprises an entry and an output server used
to handle user requests. The entry and output servers
may be located on the same or on different physical ma-
chines and are only trusted to relay messages.
Registration phase. At the beginning, the MPC servers
Ser1,Ser2,Ser3 run the Setup phase of the secure mul-
tiple KGC ID-KA protocol (cf. Section 2) playing the
role of three KGCs: KGC1,KGC1,KGC3 generating their
partial master secret keys msk1,msk2,msk3.

Before starting to use the system, each user ui registers
with a unique username UNi of 64 bits. Then, each MPC
server Ser`, ` ∈ {1,2,3} generates ui’s partial secret key
ski,` and sends it ui. Upon receiving ski,1,ski,2,ski,3, ui
combines the partial keys to obtain her ID-KA secret key
ski as output of the secret key derivation algorithm. In
addition, by performing standard key exchange opera-
tion, ui obtains a symmetric key ki,` for communication
with each of Ser`, ` ∈ {1,2,3}. From this point on, any
authentication and communication between ui and the
servers is performed using symmetric key cryptography.
In the client-side, ui can compute u j’s ID-KA public key
pk j as a function of her username UN j and agree on the
ID-KA key Ki,`. In the rest of this paper, we set the length
of the usernames UN1, . . . ,UNn ∈ UN, to be 64 bits.
Main phase. The main phase of the protocol for each
round r, consists of the following steps:

1. Encoding: Each user ui generates a request ai, as
input to the MPC that is to be executed.

2. Secret sharing: Each user ui creates three shares
of the request using additive secret sharing, so that
ai = ai,Ser1 + ai,Ser2 + ai,Ser3 holds. Note that the sub-
scripts denote the MPC server that will process the share.
Then each of the three shares intended for one of the
MPC servers is encrypted with the respective symmet-
ric key ki,` using authenticated encryption. The result
is a triple of the form a′i = (a′i,Ser1,a

′
i,Ser2,a

′
i,Ser3), where

a′i,Ser` := Enkki,`(ai,Serj), ` = {1,2,3}. Then each user
sends the encrypted shares along with her username UNi,
as a package to the entry server.

3. MPC input preparation: Before the start of round
r, the entry server groups the packages received already
and sends each share along with its associated username
to the respective MPC servers. It is important to note
that the use of an entry server is only to synchronize the
MPC servers and to provide the shares in the same or-
der to each of them. For notation simplicity and without
loss of generality, we assume that the entry server ar-
ranges ui as the user that submitted the i-th input. Then,

each MPC server Ser` receives a sequence of the form
a′Ser` = 〈a

′
1,Ser`

, · · · ,a′n,Ser`〉. We denote as n the num-
ber of users that provided an input in round r. In addi-
tion to a′Ser` , the MPC servers also receive a sequence of
the users’ usernames in corresponding order, that is a se-
quence of the form UN = 〈UN1, · · · ,UNn〉, where UNi is
the registered username of the user that provided input i.

4. Order check: Each MPC server computes a hash
of the usernames in the order they appear in its input
sequence, as H(UN1|| · · · ||UNn), and exchanges it with
the other MPC servers. In case the three hashes do not
match, it is implied that the order of the usernames pro-
vided to the three servers was different. Thus, a denial of
service attack has taken place by either the entry server
or one of the MPC servers (considering they reported a
false hash). This step is optional when considering only
privacy implications of a malicious entry server.
5. Decryption and authentication: At this point, au-

thentication is performed implicitly by each server via
decrypting the received share with the symmetric key
corresponding to the username that came with the share.
Thus shares aSer` = 〈aSer`,1, · · · ,aSer`,n〉, with aSer`,i :=
Decki,`(a

′
Ser`,i) are ready for the MPC.

6. MPC algorithm: The MPC servers execute the
MPC protocol.
7. Encryption and return: Each MPC server encrypts

each output share with the respective symmetric key and
forwards shares of the form b′Ser` = 〈b

′
1,Ser`

, · · · ,b′n,Ser`〉
to the output server. The output server collects the shares
corresponding to the same user and returns a package of
the form (b′i,Ser1 ,b

′
i,Ser2 ,b

′
i,Ser3) to each user ui.

8. Decryption and reconstruction: Each user decrypts
the received shares with the respective symmetric key
and adds them, resulting in bi = bi,Ser1 +bi,Ser2 +bi,Ser3 ,
where bi,Ser` = Decki,`(b

′
i,Ser`). The value bi is the final

output of the MPC protocol for each user ui for round r.
Remark 1. The entry and output servers are used for
practical reasons. The main function they perform is
grouping the received packages of shares and forwarding
them to/from the servers. As they have no information
about the symmetric keys exchanged between users and
servers at the registration phase, they schedule the traffic
consisting of encrypted shared data. Hence, if entry and
output servers are malicious, they can do no more than
an adversary controlling the network.

5 The Dialing Protocol

The dialing protocol enables a user ui to notify another
user u j that she wants to start a conversation, much like
how the telephone protocol works. The protocol runs in
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rounds to deter possible timing attacks, where in each
round, every online active user will either send a DIAL
request or a DIALCHECK request. All requests are mu-
tually indiscriminate. For clarity, we first provide a de-
scription of the Dialing protocol steps. Then, we proceed
with the efficient program DLNsort implementing it.

Protocol description. The protocol runs in seven steps,
where steps 2-6 are executed by the MPC servers. Steps
1 and 7 are executed locally by each user.

1. Encoding: The inputs x1, . . . ,xn are of the form of
(DIAL,ui,u j) requests, (DIALCHECK,ui) requests, or
⊥, representing the action each user takes for this dialing
round. For simplicity, assume that the users are enumer-
ated as u1, . . . ,un consistently with the input sequence
x1, . . . ,xn, i.e. ui is the user that submitted the i-th in-
put. As a result, the active users that submitted non-⊥
values, are enumerated as u1, . . . ,uact, where act is the
size of the active set Uact. The inputs of the active users
are encoded as triples of the form ai := (ai[1],ai[2],ai[3])
where the third component is an input wire ID widi. The
wire IDs are initially set to zero, but in the following Step
2, each widi will be set unique for each ui.

In particular, if ui wants to dial u j, then the
(DIAL,ui,u j) request is encoded as (UNi,UN j,0) where
UNi and UN j are the usernames of the dialer and the
dialee respectively. If ui is a dial checker, then the
(DIALCHECK,ui) request is encoded as (C,UN j,0),
where (i) C is a special value designated to denote a dial
check and is different from any possible username value,
and (ii) UN j is the checker’s own username.
2. Assigning wire ID values: As a first step, the MPC

protocol assigns unique wire IDs for each user. This
is done by setting the third component ai[3] of the en-
coded triple ai to i. Therefore, for each ui, we have that
widi := i. These wire IDs are needed internally for the
MPC calculation and express the order in which the in-
puts were received so that the respective outputs will be
delivered in the same order.

3. Checking input validity: The protocol then checks
if any of the first two members of each triple, denoted by
ai[1] and ai[2], is equal to the submitter’s username. This
check ensures that inputs are encoded in a way that does
not compromise the security of the system. The threat
here is that a user ui might try to impersonate a user u j by
encoding a DIALCHECK input as ai = (C,UN j,widi).
That attack would allow user ui to receive a dial request
that was intended for user u j. A similar problem arises
when considering a user ui encoding a DIAL input as
ai = (UNl ,UN j,widi). In this case, user u j will think the
dial originated from user ul . To avert such impersonation
attacks, it is enough for the MPC protocol to check that
either the first or the second member of an input tuple is
equal to the username of the user that submitted that in-

put. This, along with the fact that the input is sent from
the user to each MPC server using authenticated encryp-
tion (cf. step 2 of the architecture in section 4) guarantees
that no impersonation attack can take place.

In more detail, if the input is a DIALCHECK request,
then this check ensures that the second member of the
tuple is the user’s own username. In the case of a DIAL
request, the check ensures that a user can only imperson-
ate another user when she dials herself, that is a request
of the form ai = (UN j,UNi,widi) is created by user ui.
In this case, this request does not affect the protocol. If
the check fails for the encoded input ai, then the input is
set to ai = (0,0,widi) and does not affect the protocol.

4. Sorting by usernames: The encoded input triples
are first sorted according to their second components
using the oblivious Quicksort algorithm of [33], im-
plemented according to [13]. Observe that every non-
zero second component is either (i) the username UN j
of dialee u j in a dial request from some user ui, or
(ii) the username UN j from dial checker u j. Thus,
when a triple (C,UN j,wid j) is adjacent to some triple
(UNi,UN j,widi) with a non-zero second component, this
determines a dial pair between ui, u j. We note that two
special conflict cases may appear:

I. (C,UN j,wid j) is adjacent to two dial triples as
. . . ,(UNi,UN j,widi),(C,UN j,wid j),(UNi′ ,UN j,widi′), . . .

II. Two or more adjacent dial triples correspond
to (C,UN j,wid j). The sorting would then appear as
. . . ,(UNi′ ,UN j,widi′),(UNi,UN j,widi),(C,UN j,wid j), . . .

5. Connecting neighbors: Next, requests are pro-
cessed individually by looking at both their neighbors’
triples to determine if there is a dial for any given dial
check request. Of course, requests at the first and last
place of the sorted vector need only look at one neigh-
bor. Thus, we can claim that any dial check request will
have a suitable dial request as its neighbor or not at all.

In more detail, for every user ui, the protocol produces
a pair b := (bi[1],bi[2]), where bi[2] is widi and bi[1] is
either (i) the username UN j of some user u j that dialed
ui, or (ii) 0, if no dial request has been made for ui, or ui
has made a dial request.

6. Sorting by wire IDs: As a final sorting step, the
protocol needs to sort the processed requests according
to their wire IDs in order for the correct requests to be
forwarded to each user. The latter sort, performed on
〈b1, . . . ,bact〉 according to the wire IDs can again be im-
plemented by the Quicksort algorithm of [33].

The result of the last sorting is a vector 〈b̂1, . . . , b̂act〉
where b̂i is a pair (b̂i[1], b̂i[2]) that corresponds to ui and
b̂1 is essentially either (i) a username UN j or (ii) a zero
value, in both cases indexed by b̂2 := widi.
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The Dialing Program DLNsort

Input: a sequence 〈x1, . . . ,xn〉 where xi is either a
(DIAL,ui,u j) request, a (DIALCHECK,ui) request,
or ⊥. All ⊥ inputs are stacked last.

Output: a sequence 〈yi〉i:xi 6=⊥, where yi either is a κ-bit
integer ti, if xi = (DIAL,ui,u j), or a pair of a κ-bit
integer ti and a bit ci, if xi = (DIALCHECK,ui).

1. For each i← 1, . . . ,n
if xi =⊥ then

Set act := i−1 ;
Break loop ;

else if xi = (DIAL,ui,u j) then
Set ai := (ai[1],ai[2],ai[3])← (UNi,UN j,0) ;

else if xi = (DIALCHECK,ui) then
Set ai := (ai[1],ai[2],ai[3])← (C,UNi,0) ;

end if
2. For each i← 1, . . . ,act

Set widi as ai[3]← i ;

3. For each i← 1, . . . ,act
if ai[1] 6= UNi AND ai[2] 6= UNi then

Set ai[1] = ai[2] = 0 ;
end if
4. 〈ai〉i:xi 6=⊥ according to second coordinate using

Quicksort;
5. For each i← 1, . . . ,act

if ai[1] =C AND ai[2] = ai−1[2] then
Set bi := (bi[1],bi[2])← (ai−1[1],ai[3]) ;

else if ai[1] =C AND ai[2] = ai+1[2] then
Set bi := (bi[1],bi[2])← (ai+1[1],ai[3]) ;

else
Set bi := (bi[1],bi[2])← (0,ai[3]) ;

end if
6. Sort tuples 〈bi〉i:xi 6=⊥ according to second coordi-

nate using Quicksort;
7. For each i← 1, . . . ,act

if ai[1] = UNi then
Set ti← H

(
GenerateKey(ai[1],ai[2]),r

)
;

Set yi← ti ;
else if ai[1] =C AND bi[1] ∈ UN then

Set ti← H
(
GenerateKey(ai[1],bi[1]),r

)
;

Set yi← (ti,1) ;
else if ai[1] =C AND bi[1] = 0 then

Pick ρi
$←{0,1}64 ;

Set ti← H
(
GenerateKey(ski,ρi),r

)
;

Set yi← (ti,0) ;
end if
return y := 〈yi〉i:xi 6=⊥ .

Figure 4: The Dialing program DLNsort realizing the
Dialing program DLNabs for dialing round r, and users
u1, . . . ,un with usernames UN1, . . . ,UNn ∈ {0,1}64. The
value C denotes a dial check request.

7. Computing the dead drops: After the Quicksort al-
gorithm is completed, the active users u1, . . . ,uact are de-
livered the values b̂1[1], . . . , b̂1[act] respectively. Having
received b̂i[1], dialer ui that knows UN j, and dial checker
u j that obtained UNi, can calculate their shared dead drop
value for dialing round r as follows:

ti := H
(
Ki, j,r

)
, if b̂i[1] = 0

t j := H
(
K j,i,r

)
, if b̂i[1] = UN j

Above, H is a standard cryptographic hash function,
r is the round number. The values Ki, j,K j,i are the ID-
KA keys that ui and u j compute by running the key
agreement algorithm GenerateKey on input (ski,UN j)
and (sk j,UNi) respectively (cf. Section 2), where ski,sk j
are the secret keys of ui and u j. Recall that the opera-
tions for ID-KA key generation are over a finite multi-
plicative group of prime order q. We stress that the dead
drop value is at least 64 bits long to make accidental col-
lisions unlikely, although our system can tolerate them.
By the correctness of the ID-KA protocol, it holds that
Ki, j = K j,i, hence we have that ti = t j.

On the other hand, if user ui dial checked but b̂i[1] =
0 (no one dialed ui), then for uniformity reasons, she
computes a random dead drop as above by inserting a
random value ρi in place of UN j, i.e. she sets ti :=
H
(
GenerateKey(ski,ρi),r

)
.

Note that if ui has dialchecked, then either (i) she es-
tablished a rendezvous point with u j, if b̂1 = UN j, or
(ii) no one dialed her, if b̂1 = 0. Thus, she can set a
“success” bit ci to 1 or 0 respectively, indicating her suc-
cessful engagement in the dialing round r. Besides, if
ui is a dialer that dialed u j, then she always computes
the value ti := H

(
GenerateKey(ski,UN j),r

)
, regardless

of the success of her dialing request. Hence, she can not
infer a success bit.

The Dialing program DLNsort . The program DLNsort
implementing the Dialing protocol is presented in Fig. 4.

Following Section 3, we show that DLNsort realizes
the member of the Dialing program family DLNabs that
corresponds to our sorting process. Namely, in Step
4 of DLNsort (Sorting by usernames), the inputs are ar-
ranged according to an ordering of their second coordi-
nate. Thus, we set the index z that parameterizes the fam-
ily DLNabs to be the string zqs2 as follows: zqs2 is parsed
as the deterministic program R

zqs2
DLN that takes as takes as

input an index i and array of triples x in encoded form,
and outputs the index j so that when the array is sorted
according to Quicksort ordering on the second coordi-
nate, xi is the left neighbor of the encoded x j. Formally,
we state the following theorem and provide the proof in
the full version of the paper.
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Theorem 1. Let n be the number of users, κ ≥ 64 be
the dead drop string length and q be the prime order of
the underlying ID-KA group. Let H be the cryptographic
hash function modeled as a random oracle. Then, the
Dialing program DLNsort described in Fig. 4 implements
the member of the Dialing program family DLNabs de-
scribed in Fig. 2 for parameter zqs2 with correctness er-
ror n4

q + n
2κ .

Remark 2. The correctness error n4

q + n
2κ is typically a

negligible value in our setting. To provide intuition, con-
sider the case with a number of n = 100000 < 217 users,
dead drop size κ = 64 bits and group size q≥ 2128. The
error for this case is less than 217·4

2128 + 217

264 ≈ 2−47 .

6 The Conversation Protocol

The Conversation protocol facilitates the actual exchange
of messages associated with the same t dead drop value,
which represents a rendezvous point computed in the fi-
nal step of a Dialing protocol execution. It is expected
that no more than two messages will have the same t
value due to its large bit-size, although our system can
handle collisions as we will see later. As in the previ-
ous section, we first provide a description of the Con-
versation protocol and then the corresponding program
labeled CNVsort that implements it. At this point, we have
to highlight our assumption that a valid message mi at the
input has its least significant bit (LSB) equal to 0. This
flag which could also be a discrete fourth member of our
tuple, is useful at (i) conflict resolution when more than
two dead drops are identical and (ii) the parallelization
of our protocol discussed in section 11 and in the full
version of the paper.
Protocol description. The protocol is executed via the
following steps, where steps 2-6 are executed by the
MPC servers. Step 1 is executed locally by each user.
1. Encoding: The inputs are of the form of
(CONV, ti,mi) requests, or ⊥. Again, we assume that
the users are enumerated as u1, . . . ,un consistently with
the order they submitted their input sequence x1, . . . ,xn,
hence all ⊥ values are stacked last. Active users’ inputs
are encoded as triples of the form ai := (ai[1],ai[2],ai[3])
where the third component is an input wire ID widi that
will be uniquely assigned in the following step. In par-
ticular, if ui wants to engage in conversation, then the
(CONV, ti,mi) request is encoded as (ti,mi,0). In case
ui is not engaging in conversation the request will use a
random dead drop value and a random message.

2. Assigning wire ID values: As a first step, the MPC
protocol assigns unique wire IDs for each user. This is
done by setting the third component ai[3] of the encoded
triple ai to i. Thus, for each ui, we have that widi := i.

3. Sorting by dead drops: The encoded input triples
are first sorted according to their first components using
the oblivious Quicksort algorithm of [33]. As a result,
the inputs of any two users that share the same dead drop
value will become adjacent.
4. Exchanging adjacent messages: By construction,

two inputs with the same dead drop value indicate a pair
of users ui and u j that wish to communicate. Thus, the
protocol generates a vector 〈b1, . . . ,bn〉, where each bi
is a pair (bi[1],bi[2]), of which the second component is
widi and the first component is either (i) the message of
some adjacent encoded input, or (ii) the original message
mi, if message exchange did not take place for ui because
there was no matching dead drop or due to conflict (three
or more equal dead drops). As already mentioned, the
LSB of two exchanged messages is set to 1. In the special
conflict case where three or more values share the same
dead drop t, an arrangement would be as follows:

. . . ,(t ′,mk,k),(t,m j, j),(t,mi, i),(t,mi′ , i
′), . . .

In this case, the messages of ui and u j will be exchanged
and ui′ will obtain back his message at the end of the
protocol, notifying him to resubmit.
5. Sorting by wire IDs: As in the Dialing protocol

(Step 5), the Conversation protocol performs a Quicksort
on the processed requests according to their mutually dis-
tinct wire IDs in order for the correct requests to be for-
warded to each user. The result is a vector 〈b̂1, . . . , b̂n〉
where b̂i is a pair (b̂i[1], b̂i[2]) that corresponds to ui and
is either (i) a message m j from some user u j or (ii) the
original message mi, in both cases indexed by widi.

6. Forwarding messages: At the end, the protocol dis-
cards the wire IDs and creates the output vector y =
〈y1, . . . ,yn〉 := 〈b̂1[1], . . . , b̂n[1]〉. Thus, each yi is either
(i) a message m j from some user u j or (ii) the self-
generated message mi. Finally, the users u1, . . . ,un are
delivered the values y1, . . . ,yn.

Remark 3. In reality, the dead drop value ti of some user
ui is not exactly the value she received from a dialing
protocol execution. For conversation round r it is com-
puted as ti := H(t(dialing)i,r), where t(dialing)i is the dead
drop for ui, generated by the dialing protocol and acts as
the seed for the creation of an ephemeral dead drop for
each conversation round.

Remark 4. Due to the size of dead drops values, the
probability that a collision on randomly generated dead
drop values will occur can be made very small. Even in
the case of a collision, the client of the user that was af-
fected would just resend that message in the next round,
as it would know that a collision occurred because it re-
ceived a message it could not decrypt.
The Conversation program CNVsort . The program
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CNVsort implementing the Conversation protocol is pre-
sented in Fig. 5.

The Conversation Program CNVsort

Input: a sequence 〈x1, . . . ,xn〉 where xi is either a
(CONV, ti,mi) request, or⊥. All⊥ inputs are stacked
last.

Output: a sequence of messages 〈yi〉xi 6=⊥.

1. For each i← 1, . . . ,n
if xi =⊥ then

Set act := i−1 ;
Break loop ;

end if
if xi = (CONV, ti,mi) then

Set a := (ai[1],ai[2],ai[3])← (ti,mi,0) ;
end if
2. For each i← 1, . . . ,act

Set widi as ai[3]← i ;

3. Sort tuples 〈ai〉xi 6=⊥ according to first coordinate
ai[1] using Quicksort;

4. For each i← 1, . . . ,act−1
if ai[1] = ai+1[1] AND LSB(ai[2]) = LSB(ai+1[2]) = 0
then

Set the LSB of ai[2] and ai+1[2] to 1 ;
Set bi← (ai+1[2],ai[3]) ;
Set bi+1← (ai[2],ai+1[3]) ;

end if
5. Sort tuples 〈bi〉i:xi 6=⊥ according to second coordi-

nate (which is the wire id) using Quicksort;

6. For each i← 1, . . . ,act
Set yi← bi[1] ;

return y := 〈yi〉i:xi 6=⊥ .

Figure 5: The Conversation program CNVsort realizing the
Conversation program CNVabs for conversation round r,
dead drop size κ ≥ 64 and users u1, . . . ,un with messages
taken from space M.

Following Section 3, we show that CNVsort realizes the
member of the Conversation program family CNVabs that
corresponds to our sorting process. Namely, in Step 3 of
CNVsort (Sorting by dead drops), the inputs are arranged
according to an ordering of their first coordinate. Thus,
we set the index z that parameterizes the family CNVabs to
be the string zqs1 as follows: zqs1 is parsed as the deter-
ministic program R

zqs1
CNV that takes as input an index i and

array of triples x in encoded form, and outputs the index
j so that when the array is sorted according to Quicksort
ordering on the first coordinate, the encoded triple of ui
(or resp. u j) has no neighbors on the left of the sorted

array and the encoded triple of u j (or resp. ui) is the right
neighbor of the encoded triple of ui (or resp. u j). For-
mally, we state the following theorem and provide the
proof in the full version of the paper.

Theorem 2. Let n be the number of users and κ ≥ 64 be
the dead drop string length. The Conversation program
CNVsort described in Fig. 5 implements the member of the
Conversation program family CNVabs described in Fig. 3
for parameter zqs1.

7 The MCMix Anonymous Messaging Sys-
tem

Having presented the general architecture of our system
in Section 4 and the Dialing and Conversation protocols
and programs in Sections 5 and 6 respectively, we now
show how these programs are implemented in our archi-
tecture. Our system consists of two MPC instances of the
general architecture in Section 4, executing one after the
other or independently in parallel. One implements the
Dialing protocol and the other the Conversation protocol.
Below, we specify the operations of general architecture
for each of our two protocols. We note with the prime
symbol, e.g. 1’. , the specification of the respective step,
e.g. 1. , of the general architecture.

Dialing. The execution of the Dialing protocol for round
r follows the steps of section 4 with the following partic-
ularities:

1’. Encoding: The input of user ui is encoded as ai =
(UNi,UN j,0), in the case of a dial to user u j, or as ai =
(C,UNi,0) in the case of a dial request, as specified by
Step 1 of the Dialing program DLNsort in Fig. 4.

6’. MPC algorithm: The MPC server secure computa-
tion consists of Steps 2-6 of DLNsort.

8’. Decryption and reconstruction: The recon-
structed value bi received by user ui is the output bi of
Step 6 of DLNsort.

9’. Dead drop calculation: As an extra step, the dead
drop value ti is calculated by each user by performing
Step 7 of DLNsort.

Conversation. The execution of the conversation pro-
tocol for round r follows the steps of Section 4 with the
following particularities:

1’. Encoding: Input is encoded as ai = (ti,mi,0), with
ti being a dead drop calculated by the final step of a pre-
vious dialing round in the case of a real conversation re-
quest (also taking into account Remark 3), or a random
value in the case the user does not want to send a mes-
sage (but still wants to protect her privacy), according to
the Conversation program CNVsort in Fig. 5.
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6’. MPC algorithm: The MPC server secure computa-
tion consists of Steps 2-6 of CNVsort.

8’. Decryption and reconstruction: The recon-
structed value bi received by the user that provided input
i is the output yi of Step 6 of CNVsort and is the message
intended for this user.

Security of MCMix. We prove our security theorem
for the general θ -out-of-m case, as in Definition 1, using
the parameters zqs2 and zqs1 defined in Sections 5 and 6
respectively. We provide the proof in the full version.

Theorem 3. Let κ be the dead drop size, n be the num-
ber of users, m be the number of servers and q the size
of the underlying Diffie-Hellman group, where n,m are
polynomial in λ , κ = Θ(λ ) and q = Ω(2λ ). Let P be a
(θ ,m)-secure MPC protocol with n users w.r.t. (i) the
Server Computation Steps 2-6 of the Dialing program
DLNsort described in Fig. 2 and (ii) the Server Compu-
tation Steps 2-6 of the Conversation program CNVsort de-
scribed in Fig. 3. Then, MCMix implemented over P is
an anonymous messaging system by securely realizing
the program families DLNabs and CNVabs for parameters
zqs2 and zqs1 respectively.

Remark 5 (On forward security of MCMix). MCMix
in its current form does not offer forward security. Nev-
ertheless it is possible to provide forward security as fol-
lows. First, clients could refresh their exchanged keys
with the servers in regular time intervals, e.g., once a
day. Alternatively to avoid interaction, forward secure
encryption can be used, e.g., see [9]. With respect to the
dead drop calculation we can obtain forward security by
applying our second ID-KA construction with forward
secrecy (cf. Section 2 and the full version). The addi-
tional communication cost to the Dialing protocol would
be one extra random group element per user as now the
active inputs x1, . . . ,xn for dialing need to be used for
the first round of the exchange; they are of the form of
(DIAL,ui,u j,ri) and (DIALCHECK,ui,r j), where ri,r j
are random elements from the ID-KA cyclic group. Sort-
ing would still be executed on the users’ usernames and
the wire IDs as before thus incurring no additional over-
head. We omit further details.

8 Implementation and Benchmarking

We implemented a prototype of our system using the
Sharemind platform and performed extensive evaluation.
Experiment setting. Benchmarks were run on a cluster
of three machines with point-to-point 1 Gbps network
connections using various profiles for network latency
aiming to simulate WAN behavior. Each machine has
a 12-core 3 GHz Hyper-Threading CPU and 48 GB of

RAM. However, even though the hardware supports it,
Sharemind MPC protocols are not optimized to use mul-
tiple CPU cores or network layer in a parallel manner.
The servers running Sharemind employ only 2 cores, one
for executing the computations and another for pseudo-
random number generation. To simulate real-world envi-
ronment, we use the tc tool to manipulate operating sys-
tem’s network traffic control settings. This tool is used
to both cap the available network bandwidth, as well as
introduce communication latency by adding round-trip
delay (ping).
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Figure 6: Running time in secs of the Dialing protocol
implementation for a number of n = 100, 500, 1K, 5K,
10K, 50K, 100K, 500K users and latency L = 0, 2, 10,
20 ms. The benchmarks were run with message size 8
Bytes and 1 Gbps network bandwidth.

Dialing protocol. We benchmarked our dialing protocol
for various numbers of users and various latency values.
The results are presented in Fig. 6. As we can see, the
dialing protocol has a runtime for each round of around
one minute for 100,000 users and around 300 seconds
for 500,000 users, considering the worst case of 20 ms of
latency. The latter value might still be considered accept-
able for some settings, as dialing rounds need not be exe-
cuted very often. Another interesting observation is that
the effect of latency diminishes as the number of users
increases, due to the fact that the number of communica-
tion rounds of our algorithm scales logarithmically to the
number of inputs. This in turn happens because Quick-
sort needs O(log(n)) steps to sort n inputs when executed
in parallel. The vectorized nature of our implementation
succeeds in taking advantage of the parallelizable nature
of the algorithm. The time a user needs to encode her
request and send it, as well as the time required by each
MPC server to decrypt the requests it received have no
effect on the per round runtime of our system. This is be-

USENIX Association 26th USENIX Security Symposium    1229



cause these operations are performed in a pipelined fash-
ion. This means that the encoding, encryption and de-
cryption of the requests for round r+1 takes place while
the MPC servers perform the computations for round r.
In the dialing protocol this is acceptable as a user’s in-
tent on whether to dial or perform a dial check might not
depend on the output of the previous dialing round.
Conversation protocol. For the conversation protocol we
made extensive benchmarks considering the number of
users, the latency of the network, as well as the message
size. In Fig. 7, we can see that the running time of the
conversation protocol with a very small message size of
8 Bytes (B) is similar to the running time of the dialing
protocol. That is, the system can serve 100,000 users
with in around one minute for maximum latency of 20
ms. Again, we see that latency is a minor performance
factor for a large number of users. This fact enables us
to claim that our system will have similar running times
even with greater latency values.
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Figure 7: Running time in secs of the Conversation pro-
tocol implementation for a number of n = 100, 500, 1K,
5K, 10K, 50K, 100K, 500K users and latency L = 0, 2,
10, 20 ms. The benchmarks were run with message size
8 Bytes and 1 Gbps network bandwidth.

In Fig. 8, we consider how the message size affects
performance. We have benchmarked various message
sizes ranging from 8 B to 1 KB messages. No artifi-
cial latency has been injected for these experiments. We
see that message size affects performance in a significant
way as opposed to latency, but the system can still sup-
port anonymity sets of tens of thousands of users even
with 1KB messages and certainly SMS long messages
for hundreds of thousands.

Finally, in Fig. 9, we provide the peak network band-
width consumption during the Dialing and Conversation
protocols. We note that the total bandwidth is shown,

i.e. bytes sent and received and to both other computing
nodes. We observe that in both protocols the bandwidth
consumption remains at a low level of less than 100Mbps
for the Dialing protocol for (usernames of 64bits) as well
as the Conversation protocol for messages of up to SMS
size. For bigger message sizes and 100,000 users, we
get that the total consumption is roughly 150Mbps and
300Mbps for messages of 256B and 1KB respectively,
which can be realistic for a large scale setting.
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Figure 8: Running time in secs of the Conversation pro-
tocol implementation for a number of n = 100, 500, 1K,
5K, 10K, 50K, 100K users and message size |M| = 8,
144, 256, 1K Bytes. The benchmarks were run with no
latency and 1 Gbps network bandwidth.
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Figure 9: The peak network bandwidth consumption in
Mbps during the Dialing protocol for usernames (UNs)
of 64bits and the Conversation protocol for message size
|M|= 8B, 144B, 256B, 1KB, given a number of n= 100,
500, 1K, 5K, 10K, 50K, 100K users. The benchmarks
were run with no latency and 1 Gbps network bandwidth.
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9 Client Load and Adoption Incentives

Anonymous communication systems critically rely on
having adequately large anonymity sets to be effective.
In other words: “Anonymity Loves Company” [26],
and the usability aspects of anonymous communication
systems should be an important design consideration.
MCMix strives to offer strong adoption incentives by of-
fering strong security, while minimizing the computation
and communication load on the client side.
Computation load: For the Dialing protocol, each client
performs an ID-KA operation (cf. Section 2) to compute
the dead drop value, plus a few symmetric operations to
encrypt/decrypt the shares. The Key Exchange operation
consists of a few hashes and a single bilinear symmet-
ric pairing computation. In [2], symmetric pairing time
is estimated at 14.9 ms running on a commodity device,
or around three times the time needed for a modular ex-
ponentation in the corresponding cyclic group. For the
Conversation protocol, the load is low, consisting only of
symmetric encryption/decryption operations.
Communication load: In Table 1, we depict the total
monthly bandwidth costs of the clients in an example
setting with (i) SMS message size of 140 B, (ii) fixed
block size for AES of 128 bits, (iii) standard 20/20 B
TCP/IP headers, (iv) SHA-256 HMACs and (v) dialing
and conversation rounds assumed to be executed every
one minute (simultaneously). For a detailed discussion
on the communication load of our system, we refer to
the full version.

|M| (B) bandwidth per month (MB)
8 47

144 78
256 106
1K 296

Table 1: Communication costs of clients (Dialing and
Conversation combined) w.r.t. message size.

The theoretical analysis of the computational and
communication overhead of our system shows, that it is
lightweight on the client side and the bandwidth needs
of a device to be constantly connected are in the range
of tens of MB per month, which we consider easily man-
ageable. While we expect MCMix to be practical for
mobile users, further experiments may be needed to com-
pute actual battery consumption and bandwidth usage in
a real-world setting.

10 Related Work and Comparison

This section attempts to place our work in relation to
the state of the art in the expanding field of anonymity-

preserving communication systems.
First, regarding Onion-routing based approaches, like

POND [37] which uses the Tor network [27], we empha-
size that they do not fit the model of a global adversary
who can easily defeat them, see e.g., [34]. Systems that
attempt to defeat global adversaries operate in rounds
and expect each online user to send encrypted messages
in each round. Furthermore, our interpretation of anony-
mous messaging is one of unobservable bilateral com-
munication. Therefore, unilateral shuffling mechanisms
based on mixnets or recent MPC constructions [41] do
not satisfy our application scenario.

Our work is most closely related to the Vuvuzela sys-
tem [49] that uses mixnets in addition to dummy mes-
sages, to add noise and achieve a differentially private
(cf. [28]) solution to anonymous messaging. By defi-
nition, differential privacy protects users as individuals
and also allows for some (albeit small) leakage to an ob-
server and thus it is weaker than the simulation-based
privacy that we achieve. For example, when all users talk
to each other compared to when no user is talking to any-
one is completely distinguishable in Vuvuzela, but indis-
tinguishable for MCMix that does not leak any metadata
at all. Furthermore, Vuvuzela puts a burden on the client
side that requires to finish the dial protocol by download-
ing a substantial amount of user data (or losing substan-
tially in terms privacy); note that using Bloom filters as
described in [39] can help in making this a one time cost.
Another drawback of this system is that it cannot scale
down in a tight way, due to the burden imposed by the
added noise that needs to be always added to maintain
acceptable privacy guarantees. On the up side, the sys-
tem has good architecture and is extremely scalable to
millions of users under the assumption of a single hon-
est server, whereas (non-parallelized) MCMix can scale
to 100,000 users with similar latency and assuming an
honest server majority. However, our parallelized MPC
approach can reach that level of performance and in any
case, we anticipate that further advances in secure MPC
protocols can improve performance substantially even in
the non-parallelized version.

Riffle [36], uses hybrid mixnets and private informa-
tion retrieval (PIR, [19]) techniques to implement anony-
mous messaging. It offers good privacy guarantees, but
unlike MCMix and Vuvuzela, it can not handle network
churn. During the setup phase of the protocol, client keys
are verifiably shuffled by a mixnet. During each com-
munication phase, the same permutations as the ones es-
tablished in the setup phase are applied to the clients’
authenticated messages by the mix servers. As a result
of this setup, a single client momentarily leaving or en-
tering the system would require to re-run the expensive
setup phase of the protocol.

cMix [15] introduces a mixnet design that can shuf-
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fle messages faster than previous work by avoiding pub-
lic key operations in the real-time phase. cMix provides
sender anonymity, yet it may leak the number of mes-
sages received by each user, exhibiting a similar security
performance as Vuvuzela’s dialing protocol.

Dissent [22, 51] is based on DC-nets and achieves
anonymity sets up to a few thousand users, in an anony-
mous broadcasting scenario. Riposte [21] uses PIR tech-
niques to implement a distributed database that users
can anonymously write and read from, assuming no two
servers collude (in the efficient scheme). Specifically,
the authors implement the write stage on the database as
a “reverse” PIR, where a client spreads suitable informa-
tion for writing in the database. Subsequently, when used
for messaging, users can read using PIR from the posi-
tion in the database that the sender wrote the message
(which can be a random position calculated from key in-
formation available to the users). Riposte can scale to
millions of users but it requires many hours to perform a
complete operation; a significant bottleneck is the write-
operation that requires O(

√
L) client communication for

an L-long database which is proportional to the number
of users. In contrast, in our system, client bandwidth is
minimal, i.e. a single message per server is sent by each
user. Additionally, the application scenario is more re-
lated to that of Dissent, rather than ours, i.e. anonymous
broadcasting, instead of private point to point message
exchange, as the authors specify that their approach is
suitable “for latency-tolerant workloads with many more
readers than writers”. Finally, our technical approach is
very different compared to Riposte, as Riposte uses MPC
techniques only to detect and exclude malformed client
requests, while MCMix offers a native MPC solution for
the complete messaging functionality.

BAR [35] uses a “broadcast to all” approach to achieve
perfect privacy. A central untrusted server receives all
messages in each round and then broadcasts them to all
participants. This approach induces a very large commu-
nication overhead and therefore anonymity sets are lim-
ited to hundreds of users. Pung [3] is a system that like
BAR operates on fully untrusted setting, while it uses
state-of-the-art PIR techniques and smart database orga-
nization to scale to a much larger number of users. How-
ever, Pung can only implement the equivalent of our con-
versation functionality and not the dialing functionality,
and exhibits substantial client load.

11 Parallelizing the conversation protocol

As discussed in previous sections, our protocols are prov-
ably secure assuming a secure MPC framework and are
also scalable enough to support hundreds of thousands
of users. While these anonymity sets can accommodate
a lot of use cases, we recognize the need for anonymity

systems to offer as large an anonymity set as possible.
Therefore, we propose a technique that leads to an even
more scalable system, by describing a parallel realiza-
tion of the Conversation protocol, as this is the latency-
critical component of our system. Note that the Dialing
protocol can be executed independently of the Conver-
sation protocol and in much longer time intervals, e.g.
every five minutes. Therefore, the implementation on
a single MPC instance can cover very large anonymity
sets, e.g. 500,000 users as seen in Fig. 6.

In the following paragraph, we provide the general
idea behind our parallelization technique and refer the
reader to the full version for a detailed description of the
parallelized Conversation protocol.

General Idea. Our main challenge is to come up with
a protocol that can run in different MPC instances (is-
lands) in parallel with minimal communication between
those instances, while achieving strong privacy. Ad-
ditionally, the anonymity set should be the whole user
population. The problem of anonymous communication,
where two users may submit their messages to different
islands and still expect to communicate with perfect cor-
rectness, while leaking no information at all, is hard to
be parallelized. In our approach, we choose to maintain
the strongest possible privacy standards. As a result, in
our parallelized version of MCMix, we relax our qual-
ity of service (qos) guarantees. That is, in each round,
an adjustable small number of requests that would have
been served when using the algorithm of Fig. 5, will fail
to do so, and affected users will have to resend their mes-
sages. The probability of this phenomenon can be made
arbitrarily small in the expense of performance, which is
shown in the full version.

As evident by the algorithmic representation of our
two protocols, the integral part of their function is match-
ing equal values in pairs and performing a swap action on
these pairs. Our parallelizable technique for performing
this action benefits from the fact that the values in ques-
tion (dead drops) output by a hash function (modeled as
a random oracle) are uniformly distributed.

In our approach, requests are split obliviously between
MPC islands based on the fact that equal dead drop val-
ues are likely to be located at roughly the same indexes
of different arrays after sorting, considering these values
are uniformly distributed. In summary, and in the sim-
ple case of 2 islands, the procedure is as follows. As
a first step, requests in each island are sorted according
to their dead drop values. Then, one island collects the
lower half of both islands’ sorted requests, and the sec-
ond island the upper half. A swap operation, identical to
the one of the initial conversation protocol, is performed
as a next step, followed by a sort according to the wire
IDs of the requests. Assuming the first island assigns
strictly smaller wire ID values to the incoming requests,
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exactly the bottom /upper half of the requests held by
each island belongs to the first/second one. These halves
are sent to their respective islands. Finally, each island
merges the array of requests it received, with the one it
kept, according to their wire IDs. The final order of re-
quests corresponds to the order in which they were ini-
tially received, and the requests with the same dead drop
that found themselves on the same island during the swap
phase, represent successful instances of the conversation
protocol.

Performance of the parallelized Conversation protocol.
Considering the fact that we did not have access to a great
number of physical machines, in order to run the par-
allelized Conversation protocol with a variety of island
numbers, we ran the parallel algorithm on a single island
for different user numbers and then extrapolated to give
predictions for a real multi-island implementation. Ex-
cept from the running time of the MPC that we measured,
we also added the communication time calculated by as-
suming commodity 100 Mbps connections between the
islands. In the parallelised setting, in both inter-island
communication rounds, each party sends and receives
in total n/m · (m− 1)/m elements to/from other parties,
where n is the number of messages and m is the number
of islands. In our benchmarks, we have not added any
overhead for symmetric encryption between the islands,
as even a commodity laptop can keep up with encrypt-
ing and decrypting data at a rate of 100 Mbps. Thus, we
expect that the results presented in Fig. 10 realistically
highlight the scalability of the system. From the results
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Figure 10: Running time in secs of the Conversation pro-
tocol implemented in 1,2,4,8 island setting. The bench-
marks were run with no latency, 1 Gbps network band-
width (intra-island) and 64 bit message size. Bandwidth
between the islands was modeled at 100 Mbps.

of Fig. 10, we can see deploying our system over 2 is-

lands does not provide any performance gain. This is due
to a constant overhead, roughly of a factor of 2, that fol-
lows from the description of the parallelized algorithm
(cf. full version for details). However, when using 4 or
more islands, our parallelization technique gets very re-
warding. In the case of 8 islands, the system can support
an anonymity set of 500,000 users with a latency of 60
seconds. We expect this trend to continue for even more
than 8 islands, thus enabling even larger anonymity sets.
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Kévin Huguenin2, Jean-Pierre Hubaux1

1School of Computer and Communication Sciences (IC), EPFL, Lausanne, Switzerland
2Faculty of Business and Economics (HEC), UNIL, Lausanne, Switzerland

Abstract
In recent years, ride-hailing services (RHSs) have be-
come increasingly popular, serving millions of users per
day. Such systems, however, raise significant privacy
concerns, because service providers are able to track the
precise mobility patterns of all riders and drivers. In this
paper, we propose ORide (Oblivious Ride), a privacy-
preserving RHS based on somewhat-homomorphic en-
cryption with optimizations such as ciphertext packing
and transformed processing. With ORide, a service
provider can match riders and drivers without learning
their identities or location information. ORide offers rid-
ers with fairly large anonymity sets (e.g., several thou-
sands), even in sparsely populated areas. In addition,
ORide supports key RHS features such as easy payment,
reputation scores, accountability, and retrieval of lost
items. Using real data-sets that consist of millions of
rides, we show that the computational and network over-
head introduced by ORide is acceptable. For example,
ORide adds only several milliseconds to ride-hailing op-
erations, and the extra driving distance for a driver is less
than 0.5 km in more than 75% of the cases evaluated. In
short, we show that a RHS can offer strong privacy guar-
antees to both riders and drivers while maintaining the
convenience of its services.

1 Introduction
Ride-hailing services (RHSs), such as Uber and Lyft, en-
able millions of riders and drivers worldwide to set up
rides via their smartphones. Their advantage over tra-
ditional taxi services is due to the convenience of their
services, e.g., ride requests at the touch of a button,
fare estimation, automatic payments, and reputation rat-
ings. Moreover, the accountability provided by RHSs
is a key feature for riders and drivers, as it make them
feel safer [11, 15]. For instance, in case of a criminal in-
vestigation, the RHS provider can offer law-enforcement
agencies with the location trace of a particular ride and
the identities of the participants.

To offer such services, however, RHSs collect a vast
amount of sensitive information that puts at risk the pri-
vacy of riders and drivers. First, for each ride, the loca-
tion traces and rider’s and driver’s identities are known
to the service provider (SP). As a result, the SP, or
any entity with access to this data, can infer sensitive
information about riders’ activities (such as one-night
stands [35]), monitor the locations of riders in real-time
for entertainment [18], track the whereabouts of their ex-
lovers [42], look up trip information of celebrities [25],
and even mount revenge attacks against journalists criti-
cal of such services [46]. In the case of drivers, there are
reports of SPs that track drivers to find if the drivers at-
tended protests [1]. Second, due to the release of drivers’
personal identifiable information (PII) early in the ride
set-up procedure, an outsider adversary can massively
collect drivers’ PII [39]. Third, there is evidence that
RHS drivers and riders are discriminated based on the
racial and/or gender information specified in their pro-
files [20]. Hence, there is a strong need to provide pri-
vacy and anonymity for both riders and drivers w.r.t. the
SP and each other.

To the best of our knowledge, the only privacy-
friendly alternative to current RHSs is PrivateRide, pro-
posed by us [39]. However, this work has some limita-
tions, i.e., it does not provide strong privacy guarantees
for riders, and offers less accountability and usability,
compared to the current RHSs (see Section 2). Therefore,
a mechanism with more robust privacy and accountabil-
ity guarantees is needed.

We present ORide, a privacy-preserving RHS in-
spired by PrivateRide; it reuses only one operation from
PrivateRide, i.e., the proximity check to prevent drivers’
PII from being harvested (see Section 5.4). ORide en-
ables the SP to efficiently match riders and drivers with-
out leaking either their identities or their locations, while
providing accountability to deter misbehavior. ORide
provides strong privacy for both riders and drivers,
i.e., all users in the system are part of large anonymity
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sets, even if they are in sparsely populated areas. Even
in the extreme case of targeted attacks (i.e., a curious SP
wants to know the destination of a specific rider given the
time and location of her pick-up event [33]), the location
privacy of the rider’s destination is still guaranteed. For
this purpose, ORide relies on state-of-the-art somewhat-
homomorphic encryption system [16] (SHE), to which
we apply optimizations for ciphertext packing and trans-
formed processing [38], hence enabling a notable boost
in performance and a reduction in overhead w.r.t. naive
cryptographic solutions.

Accountability and usability are often considered as
important as privacy in RHSs [11, 15]; this introduces
challenges in resolving the uneasy tension between pri-
vacy, accountability and usability. To achieve account-
able privacy, ORide enables the SP to revoke, when
needed, the anonymity of misbehaving riders or drivers.
However, the SP does not have full control over this re-
identification operation, i.e., it is able to do it only with
the support from the affected party. In addition, to pre-
serve the convenience of the service, ORide supports au-
tomatic payment through credit cards and enables riders
to contact drivers for lost items. ORide also preserves the
reputation-rating operations of current RHSs.

The evaluation of ORide by using real data-sets from
NYC taxi cabs [44] shows that, even with strong bit-
security of more than 112 bits, ORide introduces ac-
ceptable computational and bandwidth costs for riders,
drivers and the SP. For example, for each ride request,
a rider needs to download only one ciphertext of size
186 KB with a computational overhead of less than ten
milliseconds. ORide also provides large anonymity sets
for riders at the cost of acceptable bandwidth require-
ments for the drivers: e.g., for rides in the boroughs of
Queens and Bronx, a ride would have an anonymity set
of about 26,000, and the drivers are only required to have
a data-connection speed of less than 2 Mbps. Moreover,
our results show that ORide is scalable, as we considered
a request load that is significantly higher than the one in
current RHSs, e.g., Uber accounts for only 15% of the
ride pick-up requests in NYC [43].

In summary, we make the following contributions:

• A novel, oblivious, and efficient ride-matching mech-
anism. ORide includes a novel protocol based on
quantum-resistant SHE to match riders and drivers,
without revealing their identities and locations to the
SP. We optimize our SHE-based protocol to consider-
ably reduce the bandwidth requirements and the pro-
cessing overhead, compared to a vanilla SHE-based
protocol; and we propose an efficient extension to deal
with malicious drivers.

• The design and prototype of ORide. ORide supports the
matching of riders and drivers, different accountability

mechanisms, and it reduces the amount of sensitive in-
formation revealed to the SP. In particular, ORide sup-
ports functionalities that are often considered also as
important as privacy, such as credit-card payment, repu-
tation rating, contacting drivers in case of lost items and
traceability in case of criminal activity during a ride.

• Thorough performance evaluation. Using real data-sets
and robust security parameters (i.e., 112 bits security),
we show that ORide provides strong privacy guarantees
for riders and drivers. In addition, the computational
and network overhead introduced by ORide is practical
for riders, drivers and SP. We also show that ORide has
a negligible effect on the accuracy of matching riders
and drivers compared with current RHSs. The source
code of our evaluation is available at [36].

2 Related Work

Researchers have proposed different privacy-enhancing
solutions for ride sharing (i.e., car pooling) services [6,
14, 21, 22, 40] and public transportation ticketing sys-
tems [8, 26, 31]. However, little work exists in the area
of privacy and security for RHSs, probably due to their
relative novelty. According to our literature review, the
most relevant work in this area is PrivateRide [39].

PrivateRide is the first system to enhance location pri-
vacy for riders and protect drivers’ information from har-
vesting attacks while maintaining the convenience of the
service. However, it has several limitations that are ad-
dressed in this work. First, PrivateRide cannot guaran-
tee the same level of privacy to all riders, because the
size of the anonymity set in a particular cloaked area
depends on the density of riders in that area. For in-
stance, the anonymity set is smaller for ride requests
in areas outside a city center. Also, the tradeoff be-
tween the size of a cloaked area and the accuracy of the
ride-matching results prevents the use of larger cloaking
areas (i.e., to achieve larger anonymity sets). Second,
PrivateRide does not protect drivers’s privacy, also im-
portant [1]. Third, PrivateRide provides limited account-
ability features to deal with relatively common scenar-
ios such as drivers and riders physically attacking each
other (i.e., safety concerns) or items being lost during
a ride; for many users, such features can be as impor-
tant as their privacy. Fourth, PrivateRide’s usability is
reduced w.r.t. current RHSs because the supported pay-
ment mechanism is less convenient (i.e., PrivateRide re-
quires payments with e-cash bought in advance before a
ride). Moreover, ride-matching is suboptimal, because
the distance between rider and drivers is estimated using
the centers of the cloaked areas, instead of exact loca-
tions, resulting in additional waiting time for riders.
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3 System Model
Our goal is to design a RHS that provides stronger pri-
vacy guarantees to both riders and drivers, as well as bet-
ter or equivalent usability and accountability compared
with PrivateRide [39] and current RHSs (e.g., Uber, Lyft,
and Easy Taxi). To do so, we assume a system consisting
of three parties: riders, drivers and the service provider
(SP). We now describe our adversarial and system as-
sumptions.

3.1 Adversarial Assumptions
In our model, riders and drivers are active adversaries.
The SP is a passive adversary (i.e., honest-but-curious).
We assume that most riders and drivers do not collude
with the SP, as drivers are independent contractors rather
than SP’s employees. The case of a covertly active SP
is discussed in Section 7.2. In such a case, we assume
that the SP does not provide riders and drivers with ma-
licious apps. This is a reasonable assumption, because
such attacks can be detected by third-parties via reverse-
engineering or black-box analyses; the risk of public ex-
posure and reputation loss is a strong deterrent against
such attacks.

Given that they have been observed in current RHSs
(i.e., higher chance of occurring), we focus on the fol-
lowing attacks:

• (A1) The riders and drivers might attempt to assault
each other [48]; in extreme cases, a driver might at-
tempt to kidnap and/or kill the rider, or vice versa
[37, 49].

• (A2) The SP uses its knowledge about side informa-
tion about riders and drivers, including their home/work
addresses, together with protocol transcripts, to per-
form large-scale inference attacks to profile riders’ and
drivers’ activities [35].

• (A3) The SP might attempt to carry out targeted attacks
on specific riders. That is, besides their home/work ad-
dresses, the SP knows the precise pick-up location and
time of a specific rider and wants to know the drop-off
location and time of this ride, or vice versa [25, 33,46].

3.2 Design Goals
The goal of ORide is to defend against the attacks listed
in Section 3.1, and to offer the same level of accountabil-
ity and usability as current RHSs, as follows.

• Riders and drivers are held accountable for their behav-
iors during their rides, i.e., the SP is able to identify
misbehaving riders or drivers when needed, e.g., if one
party attacks the other. However, the SP is able to iden-
tify the misbehaving party only with support from the
affected party (or her trusted contacts, see Section 6.)

• The system preserves the convenience and usability
properties offered by current RHSs, such as payment
through credit cards and reputation rating. In addition,
once a rider is matched with a driver, she can track the
location of the driver approaching the pick-up location,
and they can contact each other to coordinate the pick-
up. The system also enables riders to contact drivers of
their past rides to find lost items.

3.3 System Assumptions
We assume that the metadata of the network and lower
communication layers cannot be used to identify riders
and drivers or to link their activities. Such an assumption
is reasonable because, in most cases, the smartphones of
drivers and riders do not have fixed public IP addresses;
they access the Internet via a NAT gateway offered by
their cellular provider. If needed, a VPN proxy or Tor
could be used to hide network identifiers.

In addition, we assume that, besides localization ca-
pabilities, the rider’s and driver’s smartphones support
peer-to-peer wireless communication, e.g., Bluetooth
and WiFi Direct. Also, for all location-based compu-
tations, the apps use a coordinate system such that the
Euclidean distances correspond to the great-circle dis-
tances, e.g., by using map-projection systems for local
areas such as UTM [47] to convert a pair of (latitude,
longitude) to planar coordinates (x, y). Moreover, drivers
use a navigation app that does not leak their locations to
the SP. This can be done by using a third-party naviga-
tion/traffic app (e.g., Google Maps, TomTom, Garmin)
or pre-fetching the map of their operating areas (e.g., a
city) and using the navigation app in off-line mode.

3.4 Notation
Throughout the rest of this work, we denote polynomials
and scalar values with lowercase letters, variables and
rings with uppercase letters, and vectors with boldface
letters. b.e denotes rounding to the nearest integer. A
polynomial of degree (d−1) will be interchangeably de-
noted as a = ∑

d−1
i=0 aiX i or in its vector form aaa when there

is no ambiguity. The used symbols and terms are sum-
marized in Table 1.

4 Oblivious Ride-Matching Protocol
One of the challenges in privacy-preserving RHSs is how
to efficiently match ride requests to ride offers with-
out revealing the riders’ and drivers’ locations to each
other and to the SP. For this, ORide relies on somewhat-
homomorphic encryption (see Section 4.1) where the rid-
ers and drivers send their encrypted locations to the SP,
from which the SP computes the encrypted squared Eu-
clidean distances between them. We detail this in the
following sections. For details about other cryptographic
primitives used in ORide, see Appendix A.3.

USENIX Association 26th USENIX Security Symposium    1237



Notation Description

ks Ephemeral private key
kkkp Ephemeral public key
certX Public-key certificate of X
locX Planar coordinates of X , locX = (xX ,yX )
n Number of available drivers
d Degree of the polynomial
dt Deposit token
rdt A random number to create a deposit token
z A geographical zone
sigX{m} Message m and signature of X on m
BsigSP(m) Blind signature of the SP on message m
sigR−D{m} sigD{sigR{m}}

Table 1: Table of notations

4.1 Somewhat-Homomorphic Encryption
Somewhat-Homomorphic Encryption (SHE) is a special
kind of malleable encryption that allows a certain num-
ber of operations (additions and multiplications) over ci-
phertexts, without the need to decrypt them first. All
SHE cryptosystems present semantic security, i.e., it is
not (computationally) possible to know if two different
encryptions conceal the same plaintext. Therefore, it is
possible for a party without the private key (in our case,
the SP), to operate on the ciphertexts produced by riders
and drivers, without obtaining any information about the
plaintext values. Additionally, we choose one of the most
recent and efficient SHE schemes based on ideal lattices,
the FV scheme [16]. This scheme relies on the hardness
of the Ring Learning with Errors (RLWE) problem [29].
Note that whenever working with cryptosystems based
on finite rings, we usually work with integer numbers,
hence, from here on, we will assume that all inputs are
adequately quantized as integers. Here, we briefly de-
scribe the main functions of the FV scheme.

For plaintext elements in a polynomial quotient ring
m ∈ Rt = Zt [X ]/(Xd + 1) and ciphertext elements in
Rq = Zq[X ]/(Xd +1), where q and t are positive integers
q> t defining the upperbound of the ciphertext and plain-
text coefficients, respectively. Let ∆ = bq/tc and χk,χn
be two short noise random distributions in Rq, the FV en-
cryption of a message m ∈ Rt with secret key ks = s∼ χk
and public key kkkp = [p0, p1] = [(−a · s+e),a] ∈ R2

q, with
e drawn from χn and a randomly chosen in Rq, generated
by FV.GenKeys, results in a vector expressed as

ccc= FV.Enc(kkkp,m)= [p0 ·u+e1+∆ ·m, p1 ·u+e2], (1)

where u is drawn from χk, and e1,e2 are short random
polynomials from the error distribution χn. All opera-
tions are in Rq.

Decryption of a ciphertext ccc = [c0,c1] works as

m = FV.Dec(ks,ccc) = (bt · [c0 + c1 · s mod q]/qe) mod t.

The scheme enables us to seamlessly add (FV.Add),
subtract (FV.Sub) and multiply (FV.Mul) two encryp-
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Figure 1: Our optimized ride-matching approach enables
the SP to send to the rider a single ciphertext containing all
the squared distances (dist2

Di
) between the rider and avail-

able drivers as opposed to one ciphertext per driver (naive ap-
proach).

tions to obtain the encryption of the added, subtracted,
and multiplied plaintexts respectively; multiplications
consider the encryptions as polynomials in v: [c0,c1]→
co +c1 ·v, such that the product between ccc and ccc′ is eval-
uated as: [c0,c1] · [c′0,c′1]→ c0 · c′0 +(c0 · c′1 + c1 · c′0)v+
c1 · c′1 · v2 → [c′′0 ,c

′′
1 ,c
′′
2 ], which results in a ciphertext in

R3
q, with one extra polynomial. It is possible to recover a

fresh-like encryption with two polynomials by employ-
ing a relinearization primitive, which requires the usage
of a matrix (relinearization key) composed of encrypted
pieces of the secret key (we refer the reader to [16] for
further details).

4.2 Naive Approach
SHE can be applied to the ride-matching problem in
RHSs as follows. When a rider wants to make a ride
request, she generates an ephemeral FV public/private
key-pair together with a relinearization key. She uses the
public key to encrypt her planar coordinates and obtains
their encrypted forms. She then informs the SP about the
zone of her pick-up location, the public and relineariza-
tion keys and her encrypted planar coordinates. When
this information arrives at the SP, the SP broadcasts the
public key to all drivers available in that zone. Each
driver uses the public key to encrypt their planar coordi-
nates and sends them to the SP. The SP computes, based
on their encrypted coordinates, the encrypted distances
between the rider and the drivers, and it returns the en-
crypted distances to the rider, from which the rider can
decrypt and select the best match, e.g., the driver who is
the closest to her pick-up location.

However, due to the high ciphertext expansion, a naive
use of SHE would incur impractical computational and
bandwidth costs for the riders and the SP. Furthermore,
for each ride request, the SP would need to separately
compute the encrypted distances between the rider and
each of the drivers: For n drivers, this would mean n
distance calculations between encrypted polynomials of
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d coefficients each, and n ciphertext distances returned
to the rider. This would incur an unfeasible overhead
in terms of computations for the SP, consequently de-
laying the ride-matching for the rider and a considerable
bandwidth overhead at the rider-SP link, e.g., hundreds
of MBs if the system has several thousand drivers (see
Section 9.3).

4.3 Optimized Approach
We propose two optimizations: ciphertext packing and
transform processing, to enable the SP to operate on d
elements of Zt packed as a polynomial in Rt in a single
ciphertext, such that each encrypted operation affects all
the coefficients in parallel (see Fig. 1). When the rider
decrypts this ciphertext, she can recover these d values
by looking at all the coefficients. From here on, we as-
sume that d ≥ n, which will usually be the case due to
the security bounds on d (see Section 8); in other cases,
dn/de encryptions can be used to pack the whole set of
distances analogously.

First, ciphertext packing enables the SP to pack n ci-
phertext distances into one ciphertext, hence reducing
the bandwidth overhead, but this is not enough for
our goal. As we show in Section 5.4, we use all the
n packed encrypted planar coordinates from the drivers
independently of each other to calculate all the dis-
tances homomorphically in the same encrypted opera-
tion, so we need coefficient-wise homomorphic opera-
tions. While polynomial additions and subtractions are
naturally coefficient-wise, polynomial multiplication in
Rt (and its homomorphic counterpart in Rq) is a convolu-
tion product of the coefficients. A well-known method
for transforming convolution products into coefficient-
wise products (and vice-versa) in polynomial rings is
the Number-Theoretic Transform (NTT) [38], a Fourier
transform specialized for finite fields. This transform
is commonly used in the ciphertext space to speed up
polynomial multiplications that are then implemented as
coefficient-wise products. More details about NTT can
be found in Appendix A.3.

In our case, for the second optimization, in order
that products in the encrypted domain be translated into
coefficient-wise products in the plaintext domain, we ap-
ply an inverse-NTT to plaintexts before encryption and
an NTT after decryption. The NTT does not affect addi-
tions and subtractions because it is linear. We note that
the NTT exists only for certain values of d and t, in par-
ticular when t is a prime and d divides t − 1. To make
operations in Zt simulate operations in N on our values,
we choose d = 2l as a power of two and t as a suffi-
ciently large Proth prime (of the form k2l + 1, see [38])
such that all squared-Euclidean distances are less than t.
As a result, we improve on both the bandwidth and the
computation overhead.

Moreover, due to the low degree of the evaluated op-
erations (squared Euclidean distances), we avoid the use
of re-linearizations at the SP, which (a) reduces the need
to generate and to send the relinearization key from the
rider to the SP, (b) reduces the noise inside the encryp-
tions, and (c) enables more efficient operations at the SP,
at the cost of one extra polynomial to represent the en-
crypted distance returned to the rider.

5 ORide

In this section, we present our solution, called ORide
(Oblivious Ride). We begin with an overview of the sys-
tem and then detail ORide operations.

5.1 ORide Overview
ORide provides strong location privacy and anonymity
for riders and drivers while still guaranteeing service ac-
countability, secure payment and reputation rating op-
erations. For this purpose, the riders and the drivers
must possess ride prerequisites (Section 5.2), including
anonymous credentials (ACs), deposit tokens, and digi-
tal certificates issued by the SP. To participate in the sys-
tem, both riders and drivers create anonymous sessions
by logging in to the service (Section 5.3) with their re-
spective ACs. Drivers periodically report to the SP the
geographical zones where they are located. These zones
are defined by the SP to balance the network load in the
system and the size of the anonymity set of the zones
(Section 9.4). Note that, in contrast to PrivateRide, ex-
panding the size of a zone in ORide does not affect the
performance of the ride-matching and fare-calculation
operations (Section 5.4).

When a rider initiates a ride request, the SP, the rider
and drivers are involved in a ride set-up procedure (Sec-
tion 5.4) that matches the rider to a driver. In addition,
as in current RHSs, the rider and the driver agree on the
fare based on the estimated distance and duration of the
ride [34,41]. Some random time after the fare agreement,
they terminate their anonymous sessions. When the ride
is completed, the driver creates a new anonymous session
and notifies the SP that she is available again. Note that
drop-off times and locations are not reported to the SP.
Moreover, some time after the ride finishes, i.e., at the
end of the day, the rider and driver perform ride-payment
and reputation-rating operations (Section 5.5).

5.2 Ride Prerequisites

Digital certificates. We assume each rider and driver
has a digital certificate denoted as certR or certD, issued
by the SP at registration time. Each certificate contains a
public key and a randomly generated ID. The SP can use
this random ID to find the real identity of the certificate
holder. Note that the digital certificates are not used by
the riders and drivers to log in to the service, and they are
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not revealed to the SP during a ride. They are used by the
riders and drivers to identify each other during the ride as
part of ORide’s accountability mechanism (Section 6).

Anonymous credentials. ORide relies on Anonymous
Credentials Light (ACL) [9], a linkable anonymous cre-
dential system, i.e., a user should use an AC only once
to avoid her transactions from being linkable. To use the
service anonymously, each user (rider or driver) requests
ACs in advance from the SP, using their digital certifi-
cate. Hereafter, we denote the anonymous credential for
a user X as ACX , where X is R for riders or D for drivers.
Each ACX contains the average reputation score repX , an
expiration date expX , and the secret key skX associated
with the public key pubX in the digital certificate of the
AC holder. To differentiate between riders and drivers
in the system, an AC also contains a role attribute roleX ,
i.e., roleX = 1 if X = D, and roleX = 0 if X = R.

Note that to prevent the SP from de-anonymizing
users by correlating the time an AC is issued with the
time it is used, or by relying on the AC’s expiration date,
the user’s app could automatically request ACs from the
SP at a certain time (e.g., at midnight), and the expira-
tion date is coarse-grained, e.g., all ACs issued in a day
expire at the end of that day. The reputation scores can-
not be used by the SP to de-anonymize the users, as they
are never shown to the SP during the rides. Furthermore,
to prevent users from abusing the system, the SP defines
a threshold on the number of ACs a rider or driver can
acquire per day.

Deposit token. Each rider is required to possess a de-
posit token and give it to the SP at the beginning of a
ride. In case of misbehavior, the token is not returned to
the rider. A deposit token, denoted as dt, is worth a fixed
amount of money defined by the SP. It is a random num-
ber generated by the rider, blindly signed by the SP (by
using blind-signature schemes e.g., [13]) such that the
SP is not able to link a token it issued and a token spent
by a rider. A rider deposits a token to the SP in the begin-
ning of the ride, and she is issued a new token by the SP
after the ride payment is successfully completed. Note
that the driver is not required to make a deposit because,
during the ride set-up operation, the rider and driver ex-
change their digital certificates with each other. Conse-
quently, if the driver misbehaves, the SP can identify the
driver by collaborating with the rider. We discuss this in
more detail in Section 5.6.

5.3 Log in to the Service
To use the service, the rider and the driver need to create
anonymous sessions to the SP: to do so, they use their
anonymous credentials ACR and ACD, respectively.

Rider. The rider sends to the SP the rider-role roleR and
the expiry date expR stated in her ACR. In addition, she

proves to the SP that the claimed values are correct and
that, in a zero-knowledge fashion, she knows the secret
key skR tied to the ACR.
Driver. Similarly to the rider, by using her ACD, the
driver follows the same aforementioned procedure to
anonymously log in to the service.

The SP assigns a one-time session ID to each anony-
mous session, to keep track of that session for coordina-
tion. For the sake of simple exposition, hereafter, we ex-
clude this one-time session ID from messages exchanged
between the rider/driver and the SP.

5.4 Ride Set-up
When a rider requests a ride, the operations performed
by the rider, the drivers and the SP are as follows (see
Fig. 2).

1. The rider generates an ephemeral FV public/private
key pair, denoted as (kkkp,ks). She first computes the
polynomial representations of the coordinates pxR =

∑
d−1
i=0 xRX i and pyR = ∑

d−1
i=0 yRX i. She then applies the

inverse-NTT on the polynomials and uses kkkp to encrypt
these values: cccxR = FV.Enc(kkkp,NTT

−1(pxR)) and sim-
ilarly for cccyR . She then sends the zone of her pick-up
location (denoted as z), deposit token dt, kkkp, cccxR and
cccyR to the SP.

2. The SP checks the validity of the deposit token, i.e., it
has not been used before. If the token is valid, the SP
adds it to the list of used tokens. It then sends to each
driver in zone z a different randomly permuted index
0≤ i < n and the public key kkkp.

3. The i-th driver encodes her coordinates in the i-th
coefficient: qi

xD
= xDiX

i and qi
yD

= yDiX
i. Simi-

larly to the rider, she applies the inverse-NTT, en-
crypts these values and sends them to the SP: ccci

xD
=

FV.Enc(kkkp,NTT
−1(qi

xD
)) and analogously for ccci

yD
.

4. The SP sums all drivers’ ciphertexts by using the ho-
momorphic property of the cryptosystem to pack them
together: cccxD = ∑

n−1
i=0 ccci

xD
and similarly for cccyD . It then

homomorphically computes the n packed squared val-
ues of the Euclidean distances between the n drivers
and the rider in parallel, due to the packing cccdist =
(cccxR − cccxD)

2 + (cccyR − cccyD)
2, and it sends the result to

the rider (see Fig. 1).

5. The rider decrypts the ciphertext and applies the NTT
to obtain a squared distance in each coefficient: dddiiisssttt =
NTT(FV.Dec(kkks,cccdist)). Then, she selects the driver
with the smallest squared distance.

6. The SP notifies the selected driver. If she declines the
offer, the SP asks the rider to select a different driver;
it repeats this operation, until one driver accepts. The
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Rider: anonymous session sR SP Driver: anonymous session sD

Generate (kkkp,ks)

pxR = ∑
d−1
i=0 xRX i

pyR = ∑
d−1
i=0 yRX i

cccxR = FV.Enc(kkkp,NTT
−1(pxR ))

cccyR = FV.Enc(kkkp,NTT
−1(pyR ))

qi
xD

= xDi X
i

qi
yD

= yDi X
i

ccci
xD

= FV.Enc(kkkp,NTT
−1(qi

xD
))

ccci
yD

= FV.Enc(kkkp,NTT
−1(qi

yD
))

cccxD = ∑
n−1
i=0 ccci

xD

cccyD = ∑
n−1
i=0 ccci

yD

cccdist = (cccxR − cccxD )
2 +(cccyR − cccyD )

2

dddiiisssttt = NTT(FV.Dec(kkks,cccdist))
Select driver, denoted ibest

(1) z, dt, cccxR , cccyR , kkkp (2) kkkp, i

(3) ccci
xD

, ccci
yD

(4) cccdist

(5) ibest (6) Notify the selected driver

(7a) Secure channel (via SP): exchange repR and repD

(7b) Secure channel (via SP): exchange kkkp, certR, certD,precise locations

(8) Proximity check and validation of secure channel

(9) Driver’s identifying info: plate number, profile picture

(10) Fare report: sigR−D{day, fare, certR, certD}

Figure 2: ORide ride setup protocol. The dashed arrows represent the secure channel (via the SP), and the dotted
arrows represent the proximity channel.

SP confirms with the rider and the driver that they have
been assigned to each other.

7a. The rider and the driver establish a secure channel via
the SP, e.g., using the unauthenticated Diffie-Hellman
protocol, to exchange data that should not be ob-
served by the SP.1 From the information used to de-
rive the secret key of the secure channel, the rider and
the driver compute a shared secret pairing PIN. This
pairing PIN will be used for the proximity-check oper-
ation in Step 8.

With this secure channel, the rider and the driver reveal
their reputation scores to each other. The trustworthi-
ness of the revealed values is proved by showing that
they are indeed the values in the rider’s and driver’s
ACs. If the rider’s reputation is too low, the driver
can abort the protocol at this step. Likewise, the rider

1Detection of possible man-in-the-middle attacks by the SP is done
in Step 8. Note that this check is needed only if the SP is an active
adversary.

can select another driver, by using the list of cleartext
squared Euclidean distances she obtained in Step 5.

7b. Via the secure channel, the rider and the driver ex-
change their precise locations (i.e., locR and locD, re-
spectively). In addition, they exchange their digital cer-
tificates (i.e., certR and certD) with each other. This pro-
vides accountability for the rider and driver (see Sec-
tion 6). Also, the driver can reveal to the rider the public
key kkkp that she used to encrypt her locations; this helps
to detect possible man-in-the-middle attacks at Step 2
of the protocol by the SP.

The driver drives from her current location locD to the
pick-up location locR, using an off-line navigation app
or a third-party navigation app (such as Google Maps
or TomTom). She sends, in real time via the secure
channel, her precise locations to the rider, thus the rider
can track the movements of the car. Also, at this point,
the rider and the driver can call or message each other
through their ride-hailing apps, if needed.
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8. When the rider and the driver are in proximity, the
driver performs a proximity check to verify the physical
presence of the rider before releasing her identifying in-
formation: they use a short-range wireless technology
(e.g., Bluetooth or WiFi Direct) to set up a proximity
channel using the pairing PIN. If the channel is suc-
cessfully established, the driver can verify that the rider
is in her proximity. This is similar to the approach pro-
posed in [39] to prevent drivers’ PII from being har-
vested. If this step fails, the driver can decide to abort
the protocol. Also, via the proximity channel, the rider
and the driver can check whether the secure channel
(established at Step 7a) was tampered with by the SP.

9. The driver releases her identifying information to the
rider, including her vehicle’s license plate number and
her profile picture. This information helps the rider to
identify the driver and her car and to prevent certain
threats, e.g., fake drivers [45]. Therefore, it is needed
when the rider is about to enter the car, i.e., the re-
quired communication distance between the phones of
the rider and the driver is small (e.g., several meters).

10. The rider and the driver create a fare report. A fare re-
port is a token generated by the rider and driver; and at
the end of the day, the driver deposits it to the SP to get
paid (Section 5.5). A fare report is created as follows.
The rider sends her drop-off location to the driver via
the secure channel, they agree on the path, and based
on the estimated path, they compute the fare. The rider
and driver then sign a message consisting of the day
of the ride, the fare and their certificates, i.e., fare re-
port = sigR−D{day, fare, certR, certD}, using the pri-
vate keys associated with their certR and certD. Note
that this upfront-fare method has been implemented in
current RHSs, such as in Uber [34] and in Lyft [41].
Once the driver receives the fare report from the rider,
the ride begins. The rider’s and driver’s app do not re-
port any information to the SP at this step and during
the ride. Also, to prevent the SP from inferring the
starting time of the ride based on the interactions be-
tween the rider and the driver over the secure channel,
the rider and driver can randomly send dummy infor-
mation to each other through the secure channel. Also,
some random time after the fare-report agreement, they
terminate their anonymous sessions.

Intuitively, because the distances between the rider
and drivers are computed based on their (encrypted) pre-
cise locations, expanding the size of the zone will not
result in negative effects on the performance of the ride-
matching and fare-calculation operations. In addition,
with ciphertext packing, we reduce by a factor of n the
communication between the SP and the rider. However,
if the drivers are malicious, they could corrupt the inputs

from other drivers. Furthermore, note that in Step 1 of
the protocol, any valid rider can generate an ephemeral
public/private key pair. Consequently, if the SP is an ac-
tive attacker, it could track the locations of the drivers,
thus indirectly track the locations of the riders. We dis-
cuss solutions to these potential issues in Section 7.

5.5 Ride Payment and Reputation Rating

When the car arrives at the drop-off location, the driver
creates a new anonymous session to the SP. This enables
her to receive ride-request broadcasts from the SP. Note
that the driver does not report to the SP that the ride is
completed.

At the end of the day, the driver sends to the SP the fare
report sigR−D{day, fare, certR, certD} she received dur-
ing the ride set-up operation (step 10, Section 5.4). The
SP checks the correctness of the rider certificate certR in
the fare report and the correctness of the signature. If
they are valid, the SP charges the rider according to her
payment method, e.g., credit card. It then subtracts the
service fee, and deposits the remainder to the driver. The
SP then notifies the rider about the payment and that a
new deposit token is available. The rider generates a ran-
dom number rdt , blinds it to r′dt , and sends r′dt to the SP.
The SP signs r′dt (i.e., dt ′ = sigSP{r′dt}, and it sends this
blind signature to the rider’s account. The rider unblinds
the signature to obtain the deposit token which she can
use for her next ride. Note that this procedure can be
done automatically by the rider’s app.

Once the payment is successfully completed, the rider
and driver can rate the reputation of each other, similarly
to current RHSs. They can log in to the service with their
real credentials and provide the reputation score for the
party whom they rode with.

Note that ORide preserves the payment and
reputation-rating operations of the current RHSs.
That is, unlike PrivateRide, it does not require the rider
to purchase e-cash in advance, and it does not require
the rider and the driver to generate and keep extra
cryptographic tokens for the reputation-rating operation.
Also, ORide does not require the rider and the driver
to hide their identifying information to the SP during
the payment and reputation-rating operations, because
both the rider and driver are anonymous during the ride.
However, it is important to note that, in order to prevent
the SP from de-anonymizing the rider and the driver by
correlating the time that a fare report is deposited with
the drop-off event of the ride, the payment operation
should not occur immediately after the ride, e.g., the
drivers deposit the fare reports to the SP at the end of
the day.
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5.6 Ride Cancellation
As in current RHSs, a rider or a driver can cancel a ride
at any time before or during the ride. This, however, is
discouraged by the SP, because it can lead to malicious
behaviors: For example, once a rider and a driver are
assigned to each other by the SP, they meet at the pick-
up location and start the ride as normal; but, to avoid
the service fee, the rider or the driver can send a can-
cellation notification to the SP. Therefore, similarly to
current RHSs, if a rider or a driver cancels a ride a cer-
tain amount of time after the ride request, they should
be penalized by the SP, e.g., their reputation scores are
lowered or fees are charged [12].

In ORide, when a rider cancels a ride, the SP can of-
fer her two options: to lose her deposit token (i.e., pay
a penalty) or to reveal her certR and have her reputation
score lowered. If a driver cancels a ride, the SP can ask
the rider to reveal the certD, from which the SP can iden-
tify and penalize the driver according to its policy.

6 Accountability
In this section, we discuss the accountability goals (men-
tioned in Section 3.2) of ORide. This includes audit trail
mechanisms against the attack A1 in Section 3.1 and ad-
ditional features such as retrieval of lost items, assurance
of payment, and integrity of the reputation-rating opera-
tion. Attacks A2 and A3 are discussed in Section 8.

(A1) Accountability. ORide enables the rider and the
driver to exchange, during the ride set-up procedure,
their digital certificates, i.e., certR and certD, respec-
tively, and the fare report. This provides accountability
for riders and drivers, i.e., an affected party can report
to the SP the digital certificate of the attacker and the
fare report, from which the SP can identify the attack to
charge her a fee, lower her reputation and/or support le-
gal action. However, the SP is only able to identify the
attacker with support from the affected party. Likewise,
the affected party cannot obtain the real identity of the
attacker without support from the SP, because the certifi-
cates certR and certD contain only the pseudonyms and
only the SP knows the mapping between the pseudonyms
and the real identities of the certificate owners.
ORide enables the rider to share with her trusted peers

the driver’s certificate certD and the fare report, via out-
of-band channels such as messaging apps, or a plug-in in
her rider app. Similarly, during the ride, via out-of-band
channels, she can share her GPS trace with her friends
using (k, l) threshold secret sharing [17], i.e., each GPS
location point is split into l parts so that any k out of l
parts reconstruct the original coordinate. Likewise, the
driver can follow the same mechanism. Such informa-
tion can be shared with law enforcement in case riders
or drivers disappear (e.g., kidnapping), as in current ser-

vices. This is similar to the approach used in personal
safety apps, such as Google Trusted Contacts [23].

ORide guarantees assurance of payment. A rider can-
not avoid paying the fare of a ride, because the fare report
contains her digital certificate certR and the day of the
ride. As the rider and driver agree on the fare and both
sign it before the ride, they cannot subsequently increase
or decrease this fare. However, they might collude to un-
derpay the service fee to the SP, by agreeing on a small
fare and paying the difference in cash. Yet in this case,
ORide offers the same guarantees as current RHSs, be-
cause riders can already request a small ride through the
application and then pay in cash for a longer ride once
they have met the driver. In future work, we will explore
mechanisms to protect against such attacks.

Moreover, the bilateral rating system enables the SP to
ban abusive riders and drivers from the service. A rider
or driver cannot claim a better reputation for herself, be-
cause the proof for attributes in her AC will not be correct
w.r.t. her falsely claimed reputation. They also cannot ar-
bitrarily rate the reputation of each other, because a pay-
ment record is needed (the deposit of a fare report). In
addition, as discussed in Section 5.6, similarly to current
RHSs, ORide enables the SP to hold riders and drivers
accountable for ride cancellations.
SP incentives. From an economic perspective, ride-
hailing service SPs would have incentives to deploy
ORide because it provides privacy and security for the
riders and still preserves their business models (i.e., the
SP can still charge a commission for each ride). In or-
der to monetize ride data, the SPs can provide a discount
for riders if they reveal (part of) their GPS traces. In ad-
dition, privacy and security for RHSs could be required
by law and legislation, and ORide shows that it is tech-
nically possible to achieve a strong level of protection.
As such, this work lays the foundation for the design of
a privacy-preserving and secure RHSs.
Additional features. Similarly to current RHSs, ORide
enables the riders to retrieve lost items (i.e., items forgot-
ten in the car), as drivers’ certificates certD and car in-
formation are provided during the ride set-up procedure.
As discussed earlier, the riders can share certD with their
friends, hence even if the riders lose their phones, they
can still be able to retrieve the certD from their friends
and to then contact the driver (as in current RHSs). More-
over, due to the secure channel established between the
rider and the driver, the rider can still track the driver tra-
jectory while waiting at her pick-up location, or they can
contact each other (e.g., messaging or calling).

7 Protecting against Malicious Behaviors
In this section, we describe how the protocol presented
in Section 5 can be extended to defend against malicious
drivers and a covertly active SP.
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7.1 Malicious Drivers: Masking
As mentioned in Section 5.4, if a driver behaves mali-
ciously, she could encrypt non-zero values in the slots
other than her allotted one, thus corrupting the inputs
from other drivers. Our protocol can cope with this
malicious behavior by adding one extra step in which
the SP homomorphically multiplies each driver cipher-
text by a mask mi = NTT−1(X i) for the driver’s index i
(see notations from Section 5.4), which preserves only
the contents in the allocated slot. However, because the
mask does not hold any sensitive information and it is
known by the SP, a naive homomorphic multiplication
with an encrypted mask would incur an unjustified over-
head. Therefore, we propose, instead, a more efficient
multiplication operation, denoted ?, as follows.

Given a ciphertext ccc = [c0,c1] ∈ R2
q corresponding to a

plaintext m∈ Rt , and a mask mi ∈ Rt , we want to obtain a
ciphertext ccc′ = ccc?mi corresponding to the masked plain-
text FV.Dec(ks,ccc) ·mi. Here, mi can be thought of as
its own noiseless and unscaled encryption (Equation (1)
on page 4, evaluated for u,e1,e2 = 0, and no scale ∆),
being a vector in R2

q with only one non-zero component
([mi,0] ∈ R2

q). Therefore, the product results

ccc?mi = [c0 ·mi,c1 ·mi].

The ? operation consists of two polynomial multipli-
cations, it avoids encryption of mi, halves the number
of products w.r.t. an encrypted homomorphic multipli-
cation, and keeps the cipher size from growing after the
product, thus considerably improving the performance of
this operation.

In any case, this precaution is only needed in case the
drivers are malicious; and random checks on their loca-
tions can be implemented instead if the drivers are just
covertly active (i.e., they refrain from cheating if there is
a negligible chance of being caught in the act).

7.2 Covertly Active SP

If the SP is an active attacker, it might attempt to perform
a man-in-the-middle (MITM) attack at Step 2 of the ride
set-up protocol (Section 5.4) by replacing the public key
kkkp. However, this can be detected because the driver can
share the key she received with the rider through the se-
cure channel. If the rider detects that this key is different
from the one she originally sent to the SP, then a MITM
attack must have happened. The SP might also attempt
to tamper with the set-up of the secure channel (Step 7a,
Fig. 2). However, this can be detected because via the
proximity channel, the rider and the driver can compare
with each other the inputs that they received from the SP
during the set-up protocol.

As mentioned in Section 5.4, any valid rider can gen-
erate an ephemeral key to make a ride request. As the SP

issues credentials for riders and drivers, it can imperson-
ate a rider or a driver in its own system. If the SP con-
tinuously impersonates a rider, it could learn the drivers’
locations from which it could learn the coarse-grained
pick-up locations of the riders. In other words, if a rider
chooses the driver who is the closest to her pick-up loca-
tion, the SP would know that she is in the Voronoi cell of
her selected driver [2]. Next, we present a mechanism for
deterring this attack. We note that the attack is not trivial,
due to the high dynamics of the system, i.e., drivers can
arbitrarily go on-line and off-line anytime. The SP would
not have strong incentives to perform this attack, because
it would add computational and bandwidth overhead to
the service, thus negatively affecting the productivity of
the service itself. To deter this attack, we introduce the
notion of Proof-of-Ride (PoR), defined and used as ex-
plained below. An illustration of the protocol with PoR
is shown in Appendix A.1.

A PoR is a random number rand generated by the
rider, signed by the driver by using the secret key associ-
ated with her certD, and then blindly signed by the SP by
using blind-signature schemes such as [13], i.e., PoR =
BsigSP{sigD{rand}}. It is used to prove to the drivers
that the rider is real, i.e., she did a ride in the past. When
a rider makes a ride request, she has to provide in her
ride request a PoR, the certD and the random number
rand used in the PoR. A PoR can be used only once. For
the first ride, PoR= certR.

To prevent the SP from creating its own certR and
certD in order to create its own fake PoR, the SP has to
provide a public bulletin board such as certificate trans-
parency [27]: the SP maintains and publishes a publicly
auditable and append-only log of all rider and driver cer-
tificates it has issued and revoked. Whenever a driver
receives a PoR, she can check whether the rider’s certifi-
cate certR (in the case of the first ride), or the driver’s
certificate indicated in the PoR, is in the list of certifi-
cates published by the SP. In this way, if the SP inter-
nally creates fake accounts, it can be detected by audit-
ing authorities, similarly to the cases of companies open-
ing fake user accounts [10]. Similarly, to prevent a rider
from double-spending a PoR, and the SP from reusing a
valid PoR to perform the aforementioned active attack,
the SP maintains and publishes an append-only logs of
PoRs that have been spent, or cancelled (due to ride can-
cellation).

Note that PoR could create a point of linkability,
i.e., the SP is able to know that the rider is in the set
of identities indicated in the fare reports deposited by a
specific driver. This can be easily prevented by using
anonymous-reputation and anonymous-payment systems
(e.g., e-cash), as used in the PrivateRide system [39].
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Identities Pick-up 
loc. 

Pick-up 
time 

Drop-
off loc. 

Drop-off 
time 

Loc. 
trace 

Fare 

Current 
RHSs 

Rider, 
Driver 

Precise Precise Precise Precise Full Yes 

PrivateRide Driver Zone Obfuscated Zone Obfuscated Partial Yes 
ORide N/A Zone Obfuscated N/A N/A N/A N/A 

Table 2: Information observed by the SP during ride set-up
procedure w.r.t. different RHS designs. Note that the zone in
ORide is larger than the zone in PrivateRide without affect-
ing the ride-matching optimality (see Section 9.4). Also note
that, the payment operation in ORide reveals some information
about the riders, but it cannot be used to break the anonymity
of the rides (see Section 8).

8 Privacy and Security Analysis
In this section, we present an analysis of ORide to show
that it effectively addresses against the privacy attacks
described in Section 3.1.

The SP cannot de-anonymize a rider or driver through
their anonymous logins by using their ACs. This is guar-
anteed due to the anonymity and unlinkability properties
of the ACL anonymous credential system [9]. Addition-
ally, the SP cannot obtain extra information from the rid-
ers’ and drivers’ encrypted locations and their encrypted
distances; this is due to the semantic security property of
the FV encryption scheme [16].

In ORide, the information observed by the SP from
ORide operations can be put in two databases, as follows
(see Table 2).

• Ride DB, in which each entry contains the role and ex-
piration date of the AC, the pick-up zone and obfus-
cated pick-up time. The role and expiration date are
coarse-grained, i.e., all ACs issued on the same day ex-
pire at the end of the day they were issued.

• Payment DB, in which each entry contains a rider’s ID,
a driver’s ID, a fare, and the day the fare report is de-
posited to the SP. Note that this database does not exist
if payment is done through e-cash or regular cash, as the
fare and payment are done without the SP knowledge.

(A2) Large-scale inference attacks by the SP. To pro-
file riders’ and drivers’ activities, the SP needs to learn
the identities, the locations, and the times associated with
their rides.

By using the Payment DB, the SP would know which
specific rider took a ride with a specific driver on which
day and what its fare was. Since RHS drivers are of-
ten licensed to operate in a city or state, knowing that
a rider took a ride with a specific driver, the SP might
be able to know the city where the rider took a ride, but
it does not know the specific location in the city. Note
that, in most cases, as the city could be inferred from
the zones reported by the riders in their ride requests,

this is not an additional leakage of information. In ad-
dition, knowing the home/work addresses and the fares
of the rides, the SP might be able to infer if a rider went
from home to work. However, note that even for frequent
rides between home and work of the same rider, the fares
would not be the same due to different routes and traf-
fic conditions. Therefore, the inference of rides between
home and work of a rider is error-prone. Moreover,
such rides are not sensitive, compared to others, such as
one-night stands, going to abortion clinics or political-
party meetings. For improved anonymity, anonymous-
payment methods, such as e-cash or regular cash, could
be used to decouple the riders’ identities from the fares,
thus preventing the SP from learning about rides between
home and work of the riders.

By using the Ride DB, the SP might be able to guess
the identities of the riders, only if the pick-up zone has a
limited number of ride activities and riders, e.g., a zone
where only one rider lives. This case, however, is un-
likely to happen in ORide, because the zones are defined
in such a way that each zone has at least a large mini-
mum number of ride requests per day, while balancing
the bandwidth requirements for the drivers. We illustrate
this in Section 9. Note that the SP would be detected if
it lied about the activity densities in the zones, because
these densities are public knowledge [43], and the drivers
would notice if they received very few ride requests from
a certain zone.

In the case where the SP knows that a rider makes ride
requests from a specific zone (e.g., the zone that contains
her home/work addresses) and it wants to know the pick-
up times of these rides, the anonymity set of a ride is
the number of rides that occurred on the same day from
that zone. As this requires the SP to have precise knowl-
edge about the pick-up zones, the anonymity-set size in
this case is the lower-bound estimation of the anonymity
set for the general case of large-scale profiling attacks
by the SP. This lower bound is used in the evaluation of
the anonymity set achieved by ORide, presented in Sec-
tion 9.
(A3) Targeted attacks by the SP. In the case where
the SP knows the precise pick-up location and time of a
ride, it still cannot know the drop-off location and time
of the ride, because, in ORide, the drop-off event is not
reported to the SP. Knowing the fare from the Payment
DB, the SP might be able to guess whether the target
went home or to work, but it could not know about other
destinations. However, note that similar to the aforemen-
tioned case, the inference of rides between home and
work of a rider is error-prone. Also such rides are not
very sensitive. Anonymous-payment methods, such as
e-cash could be used to prevent these attacks.
PII- and location-harvesting attacks by out-
siders. ORide relies on a similar proximity-check
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mechanism as PrivateRide, hence it provides the same
guarantees for harvesting-attacks against drivers’ PII.
However, a malicious outsider might attempt to triangu-
late drivers, to obtain a snapshot of the locations of all
drivers in a zone: It could make three fake ride requests
from different locations at the same time to obtain
the distances, and cancels these requests immediately.
ORide mitigates this attack by applying two measures:
(1) requiring a deposit token from each rider per request,
thus making the attack more financially expensive and
enabling the SP to identify riders who make many
requests and cancel (as discussed in Section 5.6), and
(2) permuting the list of drivers’ indices for each ride
request (Step 2 in Section 5.4). Also, the SP can define
a smaller threshold on the number of ACs each rider
account can obtain per day, if the threat of such an attack
is high.

9 Evaluation

In this section, we evaluate our protocols by using a real
data-set of taxi rides. We first evaluate the performance
of the ride-matching operation in terms of computational
and bandwidth requirements for the riders and drivers.
We then evaluate the effect of Euclidean distances on the
optimality of ride-matching operations.

9.1 Data-Sets

Our data-set consists of over 1.1 billion taxi rides in New
York from January 2009 to June 2015 [44]. We ex-
tracted data for the month of October in 2013, one of
the busiest months in the data-set, which resulted in a
subset of over 15 million rides. In this subset, the aver-
age duration of the rides is 13 minutes. The GPS traces
of the rides are not given; however, the precise pick-
up and drop-off locations and times, and pseudo-IDs of
the taxi drivers associated with the rides are provided.
In addition, the data-set provides mapping between lati-
tude/longitude coordinates to NYC census tracts (CTs),
neighborhood tabulation areas (NTAs) and boroughs in
NYC.

We make the following assumptions. First, the drop-
off location of a driver is her waiting location for new
ride requests. Second, a ride-request event is a pick-up
event (i.e., consisting of a pick-up location and pick-up
time) in our data-set. Third, for each ride-request event,
the set of drivers available for that request consists of
drivers who have at least one drop-off event in the last 30
minutes since the ride-request timestamp. The 30-minute
interval is chosen, because the data-set shows that 99th

percentile of the time gap between the drop-off event of
a driver and her next pick-up event is approximately 30
minutes.

Setting Rider Driver

Algorithm Upload
(KB)

Download
(KB)

Download
(KB)

Upload
(KB)

S1 372 761856 124 248
S2 372 186 124 248
S3 372 186 124 248

Table 3: Per-ride bandwidth requirements of ORide, with
d = 4096, log2(q) = 124, and there are 4096 drivers
available for a ride request (n = 4096). Compared to the
naive SHE approach S1, optimized approaches (S2 and
S3) significantly reduce the bandwidth requirements for
the riders

9.2 Implementation Details
Our ORide prototype features the main cryptographic op-
erations for the ride matching in the ride set-up procedure
(Section 5.4). Other cryptographic operations needed for
requesting a ride, i.e., AC operations and blind signa-
tures, and for setting up the proximity channel between
the rider’s app and the driver’s app, can be found in the
evaluation of PrivateRide [39].

To measure the cryptographic overhead of ride-
matching operations, we implemented a proof-of-
concept ORide in C++, by relying on the NFLlib li-
brary [30]. In our experiments, the SP, the rider, and the
driver are located on the same computer, hence network
delays are not considered. However, the network de-
lay would not impose a considerable overhead, because
a ride-matching operation requires only one round-trip
message between the rider and the SP, and one round-
trip message between the SP and each driver. Also,
the amount of data exchanged between the rider and the
SP, and the SP and the drivers, is small (as discussed
in Section 9.4). Note that, similarly to current RHSs,
the SP can implement a timeout for responses from the
drivers such that the latency is reasonable for the service.
Due to the dependency requirements of the NFLlib, it
is not trivial to port the implementation to mobile plat-
forms. However, to make our experiments close to the
performance of smartphones, in all of our evaluations,
we did not use SSE or AVX optimizations for Intel pro-
cessors. The source code is made available at [36]. The
ORide proof-of-concept implementation on smartphones
is work in progress.

9.3 Per-Ride Overhead
In this section, we describe our experimental setup, and
presents the bandwidth and computational overhead per
ride request for a rider and a driver.

We used ORide’s prototype to estimate the overhead
added for ride-matching operations in three settings: (S1)
the naive SHE approach (Section 4.2) without using
re-linearizations at the SP, (S2) ciphertext-packing op-
timizations and honest-but-curious drivers (i.e., drivers
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Setting Rider Driver SP

Algorithm
Gen. keys

(ms)
Encrypt

(ms)
Decrypt

(ms)
Load key

(ms)
Encrypt

(ms)
Load key

(ms)
Compute Dist.

(ms)
S1 1.51±0.06 2.6±0.2 7823.4±573.4 0.53±0.01 2.6±0.2 0.53±0.01 113868.8±6553
S2 1.51±0.06 2.6±0.2 2.2±0.1 0.53±0.01 2.6±0.2 0.53±0.01 208.9±4
S3 1.51±0.06 2.6±0.2 2.2±0.1 0.53±0.01 2.6±0.2 0.53±0.01 745.5±24.5

Table 4: Per-ride computational overhead of ORide (without AVX/SSE optimizations), for d = 4096, log2(q) = 124,
and there are 4096 drivers available for a request. Statistics (avg ± std.dev.) were computed from 1000 experiments.
Compared to the naive SHE approach (S1), optimized approaches (S2 and S3) significantly reduces the computation
time for the SP and the decryption time for the riders.

follow the protocols correctly) (Section 5.4), and (S3)
ciphertext-packing optimizations and malicious drivers
(Section 7.1).

Experimental Setup. To measure the performance of
our system, we used a computer (Intel i5-4200U CPU,
2.6 GHz, 6 GB RAM) with Debian Jessie (Linux ker-
nel 3.16). The security parameters used in our experi-
ments are tuned to achieve an equivalent bit-security of
more than 112 bits, therefore exceeding current NIST
standards for 2016-2030 [5]. With this security target,
and a plaintext size of 20 bits the needed polynomial di-
mension is d = 4096, with coefficients of size 124 bits
(each polynomial has a size of 62 KB). These parame-
ters guarantee both 112-bits of security and correct oper-
ations for homomorphically adding up to 4096 encrypted
locations in the same ciphertext and calculating the cor-
responding Euclidean distances.2 We refer the reader to
Appendix A.2 for more details about the possible granu-
larity a geographical area can have.

Assuming that a rider makes a ride request to the SP
and that there are 4096 drivers available for the request
(n= 4096), with the aforementioned security parameters,
the bandwidth requirements and computational overhead
per ride request, for a rider and a driver, are shown in
Table 3 and Table 4, and explained below.

• Bandwidth overhead for a rider: In all three settings,
for each ride request, a rider sends to the SP a public
key and two ciphertexts for her encrypted planar coor-
dinates. This totals 6 polynomials, a payload size of
372 KB.

Regarding the number of distance ciphertexts a rider
receives from the SP, in setting S1, it is equal to n,
i.e., the number of responding drivers. In settings S2
and S3, it is significantly reduced to dn/de, due to ci-
phertext packing. A ciphertext distance, when avoiding
relinearizations (see Section 5.4), consists of 3 poly-
nomials, thus having a total size of 186 KB. Assum-

2We refer the reader to Section 6 in [16] for more details on the
choice of cryptographic parameters for FV. It is worth noting that we
have considered pessimistic bounds in order to cope with recently pub-
lished attacks that reevaluate the security of lattice-based cryptosys-
tems [7].

ing 4096 drivers respond to a ride request, setting S1
would require the SP to send 4096 distance ciphertexts
(744 MB) to the rider, whereas S2 would require only
one distance ciphertext (186 KB).

• Bandwidth overhead for a driver: In all three settings,
for each request: (1) on the downlink, the SP for-
wards to each driver a public key, 2 polynomials of size
124 KB, and (2) on the uplink, each driver sends back
to the SP her encrypted planar coordinates, totaling 4
polynomials of size 248 KB.

• Computational overhead: As shown in Table 4, for
both riders and drivers, in all three settings, the com-
putational overhead introduced by key generation and
encryption operations are small, i.e., 1.5 ms and 2.6 ms,
respectively. Due to masking, setting S3 introduces
a small computational overhead for the SP in ho-
momorphic squared-Euclidean-distance computation,
compared to setting S2 (745 ms vs. 208.9 ms). How-
ever, noticeably, due to ciphertext packing, settings S2
and S3 significantly reduce the computational cost for
the SP (208.9 and 745 ms compared to 113868.8 ms
required by S1). It also significantly reduces the de-
cryption overhead for the rider, from 7823 ms in setting
S1 to 2.2 ms in settings S2 and S3.

Note that the results for the rider and driver are opti-
mistic, as we used a laptop instead of a smartphone
(however, as stated before, CPU optimizations were not
used to reduce the difference). While such comparisons
are not straightforward, we can do a rough estimation
of the expected performance of ORide in smartphones.
For instance, comparing the performance scores of top
multicore CPUs in smartphones [3] with top multicore
CPUs in desktops [4], we can see that the difference is
less than an order of magnitude. Assuming such differ-
ence, then we can see that the computational overheads
for key generation, encryption and decryption are still
acceptable in smartphones, around 15 ms, 26 ms, and
22 ms, respectively. The overhead is still acceptable
even if we consider two orders of magnitude difference,
as the total time to hail a ride is in the order of min-
utes [19].
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Figure 3: System performance. (a) Anonymity-set size, (b) Upload speed requirement for the drivers, (c) Monthly-
data plan requirement for the drivers. Our results show that ORide is scalable while providing good anonymity-set for
riders.

9.4 Riders’ Anonymity and Drivers’ Band-
width Requirements

In this section, we present the trade-off between the ride-
anonymity set vs. bandwidth requirements for the riders
and drivers, by using the real data-set presented in Sec-
tion 9.1.

Due to the high demand of taxi rides in Manhattan
w.r.t. lower activity in other boroughs in NYC (from our
data-set, Manhattan accounts for 90% of ride requests),
we define two zone settings as follows.

• Setting one (Z1): Manhattan is divided into census
tracts (CTs). Each CT is one zone. The boroughs of
Queens and Bronx are merged into one zone, and the
boroughs of Brooklyn and Staten Island are merged into
one zone.

• Setting two (Z2): Manhattan is divided into neighbor-
hood tabulation areas (NTAs). Each NTA is one zone.
Similarly to setting one, the boroughs of Queens and
Bronx are merged into one zone, and the boroughs of
Brooklyn and Staten Island are merged into one zone.

Estimation of the anonymity set. As explained in Sec-
tion 8, the number of rides in a day from a zone is a
lower-bound estimation of the anonymity set for a ride.
Fig. 3a shows the experimental cumulative distribution
function (CDF) of the lower-bound anonymity-set size.
It can be observed that, for Manhattan with the zone
granularity of census tracts, 81.7% of the rides have an
anonymity set of size at least 50, and for a zone con-
sisting of Queens and Bronx, all of the rides have an
anonymity-set size of at least approximately 26,000.

Bandwidth requirements for riders. The bandwidth
requirements for a rider, per ride request, depends on
the number of available drivers. Our experiments show
that for both zone settings, for all ride requests, the num-
ber of available drivers is less than 3,500. This means
that with the security parameter chosen (as presented in
Section 9.3) and when proposed optimized packing ap-

proaches are used, a rider needs to download only one
ciphertext distance, i.e., 186 KB, which is negligible.

Bandwidth requirements for drivers. Fig. 3b shows
the CDF of the upload speed required for the drivers; the
upload speed is computed by multiplying the number of
requests a driver receives per second with the size of the
ciphertexts she has to upload per request. Note that the
required downlink speed is half of the uplink speed, be-
cause the downlink payload is half the size of the up-
link payload (Section 9.3). It shows that for Manhattan
with the zone granularity of census tracts, the required
upload speed is less than 0.5 Mbps, and for other zones,
the required upload speed is less than 2 Mbps, which is
provided by 3G or 3.5G networks.

Monthly-data plan required for the drivers. Fig. 3c
shows the CDF of a data plan required for the drivers for
two aforementioned zone settings; this is calculated by
multiplying the total number of requests a driver would
receive during her waiting time with the uplink- and
downlink-payloads per request. The result shows that
with the zone setting Z1, a driver needs at most 10 GB
of data per month, and with the zone setting Z2, 60% of
drivers need less than 25 GB of data per month. This re-
quirement is reasonable: For example, in the U. S. , an
unlimited data plan typically offers 20-26 GB of high-
speed data for less than $100 [32]. In addition, the drivers
can reduce their data-plan consumption by using free
WiFi networks, such as LinkNYC [28]. Also, note that
the results presented also show that ORide can scale, be-
cause current RHSs (e.g., Uber) accounts for only 15%
of the ride pick-up requests in NYC [43].

The requirements on bandwidth for the drivers and
the anonymity-set sizes for riders enables the SP to de-
fine the zones that balance the trade-off between the two
aforementioned requirements. For example, for areas
that have a high density of ride activities such as Man-
hattan, the SP could discretize the borough into zones
of CTs or NTAs, or combinations of CTs and NTAs.
Note that, as shown earlier, at the granularity level of
CTs (Z1), the anonymity set provided by ORide for the
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Figure 4: Effect of Euclidean distance on the extra dis-
tances for the drivers (left) and on the waiting time for
the riders (right) w.r.t. different zone settings. Our results
show that the overhead added by ORide is reasonable.

case of a very strong adversarial SP is already large. In
special cases, such as concerts and sport events, the SP
can split a crowded zone into sub-zones, in order to find
a balance for the aforementioned trade-off. For areas
that have fewer ride activities, such as other boroughs
in NYC or other cities, an entire borough or city can be
a zone. For example, a zone consisting of the boroughs
of Queens and Bronx would guarantee an anonymity set
of at least 26,000 for a ride, while requiring the drivers
to have an Internet connection of only at most 2 Mbps.

9.5 Effect on Ride Matching
To minimize the extra costs for both the drivers (e.g., gas
and driving time to pickup) and the riders (e.g., waiting
times at pick-up locations), ideally, the ride-matching al-
gorithm should take into account the road networks and
real-time traffic conditions. Due to the limited opera-
tions supported by SHE, ORide uses a simpler matching
metric, i.e., Euclidean distances between the riders’ and
drivers’ locations. In addition, due to the bandwidth con-
straints, the ORide ride-matching algorithm matches a
rider to drivers in the same zone, hence suboptimality,
e.g., if a rider is close to the border of a zone, the closest
driver might be in one of the neighboring zones.

Fig. 4 shows the CDFs of the relative extra costs due
to the suboptimality of ORide, compared to the ideal so-
lution, w.r.t. thee different zone settings: Z1, Z2, and
the entire city of New York (NYC). The experiment
was done on a set of 1,000 randomly selected ride re-
quests. For the ideal matching, we used the Google
Maps Distance Matrix APIs [24] to compute the times
and distances between a pick-up request and the avail-
able drivers (see assumptions in Section 9.1). To reduce
the number of requests made to the Google APIs3, from
the set of available drivers, we selected 100 drivers who
were closest to the pick-up location as the potential can-
didates for the ideal matching.

It can be observed that the median extra costs are

3The number of requests per day is limited.

small: when Z1 is used, in more than 45% of the cases,
the driver selected by ORide and the ideal solution is the
same, and, in nearly 80% of the cases, the extra driv-
ing distance is less than 0.5 km. In addition, the size of
the zone has only negligible effects on the optimality of
the matching algorithm: If the set of all the drivers avail-
able in NYC was used for the ORide matching algorithm,
compared to the ideal solution, 78.7% of the cases would
have an extra distance of less than 0.5 km, compared to
76.2 % and 76.8 % of the cases when Z1 and Z2 were
used, respectively.

10 Conclusion
In this paper, we have proposed ORide, a practical so-
lution that efficiently matches riders and drivers in a
privacy-preserving way while still offering key RHS fea-
tures such as easy payment, reputation scores, account-
ability, and retrieval of lost items. ORide enables the
SP to choose a balanced trade-off between anonymity
sets for riders vs. bandwidth requirements for the drivers.
For example, for a lower-bound anonymity-set size of
26,000 for rides from the boroughs of Queens and Bronx,
drivers only need to have an Internet connection of at
most 2 Mbps. The trade-off enables the SP to define the
zones such that all users in the system are guaranteed
large anonymity sets, even if they are in sparsely popu-
lated residential areas with sparse ride activities (by ex-
panding the zones). We have also shown that, even in the
extreme case of targeted attacks, i.e., a curious SP wants
to know the destination of a rider given the time and lo-
cation of a rider’s pick-up event, the location privacy of
the rider’s destination is still guaranteed.

For part of our future work, we plan to implement
a full prototype of the system on mobile platforms and
to design more advanced distance estimation algorithms,
instead of the Euclidean distance.
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A Appendix
A.1 Covertly Active SP

Fig. 5 illustrates the changes introduced to the original
ride set-up procedure (Section 5.4) to handle a covertly
active SP. In this protocol, we introduce the notion of
Proof-of-Ride (PoR), a token that is used to prove to the
drivers that the rider is real, i.e., she did a ride in the past.

A.2 Plaintext Space
Assume a geographical area of size s× s and a plaintext
space of b bits to represent the squared-Euclidean dis-
tances between points in the area. The area can be quan-
tized into a grid with cells of size s/2(b−1)/2×s/2(b−1)/2,
with the explanation as follows. Assuming the area is
discretized into a grid of v× v cells, the largest possible
squared-Euclidean distance between any two points on
the grid is 2× v2, and this has to be at most 2b. There-
fore, v≤ 2(b−1)/2. In other words, each edge of size s can
be discretized into v points, and the distance between any
pair of two consecutive points is s/2(b−1)/2. Therefore,
the area can be represented by a grid with cells of size
s/2(b−1)/2× s/2(b−1)/2.

For example, with 20-bit plaintext space, a geographi-
cal area of size 60 km2, such as the borough of Manhat-
tan in NYC, would be quantized into a grid of resolution
approximately 10 m × 10 m.

A.3 Cryptographic Primitives
In this section, we briefly describe the cryptographic
building blocks used in ORide.

Blind signatures. A blind-signature scheme [13] is

a form of digital-signature schemes in which the signer
does not know the content of the message that she is sign-
ing. This is achieved by enabling the signature requester
to ‘blind’ (i.e., randomize) the message before sending
it to the signer. When the signature requester receives
the signature on her blinded message, she ‘unblinds’ it
to obtain a valid signature for the original message. The

signer, when is asked to verify the signature of an un-
blinded message, is not able to link this message back to
the blinded version she signed.

Anonymous credentials. An anonymous credential
(AC) is a cryptographic token with which the credential
owner can prove to another party that she satisfies certain
properties without revealing her real identity. In ORide,
a user is identified when she obtains ACs from the SP.
However, when she wants to start an anonymous session,
she reveals to the SP only the expiration date and the role
specified in the AC (i.e., rider or driver), and she proves
to the SP, in a zero-knowledge fashion, that she knows
the private key associated with the AC. To prove her rep-
utation to a driver, a rider reveals to the driver the repu-
tation score specified in her AC together with the proof
to show that the revealed value is trustworthy. ORide
relies on the Anonymous Credentials Light (ACL) [9].
However, note that ACL is a linkable anonymous cre-
dential scheme, i.e., a user can only use a credential once
to avoid her transactions from being linkable.

Number-Theoretic Transform (NTT). An NTT is
the finite ring version of a Discrete Fourier Transform; an
n-point NTT of a vector xxx ∈ Zn

t and its inverse operation
NTT−1 have the form

XXX = [NTT(xxx)k]
n−1
k=0 =

[
n−1

∑
i=1

xiα
ki

]n−1

k=0

,

xxx =
[
NTT−1(XXX)k

]n−1
k=0 =

[
n−1

n−1

∑
k=1

Xkα
−ki

]n−1

i=0

,

where n−1 is the modulo inverse of n in Zt , and α is
a principal n-th root of unity in Zt , whose existence is
a necessary condition for the transform. The NTT can
be implemented with fast algorithms with complexity
O(n logn), especially when n is a power of 2. The NTT
presents a convolution property, that relates the circular
convolution (~) of two vectors with the component-wise
product (·) of their transformed versions, such that

xxx~ yyy = NTT−1(NTT(xxx) ·NTT(yyy)).

Therefore, an O(n2) operation like the convolu-
tion gets reduced to the complexity of the transforms
(O(n logn)) and the component-wise product (O(n)). For
the used cryptographic application, the product operation
in the polynomial ring is a nega-cyclic convolution in-
stead of a cyclic one; this slightly changes its formula-
tion, and it imposes the requirement of a 2n-th root of
unity in Zt (we refer the reader to [38] for further de-
tails).
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Rider: anonymous session sR SP Driver: anonymous session sD

[Steps (3) to (10) are the same as in Fig. 2]

(1) z, dt, cccxR , cccyR , kkkp, PoR
(2) kkkp, PoR

(10) Fare report

(10a) rand

(10b) BsigSP{sigD{rand}}

(10c) PoR = sigSP{sigD{rand}}

Figure 5: Changes introduced to the original ride set-up protocols (Fig. 2) to handle covertly active SP.
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Abstract

Android kernel vulnerabilities pose a serious threat to
user security and privacy. They allow attackers to take
full control over victim devices, install malicious and un-
wanted apps, and maintain persistent control. Unfortu-
nately, most Android devices are never timely updated
to protect their users from kernel exploits. Recent An-
droid malware even has built-in kernel exploits to take
advantage of this large window of vulnerability. An ef-
fective solution to this problem must be adaptable to lots
of (out-of-date) devices, quickly deployable, and secure
from misuse. However, the fragmented Android ecosys-
tem makes this a complex and challenging task.

To address that, we systematically studied 1,139 An-
droid kernels and all the recent critical Android ker-
nel vulnerabilities. We accordingly propose KARMA,
an adaptive live patching system for Android kernels.
KARMA features a multi-level adaptive patching model
to protect kernel vulnerabilities from exploits. Specifi-
cally, patches in KARMA can be placed at multiple lev-
els in the kernel to filter malicious inputs, and they can
be automatically adapted to thousands of Android de-
vices. In addition, KARMA’s patches are written in a
high-level memory-safe language, making them secure
and easy to vet, and their run-time behaviors are strictly
confined to prevent them from being misused. Our eval-
uation demonstrates that KARMA can protect most crit-
ical kernel vulnerabilities on many Android devices (520
devices in our evaluation) with only minor performance
overhead (< 1%).

1 Introduction

Android is a popular mobile operating system based on
the Linux kernel. The kernel, due to its high privilege, is
critical to the security of the whole Android system [4].
For example, Android relies on the Linux kernel to en-
force proper isolation between apps and to protect im-
portant system services (e.g., the location manager) from
unauthorized access. Once the kernel is compromised,
none of the apps in the system can be trusted. Many

apps contain sensitive personal data, such as bank ac-
counts, mobile payments, private messages, and social
network data. Even TrustZone, widely used as the se-
cure keystore and digital rights management in Android,
is under serious threat since the compromised kernel en-
ables the attacker to inject malicious payloads into Trust-
Zone [42, 43]. Therefore, Android kernel vulnerabilities
pose a serious threat to user privacy and security.

Tremendous efforts have been put into finding (and ex-
ploiting) Android kernel vulnerabilities by both white-
hat and black-hat researchers, as evidenced by the sig-
nificant increase of kernel vulnerabilities disclosed in
Android Security Bulletin [3] in recent years. In ad-
dition, many kernel vulnerabilities/exploits are publicly
available but never reported to Google or the vendors,
let alone patched (e.g., exploits in Android rooting
apps [47]). The supply of Android kernel exploits likely
will continue growing. Unfortunately, officially patching
an Android device is a long process involving multiple
parties with disparate interests: Google/the vendor ver-
ifies a reported vulnerability and creates a patch for it.
The patch is then thoroughly tested and released to carri-
ers; carriers test the update again for compatibility with
their networks and release it to their users as an over-
the-air (OTA) update. Many updates may queue up at
the carriers waiting to be tested [33]; finally, the user
may or may not install the update promptly. Arguably,
device vendors and carriers have little incentive to keep
user devices updated and secure. They instead prefer
users to buy new devices. For example, phone vendors
usually move to new products and stop updating older
devices within one year. Consequently, many Android
phones become obsolete shortly after they get into the
customers’ hands. There also exist lots of small ven-
dors that do not have necessary resources to keep their
phones updated. This dire situation is faithfully reflected
in the vulnerable phones in use. Table 1 lists the statis-
tics of two infamous kernel vulnerabilities: CVE-2015-
3636 (“PingPong Root”) [16] and CVE-2015-1805 [15]
(data collected from 30 million devices 1). After months

1With user consent, we collected kernel versions and build dates
from devices with the Baidu app installed and compare them to each
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CVE ID Release Date Months % Vulnerable Devices
CVE-2015-3636 Sep. 2015 14 30%
CVE-2015-1805 Mar. 2016 8 47%

Table 1: Devices vulnerable to two infamous root ex-
ploits as of Nov. 2016. The second column lists the dates
when they are disclosed in Android Security Advisory.

since their public disclosure, there are still a significant
portion of devices vulnerable to them. Hence, it is un-
surprising that Android malware with years-old root ex-
ploits can still compromise many victim devices world-
wide [5,17,18,21]. In light of these serious threats, there
is an urgent need for third-parties to promptly provide
patches for these out-of-date devices, without involving
vendors or carriers.

Android’s fragmented ecosystem poses a significant
challenge to a third-party kernel patching system: there
are thousands of Android vendors that have produced
and keep producing tens of thousands of devices [1],
and Google releases new versions of Android at a reg-
ular base. This combination creates a mess of Android
devices with all kinds of hardware and software con-
figurations. For example, Android Lollipop (Android
5.0) was released in November 2014; as of September
2016, 46.3% of Android devices still run an older ver-
sion of Android with little hope of any future updates [2].
Even worse, many Android vendors, small and large
ones alike [19], indefinitely “delay” releasing the ker-
nel source code despite the fact that the kernel’s license
(GPL) demands it. As such, existing source-code based
patching systems [22,23,25,27] can only cover a limited
number of devices; a binary-based approach would work
better for a third-party solution. However, kernel binaries
in these devices could differ significantly in details. For
example, they may use different build systems, different
versions of the compiler, and different optimization lev-
els. An effective solution must accommodate thousands
of similar yet very different kernels, a challenging goal.

To achieve our goal, we first quantified the Android
fragmentation by systematically studying and measur-
ing 1,139 Android kernel binaries. We formulated three
key observations that allowed us to effectively tackle this
problem. We also analyzed all the recent critical An-
droid kernel vulnerabilities. Armed with these insights,
we propose KARMA, a multi-level adaptive patching
model that can overcome the Android fragmentation is-
sue. KARMA stands for Kernel Adaptive Repair for
Many Androids 2. It protects kernel vulnerabilities by
filtering malicious inputs to prevent them from reaching
the vulnerable code. KARMA’s patches are written in

vulnerability’s disclosure date to decide if it is potentially vulnerable.
2KARMA is a part of the OASES (Open Adaptive Security Exten-

sions, https://oases.io) project, an initiative founded by Baidu to
enable fast and scalable live patching for mobile and IoT devices.

a high-level memory-safe language. To prevent patches
from being misused, KARMA strictly confines their run-
time behaviors so that the kernel remains as stable and
consistent as possible under attack. Adaptiveness is a key
distinguishing feature of KARMA from other live patch-
ing systems. It allows KARMA to scale to many Android
devices. Specifically, given a reference patch and a target
kernel, KARMA automatically identifies whether the tar-
get kernel contains the same vulnerability and customizes
the reference patch for the target kernel if so. Therefore,
KARMA’s patches are easy to vet, secure, and adaptive.
Like other kernel patching systems, KARMA requires
privileged access to the devices it protects. It can either
be pre-installed in the device’s firmware or installed af-
terwards [7]. The implementation of KARMA supports
all major Android platforms, and we are currently work-
ing with various Android vendors to pre-install KARMA
in their future devices.
The main contributions of our paper are four-fold:

• We analyzed the fragmentation issue that hinders ex-
isting kernel live patching solutions to be ubiquitously
applied on Android devices, and brought the need of
an adaptive Android kernel patching solution to light.

• We studied 1,139 Android kernels from popular de-
vices and 76 critical Android kernel vulnerabilities in
the last three years. Based on these insights, we pro-
pose KARMA, a multi-level adaptive patching model
that can be applied to the fragmented Android ecosys-
tem.

• We implemented KARMA with the framework and
primitives enabling memory-safe adaptive live patch-
ing. The implementation can support all the current
Android kernel versions (from 2.6.x to 3.18.x) and dif-
ferent OEM vendors.

• We comprehensively evaluated KARMA against all the
recently reported critical kernel vulnerabilities. Our
evaluation shows that KARMA can both adaptively
and effectively handle the majority of these vulnera-
bilities with negligible overhead (< 1%).

The rest of the paper is organized as follows. We first
state the problem and present the design of KARMA
in Section 2. We then evaluate the applicability, adapt-
ability, and performance overhead of KARMA in Sec-
tion 3. Section 4 discusses the potential improvements
to KARMA, and Section 5 compares KARMA to the
closely related work. We conclude the paper in Sec-
tion 6.
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2 System Design

In this section, we first present our key observations on
the Android fragmentation problem and then describe the
design of KARMA in detail.

2.1 Measuring Android Fragmentation

Designing a live kernel patching system that can scale
to lots of devices is a challenging task. However, three
key observations we gained from systematically measur-
ing the Android fragmentation render this task feasible
and manageable. These observations can serve as a foun-
dation for future systems tackling this problem.

Observation A: most kernel functions are stable across
devices and Android releases.

Android (Linux) kernel is a piece of large and mature
software. Like other large software, evolution is more
common and preferred than revolution – bugs are fixed
and new features are gradually added. Complete rewrite
of a core kernel component is few and far between. A
patch for one kernel thus can probably be adapted to
many other kernels. Adaptiveness is a key requirement
for protecting the fragmented Android ecosystem.

To measure the stableness of Android kernels, we col-
lected 1,139 system images from four major vendors
(Samsung/Huawei/LG/Oppo, 1,124 images) and Google
(15 images). These four vendors together command more
than 40% of the Android smartphone market, and Google
devices have the newest Android software. This data set
is representative of the current Android market: these im-
ages come from 520 popular old and new devices, feature
Android versions from 4.2 to 7.0, and cover kernels from
2.6.x to 3.18.x. The statistics of these images are shown
in Table 2 and 3.

After collecting these images, we extracted symbols
from their kernels. There are about 213K unique func-
tions, and about 130K of them are shared by more than
10 kernels. We wrote a simple tool to roughly analyze
how many different revisions each of these shared func-
tions has. Specifically, we abstract the syntax of each
function by the number of its arguments, the conditional
branches it contains, the functions called by it, and non-
stack memory writes. We then cluster each function
across all the images based on these syntactic features.
Each different cluster can be roughly considered as a re-
vision of the function (i.e., each cluster potentially re-
quires a different revision of the patch). The results are
shown in Fig. 1 and 2. Specifically, Fig. 1 shows how
many clusters each shared function has. About 40% of
the shared functions have only one cluster, and about
80% of them have 4 clusters or less. Fig. 2 shows the
percentage of the kernels in the largest cluster for each
shared function. For about 60% of shared functions, the

largest cluster contains more than 80% of all the kernels
that have this function. These data show that most kernel
functions are indeed stable across different devices. Vul-
nerabilities in shared functions should be given a higher
priority for patching because they affect more devices.

Observation B: many kernel vulnerabilities are trig-
gered by malicious inputs. They can be protected by fil-
tering these inputs.

Kernel vulnerabilities, especially exploitable ones, are
often triggered by malicious inputs through syscalls or
external inputs (e.g., network packets). For example,
CVE-2016-0802, a buffer overflow in the Broadcom
WiFi driver, can be triggered by a crafted packet whose
size field is larger than the actual packet size. Such vul-
nerabilities can be protected by placing a filter on the in-
puts (i.e., function arguments and external data received
from functions like copy_from_user) to screen mali-
cious inputs. We surveyed all the critical kernel vulnera-
bilities in the Android Security Bulletin reported in 2015
and 2016 and found that 71 out of 76 (93.4%) of them
could be patched using this method (Table 6).

Observation C: many kernel functions return error
codes that are handled by their callers. We can leverage
the error handling code to gracefully discard malicious
inputs.

When a malicious input is blocked, we need to alter
the kernel’s execution so that the kernel remains as con-
sistent and stable as possible. We observe that many ker-
nel functions return error codes that are handled by their
callers. In such functions, a patch can simply end the ex-
ecution of the current function and return an error code
when a malicious input is detected. The caller will han-
dle the error code accordingly [34]. Linux kernel’s cod-
ing style recommends that functions, especially exported
ones, returning an error code to indicate whether an op-
eration has succeeded or not [24]. If the function does
not normally return error codes, it should indicate errors
by returning out-of-range results. A notable exception is
functions without return values. Most (exported) kernel
functions follow the official coding style and return error
codes — even kernel functions that return pointers of-
ten return out-of-range “error codes” using the ERR_PTR
macro.

Based on these observations, our approach is as fol-
lows: for each applicable vulnerability, we create a patch
that can be placed on the vulnerable function to filter ma-
licious inputs. The patch returns a selected error code
when it detects an attack attempt. The error is handled by
the existing error handling code, keeping the kernel sta-
ble. This patch is then automatically adapted to other de-
vices. Automatic adaptation of patches can significantly
reduce the manual efforts and speed up the patch deploy-
ment.
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Vendor #Models #Images
Samsung 192 419
Huawei 132 217
LG 120 239
Oppo 74 249
Google Nexus 2 15
Total 520 1139

Table 2: Images obtained from popular devices.

Category Statistics
Countries 67
Carriers 37
Android Versions 4.2.x, 4.3.x, 4.4.x, 5.0.x, 5.1.x, 6.0.x, 7.0.x
Kernel Versions 2.6.x, 3.0.x, 3.4.x, 3.10.x, 3.18.x
Kernel Architectures ARM (77%), AArch64 (23%)
Kernel Build Years 2012, 2013, 2014, 2015, 2016

Table 3: Statistics of the obtained Android kernels.
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Figure 1: Number of revision clusters for each shared
function, sorted by the number of clusters.

0 26000 52000 78000 104000 130000
0%

20%

40%

60%

80%

100%

Figure 2: Percentage of kernels in the largest cluster
for each shared function.

2.2 Adaptive Multi-level Patching

KARMA features a secure and adaptive multi-level
patching model. The security is enforced by the follow-
ing two technical constraints:

Rule I, a patch can only be placed at designated lo-
cations, and its patched function must be able to return
error codes or return void (i.e., no return value).

KARMA protects kernel vulnerabilities by preventing
malicious inputs from reaching them. For security rea-
sons, a patch can only be placed at the designated levels.
Specifically, level 1 is the entry or return points of a vul-
nerable function; level 2 is before or after call instruc-
tions to a callee of the vulnerable function. Note that
we do not patch the callee itself but rather hook call in-
structions in order to avoid affecting other callers of this
callee. A typical example of callees hooked by KARMA
is copy_from_user, a function dedicated to copy un-
trusted user data into the kernel. copy_from_user is
a perfect checkpoint for malicious inputs because the
kernel calls it whenever the kernel needs to read the
user data; Level 3 is similar to the existing binary-based
patches [22,23,27]. Level-3 patches are more flexible but
potentially dangerous because they are (currently) uncon-
strained. If a vulnerability is difficult to patch at level
1 and level 2, we fall back to level 3. Level-3 patches
have to be manually scrutinized to prevent them from be-
ing misused. Our experiment with 76 critical kernel vul-
nerabilities shows that level 1 can patch 49 (64%) vul-
nerabilities, level 2 can patch 22 (29%) vulnerabilities,
and we have to fall back to level 3 in only 5 cases (7%).
This multi-level design allows KARMA to patch most, if
not all, Android kernel vulnerabilities. In the following,
we focus on the level-1 and level-2 patches since level-
3 patches (i.e., binary patching) have been studied by a
number of the previous research [22, 23, 27].

A patch can indirectly affect the kernel’s control flow
by returning an error code when a malicious input is
intercepted. This immediately terminates the execution
of the vulnerable function and passes the error code to
the caller. We require a patched function to return er-
ror codes on fault in order to leverage the existing error
handling code of the kernel to gracefully fail on mali-
cious inputs. Allowing a patch to return arbitrary values
(i.e., other than error codes) may have unintended con-
sequences. Fortunately, many kernel functions return er-
ror codes on fault, following the guidelines of the official
coding style. Similarly, we allow functions that return
void to be patched.

Rule II, a patch can read any valid kernel data struc-
tures, but it is prohibited from writing to the kernel.

Even though KARMA’s patches are vetted before de-
ployment, they may still contain weakness that can be ex-
ploited by attackers. To control their side effects, patches
are only allowed to read necessary, valid kernel data
structures (e.g., registers, stacks, the heap, code, etc.), but
they are prohibited from writing to the kernel. Allowing
a patch to change the kernel’s memory, even one bit, is
dangerous. For example, it could be exploited to clear the
U-bit (the user/kernel bit) of a page table entry to grant
the user code the kernel privilege. Without the write per-
mission, patches are also prevented from leaking kernel
information to a local or remote adversary. This rule is
enforced by providing a set of restricted APIs as the only
interface for the patches to access the kernel data.

By combining these two rules with a careful vetting
process and the memory-safety of the patches, we can
strictly confine the run-time behaviors of patches to pre-
vent them from potential misuse.
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2.3 Architecture and Workflow

KARMA works in two phases as shown in Figure 3.
The offline phase adapts a reference patch (Pr ) to all
the devices supported by KARMA. The reference patch
often comes from an upstream source, such as Google
and chipset manufacturers. It targets a specific device
and kernel (named as the reference kernel, Kr ) and is
not directly applicable to other devices. To address that,
KARMA employs an automated system to customize Pr
for each target kernel (Kt ). Specifically, KARMA first
roughly identifies potentially vulnerable functions in ker-
nel Kt , and applies symbolic execution to compare the
semantics of each candidate function (Ft ) against refer-
ence function Fr . If these two functions are semantically
equivalent, KARMA further adjusts the reference patch
for kernel Kt , signs it, and deposits it to the cloud. To
prevent malicious patches from being installed by user
devices, reference patches are carefully vetted and all
the patches are signed. User devices only install signed
patches. Matching semantics with symbolic execution
can abstract syntactic differences in function binaries
(e.g., register allocation). Semantic matching decides
whether candidate function Ft is semantically equivalent,
or very similar to, reference function Fr , and whether Ft
has been patched or not. In other words, it is responsi-
ble for locating a function in the target kernel that can be
patched but has not been patched yet. Semantic matching
also provides a scheme to customize reference patch Pr
for target kernels.

In the second phase, the KARMA client in the user
device downloads and verifies the patches for its device
and applies them to the running kernel. Specifically, the
client verifies that each downloaded patch is authentic by
checking its signature and that it is applicable to this de-
vice by comparing the device model and the kernel ver-
sion. If a patch passes the verification, it is cached in a
secure store provided by Android. The client then applies
the patch to the running kernel. An applied patch imme-
diately protects the kernel from exploits without reboot-
ing the device or user interactions. In the unlikely event
that a patch causes the device to malfunction, the user
can reboot the device and skip the problematic patches

1 function kpatcher(patchID , sp, cpsr , r0, r1 ,
r2 , r3 , r4, r5, r6, r7, r8, r9, r10 , r11 ,
r12 , r14)

2 if patchID == 0xca5269db50f4 then
3 uaddr1 = r0
4 uaddr2 = r2
5 if uaddr1 == uaddr2 then
6 return -22
7 else
8 return 0
9 end

10 end
11 end
12 kpatch.hook (0 xca5269db50f4 ,"futex_requeue")

Figure 4: A simplified patch in Lua for CVE-2014-3153

by holding a hardware key. Currently, KARMA’s patches
are written in the Lua language. We choose Lua for its
simplicity, memory-safety, and easiness to embed and ex-
tend (in security, simplicity is a virtue). Lua provides suf-
ficient expressive power for KARMA to fix most kernel
vulnerabilities. Other kernel scripting languages, such as
BPF [8], can also satisfy our requirements. To execute
these patches, we embed a restricted Lua engine in the
kernel. The engine strictly enforces the security rules of
KARMA (Section 2.2).

In the rest of this section, we first illustrate KARMA’s
patches and then present these two phases in detail.

2.4 KARMA Patches
Patches in KARMA are written in the Lua programming
language. Lua is a simple, extensible, embedded lan-
guage. It has only eight primitive types, such as nil,
boolean, number, string, and table. Tables are the
only built-in composite data type. Most user data struc-
tures are built on top of tables. Lua is a dynamically
typed language, and all the data accesses are checked
at the run-time. This reduces common memory-related
flaws like buffer overflows. Lastly, Lua creates an iso-
lated environment to execute patches. This prevents
patches from directly accessing the kernel memory. In-
stead, the kernel data can only be accessed through re-
strictive APIs provided by KARMA.

Figure 4 shows a simplified patch for CVE-2014-3153,
exploited by the infamous Towelroot. CVE-2014-3153
is a flaw in function futex_requeue. It fails to check
that two arguments are different, allowing a local user
to gain the root privilege via a crafted FUTEX_REQUEUE
command [14]. To fix it, we just check whether these two
arguments (in register r0 and r1, respectively) are differ-
ent and return an error code (-22 or -EINVAL) if they are
the same. As shown in Fig. 4, each hooking point has a
unique ID. The patch can check this ID to ensure that it
is called by the correct hooking points. When invoked,
the patch receives the current values of the registers as
arguments. They allow the patch to access function argu-
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1 s t a t i c i n t sock_diag_rcv_msg( s t r u c t sk_buff *
skb , s t r u c t nlmsghdr *nlh)

2 {
3 ...
4 s w i t c h (nlh ->nlmsg_type) {
5 ...
6 c a s e SOCK_DIAG_BY_FAMILY:
7 r e t u r n __sock_diag_rcv_msg(skb ,

nlh);
8 ...
9 }

10 s t a t i c i n t __sock_diag_rcv_msg( s t r u c t sk_buff
*skb , s t r u c t nlmsghdr *nlh)

11 {
12 i n t err;
13 s t r u c t sock_diag_req *req = NLMSG_DATA(

nlh);
14 s t r u c t sock_diag_handler *hndl;
15 i f (nlmsg_len(nlh) < s i z e o f (*req))
16 r e t u r n -EINVAL;
17 + if (req ->sdiag_family >= AF_MAX)
18 + return -EINVAL;
19 hndl=sock_diag_lock_handler(req ->

sdiag_family);
20 ...
21 }

Figure 5: Source-code patch for CVE-2013-1763

ments and other necessary data by using the APIs pro-
vided by KARMA. The last line of the patch installs
itself at the futex_request function with a patch ID
of 0xca5269db50f4. Next, we use a few examples to
demonstrate how to convert a regular source-code based
patch to a reference patch for KARMA.

CVE-2013-1763: Figure 5 shows the original source
code patch for CVE-2013-1763. Each “+” sign marks
a new line added by the patch. The added lines val-
idate that the protocol family of the received message
(req->sdiag_family) is less than AF_MAX and returns
-EINVAL otherwise. This patch can be easily con-
verted to a reference patch for KARMA. However, since
__sock_diag_rcv_msg does not appear in the kernel’s
symbol table (because it is a static function), KARMA
instead hooks the entry point of its parent function and
screens the arguments there.

CVE-2013-6123: this is a vulnerability in func-
tion msm_ioctl_server, which reads an untrusted
data structure (u_isp_event) from the user space with
copy_from_user. However, it fails to check that the
queue_index field of the input is valid. This vulnera-
bility is fixed by line 10-17 in Fig. 6. To patch this vul-
nerability in KARMA, we cannot hook the entry point
of msm_ioctl_server because the malicious input data
is not available yet. Instead, we should hook the return
point of copy_from_user and filter the received data.
copy_from_user returns status codes; therefore it can
be hooked by KARMA. If the patch detects a malicious
input, it returns the error code of -EINVAL. This termi-
nates the execution gracefully.

CVE-2016-0802: this is a buffer overflow in the

1 s t a t i c l o n g msm_ioctl_server( s t r u c t file *
file , v o i d *fh , bool valid_prio , i n t cmd ,

v o i d *arg)
2 {
3 ...
4 i f (copy_from_user (& u_isp_event ,
5 ( v o i d __user *)ioctl_ptr ->ioctl_ptr ,
6 s i z e o f ( s t r u c t msm_isp_event_ctrl))) {
7 ...
8 }
9 ...

10 + if(u_isp_event.isp_data.ctrl.queue_idx <0
11 + || u_isp_event.isp_data.ctrl.queue_idx >=
12 + MAX_NUM_ACTIVE_CAMERA) {
13 + pr_err ("%s: Invalid index %d\n",
14 + __func__ , u_isp_event.isp_data.

ctrl.queue_idx);
15 + rc = -EINVAL;
16 + return rc;
17 + }
18 ...
19 }

Figure 6: Source-code patch for CVE-2013-6123

Broadcom WiFi driver, caused by the missing check
that the packet data length is less than the packet
length. This vulnerability represents an interesting
challenge to KARMA: the source-code is patched in
several functions, and a new argument is added to
function dhd_wl_host_event and dngl_host_event.
The error condition is finally checked in function
dngl_host_event. Apparently, this type of fix (i.e.,
adding new arguments to functions) cannot be translated
directly in KARMA because patches are not allowed to
write the kernel memory. To address that, we need to
hook both dhd_rx_frame and dngl_host_event func-
tions. The first hook saves the packet length, and the sec-
ond hook compares the packet length to the data length.
If the data length is larger than the packet length, the
patch returns the error code of BCME_ERROR. This is
an example of KARMA’s multi-invocation patches (also
called stateful patches). Both patches bear the same patch
ID. The variables at the first hook are made accessible
to the second hook by KARMA’s Lua engine. An alter-
native fix is to hook only dhd_rx_frame and manually
extract the data length from the packet. However, this
fix is less favorable because the patch has to parse the
packet structure by itself and it is placed differently from
where the source-code patch modifies the control flow,
i.e., where the error handling is guaranteed to work.

2.5 Offline Patch Adaptation

KARMA’s offline component adapts a reference patch
for all supported devices. It first identifies the vulnerable
function in a target kernel through structural and seman-
tic matching; then it uses the information from semantic
matching to customize the patch for the target kernel. In
the following, we describe these two steps in detail.
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1 v o i d dhd_rx_frame (...)
2 {
3 ...
4 dhd_wl_host_event(dhd , &ifidx ,
5 skb_mac_header(skb),
6 skb ->mac.raw ,
7 + len - 2,
8 &event , &data);
9 ...

10 }

11 s t a t i c i n t dhd_wl_host_event (...)
12 {
13 ...
14 - if (dngl_host_event(dhd_pub , pktdata) ==

BCME_OK) {
15 + if (dngl_host_event(dhd_pub , pktdata ,

pktlen) == BCME_OK) {
16 ...
17 }

18 i n t dngl_host_event (...)
19 {
20 ...
21 + if (datalen > pktlen)
22 + return (BCME_ERROR);
23 ...
24 }

Figure 7: Source-code patch for CVE-2016-0802

2.5.1 Syntactic Matching

Given a target kernelKt , we first identify candidate func-
tions (Ft ) in Kt that may contain the same vulnerability
as reference function Fr . However, this task is not as
simple as searching the kernel symbol table. There are
a number of challenges. First, function Ft might have
different semantics than Fr even though their names are
the same. Accordingly, the patch cannot be applied to
Kt . KARMA addresses this problem by further match-
ing their semantics. Second, Ft may have a (slightly)
different name than Fr even though their semantics is the
same. For example, CVE-2015-3636 [30], exploited by
PingPong root, exists in function ping_unhash in the
Google Nexus 5 kernel but ping_v4_unhash in some
other kernels. Third, Ft could have been inlined in the
target kernel and thus does not exist in the symbol ta-
ble. To address these challenges, we assume that most
(other) functions are not changed or renamed across dif-
ferent kernels. This assumption is backed by our first
observation (Section 2.1).

To find matches of function Fr in target kernel Kt ,
we first extract the symbol table from Kt ’s binary 3 and
search in it for the name of Fr . If an exact match is
found, we consider this function to be the only candi-
date. Otherwise, we try to identify candidate functions
by call relations. Specifically, we first extract the call
graphs from the target and the reference kernels. We col-
lect callers and callees of function Fr in the reference

3The kernel binary often contains the symbol table so that kernel
modules can be linked to the kernel. This table may or may not be
exported through the /proc/kallsym file at runtime.

kernel’s graph, and try to locate nodes in the target ker-
nel’s graph that have similar call relations to these two
sets of functions. We may find a unique matching node if
the function has been simply renamed. If the function has
been inlined, the target kernel’s call graph contains direct
edges from the caller set to the callee set (instead of con-
nected through Fr ). Accordingly, we use the containing
function as the candidate. Multiple candidate functions
may be identified using this approach. The semantics
of these candidate functions is then compared to that of
function Fr to ensure that the patch is applied to correct
functions.

2.5.2 Semantic Matching

In this step, KARMA uses semantic matching to de-
cide whether a function should be patched and whether
a given reference patch can be adapted to it. For two
Android kernels, the same source code could be com-
piled into different binaries – they may vary in regis-
ter allocation, instruction selection, and instruction lay-
out. In addition, the positions of structure members may
have shifted, and the stack may contain different tempo-
rary variables (e.g., because of differences in the regis-
ter spilling). Therefore, simple syntactic comparison of
functions is too restrictive and may reject functions that
could otherwise be patched. To this end, we leverage
symbolic execution to compare semantics of the candi-
date function (Ft ) and the reference function (Fr ).

Path explosion is a significant obstacle in symbolic ex-
ecution. The situation is even more serious in the Linux
kernel because many kernel functions are highly com-
plicated. Even if the vulnerable function looks simple, it
may call complex other functions. This can quickly over-
whelm the symbolic execution engine. In KARMA, we
assume that functions called by Ft and Fr have the same
semantics if they share the same signature (i.e., function
name and arguments). Therefore, we can use non-local
memory writes (i.e., writes to the heap or global vari-
ables), function calls, and function returns as checkpoints
for semantic comparison. Non-local memory writes,
function calls, and returns make up the function’s impacts
to the external environment. We consider two functions
having the same semantics if their impacts to the envi-
ronment are the same. We do not take stack writes into
consideration because the same function may have dif-
ferent stack layouts in two kernels.

To compare their semantics, we symbolically execute
the basic blocks of Fr and Ft and generate constraints
for memory writes and function calls. For each memory
write, we first check whether it is a local write or not (we
consider it a local write if its address is calculated related
to the stack/base pointer). If it is a non-local write, we
add two constraints that the memory addresses and the
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content-to-write should be equal. For function calls, we
first check that these functions have the same name (and
arguments if the kernel source is available). If so, we
add constraints that the arguments to these two functions
should be equal. We handle function returns similarly
by adding constraints for register r0 at the function exits.
External inputs to these two functions, such as initial reg-
ister values, non-local memory reads, and sub-function
returns, are symbolized.

KARMA supports two modes of operation: in the
strict mode, we require that two matching constraints are
exactly the same, except for constants. Constants are
often used as offsets into structures or the code (e.g.,
to read embedded constants in the code). These offsets
could be different even for the same source code because
of different hardware/software settings (e.g., conditional
compiling). We ignore these constants to accommodate
these differences. In a relaxed mode, we use a constraint
solver to find a solution that can fulfill all the constraints
at the same time. We consider two functions to be se-
mantically equivalent if there exist at least one such so-
lution. Moreover, to avoid patching an already-patched
function, we compare path constraints for the variables
accessed by reference patch Pr in function Fr and Ft .
If they are more restrictive in Ft than in Fr (i.e., con-
ditional checks are added in Ft ), the function may have
already been patched. Note that since KARMA’s patches
cannot modify the kernel memory, reapplying a patch is
likely safe. If a semantic match is found, the symbolic
formulas provide useful information for adapting patch
Pr for the target kernel. For example, we can adjust Pr ’s
registers and field offsets by comparing formulas of the
function arguments. We evaluate the effectiveness of se-
mantic matching in Section 3.2.

2.6 Live Patching

To enable its protection, KARMA needs to run its client
in the user device. The client consists of a regular app and
a kernel module. The app contacts the KARMA servers
to retrieve patches for the device, while the kernel module
verifies the integrity of these patches and applies ones
that pass the verification.

2.6.1 Integration of Lua Engine

Patches in KARMA are written in the Lua language.
They are executed by a Lua engine embedded in the
kernel. KARMA extends the Lua language by provid-
ing a number of APIs for accessing kernel data struc-
tures. Normally, extending Lua with unsafe C functions
forgoes Lua’s memory safety. KARMA provides two
groups of APIs to Lua scripts. The first group is used
exclusively for applying patches, and the other group is

API Functionality
hook Hook a function for live patching
subhook Hook the calls to sub-functions for live patching
alloc_mem Allocate memory for live patching
free_mem Free the allocated memory for live patching
get_callee Locate a callee that can be hooked
search_symbol Get the kernel symbol address
current_thread Get the current thread context
read_buf Read raw bytes from memory with the given size
read_int_8 Read 8 bits from memory as an integer
read_int_16 Read 16 bits from memory as an integer
read_int_32 Read 32 bits from memory as an integer
read_int_64 Read 64 bits from memory as an integer

Table 4: The extension to Lua. The first five functions
can only be used by the live patcher, not by patches.

used by patches to read kernel data. Our vetting process
automatically ensures that patches can only use the sec-
ond group of APIs. As such, the memory safety of Lua
is retained because all the APIs that a patch can access
are read-only. Table 4 lists these APIs, which provide
the following functionalities: 1) symbol searching: re-
turn the run-time address of a symbol; 2) function hook-
ing: hook a given function/sub-function in order to exe-
cute the patch before/after the function is called; 3) typed
read: given an address, validate whether the address is
readable and return the (typed) data if so; 4) thread-info
fetching: return the current thread information, such as
its thread ID, kernel stack, etc. The first two function-
alities belong to the first group, and the rest belongs to
the second group. Again, the live patcher can use both
groups of the APIs, but patches can only use the second
one.

2.6.2 Patch Application

To apply a patch, KARMA hooks the target function
to interpose the patch in the regular execution flow, as
shown in Fig. 8. Specifically, for each hooking point, we
create a piece of the trampoline code and overwrite the
first few instructions at the hooking point with a jump to
the trampoline. At run-time, the trampoline saves the cur-
rent context by pushing all the registers to the stack and
invokes the Lua engine to execute the associated patch.
The saved context is passed to the patch as arguments so
that the patch can access these registers. Before installing
the hook, the live patcher calls the stop_machine func-
tion and checks whether there are any existing invoca-
tions of the target function in the kernel stacks. If so, it is
unsafe to immediately patch the function because other-
wise the existing invocations will return to the patched
version, potentially causing inconsistent kernel states.
When this happens, we return an error code to the client
which will retry later. As soon as the patch is applied, the
vulnerable function is protected from attacks. If no ma-
licious inputs are detected, the patch returns zero to the
trampoline, which in turn restores the context, executes
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Figure 8: Live patching through function hooking

the overwritten instructions, and jumps back to the orig-
inal function; If malicious inputs are detected, the patch
returns an error code to the trampoline, which ends the
execution of the hooked function by jumping to a return
instruction.

2.6.3 Patch Dispatching

KARMA supports two methods to dispatch a patch, one
for each of the two execution contexts: the interrupt con-
text or the thread (or process) context. In the interrupt
context, the Lua engine is directly invoked through the
engine’s C interface, similar to a regular function call.
However, it is expensive to launch a new Lua engine each
time a patch is executed. In the thread context, we instead
schedule patches to a standalone Lua engine (through a
workqueue) and wait for the results. The Lua engine ex-
ecutes in a self-contained kernel thread and processes in-
coming requests from the workqueue. Each request is
identified by the thread ID and the patch ID. This dis-
patching method cannot be used in the interrupt context
because blocking functions (e.g., to acquire a lock) can-
not be called in that context. If a vulnerable function is
called in both contexts, we dispatch the patch according
to the active context (we have not found such cases in
practice). Patch dispatching in the thread context is more
complex. In the following we give more details about it.

The kernel is a concurrent execution environment, es-
pecially with multi-core CPUs, which most Android de-
vices have. A patch accordingly can be executed simulta-
neous by multiple threads on different CPU cores. These
invocations are grouped by their thread ID and patch ID.
Specifically, for each distinct combination of thread ID
and patch ID, a separate name space is created. Each
Lua variable is saved to its associated name space. A
name space is not destroyed until the associated thread
ends. Therefore, variables of the previous invocations re-
main available to the subsequent invocations in the same
name space 4. By keeping the states across invocations,
KARMA can support multi-invocation patches, i.e., com-
plex patches that need to combine the results of several

4If the vulnerable function is recursively called, some variable states
might be lost. To retain the whole history, we can tag variables with the
thread ID, patch ID, and the stack top. However, we have not found any
of such cases in practice.

executions to make a decision. A number of patches
we tested require this capability. In the thread context,
we can also support multiple Lua engines to improve
the throughput of patch execution. Specifically, we can
spawn multiple kernel threads to run several instances of
the Lua engine. A dispatch algorithm decides which Lua
engine a request should be scheduled to. The algorithm
must be deterministic so that requests in the same name
space will always be scheduled to the same engine, al-
lowing them to access states from previous invocations.
When a thread ends, its associated states are cleared from
all the Lua engines.

Lua is a garbage-collected language. Patches thus do
not need to explicitly manage memory allocation and re-
lease. The Lua engine uses a simple mark-and-sweep
garbage collector [35]. Kernel patches usually do not
need to allocate many memory blocks. The default
garbage collector works well for our purpose without
slowing down the system.

2.7 Prototype of KARMA

We have implemented a prototype of KARMA. We wrote
a number of offline tools for patch adaptation and sign-
ing. Our symbolic execution engine was based on the
angr framework [6, 44]. We implemented the syntactic
and semantic matching by ourselves. Our Lua engine in
the kernel is similar to the lunatik-ng project [26]. For
example, the Linux kernel does not use floating-point
arithmetic. We therefore changed Lua’s internal number
representation from floating-points to integers. We also
removed the unnecessary Lua libraries such as file opera-
tions. Furthermore, we added the support to name spaces
in our Lua engine and extended the Lua language with
the APIs specified in Table 4. We added roughly about
11K lines of source code in total to the Android ker-
nel. The added code was compiled as an 800KB kernel
module. This kernel module can be pre-installed on An-
droid devices through collaboration with vendors or in-
stalled afterwards through rooting, the only choice avail-
able. KARMA can support all the known Android kernel
versions (from 2.6.x to 3.18.x) and different vendors.

3 Evaluation

The effectiveness of KARMA can be evaluated by its ap-
plicability, adaptability, and performance. Applicability
quantifies how many existing kernel vulnerabilities can
be patched by KARMA, and adaptability quantifies how
many devices that KARMA can adapt a reference patch
for. In the following, we describe these three aspects of
the evaluation in detail.
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3.1 Evaluation of Applicability

We tested KARMA with all the critical kernel vulnera-
bilities from Android Security Bulletin and ones used to
root Android devices. There are 76 such vulnerabilities
in total in the last three years. Remarkably, KARMA
can fix 71 of them (93.4%) with level-1 and level-2
patches; i.e., we can create an adaptable KARMA patch
for them. Table 6 in Appendix A gives a more complete
list of the results. In the following, we describe how
KARMA can prevent some interesting kernel vulnerabil-
ities used in one-click rooting apps and recent malware
incidents [5,17,18,21]. Appendix A contains a couple of
more examples.

CVE-2013-6282 (VROOT): this was one of the most
popular vulnerabilities used in the wild to root An-
droid devices, publicly known as “VROOT”. It ex-
ists in the get/put_user macros. They both fail to
check that user-provided addresses are in the valid range.
The original patches add the necessary checks to these
macros and return -EFAULT if invalid addresses are de-
tected [12]. However, KARMA cannot patch these
two macros because they are expanded by the com-
piler and thus do not exist in the kernel binary. In-
stead, KARMA patches their expanded functions (i.e.,
__get_user_1/2/4 and __put_user_1/2/4/8) with
checks of whether user-provided addresses are less than
current_thread_info()->addr_limit-1. Note that
these patches can access the current thread_info struc-
ture by using the current_thread API provided by
KARMA. These patches simply return -EFAULT if the
address is out of the range.

CVE-2013-2595 (Framaroot): this vulnerability was
a part of the infamous Framaroot app (the “Gandalf” pay-
load). It exists in the camera driver for the Qualcomm
MSM devices [10]. The driver provides an uncontrolled
mmap interface, allowing the attacker to map sensitive
kernel memory into the user space. KARMA can patch
this vulnerability by validating whether the memory to be
mapped is within the user space.

CVE-2013-2596 (MotoChopper): an integer over-
flow in the fb_mmap function allows a local user to cre-
ate a read-write mapping of the entire kernel memory and
consequently gain the kernel privileges. Specifically, the
function has a faulty conditional check:
if((vma->vm_end - vma->vm_start + off)>len)

return -EINVAL;

Because off is a user-controlled variable, an at-
tacker can pass in a really large number to overflow
(vma->vm_end - vma->vm_start + off) (the result
is interpreted as a negative number) and bypass the
validation. Here the original patch adds more checks
to prevent this situation [11]. To patch this vul-
nerability in KARMA, we hook the fb_mmap func-

tion and extract the needed variables from its argu-
ment vma. For example, we can calculate off as
(vma->vm_pgoff << PAGE_SHIFT). The patch then
checks whether (vma->vm_end - vma->vm_start +
off) is negative or not, and return -EINVAL if so.

3.2 Evaluation of Adaptability
KARMA is an adaptive kernel live patching system for
Android. Its ability to automatically adapt a reference
patch is the key to protect a wide variety of devices and
reduce the window of vulnerability. In this experiment,
we evaluate KARMA’s adaptability with 1,139 Android
kernels collected from Internet.

Semantic matching is the key to KARMA’s adaptabil-
ity. It uses symbolic execution to abstract away syntactic
differences in function binaries, such as register alloca-
tion, instruction selection, and data offset. To evaluate
its effectiveness, we cluster the collected 1,139 Android
kernels 5 by syntactic and semantic features for 13 pop-
ular vulnerabilities. Specifically, the opcode-based clus-
tering classifies kernel functions by types and frequen-
cies of instruction opcodes; the syntax-based clustering
classifies kernel functions by function calls and condi-
tional branches; and the semantic-based clustering clas-
sifies kernel functions according to KARMA’s seman-
tic matching results. Table 5 lists the number of clus-
ters and the percentage of kernels in the largest cluster
for each clustering method. This table shows that the
semantic-based method is the most precise one because
it has the smallest number of clusters. Technically, each
cluster may need a different adaptation of the reference
patch. Therefore, fewer clusters mean a better chance
for adaptation to succeed and less manual efforts if au-
tomated adaptation fails. Moreover, the largest clusters
in the semantic matching often contain the majority of
the vulnerable kernels. For example, a single reference
patch for the largest cluster of perf_swevent_init can
be applied to 96.3% of the vulnerable kernels.

We randomly picked some functions to manually ver-
ify the outcome of semantic matching. For example, the
source code of sock_diag_rcv_msg (the function re-
lated to CVE-2013-1763) is exactly the same in Sam-
sung Galaxy Note Edge (Android 5.0.1, Linux kernel
3.10.40) and Huawei Honor 6 Plus (Android 4.4, Linux
kernel 3.10.30) 6. However, its binaries are very dif-
ferent between these two devices because of the dif-
ferent compilers and kernel configurations. Figure 9a
and 9b show a part of the disassembly code for these
two binaries, respectively. The syntactic differences are
highlighted. There are changes to the order of instruc-
tions (BB8 on the left vs BB8’ on the right), register

5Only kernels sharing symbols are considered in the clustering.
6Both vendors have released the source code for their devices.
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Kernel Function CVE ID # of Opcode Clusters

% of the Largest Opcode Cluster

# of Syntax Clusters

% of the Largest Syntax Cluster

# of Semantic Clusters

% of Largest Semantic Cluster

Semantic Matching Time Cost

# of Instructions

# of Basic Blocks

sock_diag_rcv_msg 2013-1763 35 25.0% 7 73.5% 3 75.5% 10.5s 72 16
perf_swevent_init 2013-2094 9 55.9% 5 55.9% 2 96.3% 24.6s 81 22
fb_mmap 2013-2596 26 20.2% 7 44.4% 5 66.9% 12.2s 102 15
__get_user_1 2013-6282 3 92.4% 2 92.4% 2 98.0% 3.2s 6 2
futex_requeue 2014-3153 54 14.8% 9 71.0% 3 99.3% 35.8s 459 107
msm_isp_proc_cmd 2014-4321 42 22.0% 5 66.5% 3 42.8% 8.8s 385 68
send_write_packing_test_read 2014-9878 12 57.6% 4 61.2% 1 100% 4.9s 25 4
msm_cci_validate_queue 2014-9890 6 59.5% 4 84.9% 2 72.4% 6.7s 77 8
ping_unhash 2015-3636 36 12.5% 5 75.7% 3 50.5% 4.6s 54 8
q6lsm_snd_model_buf_alloc 2015-8940 29 34.0% 9 36.6% 5 44.2% 9.9s 104 20
sys_perf_event_open 2016-0819 22 36.3% 6 46.9% 6 84.2% 34.6s 569 118
kgsl_ioctl_gpumem_alloc 2016-3842 16 35.4% 3 88.8% 4 46.0% 4.7s 79 11
is_ashmem_file 2016-5340 6 89.6% 2 93.9% 2 98.1% 0.8s 23 3

Table 5: Clustering 1,139 kernels for each function by syntax and semantics. The last-but-two column lists the time of
semantic matching to compare Nexus 5 (Android 4.4.2, kernel 3.4.0) and Samsung Note Edge (Android 6.0.1, kernel
3.10.40). The experiment was conducted on an Intel E5-2650 CPU with 16GB of memory, and the results are the
average over 10 repeats. The last two columns list the number of instructions and basic blocks for each function in
Nexus 5.

The rest of the control f ow graph is omitted for simplicity.

sock_diag_rcv_msg:
MOV R12, SP
STMFD SP!, {R4-R6,R11,R12,LR,PC}
SUB R11, R12, #4
SUB SP, SP, #0xC
LDRH R3, [R1,#4]
MOV R4, R1
MOV R6, R0
CMP R3, #0x12
BCS loc_C0D4C488

loc_C0D4C478:
MOV R4, #0xFFFFFFEA

loc_C0D4C488:
CMP R3, #0x13
BHI loc_C0D4C4D4

loc_C0D4C490:
LDR R5, =0xC1A33F44
LDR R3, [R5,#0xA4]
CMP R3, #0
BEQ loc_C0D4C52C

loc_C0D4C4D4:
CMP R3, #0x14
BNE loc_C0D4C478

loc_C0D4C52C:
MOV R3, #2
MOV R2, #0x10
STR R3, [SP,#0x24+var_24]
MOV R0, #1
LDR R1, =dword_C11D9904
MOV R3, #4
BL __request_module
B loc_C0D4C4A0

loc_C0D4C4DC:
LDR R3, [R1]
SUB R3, R3, #0x10
CMP R3, #1
BLS loc_C0D4C478

loc_C0D4C4EC:
LDRB R3, [R1,#0x10]
CMP R3, #0x28
BHI loc_C0D4C478

BB 1

BB 2

BB 3

BB 4

BB 5 BB 6

BB 8

BB 7

(a)

The rest of the control f ow graph is omitted for simplicity.

sock_diag_rcv_msg:
STMFD SP!, {R0,R1,R4-R6,LR}
MOV R5, R0
LDRH R3, [R1,#4]
MOV R4, R1
CMP R3, #0x12
BCC loc_C0A06C7C

loc_C0A06C7C:
MOV R0, #0xFFFFFFEA

loc_C0A06B8C:
CMP R3, #0x13
BLS loc_C0A06BA0

loc_C0A06B94:
CMP R3, #0x14
BEQ loc_C0A06BEC

loc_C0A06BA0:
LDR R3, =0xC222E584
LDR R2, [R3]
MOV R6, R3
CMP R2, #0
BNE loc_C0A06BD0

loc_C0A06B9C:
B loc_C0A06C7C

loc_C0A06BEC:
LDR R3, [R1]
SUB R3, R3, #0x10
CMP R3, #1
BLS loc_C0A06C7C

loc_C0A06BB4:
MOV R3, #2
MOV R0, #1
LDR R1, =aNetPfDProtoDTy
MOV R2, #0x10
STR R3, [SP,#0x18+var_18]
MOV R3, #4
BL __request_module

loc_C0A06BFC:
LDRB R3, [R1,#0x10]
CMP R3, #0x28
BHI loc_C0A06C7C

BB 1'

BB 2'

BB 4'

BB 5'
BB 6'

BB 7'

BB 8'

BB 9'

BB 3'

(b)

Figure 9: sock_diag_rcv_msg of (a) Huawei Honor 6 Plus (PE-TL10) with Android 4.4 and Linux kernel 3.10.30,
compiled by GCC 4.7, and (b) Samsung Galaxy Note Edge (N915R4) with Android 5.0.1 and Linux kernel 3.10.40,
compiled by GCC 4.8. Basic blocks and control flows with different syntax are highlighted.

allocation (BB7 vs BB7’), instruction selection (BB2 vs
BB2’), and control flow (additional BB9’ in the Sam-
sung kernel). KARMA’s semantic matching can abstract
these syntactic differences and put these two binaries of
sock_diag_rcv_msg into the same cluster. That is, both
can be patched by the same CVE-2013-1763 patch dis-

cussed in Section 2.4.

Semantic matching can also separate kernel functions
that are incorrectly classified together by the syntax
matching. For example, the control flow and most in-
structions of function msm_cci_validate_queue (the
function related to CVE-2014-9890) are identical in the
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A
LDR R1, [R4,#0x15C]
MOV R0, #1
MOV R0, R0, LSL R5
ADD R1, R1, #8
BL msm_camera_io_wb

B
MOV R0, #0x64
BL msecs_to_jiffies

C
MUL R7, R7, R6
ADD R5, R7, #0x210
ADD R5, R4, R5
MOV R1, R0
MOV R0, R5
BL wait_for_completion

_timeout

A'
LDR R1,[R4,#0x15C]
MUL R7, R7, R6
MOV R0, #1
MOV R0, R0, LSL R5
ADD R5, R4, R7
ADD R1, R1, #8
ADD R5, R5, #0x1E4
BL msm_camera_io_w

B'
MOV R0, #0x64
BL msecs_to_jiffies

C'
MOV R1, R0
MOV R0, R5
BL wait_for_completion

_interruptible_timeout

Figure 10: Three semantically different basic blocks
of msm_cci_validate_queue in Oppo 3007 (left) and
Samsung N910G (right). They have different callees and
arguments, and thus different semantics.

kernel of Oppo 3007 (Android 4.4.4, kernel 3.10.28) and
Samsung N910G (Android 6.0.1, kernel 3.10.40). A sim-
ple syntactic matching algorithm would consider them
similar. These functions are shown in Fig. 10 (only ba-
sic blocks with different semantics are shown). However,
KARMA’s semantic matching algorithm considers basic
block A and A′, C and C ′ to be different because their last
instructions call different functions with different argu-
ments. Consequently, KARMA needs to use two patches
to fix this vulnerability in these devices. A further inves-
tigation shows that KARMA can actually use the same
patch for CVE-2014-9890 to fix both kernels because it
only needs to validate the arguments, which are the same
for both functions.

Finally, KARMA’s semantic matching is quite effi-
cient. It simplifies symbolic execution by considering
most functions remain unchanged. The last-but-two col-
umn of Table 5 lists the time used by semantic matching
to compare each listed function in two kernels. The anal-
ysis time increases with the complexity of the function,
but they are all less than 36 seconds with an average of
12.5 seconds. Without this heuristics, it will take much
longer and may never finish in some cases.

3.3 Evaluation of Performance
To evaluate the performance overhead of KARMA, we
experimented with both a standard Android benchmark
(CF-Bench [9]) and a syscall-based micro-benchmark.
Both benchmarks were run on Google Nexus 5 with An-
droid 4.4. Each reported result is the average over 20
measurements. The standard deviation of the results is
negligible. Overall, we find that KARMA does not in-
troduce noticeable time lag to regular operations of the
test device. Considering the fact that most critical kernel
vulnerabilities exist in less-hot code paths (e.g., device
drivers’ ioctl interfaces as shown in Table 6), we con-
sider KARMA’s performance is sufficient for real-world
deployment.

The first benchmark measures the whole system per-
formance with CF-Bench. We tested the performance
of the following four configurations: the original kernel
without any patches, the kernel with the patch for Tow-
elroot, the kernel with the patch for PingPong root, and
the kernel with both patches. The results are shown in
Fig. 11. The measured performance is virtually the same
for all four configurations. This benchmark shows that
KARMA’s kernel engine has minimal impact on the per-
formance if patches are not frequently executed.

To further quantify the overhead of KARMA, we mea-
sured the execution time of a syscall with several differ-
ent patches executed by a single Lua engine. We inserted
a hook point in the execution path of a selected syscall
(i.e., the patch was always executed for this syscall) and
measured the execution time of the syscall under the fol-
lowing conditions:

• The patch simply returns 0. This reflects the run-time
cost of the trampoline for function hooking. It takes
about 0.42µs to execute.

• The patch contains a set of if/elseif/else condi-
tional statements. This simulates patches that validate
input arguments. It takes about 0.98µs to execute.

• The patch consists of a single read of the kernel mem-
ory. This measures the overhead of the Lua APIs pro-
vided by KARMA. It takes about 0.82µs to execution.

• To simulate more complex patches, we created a patch
with a mixture of assignments, memory reads, and con-
ditional statements. It takes about 3.74µs to execute.

The results are shown in Figure 12. In each test, the
syscall was invoked in a tight loop for a thousand times,
and each result is the average of 20 runs. To put this
into context, we counted all the syscalls made by Google
Chrome for Android during one minute of browsing. The
most frequently made syscall was gettimeofday for
about 110,000 times. This translates to about 0.55 sec-
onds (0.9%) of extra time even if we assume the patch
takes 5µs for each invocation. In summary, KARMA
only incurs negligible performance overhead and per-
forms sufficiently well for real-world deployment.

4 Discussion and Future Work

In this section, we discuss potential improvements to
KARMA and the future work. First, KARMA aims at
protecting the Android kernel from exploits because the
kernel has a high privilege and its compromise has seri-
ous consequences on user security and privacy. An ap-
proach similar to KARMA can be applied to the Android
framework and user-space apps. In addition, Android O
formalizes the interface between the Android framework
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Figure 11: Performance scores by CF-Bench.
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Figure 12: Execution time of chmod with different patches.

and the vendor implementation so that, eventually, the
Android framework can be updated independent of the
vendor implementation (aka. project Treble [20]). This
will at least partially address the user-space update prob-
lem. However, project Treble does not address the kernel
update problem. Android kernels are still fragmented and
out-of-date. A system like KARMA is still necessary.

Second, KARMA’s patches are written in the Lua pro-
gramming language. It relies on the Lua engine to strictly
confine patches’ run-time behaviors. However, this ap-
proach increases the kernel’s trusted computing base de-
spite the fact that the Lua engine is relatively mature and
secure. Executing patches on the Lua engine also nega-
tively impacts the performance, especially if the system
is under heavy load (in reality, this is not a concern be-
cause most Android kernel vulnerabilities are on the ker-
nel’s cold paths, such as device drivers’ ioctl functions,
as shown in Table 6). We are investigating alternative de-
signs that can achieve similar security guarantees, such
as BPF [8] and sandboxed binary patches.

Third, KARMA leverages the existing error handling
code in the kernel to handle filtered malicious inputs, in
order to keep the kernel as stable as possible. However,
error handling code has been shown to contain vulnera-
bilities [36], and this design may leak resources and even
cause deadlocks (KARMA does not allow patches them-
selves to release resource because that requires writing
to the kernel). We did not find this to be a constraint
during our experiment with all the critical Android ker-
nel vulnerabilities. KARMA’s reference patch is often a
direct translation of the official source-code patch, which
should have properly released the resources. If an official
patch cannot be translated to a level-1 or level-2 patch,
we can fall back to the level-3 (binary) patch. Level-3
patches are more flexible but require careful vetting.

Fourth, KARMA uses symbolic execution to semanti-
cally match two vulnerable functions. The approach is
sufficient for our purpose in practice because many ker-
nel functions are rather stable across devices and Android
releases. In theory, the approach is not sound. It is a
trade-off between soundness and scalability. Many sys-
tems make a similar trade-off because symbolic execu-

tion itself is neither very scalable nor very precise (e.g.,
how to handle loops). We are improving our method to
better identify vulnerable functions and adapt patches. If
KARMA’s automated adaption cannot find a proper func-
tion to patch, we can fall back to the binary patch for this
particular vulnerability.

Lastly, KARMA is a third-party kernel live patching
system. Patches can be promptly delivered to user de-
vices without the long wait caused by vendors and carri-
ers. However, without testing performed by vendors and
carries, its patches could cause stability issues in the user
devices. Our implementation allows users to selectively
disable a problematic patch. With KARMA’s cloud ser-
vice, we can automatically blacklist such patches from
specific device models. We can also work with device
vendors so patches can be quickly tested before release.

5 Related Work

Kernel live patching: the first category of the related
work consists of a number of kernel live patching sys-
tems, such as kpatch [23], kGraft [22], Ksplice [27], and
KUP [37]. They assume that the kernel source code
is available (a reasonable assumption for their purpose)
and create live patches from source code patches. Their
patches are however in the binary form. This design does
not fit the threat model of KARMA. First, although An-
droid kernel is licensed in GPL, many Android vendors,
small and large alike [19], do not (promptly) release their
kernel source code. Second, these systems lack a mech-
anism to automatically adapt a kernel patch to different
Android devices. An important design goal of KARMA
is adaptiveness so that it can scale to the Android ecosys-
tem. Third, binary patches are prone to misuse because
they are hard to understand and vet, and these systems
have no strong confinement of patches’ run-time behav-
iors. KARMA has been designed specifically to address
all these challenges in a live kernel patching system for
Android.

Among these systems, kpatch [23] and kGraft [22] re-
place a whole vulnerable function with the patched ver-
sion. They differ in how patches are applied: kpatch
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stops all the running processes and ensures that none
of these processes are running inside the function to be
patched (similar to KARMA). kGraft instead maintains
two copies of each patched function at the same time and
dynamically decides which copy to execute. Specifically,
the kernel code active at the time of patching (e.g., sys-
tem calls, kernel threads, and interrupt handlers) is dis-
patched to the original version until it reaches a comple-
tion point; all other code is dispatched to the patched ver-
sion. Like kpatch, Ksplice [27] also stops the machine
to apply patches. However, Ksplice can patch individual
instructions instead of replacing whole functions. These
systems share the same limitation that they cannot sup-
port patches that “change the semantics of persistent data
structures [27]”. To address that, KUP [37] employs the
process checkpoint-and-restart to implement kernel hot
patching. Specifically, it checkpoints all the user pro-
cesses, replaces the running kernel with the patched ver-
sion, and then restores these user processes. Because it
replaces the whole kernel, KUP can support all kinds
of patches. However, restoring external resources (e.g.,
sockets) is often problematic for checkpoint-and-restore
systems, including KUP.

Semantic matching: the second category of the re-
lated work includes systems that compare semantics or
similarity of two functions [31, 32, 39, 40]. BinHunt [32]
first uses symbolic execution to compute semantic simi-
larity of basic blocks and uses a graph isomorphism algo-
rithm to further compare the similarity of CFGs (control-
flow graphs). Their follow-up work, iBinHunt [40],
extends BinHunt with the inter-procedural control-flow
graph comparison. However, whole-program compari-
son could be very time-consuming. To solve that, iB-
inHunt runs the program with taint tracking and only
compares basic blocks within the same data flows. This
approach is not suitable for KARMA because none of
the commercial Android devices support kernel dynamic
taint tracking or whole-kernel instrumentation. CoP [39]
also uses symbolic execution to compute the seman-
tic similarity of basic blocks and uses the longest com-
mon sub-sequence of linearly independent paths to mea-
sure the similarity of programs. KARMA uses symbolic
execution to solve syntax differences in semantically-
equivalent functions. In addition, it leverages the fact
that most kernel functions remain semantically similar
across different kernel versions to significantly speed-
up the comparison. DiscovRE [31] takes a different ap-
proach by using the syntactic information (i.e., structural
and numeric features) to compare function similarities.
This can significantly improve the analysis efficiency.
KARMA requires a more precise comparison than that
can be provided by syntax-based approaches.

Automatic patch/filter generation: the third category
of the related work includes systems that aim at auto-

matically generating patches or input filters. For exam-
ple, Talos [34] is a vulnerability rapid response system.
It inserts SWRRs (Security Workarounds for Rapid Re-
sponse) into the kernel source code in order to temporar-
ily protect kernel vulnerabilities from being exploited.
Talos shares a similar goal as KARMA, and both rely
on the kernel’s error handling code to gracefully neutral-
ize attacks. Talos’ source code based approach cannot
be applied to the fragmented Android ecosystem. To ad-
dress the fragmentation problem, KARMA can automat-
ically adapt a patch to other devices and strictly confine
the run-time behaviors of its patches. ClearView [41]
learns invariants of a program during a dynamic train-
ing phase. When program failure happens, it identifies
the failure-related invariants and uses them to generate
patches for the program. PAR [38] proposes a pattern-
based automatic program repair framework. Its gener-
ated patches resemble the patterns learned from human-
written patches. ASSURE introduces rescue points that
can recover software from unknown exploits while main-
taining system integrity and availability [45]. Shield-
Gen [29] is a system for automatically generating vul-
nerability signatures (i.e., data patches). Signature-based
filtering can only block known attacks. To address that,
ShieldGen leverages protocol specifications to generate
more exploits from an initial sample. Bouncer [28] uses
static analysis and dynamic symbolic execution to cre-
ate comprehensive input filters to protect software from
bad inputs. Compared to these systems, KARMA aims at
protecting kernel vulnerabilities for many Android sys-
tems and have a different design.

6 Summary

We have presented the design, implementation, and eval-
uation of KARMA, an adaptive live patching system
for Android kernel vulnerabilities. By filtering mali-
cious user inputs, KARMA can protect most Android
kernel vulnerabilities from exploits. Compared to ex-
isting kernel live patching systems, the unique features
of KARMA are that it can automatically adapt a refer-
ence patch for many Android devices, and it strictly con-
fines the run-time behaviors of its patches. These two
features allow KARMA to scale to a large, fragmented
Android ecosystem. Our evaluation results demonstrated
that KARMA can protect most critical Android kernel
vulnerabilities in many devices with negligible perfor-
mance overhead.
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A Evaluation of Applicability: Additional
Case Studies

A.1 CVE-2014-3153 (Towelroot)
this vulnerability is the second most-used one to root Android
devices, known as “Towelroot”. It lies in the futex_requeue
function, which takes the addresses of two futexes as argu-
ments. By design, the function should only re-queue from a
non-PI (priority inheritance [46]) futex to a PI futex. How-
ever, this condition is violated if these two addresses point to
the same futex. This leads to an exploitable dangling pointer
condition. To fix this bug, Linux simply adds a check to en-
sure that these two futex addresses are different [13]. This vul-
nerability can be similarly fixed in KARMA by hooking the
futex_requeue function, obtaining its arguments, and com-
pare their equality. The patch returns -EINVAL if an attack is
detected (Figure 4).

A.2 CVE-2015-3636 (PingPong Root)
This is another popular vulnerability used to root Android de-
vices, known as “PingPong Root”. It originates in the inter-
action between the socket and hlist functions. Specifically,
when hlist_nulls_del(&sk-> sk_nulls_node) is called,
it assigns LIST_POISON2 to sk->sk_nulls_node.pprev.
LIST_POISON2 is defined as the constant of 0x200200. If in-
terpreted as an address, address LIST_POISON2 can be mapped
by a malicious app in the user space without any permissions.
A second call to connect by the attacker will result in a
use-after-free on this attacker-controlled address, compromis-
ing the kernel. The Linux patch sets the pointer to NULL in
the ping_unhash function [16]. However, this method cannot
be applied by KARMA because its patch is prohibited from
writing to the kernel memory. Instead, the patch checks if
sk->sk_nulls_node.pprev equals to LIST_POISON2. If so,
it returns an error code without freeing the associated mem-
ory. This blocks the exploit but leaves the socket object on the
list. This patch is not clean, but it works and does not impact
the kernel’s functionalities. Alternatively, KARMA can hook
connect in the kernel to prevent reusing the freed socket.
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Vulnerability Hotpatching Using KARMA Adaptable?

CVE-2016-7117
Hook __sys_recvmmsg and its invocation of fput. On returning of fput, check
if __sys_recvmmsg's err is not equal to 0 and not equal to -EAGAIN. If so, return
err and skip the rest execution.

!

CVE-2016-5340
Hook is_ashmem_file and check the full path of the input file. Only return
True if the full path is /dev/ashmem. Otherwise return False. !

CVE-2016-4470
Hook key_reject_and_link and its invocation of __key_link_end. Check
if link_ret is 0 before calling into __key_link_end. If so, simply return.
key_reject_and_link is void typed so any return value is fine.

!

CVE-2016-3951 It requires writing to kernel memory, violating KARMA's basic constraint. Level-3

CVE-2016-3841
Hook do_ipv6_setsockopt to avoid concurrent access to the socket options of
the same socket fd. !

CVE-2016-3775
Hook aio_setup_single_vector and check if the input kiocb->ki_nbytes
exceeds MAX_RW_COUNT. If so, return -EFAULT. !

CVE-2016-3768
It requires to skip some instructions and continue execution afterwards, which is
not an allowed operation by KARMA.

Level-3

CVE-2016-3767
Hook mtk_p2p_wext_discovery_results etc. functions of which the bodies
are deleted by the official patch, and simply return 0. !

CVE-2016-3134
Android does not enable CONFIG_USER_NS so this should not be a direct threat
to Android devices. But KARMA can still fix it by iterating newpos = pos +
e->next_offset to check if there is a out-of-bound access.

!

CVE-2016-2503
It requires to reorder the instructions (to change when to take the lock). This is
not an allowed operation by KARMA.

Level-3

CVE-2016-2474
Hook hdd_parse_ese_beacon_req and check the tempInt read from the ar-
gument pValue. If it exceeds SIR_ESE_MAX_MEAS_IE_REQS, return -EINVAL. !

CVE-2016-2468 Hook _kgsl_sharedmem_page_alloc and validate the input size. !

CVE-2016-2467

Hook msm_compr_ioctl and its invocation of __copy_from_user.
Check if the params_length passed into __copy_from_user exceeds
MAX_AC3_PARAM_SIZE. If so, return error code from __copy_from_user
without executing into it.

!

CVE-2016-2466
Hook adm_get_params and check if adm_get_parameters[0] exceeds
ADM_GET_PARAMETER_LENGTH-1 and params_length/sizeof(int). If so,
return -EINVAL.

!

CVE-2016-2465
Hook the concerned functions in drivers/video/msm/mdss/mdss_debug.c
patched in the original patch, and their invocations of __copy_to_user. Validate
len and count, and return -EFAULT in case of exploit conditions.

!

CVE-2016-2067
Hook check_vma and return -EFAULT if vma->vm_flags & memdesc->flags
!= memdesc->flags. !

CVE-2016-2062
Hook adreno_perfcounter_query_group and its invocation of kmalloc. On
the entry of kmalloc, check if t is larger than count. !

CVE-2016-0844
Hook ipa_wwan_ioctl and its invocation of find_mux_channel_index. On
entry of find_mux_channel_index, if the value of rmnet_index exceeds
MAX_NUM_OF_MUX_CHANNEL, return -EFAULT directly.

!

CVE-2016-0843
Hook msm_l2_test_set_ev_constraint and check if shift_idx >=
PMU_CODES_SIZE. Return -EINVAL in case of that. !

CVE-2016-0820
Hook priv_get_struct and its invocation of __copy_from_user, check if
prIwReqData->data.length>u4CopyDataMax and return -EFAULT if so. !

CVE-2016-0806
Hook iw_softap_set_channel_range and check if the caller has the capabil-
ity CAP_NET_ADMIN, return -EPERM if not. !

CVE-2016-0805
Hook get_krait_evtinfo and check if reg exceeds krait_max_l1_reg, re-
turn -EINVAL if so. !

CVE-2016-0801
Hook wl_validate_wps_ie and check if subelt_len exceeds the size of
devname (100). Hook wl_notify_sched_scan_results and its invocation of
memcpy and check if the buffer length passed in exceeds DOT11_MAX_SSID_LEN.

!

CVE-2016-0758
Hook asn1_find_indefinite_length and check if dp is larger than datalen.
Return -1 if so. !

CVE-2016-0728
Hook join_session_keyring and iterate the keyring. Return error if
keyring->usage reaches the overflow boundary (0xFFFFFFFF). !
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Vulnerability Hotpatching Using KARMA Adaptable?

CVE-2015-8942
Hook msm_cpp_subdev_ioctl, if the argument cmd equals to
VIDIOC_MSM_CPP_IOMMU_DETACH, from its argument sd obtain
cpp_dev->stream_cnt and check if it equals to 0.

!

CVE-2015-8941
Hook msm_isp_axi_check_stream_state and iterate over the input
stream_cfg_cmd->stream_handle to see if one exceeds MAX_NUM_STREAM.
The other vulnerable functions can be fixed in the same way.

!

CVE-2015-8940
Hook q6lsm_snd_model_buf_alloc and check if the integer argument len is
out of range. !

CVE-2015-8939
Hook mdp4_argc_process_write_req and check if the input
pgc_ptr->num_r/g/b_stages are out of range. !

CVE-2015-8938
Hook msm_isp_send_hw_cmd and check if the ioctl input arguments satisfy the
constraints updated by the official patch. The constraint list is long so omitted
here.

!

CVE-2015-8816
Fixing the problem requires locking and increasing the reference of the usb_hub
structure, thus the patch needs to write to kernel memory.

Level-3

CVE-2015-6640
Hook the system call prctl and check if the corresponding argument as the end
passed to prctl_set_vma_anon_name is out of range. !

CVE-2015-6638
Hook PVRSRVSyncPrimSetKM and check if the input
psSyncBlk->ui32BlockSize is smaller than another input ui32Index *
sizeof(IMG_UINT32).

!

CVE-2015-6619
The official patch is to remove all .tmpfile handlers. So we can simply hook
such handlers and always return -EINVAL. !

CVE-2015-2686
Hook sys_sendto/sys_recvfrom and check if the input buff and len/size
are out of range. !

CVE-2015-0570
Hook __iw_softap_setwpsie and check if ioctl arguments have improper
length, same as the official patch. The check list is long so omitted here. !

CVE-2014-9902
Hook dot11fUnpackIeCountry and dot11fUnpackIeSuppChannels to vali-
date the value of the input ielen. !

CVE-2014-9891
Hook __qseecom_process_rpmb_svc_cmd and validate if the input req_ptr
fields passed in from user space are out of range. !

CVE-2014-9890
Hook msm_cci_validate_queue and validate if cmd_size extracted from the
inputs is larger than 10. !

CVE-2014-9887
Hook qseecom_send_modfd_cmd and its invocation of __copy_from_user.
Validate req.cmd_req_len obtained from user space. !

CVE-2014-9884
Hook qseecom_register_listener etc. handlers to validate pointers passed
in from user space, same as the official patch. !

CVE-2014-9883
Hook extract_dci_log and check for the integer overflow condition of the
input log_length. !

CVE-2014-9882
Hook iris_vidioc_s_ctrl. If the input ctrl->id is
V4L2_CID_PRIVATE_IRIS_RIVA_ACCS_LEN/_POKE, validate if the copied
data length exceeds MAX_RIVA_PEEK_RSP_SIZE.

!

CVE-2014-9881
Hook iris_vidioc_s_ext_ctrls and perform range/overflow check on the in-
put ctrl. !

CVE-2014-9880
Hook vid_enc_ioctl and its invocation of __copy_from_user. Validate
seq_header fetched from user space. !

CVE-2014-9879
Hook mdp3_histogram_start and validate its input req; hook mdp3_pp_ioctl
and validate mdp_pp obtained from user space. !

CVE-2014-9878
Hook send_write_packing_test_read and validate its input buffer and
count. !

CVE-2014-9869
Hook msm_isp_ functions as specified in the official patch, and validate if
stats_idx from input exceeds MSM_ISP_STATS_MAX. !

CVE-2014-9868
Hook msm_csiphy_release and validate the value of input
csi_lane_params->csi_lane_mask. !

CVE-2014-9529
Fixing the issue requires to change the instruction order (delay the reference put).
This is not a secure operation permitted by KARMA.

Level-3

Table 6: A partial list of recent critical Android kernel vulnerabilities and KARMA's effectiveness to create adaptable
patches for them. Some adaptable vulnerabilities are omitted due to the space constraint.
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Abstract
Software-update mechanisms are critical to the security
of modern systems, but their typically centralized design
presents a lucrative and frequently attacked target. In this
work, we propose CHAINIAC, a decentralized software-
update framework that eliminates single points of fail-
ure, enforces transparency, and provides efficient verifi-
ability of integrity and authenticity for software-release
processes. Independent witness servers collectively ver-
ify conformance of software updates to release policies,
build verifiers validate the source-to-binary correspon-
dence, and a tamper-proof release log stores collectively
signed updates, thus ensuring that no release is accepted
by clients before being widely disclosed and validated.
The release log embodies a skipchain, a novel data struc-
ture, enabling arbitrarily out-of-date clients to efficiently
validate updates and signing keys. Evaluation of our
CHAINIAC prototype on reproducible Debian packages
shows that the automated update process takes the average
of 5 minutes per release for individual packages, and only
20 seconds for the aggregate timeline. We further eval-
uate the framework using real-world data from the PyPI
package repository and show that it offers clients security
comparable to verifying every single update themselves
while consuming only one-fifth of the bandwidth and hav-
ing a minimal computational overhead.

1 Introduction
Software updates are essential to the security of comput-
erized systems as they enable the addition of new se-
curity features, the minimization of the delay to patch
disclosed vulnerabilities and, in general, the improve-
ment of their security posture. As software-update sys-
tems [17,24,34,35,48] are responsible for managing, dis-
tributing, and installing code that is eventually executed
on end systems, they constitute valuable targets for attack-

ers who might, e.g., try to subvert the update infrastruc-
ture to inject malware. Furthermore, powerful adversaries
might be able to compromise a fraction of the developers’
machines or tamper with software-update centers. There-
fore, securing update infrastructure requires addressing
four main challenges:

First, the integrity and authenticity of updates tradition-
ally depends on a single signing key, prone to loss [53]
or theft [29, 32, 70]. Having proper protection for sign-
ing keys to defend against such single points of failure is
therefore a top priority. Second, the lack of transparency
mechanisms in the current infrastructure of software dis-
tribution leaves room for equivocation and stealthy back-
dooring of updates by compromised [15,46], coerced [11,
28, 66], or malicious [36] software vendors and distribu-
tors. Recent work on reproducible software builds [49,59]
attempts to counteract this deficit by improving on the
source-to-binary correspondence. However, it is unsuit-
able for widespread deployment in its current form, as re-
building packages puts a high burden on end users (e.g.,
building the Tor Browser bundle takes 32 hours on a mod-
ern laptop [60]). Third, attackers might execute a man-in-
the-middle attack on the connections between users and
update providers (e.g., with DNS cache poisoning [67] or
BGP hijacking [6]), thus enabling themselves to mount
replay and freeze attacks [15] against their targets. To pre-
vent attackers from exploiting unpatched security vulner-
abilities as a consequence of being targeted by one of the
above attacks [72], clients must be able to verify timeli-
ness of updates. Finally, revoking and renewing signing
keys (e.g., in reaction to a compromise) and informing all
their clients about these changes is usually cumbersome.
Hence, modern software-update systems should provide
efficient and secure means to evolve signing keys and
should enable client notification in a timely manner.

To address these challenges, we propose CHAINIAC,
a decentralized software-update framework that removes
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single points of failure, increases transparency, ensures in-
tegrity and authenticity, and retains efficient verifiability
of the software-release process.

First, CHAINIAC introduces a decentralized release
sign-off model for developers which retains efficient sig-
nature verifiability by using a multi-signature scheme. To
propose a software release, a threshold of the developers
has to sanity-check1 and sign off on it to express their ap-
proval. Third-party witness servers then validate the pro-
posal against a release policy. These witnesses are chosen
by the developers and are trusted collectively but not in-
dividually. If the proposed release is valid, the witnesses
produce a collective signature [69], which is almost as
compact and inexpensive to verify as a conventional digi-
tal signature. Although improving security, this approach
does not place a burden on clients who otherwise would
have to verify multiple signatures per updated package.

Second, CHAINIAC introduces collectively verified
builds to validate source-to-binary correspondence.
CHAINIAC’s verified builds are an improvement over re-
producible builds, in that they ensure that binaries are not
only reproducible in principle, but have indeed been iden-
tically reproduced by multiple independent verifiers from
the corresponding source release. Concretely, this task is
handled by a subset of the witness servers, or build veri-
fiers, that reproducibly build the source code of a release,
compare the result with the binary provided by the devel-
opers, and attest this validation to clients upon success.
An additional advantage of this approach is that compa-
nies, in order to provide the source-to-binary guarantee to
customers, can reveal source code only to third-party build
verifiers who sign appropriate non-disclosure agreements.

Third, CHAINIAC increases transparency and ensures
the accountability of the update process by implement-
ing a public update-timeline that comprises a release log,
freshness proofs, and key records. The timeline is main-
tained collectively by the witness servers such that each
new entry can only be added – and clients will only ac-
cept it – if appropriate thresholds of the witnesses and
build verifiers approve it. This mechanism ensures the
source-to-binary binding to protect clients from compile-
time backdoors or malware, and it guarantees that all users
have a consistent view of the update history, preventing
adversaries from stealthily attacking targeted clients with
compromised updates. Even if an attacker manages to slip
a backdoor into the source code, the corresponding signed
binary stays publicly available for scrutiny, thereby pre-
venting secret deployment against targeted users.

1Precise details of this review process depend on the developers’ en-
gineering disciplines, which are also security-critical but are beyond the
scope of this paper.

Finally, to achieve tamper evidence, consistency, and
search efficiency of the timeline, and to enable a secure
rotation of signing keys, CHAINIAC employs skipchains,
novel authenticated data structures inspired by skip
lists [55, 61] and blockchains [41, 56]. The skipchains
enable clients to efficiently navigate arbitrarily long up-
date timelines, both forward (e.g., to validate a new soft-
ware release) and backward (e.g., to downgrade or ver-
ify the validity of older package-dependencies needed for
compatibility). Back-pointers in skipchains are crypto-
graphic hashes, whereas forward-pointers are collective
signatures. Due to skipchains, even resource-constrained
clients (e.g., IoT devices) can obtain and efficiently val-
idate binary updates, using a hard-coded initial software
version as a trust anchor. Such clients do not need to con-
tinuously track a release chain, like a Bitcoin full-node
does, but can privately exchange, gossip, and indepen-
dently validate on-demand newer or older blocks due to
the skipchain’s forward and backward links being offline-
verifiable. Although blockchains are well-known tools, to
our knowledge the skipchain structure is novel and can be
useful in other contexts, besides software updates.

The evaluation of our prototype implementation of
CHAINIAC on reproducible Debian packages shows that,
in a group of more than a hundred verifiers, the end-
to-end cost per witness of release attestation is on av-
erage five minutes per package, with the verified builds
dominating this overhead. Furthermore, skipchains can
increase the security of PyPI updates with minimal over-
head, whereas a strawman approach would incur the in-
crease of 500%. Finally, creating a skipblock of the ag-
gregate update timeline for the full Debian repository of
about 52,000 packages requires only 20 seconds of CPU
time for a witness server, whereas receiving the latest
skipblock on a client introduces only 16% of overhead to
the usual communication cost of the APT manager [23].

In summary, our main contributions are as follows:
• We propose CHAINIAC (Sections 3 and 5), a software-

update framework that enhances security and trans-
parency of the update process via system-wide decen-
tralization and efficiently verifiable logging.

• We introduce skipchains (Section 4), a novel authenti-
cated data structure that enables secure trust delegation
and efficient bi-directional timeline traversal, and we
discuss their application in the context of CHAINIAC.

• We conduct an informal security analysis (Section 6) of
CHAINIAC, justifying its resilience in common attack
scenarios.

• We implement CHAINIAC (Section 7) and evalu-
ate (Section 8) a prototype on real-world data from the
Debian and PyPI package repositories.
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2 Background
In this section, we give an overview of the concepts and
notions CHAINIAC builds on, this includes scalable col-
lective signing, reproducible builds, software-update sys-
tems, blockchains, and decentralized consensus.

2.1 Collective Signing and Timestamping
CoSi [69] is a protocol for large-scale collective signing.
Aggregation techniques and communication trees [25,73]
enable CoSi to efficiently produce compact Schnorr multi-
signatures [64] and to scale to thousands of participants.
A complete group of signers, or witnesses, is called a col-
lective authority or cothority. CoSi assumes that signa-
ture verifiers know the public keys of the witnesses, all of
which are combined to form an aggregate public key of
the cothority. If witnesses are offline during the collective
signing process or refuse to sign a statement, the resulting
signature includes metadata that documents the event.

In CHAINIAC, we rely on CoSi for efficient collective
signing among a large number of witnesses. Furthermore,
we use the witness-cosigned timestamp service [69] as a
building block in our design for the protection of clients
against replay and freeze attacks [15] (where clients are
blocked from learning about the availability of new soft-
ware updates by an adversary). We describe the design of
the protection mechanism in Section 5.6.

2.2 Reproducible Builds
Ensuring that source code verifiably compiles to a cer-
tain binary is difficult in practice, as there are often non-
deterministic properties in the build environment [49,59],
which can influence the compilation process. This is-
sue poses a variety of attack vectors for backdoor inser-
tion and false security-claims [36]. Reproducible builds
are software development techniques that enable users
to compile deterministically a given source code into
one same binary, independent of factors such as system
time or build machines. An ongoing collaboration of
projects [62] is dedicated to improving these techniques,
e.g., Debian claims that 90% of its packages in the testing
suite are reproducible [22], amounting to ∼21,000 pack-
ages. To provide a source-to-binary attestation as one of
the guarantees, CHAINIAC relies on software projects to
adopt the practices of reproducible builds.

2.3 Roles in Software-Update Systems
The separation of roles and responsibilities is one of the
key concepts in security systems. TUF [63] and its succes-
sor, Diplomat [44], are software-update frameworks that
make update systems more resilient to key compromise
by exploiting this concept. In comparison to classic sys-

tems, these frameworks categorize the tasks that are com-
monly involved in software-update processes and specify
a responsible role for every category. Each of these roles is
then assigned a specific set of capabilities and receives its
own set of signing keys, which enables TUF and Diplomat
to realize different trade-offs between security and usabil-
ity. For example, frequently used keys with low-security
risks are kept online, whereas rarely needed keys with a
high-security risk are kept offline, making it harder for
attackers to subvert them. To achieve, for each role, the
sweet-spot between security and usability, we follow a
similar delegation model in our multi-layered architecture
in Section 5.6. However, we decentralize all these roles,
use a larger number of keys, and log their usage and evo-
lution to further enhance security and add transparency.

2.4 Blockchains and Consensus
Introduced by Nakamoto [56], blockchains are a form of
a distributed append-only log that is used in cryptocur-
rencies [56, 75] as well as in other domains [41, 74].
Blockchains are composed of blocks, each typically con-
taining a timestamp, a nonce, a hash of the previous
block, and application-specific data such as cryptocur-
rency transactions. As each block includes a hash of the
prior block, it depends on the entire prior history, thus
forming a tamper-evident log.

CHAINIAC uses BFT-CoSi, introduced in Byz-
Coin [42], as a consensus algorithm to ensure a single
consistent timeline, e.g., while rotating signing keys.
BFT-CoSi implements PBFT [16] by using collective
signing [69] with two CoSi-rounds to realize PBFT’s
prepare and commit phases. CHAINIAC’s skipchain
structure is partly inspired by blockchains [41]: Whereas
ByzCoin also uses collective signatures to enable light-
client verification, skipchains extend this functionality
with skiplinks to enable clients to efficiently track and
validate update timelines, instead of downloading and
validating every signature. As a result skipchains can be
used for more efficient offline verification of transactions
in distributed ledger systems that work with consensus
committees [2, 42, 43].

3 System Overview
In this section, we state high-level security goals that
a hardened software-update system should achieve, we in-
troduce a system and threat model, and we present an ar-
chitectural overview of our proposed framework.

3.1 Security Goals
To address the challenges listed in Section 1, we formulate
the following security goals for CHAINIAC:
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Figure 1: Architectural overview of CHAINIAC

1. No single point of failure: The software-update sys-
tem should retain its security guarantees in case any sin-
gle one of its components fails (or gets compromised),
whether it is a device or a human.

2. Source-to-binary affirmation: The software-update
system should provide a high assurance-level to its
clients that the deployed binaries have been built from
trustworthy and untampered source code.

3. Efficient release-search and verifiability: The
software-update system should provide means to its
clients to find software release (the latest or older ones)
and verify its validity in an efficient manner.

4. Linear immutable public release history: The
software-update system should provide a globally con-
sistent tamper-evident public log where each software
release corresponds to a unique log entry that, once cre-
ated, cannot be modified or deleted.

5. Evolution of signing keys: The software-update sys-
tem should enable the rotation of authoritative keys,
even when a (non-majority) subset of the keys is com-
promised.

6. Timeliness of updates: Clients should be able to ver-
ify that the software indeed corresponds to the latest
one available.

3.2 System and Threat Model
In the system model, we introduce terminology and ba-
sic assumptions; and, in the threat model, potential attack
scenarios against CHAINIAC.

System model. Developers write the source code of a
software project and are responsible for approving and
announcing new project releases. Each release includes
source code, binaries (potentially, for multiple target ar-
chitectures), and metadata such as release description.
A snapshot refers to a set of releases of different software
projects at a certain point in time. Projects can have sin-
gle or multiple packages. Witnesses are servers that can
validate and attest statements. They are chosen by the
developers and should be operated ideally by both de-

velopers and independent trusted third parties. Witnesses
are trusted as a group but not individually. Build veri-
fiers are a subset of the witnesses who execute, in addi-
tion to their regular witness tasks, reproducible building
of new software releases and compare them to the release
binaries. Witnesses and build verifiers jointly form an up-
date cothority (collective authority). The update timeline
refers to a public log that keeps track of the authorita-
tive signing keys, as well as the software releases. Users
are clients of the system; they receive software releases
through an (untrusted) software-update center.

Threat model. We assume that a threshold td of nd de-
velopers are honest, meaning that less than td are com-
promised and want to tamper with the update process. We
further assume that a threshold tw of nw witness servers is
required for signing, whereas at most fw = nw − tw wit-
nesses can potentially be faulty or compromised. To en-
sure consistency and resistance to fork attacks, CHAINIAC
requires nw ≥ 3fw + 1, hence, tw >= 2fw + 1. If this
property is violated, CHAINIAC does not guarantee sin-
gle history of the update timeline, however, even then,
each history will individually be valid and satisfy the other
correctness and validation properties, provided fewer than
tw witnesses are compromised. Furthermore, a threshold
tv of nv build verifiers is honest and uses a trustworthy
compiler [71] such that malicious and legitimate versions
of a given source-code release are compiled into differ-
ent binaries. Software-update centers and mirrors might
be partially or fully compromised. Moreover, a powerful
(e.g., state-level) adversary might try to target a specific
group of users by coercing developers or an update center
to present to his targets a malicious version of a release.
Finally, we assume that users of CHAINIAC are able to se-
curely bootstrap, i.e., receive the first version of a software
package with a hard-coded initial public key of the system
via some secure means, e.g., pre-installed on a hard drive,
on a read-only media, or via a secure connection.
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An attack on the system is successful if an attacker
manages to accomplish at least one of the following:
• Make developers sign the source code that they do not

approve.
• Substitute a release binary with its tampered version

such that the update cothority signs it.
• Trick the update cothority into signing a release that is

not approved by the developers.
• Create a valid fork of the public release history or mod-

ify/revoke its entries; or present different users with dif-
ferent views of the history.

• Trick an outdated client into accepting a bogus public
key as a new signing key of the update cothority.

• Get a client to load and run a release binary that is not
approved by the developers or validated by the update
cothority.

3.3 Architecture Overview
An illustration of CHAINIAC, showing how its various
components interact with each other, is given in Figure 1.
To introduce CHAINIAC, we begin with a simple straw-
man design that most of today’s software-update systems
use, and we present a roadmap for evolving this design
into our target layout. Initially, we assume that only a
single, static, uncompromisable cryptographic key pair
is used to sign/verify software releases. The private key
might be shared among a group of developers, and the
public key is installed on client devices, e.g., during a
bootstrap. To distribute software, one of the developers
builds the source code and pushes the binary to a trusted
software-update center from where users can download
and install it. This strawman system guarantees that users
receive authenticated releases with a minimal verification
overhead.

This design, though common, is rife with precarious as-
sumptions. Expecting the signing key to be uncompro-
misable is unrealistic, especially if shared among mul-
tiple parties, as attackers need to subvert only a single
developer’s machine to retrieve the secret key or to co-
erce only one of the key owners. For similar reasons, it is
utopian to assume that the software-update center is trust-
worthy. Moreover, without special measures, it is hard to
verify that the binaries were built from the given (un-
modified) source code, as the compilation process is of-
ten influenced by variations in the building-environment,
hence non-deterministic. If an attacker manages to replace
a compiled binary with its backdoored version, before it
is signed, the developers might not detect the substitution
and unknowingly sign the subverted software.

Eliminating these assumptions creates the need to track
a potentially large number of dynamically changing sign-
ing keys; furthermore, checking a multitude of signatures

would incur large overheads to end users who rarely up-
date their software. To address these restrictions, we trans-
form the strawman design into CHAINIAC in six steps:

1. To protect against a single compromised developer,
CHAINIAC requires that developers have individual
signing keys and that a threshold of the developers sign
each release, see step 1⃝ in Figure 1.

2. To be able to distribute verified binaries to end users,
we introduce developer-signed reproducible builds. Al-
though users still need to verify multiple signatures,
they no longer need to build the source code.

3. To further unburden users and developers, we use a
cothority to validate software releases (check developer
signatures and reproducible binaries) and collectively
sign them, once validated: steps 2⃝ and 3⃝ in Figure 1.

4. To protect against release-history tampering or stealthy
developer-equivocation, we adopt a public log for soft-
ware releases in the form of collectively signed decen-
tralized hash chains, see step 4⃝ in Figure 1.

5. To enable efficient key rotation, we replace hash
chains with skipchains, blockchain-like data structures
that enable forward linking and decrease verification
overhead by multi-hop links.

6. To ensure update timeliness and further harden the sys-
tem against key compromise, we introduce a multi-
layer skipchain-based architecture that, in particular,
implements a decentralized timestamp role.

Before presenting CHAINIAC in detail in Section 5, we
introduce skipchains, one of CHAINIAC’s core building
blocks, in Section 4.

4 Skipchains

Skipchains are authenticated data structures that com-
bine ideas from blockchains [41] and skiplists [55, 61].
Skipchains enable clients (1) to securely traverse the time-
line in both forward and backward directions and (2) to
efficiently traverse short or long distances by employing
multi-hop links. Backward links are cryptographic hashes
of past blocks, as in regular blockchains. Forward links
are cryptographic signatures of future blocks, which are
added retroactively when the target block appears.

We distinguish randomized and deterministic
skipchains, which differ in the way the lengths of
multi-hop links are determined. The link length is tied to
the height parameter of a block that is computed during
block creation, either randomly in randomized skipchains
or via a fixed formula in deterministic skipchains. In both
approaches, skipchains enable logarithmic-cost timeline
traversal, both forward and backward.
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4.1 Design
We denote a skipchain by Sh

b where h ≥ 1 and b > 0 are
called skipheight and skipbasis, respectively. If 0 < b < 1
we call the skipchain randomized; and if b ≥ 1 (b integer),
we call it deterministic. The elements of a skipchain are
skipblocks Bt = (idt, ht, Dt, Bt, Ft) where t ≥ 0 is the
block index. The variables idt, ht, Dt, Bt, and Ft denote
block identifier, block height, payload data, list of back-
ward links, and list of forward links, respectively. Both Bt

and Ft can store exactly ht links and a reference at index
0 ≤ i ≤ ht−1 in Bt (Ft) points to the last (next) block in
the timeline having at least height i+1. For deterministic
skipchains this block is Bt−j (Bt+j) where j = bi.

The concrete value of ht is determined by the depen-
dency of the skipchain’s type: if Sh

b is randomized, then
a coin, with probability b to land on heads, is repeatedly
flipped. Once it lands on tails, we set ht = min{m,h}
where m denotes the number of times it landed on heads
up to this point. If Sh

b is deterministic, we set

ht = max{i : 0 ≤ i ≤ h ∧ 0 ≡ t mod bi−1} .

Fig. 2 illustrates a simple deterministic skipchain.
During the creation of a block, its identifier is set to the

(cryptographic) hash of Dt and Bt, both known at this
point, i.e., idt = H(Dt, Bt). For a backward link from Bt

to Bt−j , we simply store idt−j at index i in Bt. This works
as in regular blockchains but with the difference that links
can point to blocks further back in the timeline.

Forward links [41], are added retroactively to blocks
in the log, as future blocks do not yet exist at the time
of block creation. Furthermore, forward links cannot be
cryptographic hashes, as this would result in a circular de-
pendency between the forward link of the current and the
backward link of the next block. For these reasons, for-
ward links are created as digital (multi-)signatures. For a
forward link from Bt to Bt+j , we store the cryptographic
signature ⟨idt+j⟩Et at index i in Ft where Et denotes the

entity (possibly a decentralized collective such as a BFT-
CoSi cothority [41, 42, 69]) that represents the head of
trust of the system during time step t. To create the re-
quired signatures for the forward links until all slots in Ft

are full, in particular, Et must “stay alive” and watch the
head of the skipchain. Once this is achieved, the job of Et

is done and it ceases to exist.

4.2 Useful Properties and Applications
Skipchains provide a framework for timeline tracking,
which can be useful in other domains such as cryptocur-
rencies [42, 43, 56], key-management [41, 51], certificate
tracking [1,45] or, in general, for membership evolution in
decentralized systems [68,69]. Beyond the standard prop-
erties of blockchains, skipchains offer the following two
useful features.

First, skipchains enable clients to securely and effi-
ciently traverse arbitrarily long timelines, both forward
and backward from any reference point. If the client has
the correct hash of an existing block and wants to obtain
a future or past block in the timeline from an untrusted
source (such as a software-update server or a nearby peer),
to cryptographically validate the target block (and all links
leading to it), the client needs to download only a logarith-
mic number of additional, intermediate blocks.

Secondly, suppose two resource-constrained clients
have two reference points on a skipchain, but have no
access to a database containing the full skipchain, e.g.,
clients exchanging peer-to-peer software updates while
disconnected from any central update server. Provided
these clients have cached a logarithmic number of ad-
ditional blocks with their respective reference points –
specifically the reference points’ next and prior blocks at
each level – then the two clients have all the information
they need to cryptographically validate each others’ ref-
erence points. For software updates, forward validation is
important when an out-of-date client obtains a newer up-
date from a peer. Reverse validation (via hashes) is useful
for secure version rollback, or in other applications, such
as efficiently verifying a historical payment on a skipchain
for a cryptocurrency.

5 Design of CHAINIAC
In this section, we present CHAINIAC, a framework en-
hancing security and transparency of software updates.
For clarity of exposition, we describe CHAINIAC step-by-
step starting from a strawman update-system that uses one
key to sign release binaries, as introduced in Section 3. We
begin by introducing a decentralized validation of both
source code and corresponding binaries, while alleviat-
ing the developer and client overhead. We then improve
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transparency and address the evolution of update config-
urations by using skipchains. Finally, we reduce traver-
sal overheads with multi-level skipchains and demonstrate
how to adapt CHAINIAC to multi-package projects.

5.1 Decentralized Release-Approval
The first step towards CHAINIAC involves enlarging
the trust base that approves software releases. Instead of
using a single (shared) key to sign updates, each software
developer signs using their individual keys. At the begin-
ning of a project, the developers collect all their public
keys in a policy file, together with a threshold value that
specifies the minimal number of valid developer signa-
tures required to make a release valid. Complying with
our threat model, we assume that this policy file, as a trust
anchor, is obtained securely by users at the initial acquisi-
tion of the software, e.g., it can reside on a project’s web-
site as often is the case with a single signing key in the
current software model.

Upon the announcement of a software release, which
can be done by a subset or all developers depending on
the project structure, all the developers check the source
code and, if they approve, they sign the hash of it with
their individual keys, e.g., using PGP [14], and they add
the signatures to an append-only list. Signing source code,
instead of binaries, ensures that developers can realisti-
cally verify (human-readable) code.

The combination of the source code and the signature
list is then pushed to the software-update center from
where a user can download it. For simplicity, we first as-
sume that the update center is trusted, later relaxing this
assumption. When a user receives an update, she verifies
that a threshold of the developers’ signatures is valid, as
specified in the policy file already stored on user’s ma-
chine. If so, the user builds the binary from the obtained
source code and installs it. An attacker trying to forge a
valid software-release needs to control the threshold of the
developers’ keys, which is presumably harder than gain-
ing control over any single signing key.

5.2 Build Transparency via Developers
The security benefits of developers signing source-code
releases come at the cost of requiring users to build the
binaries. This cost is a significant usability disadvantage,
as users usually expect to receive fully functional binaries
directly from the software center. Therefore in our second
step towards CHAINIAC, we transfer the responsibility of
building binaries from users to developers.

When a new software release is announced, it includes
not only the source code but also a corresponding binary
(or a set of binaries for multiple platforms) that users will
obtain via an update center. Each developer now first vali-

dates the source code, then compiles it using reproducible
build techniques [49, 59]. If the result matches the an-
nounced binary, he signs the software release. Assuming
a threshold of developers is not compromised, this pro-
cess ensures that the release binary has been checked by
a number of independent verifiers. Upon receiving the up-
date, a user verifies that a threshold of signatures is valid;
if so, she can directly install the binary without needing to
build it herself.

5.3 Release-Validation via Cothority
Although decentralized developer approval and repro-
ducible builds improve software-update security, running
reproducible builds for each binary places a high bur-
den on developers (e.g., building the Tor Browser Bun-
dle takes 32 hours on an average modern laptop [60]).
The load becomes even worse for developers involved
in multiple software projects. Moreover, verifying many
developer-signatures in large software projects can be a
burden for client devices, especially when upgrading mul-
tiple packages. It would naturally be more convenient for
an intermediary to take the developers’ commitments, run
the reproducible builds and produce a result that is eas-
ily verifiable by clients. Using a trusted third party is,
however, contrary to CHAINIAC’s goal of decentraliza-
tion. Hence to maintain decentralization, we implement
the intermediary as a collective authority or cothority.

To announce a new software release, the package devel-
opers combine the hashes of the associated source-code
and binaries in a Merkle tree [52]. Each developer checks
the source code and signs the root hash (of this tree), that
summarizes all data associated with the release. The de-
velopers then send the release data and the list of their
individual signatures to the cothority that validates and
collectively signs the release. Clients can download and
validate the release’s source and/or any associated binary
by verifying only a single collective signature and Merkle
inclusion proofs for the components of interest.

To validate a release, each cothority server checks
the developer signatures against the public keys and
the threshold defined in the policy file. Remembering
the policy for each software project is a challenge for
the cothority that is supposed to be stateless. For now,
we assume that each cothority member stores a project-
to-policy list for all the projects it serves for. We relax
this assumption in Section 5.5. The build verifiers then
compile the source code and compare the result against
the binaries of the release. The latter verification enables
the transition from reproducible builds to verified builds: a
deployment improvement over reproducible builds, which
we introduce. The verified builds enable clients to obtain
the guarantee of source-to-binary correspondence without
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the need to accomplish the resource-consuming building
work, due to the broad independent validation.

5.4 Anti-equivocation Measures
Many software projects are maintained by a small group
of (often under-funded or volunteer) developers. Hence,
it is not unreasonable to assume that a powerful (state-
level) attacker could coerce a threshold of group members
to create a secret backdoored release used for targeted
attacks. In our next step towards CHAINIAC, we tackle
the problem of such stealthy developer-equivocation, as
well as the threat of an (untrusted) software-update center
that accidentally or intentionally forgets parts of the soft-
ware release history.

We introduce cothority-controlled hash chains that cre-
ate a public history of the releases for each software
project. When a new release is announced, the develop-
ers include and sign the summary (Merkle Root) of the
software’s last version. The cothority then checks the de-
velopers’ signatures, the collective signature on the parent
hash-block, and that there is no fork in the hash-chain (i.e.,
that the parent hash-block is the last one publicly logged
and that there is no other hash-block with the same par-
ent). If everything is valid, it builds the summary for the
current release, then runs BFT-CoSi [42] to create a new
collective signature. Because the hash chain is cothority
controlled, we can distribute the witnessing of its consis-
tency across a larger group: for example, not just across a
few servers chosen by the developers of a particular pack-
age, but rather across all the servers chosen by numerous
developers who contribute to a large software distribution,
such as Debian. Even if an attacker controls a threshold
of developer keys for a package and creates a seemingly
valid release, the only way to convince any client to ac-
cept this malicious update is to submit it to the cothority
for approval and public logging. As a result, it is not pos-
sible for the group to sign the compromised release and
keep it “off the public record”.

This approach prevents attackers from secretly creating
malicious updates targeted at specific users without be-
ing detected. It also prevents software-update centers from
"forgetting" old software releases, as everything is stored
in a decentralized hash chain. CHAINIAC’s transparency
provisions not only protect users from compromised de-
velopers, but can also protect developers from attempts of
coercion, as real-world attackers prefer secrecy and would
be less likely to attack if they perceive a strong risk of the
attack being publicly revealed.

5.5 Evolution of Authoritative Keys
So far, we have assumed that developer and cothority keys
are static, hence clients who verify (individual or collec-

tive) signatures need not rely on centralized intermedi-
aries such as CAs to retrieve those public keys. This as-
sumption is unrealistic, however, as it makes a compro-
mise of a key only a matter of time. Collective signing
exacerbates this problem, because for both maximum in-
dependence and administrative manageability, witnesses’
keys might need to rotate on different schedules. To lift
this assumption without relying on centralized CAs, we
construct a decentralized mechanism for a trust delegation
that enables the evolution of the keys. As a result, devel-
opers and cothorities can change, when necessary, their
signing keys and create a moving target for an attacker,
and the cothority becomes more robust to churn.

To implement this trust delegation mechanism, we em-
ploy skipchains presented in Section 4. For the cothor-
ity keys, each cothority configuration becomes a block in
a skipchain. When a new cothority configuration needs to
be introduced, the current cothority witnesses run BFT on
it. If completed successfully, they add the configuration to
the skipchain, along with the produced signature as a for-
ward link. For the developer keys, the trust is rooted in the
policy file. To enable a rotation of developer keys, a pol-
icy file needs to be a part of the Merkle tree of the release,
hence examined by the developers. Thus, the consistency
of key evolution becomes protected by the hash chain. To
update their keys, the developers first specify a new pol-
icy file that includes an updated set of keys, then, as usual
during a new release, they sign it with a threshold of their
current keys, thus delegating trust from the old to the new
policy. Once the cothority has appended the new release
to the chain, the new keys become active and supersede
their older counterparts. Anyone following the chain can
be certain that a threshold of the developers has approved
the new set of keys. With this approach, developers can
rotate their keys regularly and, if needed, securely revoke
a sub-threshold number of compromised keys.

5.6 Role Separation and Timeliness
In addition to verifying and authenticating updates,
a software-update system must ensure update timeliness,
so that a client cannot unknowingly become a victim of
freeze or replay attacks (see Section 2.1). To retain decen-
tralization in CHAINIAC, we rely on the update cothor-
ity to provide a timestamp service. Using one set of keys
for signing new releases and for timestamping introduces
tradeoffs between security and usability, as online keys
are easier compromisable than offline keys, whereas the
latter cannot be used frequently. To address the described
challenges, we introduce a multi-layer skipchain-based ar-
chitecture with different trust roles, each having different
responsibilities and rights. We distinguish the four roles
ROOT, CONFIG, RELEASE, and TIME. The first three are
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Figure 3: Trust delegation in CHAINIAC

based on skipchains and interconnected with each other
through upward and downward links represented as cryp-
tographic hashes and signatures, respectively. Figure 3
shows an overview of this multi-layer architecture.

The ROOT role represents CHAINIAC’s root of trust;
its signing keys are the most security-critical. These keys
are kept offline, possibly as secrets shared among a set of
developer-administrators. They are used to delegate trust
to the update cothority and revoke it in case of misbehav-
ior. The ROOT skipchain changes slowly (e.g., once per
year), and old keys are deleted immediately. As a result,
the ROOT skipchain has a height of one, with only single-
step forward and backward links.

The CONFIG role represents the online keys of the up-
date cothority and models CHAINIAC’s control plane.
These keys are kept online for access to them quicker than
to the ROOT keys. Their purpose is to attest to the validity
of new release-blocks. The CONFIG skipchain can have
higher-level skips, as it can be updated more frequently.
If a threshold of CONFIG keys is compromised, the ROOT
role signs a new set of CONFIG keys, enabling secure re-
covery. This is equivalent to a downward link from the
ROOT skipchain to the CONFIG skipchain.

The RELEASE role wraps the functionality of the re-
lease log, as specified previously, and adds upward links
to ROOT and CONFIG skipchains, enabling clients to effi-
ciently look up the latest trusted ROOT and CONFIG con-
figurations required for verifying software releases.

Finally, the TIME role provides a timestamp service that
informs clients of the latest version of a package, within
a coarse-grained time interval. Every TIME block contains
a wall-clock timestamp and a hash of the latest release.
The CONFIG leader creates this block when a new RE-
LEASE skipblock is co-signed, or every hour if nothing
happens. Before signing it off, the rest of the indepen-
dent servers check that the hash inside the timestamp is
correct and that the time indicated is sufficiently close to
their clocks (e.g., within five minutes). From an absence
of fresh TIME updates and provided that clients has an

approximately accurate notion of the current time2, the
clients can then detect freeze attacks.

5.7 Multiple-Package Projects
To keep track of software packages, users often rely on
large software projects, such as Debian or Ubuntu, and
their community repositories. Each of these packages can
be maintained by a separate group of developers, hence
can deploy its own release log. To stay updated with
new releases of installed packages, a user would have
to frequently contact all the respective release logs and
follow their configuration skipchains. This is not only
bandwidth- and time-consuming for the user but also re-
quires the maintainers of each package to run a fresh-
ness service. To alleviate this burden, we further enhance
CHAINIAC to support multi-package projects.

Figure 4: Constructing an aggregate layer in CHAINIAC

We introduce an aggregate layer into CHAINIAC: this
layer is responsible for collecting, validating and pro-
viding to clients information about all the packages in-
cluded in the project. A project-level update cothority im-
plements a project log where each entry is a snapshot of
a project state (Figure 4). To publish a new snapshot,
the cothority retrieves the latest data from the individual
package skipchains, including freshness proofs and signa-
tures on the heads. The witnesses then verify the correct-
ness and freshness of all packages in this snapshot against
the corresponding per-package logs. Finally, the cothority
forms a Merkle tree that summarizes all package versions
in the snapshot, then collectively signs it.

This architecture facilitates the gradual upgrade of large
open-source projects, as packages that do not yet have
their own skipchains can still be included in the aggregate
layer as hash values of the latest release files. The project-
level cothority runs an aggregate timestamp service, en-
suring that clients are provided with the latest status of all
individual packages and a consistent repository state. A

2 Protecting the client’s notion of time is an important but orthogonal
problem [50], solvable using a timestamping service with collectively-
signed proofs-of-freshness, as in CoSi [69, Section V.A.].
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client can request the latest signed project-snapshot from
the update cothority and check outdated packages on her
system using Merkle proofs. If there are such packages,
the client accesses their individual release logs, knowing
the hash values of the latest blocks.

A multi-package project can potentially have several
aggregate layers, each representing a certain distribution ,
e.g., based on the development phase of packages, as sta-
ble, testing, and unstable in Debian. Individual packages
would still maintain a single-view linear skipchain-log but
the project developers would additionally tag each release
with its distribution affiliation. For example, the stable
distribution would then notify clients only when corre-
spondingly tagged releases appear, and would point to the
precise block in the package skipchain by providing its
hash value, whereas the developers might move ahead and
publish experimental versions of the package to its release
log. The timeliness is then ensured by maintaining a sep-
arate timestamp service for each distribution.

6 Security Analysis
In this section, we informally analyze the security of
CHAINIAC against the threat model defined in Section 3.2.
We thereby assume that an adversary is computationally
bound and unable to compromise the employed cryptosys-
tems (e.g., create hash collisions or forge signatures), ex-
cept with negligible probability.

Developers. The first point of attack in CHAINIAC
is the software-release proposal created by developers.
An attacker might try to sneak a vulnerability into
the source code, compromise the developers’ signing
keys, or intercept a release proposal that the developers
send to the update cothority, and replace it with a back-
doored version. If developers carefully review source-
code changes and releases, and fewer than the threshold
td of developers or their keys are compromised, the at-
tacker alone cannot forge a release proposal that the up-
date cothority would accept.3 As developer-signed re-
lease proposals are cryptographically bound to particular
sources and binaries, the update cothority will similarly
refuse to sign a release proposal whose sources differ from
the signed versions, or whose binaries differ from those
reproduced by the build verifiers. If a sub-threshold num-
ber of developer keys are compromised without detection,

3Of course there is no guarantee that even honest, competent devel-
opers will detect all bugs, let alone sophisticated backdoors masquerad-
ing as bugs. CHAINIAC’s transparency provisions ensure that even com-
promised releases are logged and open to scrutiny, and the freshness
mechanisms ensure that a compromised release does not remain usable
in rollback or freeze attacks after being fixed and superseded.

a regular signing key rotation (Section 5.5) can eventually
re-establish full security of the developer keys.

Update cothority. The next point an adversary might
attack is the update-cothority’s witness servers. The wit-
nesses and build verifiers should be chosen carefully by
the software project or repository maintainers, should re-
side in different physical locations, and be controlled by
trustworthy, independent parties. For a successful attack,
the adversary must compromise at least tw witnesses to
violate the correctness or transparency of the release time-
line, and must compromise tv build verifiers to break the
source-to-binary release correspondence. As with devel-
oper keys, the regular rotation of cothority keys further
impedes a gradual compromise.

If a threshold of online cothority keys are compro-
mised, then, once this compromise is detected, the de-
velopers can use the offline ROOT keys to establish
a new cothority configuration (see Section 5.6). Non-
compromised clients (e.g., those that did not update crit-
ical software during the period of compromise) can then
“roll forward” securely to the new configuration. An un-
avoidable limitation of this (or any) recovery mechanism
using offline keys, however, is an inability to ensure time-
liness of configuration changes. Old clients, whose net-
work connectivity is attacker controlled, could be denied
the knowledge of the new configuration, hence remain
reliant on the old, compromised cothority configuration.
“Fixing” this weakness would require bringing the offline
ROOT keys online, defeating their purpose.

Update timeline. An attacker might attempt to tam-
per with the skipchain-based update timeline containing
the authoritative signing keys and the software releases,
e.g., by attempting to fork either of the logs, to modify en-
tries, or to present different views to users. The skipchain
structure relies on the security of the underlying hash and
digital signature schemes. Backward links are hashes en-
suring the immutability of the past with respect to any
valid release. An attacker can propose a release record
with incorrect back-links, but cannot produce a valid col-
lective signature on such a record without compromising a
threshold of witnesses, as honest witnesses verify the con-
sistency of new records against their view of history be-
fore cosigning. An attacker can attempt to create two dis-
tinct successors to the same prior release (a fork), but any
honest witness will cosign at most one of these branches.
If the cothority is configured with a two-thirds superma-
jority witness-threshold (tw ≥ 2nw + 1), forks are pre-
vented by the BFT-CoSi consensus mechanism.

Forward links are signatures that can be created only
once the (future) target blocks have been appended to
the skipchain. This requires that witnesses store the sign-
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ing keys associated with a given block, until all forward
links from that block onwards are generated. This longer
key-storage, gives the attacker more time to compromise
a threshold of keys. To mitigate this threat, we impose
an expiration date on signing keys (e.g., one year), after
which honest witnesses delete outdated keys uncondition-
ally, thereby imposing an effective distance limit on for-
ward links. Note that the key expiration-time should be
sufficiently long so that the direct forward links are al-
ways created to ensure secure trust delegation.

In summary, to manipulate the update timeline man-
aged by the update cothority, an attacker needs to com-
promise at least a threshold of tw witness servers. Note
that one purpose of the update timeline in CHAINIAC is to
ensure accountability so that even if the attacker manages
to slip a backdoor into a release, the corresponding source
code stays irrevocably available, enabling public scrutiny.

Update center. An adversary might also compromise
the software-update center to disseminate malicious bi-
naries, to mount freeze attacks that prevent clients from
updating, or to replay old packages with known security
vulnerabilities and force clients to downgrade.

Clients can detect that they have received a tampered
binary by verifying the associated signature using the pub-
lic key of the update cothority; the key can be retrieved se-
curely through CHAINIAC’s update timeline. The clients
will also never downgrade, as they only install packages
that are cryptographically linked to the currently installed
version through the release skipchain. Finally, assuming
the clients have a correct internal clock, they can detect
freeze and replay attacks by verifying timestamps and
package signatures, because an attacker cannot forge col-
lective signatures of the update cothority to create valid-
looking TIME blocks (see Section 5.6).

7 Prototype Implementation
We implemented CHAINIAC in Go [31] and made it pub-
licly available4, along with the instructions on how to re-
produce the evaluation experiments. We built on exist-
ing open-source code implementing CoSi [69] and BFT-
CoSi [42]. The new code implementing the CHAINIAC
prototype was about 1.8kLOC, whereas skipchains, net-
work communication, and BFT-CoSi were 1.2k, 1.5k, and
1.8k lines of code (LOC), respectively. Although the im-
plementation is not yet production quality, it is practical
and usable for experimental purposes.

We rely on Git for source-code control and use Git-
notes [30], tweaked with server hooks to be append-only,
for collecting developer approvals in the form of PGP

4https://github.com/dedis/paper_chainiac

signatures. For the build verifiers, we use Python to ex-
tract the information about the building environment of
the packages, and Docker [26] to reproduce it.

8 Experimental Evaluation
In this section, we experimentally evaluate our CHAINIAC
prototype. The main question we answer is whether
CHAINIAC is usable in practice without incurring large
overheads. We begin by measuring the cost of repro-
ducible builds using Debian packages as an example, and
we continue with the cost of witnesses who maintain an
update-timeline skipchain and the overhead of securing
multi-package projects.

8.1 Experimental Methodology
In the experiments of Sections 8.2, 8.3 and 8.4, we used
24-core Intel Xeons at 2.5 GHz with 256 GB of RAM and,
where applicable, ran up to 128 nodes on one server with
the network-delay set between any two nodes to 100ms
with the help of Mininet [54]. Because we had not yet
implemented a graceful handling of failing docker-builds,
we measured building time in a small grid of 4 nodes and
extrapolated this time to the bigger grids in Figure 6. In
Section 8.5, we simulated four collectively signing servers
on a computer with a 3.1 GHz Intel Core i7 processor and
16 GB of RAM and did not include any network-latencies,
as we measured only CPU-time and bandwidth.

To evaluate the witness cost of the long-term mainte-
nance of an update timeline, we used data from the De-
bian reproducible builds project [22] and the Debian snap-
shot archive [19]. The former provides checksums and de-
pendency information for reproducible packages. Unfor-
tunately, the information was not available for older pack-
age versions, therefore we always verified each package
against its newest version. We used the latter as an update
history to estimate average cost over time for maintaining
an individual update timeline and the overhead of running
an aggregate multi-package service. In Section 8.4, we
used real-life data from the PyPI package repository [17].
The data represented snapshots of the repository of about
58,000 packages. There were 11,000 snapshots over a pe-
riod of 30 days. Additionally, we had 1.5 million update-
requests from 400,000 clients during the same 30-day pe-
riod. Using this data, we implemented a simulation in
Ruby to compare different bandwidth usages.

8.2 Reproducing Debian Packages
To explore the feasibility of build transparency and to es-
timate the cost of it for witnesses, we ran an experiment
on automatic build reproducing. Using Docker contain-
ers, we generated a reproducible build environment for
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each package, measured the CPU time required to build
a binary and verified the obtained hash against a pre-
calculated hash from Debian.

We tested three sets of packages: (1) required is the set
of Debian required packages [21], 27 packages as of to-
day; (2) popular contains the 50 most installed Debian
packages [20] that are reproducible and do not appear in
required; (3) random is a set of 50 packages randomly
chosen from the full reproducible testing set [22]. Figure 5
demonstrates a CDF of the build time for each set.

10 packages from the random set, 8 from required and
2 from popular produced a hash value different from the
corresponding advertised hash. 90% of packages from
both the random and required sets were built in less than
three minutes, whereas the packages in the required-set
have a higher deviation. This is expected as, to ensure De-
bian’s correct functioning, the required packages tend to
be more security critical and complex.
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Figure 5: Reproducible build latency for Debian packages

8.3 End-to-End Witness Cost
In this experiment, we measured the cost for a witness of
adding a new release to an update timeline. We took a set
of six packages, measured the cost for each one individ-
ually and then calculated the average values over all the
packages. The build time was measured once and copied
to the other runs of the experiment, which enabled us to
test different configurations quickly and to break out re-
sults for each operation. The operations included veri-
fying developers’ signatures, reproducible builds, signing
off on the new release and generating a timestamp. The
witness cost was measured for an update cothorities com-
posed of 7, 31, and 127 nodes.

Figure 6 plots the costs in both CPU time and wall-
clock time used. The CPU time is higher than wall-clock
time for some metrics, due to the use of a multi-core pro-
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cessor. The verification and build times are constant per
node, whereas the time to sign and to generate the times-
tamp increases with the number of nodes, mostly due to
higher communication latency in a larger cothority tree.
As expected, the build time dominates the creation of
a new skipblock. Every witness spends between 5 and 30
CPU-minutes for each package. Current hosting schemes
offer simple servers for 10-US$ per month, enough to run
a node doing reproducible builds for the Debian-security
repository (about eight packages per day).

8.4 Skipchain Effect on PyPI Communica-
tion Cost

To evaluate the effect on communication cost of using
skipchains for update verification, we compare it with two
other scenarios using data from the PyPI package reposi-
tory. The scenarios are as follows:
1. Linear update: When a client requests an update,

she downloads all the diffs between snapshots, starting
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from her last update to the most recent one. This way
she validates every step.

2. Diplomat: The client only downloads the diff between
her last update and the latest update available.

3. Skipchain S1
1 : The scenario is as in Diplomat, but ev-

ery skipblock is also sent to prove the correctness of the
current update. The skipchains add security to the snap-
shots by signing it and by enabling users to efficiently
track changes in the signers.
The results over the 30-day data are presented in Fig-

ure 7. The straight lines correspond to the aforemen-
tioned scenarios. Linear updates increase the communi-
cation cost, because the cumulative updates between two
snapshots can contain different updates, which are only
transferred once, of the same package, as in the case of
Diplomat or skipchains. As it can be seen, the communi-
cation costs for Diplomat and skipchain are similar, even
in the worst case where a skipchain has height-1 only,
which corresponds to a simple double-linked list.

To further investigate the best parameters of the
skipchain, we plotted only the skipchain overhead using
the same data. In Figure 7, the dashed lines show the addi-
tional communication cost for different skipchain param-
eters. We observe that a skipchain with height > 1 can
reduce by a factor of 15 the communication cost for prov-
ing the validity of a snapshot. Using the base 5 for the
skipchain can further reduce the communication cost by
another factor of 2.

8.5 Cost of Securing Debian Distribution
In our final experiment, we measured the cost of a wit-
ness server that deploys an aggregate-layer skipchain in a
multi-package project (Section 5.7) and a client who uses
it. . We took the list of all the packages from the snap-
shot archive of the Debian-testing repository and created
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Figure 9: Communication cost to get new repository state

one skipchain per package over 1.5-year history, such that
each skipblock is one snapshot every five days. We then
formed the aggregate Debian-testing skipchain over the
same period.

In the first experiment, a witness server receives a new
repository-state to validate, verifies the signature for all
the packages, builds a Merkle tree from the heads of
the individual skipchains and signs its root, thus creating
a new aggregate skipblock. Figure 8 depicts the average
costs of the operations, over the whole history, against the
size of the repository. For a full repository of 52k pack-
ages, which corresponds to the actual Debian-testing sys-
tem, the overall CPU-cost is about 20 seconds per release.
This signifies that CHAINIAC generates negligible over-
head on the servers that update a skipchain.

The second experiment evaluates the overhead that
CHAINIAC introduces to the client-side cost of download-
ing the latest update of all packages. In order to maintain
the security guarantees of CHAINIAC, the client down-
loads all package hashes and builds a full Merkle tree to
verify them, thereby not revealing packages of interest and
preserving her privacy. Figure 9 illustrates that CHAINIAC
introduces a constant overhead of 16% to the APT man-
ager. This modest overhead suggests CHAINIAC’s good
scalability and applicability.

9 Related Work
We organize the discussion topically and avoid redun-
dancy with the commentary in Section 2.

Software-update protection. The automatic detection
and installation of software updates is a common op-
eration in computer and mobile systems, and there are
many tools for this task, such as package- and library-
managers [18, 23, 33, 76], and various app stores. There
are several security studies [10, 15, 57] that reveal weak-
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nesses in the design of software-update systems, and dif-
ferent solutions are proposed to address these weaknesses.
Solutions that reduce the trust that end users must have
in developers by involving independent intermediaries in
testing are shown [3, 4] to be beneficial in open-source
projects and content repositories. Several systems, such
as Meteor [7], DroidRanger [77] and ThinAV [37], focus
on protecting the infrastructure for mobile applications
and on detecting malware in mobile markets. Other sys-
tems [38, 47, 58] use overlay and peer-to-peer networks
for efficient dissemination of security patches, whereas
Updaticator [5] enables efficient update distribution over
untrusted cache-enabled networks.

Certificate, key, and software transparency. Bring-
ing transparency to different security-critical domains has
been actively studied. Solutions for public-key validation
infrastructure are proposed in AKI [40], ARPKI [9] and
Certificate Transparency (CT) [45] in which all issued
public-key certificates are publicly logged and validated
by auditors. Public logs are also used in Keybase [39],
which enables users to manage their online accounts and
provides checking of name-to-key bindings by verifying
ownership of third-party accounts. This is achieved via
creating a public log of identity information that third-
parties can audit. EthIKS [12] provides stronger auditabil-
ity to CONIKS [51], an end-user key verification service
based on a verifiable transparency log, by creating a Smart
Ethereum Contract [75] that guarantees that a hash chain
is not forked, as long as the ethereum system is stable
and correct. Application Transparency (AT) [27] employs
the idea of submitting information about mobile applica-
tions to a verifiable public log. Thus, users can verify that
a provided app is publicly available to everyone or that
a given version existed in the market, but was removed.
However, AT can protect only against targeted attacks but
leaves attacks against all the users outside of its scope. Fi-
nally, Baton [8] tries to address the problem of renewing
signing keys in Android by chaining them but this solution
does not help in the case of stolen signing keys.

Blockchains. The creation of Bitcoin [56] was first per-
ceived as an evolution in the domain of financial tech-
nology. Recently, however, there has been an increasing
interest in the data structure that enables the properties
of bitcoin, namely, the blockchain. There is active work
with blockchain in cryptocurrencies [13, 65], DNS alter-
natives [74] and even general-purpose decentralized com-
puting [75]. All of these systems secure clients in a dis-
tributed manner and with a timeline that can be tracked
by the clients. However, these systems force the clients
to track the full timeline, even if the clients are interested

in a very small subset of it, or to forfeit the security of
decentralization by trusting a full node.

10 Conclusion
In this work, we have presented CHAINIAC, a novel
software-update framework that decentralizes each step
of the software-update process to increase trustworthi-
ness and to eliminate single points of failure. The key
novel components of CHAINIAC’s design are multi-level
skipchains and verified builds. The distinct layers of
skipchains provide, while introducing minimal overhead
for the client, multiple functionalities such as (1) tamper-
evident and equivocation-resistant logging of the new up-
dates and (2) the secure evolution of signing keys for both
developers and the set of online witnesses. Verified builds
further unburden clients by delegating the actual repro-
ducible building process to a decentralized set of build
verifiers. The evaluation of our prototype has demon-
strated that the overhead of using CHAINIAC is accept-
able, both for the clients and for the decentralized group
of witnesses, by running experiments on real-world data
from Debian. Furthermore, we have replayed 30 days of
actual client requests to the PyPI repository and shown
that the use of skipchains limits the verification overhead.
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Abstract
Security architectures such as Intel SGX need protec-

tion against rollback attacks, where the adversary vio-
lates the integrity of a protected application state by re-
playing old persistently stored data or by starting mul-
tiple application instances. Successful rollback attacks
have serious consequences on applications such as finan-
cial services. In this paper, we propose a new approach
for rollback protection on SGX. The intuition behind
our approach is simple. A single platform cannot effi-
ciently prevent rollback, but in many practical scenarios,
multiple processors can be enrolled to assist each other.
We design and implement a rollback protection system
called ROTE that realizes integrity protection as a dis-
tributed system. We construct a model that captures ad-
versarial ability to schedule enclave execution and show
that our solution achieves a strong security property: the
only way to violate integrity is to reset all participat-
ing platforms to their initial state. We implement ROTE
and demonstrate that distributed rollback protection can
provide significantly better performance than previously
known solutions based on local non-volatile memory.

1 Introduction
Intel Software Guard Extensions (SGX) enables ex-

ecution of security-critical application code, called en-
claves, in isolation from the untrusted system software
[1]. Protections in the processor ensure that a malicious
OS cannot read or modify enclave memory at runtime.
To protect enclave data across executions, SGX provides
a security mechanism called sealing that allows each en-
clave to encrypt and authenticate data for persistent stor-
age. SGX-enabled processors are equipped with certified
cryptographic keys that can issue remotely verifiable at-
testation statements on the software configuration of en-
claves. Through these security mechanisms (isolation,
sealing, attestation) SGX enables development of various
applications and online services with hardened security.

The architecture has also its limitations. While sealing

prevents a malicious OS from reading or arbitrarily mod-
ifying persistently stored enclave data, rollback attacks
[2, 3, 4, 1] remain a threat. In a rollback attack a mali-
cious OS replaces the latest sealed data with an older en-
crypted and authenticated version. Enclaves cannot eas-
ily detect this replay, because the processor is unable to
maintain persistent state across enclave executions that
may include platform reboots. Another way to violate
state integrity is to create two instances of the same en-
clave and route update requests to one instance and read
requests to the other. To remote clients that perform at-
testation, the instances are indistinguishable.

Data integrity violation through rollback attacks can
have severe implications. Consider, for example, a fi-
nancial application implemented as an enclave. The en-
clave repeatedly processes incoming transactions at high
speed and maintains an account balance for each user or
a history of all transactions in the system. If the adver-
sary manages to revert the enclave to its previous state,
the maintained account balance or the queried transac-
tion history does not match the executed transactions.

To address rollback attacks, two basic approaches are
known. The first is to store the persistent state of enclaves
in a non-volatile memory element on the same platform.
The SGX architecture was recently updated to support
monotonic counters that leverage non-volatile memory
[5]. However, the security guarantees and the perfor-
mance limits of this mechanism are not precisely doc-
umented. Our experiments show that writes of counter
values to this memory are slow (80-250 ms), which lim-
its its use in high-throughput applications. More impor-
tantly, this memory allows only a limited number of write
operations. We show that this limit is reached within just
few days of continuous system use after which the mem-
ory becomes unusable. Similar limitations also apply to
rollback protection techniques that leverage Trusted Plat-
form Modules (TPMs) [2, 4, 3].

The second common approach is to maintain in-
tegrity information for protected applications in a sep-
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arate trusted server [6, 7, 8]. The drawback of such
solutions is that the server becomes an obvious target
for attacks. Server replication using standard Byzantine
consensus protocols [9] avoids a single point of failure,
but requires high communication overhead and multiple
replicas for each faulty node.

In this paper we propose a new approach to protect
SGX enclaves from rollback attacks. The intuition be-
hind our solution is simple. A single SGX platform
cannot prevent rollback attacks efficiently, but in many
practical scenarios the owner or the owners of proces-
sors can assign multiple processors to assist each other.
Our approach realizes rollback protection as a distributed
system. When an enclave updates its state, it stores a
counter to a set of enclaves running on assisting proces-
sors. Later, when the enclave needs to recover its state, it
obtains counter values from assisting enclaves to verify
that the recovered state data is of the latest version.

We consider a powerful adversary that controls the OS
on the target platform and on any of the assisting plat-
forms. Additionally, we even assume that the adversary
can break SGX protections on some of the assisting pro-
cessors and control all network communication between
the platforms. Our adversary model combines commonly
considered network control based on the standard Dolev-
Yao model [10] and Byzantine faults [11, 12], but addi-
tionally captures the the ability of the adversary to restart
trusted processes from a previously saved state and to run
multiple instances of the same trusted process. Such ad-
versarial capabilities are crucial for the security analysis
of our system, and we believe that the model is of gen-
eral interest. In fact, using our model we found potential
vulnerabilities in recent SGX systems [3, 13, 14].

Secure and practical realization of distributed roll-
back protection under such a strong adversarial model
involves several challenges. One of the main challenges
is that when an assisting enclave receives a counter, its
own state changes, which implies a set of new state up-
dates that would in turn propagate. To prevent endless
update propagation, the counter value must be stored in
the volatile runtime memory of enclaves. However, the
assisting enclaves may be restarted at any time. More-
over, the adversary can also create multiple instances
of the same enclave on all assisting platforms and route
counter writes and reads to separate instances.

We design and implement a rollback protection sys-
tem called ROTE (Rollback Protection for Trusted Ex-
ecution). The main components of our solution are a
state update mechanism that is an optimized version of
consistent broadcast protocols [15, 16], and a recovery
mechanism that obtains lost counters from the rest of the
protection group upon enclave restart. We also design a
session key update mechanism to address attacks based
on multiple enclave instances.

Our solution achieves a strong security property that
we call all-or-nothing rollback. Although the attacker
can restart enclaves freely, and thus implement subtle at-
tacks where enclave state updates and recovery are inter-
leaved, the adversary cannot roll back any single enclave
to its previous state. The only way to violate data in-
tegrity is to reset the entire group to its initial state. If
desired, similar to [4, 2], our approach can also provide
crash resilience, assuming deterministic enclaves and a
slightly weaker notion of rollback prevention (the latest
input can be executed twice).

We implemented ROTE on SGX and evaluated its
performance on four SGX machines. We tested larger
groups of up to 20 platforms using a simulated imple-
mentation over a local network and geographically dis-
tributed enclaves. Our evaluation shows that state up-
dates in ROTE can be very fast (1-2 ms). The number
of counter increments is unlimited. This is in contrast
to solutions based on SGX counters and TPMs, where
state updates are approximately 100 times slower and
limited. Compared to Byzantine consensus protocols,
our approach requires significantly fewer replicas ( f +1
instead of the standard 3 f + 1). Enclave developers can
use our system through a simple API. The ROTE TCB
increment is moderate (1100 LoC).

Contributions. We make the following contributions.

• New security model. We introduce a new security
model for reasoning about the integrity and freshness of
SGX applications. Using the model we identified poten-
tial security weaknesses in existing SGX systems.
• SGX counter experiments. We show that SGX coun-
ters have severe performance limitations.
• Novel approach. We propose a novel way to pro-
tect SGX enclaves. Our main idea is to realize roll-
back protection by storing enclave-specific counters in
a distributed system of collaborative enclaves on distinct
nodes.
• ROTE. We propose and implement a system called
ROTE that effectively protects against rollback attacks.
ROTE ensures integrity and freshness of application data
in a powerful adversarial model.
• Experimental evaluation. We demonstrate that dis-
tributed rollback protection incurs only a small perfor-
mance overhead. When deployed over a low-latency net-
work, the state update overhead is only 1-2 ms.

The rest of this paper is organized as follows. Sec-
tion 2 explains models and rollbacks attacks. Section 3
describes our approach. Section 4 describes the ROTE
system and Section 5 provides security analysis. Sec-
tion 6 provides performance evaluation and Section 7
further discussion. We review related work in Section 8.
Section 9 concludes the paper.
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Figure 1: Modeled SGX operations.

2 Problem Statement
In this section we define models for the SGX architec-

ture and the adversary. After that, we explain rollback
attacks, limitations of known solutions, and our require-
ments. Appendix A provides a summary of the SGX ar-
chitecture for readers that are not familiar with it.

2.1 SGX Model
Figure 1 illustrates our SGX model. We model en-

claves and the operating system, their main functional-
ity, and the operations through which they interact. Our
model captures the main SGX functionalities that are
available on all SGX platforms.

Scheduling operations. Enclave execution is sched-
uled by the OS.

• e← Create(code). The system software running on
the OS can create an enclave by providing its code. The
SGX architecture creates a unique enclave identifier e
that is defined by the code measurement.
• i← Start(e). The system software can start a cre-
ated enclave using its enclave identifier e. The enclave
generates a random and unique instance identifier i for
the enclave instance that executes the code that was as-
signed to it during creation. While an enclave instance
is running, the OS and other enclaves are isolated from
its runtime memory. Each enclave instance has its own
program counter and runtime memory.
• Suspend(i) and Resume(i). The OS can suspend the
execution of an enclave. When an enclave is suspended,
its program counter and runtime memory retain their val-
ues. The OS can resume suspended enclave execution.
• Terminate(i). The OS can terminate the enclave ex-
ecution. At termination, the enclave runtime memory is
erased by the SGX architecture and the enclave instance
i is rendered unusable.

Storage operations. The second set of operations is
related to sealing data for local persistent storage.

• s← Seal(data). An enclave can save data for local
persistent storage. This operation creates an encrypted,
authenticated data structure s that is passed to the OS.
• OfferSeal(i,s). The OS can offer sealed data s. The
enclave can verify that it previously created the seal,

but the enclave cannot distinguish which seal is the lat-
est. Every enclave instance i can unseal data previously
sealed by an instance of the same enclave identity e.

Communication operations. Due to attestation, a
client can write data such that only a particular enclave
can read it. The client can read data from an enclave and
verify which enclave wrote it. We model these primi-
tives as single operations that can be called from the same
or remote platform, although attestation is an interactive
protocol between the enclave and client.

• Write(me, i). The OS can write message me to an en-
clave instance i. Only an enclave with enclave identity e
can read the written message me.
• me← Read(i). The OS can read message me from an
enclave instance i. The read message me identifies the
enclave identity e that wrote the data.

Note that remote attestation identifies the enclave
identity, but not the platform identity, because the at-
testation protocol is either anonymous or returns client-
specific pseudonyms (see Appendix A for details). In
local attestation the platform is implicitly known.

We do not model platform reboots, as those have the
same effect as enclave restarts. Our model assumes that
the runtime memory of each enclave instance is perfectly
isolated from the untrusted OS and other enclaves. We
consider information leakage from side-channel attacks
a realistic threat [17, 18, 19], but an orthogonal problem
to rollback attacks, and thus outside of our model.

2.2 Local Adversary Model
We consider a powerful adversary who, after an ini-

tial trusted setup phase, controls all system software on
the target platform, including the OS. Based on the SGX
model, the adversary can schedule enclaves and start
multiple instances of the same enclave, offer the latest
and previous versions of sealed data, and block, delay,
read and modify all messages sent by the enclaves.

The adversary cannot read or modify the enclave run-
time memory or learn any information about the se-
crets held in enclave data. The adversary has no ac-
cess to processor-specific keys, such as the sealing key
or the attestation key, and the adversary cannot break
cryptographic primitives provided by the SGX architec-
ture. The enclaves may also implement additional cryp-
tographic operations that the adversary cannot break.

The adversarial capabilities that we identified as part
of the model can be critical for many SGX systems. The
ability to schedule, restart and create multiple enclave
instances, enables subtle attacks that we address in this
paper. We analyzed SGX systems using this model and
found vulnerabilities that can be addressed through the
techniques developed in this paper. These findings are
reported in an extended version of this paper [20].
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2.3 Rollback Attacks
The goal of the adversary is to violate the integrity of

the enclave’s state. This is possible with a simple roll-
back attack. After an enclave has sealed at least two
data elements s1← Seal(d1) and s2← Seal(d2), the ad-
versary performs Terminate() and Start() to erase the
runtime memory of the enclave. When the enclave re-
quests for the latest sealed data d2, the adversary per-
forms OfferSeal(i,s1) and the enclave accepts d1 as d2.
When the sealed data captures the state of the enclave at
the time of sealing, we say that the rollback attack reverts
the enclave back to its previous state.

Another approach is a forking attack, where the
adversary leverages two concurrently running enclave
instances. The adversary starts two instances i1 ←
Start(e) and i2← Start(e) of the same enclave e. The
OS receives a request from a remote client to write data
me to enclave e. The OS writes the data to the first en-
clave instance Write(me, i1) which causes a state change.
Another remote client sends a request to read data from
the enclave e. The OS reads data from the second in-
stance me ← Read(i2) which has an outdated state and
returns me to the client. The SGX architecture does not
enable one enclave instance to check if another instance
of the same enclave code is already running [21].

Such attacks can have severe implications, especially
for applications that maintain financial data, such as ac-
count balances or transaction histories.

2.4 Limitations of Known Solutions
SGX counters. Intel has recently added support for

monotonic counters [5] as an optional SGX feature that
an enclave developer may use for rollback attack pro-
tection, when available. However, the security and per-
formance properties of this mechanism are not precisely
documented. We performed a detailed analysis of SGX
counters and report our findings in Appendix B.

To summarize, we found out that counter updates take
80-250 ms and reads 60-140 ms. The non-volatile mem-
ory used to implement the counter wears out after ap-
proximately one million writes, making the counter func-
tionality unusable after a couple of days of continuous
use. Thus, SGX counters are unsuitable for systems
where state updates are frequent and continuous. Ad-
ditionally, since the non-volatile memory used to store
the counters resides outside the processor package, the
mechanism is likely vulnerable to bus tapping and flash
mirroring attacks [22] (see Appendix B for details).

TPM solutions. TPMs provide monotonic counters
and NVRAM that can be used to prevent rollback attacks
[4, 3, 2]. The TPM counter interface is rate-limited (typ-
ically one increment every 5 seconds) to prevent mem-
ory wear out.1 Writing to NVRAM takes approximately

1The TPM 2.0 specifications introduce high-endurance non-volatile

100 ms and the memory becomes unusable after 300K to
1.4M writes (few days of continuous use) [2]. Thus, also
TPM based solutions are unsuitable for applications that
require fast and continuous updates.

Integrity servers. Another approach is to leverage a
trusted server to maintain state for protected applications
[6, 7, 8]. The drawback of this approach is that the cen-
tralized integrity server becomes an obvious target for
attacks. To eliminate a single point of failure, the in-
tegrity server could be replicated using a Byzantine con-
sensus mechanism. However, standard consensus proto-
cols, such as PBFT [9], require several rounds of com-
munication, have high message complexity, and require
at least three replicas for each faulty node.

Architecture modifications. Finally, the SGX archi-
tecture could be modified such that the untrusted OS can-
not erase the enclave runtime memory. However, this ap-
proach would prevent the OS from performing resource
management and would not scale to many enclaves. Ad-
ditionally, rollback attacks through forced reboots and
multiple enclave instances would remain possible. An-
other approach would be to enhance the processor with
a non-volatile memory element. Such changes are costly
and current NVRAM technologies have the performance
limitations we discussed above.

2.5 Rollback Protection Requirements
The goal of our work is to design a rollback protection

mechanism that overcomes the performance and security
limitations of SGX counters and other known solutions.
In particular, our solution should support unlimited and
fast state updates, considering a strong adversary model
without a single point of failure. When there is a trade-
off between security and robustness, we favor security.

3 Our Approach
The intuition behind our approach is that a single SGX

platform cannot efficiently prevent rollback attacks, but
the owner or the owners of SGX platforms can enroll
multiple processors to assist each other. Thus, our goal
is to design rollback protection for SGX as a distributed
system between multiple enclaves running on separate
processors. Our distributed system is customized for the
task of rollback protection to reduce the number of re-
quired replicas and communication.

To realize rollback protection, the distributed system
should provide, for each participating platform, an ab-

memory that enables rapidly incremented counters [23]. The counter
value is maintained in RAM and the value is flushed to non-volatile
memory periodically (e.g., mod 100) and at controlled system shut-
down. However, if the system is rebooted without calling TPM Shut-
down, the counter value is lost and at start-up the TPM assumes the
next periodic value. Therefore, such counters do not prevent attacks
where the adversary reboots the system.
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straction of a secure counter storage that consists of two
operations:

• WriteCounter(value). An enclave can use this opera-
tion to write a counter value to the secure storage.2

• value/empty← ReadCounter(). An enclave can use
this operation to read a counter value from the secure
storage. The operation returns the last written value or
an empty value if no counter was previously written.

When an enclave performs a security-critical state up-
date operation (e.g., modifies an account balance or ex-
tends a transaction history), it distributes a monotonically
increasing counter value over the network to a set of en-
claves running on assisting processors (WriteCounter),
stores the counter value to its runtime memory and seals
its state together with the counter value for local persis-
tent storage. When the enclave is restarted, it can recover
its latest state by unsealing the saved data, obtaining the
counter values from enclaves on the assisting processors
(ReadCounter) and verifying that the sealed state is of
the latest version. The same technique allows potentially
concurrently running instances of the same enclave iden-
tity to determine that they have the latest state. When
an enclave needs to verify its state freshness (e.g., upon
receiving a request to return the current account balance
or transaction history to a remote client), it obtains the
counter value from the network (ReadCounter) and com-
pares it to the one in its runtime memory. By using en-
claves on the assisting platforms, we reduce the required
trust assumptions on the assisting platforms.

3.1 Distributed Model
We use the term target platform to refer to the node

which performs state updates that require rollback pro-
tection. We assume n SGX platforms that assist the tar-
get platform in rollback protection The platforms can be-
long to a single administrative domain or they could be
owned by private individuals who all benefit from col-
laborative rollback protection. We model each platform
using the SGX model described in Section 2.1. The dis-
tributed system can be seen as a composition of n+ 1
SGX instances (target platform included) that are con-
nected over a network. We make no assumptions about
the reliability of the communication network, messages
may be delayed or lost completely. We assume that while
participating in collaborative rollback protection, some
platforms may be temporarily down or unreachable.

Distributed adversary model. On each platform, the
adversary has the capabilities listed in Section 2.2. Ad-
ditionally, we assume that the adversary can compromise

2We use counter write abstraction instead of counter increment, be-
cause our distributed secure storage implementation allows writing of
any counter value to the storage. However, the ROTE system only per-
forms monotonic counter increments using this functionality.

the SGX protections on f < n participating nodes, ex-
cluding the target platform. Such compromise is possi-
ble, e.g., through physical attacks. On the compromised
SGX nodes the adversary can freely modify the runtime
memory (code and data) of any enclave, and read all en-
clave secrets and the SGX processor keys.

This adversarial model combines a standard Dolev-
Yao network adversary [10] with adversarial behaviour
(Byzantine faults) on a subset of participating platforms
[11, 12]. In addition, the adversary can schedule the ex-
ecution of trusted processes, replay old versions of per-
sistently stored data, and start multiple instances of the
same trusted process on the same platform. In Section 5
we explain subtle attacks enabled by such additional ad-
versarial capabilities.

3.2 Challenges
Secure and practical realization of our approach under

a strong adversarial model involves challenges.
Network partitioning. A simple solution would be

to store a counter with all the assisting enclaves, and at
the time of unsealing require that the counter value is ob-
tained from all assisting enclaves. However, if one of the
platforms is unreachable at the time of unsealing (e.g.,
due to network error, maintenance or reboot), the opera-
tion would fail. Our goal is to design a system that can
proceed even if some of the participating enclaves are
unreachable. In such a system, some of the assisting en-
claves may have outdated counter values, and the system
must ensure that only the latest counter value is ever re-
covered, assuming an adversary that can block messages,
and partition the network by choosing which nodes are
reachable at any given time.

Coordinated enclave restarts. When an enclave seals
data, it sends a counter value to a set of enclaves running
on assisting platforms and each enclave must store the
received counter. However, sealing the received counter
for persistent storage would cause a new state update that
would propagate endlessly. Therefore, the enclaves must
maintain the received counters in their runtime memory.
The participating enclaves may be restarted at any time,
which causes them to lose their runtime memory. Thus,
the rollback protection system must provide a recovery
mechanism that allows the assisting enclaves to restore
the lost counters from the other assisting enclaves. Such
a recovery mechanism opens up a new attack vector.
The adversary can launch coordinated attacks where he
restarts assisting enclaves to trigger recovery while the
target platform is distributing its current counter value.

Multiple enclave instances. Simple approaches that
store a counter to a number of assisting enclaves and later
read the counter from sufficiently many of the same en-
claves are vulnerable to attacks where the adversary cre-
ates multiple instances of the same enclave. Assume that
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a counter is saved to the runtime memory of all assist-
ing enclaves. The adversary that controls the OS on all
assisting platforms starts second instances of the same
enclave on all platforms. The target enclave updates its
state and sends an incremented counter to the second in-
stances. Later, the target enclave obtains an old counter
value from the first instances and recovers a previous
state from the persistent storage.

4 ROTE System
In this section we describe ROTE (Rollback Protec-

tion for Trusted Execution), a distributed system for state
integrity and rollback protection on SGX. We explain
the counter increment technique, our system architec-
ture, group assignment and system initialization. After
that, we describe the rollback protection protocols.

4.1 Counter Increment Technique
Two common techniques for counter-based rollback

protection exist. The first technique is inc-then-store,
where the enclave first increments the trusted counter and
after that updates its internal state and stores the sealed
state together with the counter value on disk. This ap-
proach provides a strong security property (no rollback
to any previous state), but if the enclave crashes between
the increment and store operations, the system cannot re-
cover from the crash.

The second technique is store-then-inc, where the en-
clave first saves its state on the disk together with the lat-
est input value, after that increments the trusted counter,
and finally performs the state update [4, 2]. If the sys-
tem crashes, it can recover from the previous state using
the saved input. This technique requires a deterministic
enclave and provides a slightly weaker security property:
arbitrary rollback is not possible, but the last input may
be executed twice on the same enclave state [2].

The stronger security guarantee is needed, for exam-
ple, in enclaves that generate random numbers, commu-
nicate with external parties or create timestamps. Con-
sider a financial enclave that receives a request message
from an external party and for each request it should
create only one signed response that is randomized or
includes a timestamp (sgx get trusted time [24]). If
store-then-inc is used, the adversary can create multiple
different signed responses for the same request.3

The weaker security guarantee is sufficient in applica-
tions where the execution of the same input on the same
state provides no advantage for the adversary.

3While some enclaves that require random numbers can be made
deterministic by using a stateful PRNG and including its state to the
saved enclave state, this may be difficult for enclaves that reuse code
from existing libraries not designed for this. Similarly, some replay
issues can be addressed on the protocol level, but enclave developers
do not always have the freedom to change (standardized) protocols.

OS

…

Platform A

ASEA1

ROTE lib ROTE lib

ASEAi
REA Platform B

ROTE System (TCB)

3rd Party Development

Figure 2: The ROTE system architecture.

In this paper we instantiate ROTE using inc-then-store,
because of its strong security guarantee for any enclave.
Our goal is to build a generic platform service that can
protect various applications. We emphasize that if crash
tolerance is required, then store-then-inc should be used.
A rollback protection system could even support both
counter increment techniques and allow developers to
choose the protection style based on their application.

4.2 System Architecture
Figure 2 shows our system architecture. Each platform

may run multiple user applications that have a matching
Application-Specific Enclave (ASE). The ROTE system
consists of a system service that we call the Rollback
Enclave (RE) and a ROTE library that ASEs can use for
rollback protection.

When an ASE needs to update its state, it calls a
counter increment function from the ROTE library. Once
the RE returns a counter value, the ASE can safely up-
date its state, save the counter value to its memory and
seal any data together with the counter value. When an
ASE needs to verify the freshness of its state, it can again
call a function from the ROTE library to obtain the latest
counter value to verify the freshness of unsealed seal data
(or state in its runtime memory).

The RE maintains a Monotonic Counter (MC), in-
creases it for every ASE update, distributes it to REs
running on assisting platforms, and includes the counter
value to its own sealed data. When the RE needs to
verify the freshness of its own state, it obtains the latest
counter value from the assisting nodes. The RE realizes
the secure counter storage functionality (WriteCounter
and ReadCounter) described in Section 3.

The design choice of introducing a dedicated system
service (RE) hides the distributed counter maintenance
from the applications. Having a separate RE increases
the TCB of our system slightly, but we consider easier
application development more important.

The ROTE system has three configurable parameters:

• n is the number of assisting platforms,
• f is the number of compromised processors, and
• u is the maximum number of assisting platforms that
can be unreachable or non-responsive at time of state up-
date or read for the system to proceed. Platform restarts
are typically less frequent events and during them we re-
quire all the assisting platforms to be responsive.
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CounterASEi

Figure 3: The ROTE system state structures.

These parameters have a dependency n = f + 2u+ 1
(see Section 5). As an example, a system administrator
can select the desired level of security f and robustness
u which together determine the required number of as-
sisting platforms n. Alternatively, given n assisting plat-
forms, the administrator can pick f and u. Recall that
standard Byzantine consensus protocols require always
at least 3 f +1 replicas.

To avoid shared-fate scenarios due to power outages
or communication blockades, the participating platforms
would ideally have independent or redundant power sup-
ply, battery backup, networking and OS maintenance.

4.3 System Initialization
Our system is agnostic to the way the n assisting SGX

platforms are chosen. Here we explain an example ap-
proach based on a trusted offline authority. Such group
assignment is practical when all assisting platforms be-
long to a single administrative domain (e.g., multiple
servers in the same data center). We call the trusted au-
thority that selects the assisting nodes the group owner.
The group owner can be a fully offline entity to reduce its
attack surface. To establish a protection group, the group
owner selects n platforms.

In this section, we assume that the operating systems
on these platforms are trusted at the time of system ini-
tialization (e.g., freshly installed OS). Note that although
SGX supports remote attestation, this assumption is re-
quired, if the group needs to be established among pre-
defined platforms. The SGX attestation is anonymous
(or pseudonymous) and therefore it does not identify the
attested platform. If the application scenario allows that
the protection group can be established among any SGX
platforms, then system initialization is possible without
initially trusted operating systems using remote attesta-
tion. We discuss such group setup alternatives in Sec-
tion 4.7.

During its first execution, the RE on each platform
generates an asymmetric key pair SKRE/PKRE , and ex-
ports the public key. The public keys are delivered to the
group owner securely, and the owner issues a certificate
by signing all group member keys. The group certificate
can be verified by the RE on each selected platform by
hard-coding the public key of the group owner to the RE
implementation.
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Figure 4: The ASE state update protocol.

The RE is started a second time with the certified list
of public keys and a secret initialization key as input pa-
rameters. The purpose of this secret key for initialization
is to indicate a legitimate group establishment operation
and to prevent a later, parallel group creation by compro-
mised operating systems on the same certified platforms
(see Section 5). The initialization key is hard coded to
the RE implementation in hashed format and the RE ver-
ifies the correctness of the provided key by hashing it.
Without the correct key, the RE aborts initialization. The
RE saves the list of certified public keys PKREi to a group
configuration table and runs an authenticated key agree-
ment protocol to establish pair-wise session keys kREi
with all REs, and adds them to the group configuration
table. Finally, the RE creates a monotonic counter (MC),
sets it to zero, and seals its state.

When an ASE wants to use the ROTE system for the
first time, it performs local attestation on the RE. The
code measurement of the RE can be hard-coded to the
ASE implementation or provisioned by the ASE devel-
oper. The ASE runs an authenticated key establishment
protocol with the RE. The RE adds the established shared
key kASEi to a local ASE counter table together with a lo-
cally unique enclave identifier idASEi and adds the same
key to its own state. The used state structures are shown
in Figure 3.

4.4 ASE State Update Protocol
When an ASE is ready to update its state (e.g., a fi-

nancial application has received a new transaction and
is ready to process it and update the maintained account
balances), it starts the state update protocol shown in Fig-
ure 4. This protocol can be seen as a customized version
of the Echo broadcast [15], as discussed in Section 8.
The communication between the enclaves is encrypted
and authenticated using the shared session keys in all of
our protocols. We add nonces and end point identifiers

USENIX Association 26th USENIX Security Symposium    1295



to each message to prevent message replay. The protocol
proceeds as follows:

(1) The ASE triggers a counter increment using the RE.
(2) The RE increments a counter for the ASE, increases
its own MC, and signs the MC using SKRE . The counter
is signed to preserve its integrity in the case of compro-
mised assisting REs.
(3) The RE sends the signed counter to all REs in the
protection group.
(4) Upon receiving the signed MC, each RE updates its
group counter table. The table is kept in the runtime
memory, and not sealed after every update, to avoid end-
less propagation.
(5) The REs that received the counter send an echo mes-
sage that contains the received signed MC. The REs also
save the echo in runtime memory for later comparison.
(6) After receiving a quorum q = u + f + 1 = n+ f+1

2
echos, the RE returns the echos to their senders.4 The
second round of communication is needed to prevent at-
tacks based on RE restarts during the update protocol.
(7) Upon receiving back the echo, each RE finds the
self-sent echo in its memory and checks if the MC value
from it matches the one in the group counter table and
the one received from the target RE. If this is the case,
the RE replies with a final ACK message.
(8) After receiving q final ACKs, the RE seals its own
state together with the MC value to the disk.
(9) The RE returns the incremented ASE counter value.
The ASE can now safely perform the state update (e.g.,
update account balance), save the counter value to its
runtime memory for later comparison, and seal its state
with the counter.

4.5 RE Restart Protocol
Figure 5 shows the protocol that the RE runs after a

restart. The goal of the protocol is to allow the RE to join
the existing protection group, retrieve its counter value
and the MC values of the other nodes.

At restart the RE loses all previously established ses-
sion keys and has to establish new session keys. In order
to preserve our security guarantees, the target RE waits
until it establishes new session keys with all other REs re-
siding in the protection group. All assisting REs update
their group configuration tables accordingly. The session
key refresh mechanism prevents nodes from communi-
cating with multiple RE instances on one platform (see
Section 5). Another condition for successfully joining

4It might seem that waiting for more than q responses, and therefore
allowing more than q nodes to complete the protocol, would increase
system robustness. However, the quorum is designed such that writing
the latest counter to more than q nodes does not help the system to
proceed in case of node unavailability or restarts (see Section 5).
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Figure 5: The RE restart protocol.

the protection group is that sufficiently many nodes re-
turn non-zero counter values (step 6 below). This check
prevents simultaneously restarted REs from establishing
a second, parallel protection group. This guarantee can
be maintained when at most u nodes restart simultane-
ously. The protocol proceeds as follows:

(1) Session key establishment with other nodes and up-
date of the group configuration table.
(2) The RE queries the OS for the sealed state.
(3) The RE unseals the state (if received) and extracts
the MC.
(4) The RE sends a request to all other REs in the pro-
tection group to retrieve its MC.
(5) The assisting REs check their group counter table. If
the MC is found, the enclaves reply with the signed MC.
Additionally, the complete table of other signed MCs that
the responding node has in its memory is sent to the tar-
get RE.
(6) When the RE receives q responses from the group
(recall that q = u + f + 1 and q ≥ n/2), it selects the
maximum value and verifies the signature. We select the
maximum value because some REs might have an old
counter value or they may have purposefully sent one.
The target RE verifies signatures and compares all the
group counter table entries with received values for other
nodes. For each assisting RE, the target RE picks the
highest MC and updates its own group counter table with
the value. The RE also verifies that at least f + 1 of the
received counter values are not zero to prevent creation
of the parallel network. If the obtained counter value
matches the one in the unsealed data, the unsealed state
can be accepted.
(7) The RE stores and seals the updated state. The RE
will also save the counter value to its runtime memory.

The RE now has an updated group counter table that
reflects the latest counters for each node in the group.
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Figure 6: The ASE start/read protocol.

4.6 ASE Start/Read Protocol
When an ASE needs to verify the freshness of its

state, it performs the protocol shown in Figure 6. This
is needed to verify the freshness of unsealed state after
an ASE restart or when an ASE replies to a client request
asking its current state (e.g., account balance). The ASE
must verify that another ASE instance does not have a
newer state. The protocol proceeds as follows:
(1) The ASE queries the OS for the sealed data.
(2) The ASE unseals the state (if received) and obtains
a counter value from it.
(3) The ASE issues a request to the local RE to retrieve
its latest ASE counter value.
(4) To verify the freshness of its runtime state, the RE
performs the steps 4-6 from the RE Restart protocol, to
obtain the latest MC from the network. This is needed
to prevent forking attacks with multiple RE instances. If
the obtained MC does not match the MC residing in the
memory, the state of the RE is not the latest, so, the RE
must abort and be restarted. This is an indication that an-
other instance of the same RE was running and updated
the state in the meantime. If the values match, the current
data is fresh and the RE can continue normal operation.
(5) If all verification checks are successful, the RE re-
turns a value from the local ASE counter table.
(6) The ASE compares the received counter value to the
one obtained from the sealed data.

If the counters match, ASE loads the previously sealed
state or completes a security-critical client request.

4.7 Group Management
Group updates. The group owner issues a signed

list of public parts of the public-private key pairs gener-
ated by each Rollback Enclave that define the protection
group. Assume that later one or more processors in the
group are found compromised or need replacement. The
group owner should be able to update the previously es-
tablished group (i.e., exclude or add new nodes) without
interrupting the system operation.

During system initialization, the RE verifies the signed
list of group member keys and seals the group configu-

ration. When a group update is needed, the group owner
issues an updated list that will be processed and sealed
by the RE. This approach does not require the entry of
the secret initialization key such as in first group estab-
lishment. However, the adversary should not be able to
revert the group to its previous configuration (e.g., one
including compromised nodes) by re-playing the previ-
ous group configuration. Since group updates are typ-
ically infrequent, they can be protected using SGX or
TPM counters.

At system initialization, the RE creates a monotonic
counter using SGX counter service or on a local TPM.
If this is done using TPM, establishing a shared secret
with the TPM (see session authorization in [23]) is nec-
essary. The group owner includes a version number to
every issued group configuration. When the RE pro-
cesses the signed list, it increments the SGX or TPM
counter to match the group version, and includes the ver-
sion number in the sealed data. For every group update,
the RE increments either of these counters. When the
RE is restarted, it verifies that the version number in the
unsealed group configuration matches the counter. The
NVRAM memory in TPMs is expected to support ap-
proximately 100K write cycles, while with SGX coun-
ters support approximately 1M cycles, sufficient for most
group management needs. For example, if group updates
are issued once a week, the NVRAM would last 2000
years using TPMs and 20000 year using SGX counters.

Group setup with attestation. In Section 4.3 we de-
scribed group setup for pre-defined platforms. The draw-
back of this approach is that it requires trusted operat-
ing systems at initialization. If the application scenario
allows group establishment among any SGX platforms,
similar trust assumption is not needed. The group owner
can attest n + 1 group members using the attestation
mode that returns a pseudonym for each attested plat-
form, establish secure channels to all group members,
and distribute keys that group members use to authenti-
cate each other. Because each platform reports a different
pseudonym, this process guarantees that the protection
group consists of n+ 1 separate platforms in contrast to
multiple instances on one compromised CPU.

5 Security Analysis
Our system is designed to provide the following secu-

rity property: an ASE cannot be rolled back to a previ-
ous state. In Section 5.1 we first show that given a se-
cure storage functionality, as defined in Section 3, an RE
can verify that its state is the latest. After that, in Sec-
tion 5.2, we show that the participating REs realize the
secure counter storage as a distributed system. Finally,
by putting these two together, we show that ASEs cannot
be rolled back if the RE cannot be rolled back.

Our system achieves a security guarantee that we call
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Figure 7: Transition diagram showing enclave execution
states using an ideal secure counter storage functionality.

all-or-nothing rollback. The only way to violate enclave
data integrity is to reset all nodes which brings the entire
group to its initial state. In many application scenarios
such integrity violation is easy to detect, and we do not
consider it an attack on ROTE.

In the event of crashes, restarts or node unavailabil-
ity, the system may fail to proceed temporarily or perma-
nently. We distinguish three such cases: Halt-1 where
the system may be able to proceed automatically by sim-
ply trying again later (e.g., temporary network issue);
Halt-2 where manual intervention from the system ad-
ministrator is needed (e.g., faulty node that needs to be
fixed); and Halt-X where the complete system has to be
re-initialized and the latest state of enclaves will be lost
(e.g., simultaneous crash of all nodes). Recall that as the
adversary controls the OS on all nodes, denial of service
is always possible.

5.1 Protection with Secure Storage
Given the secure counter storage functionality (see

Section 3) rollback can be prevented using the inc-then-
store technique. In Figure 7 we illustrate a state tran-
sition diagram that represents RE states during sealing,
unsealing and memory reading using the secure storage
functionality. The notion of state in this section is an ex-
ecution state, in contrast to enclave data states created
and stored using sealing. We show that any combination
of adversary operations, in any of the enclave execution
states, cannot force the RE to accept a previous version
of sealed data. We also show that in spite of multiple
local RE instances, the read enclave state is always the
latest. Note that this state transition diagram does not
capture system initialization.

First start. After creating and starting the enclave us-
ing e← Create(code) and i← Start(e), the RE exe-
cution begins from State 1. The MC is set to zero in
the runtime memory and RE proceeds to State 2. The
RE reads the counter value from the secure storage using
ReadCounter(). If the ReadCounter() operation fails,
the RE halts (Halt-1). On the first execution the oper-
ation returns empty and the RE continues to State 7 to
continue normal operation. From State 7 the execution

moves to State 2 for verifying freshness if a Read() re-
quest is received, while the Write() request moves exe-
cution to State 8.

Sealing. When the RE needs to seal data for local per-
sistent storage, it proceeds to State 8. The RE increments
the MC, and performs the WriteCounter() operation to
the secure storage in State 9. The RE continues to State
10 if the operation succeeds, otherwise it halts (Halt-1).
In State 10, the RE seals data (s← Seal(data)) of its
current state along with the counter value. OS confirma-
tion moves the enclave to normal operation in State 7.
If sealing fails, the node can try again (Halt-1). If that
does not help, the node loses its latest state and becomes
unavailable, and a group update is needed (Halt-2).

Unsealing. When the RE needs to unseal data (re-
cover its state), the RE proceeds from State 7 to State
3. The adversary can offer the correct sealed data
(OfferSeal(latest ≡ s)) which moves the execution to
State 4. Unsealing is successful and the counter value
in the seal matches the MC value in the runtime mem-
ory, bringing the RE back to State 7. The adversary
can offer a previously sealed state (OfferSeal(previous))
which moves the execution to State 6. Unsealing is suc-
cessful, but counter values do not match and the RE halts
(Halt-1 or Halt-2).5 Finally, the adversary can offer any
other data (OfferSeal(arbitrary)) which moves the RE
to State 5 where unsealing fails and RE halts (Halt-1 or
Halt-2).

Forking. If a new instance of the RE is started, the
execution for it moves to State 1 following First start.
Other instances remain in their original states. If for
every Write() and Read() operation a counter is incre-
mented or respectively retrieved from the secure counter
storage to verify freshness, no rollback is possible. When
the RE needs to read its runtime state (e.g., to complete a
client request), the RE proceeds from State 7 to State 2.
The RE reads the MC from the secure counter storage (if
this fails, Halt-1) and compares the value to the one re-
siding in its memory. This check is needed to guarantee
that another instance of the same enclave does not have
a newer state. If comparison succeeds, RE has the lat-
est internal memory state and proceeds back to State 7.
If the comparison fails (retrieved MC is higher), the RE
moves to State 3 to obtain the latest seal (see above).

Restart. After an RE restart, the execution proceeds
to State 2. If the ReadCounter() operation returns a non-
empty value, the RE proceeds to State 3, otherwise to
State 7, from where we follow the same steps as above.
If the counter read operation fails, RE enters Halt-1.

If in any of these states the RE is terminated or
restarted, its execution continues from State 1. Deleting

5If the OS provides an incorrect sealed data, most likely it is faulty
an needs to be fixed. From some OS errors it may be possible to recover
by simply trying again.
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Figure 8: Network partitioning example where the ad-
versary intentionally blocks a part of the nodes.

and creating the same enclave again has the same effect.
Suspend() and Resume() have no effect, i.e., the enclave
remains in the same execution state. We conclude that,
assuming the secure storage functionality, the adversary
cannot rollback the state of the RE.

5.2 Distributed Secure Storage Realization
Next, we show how ROTE realizes the secure counter

storage functionality as a distributed system. When ob-
taining a counter from the distributed protection group
(ReadCounter), RE receives the latest value that was sent
to the protection group (WriteCounter). We divide the
analysis into four parts: quorum size, platform resets,
two-phase counter writing, and forking attacks.

Quorum size. The ROTE system has three parameters:
the number of assisting nodes n, compromised nodes f ,
and unresponsive nodes u. The required quorum for re-
sponses at the time of counter writing and reading is
q = f + u+ 1 = n+ f+1

2 . Figure 8 illustrates that this is
an optimal quorum size. We consider an example where
the adversary performs network partitioning by blocking
messages during writing and reading.

On the first write, the attacker allows the counter value
1 to reach the right side of the group by blocking the
messages sent to the left side. On the second write, the
adversary allows the counter value 2 to reach the left
side of the group by blocking the right side. Finally, on
counter read, the adversary blocks the left side again. If
the counter is successfully written to q= f +u+1 nodes,
there always exists at least u+1 honest platforms in the
group that have the latest counter value in the memory.
Because counter reading requires the same number of re-
sponses, at least one correct counter value is obtained
upon reading. The maximum number of tolerated com-
promised platforms is f = n−1, if u= 0 and q= n. If the
quorum cannot be satisfied in either the state update pro-
tocol or any counter retrieval, the system enters Halt-1
and can try to perform the same operation again.

Platform restarts. If an assisting RE is restarted, it
needs to first establish session keys and then recover the
lost MC values from the protection group. Session key
establishment procedure is explained below under Fork-
ing attacks; the main take-away is that up to u nodes
may restart simultaneously and after the nodes are online
again the RE needs to establish session keys with every

node in the group before proceeding with MC recovery.6

Once the keys are established, some assisting nodes can
be inactive or restarted. Three distinct cases are possible.
First, the number of inactive/restarted REs is at most u.
Since the number of running nodes is u+ f +1 = q there
are sufficient available platforms with the correct MC for
the counter retrieval. Second, more than u platforms, but
not the entire protection group, are restarted. The num-
ber of remaining platforms is insufficient for RE recovery
and the distributed system no longer provides success-
ful MC access, but no rollback is possible (Halt-X, since
there is no guarantee that the non-restarted nodes have
the latest counter, thereby risking a rollback. However,
before re-initializing the system, the latest states from the
non-restarted nodes can be manually saved.) Third, all
n+1 nodes are restarted at the same time, in which case
a new system configuration has to be deployed again by
the group owner to re-initialize the system (Halt-X).

Two-round counter writing. Additionally, it remains
to be shown how our update protocol successfully writes
the counter to q nodes, despite possible RE restarts dur-
ing the protocol. We illustrate the challenges of counter
writing through an example attack on a single-round
variant of the update protocol that completes after the
RE has received q echoes. During state update the adver-
sary blocks all communication and performs sequential
message passing. First, the attacker allows message de-
livery to only one node that saves the counter and returns
an echo. After that, the attacker restarts the RE on that
node, which initiates the recovery procedure from the
rest of the protection group. The adversary blocks the
communication to the target platform, and the restarted
RE recovers the previous counter value, because other
reachable REs have not yet received the new value. The
adversary repeats the same process for all platforms. As
a result, the target node has received q echos and accepts
the state update, but all the assisting nodes have the pre-
vious counter value. Rollback is possible.

The second communication round in our protocol pre-
vents such attacks. No combination of RE restarts during
the state update protocol allows the target RE to complete
it, unless the counter was written to q nodes. There are
four distinct cases to consider. Below, we assume that the
adversary restarts at most u platforms simultaneously. If
more are restarted, recovery is not possible (Halt-X).

• Case 1: Echo blocking. If the attacker blocks commu-
nication or restarts assisting REs so that q nodes cannot
send the echo, the protocol does not complete (Halt-1).

6Consider an example, where two nodes are restarted at the same
time. The first node wakes up and attempts to establish new session
keys with all assisting nodes. This node has to wait, until the second
restarted node wakes up and can communicate. After this point, both
of the restarted nodes can establish session keys (with all nodes) and
proceed with the RE Restart protocol.
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• Case 2: No echo blocking. If the attacker allows at
least q echoes to pass, RE starts returning them and we
have two cases to observe:
• Case 2a: No restarts during first round. If none of
the assisting REs were restarted during the first protocol
round, then at least u+1 nodes have the updated MC. If
the adversary restarts assisting REs before they sent the
final ACK and after they received the self-sent echo back
from the target RE, the protocol will not complete (Halt-
1), because fewer than q final ACKs will be received.
The protocol run may be repeated again. The adversary
can also restart assisting REs after they have sent the fi-
nal ACK which will result in successful state update, and
successful state recovery of the restarted REs since a suf-
ficient number of the assisting nodes already have the up-
dated counter value.
• Case 2b: Restarts during first round. If the adversary
restarts assisting REs during the first round, the update
protocol will either successfully complete (q final ACKs
received) or halt execution (Halt-1) depending on the
number of simultaneously restarted nodes. Sequential
node restarts, as discussed in the example attack above,
are detected. Upon receiving q echoes, the RE sends each
of the received echoes to the original sender. Because of
sequential RE restarts, all assisting nodes have the pre-
vious MC value in their runtime memory, and thus the
protocol will fail upon comparison of the echoes and the
MC values. None of the assisting REs will deliver the
final ACK, and the protocol will not complete (Halt-1).

We conclude that the successful completion of the
two-phase state update protocol guarantees that at least
q nodes received and at least u + 1 honest nodes have
(i.e., correctly stored) the correct MC.

Forking attacks. Our system prevents attacks based
on multiple enclave instances by requiring that the ASE
start/read and RE restart protocols contact the assisting
nodes and verify the latest counter from the protection
group. If the latest counter is correct, RE can be certain
that it made the last update. If the session’s keys are out-
dated, communication with other nodes is disabled and
RE knows another instance has run in parallel.

The session key refresh mechanism allows us to
uniquely identify the latest running instance and prevents
parallel communication with two instances running on
one platform. After every RE start, keys have to be es-
tablished with all nodes from the protection group to pre-
vent the attacker from instantiating new REs on different
platforms in a one-by-one manner while keeping some
of the nodes disconnected. Other nodes delete the old
session key that they shared with the previous instance
residing on the same platform, rendering its communica-
tion unusable. The protection group only allows keys for
one running instance on each platform. Also, by forcing

state retrieval and freshness verification after each instan-
tiation and for all ASE requests, the running instance on
each platform will always have the latest state and high-
est MC, thus preventing rollback.

Our system also ensures that the adversary cannot es-
tablish a parallel protection group on the same platforms
and re-direct ASEs to the rogue system causing a roll-
back. If no initialization key is provided and the RE re-
ceives all zero MC values from others in the group during
setup, it will abort execution. A new network may only
be created under the supervision of the group owner with
the correct initialization key.

Summary. If the target RE has the latest MC that it
sent, it is able to distinguish its latest sealed state, and if
the latest sealed state is loaded, all the ASEs state coun-
ters kept within are fresh. Upon retrieval, the ASE al-
ways receives the latest counter, and thus each ASEs can
verify that it has the latest state data. If the target RE is
not able to recover the latest MC, the system end ups in
either Halt-1, Halt-2 or Halt-X.

6 Performance Evaluation
In this section we describe our performance evalua-

tion. First, we describe our implementation that con-
sists of the following components. We implemented the
RE (950 LoC), an accompanying rollback relay appli-
cation (1600 LoC), ROTE library (150 LoC), a simple
test ASE (100 LoC), and a matching test relay applica-
tion (100 LoC). The purpose of the relays is to mediate
enclave-to-enclave communication. We implemented all
components in C++, the relays were implemented for the
Windows platform. The local communication between
the relay applications was implemented using Windows
named pipes. The total TCB accounts for 1100 LoC.

The enclaves use asymmetric cryptography for signing
(ECDSA) and encryption (256-bit ECC). Our implemen-
tation establishes shared keys using authenticated Diffie-
Hellman key exchange. For symmetric message encryp-
tion and authentication we use 128-bit AES-GCM in
encrypt-then-MAC mode. All used cryptographic primi-
tives are provided by the standard Intel SGX libraries.

6.1 State Update and Read Delay
The main performance metrics that we measure are the

ASE state update and state read delays that include the
counter writing to and reading from the protection group.
The delays depends on the network characteristics and
the size of the protection group (n+ 1). The RE restart
operation is typically performed once per platform boot,
and thus the operation is not similarly time-critical so we
do not measure it. In all test cases we set u = f = 0, as
their values do not affect state update and read delays.7

7The state update protocol proceeds immediately after receiving q
responses, and therefore node unavailability does not affect update de-
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Figure 9: Experimental results, state update/read delay. The first figure shows ROTE performance for protection groups
that are connected over a local network, the second figure shows the simulated performance for a larger group also
over a local network, while the third figure is for geographically distributed protection groups.

Experimental setup. Our first experimental setup
consisted of four SGX laptops and our second exper-
imental setup consisted of 20 identical desktop com-
puters, both connected via local network (1Gbps, ping
≤ 1ms). Our third experimental setup was a geograph-
ically distributed (in order, US (West), Europe, Asia, S.
America, Australia, US (East)) protection group of sizes
from two to six nodes that we tested on Amazon AWS
EC2. For the first setup we used the real ROTE imple-
mentation while the latter two we used a simulated im-
plementation (the same protocol, but no enclaves).

Results. The state update delay consists of two com-
ponents: networking and processing overhead. Context
switching to enclave execution is fast (few microsec-
onds). Symmetric encryption used in the protocol is also
fast (less than a microsecond). The only computationally
expensive operation that we use is asymmetric signatures
(0.46 ms per signing operation). We provide more per-
formance benchmarks in [20].

The ASE state update protocol has one signature cre-
ation which is verified later in the RE and ASE start/read
protocols. The required processing time of the state up-
date protocol is less than 0.6 ms, where the creation of
the first protocol message takes 0.51 ms (signing). The
state read protocol requires one round trip, while the state
update protocol needs two. All messages passed between
the nodes are 224 bytes (200 payload + 24 header).

Figure 9 shows the results from our three experimen-
tal setups. Figure 9a shows that the state update delay
was approximately 2 ms, while the state read delay was
approximately 1.3 ms for group sizes from two to four
nodes using the ROTE implementation. Figure 9b illus-
trates an increase in the delay as the group size grows.
This is as expected, since the target platform needs to
communicate with more platforms. For group size of 20
nodes, the delay is 2.98 ms and 2.13 ms, respectively.
Lastly, Figure 9c illustrates a less systematic increase in

lay. Similarly, up to f compromised nodes can discard counter values
or return fake values, but that does not affect the protocol delay.

Request State no rollback ROTE SGX counter
type size protection system protection

(KB) (ms) (ms) (ms)
Write 1 3.85 (± 0.06) 5.17 (± 0.03) 160.7 (± 0.7)
state 10 4.65 (± 0.05) 6.03 (± 0.03) 162.7 (± 1.6)

100 6.49 (± 0.04) 7.83 (± 0.05) 169.1 (± 2.1)
Read 1 0.06 (± 0.00) 1.41 (± 0.02) 61.04 (± 3.1)
state 10 0.19 (± 0.00) 1.53 (± 0.01) 61.17 (± 3.1)

100 1.76 (± 0.05) 3.1 (± 0.02) 62.74 (± 3.2)

Table 1: Example application throughput without roll-
back protection, using ROTE and using SGX counters.

delay, due to the dependency on network connections
between various geographic locations in the protection
group. The update time between two locations takes 654
ms while between five the update time is 1.37 seconds.
The read delay is respectively 342 ms and 810 ms.

We draw two conclusions from these experiments.
First, the performance overhead imposed by ROTE is
defined largely by the network connections between the
nodes. Second, if the nodes are connected over a low-
delay network, ROTE supports applications requiring
very fast state updates (1-2 ms). For applications toler-
ating larger delays (e.g., more than 600 ms per state up-
date), ROTE can be run on geographically distant groups.

6.2 Example Application Throughput
Additionally, we measured the throughput of an ex-

ample financial enclave that processes incoming transac-
tions repeatedly (the transaction buffer is never empty).
We tested the enclave using (a) no rollback protection,
(b) the ROTE implementation, and (c) SGX counter
based rollback protection. The experimental setup was
a protection group of four nodes. For every update trans-
action, the enclave updates its state, creates a new seal,
and writes it to the disk, while the read transaction in-
cludes reading from the disk, unsealing and retrieving
the counter for comparison. In case of ROTE and SGX
counter variants, the enclave also performs a counter in-
crement. We tested three different enclave state sizes (1
KB, 10 KB, 100 KB) since the state size for transactions
can differ based on the exact use case.
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Results. Table 1 shows our results. In all three cases
the ROTE system provides significantly better state up-
date performance than using SGX counters (e.g., 190
over 6 tx/s for 1KB) while suffering a 20-25% perfor-
mance drop in comparison to systems which have no
rollback protection (e.g., 260 over 190 tx/s for 1KB).
We conclude that our system provides significantly faster
rollback protection than methods based on local non-
volatile memory. Compared to systems with no rollback
protection, our solution imposes a moderate overhead.

7 Discussion
Data migration. Although sealing binds encrypted

enclave data to a specific processor, our solution enables
data migration within the protection group. Migration is
especially useful before planned hardware replacements
and group updates (e.g., node removal). In a migra-
tion operation, an ASE first unseals its persistent data
and passes it to the RE. The RE sends the enclave data
to another Rollback Enclave within the same protection
group together with the measurement of the ASE. The
communication channel between the REs is encrypted
and authenticated. On the receiving processor, the RE
passes the enclave data to an instance of the same ASE
(based on attestation using the received measurement)
which can seal it. Note that the RE is agnostic to the in-
ternal state of ASEs and just re-encrypts data it receives
from an ASE without the need to understand its seman-
tics. Combined with group updates (Section 4.7), such
enclave data migration enables flexible management of
available computing resources. Similar data migration is
discussed in [25].

Information leakage. Our model excludes execution
side-channels. Here we briefly discuss additional infor-
mation leakage that our solution may add. Each enclave
state update and read causes network communication.
An adversary that can observe the network, but does not
have access to the local persistent storage, can use the in-
formation leakage to determine the timing of sealing and
unsealing events. Also the reboot of the target platform
causes an observable network pattern. We consider such
information leakage a practical concern but developing
countermeasures is outside the scope of this paper.

Performance. The main performance characteristic
of our solution, the state update delay, is dominated by
the networking and the asymmetric signature operation
required for the first message of the state update proto-
col. In case of a local, 1Gpbs, network and an average
laptop, the networking takes approximately 1 ms and the
signature operation 0.5 ms. A possible optimization is to
pre-compute the asymmetric signatures. Since the signed
data is predictable MC values, we can pre-compute and
store them. This pre-computation may be done at times
when the expected load is low or at system initialization

depending on the specific scenario.
For communication between the enclaves we use sym-

metric keys derived from the key agreement protocol for
performance reasons, since it is computationally much
less expensive. However, depending on the application
scenario we could use asymmetric keys which would en-
able, for example, post-incident forensics. This design
choice is dependent on the use case and performance re-
quirements. ROTE can accommodate both approaches.

Consensus applications. In the specific case where
all participating enclaves implement a distributed appli-
cation with the purpose to maintain a consensus (e.g.,
permissioned blockchain), our rollback protection can be
optimized further. In such an application, all participat-
ing enclaves have a shared, global state and the state up-
date protocol can be replaced with a suitable Byzantine
agreement protocol. When an enclave is restarted (or de-
termines its latest state), it queries its latest state from the
participating enclaves similar to our RE restart protocol.
We leave a detailed design as future work.

Forking prevention. The current SGX architecture
does not provide the ability for one enclave instance to
check if another instance of the same enclave is already
running. The implementation of this feature would sim-
plify rollback protection significantly.

Forking prevention could be implemented using a
TPM. After system boot, the RE instance could extend
a PCR that has a known value at boot. If a second RE
instance is started, it can check if the PCR value differs
from its known initial value [2]. The drawback of this
approach is the increase of the system security perimeter
outside of the processor.

Periodic check-pointing. For increased robustness,
our rollback protection can be complemented with peri-
odic check-pointing. An example approach would be to
increment a counter on local NVRAM on selected up-
dates (e.g., mod 100). If all nodes crash at the same time,
the administrator has an option to recover from the latest
saved checkpoint with the risk of possible rollback.

8 Related work
SGX-counter and TPM solutions. Ariadne [2] uses

TPM NVRAM or SGX counters for enclave rollback
protection. The counter is incremented using store-then-
inc that provides crash resilience, but allows two execu-
tions of the latest input. Ariadne minimizes the TPM
NVRAM wear using counter increments that flip only a
single bit. Compared to our solution, SGX counters are
an optional feature, increments are slow and make the
non-volatile memory unusable after few days of contin-
uous use. Similar performance limitations apply to TPM
NVRAM. SGX counters are also likely vulnerable to bus
tapping and flash mirroring attacks [22], while in our so-
lution the trust perimeter is the processor package.

1302    26th USENIX Security Symposium USENIX Association



Memoir [4] also leverages TPM NVRAM for rollback
protection, and therefore has similar performance limi-
tations. An optimized variant of Memoir assumes the
availability of an Uninterrupted Power Supply (UPS).
This variant stores the state updates to volatile Platform
Configuration Registers (PCRs) and at system shutdown
writes the recorded update history to the NVRAM. ICE
[3] enhances the CPU with protected volatile memory, a
power supply and a capacitor that at system shutdown the
flushes the latest state to non-volatile memory. Both the
optimized Memoir and ICE require hardware changes.
Additionally, reliably flushing data upon a crash or power
outage can be challenging in practice.

Client-side detection. Brandenburger [26] proposes
client-side rollback detection for SGX in the context of
cloud computing. The main difference to our work is
that this approach does not prevent a rollback directly on
the server. Instead, it allows mutually trusting clients to
remain synchronized, and given that certain connectivity
requirements are met, detect consistency and integrity vi-
olations (including rollback) after the incident.

Integrity servers. Verena [6] maintains authenti-
cated data structures for web applications and stores in-
tegrity information on a separate, trusted server. Another
use case is to prevent the usage of disabled credentials
on mobile devices by storing counters on an integrity-
protected server [8]. In such solutions the integrity server
becomes a single point of failure.

Byzantine broadcast and agreement. Our state up-
date protocol follows the approach of Echo broadcast
[15] with an additional confirmation message in the
end. Like other byzantine broadcast primitives, our
state update protocol requires O(n) messages. Byzantine
agreement typically require O(n2) messages. Byzantine
broadcast and agreement protocol operate on arbitrary
values and assume a potentially malicious sender. Thus,
such protocols require 3 f + 1 replicas. In our system
the target enclave is trusted and the distributed data is a
signed counter value. Thus, f +1 replicas are sufficient.

Secure audit logs. Secure audit log systems [27, 28,
29, 30] provide accountability and in particular prevent
manipulation of previous log entries after the target plat-
form becomes compromised. Most such audit log sys-
tems assume a trusted but infrequently accessible stor-
age. Our goal is to design a system that has no single
point of failure, and therefore in ROTE the trusted stor-
age is realized as a distributed system amongst a set of
assisting nodes (some of which can be compromised).

Accountability for distributed systems. PeerReview
[31] provides accountability for distributed systems and
in particular detect nodes that violate from expected be-
haviour. Instead of fault detection, our goal is to realize
distributed secure storage, customized for rollback pro-
tection, in the presence of faulty nodes.

Adversary models. Agreement has been considered
under models where the faulty nodes have some trusted
functionality (e.g., an unmodifiable hardware primitive).
Such approaches reduce the number of required replicas
to 2 f + 1 [32, 33, 34, 35] or f + 1 [36]. We have no
trust assumptions on the compromised nodes. Byzan-
tine agreement has also been considered with dual failure
models [37, 38, 39] where the adversary can fully con-
trol the faulty processes and can read the secrets of other
processes. In our case, the adversary cannot read secrets
from trusted enclaves, but it can extract keys from f com-
promised nodes, and additionally schedule enclaves’ ex-
ecution on all nodes.

Several recently proposed SGX systems [40, 41, 42,
13, 43, 44, 45, 46] consider an adversary model with an
untrusted OS. To the best of our knowledge, our work is
the first to define a model with explicit adversarial capa-
bilities that cover enclave restarts and multiple instances.
These capabilities are critical for the security of our sys-
tem and also other SGX systems (see the extended ver-
sion of this paper for details [20]).

9 Conclusion
In this paper we have proposed a new approach for

rollback protection on Intel SGX. Our main idea is to
implement integrity protection as a distributed system
across collaborative enclaves running on separate pro-
cessors. We consider a powerful adversary that controls
the OS on all participating platforms and has even com-
promised a subset of the assisting processors. We show
that our system provides a strong security guarantee that
we call all-or-nothing rollback. Our experiments demon-
strate that distributed rollback protection provides signif-
icantly better performance compared to solutions based
on local non-volatile memory.
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A SGX Background
Here we briefly describe the main protection mecha-

nisms of SGX. For a more elaborate explanation of the
architecture, we refer interested readers to [1].

Enclave creation. An enclave is created by the sys-
tem software. During enclave creation, the system soft-
ware specifies the enclave code. Security mechanisms
in the processors create a data structure called SGX En-
clave Control Structure (SECS) that is stored in a pro-
tected memory area (see below). Because enclaves are
created by the system software running on the OS, their
code cannot contain sensitive data. The start of the en-
clave is recorded by the processor, reflecting the content
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of the enclave code as well as the loading procedure (se-
quence of instructions). The recording of an enclave start
is called measurement and it can be used for later attes-
tation. Once an enclave is no longer needed, the OS can
terminate it and thus erase its memory structure from the
protected memory.

Runtime isolation. The SGX security architecture
guarantees that enclaves are isolated from all software
running outside of the enclave, including the OS, other
enclaves, and peripherals. By isolation we mean that
the control-flow integrity of the enclave is preserved and
other software cannot observe its state. The isolation
is achieved via protection mechanisms that are enforced
by the processor. The code and data of an enclave are
stored in a protected memory area called Enclave Page
Cache (EPC) that resides in Processor Reserved Mem-
ory (PRM) [47]. PRM is a subset of DRAM that can-
not be accessed by the OS, applications or direct mem-
ory accesses. The PRM protection is based on a series
of memory access checks in the processor. Non-enclave
software is only allowed to access memory regions out-
side the PRM range, while enclave code can access both
non-PRM memory and the EPC pages owned by the en-
clave [1].

The untrusted OS can evict EPC pages into the un-
trusted DRAM and load these back at a later stage.
While the evicted EPC pages are stored in the untrusted
memory, SGX assures their confidentiality, integrity and
freshness via cryptographic protections. The architecture
includes the Memory Encryption Engine (MEE) which is
a part of the processor uncore (microprocessor function
close to but not integrated into the core [1]). The MEE
encrypts and authenticates the enclave data that is evicted
to the non-protected memory, and ensures enclave data
freshness at runtime using counters and a Merkle-tree
structure. The root of the tree structure is stored on the
processor die. Additionally, the MEE is used to protect
SGX’s Enclave Page Cache against physical attacks and
is connected to the Memory Controller [48, 1].

Attestation. Attestation is the process of verifying
that certain enclave code has been properly initialized. In
local attestation a prover enclave can request a statement
that contains measurements of its initialization sequence,
enclave code and the issuer key. Another enclave on the
same platform can verify this statement using a shared
key created by the processor. In remote attestation the
verifier may reside on another platform. A system ser-
vice called Quoting Enclave signs the local attestation
statement for remote verification. The verifier checks the
attestation signature with the help of an online attestation
service that is run by Intel. Each verifier must obtain a
key from Intel to authenticate to the attestation service.
The signing key used by the Quoting Enclave is based on
a group signature scheme called EPID (Enhanced Pri-

vacy ID) which supports two modes of attestation: fully
anonymous and linkable attestation using pseudonyms
[49, 1]. The pseudonyms remain invariant across reboot
cycles (for the same verifier). Once an enclave has been
attested, the verifier can establish a secure channel to it
using an authenticated key exchange mechanism.

Sealing. Enclaves can save confidential data across
executions. Sealing is the process to encrypt and authen-
ticate enclave data for persistent storage [50]. All lo-
cal persistent storage (e.g. disk) is controlled by the un-
trusted OS. For each enclave, the SGX architecture pro-
vides a sealing key that is private to the executing plat-
form and the enclave. The sealing key is derived from a
Fuse Key (unique to the platform, not known to Intel) and
an Identity Key that can be either the Enclave Identity or
Signing Identity. The Enclave Identity is a cryptographic
hash of the enclave measurement and uniquely identifies
the enclave. If data is sealed with Enclave Identity, it
is only available to this particular enclave version. The
Signing Identity is provided by an authority that signs the
enclave prior to its distribution. Data sealed with Sign-
ing Identity can be shared among all enclave versions
that have been signed with the same Signing Identity.

B SGX Counter Analysis
Intel has recently added support for monotonic coun-

ters [5] as an optional SGX feature that an enclave devel-
oper may use for rollback attack protection. However,
the security and performance properties of this mecha-
nism are not well documented. Furthermore, they are not
available on all platforms. In this Appendix we outline
all executed experiments and evaluate the SGX counter
and trusted time service.

SGX counter service. An enclave can query avail-
ability of counters from the Platform Service Enclave
(PSE). If supported, the enclave can create up to 256
counters. The default owner policy encompasses that
only enclaves with the same signing key may access the
counter. Counter creation operation returns an identifier
that is a combination of the Counter ID and a nonce to
distinguish counters created by different entities. The en-
clave must store the counter identifier to access it later, as
there is no API call to list existing counters. After a suc-
cessful counter creation, an enclave can increment, read,
and delete the counter.

According to the SGX API documentation [5], counter
operations involve writing to a non-volatile memory. Re-
peated write operations can cause the memory to wear
out, and thus the counter increment operations may be
rate limited. Based on Intel developer forums [51], the
counter service is provided by the Management Engine
on the Platform Control Hub (PCH).

Experiments. We tested SGX counters on five dif-
ferent platforms: Dell Inspiron 13-7359, Dell Latitude
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E5470, Lenovo P50, Intel NUC and Dell Optiplex 7040.
The counter service was not available on Intel NUC. On
Dell laptops a counter increment operation took approx-
imately 250 ms, while on the Lenovo laptop and Dell
Optiplex increment operations took approximately 140
ms and 80 ms, respectively. Strackx et al. [2] report 100
ms for counter updates. Counter read operations took
60-140 ms, depending on the platform. As expected,
the counter values remained unchanged across enclave
restarts and platform reboots. We tested the wear-out
characteristics of the counters and found out that on both
Dell laptops, after approximately 1.05 million writes, the
tested counter became unusable and other counters on the
same platform could not be created, incremented or read
(all SGX counter operations return SGX ERROR BUSY).

Additionally, we observed that reinstalling the SGX
Platform Software (PSW) or removing the BIOS battery
deletes all counters. Finally, to our surprise, we noticed
that after reinstalling the PSW, first usage of counter
service triggered the platform software to connect to a
server whose domain is registered to Intel. If Internet
connection is not available, the counters are unavailable.

Performance limitations. An enclave developer
could attempt to use SGX counters as a rollback pro-
tection mechanism. When an enclave needs to persis-
tently store an updated state, it can increment a counter,
include the counter value and identifier to the sealed data,
and verify integrity of the stored data based on counter
value at the time of unsealing. However, such approach
may wear out the used non-volatile memory. Assuming
a system that updates one of the enclaves on the same
platform once every 250 ms, counters would become un-
usable in few days. Even with a modest update rate of
one increment per minute, the counters are exhausted in
two years. Services that need to process tens or hundreds
of transactions per second are not possible.

Weaker security model. According to Intel developer
forums [51], counter service is provided by the Manage-
ment Engine on the PCH (known as “south bridge” in
older architectures). However, to the best of our knowl-
edge, actual location of the non-volatile memory used to
store the counters is not publicly stated. Based on Intel
specifications [52, 53], the PCH typically does not host
non-volatile memory, but it is connected over an SPI bus
to a flash memory that is also used by the BIOS. Since
Management Engine is an active component, communi-
cation between the processor and the Management En-
gine can be replay protected. However, the SPI flash is
a passive component, and therefore any counter stored
there is likely to be vulnerable to bus tapping and flash
mirroring attacks, as recently demonstrated in the case
of mobile devices (inspired by FBI iPhone unlocking de-
bate) [22]. Although the precise storage location of SGX
counters remains unknown at the time of writing, it is

clear that if the integrity of enclave data relies on the
SGX counter feature, then additional hardware compo-
nents besides the processor must be considered trusted.
This is a significant shift from the enclave execution pro-
tection model, where the security perimeter is the pro-
cessor package [48, p. 30].

Other concerns. The current design of SGX counter
APIs makes safe programming difficult. To demonstrate
this we outline a subtle rollback attack. Assume an en-
clave that at the beginning of its execution checks for the
existence of sealed state, and if one is not provided by
the OS, it creates a new state and counter, and stores the
state sealed together with the counter value and identi-
fier. The enclave increments the counter after every state
update. Later, the OS no longer provides a sealed state
to the restarted enclave. The enclave assumes that this
is its first execution and creates a new (second) counter
and new state. Recall that the SGX APIs do not allow
checking existence of previous counter. The enclave up-
dates its state again. Finally, the OS replays a previous
sealed state associated with the first counter. A careful
developer can detect such attacks by creating and delet-
ing 256 counters (an operation that takes two minutes)
to check if a previous counter, and thus sealed state, ex-
ists. A crash before counter deletion would render that
particular enclave permanently unusable.

We have no good explanation why a connection to an
Intel server is needed after the PSW reinstall. Similarly,
we do not know why the SGX counters become unavail-
able after BIOS battery removal or PSW reinstall.

The above attack and availability issues probably
could be fixed with better design of SGX APIs and sys-
tem services, but the performance limitations and the
weaker security model are hard to avoid in future ver-
sions of the SGX architecture.

SGX trusted time. Another recently introduced and
optional SGX feature is the trusted time service [24]. As
in the case of SGX counters, also the time service is pro-
vided by the Management Engine. The trusted time ser-
vice allows an enclave developer to query a time stamp
that is relative to a reference point. The function returns
a nonce in addition to the timestamp, and according to
the Intel documentation, the timestamp can be trusted as
long as the nonce does not change [24].

We tested the time service and noticed that the pro-
vided nonce remained same across platform reboots. Re-
installing PSW resulted in a different nonce, but the pro-
vided time was still correct. The reference point is the
standard Unix time. As a rollback protection mecha-
nism the trusted time service is of limited use. Includ-
ing a timestamp to each sealed data version allows an
enclave to distinguish which out of two seals is more re-
cent. However, the enclave cannot know if the sealed
data provided by the OS is fresh and latest.

1306    26th USENIX Security Symposium USENIX Association



A Longitudinal, End-to-End View of the DNSSEC Ecosystem

Taejoong Chung
Northeastern University

Roland van Rijswijk-Deij
University of Twente and SURFnet

Balakrishnan Chandrasekaran
TU Berlin

David Choffnes
Northeastern University

Dave Levin
University of Maryland

Bruce M. Maggs
Duke University and Akamai Technologies

Alan Mislove
Northeastern University

Christo Wilson
Northeastern University

Abstract
The Domain Name System’s Security Extensions
(DNSSEC) allow clients and resolvers to verify that
DNS responses have not been forged or modified in-
flight. DNSSEC uses a public key infrastructure (PKI)
to achieve this integrity, without which users can be sub-
ject to a wide range of attacks. However, DNSSEC can
operate only if each of the principals in its PKI prop-
erly performs its management tasks: authoritative name
servers must generate and publish their keys and signa-
tures correctly, child zones that support DNSSEC must
be correctly signed with their parent’s keys, and resolvers
must actually validate the chain of signatures.

This paper performs the first large-scale, longitudi-
nal measurement study into how well DNSSEC’s PKI is
managed. We use data from all DNSSEC-enabled sub-
domains under the .com, .org, and .net TLDs over a
period of 21 months to analyze DNSSEC deployment
and management by domains; we supplement this with
active measurements of more than 59K DNS resolvers
worldwide to evaluate resolver-side validation.

Our investigation reveals pervasive mismanagement of
the DNSSEC infrastructure. For example, we found that
31% of domains that support DNSSEC fail to publish
all relevant records required for validation; 39% of the
domains use insufficiently strong key-signing keys; and
although 82% of resolvers in our study request DNSSEC
records, only 12% of them actually attempt to validate
them. These results highlight systemic problems, which
motivate improved automation and auditing of DNSSEC
management.

1 Introduction

The Domain Name System (DNS) [36] provides a
scalable, flexible name resolution service. Unfortu-
nately, DNS has long been fraught with security issues
such as DNS spoofing and cache poisoning [3, 28, 46]

To address these problems, DNS Security Extensions
(DNSSEC) [20] were introduced nearly two decades ago.
At its core, DNSSEC is a hierarchical public key infras-
tructure (PKI) that largely mirrors the DNS hierarchy and
is rooted at the root DNS zone. To enable DNSSEC, the
owner of a domain signs its DNS records and publishes
the signatures along with its public key; this public key is
then signed by its parent domain, and so on up to the root
DNS zone. A resolver validates a signed DNS record
by recursively checking the associated signatures until it
reaches the well-known root zone trusted key.

Largely in response to powerful attacks such as the
Kaminsky Attack [28], DNSSEC adoption has increased
recently. As of early 2017, more than 90% of top-
level domains (TLDs) and 47% of country-code TLDs
(ccTLDs) are DNSSEC-enabled [26, 47]. Widely-used
DNS resolvers now attempt DNSSEC validation by de-
fault, e.g., as of January 2012 Comcast (one of the
largest ISPs in the US) requests and validates DNSSEC
records for all queries [32], and Google (which operates
the largest public DNS resolver) did the same in March
2013 [22].1

But like any PKI, DNSSEC can only function cor-
rectly when all principals—every signatory from root
to leaf, and the resolver validating the signatures—
fulfill their respective responsibilities. Unfortunately,
DNSSEC is complex, creating many opportunities for
mismanagement. On the server side, a single error such
as a weak key, an expired signature, or a broken signature
chain can weaken or totally compromise the integrity of
a large number of domains. On the client side, misman-
aged or buggy DNS resolvers can obviate all server-side
efforts by simply failing to catch invalid or missing sig-
natures.

Surprisingly little is known about how well the
DNSSEC PKI ecosystem is managed. While there have

1It is important to note that these resolvers still accept responses
without DNSSEC records, as the vast majority of domain administra-
tors have yet to deploy DNSSEC.
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been many studies of DNSSEC, we find that no prior ef-
forts had the data to allow them to study the DNSSEC
PKI at scale—across many domains and resolvers—
and longitudinally—by monitoring their behavior over
time. For example, server-side studies have shown in-
stances of mismanagement, but only for samples of do-
main names [12–14]. Likewise, prior studies of DNS
resolvers have used ad campaigns, which do not per-
mit repeated, controlled measurements of resolvers over
time [7, 33, 47]. What has made large-scale, longitu-
dinal studies of DNSSEC so challenging is a dearth of
DNSSEC record datasets and a lack of vantage points
from which to repeatedly measure resolver behavior.

In this paper, we present a comprehensive study of the
entire DNSSEC ecosystem—encompassing signers, au-
thoritative name servers, and validating DNS resolvers—
to understand how DNSSEC is (mis)managed today. To
study server-side behavior, our work relies on 21 months
of daily snapshots, and three months of hourly snap-
shots, of DNSSEC records for all signed .com, .net,
and .org second-level domains. To study client-side
behavior, we leverage the Luminati HTTP/S proxy ser-
vice [35], which allows us to perform repeated, con-
trolled tests from 403,355 end hosts—thereby studying
59,513 distinct DNS resolvers—around the world.

Our analysis reveals troubling, persistent mismanage-
ment in the DNSSEC PKI:

• First, we find that nearly one-third of DNSSEC-
enabled domains produce records that cannot be val-
idated due to missing or incorrect records. 1.7%
of signed domains fail to provide RRSIGs for SOA

records, while 30% of signed domains do not have DS
records. The vast majority of these missing records
are due to large hosting providers that fail to publish
the correct records for domains they manage. Addi-
tionally, we find that 0.6% of signed domains provide
incorrect RRSIGs for both SOA and DNSKEY records.

• Second, we identify four large providers that use the
same keys to sign all of their managed domains. This
unnecessary key reuse makes all of the domains vul-
nerable to the compromise of a single shared key. For
example, we find that a single key is shared by over
132K domains.

• Third, we observe widespread use of 1024-bit RSA
keys, which are now considered “weak” (smaller
than the NIST-recommended minimum size of 2048
bits [1]). 39% of domains use weak Key Signing Keys
(KSKs), and over 90% of domains use weak Zone
Signing Keys (ZSKs). DNSSEC is designed to be re-
silient against weak and stolen keys via frequent key
rotation, but we find that 70% of domains never ro-
tated their KSK during our 21-month study.

• Fourth, we find that although 83% of observed re-

solvers request DNSSEC records during their queries,
only 12% of them actually validate the records (de-
feating the purpose of DNSSEC). This finding moti-
vates the need to reexamine approaches using query
logs from authoritative name servers as a lens to mea-
sure DNSSEC adoption by resolvers [21, 23].

In summary, our results paint a distressing picture
of widespread mismanagement of keys and DNSSEC
records that violate best practices in some cases, and
completely defeat the security guarantees of DNSSEC
in others. On a more positive note, our findings demon-
strate several areas of improvement where management
of the DNSSEC PKI can be automated and audited. To
this end, we publicly release all of our analysis code and
data (where possible2) to the research community at

https://securepki.org

thereby allowing other researchers and administrators to
reproduce and extend our work.

2 Background

We begin by presenting an overview of both DNS and
DNSSEC.

DNS and DNSSEC DNS uses records to map domain
names to values (e.g., an A record maps a domain name
to an IPv4 address; an NS record maps a domain name
to the authoritative name server for a domain). DNS is
designed to encourage caching, and every DNS record
contains a time-to-live (TTL), specifying how long the
records can be cached for. The original DNS proto-
col did not include security, allowing an adversary to
forge DNS responses to carry out attacks. DNS Security
Extensions (commonly referred to as DNSSEC) are de-
signed to address this vulnerability [4–6, 19]. DNSSEC
provides integrity for DNS records using three primary
record types3:

DNSKEY records, which are public keys used in
DNSSEC. Typically, each zone uses two DNSKEY

records to sign DNS records, as discussed below.

RRSIG (Resource Record Signature) records, which are
cryptographic signatures of other records. Each
RRSIG is a signature over all records of a given
type for a certain name; this set is called an RRSet.

2Our .com, .org, and .net zone files are collected under agree-
ment with the zone operators; while we are not permitted to release
this data, we provide links where other researchers can obtain access
themselves.

3There are other record types for expressing the non-existence of
records (NSEC and NSEC3 records) and for a child zone to request an
update to their DS record (CDNSKEY and CDS records). As these are not
integral to our study, we do not discuss them in detail.
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For example, all A records for example.org

will be authenticated by a single RRSIG (i.e., the
example.org A RRSIG). Each RRSIG is created us-
ing the private key that matches a public key in
DNSKEY records.

DS (Delegation Signer) records, which are essentially
hashes of DNSKEYs. These records are uploaded to
the parent zone, which establishes the chain of trust
reaching up to the root zone. The DS records in
the parent zone are authenticated using RRSIGs, just
like any other record type.

Most Internet hosts do not do iterative DNS lookups
themselves, but instead are configured to use a local
DNS resolver. When a host wishes to look up a domain
name, it sends a query to its resolver; the resolver then
iteratively determines the authoritative name server for
that domain and obtains the record. If the resolver sup-
ports DNSSEC, it will also fetch all DNSSEC records
(DNSKEYs and RRSIGs) necessary to validate the record.
Finally, the resolver returns the (validated) record back to
the requesting host. It is important to note that resolvers
make heavy use of caching, and will typically avoid re-
requesting any unexpired records that have already been
obtained.

DNSSEC is designed to be backwards-compatible,
while enabling resolvers who support DNSSEC to
specifically request DNSSEC records. A resolver indi-
cates that it would like DNSSEC records by setting the
DO (“DNSSEC OK”) bit in its DNS request. If the re-
sponding authoritative name server has RRSIGs corre-
sponding to the record type of the request, it is obligated
to include them. Should the resolver also need DNSKEYs
to validate the record, it may need to request them sepa-
rately.

DNSSEC keys Unlike other common PKIs (e.g., the
SSL/TLS PKI [34]), each zone in DNSSEC typically
has two public/private key pairs: one called a Key Sign-
ing Key (KSK) and another called a Zone Signing Key
(ZSK). Typically, the KSK is used only to produce
RRSIGs for DNSKEY records (hence the name). In con-
trast, the ZSK is used to produce the RRSIGs for all other
record types.

There is no key revocation (apart from root authorities)
in the DNSSEC PKI4; rather, to mitigate potential effects
of key compromise, ZSKs are intended to be rolled over
(i.e., replaced) daily or weekly, and the KSKs monthly or
yearly (the intention is that the KSK can be stored sep-
arately from, and in a safer location than, the ZSK). In
fact, RFC 6781, which is the best current practice doc-
ument for DNSSEC management, recommends rolling

4If the current DNSKEYs are suspected of being compromised, a
zone administrator can replace existing DNSKEYs by following an emer-
gency key rollover process [30].
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Figure 1: Overview of DNSSEC records necessary to validate
example.com’s A record. Each RRSIG is the signature of a
record set (dashed lines) verified with a DNSKEY (red lines).
Each DS record is the hash of a child zone’s KSK (green lines).

over KSKs every 12 months and ZSKs even more fre-
quently [30].

Validating a DNSSEC record The DNSSEC PKI is
rooted at the KSK of the DNS root zone. This KSK is
well-known by DNSSEC-aware resolvers. Validating a
DNS response starts at the root and continues down the
DNS hierarchy: A resolver begins by using the KSK
to validate the root DNSKEY RRSIG, which validates the
root zone’s ZSK. The resolver can then validate the child
zone’s DS record (and thereby the child zone’s KSK) us-
ing the RRSIG for the DS records in the root zone, as this
is signed with the root zone’s ZSK. This process contin-
ues until the record in question is authenticated. Figure 1
shows example records and how they are related.

3 Related Work

In this section, we discuss related studies of the DNSSEC
ecosystem, covering both server- (DNSSEC domain) and
client-side (DNS resolver) studies.

DNSSEC domain deployment As the DNSSEC de-
ployment has grown, researchers and industrial practi-
tioners have examined the DNSSEC ecosystem. The In-
ternet Society publishes periodic DNSSEC deployment
reports [47], the most recent of which found that 89% of
generic TLDs (gTLDs) and 47% of country-code TLDs
(ccTLDs) are signed. They also report that the ma-
jor authoritative DNS server software and libraries sup-
port DNSSEC. Web-based debugging tools such as the
DNSSEC Debugger [15] and DNSViz [18] can help ad-
ministrators verify correct DNSSEC deployment.

Several studies examined the early deployment of
DNSSEC by monitoring the availability, verifiability,
and validity of domains [40,41,54]. For example, Deccio
et al. [12, 13] studied the misconfiguration of DNSSEC
domains by surveying approximately 2,000 domains for
five months, finding that 20% of zones where RRSIGs
had expired at least once would experience another expi-
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ration three or more times. Adrichem et al. [49] analyzed
a sample of second-level domains on one day and found
that 4% exhibited misconfigurations. Similarly, Dai et
al. [14] found that 19.46% of second-level domains from
the Alexa Top-1M had an invalid chain of trust from the
root.

Our study extends these prior works in three ways.
First, we examine all DNSSEC-enabled domains in three
of the largest TLDs, rather than a sample. Second, we
examine 21 months of DNSSEC behavior, allowing us
to investigate temporal trends. Third, we examine more
types of misconfigurations, including those that require
longitudinal data to study (e.g., key rotation behavior).

DNS resolvers Researchers have also studied whether
resolvers request and validate DNSSEC records. In gen-
eral, this is challenging because most resolvers do not
allow arbitrary clients to initiate queries. Prior work typ-
ically uses one the following techniques to address this
limitation:

Passive techniques A number of studies rely on logs
from authoritative DNS servers. Guðmundsson et al.
[23] measured the deployment of DNSSEC-enabled re-
solvers using traces of DNS queries made to the .org

servers. Similarly, Fukuda et al. [21] used snapshots
of the .jp ccTLD authoritative name server to mea-
sure the portion of resolvers requesting DS and DNSKEY

records; they found that 50% of the resolvers requested
such records. These studies provide a glimpse into re-
solvers’ DNSSEC queries, but not what they do with the
responses. As we show later in this paper, many resolvers
do not bother to validate responses.

Active techniques Other approaches issue DNS queries
from clients deployed in large numbers of networks,
e.g., using dedicated hardware (e.g., RIPE Atlas de-
vices [45]) or software running on web clients (e.g.,
Java applets [27]). Alternatively, Yi et al. [55] deployed
a middlebox that intentionally removed RRSIGs from
DNS responses to investigate resolver behavior. Unfor-
tunately, these approaches are limited by the coverage of
a given deployment platform and user adoption model.

Recent work shows that advertisements embedded in
webpages [7, 33, 47] can enable DNS resolver measure-
ments at scale. This approach places ads that cause
clients to make HTTP requests to a domain used for test-
ing purposes. Using this methodology, Lian et al. [33]
showed that 1% of clients could not resolve DNSSEC-
enabled domains at all, while only 3% of clients success-
fully detected DNSSEC-signed domains with broken sig-
natures. Similarly, APNIC Labs recently reported that
the DNSSEC validation rate is increasing, particularly
in Africa (16.58%) and Asia (10.17%), due to users’ re-
liance on Google’s public DNS service [7].

While the ad-based approach can quickly cover large

numbers of resolvers, it gives researchers relatively little
control over client selection. This makes it difficult to
run multiple experiments using the same client (and their
associated resolver) and to understand DNSSEC behav-
ior of resolvers in depth, and makes it difficult to disam-
biguate lookup failures due to other factors (e.g., loss of
connectivity). In Section 5, we address this limitation by
using a large-scale platform that enables repeatable mea-
surements of DNSSEC resolvers worldwide.

4 DNSSEC Deployment and Management

We begin our analysis of the DNSSEC PKI by focus-
ing on the deployment and management of DNSSEC
records by domains, and how this has changed over time.
We perform a longitudinal analysis of nearly 150M do-
mains to answer questions that include: 1) how widely
is DNSSEC deployed; 2) when deployed, how often are
DNSSEC records correctly published and managed; and
3) how are DNSSEC cryptographic keys managed and
maintained, and what is their impact on security? We
begin by describing the datasets we use to answer these
questions before proceeding with our analysis.

4.1 Datasets
Our goal in this section is to conduct a large-scale, longi-
tudinal, and detailed study of DNSSEC adoption and de-
ployment at authoritative DNS servers. To cover a large
number of registered domains, we investigate those listed
in zone files for the .com, .net, and .org TLDs. While
this does not cover all domains, the approximately 150M
domains that we study cover 64% of the Alexa Top-1M
and 75% of the Alexa Top-1K websites. To understand
how DNSSEC adoption and management changes over
time, we use snapshots of DNSSEC records covering
nearly two years. Finally, we conduct hourly snapshots
of a subset of domains to provide a detailed view of man-
agement over shorter timescales.

Taken together, our dataset represents the largest and
most comprehensive known set of DNSSEC observa-
tions of authoritative DNS servers.

Daily scans Our dataset includes measurements from
OpenINTEL [43,52], a project that conducts daily crawls
of DNS records for a large number of domains listed in
TLD zone files. OpenINTEL first obtains daily snapshots
of the .com, .net, and .org TLD zone files, which con-
tain the Name Server (NS) and Delegation Signer (DS)
records for an average of over 147M second-level do-
mains. For each of these, OpenINTEL also collects
responses from the authoritative name server for SOA,
DNSKEY records, and the corresponding RRSIG records.5

5This dataset contains only records for domains whose authorita-
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Figure 2: CDF of the TTL of DNSKEY records for .com, .org,
and .net second-level domains. Note that 97.9% of TTL val-
ues are greater than or equal to one hour and 36.4% of TTL
values are greater than or equal to one day (86,400 seconds).

The daily snapshots span 21 months (between March 1st,
2015 and December 31st, 2016); we refer to this as the
Daily dataset.

Hourly scans The Daily dataset is sufficient for study-
ing DNSSEC behavior at coarse granularity, but cannot
capture dynamics at timescales shorter than one day. For
example, consider the case of replacing DNSKEY records.
Figure 2 depicts the cumulative distribution of TTL val-
ues for DNSKEY records across the entire Daily dataset.
The figure shows that more than 63% of records have a
TTL of less than one day, meaning the daily scans can
potentially miss a large fraction of key replacement op-
erations.

To address this limitation, we collect a second dataset
using hourly queries, based on the observation that 97%
of observed domains have a TTL of one hour or more.
For efficiency, we focus only on domains that have a DS

record in the TLD zone (i.e., domains that may have cor-
rectly deployed DNSSEC, as a DS record is a necessary
but not sufficient condition for validity). Specifically,
once per hour we collected the DNSKEY and correspond-
ing RRSIG records for all second-level domains (an av-
erage of 708K domains) in the .com and .org TLDs,
between September 29th and December 31st, 2016.6 We
refer to this dataset as the Hourly dataset.

4.2 DNSSEC Prevalence

We begin by examining how support for DNSSEC has
evolved over time. Specifically, we focus on the number
of second-level domains that publish at least one DNSKEY
record according to the Daily dataset. Note that having a
DNSKEY record published does not by itself imply that the
domain has correctly deployed DNSSEC; there could be
other missing records or invalid signatures. We examine

tive name server responded to a query; on average, the name servers
for 9% of domains failed to respond to any queries.

6We did not collect hourly scans of .net domains as we did not
have access to the hourly snapshots of the .net zone file.
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Figure 3: The percentage of all .com, .org, and .net second-
level domains that have a DNSKEY record, from the Daily
dataset. Between 0.75% and 1.0% of all domains publish a
DNSKEY record at the time of writing.

the prevalence of correct DNSSEC deployment later in
the paper.

Figure 3 plots the fraction of .com, .net, and .org

second-level domains that publish at least one DNSKEY

record. One key observation is that DNSSEC deploy-
ment is rare: between 0.6% (.com) and 1.0% (.org)
of domains have DNSKEY records published in our latest
snapshot. The fraction of domains that have DNSKEYs is,
however, steadily growing. For example, for .org, the
fraction rose from 0.75% in March 2015 to over 1.0% in
December 2016, even though the number of second-level
domains in these TLDs is growing as well (e.g., the .com
TLD grew from 116M domains to 125M domains during
the same time period).

We observe that large portions of the growth in
DNSSEC deployment are due to a small number of steep
increases in domains with DNSKEY records. Investigating
this trend further, we found that these “spikes” were due
to actions by a few authoritative name servers. For exam-
ple, the authoritative server hyp.net enabled DNSSEC
for 11,026 domains in the .org TLD between July 21st
and August 5th, 2016, which explains the “spike” in the
.org line in Figure 3. In addition, starting on December
16th, 2016, a significant number of new domains enabled
DNSSEC, all of which used domainnameshop.com as
their authoritative name server.

This observation suggests that a small number of au-
thoritative name servers are responsible for most of the
growth in DNSSEC deployment. Thus, incentivizing
authoritative name server operators to deploy DNSSEC
may end up having a large impact on future growth. For
example, the .nl and .se ccTLDs incentivize second-
level domains to deploy DNSSEC by offering lower reg-
istration costs; these second-level domains are tested
every day by the registry to ensure they have correct
DNSKEYs, RRSIGs, and DS records [37]. Both TLDs
show significantly higher levels of DNSSEC deployment
than the TLDs we study (47% [39] and 14% [2], respec-
tively).
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Figure 4: Percentage of domains publishing DNSKEYs as a
function of website popularity. Even among the most popular
domains, deployment is no more that 1.85% of domains.

Next, we explore whether popular domains are more
likely to have deployed DNSSEC. Figure 4 shows the
percentage of the Alexa Top-1M domains in .com, .org,
and .net that publish DNSKEYs, as of December 31st,
2016. We observe that popular websites are more likely
to sign their domains, but the overall deployment remains
low even among the most popular domains (e.g., the Top-
10K sites have a DNSSEC deployment of only 1.85%).

Figure 4 also shows that not all of these domains have
correctly deployed DNSSEC; surprisingly, almost 33%
of domains that publish DNSKEYs cannot be validated.
Next, we explore why so many domains fail to prop-
erly deploy DNSSEC. We focus only on the domains
that attempt to deploy DNSSEC by publishing a DNSKEY
record; consistent with prior work [33, 49], we refer to
these domains as signed domains.

4.3 Missing Records
We now examine whether domains are publishing all
necessary DNSSEC records. For this section, we use
the Daily dataset, as the Hourly dataset does not cover
domains missing DS records. Recall that properly de-
ploying DNSSEC for a domain means that it must have
a DS record in the parent zone, DNSKEY records, and
RRSIG records for every published record type. We ask
what fraction of signed domains properly publish all such
records.

DS records Recall from Section 2 that the Delega-
tion Signer (DS) record, which contains a hash of the
domain’s KSK, is essential to establish a chain of trust
from a parent to a child zone. Unlike other DNSSEC
record types, DS records are published in the parent zone
(e.g., .com), along with the domain’s NS records. Thus,
correctly installing a DS record is often a manual pro-
cess, where the administrator contacts its registrar and
requests that the registrar add a DS record.7 Domains

7CDNSKEY and CDS can partially reduce the burden of doing man-
ual secure delegation [31] by allowing a domain owner to directly pro-
vide the DS record to the registry; unfortunately, we know of no TLDs
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Figure 5: The percentage of signed domains that fail to publish
a DS record in the parent zone. Approximately 30% of signed
domains fail to do so, meaning they cannot be validated.

that fail to upload a correct DS record are not signed by
the parent and therefore cannot be validated, even if they
provide correct RRSIGs for all of their records.

We begin by examining the percentage of signed do-
mains that fail to upload a DS record using the Daily
dataset (Figure 5). We observe that 28%–32% of signed
domains do not have a DS record, meaning they cannot be
validated. This observation is in line with previous stud-
ies [49, 51]; however, prior work has not explored why
such a large fraction of domains are missing DS records.

To shed light on why, we focus on domains’ authori-
tative name servers. Specifically, we identify the name
servers that are authoritative for the largest number of
signed domains from our latest snapshot (December 31st,
2016), and calculate the fraction of their domains that
are missing a DS record (a name server can be authori-
tative for multiple domains if they are managed by the
same organization). Table 1 shows the results for the top
15 authoritative name servers, which cover 83% of the

that currently support CDS or CDNSKEY.

Number of domains DS Publishing
Name servers Signed w/ DS Ratio
*.ovh.net 316,960 315,204 99.45%
*.loopia.se 131,726 1 0.00%
*.hyp.net 94,084 93,946 99.85%
*.transip.net 91,103 91,009 99.90%
*.domainmonster.com 60,425 4 0.01%
*.anycast.me 52,381 51,403 98.13%
*.transip.nl 47,007 46,971 99.92%
*.binero.se 44,650 17,099 38.30%
*.ns.cloudflare.com 28,938 17,483 60.42%
*.is.nl 15,738 11 0.07%
*.pcextreme.nl 14,967 14,801 98.89%
*.webhostingserver.nl 14,806 10,655 71.96%
*.registrar-servers.com 13,115 11,463 87.40%
*.nl 12,738 12,674 99.50%
*.citynetwork.se 11,660 13 0.11%

Table 1: Table showing the most popular 15 authoritative name
servers, the number of domains with a DS record, and the total
number of signed domains for our latest snapshot (December
31st, 2016). The shaded rows represent registrars that fail to
publish DS records for nearly all of their domains.
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Figure 6: The percentage of signed domains that do not have
RRSIGs for SOA and DNSKEY.

signed domains we study. We find a highly skewed dis-
tribution, with most of the name servers publishing DS

records for almost all signed domains, but with four fail-
ing to upload a DS record for nearly all of their domains.8

For example, Loopia (a Swedish hosting provider) is au-
thoritative for more than 131,000 domains that publish
DNSKEYs, but only one of these domains actually uploads
a DS record, which is invalid.9 Yet again, large hosting
providers and outsourced name servers play a significant
role in (im)properly maintaining chains of trust.

Returning to Figure 5, we also observe a few dips and
spikes in the fraction of domains missing DS records. For
example, the drop in the percentage of .org domains
with missing DS records in August 2016 was due to a
single registrar (hyp.net) publishing 11,026 new signed
domains, all with proper DS records (the same set that
was observed in Section 4.2). However, the spike in all
three TLDs in December 2016 was caused by one host-
ing provider, Domain Monster, bulk-signing over 37,000
new domains without placing the proper DS records.

RRSIG records We next examine the percentage of
signed domains that fail to provide RRSIGs for SOA and
DNSKEYs using the Daily dataset. Figure 6 presents these
results. We find a surprisingly high fraction of missing
SOA RRSIGs (1.7%, on average), and a lower fraction of
missing DNSKEY RRSIGs (0.2%, on average). We also
observe a decreasing trend of missing SOA RRSIGs, and
find sudden drops occur in all three TLDs in December
2016. These were caused by the same hosting provider,
Domain Monster, which not only provided DNSKEYs for
over 37,000 domains without corresponding DS records,
but also did not sign the SOA, indicating thorough mis-
management. Domain Monster finally started publishing

8Interestingly, three of these hosting providers (loopia.se,
citynetwork.se, and domainmonster.com) do not even upload a
DS record for their own (signed) domains.

9We contacted all four of these operators to ask the reason behind
this behavior. One administrator said “Most people do not understand
DNS, so imagine the white faces when I mention DNSSEC ... I don’t
think DNSSEC has a high priority anymore currently in our organiza-
tion or our customer base.” [48]
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Figure 7: The percent of signed domains for which the RRSIG
signatures for the SOA records could not be validated.

SOA RRSIGs in December 2016.

4.4 Incorrect Records

Despite substantial mismanagement, a large fraction of
domains publish all the DNSSEC records required for
validation. However, this alone is not sufficient to prop-
erly deploy DNSSEC; the signatures (and timestamps) in
those records must be correct (and not expired).

RRSIG signatures We begin by examining the cor-
rectness and freshness of RRSIGs records for SOA and
DNSKEY records, using only domains in the Daily dataset
that provide RRSIG records. As all RRSets except
DNSKEY records are signed by the same ZSK, we verify
SOA records with ZSKs, and DNSKEY records with KSKs.
Figure 7 plots the fraction of domains where RRSIG vali-
dation for SOA records fails. We find that nearly 99.5% of
them are valid. Similarly, we observe that most DNSKEYs
are also valid (omitted from the figure for clarity), in-
dicating a common, correct process for generating the
records.

Interestingly, the fraction of domains with valid
records in Figure 7 fluctuates substantially over the
course of days or weeks. To investigate the root causes,
we determine the reason for validation failure using a
customized dnspython library, and assign them to one
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Figure 8: The percent of signed domains with each validation
failure type for SOA records.

USENIX Association 26th USENIX Security Symposium    1313



 0

 0.05

 0.1

 0.15

 0.2

 0.25

02/15 05/15 08/15 11/15 02/16 05/16 08/16 11/16

P
e
rc

e
n

t 
o

f 
d

o
m

a
in

s
 h

a
v
in

g
in

c
o

rr
e
c
t 
D
S

 r
e
c
o

rd

.com

.net

.org

Figure 9: The percent of signed domains having DS records
that do not match their KSKs.

of three categories: Expired RRSIGs (i.e., signatures be-
yond their expiration date), records with Signature In-
valid RRSIGs (i.e., signatures that do not match the cor-
responding DNSKEY), and Other reasons (e.g., malformed
RRSIGs). We show the fraction of signed domains with
the first two failure types for SOA RRSIGs in Figure 8.10

We find that expired RRSIG records are the primary rea-
son for validation failure. This indicates the need for bet-
ter automation and auditing of processes for refreshing
RRSIG records in DNSSEC.

As one example of this problem, consider the rise
in expired signatures in May 2016 for .com and
.net. This rise is due to a single registrar: 1,938
.com domains and 254 .net domains, all served by
registrar-servers.com, became invalid over this pe-
riod. This registrar fixed the issue on May 10th, 2016.

Finally, we observe a few intermittent spikes indicated
short-lived correlated failures. For example, in Septem-
ber 2015 a total of 1,493 domains with the authoritative
name server transip.net published incorrect RRSIGs,
a problem that was corrected the following day.

DS records We now examine the correctness of DS

records using the Daily dataset. Recall that DS records
are basically hashes of KSKs, signed by the parent zone.

Figure 9 shows the results of this analysis. For do-
mains with a DS record, 99.9% of those records are
valid (i.e., match the KSK). The spike that occurred in
.com and .net in August 2016 was caused by one name
server, transip.net, that published incorrect record
RRSIGs in September 2016. This name server suddenly
changed ZSKs and KSKs for their 381 .com domains
and 25 .net domains without switching the DS record,
and the problem was corrected the following day.

10The results for DNSKEY RRSIGs are similar, and omitted for
brevity. Furthermore, less than 0.0006% of domains fail to validate
for Other reasons, and are similarly omitted.
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Figure 10: Cumulative distribution of the number of domains
grouped by DNSKEYs. The y axis starts at 0.999 and both long
tails extend to 106,640 domains (.com).

4.5 Key Management
The previous sections focused on the necessary records
for providing valid responses to DNSSEC queries; how-
ever, even the best record management practices can re-
sult in an insecure system if the cryptographic keys that
they rely on are mismanaged. In the next two sections we
focus on how administrators manage these keys. In par-
ticular, we investigate how often keys are shared across
domains (thus increasing the attack surface), how often
private keys are weak (e.g., using short keys that can
potentially be brute-forced), and whether administrators
take the correct steps when rolling over to new keys.

Shared keys In principle, each domain’s KSK and
ZSK should be unique, as the DS record binds an identity
(e.g., a domain) to a KSK, and the ZSK produces RRSIGs
for integrity. Otherwise, if the same private key is used
for multiple domains, an attacker who steals this key can
forge valid DNSSEC records for any of those domains.
However, recent work demonstrates that key sharing is
common for operational reasons in the SSL/TLS PKI [9].
We thus conducted a study to determine if similar prac-
tices occur with DNSSEC keys.

To do so, we extract each domain’s DNSKEY record
from our latest snapshot (December 31, 2016), and group
domains by their KSKs and ZSKs respectively. Fig-
ure 10 shows the cumulative distribution of the number
of the domains using each ZSK and KSK. We find that
99.95% of keys are used by only one domain. However,
this common behavior masks a long tail for key sharing:
384 KSKs (0.04%) and 587 ZSKs (0.05%) are shared by
more than one domain, and one KSK and ZSK is shared
by over 132,000 domains! Further, we find that ZSK and
KSK sharing rates are similar, suggesting that domains
sharing ZSKs are highly likely to share KSKs as well.

To understand the key sharing phenomena in more de-
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KSK ZSK
Name servers Domains Keys Domains Keys
*.others 151,733 157,533 152,144 188,482
*.ovh.net 316,888 318,036 316,887 326,011
*.loopia.se 133,258 199 133,258 217
*.hyp.net 94,888 119,150 94,885 119,161
*.transip.net 93,819 93,774 93,818 187,129
*.domainmonster.com 60,984 60,991 60,984 121,939
*.anycast.me 55,936 56,075 55,936 58,296
*.transip.nl 45,676 45,648 45,675 91,161
*.binero.se 44,963 49 44,963 54
*.ns.cloudflare.com 28,469 239 28,469 214
*.nl 12,837 12,834 12,836 25,512
*.pcextreme.nl 15,210 15,192 15,210 28,654
*.webhostingserver.nl 15,023 15,019 15,023 22,741
*.registrar-servers.com 13,183 13,043 13,181 12,998
*.is.nl 11,945 11,978 11,945 23,790
*.citynetwork.se 11,702 21 11,702 28

Table 2: Table showing the most popular 15 authoritative name
servers, the number of domains they manage, and the number
of unique DNSKEYs for these domains. The shaded rows repre-
sent registrars that share the same DNSKEY across most of their
domains.

tail, we investigate whether key sharing is mostly ex-
plained by a policy from a small set of hosting providers
for the affected domains. We first group domains by their
authoritative name server, and then group them again by
the DNSKEYs in our latest snapshot.

Table 2 shows the most popular 15 authoritative name
servers, their total number of domains, and their total
number of DNSKEYs. Similar to the previous section, we
find highly bimodal behavior, with most name servers
having a low prevalence of shared DNSKEYs, but with
a few popular name servers using shared DNSKEYs for
nearly all of the domains for which they are authorita-
tive. Of course, key sharing may make sense from an
operational perspective (easier management) and from a
domain ownership perspective (multiple domains owned
by the same company). However, key sharing across
domains belonging to different companies for efficiency
can substantially increase security risks, e.g., when a sin-
gle shared key is compromised or cracked this affects all
domains that share that key.

Weak keys Next, we examine how often weak keys
are used in DNSSEC. The National Institute of Stan-
dards and Technology (NIST) recommended against the
use of 1024-bit keys after December 31, 2013, as rapid
advances in computational power and cloud computing
make it easier to break 1024-bit keys [1]. Correspond-
ingly, the Certificate Authority/Browser Forum [11] an-
nounced that 1024-bit RSA keys should no longer be
supported for SSL certificates or code signing [38]. Fur-
ther, a recent study showed that 66% of DNSKEYs ob-
tained from the Alexa Top-1M domains can be factored
due to their short length [56].

While there is no standard minimum key length for
DNSSEC, we adopt the NIST recommendations, and
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Figure 11: The percentage of domains with weak ZSKs and
KSKs. Most keys are weak by NIST standards, even today.

thus define weak keys as ones meeting any of the fol-
lowing conditions: (1) RSA keys with a length less than
or equal to 1024 bits, (2) DSA keys with a length less
than or equal to 2048 bits, or (3) elliptic curve keys with
a length less than or equal to 160 bits [1].

Figure 11 shows the percentage of weak ZSKs and
KSKs each day, using the Daily dataset. First, we ob-
serve that the vast majority (91.7%) of ZSKs are weak,
with most being 1024-bit RSA keys. Interestingly, the
same trend holds true, but to a lesser extent, for KSKs:
over one-third of KSKs are weak keys. Second, there
is a small trend towards using stronger keys over time;
for example, the fraction of weak ZSK keys began to de-
cline in October 2016. Regardless, the large fraction of
weak keys—coupled with the key sharing that we ob-
served in the previous section—further underscores mis-
management of private key material, which can severely
weaken security in the DNSSEC PKI.

4.6 Key Rollover
As with any PKI, DNSSEC provides a way for enti-
ties to change their public/private key pairs. This pro-
cess, called key rollover, is a recommended best practice
in the DNSSEC RFCs [29, 30], and the use of two-key
pairs (KSKs and ZSKs) is designed to facilitate frequent
rollover.

KSK rollover Rolling over a KSK involves publishing
a new DNSKEY and updating the DS in the parent zone.

Unlike many other PKIs, DNSSEC must address is-
sues raised by DNS record caching when considering key
rollovers. Recall that all DNS responses contain a TTL
field indicating how long a given record can be cached;
for efficiency, these TTL values are often on the order of
hours to days (see Figure 2). Thus, a domain must care-
fully manage records during key rollover: if a domain
conducts an Abrupt rollover (simply publishing a new
KSK and DS record), old cached RRSIGs and DS records
can cause record validation to fail for clients.

The DNSSEC RFC specifies two schemes by which
a domain can roll over their KSK to mitigate this prob-
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Scheme .com .net .org

No KSK rollovers 621,213 93,558 65,704
Abrupt 17,724 3,183 1,710
Double Signature 219,547 46,092 32,206

Table 3: Distribution of KSK rollover schemes for all do-
mains for each TLD. We do not observe any KSK rollovers
for roughly 70% of domains; for the 320,462 domains where
we do see a rollover, we observe that 7.0% conduct rollovers
that may cause their domains to fail validation for some clients.

lem: Double Signature and Double DS. As we do not
observe any domains using Double DS, we focus only on
the Double Signature scheme. To roll over a KSK using
the Double Signature scheme, a domain first publishes
a new KSK alongside the old KSK, and uses the new
KSK to sign additional DNSKEY RRSIGs. At this point,
there are two KSKs and DNSKEY RRSIGs published. The
domain then uploads the new DS record to the parent
zone. The domain removes the old DNSKEY and DNSKEY

RRSIGs only after the DNSKEY record TTL has expired.
By doing so, the domain ensures that all clients will be
able to validate the domain, regardless of whether they
have cached records.

Table 3 shows the inferred KSK rollover schemes for
all domains we measured. We observe that over 70%
of domains do zero KSK rollovers during our 21 month
study period.11 For those that perform a rollover their
KSK, we observe that over 7% of the domains do Abrupt
rollovers (i.e., simply switching out their keys and DS

records without regard for caching effects). These do-
mains may become unavailable during rollover due to
failed validation. We also find that between 46% and
50% of the domains that did not rollover their keys have
weak keys, underscoring the urgent need for them to
quickly perform a rollover their keys to stronger ver-
sions.

ZSK rollover We now turn to examine rollovers of
ZSKs. Unlike KSK rollovers, a domain need not in-
volve its registrar; the ZSK rollover can be done uni-
laterally by the domain itself. However, conducting an
Abrupt rollover can still lead to validation failures, so
the DNSSEC RFC defines two schemes for domains to
safely roll over their ZSK:
Pre-Publish Under the Pre-Publish scheme, a domain
publishes a new ZSK DNSKEY, but still uses the old key to
sign the RRSIGs (e.g., for A records). After waiting until
the TTL of the old DNSKEY expires, the domain then uses
the new ZSK to sign the RRSIGs, but continues to publish
the old DNSKEY. In this way, cached RRSIGs created with
the old key can still be verified. After the maximum TTL
of any record in the zone elapses, the old key is no longer
published.

11These results align with a recent report [53] that showed 55% of
TLDs had not rolled over their KSKs for 22 months.

Scheme .com .org

No ZSK rollovers 279,935 27,166
Abrupt 5,527 66
Double Signature 58,807 9,615
Pre-Publish 259,327 33,518

Table 4: Distribution of ZSK rollover schemes for all domains
for each TLD. We do not observe any ZSK rollovers for roughly
45% of domains; for the 366,718 domains where we do see roll
over, we observe that 1.5% conduct rollovers that may cause
their domains to fail validation for some clients.

Double Signature The Double Signature scheme works
similarly to the KSK scheme: a new ZSK DNSKEY is in-
troduced, and is used to sign additional RRSIGs immedi-
ately. As a result, there are two RRSIGs for each record
type: one is signed by the old key, and the other is signed
by the new key. After the maximum TTL of any record
in the zone, the old key and its RRSIGs are removed.

When detecting the different ZSK rollover schemes,
we face a significant challenge: the Daily scans have a
resolution of only 24 hours. Thus, we may not observe
the rollover behavior of domains that use TTL values of
less than 24 hours.12 Instead, we use the Hourly dataset,
which covers nearly all domains (only 2.1% of domains
were observed using TTL values smaller than 1 hour).

Table 4 presents the results of our analysis for each
TLD. We first observe that both the Double Signature
and Pre-Publish schemes are used, but that the Pre-
Publish scheme is more popular by a significant mar-
gin. However, as with the KSK rollovers, we observe
a non-trivial fraction (1.5%) of domains abruptly chang-
ing their keys, even though this may lead to valida-
tion failures for clients. The lower frequency of Abrupt
ZSK rollovers may be due to the fact that ZSK rollovers
are done entirely by the domain itself, whereas KSK
rollovers require coordination with the parent zone.

4.7 Superfluous Signatures
Each DNSKEY RRSIG must be verified by the domain’s
KSK; but, we find that a large fraction of domains
(676,104, or 61% of domains in the December 31, 2016
snapshot) sign their DNSKEY record twice: once with the
KSK (as expected), and once with the ZSK (which is
not used in validation). When focusing only on domains
having a corresponding DS record, we find that 644,797
domains (83.6%) exhibit this behavior. While this does
not inhibit validation (assuming a valid KSK signature),
it does increase the size of DNSKEY packets significantly.
When using strong keys (e.g., 2048-bit RSA), this behav-
ior can lead to avoidable DNSKEY packet fragmentation,
which not only makes domain resolution inefficient [50],

12This was not a problem for detecting KSK rollover schemes, as
all TLDs we study use TTL values of at least one day.
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Figure 12: DNSKEY message size for all domains with a DS

record. Packets are fragmented when the message size exceeds
1,472 and 1,232 bytes for IPv4 and IPv6, respectively (assum-
ing an MTU of 1,500 bytes).

but also makes DNSSEC vulnerable to poisoning attacks
when resolvers do not validate responses [24]. As we
show in the next section, the vast majority of the re-
solvers we studied request DNSSEC records but do not
validate such responses.

Fragmentation does not impact a majority of domains
today as the main reason is that relatively short (1024-bit
RSA) keys are used. Ironically, if operators were to im-
prove the security by using longer keys, substantial num-
bers of domains may become vulnerable to poisoning.
Figure 12 shows the cumulative distribution of estimated
DNSKEY packet size per domain when using 1024-bit and
2048-bit keys, and when using only KSK signatures or
using both KSK and the unnecessary ZSK signatures in
the DNSKEY record.

The figure shows that records today rarely incur IPv4
fragmentation; only 403 (0.01%) of the domains that sign
their DNSKEY with just the KSK, and 5,568 (0.8%) of
the domains that use both the KSK and ZSK cause frag-
mentation. Of these latter domains, 3,380 (60.7%) could
have avoided fragmentation by using only a KSK sig-
nature in the DNSKEY record. Increasing the key size to
2048 bits does not substantially increase fragmentation
for those that use only KSK signatures (only 10 addi-
tional domains are affected); however, for those that use
superfluous signatures, 30,914 (4.6%) of their responses
will be fragmented—more than five times as many cases
as today.

This behavior is likely due to misconfigured DNS soft-
ware. For example BIND [17] and Windows Server
2012 [16] both generate DNSKEY RRSIGs using both
the KSK and ZSK by default. PowerDNS [44], and
OpenDNSSEC [42] correctly generate DNSKEY RRSIGs
only with the KSK.

4.8 Summary

We found that DNSSEC deployment is rare but increas-
ing, and nearly a third of DNSSEC-enabled domains are

misconfigured in ways that defeat security by providing
records that cannot be validated. The latter is primarily
caused by a small number of popular hosting providers
and registrars that fail to provide DS records, use expired
RRSIGs, etc. We also found that almost all ZSKs and
one-third of KSKs are weak by NIST standards, that a
few hosting providers use the same DNSKEYs for almost
all of the domains for which they are authoritative, and
many domains exhibit poor rollover hygiene. These is-
sues undermine the security of DNSSEC regardless of
resolver behavior, and highlight the need for improved
auditing and automation in DNSSEC management.

5 DNS Resolver Support

Even if domains properly manage their DNSSEC
records, a client is not protected unless its resolver re-
quests and validates them properly. We now examine the
DNSSEC behavior of resolvers.

5.1 Data Collection Methodology
A challenge when studying the behavior of resolvers is
that most will respond only to local clients (i.e., they are
not open resolvers). To address this limitation, we use
the Luminati proxy network [10] to issue DNS requests.

Hola Unblocker [25] is a system that allows users to
route traffic via a large number of proxies, often to evade
geofencing of content. The Hola software is available
on multiple platforms (e.g., as a stand-alone application
on Windows, as cross-platform web browser extensions,
and on Android) and has been installed more than 91 mil-
lion times. Luminati [35] is a paid HTTP/S proxy service
that enables clients to route traffic via Hola users’ ma-
chines.

To route HTTP/S traffic via Luminati, a client first
connects to a Luminati server (called the super proxy).
The super proxy then checks that the destination domain
is valid (via Google’s DNS service), and then forwards
the request to a Hola client (called the exit node). The
exit node then makes a DNS request for the destination
domain, makes the HTTP/S request, and returns the re-
sponse back via the super proxy. The super proxy an-
notates the response with a unique identifier for the exit
node that made the request, called the zID. An overview
is shown in Figure 13; more details about using Lumi-
nati for network measurement experiments are provided
by Chung et al. [10].

Luminati allows clients to choose the exit node that
will forward traffic via two mechanisms. First, the client
is allowed to select the country where the exit node is
located. Second, the client can repeatedly send requests
via the same exit node by specifying a session number;
Luminati will continue to use the same exit node as long
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Figure 13: Timeline of a request in Luminati: the client con-
nects to the super proxy and makes a request ¬; the super proxy
makes a DNS request  and forwards the request to the exit
node ®; the exit node makes a DNS request ¯, then requests
the HTTP content °. The response is then returned to the super
proxy ±, then to the client ².

as the node remains alive and no errors are encountered.
This functionality allows us to conduct multiple experi-
ments using the same exit node.

Ethics To conduct these experiments, we paid the op-
erators of Luminati for access, and we abided by their
terms of service. The owners of exit nodes agreed to
route Luminati traffic through their hosts in exchange for
free service.13 Users can opt out by subscribing to Hola
(for a fee) or uninstalling the software. We took great
care to make sure that our experiments would not harm
users, by sending only a small amount of traffic and by
not visiting any potentially sensitive domains. For the
latter, we mitigated any potential harm to operators of
exit nodes by generating traffic only toward domains that
we own, which are hosted in our university testbed and
serve empty web pages.

5.2 Experimental Setup

Our broad goal in this section is to understand the
DNSSEC behavior of resolvers. For these experiments,
we built an authoritative DNS server and web server for a
testbed domain under our control. Our testbed domain (a
second-level domain) fully supports DNSSEC function-
ality with a chain of trust by uploading its DS record to
the .com zone.

Domain configuration One of our goals is to examine
whether DNSSEC resolvers properly validate DNSSEC
records. To do so, we configured our DNS server with 10
different subdomains, each of which simulates a different
kind of DNSSEC misconfiguration, along with a single

13https://hola.org/legal/sla

valid zone. These misconfigurations include missing, in-
correct, and expired RRSIGs, missing DNSKEYs, incorrect
DS records, etc.

For each exit node we test, we generate a
unique identifier for that node’s DNS requests (e.g.,
http://id1.invalid-rr-sig.example.com). This
approach allows us to easily map incoming DNS and
HTTP requests to specific exit nodes, and to avoid any
potential caching issues at intermediate resolvers. To im-
plement this, we created a custom DNS server that gen-
erated DNSKEYs, DS records, and RRSIGs on-the-fly.

Experimental configuration At first glance, measur-
ing whether a resolver supports DNSSEC seems trivial.
We configure our server to respond to queries with mis-
configured DNSSEC RRSIGs, which should be dropped
by validating resolvers. If the exit node successfully re-
trieves the web page, then we know that the exit node’s
resolver did not provide DNSSEC security.

In practice, implementing this experiment correctly is
not so simple. First, Luminati’s super proxy checks that
the requested domain name is valid using a Google re-
solver (which does DNSSEC validation) before forward-
ing the request to the exit node. Thus, a simple request
for a misconfigured record would be rejected by the su-
per proxy and not forwarded to an exit node. Second, if
an exit node’s resolver correctly rejects a misconfigured
DNSSEC response, it will respond to the exit node with a
SERVFAIL message. In this case, the super proxy will re-
turn an error message to our measurement client and in-
validate our session identifier (i.e., we can no longer send
requests via that exit node using the identifier). Third, a
request may fail for reasons other than DNSSEC valida-
tion (e.g., due to network failure at the exit node), so we
must develop techniques to disambiguate such cases.

We address these issues as follows:

1. We configure our DNS server to always return a valid
response if the request comes from Google’s DNS ser-
vice, to ensure that the super proxy forwards the re-
quest to the exit node.14

2. Each exit node first fetches a valid record for a name
with a unique identifier. We record the identifier, the
zID in the super proxy’s response, the IP address of
the exit node’s resolver (from the incoming DNS re-
quest), and the IP address of the exit node (from the
incoming web request).

3. If the incoming DNS request from the exit node’s re-
solver does not set the DO bit, the resolver does not
support DNSSEC and we continue to test a different
exit node.

4. Otherwise, we iteratively request each of our 9 mis-
configured records from the same exit node. If we
14Note that we test Google’s DNS resolver, as well as other open

resolvers, outside of Luminati.
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DNS Exit
Country Hosting ISP Resolvers Nodes
Indonesia PT Telekomunikasi 1,319 2,695
U.S. Level 3 Communications 522 79,303
U.S. Time Warner Cable Internet 148 1,133
Germany Deutsche Telekom AG 104 2,682
Canada Bell Canada 89 1,120
U.K. TalkTalk Communications 76 878
U.K. Sky UK Limited 74 1,535
U.S. Frontier Communications 63 241
China China Telecom 56 344
Canada Rogers Cable Communications 49 1,250
Spain Telefonica de Espana 48 1,982
U.S. Charter Communications 46 355
Austria Liberty Global Operations 40 10,554
U.S. SoftLayer Technologies 37 2,559
Czech AVAST Software s.r.o. 33 2,731

Table 5: The top 15 ISPs in terms of the number of DNS re-
solvers that do not validate our DNSSEC response. Level 3
(shaded) has 522 resolvers that do not validate the DNSSEC
response, while six do (not shown).

receive a response from the super proxy with the
same zID, the exit node’s resolver did not validate the
DNSSEC record.

5. If the measurement client receives an error (or a re-
sponse from the super proxy with a different zID), it
means that the exit node’s resolver may successfully
validate DNSSEC responses (but the error could have
been for other reasons). To rule out transient failures
unrelated to DNSSEC validation, we repeatedly test
each resolver (by finding more exit nodes that use it),
and only consider those we test at least 10 times.

During our experiments, we sometimes observed mul-
tiple DNS requests (and even multiple HTTP requests)
arriving at our servers for the same unique identifier,
sometimes hours after we had concluded our experiment.
This behavior is likely due to malware, spyware, or intru-
sion detection systems [10]. To prevent these from bias-
ing our results, we only consider the DNS request that
comes before the first HTTP request that arrives at our
web servers.

5.3 Results

We use this methodology to measure a total of 403,355
exit nodes—from 177 countries and 8,842 ASes—over a
period of 13 days in early 2017. These exit nodes use a
total of 59,513 unique resolvers. We observe that 49,424
of the resolvers (83.0% of resolvers, covering 65.9% of
the exit nodes) send requests with the DO bit set, suggest-
ing that a majority of resolvers support DNSSEC.

Next, we study whether these resolvers actually val-
idate the DNSSEC responses they receive. To do so,
we need to filter the data to (a) focus only on exit nodes
that are configured with a single resolver (exit nodes that
use multiple resolvers make it difficult to identify how

the different resolvers behave) and (b) only consider re-
solvers that we were able to measure 10 times or more.

After filtering, we arrive at 4,427 resolvers whose
DNSSEC validation policies we can test. We refer to
this set of resolvers that request DNSSEC records as
DNSSEC-aware resolvers. We classify these resolvers
into ones that incorrectly validate DNSSEC records (i.e.,
more than 90% of the exit nodes received a response
when the resolver is given an incorrect RRSIG), ones that
correctly validate DNSSEC records (i.e., more than 90%
of the exit nodes received an error), and ones whose poli-
cies are ambiguous (all other cases).

Incorrectly validating resolvers We found that 3,635
resolvers (82.1% of the DNSSEC-aware resolvers) from
146 ASes fail to validate the DNSSEC responses, even
though they issue the DNS requests with the DO bit set;15

these resolvers cover 149,373 (78.0%) of the exit nodes
covered by DNSSEC-aware resolvers. These resolvers
all pay the overhead for DNSSEC responses, but do not
bother to validate the results they receive.

Table 5 shows the top 15 ASes whose resolvers do
not validate DNSSEC responses. Interestingly, we found
that even though six resolvers from Level 3 do validate
DNSSEC responses, another 522 do not, indicating that
DNSSEC validation can be different between resolvers
in the same AS. Most likely, this variance is due to third-
party DNS resolvers that are hosted in the Level 3’s net-
work, as we are only classifying resolvers by the AS they
lie in.16

Correctly validating resolvers Only 543 resolvers
(12.2% of the DNSSEC-aware resolvers) from 196 ASes
correctly validate DNSSEC responses; these resolvers
cover 31,811 (16.6%) of the exit nodes covered by
DNSSEC-aware resolvers. We found surprisingly few
large ASes that validate DNSSEC responses; the largest
ones include Comcast (US), Orange (Poland), Bahnhof
Internet AB (Sweden), Free SAS (France), and Earth-
link (Iraq). Interestingly, we found that all validating
resolvers successfully validate all scenarios; we did not
find any resolvers that failed some of our misconfigura-
tion tests but passed others. This is in contrast to client
behavior for other PKIs, such as the web [34], where
browsers pass different subsets of validation tests.

Validation efficiency A concern for DNSSEC is the
overhead it places on resolvers, both to fetch DNSSEC

15We further verified this behavior by looking for requests for
DNSKEY and DS records that are necessary for validation; in all cases,
we did not observe any lookups for these records.

16For example, we found similar cases of inconsistent validation in
ARNES (Slovenia), Rostelecom (Russia), KDDI (Japan), Stofa (Den-
mark), Sprint (U.S.), and hd.net.nz (New Zealand) as well. Personal
communication with the ARNES operators indicated that resolvers
with different behavior are managed by different entities (ARNES and
Univ. of Ljubljana) [8].
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Requested
Provider DO bit DS DNSKEY Validated?
Verisign 3 3 3 3
Google 3 3 3 3
DNS.WATCH 3 3 3 3
DNS Advantage 3 3 3 3
Norton ConnectSafe 3 3 3 3
Level3 3 7 7 7
Comodo Secure DNS 3 7 7 7
SafeDNS 3 7 7 7
Dyn 3 7 7 7
GreenTeamDNS 3 and 7 3 3 7
OpenDNS Home 7 7 7 7
OpenNIC 7 7 7 7
FreeDNS 7 7 7 7
Alternate DNS 7 7 7 7
Yandex.DNS 7 7 7 7

Table 6: Public DNS services that we tested for DNSSEC val-
idation. Five services (shaded) do not validate DNSSEC re-
sponses even though they request the DNSSEC records.

records and to validate signatures. For instance, if an
RRSIG is invalid due to expiration then a resolver can
save time and traffic by withholding requests for the
corresponding DNSKEY or DS record. By investigating
DNSKEY and DS requests arriving at our DNS server, we
found that all but four ISPs (Comcast, Orange Polska,
O2 Czech Republic, and The Communication Authority
of Thailand) make these unnecessary requests when the
RRSIG for A is missing.

5.4 Open Resolvers

We investigate the DNSSEC validation behavior for pub-
lic DNS resolvers using clients outside of Luminati. Ta-
ble 6 shows 15 public resolvers and their DNSSEC poli-
cies. We found five do not request DNSSEC records at
all (DO bit not set), and that half of the resolvers that do
request DNSSEC records fail to validate the responses.
Strangely, when we send a DNS request to Green-
TeamDNS, our DNS server observes two queries from
different resolver IPs: one from GreenTeamDNS with-
out the DO bit, and the other Google with the DO bit (sug-
gesting that they outsource lookups to Google). How-
ever, even though Google is known to return a SERVFAIL
for the domains with invalid DNSSEC records, the re-
quest ultimately succeeds and we (incorrectly) receive a
response.

6 Conclusion

This paper presents a longitudinal, end-to-end study of
DNSSEC ecosystem—encompassing more than 147M
second-level domains and 59K DNS resolvers—to un-
derstand the security implications of how DNSSEC is
managed. We found that DNSSEC deployment by do-
main owners is rare but growing, and that nearly one

third of all DNSSEC-supporting domains publish records
in ways that prevent validation and thus provides no
practical security. Further, we found widespread use of
weak, shared keys combined with poor rollover hygiene
(mostly due to a small number of hosting providers),
undermining the protection DNSSEC provides against
stolen or factored keys. We used Luminati to measure
resolver behavior in 8.8K ASes in 177 countries, and
found that while DNSSEC-aware resolvers are common
(83%), only 12% of them actually validate responses to
provide any practical security benefits. In summary, our
study paints a bleak picture of the security provided by
the DNSSEC ecosystem, one that has not improved sub-
stantially over time. Our findings highlight the need for
continuous auditing of DNSSEC deployments and au-
tomated processes for correctly and securely managing
DNSSEC material.
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Abstract
HTTPS ensures that the Web has a base level of pri-
vacy and integrity. Security engineers, researchers, and
browser vendors have long worked to spread HTTPS to
as much of the Web as possible via outreach efforts, de-
veloper tools, and browser changes. How much progress
have we made toward this goal of widespread HTTPS
adoption? We gather metrics to benchmark the status
and progress of HTTPS adoption on the Web in 2017.
To evaluate HTTPS adoption from a user perspective,
we collect large-scale, aggregate user metrics from two
major browsers (Google Chrome and Mozilla Firefox).
To measure HTTPS adoption from a Web developer per-
spective, we survey server support for HTTPS among top
and long-tail websites. We draw on these metrics to gain
insight into the current state of the HTTPS ecosystem.

1 Introduction

For most of the Internet’s history, HTTP Web traffic
traveled unencrypted between clients and servers. After
widespread tampering and surveillance in transit came to
public attention (e.g., [20, 26, 28]), cross-industry efforts
arose to promote the use of HTTP over TLS (HTTPS).
In response, many large websites transitioned to serve
HTTPS by default (e.g., [25, 33, 34]).

How much of the web is currently HTTPS, and are
adoption rates trending positively? We want to under-
stand the growth of HTTPS for two reasons:

• Security engineers and researchers have put sig-
nificant effort into projects like Let’s Encrypt,1

The HTTPS-Only Standard,2 and search ranking
changes [7] to promote HTTPS. HTTPS adoption
metrics allow us to see whether these combined ef-
forts have succeeded at shifting the Web at large. Is
there more work to do (and if so, where)?

• To protect users, browsers now require HTTPS
for certain Web features and UI treatments (e.g.,

[1, 24, 32, 3]). They plan to make further changes as
HTTPS becomes the default standard [30, 3]. How
close is the Web to considering HTTPS a default?

In this paper, we measure HTTPS adoption rates from
the perspectives of both clients and servers. A key chal-
lenge is that there are many ways to measure client us-
age and server support of HTTPS, each yielding differ-
ent findings on the prevalence of HTTPS. For example,
HTTPS is a much higher fraction of browser page loads
if the metrics count certain types of in-page navigations.
We address this challenge by examining HTTPS adop-
tion from several angles, surveying a broad set of HTTPS
adoption metrics and discussing the considerations of
each. This yields a holistic picture of HTTPS adoption.

To understand the user experience of HTTPS, we mea-
sured the browsing habits of Chrome and Firefox clients
at scale using several browser telemetry metrics. How-
ever, browser statistics are weighted towards the larger
websites that make up a greater proportion of traffic, and
a healthy Web ecosystem also encourages the participa-
tion of small- and medium-sized Web developers. We
therefore also scanned large sets of servers to see whether
they support HTTPS by default, not by default, or not at
all. We use publicly available Web scanners and their
data sets alongside our own tools and data. Finally, we
examined publicly-available data on network traffic vol-
umes at one Internet backbone provider to get a sense of
how much web traffic is HTTPS in aggregate.

We find that HTTPS adoption grew substantially over
the last few years. A majority of browsing is now done
over HTTPS on desktop, having increased by more than
ten points in 2016 alone. The number of top websites
serving HTTPS by default doubled between early 2016
and early 2017. However, significant work still remains
as of February 2017. Half of top websites are still HTTP
by default, and most servers in the long tail don’t support
HTTPS at all. Mobile Web browsing lags behind desk-
top, and East Asian countries have substantially lower
HTTPS usage rates than the rest of the world.
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Contributions. We contribute the following:

• We present a holistic view of HTTPS adoption by
examining data from many vantage points. We
collected large-scale client data from two major
browsers, curated and scanned lists of websites, and
surveyed other publicly available data sets.

• We evaluate how HTTPS adoption has grown over
time, from both client and server perspectives.

• We investigate factors that influence HTTPS adop-
tion rates, including website popularity (top web-
sites vs the long tail), the client’s country, and the
client’s operating system.

• We identify areas where outreach and investigation
could have high impact on the HTTPS ecosystem.

• We show that a single metric does not capture
HTTPS adoption, discuss why, and provide guid-
ance on when to use different metrics.

2 Background

2.1 What is HTTPS?
“...the Web’s trustworthiness has become crit-
ical to its success. If a person cannot trust that
they are communicating with the party they in-
tend, they can’t use the Web to shop safely;
if they cannot be assured that Web-delivered
news isn’t modified in transit, they won’t trust
it as much.” [30]

HTTPS [31] is the secure variant of the HTTP proto-
col [18] on which the Web is based. HTTPS provides
cryptographic security protections by carrying HTTP
messages over the Transport Layer Security protocol in-
stead of directly over TCP [9]. Websites are authenti-
cated using digital certificates [8]. In the Web context,
browsers also enforce additional policies for HTTPS
pages, for example ensuring that HTTPS pages cannot
load scripts from non-secure sources [37].

Together, these mechanisms protect Web traffic from
network attackers in a few ways:

• Confidentiality: Communications between the
browser and the web server are not accessible in
plaintext to intermediate entities.

• Integrity: Intermediate entities cannot make mod-
ifications to content sent between the browser and
the web server.

• Server authentication: The client is assured that
the other end of the channel is the one that it intends
to communicate with.

Data that are not protected by TLS are also not pro-
tected by HTTPS. For example, a network attacker may
observe the lengths of TLS records (from which certain
features can be inferred [36][22]), or the server name sent
in the TLS Server Name Indication extension [13].

HTTPS is focused on protection against network at-
tackers, and does not provide protections against other
classes of attacker. For example, it is still possible for a
web-level attacker to launch Cross Site Scripting (XSS)
attacks against HTTPS websites; to protect against these
attacks, a website would need to deploy mechanisms
such as Content Security Policy [35]. These mecha-
nisms, however, are dependent on HTTPS to be robust
against attacks at the network layer.

Web servers can support HTTPS, HTTP (without
TLS), or both. Typically, clients reach web servers
over HTTPS by using URLs beginning with the https:
scheme. We say that a site supports HTTPS “by de-
fault” when requests to URLs with the non-secure http:
scheme are redirected to https: URLs. This can be
done, for example, with the HTTP 301 status code or
HTTP Strict Transport Security [19].

2.2 HTTPS promotion efforts
The security community has invested significant ef-
fort into evangelizing, supporting, and requiring HTTPS
adoption. A few examples of related projects are:

• Let’s Encrypt, “a free, automated, and open Certifi-
cate Authority,” aims to make certificate provision-
ing easier for Web developers.1 As of January 2017,
Let’s Encrypt supported more than 20,000,000 ac-
tive certificates [4].

• Google search ranking uses HTTPS support as “a
very lightweight signal” [7]. In theory, this encour-
ages ranking-conscious websites to adopt HTTPS.

• In early 2017, Mozilla Firefox and Google Chrome
began warning users against entering passwords and
credit cards on HTTP websites [3, 32].

• Qualys SSL Labs built an online testing tool that
“performs a deep analysis of the configuration of
any SSL web server on the public Internet.”3 It is
widely used to test TLS configurations.

• Google Chrome added a new Security Panel to help
developers debug issues with HTTPS [2].

• Technologists within the United States federal
government are moving government websites to
HTTPS en masse. The White House Office of Man-
agement and Budget issued a memorandum requir-
ing HTTPS for federal websites.2
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• Google’s Transparency Report tracks HTTPS adop-
tion across Google products and popular non-
Google websites. Their goal “is to hold ourselves
accountable and encourage others to encrypt” [17].

2.3 Related work

Network-based measurements. Several studies have
addressed the usage and quality of TLS and HTTPS from
the perspective of the network, both by way of scans of
the IPv4 address space [12, 27] or by analyzing traffic
captured from network links [21, 29]. These projects
measure HTTPS adoption at a very broad scale. (For
example, they don’t distinguish between top-level page
loads and subresource requests.) This paper combines
browser telemetry, scans, and network-based measure-
ments to form a more holistic view of HTTPS usage.

Alexa Million scans. Durumeric et al. [11] scanned the
Alexa Top Million repeatedly from 2012 to 2013, observ-
ing a 23% increase in the number of Alexa Top Million
websites serving certificates during this time period. We
continue this line of work (now updated for 2017) and
complement it with additional metrics.

HTTPS errors. Webmasters often misconfigure HTTPS
on their websites, either intentionally or accidentally.
Several large-scale measurement studies have examined
this issue. Akhawe et al. measured the frequency of
HTTPS errors from a network perspective, finding that
1.54% of 3.9 billion TLS connections resulted in er-
rors [5]. Follow-up measurement studies looked at
the causes of the errors [14] and users’ reactions to
them [6, 15]. Our work focuses on the broader question
of how often HTTPS is used at all.

Blog posts. We previously shared some of our metrics in
public blog posts4 and the Google Transparency Report.
This paper gathers the metrics into a single place and
adjusts them to be as comparable as possible. This paper
also provides an in-depth discussion of our methods and
implications of the metrics, which were lacking from the
high-level blog posts.

3 Client usage of HTTPS

We aim to measure how much Web browsing happens
over HTTPS on end-user devices. To this end, we
use browser telemetry in Mozilla Firefox and Google
Chrome to measure client usage of HTTPS at scale.

3.1 Browser telemetry background
Google Chrome and Mozilla Firefox have similar user
metrics programs, referred to as telemetry. We use
telemetry to study HTTPS usage statistics over a signifi-
cant portion of the overall browser user base.

Types of data. Browser telemetry collects metrics in the
form of enums, times, and booleans. The metrics are
tagged by the client’s operating system, client’s country,
and an opaque identifier for the client. One intentional
limitation is that they do not include user characteristics
like age, gender, or occupation to protect user privacy.

Computation. All of our HTTP(S) telemetry metrics
are computed wholly on the client side. When pages are
opened or closed, we record the HTTP(S)-related event
by incrementing the appropriate histogram or time vari-
able. Thus, we only transmit histograms and floating-
point numbers to the server.

Optional participation. Telemetry is optional, with
controls available in browser settings. The release ver-
sion of Firefox is opt-in, with 0.7% of release users opted
in. Chrome telemetry is opt-out (it was opt-in prior to
Chrome 54). A much larger fraction of users participate
in Chrome’s telemetry program, amounting to billions of
page load events in our Chrome data set. Pre-release ver-
sions of both browsers are opt-out.

Non-identifiable. Telemetry metrics are meant to be
consumed at scale. Our metrics do not include any per-
sonally identifiable fields or browsing history.

Browser channel. Most people run the release (i.e., “sta-
ble”) channel version of their browser. A small num-
ber of people use pre-release versions in order to see
new browser features early and/or provide feedback to
browser vendors. We report telemetry data only from the
browsers’ release channels because it has more external
validity thanks to its “typical” users.

3.2 Metric definitions
We examine four metrics: two page load metrics, one
time-based metric, and one transaction-based metric.
When designing the metrics, we faced the challenge of
flattening a qualitative user experience (browsing) into a
quantitative metric (percentage of an event).

3.2.1 Page load metrics

Browser vendors often measure feature usage by page
load – “what percentage of page loads use feature X?”
– to estimate how often users encounter a feature. We
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accordingly measured HTTPS usage by page load, using
two page load-based metrics.

Our primary metric is the strict page load metric. Ev-
ery time a top-level page finishes loading, we record the
protocol in a histogram.5 We restrict the metric to page
navigations to successful website page loads by exclud-
ing non-HTTP(S) protocols like chrome://, browser er-
ror pages, the New Tab Page, History API navigations,
and fragment navigations.

The metric is implemented similarly in Chrome and
Firefox, with two differences. First, Chrome and Firefox
treat navigations to cached pages differently. The Firefox
version of the metric ignores cached pages except in case
of cache revalidation. Second, Chrome excludes non-
HTML resources (like PDFs) but Firefox includes them.
These are implementation artifacts due to the different
navigation metric hooks available in each browser.

Our secondary page load metric is the extended page
load metric, which we record in Chrome.6 It is identical
to the strict page load metric except it also counts in-
page navigations. An in-page navigation is when a web-
site uses the History API or URL fragments to navigate;
this changes the visible URL but does not actually load
a new page. Several of the Internet’s most popular web-
sites make heavy use of in-page navigations. E.g., Face-
book dynamically swaps out page content when some-
one clicks on a friend’s name in the News Feed, using
the History API to make it look like the URL changed.
Browsing Facebook for an hour generates a large num-
ber of extended page loads but only one strict page load.
This technique is not commonly used in the long tail of
the Internet because it is significantly more technically
complex than typical link-based site navigation.

Both page load metrics are sensitive to whether and
how people make use of tabs. Consider Alice and Bob
both searching for “cats” on Google:

1. Tabbed window navigation. Alice opens the first
search result in a new tab. When she’s done, she
goes back to the Google tab and opens the next
search result in a new tab. She repeats this for the
first nine search results. Consequently, 10% of her
page loads were over HTTPS: one Google tab over
HTTPS and nine HTTP search result tabs.

2. Single window navigation. Bob opens the first
search result in his main browser window. When
he’s done, he hits the “Back” button to return to
Google. He repeats this for the first nine search re-
sults. Consequently, 50% of his page loads were
over HTTPS: Google over HTTPS, HTTP search re-
sult, Google, search result, Google, search result...

Alice and Bob saw the same exact websites in the same
exact order, but they generated very different page load
metrics (10% vs 50%).

3.2.2 Time in foreground

In Chrome, the time in foreground metric measures
how much wall clock time people spend looking at web-
sites, and whether those websites are HTTP or HTTPS.
We added this metric after we grew concerned about the
effect of tabbed browsing on page load metrics.

Every time a top-level page is closed, we record the
protocol and the amount of time that the page spent in
the foreground. Like the page load metrics, we exclude
non-HTML resources, non-HTTP(S) protocols, incom-
plete navigations, and the New Tab Page. It does include
time spent on cached websites. In-page navigations are
irrelevant to this metric because all time spent on a given
protocol is summed together.

3.2.3 Transactions

In Firefox, we record the percentage of HTTP transac-
tions that occur over HTTP or HTTPS. The transaction
metric is implemented similarly to the strict page load
metric, but it counts HTTP transactions instead.7

The transaction metric is the least likely to reflect the
user experience of web browsing. The transaction-based
metric is sensitive to hidden implementation details of
websites because it includes both top-level page loads
and subresource requests. A single page load might is-
sue anywhere from zero to hundreds of resource requests.
For example, the Washington Post homepage issues 262
requests to 41 origins. Consider someone who opens two
websites — one HTTP and one HTTPS — and spends
equal amounts of time on them. Intuitively, this scenario
ought to yield a 50% HTTPS usage rate. However, if the
HTTP page generated one request and the HTTPS page
generated nine requests, the transaction metric would
record a 90% HTTPS usage rate.

Despite this metric’s limitations, we nonetheless feel
this is a useful metric to record and share for reference.
The transaction metric is the most similar to network-
based HTTPS metrics, which cannot distinguish between
top-level page loads and subresources.

3.3 Results

As of February 2017, HTTPS comprises a majority
of browsing in Mozilla Firefox and Google Chrome
(on desktop). HTTPS usage lags behind on Android
in Chrome by the extended page load and time-in-
foreground metrics. We also find that HTTPS usage
differs globally, with East Asian countries exhibiting
markedly lower HTTPS usage rates. Overall, HTTPS us-
age rates continue to rise over time.

1326    26th USENIX Security Symposium USENIX Association



Figure 1: The percentage of extended page loads over
HTTPS from July 2014 to February 2017, in Chrome.

Figure 2: The percentage of strict page loads over
HTTPS from July 2015 to February 2017, in Firefox.

3.3.1 Usage over time

Is HTTPS usage still growing? (Yes.)

Given the security community’s investments into
HTTPS adoption, we hope to see sustained growth in
HTTPS usage. At present, HTTPS usage is still growing.
Figure 1 shows extended page load metrics in Chrome
from July 2014 to February 2017, and Figure 2 shows
strict page load metrics in Firefox from July 2015 to
February 2017. Both demonstrate consistent (albeit non-
monotonic) growth. As of Febrary 2017, HTTPS usage
continues to increase overall for clients of both browsers
despite short-term fluctuations.

We observe that HTTPS usage has weekly and sea-
sonal variations. As shown in Figure 4, there is more
HTTPS usage Monday through Friday than on Saturday
and Sunday. (Recall that HTTPS usage is a percentage
— this does not necessarily indicate a decrease in overall
browsing over the weekends.) A chi-squared test on the
cross-tabulation of HTTP/HTTPS vs. weekday/weekend
shows this difference to be significant with very high
confidence (p < 10−15). We hypothesize that work- and
school-oriented websites are more likely to be accessed
over HTTPS than leisure websites, and users’ browsing
habits shift between these depending on the day of the
week. The timelines also show that holidays correlate
with temporary HTTPS usage drops for some classes of
users. For example, HTTPS usage on Mac and Chrome

OS drops during Christmas and New Years. In addi-
tion to the winter holidays, HTTPS usage on Chrome
OS also dips during the northern hemisphere’s summer.
We hypothesize that this is also due to differences be-
tween work and leisure browsing, and it is especially pro-
nounced in Chrome OS due to Chrome OS’s popularity
in North American schools.

3.3.2 Client operating system

Does HTTPS usage differ by operating system? (Yes.)

Figure 3 shows our browser HTTPS metrics, split by
client operating system. HTTPS comprises a majority
of browsing on all three desktop operating systems and
Firefox for Android by all available metrics, as of Febru-
ary 6, 2017. However, Chrome for Android users spend
more time on HTTP than on HTTPS.

Due to the differences between client operating sys-
tems, a single summary statistic across all types of clients
would be misleading. Such a statistic would overstate
HTTPS usage on Android and understate HTTPS usage
on desktop. Further, it would be sensitive to shifts in
computing trends; for example, a decrease in Android
phone usage would make the overall HTTPS usage rate
appear to increase. We therefore split our statistics by
operating system, focusing on Windows and Android as
the largest populations.

Android. HTTPS usage is lower on Android than other
operating systems. The difference is largest in Chrome,
where less than half of strict page loads and time in fore-
ground are spent on HTTPS websites. The gap between
Android and desktop is smaller among Firefox users, but
Android still has the lowest HTTPS usage rates among
Firefox platforms.

We hypothesize that lower HTTPS usage rates on An-
droid are due primarily to the popularity of native An-
droid apps like Facebook, Twitter, and Google Search,
in place of the equivalent web apps. Browser metrics
can’t capture search, e-mail, or social media when they
are not in the browser. App usage is “invisible” from the
browser’s perspective, and app usage is concentrated in a
small number of popular apps.8 This leaves Android web
browsing more tail-heavy than other operating systems.

The difference between mobile and desktop browsers
might also be related to the types of sites users are visit-
ing. If the hypothesis that work-related sites have more
HTTPS than leisure sites is valid, then the difference be-
tween mobile and desktop might be a result of users tend-
ing to visit more leisure sites than work sites on their mo-
bile devices, and vice versa on their desktop computers.
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Figure 3: Browser HTTPS usage metrics for the week ending February 6, 2017. (Firefox for Android metrics are for
the week ending January 23, 2017 due to a data processing issue.)

Figure 4: The percentage of strict page loads over
HTTPS in December 2016, in Firefox, by day of week.

Desktop operating systems. Windows, Mac, and
Chrome OS clients display similar HTTPS usage pat-
terns, with Windows having the lowest HTTPS usage
rates and Chrome OS having the highest. The success
of HTTPS on Chrome OS might be influenced by demo-
graphics: Chrome OS users might be more likely to use
other Google products, which are HTTPS by default.

3.3.3 Regional disparities

Is HTTPS usage equal across the world? (No.)

Web browsers serve global audiences, whose cultures
and browsing habits differ. This could yield different
HTTPS usage rates. Figure 5 shows a global view of
HTTPS usage among Firefox users. Table 1 shows met-
rics for a subset of countries in Chrome, selected for cul-
tural diversity and large Internet-using populations.

Emerging markets. We initially expected that emerging
markets would have lower HTTPS usage rates, but we
do not see evidence of that in our metrics. For example,
India’s rates are slightly higher than Germany’s by all
measures, and Brazil’s are slightly higher than France’s
by several metrics.

Figure 5: A map showing median rate of HTTPS us-
age among Firefox users by country from February 5–8,
2017, excluding countries with small user populations.

High HTTPS usage. Small countries have the high-
est HTTPS usage rates. In Chrome, 90% of strict page
loads in Tuvalu, Svalbard and Jan Mayem, and Benin
are HTTPS. In Firefox, the 75th percentile HTTPS usage
rate is above 90% in Mayotte, Libya, Syria, Venezuela,
Ecuador, and Iraq, i.e., 25% of users in these countries
use HTTPS on more than 90% of page loads. We hy-
pothesize that browser users in small countries spend
more time on large, centralized websites like Google and
Facebook (which support HTTPS by default) due to the
lack of localized long-tail Web content. It is also possi-
ble that, due to the small sample sizes, certain groups of
“unusual” users skew the statistics in these countries.

Most large countries have similar HTTPS usage rates,
within a 10-point range. However, within this range, the
United States is a consistently high consumer of HTTPS
across all metrics. India and Mexico are close behind.

Low HTTPS usage. East Asian countries are notable
outliers. South Korea, Japan, and China have very low
HTTPS usage rates, lagging far behind other countries.
The only other country outside of East Asia with simi-
larly low HTTPS usage is Iran, which is second only to
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Chrome Android Chrome Windows Firefox
SPL EPL Time SPL EPL Time Median SPL

Brazil BR 51% 63% 53% 55% 77% 73% 61%
Canada CA 53% 60% 49% 58% 76% 74% 64%
France FR 51% 59% 46% 56% 71% 66% 61%
Germany DE 52% 58% 48% 56% 71% 68% 64%
India IN 54% 60% 51% 58% 74% 70% 65%
Indonesia ID 46% 58% 47% 50% 73% 68% 59%
Japan JP 26% 32% 24% 36% 55% 52% 37%
Mexico MX 51% 63% 51% 57% 82% 77% 66%
Russia RU 50% 69% 50% 55% 81% 72% 61%
South Korea KR 34% 35% 29% 29% 44% 44% 33%
Spain ES 49% 58% 44% 53% 73% 66% 62%
Turkey TR 49% 54% 41% 48% 69% 63% 55%
United States US 57% 63% 55% 63% 77% 76% 67%

Table 1: Strict page load (SPL), extended page load (EPL), and time-in-foreground metrics for thirteen countries with
large Internet-using populations. Chrome metrics are for the week ending on February 6, 2017. For Firefox, the
median SPL rate among users in each country over the period February 5–8, 2017.

China in terms of median HTTPS usage among Firefox
users. The disparity between these countries and the rest
of the world highlights the challenge of creating global
browser policies when people in some countries have
very different browsing experiences.

Efforts to increase HTTPS usage in East Asia would
have both local and global benefits. Not only would it
increase Internet privacy in those countries, but it would
also allow browser vendors to move more aggressively
on HTTPS-preferential policies. To start, we recommend
investigating why Japanese and South Korean browser
users are less likely to use HTTPS. Although low HTTPS
usage rates in China might be due to the Great Firewall,
the same cannot be said for Japan and South Korea. Is it
cultural (e.g., less concern about privacy), technical (e.g.,
legacy infrastructure in popular East Asian websites), or
legal (e.g., different laws regarding cryptography)? Once
the stumbling blocks are understood, outreach efforts to
popular websites in East Asia could target those hurdles.

4 Server support for HTTPS

We cannot look at HTTPS adoption from only the
browser perspective. Browser statistics are weighted to-
wards the larger websites that make up a greater propor-
tion of traffic, and we also wish to understand HTTPS
adoption among small- and medium-sized websites in
the “long tail” of the Web.

To this end, we scan lists of websites to measure
HTTPS support across the web. We want to know how
many websites (a) support HTTPS at all or (b) offer
HTTPS by default. From a methodological standpoint,
scanning websites for HTTPS support has two com-
ponents: the testing technique (how did we determine

HTTPS support?), and the list of websites (how do we
define “the web”?). We use our own testing tools and
lists alongside public tools and lists.

4.1 Testing tools

We want to measure whether a server supports HTTPS.
In recent years, several competing tools (including two of
our own) have arisen to perform this task using slightly
different sets of criteria. We survey these tools and at-
tempt to use them in a comparable fashion.

4.1.1 Mozilla Observatory

Mozilla created the Mozilla Observatory9 as a tool to test
servers’ HTTPS configurations, along with a few other
security properties. The Mozilla Observatory performs
a handful of simple tests to determine whether and how
a website is accessible over HTTPS. The results of the
scans are publicly available via an API.

HTTPS available. The most basic test is to connect to
the domain on port 443 and make a HTTPS request for
the root document. If the website returns a valid certifi-
cate and the request succeeds – regardless of redirections
or status codes – we consider it available over HTTPS.

Default HTTPS. This test assesses whether a website
forcibly redirects HTTP traffic to an HTTPS endpoint.

HSTS. When a website sets a HTTP Strict Transport Se-
curity (HSTS) header, browsers that support the header
will always use HTTPS to connect to that website. We
test whether a website provides the HSTS header with a
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minimum max-age of six months (the minimum required
for preloading at the time the tool was built).

HSTS preloading. A man-in-the-middle attacker can
prevent a client from receiving a website’s HSTS header.
To stop this attack, several browsers use a preloaded list
of websites that serve HSTS headers. We check whether
each website appears on the preloaded list.

HPKP. If a man-in-the-middle attacker were to collude
with a rogue CA, the attacker could present a forged
certificate that appears legitimate. HTTP Public-Key-
Pinning (HPKP) ensures that the browser will only ac-
cept specific certificates intended by the website. The
Observatory tests whether the HPKP header is imple-
mented for a given website, with any max-age.

4.1.2 Google Transparency Report

The Google Transparency Report10 scans a set of 100
non-Google websites.11 The results are updated weekly.
We maintain the Transparency Report’s pre-existing test-
ing infrastructure to track two criteria over time.

HTTPS available. A website is considered to work
on HTTPS “if the Googlebot successfully reaches
https://domain and isn’t redirected through an HTTP lo-
cation”. The server must provide a valid HTTPS certifi-
cate chain for the website. This is more stringent than
the “HTTPS available” category as defined by the other
tools (Mozilla Observatory, HTTPSWatch, and Censys),
which all permit redirects through HTTP.

Default HTTPS. A website is considered HTTPS by de-
fault if “the site redirects HTTP requests to a HTTPS
URL” in response to a connection attempt from the
Googlebot. The server must provide a valid certificate
chain for the website. Per their rating system, a website
does not need to use HSTS to achieve this designation.

Counter-intuitively, a website can be HTTPS by de-
fault without making HTTPS available. This situation
occurs most notably with subdomains. For example,
“http://domain redirects to https://subdomain.domain,
but https://domain refuses the connection”.

4.1.3 HTTPSWatch

HTTPSWatch tests prominent websites for HTTPS sup-
port.12 We place websites into two categories based on
HTTPSWatch’s three-tier rating system. (The authors of
this paper are not involved in the HTTPSWatch project;
we use it as a public repository of HTTPS data.)

HTTPS available. We assign a website to this category
if HTTPSWatch’s client server can establish a verified
TLS connection to the website. Our label corresponds
to either the “Mediocre” or “Good” ratings in HTTP-
SWatch’s published rating system.

Default HTTPS. A website is considered to support
HTTPS by default if a verified TLS connection can be
established, the HTTP version of the website redirects
to HTTPS, and the HSTS header is set. Our label cor-
responds to the “Good” rating in HTTPSWatch’s rating
system. This is comparable to the Mozilla Observatory’s
“HSTS” category and is more strict than the Google
Transparency Report’s “default HTTPS” category.

4.1.4 Censys

Censys “is a public search engine that enables re-
searchers to quickly ask questions about the hosts and
networks that compose the Internet”13. It maintains a
large database of server configurations, including infor-
mation about TLS support [10]. We query Censys to test
whether servers support HTTPS. (The authors of this pa-
per are not involved in the Censys project; we use it as a
public repository of HTTPS data.)

HTTPS available. A server is considered to support
HTTPS if it responds on port 443 and provides a valid
certificate chain [10]. In Censys syntax, this corresponds
to 443.https.tls.validation.browser trusted:

true and protocols: "443/https" and

443.https.tls.validation.matches domain:

true" for websites. Censys cannot enforce the last
restriction for an IPv4 host, so an IPv4 host is considered
to support HTTPS even if the certificate might fail to
validate in a browser due to a name mismatch error.

4.2 Lists of websites

Different lists of websites are useful for different re-
search questions. Do we care about HTTPS adoption for
the whole Internet, popular websites, or websites popu-
lar in India? We use several publicly available lists of
websites, each of which has its own characteristics. See
Appendix A for copies of the lists.

HTTPSWatch Global. The HTTPSWatch project pro-
vides a list of 40 “prominent websites” in five areas:
search, social media, commerce, cloud storage, and pub-
lishing platforms. The list was curated by the project to
represent well-known, influential websites in each area.
They describe their selection criteria as, “HTTPSWatch’s
goal is to list several representative sites for each cate-
gory. Usually these are the most popular sites, so HTTPS
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List List size Tool HTTPS available Default HTTPS
HTTPSWatch Global 40 HTTPSWatch 80% 35%
Google Top 100 100 Googlebot 54% 44%
Alexa Top 100 Global 100 Mozilla Observatory 87% 23%
Alexa Million 969,278 Mozilla Observatory 40% 10%
Alexa Million 856,312 Censys 38% N/A
IPv4 hosts 101,052,620 Censys 10% N/A

Table 2: HTTPS support among each set of websites, February 2017.

support on them affects the most users.”12 We recorded
the state of HTTPSWatch on February 13, 2017.

The project also maintains country-specific lists, but
we do not report them here. Although their country-
specific lists have value, they are unsuitable for compar-
ing HTTPS adoption rates across countries because each
country’s list has different categories and criteria.

Alexa Top 100. The Alexa Top 100 ranking represents
the Web’s most popular websites, per Alexa traffic es-
timates. We requested the global Top 100 list as well
as country-specific Top 100 lists. The country lists are
based on the countries that the websites are popular in,
not based on where the servers are physically located.

Alexa aggregates browsing history from millions of
Alexa toolbar users,14 which it complements with a
website-embedded analytics script.15 They compute a
ranking based on the resulting corrected traffic estimates,
which combines counts of unique visitors and page loads
from the two data sources. Their traffic ranking com-
bines all subdomains into a single entry for the website
“unless [they] are able to automatically identify them as
personal home pages or blogs.”14

We requested these lists on February 13, 2017. Based
on how Alexa computes traffic estimates, this reflects
popularity over a three-month period prior to that day.14

Several of the websites were unreachable on the day of
testing, so we omitted them from our results.

Google Top 100. The Google Transparency Report pro-
vides HTTPS statuses for a list of 100 top websites. It is
intended to represent highly popular, non-Google web-
sites. The list was created using a mix of public data (in-
cluding the Alexa ranking) and Google proprietary data,
based on browsing habits in early 2016.11 The lack of
Google websites on the list is notable because the Alexa
100 lists include many Google websites.

Alexa Million. The Alexa Top Million represents a
broad snapshot of the active Internet. Although the list’s
official name alludes to popularity, everything after the
first 100,000 is considered part of the long tail of the In-
ternet.14 The list sees substantial churn, and websites
are sometimes unreachable after only a few days. Statis-

tics based on the Alexa Top Million should therefore be
viewed as reflecting a broad developer experience, rather
than reflecting truly “top” sites. We refer to the list as
the “Alexa Million” throughout this paper to avoid the
impression that all of the websites on the list are popu-
lar. We requested the Alexa Million on April 11, 2016,
October 21, 2016, and February 3, 2017.

IPv4 hosts. Censys exposes an Internet-wide view of
servers. They “use ZMap to perform single-packet host
discovery scans against the IPv4 address space” [10].
Once a host is found, they perform a TLS handshake and
record the result. Some — perhaps many — of the full
set of responding servers are hobbyist machines, defunct
websites, home devices, app backends, etc. We queried
Censys on February 13, 2017.

4.3 Results
HTTPS support increased from 2016 to 2017. However,
each list that we examined yielded a different HTTPS
adoption rate (Table 2). Popular websites are more likely
to support HTTPS, and support also varies by region.

4.4 Adoption over time
Is HTTPS support increasing? (Yes.)

Top websites. HTTPS support increased dramatically
among the Google Top 100 from February 2016 to
February 2017 (Figure 6). Over the course of a year, the
number of Google Top 100 websites with basic HTTPS
support rose from 39% to 54% (15 points). The number
of websites with default HTTPS nearly doubled, increas-
ing from 24% to 44% (20 points).

Long tail. We also observed a big increase in HTTPS
support among the Alexa Million from April 2016 to
February 2017 (Table 3). In less than a full year, the num-
ber of Alexa Million websites with basic HTTPS support
rose from 30% to 40%. This continues the growth pre-
viously observed by Durumeric et al. in 2012-2013 [11].
On the other hand, the number of websites with default
HTTPS remained low, increasing from 5% to only 10%.
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Figure 6: HTTPS support among the Google Trans-
parency Report Top 100, recorded over a year.

4/2016 10/2016 2/2017
HTTPS available 30% 34% 40%
Default HTTPS 5% 8% 10%
HSTS 1% 3% 3%
HSTS preloading 0.2% 0.2% 0.3%
HPKP 0.4% 0.5% 0.5%

Table 3: Results of testing the Alexa Million with the
Mozilla Observatory on three dates.

4.5 Website popularity

Are popular websites more likely to be HTTPS? (Yes.)

As Table 2 shows, the percentage of websites that sup-
port HTTPS depends on the list. Websites on the “top”
lists are more likely to support HTTPS than others.

Top websites. A majority of all three top website lists
(HTTPSWatch Global, Google Top 100, and Alexa Top
100 Global) support HTTPS. Of those three, the Alexa
Top 100 Global has the highest rate of HTTPS avail-
ability. However, the Alexa Top 100 is not a very di-
verse list: twenty of the websites are owned by Google,
six are owned by Microsoft, and three are owned by
Amazon. The Google websites all support HTTPS but
not by default (due to an initial HTTP redirection from
google.com to www.google.com). The Google Top
100 avoids this skew by removing Google’s own web-
sites; it accordingly yields a lower HTTPS availability
rate but a higher default HTTPS rate.

Long tail. We see a steady decrease in HTTPS sup-
port as websites get less popular. Of the Alexa Top
100, 87% support HTTPS; of the top 1000, 70% support
HTTPS; of the top 10,000, 60% support HTTPS; of the
top 100,000, 51% support HTTPS. The full Alexa Mil-
lion represents the long-but-active tail of the Web, and
only 40% support HTTPS (10% by default). IPv4 hosts
— representing the long tail and flotsam of the Internet
— are even less likely to support HTTPS (10%).

HTTPS available Default HTTPS
Brazil 65% 15%
Canada 77% 21%
France 67% 16%
Germany 86% 27%
India 68% 16%
Indonesia 71% 13%
Japan 57% 19%
Mexico 80% 19%
Russia 80% 24%
South Korea 75% 14%
Spain 75% 21%
Turkey 73% 17%
United States 81% 18%
Global 87% 23%

Table 4: HTTPS support rates among the Alexa Top 100
for each country in February 2017, as tested with the
Mozilla Observatory on February 13, 2017.

4.6 Regional disparities

Is HTTPS support equal worldwide? (No.)

We observe different rates of HTTPS support among
the Alexa Top 100 lists for fourteen countries (Table 4).

High HTTPS support. Websites that are popular in Ger-
many, the United States, Mexico, and Russia are the most
likely to support HTTPS (80% or greater).

Low HTTPS support. Websites that are popular in
Japan are the least likely to support HTTPS (57%). To
our surprise, Brazil, France, and India are not far behind
(65%, 67%, and 68%).

Comparison to browser metrics. We expected to see
a clear relationship between regional HTTPS usage and
server support. For example, we expected that Japan and
South Korea would have very low HTTPS support rates.
However, that is not the case: Japanese HTTPS support
rates are only slightly lower than others, and South Korea
falls in the middle. On the other hand, Indian people
have high HTTPS usage rates despite the Indian Top 100
having a relatively low HTTPS support rate.

This discrepancy can be explained by considering that
website popularity is not distributed evenly even within
the Top 100. People might spend much more time on the
first three websites (or first five, or first fifteen...), placing
more weight on the HTTPS status of those websites.

Global vs regional. The Alexa Top 100 Global list re-
ports a higher HTTPS support rate (87%) than any indi-
vidual country list. How can this be? A key insight is
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that the global list includes a mix of (a) websites that are
popular across many countries, and (b) the most popular
websites from the largest countries. The websites on the
Top 100 list are more popular overall than the websites
on the country-specific lists — and the websites at the
very top tend to support HTTPS.

One intriguing artifact of the popularity distribution
is that the global list has twenty Google websites. This
occurs because nineteen large countries each have a
popular regional Google variant (e.g., google.de and
google.es), and google.com is popular across many
countries. As a result, the global list doesn’t represent
any single person’s normal browsing — no one visits all
of the different Google variants! In contrast, someone
would likely be familiar with most of the websites on
their country’s Top 100 list.

5 Network measurements

In addition to client and server measurements, we can
also observe HTTPS adoption from the network. HTTP
and HTTPS operate on different TCP ports (80 vs. 443),
so it is easy to identify HTTP and HTTPS traffic in a
given packet flow. We can use network measurements to
assess how much of the web is being carried over HTTPS
across all clients and servers being used over a given
network. This includes non-browser clients (which are
missing from browser telemetry) and less popular sites
(which might not be covered by scans).

5.1 MAWI sample point F
We derive our network observations from the public do-
main MAWI data set published by the WIDE project,16

specifically from their sample point F [23]. This data set
includes one 15-minute snapshot of Internet traffic per
day, taken at a connection point between the WIDE back-
bone network and a transit provider. Between 160GB
and 590GB of HTTP and HTTPS traffic passes this ob-
servation point during each collection window.

We report the network data in terms of bytes and pack-
ets. Top-level page loads, subresources, and non-Web
traffic are all grouped together in this data set.

5.2 Results
Figure 7 shows the fraction of bytes and packets that
were sent over HTTPS, from 2014 to 2017.

Traffic over time. By both the byte and packet met-
rics, HTTPS experienced significant growth from Jan-
uary 2014 to January 2017. The percentage of network
traffic using HTTPS grew from around 20% of web traf-
fic to around 40%. In addition, the byte and packet ratios

Figure 7: HTTPS as a percentage of all network traffic
(HTTP+HTTPS) at the MAWI sample point F, weekly
from January 2014 to January 2017.

converged, which suggests that HTTPS is increasingly
being used for the same types of activities as HTTP.

Comparison to browser metrics. The HTTPS rate as
seen by this link is lower than the HTTPS usage rates
observed by browser telemetry. We hypothesize that this
might be due to one (or more) of three factors:

• These observations are from a network in Japan,
where browser telemetry shows low HTTPS usage.

• Non-browser HTTP clients might have a lower rate
of HTTPS usage. They are covered by this mea-
surement and not browser telemetry.

• Content served over HTTP could be different than
content served over HTTPS in a way that skews
measurements by byte or packet (e.g., streaming
video might be more common over HTTP).

The disparity between volume-oriented and
connection- or pageload-oriented metrics is similar
to an earlier observations made in a residential ISP
in 2014 [29]. That study observed the prevalence of
HTTPS in terms of both traffic volumes (in bytes)
and connections, the latter being similar to the Firefox
transaction metric. (Technically a lower bound, since
multiple transactions can be carried on a single con-
nection.) As of 2014, they observed that HTTPS was
13.8% of download traffic by volume, but 44.3% of
connections, both trending upward over time.
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6 Implications

We discuss the implications of our findings for HTTPS
outreach, discussion, and policies.

6.1 HTTPS adoption growth
We have seen tremendous growth in HTTPS adoption,
from four perspectives:

• Top websites. Default HTTPS support among the
Google Top 100 nearly doubled in 2016, rising from
a quarter to nearly half (Figure 6). We attribute this
to growing public demand for HTTPS and a desire
among top websites to use new HTTPS-only fea-
tures like Service Workers.

• Long tail websites. Among the Alexa Million, ba-
sic HTTPS availability grew from 30% to 40% over
2016, and support for HTTPS by default doubled to
17% (Table 3). We attribute the growth in the long
tail to Let’s Encrypt and publishing platforms that
now support HTTPS (such as Squarespace).

• End user perspective. A majority of desk-
top browsing now occurs over HTTPS. HTTP is
still dominant on Android by some measures, but
HTTPS usage on Android is growing and poised to
soon become the majority by all measures. Figure 1
shows the substantial growth in HTTPS usage (per
extended page loads) from July 2014 to February
2017 in Chrome. The growth in HTTPS usage is a
direct consequence of the growth in server support.

• Network traffic. HTTPS traffic doubled as a per-
centage of all web traffic, by byte and by packet,
from 2014 to 2017 (Figure 7).

We view the steady growth as a sign that HTTPS pro-
motion efforts are succeeding.

6.2 Choice of metric
We would have liked to find a single metric that captures
HTTPS adoption. Such a metric would be useful for
making HTTPS-related decisions and tracking the im-
pact of adoption efforts. Unfortunately, this unified met-
ric is elusive. The browser metrics that we investigated
each have their own nuances (Section 3.2), each yielding
different HTTPS usage rates (Figure 3, Table 1). Simi-
larly, server support rates depend on the set of websites
and level of HTTPS support desired (Table 2). Network-
based metrics have broader scope but less detail than
browser metrics (Section 5).

We recommend choosing between metrics based on
the following guidelines:

• Use the Alexa Million to measure developer impact.

• Use page load metrics to measure the user impact
of browser or ecosystem changes that affect page
loads. The strict page load metric is preferable be-
cause it is more conservative.

• Use a time-based metric to measure the user impact
of changes to long-lasting browser UI changes.

• Consider different demographics. Split user metrics
by OS and country, and split Alexa sites by country.

In this section, we give examples of applying those
recommendations to scenarios that we have encountered.

6.2.1 Requiring HTTPS for APIs

Mozilla Firefox and Google Chrome have begun requir-
ing HTTPS for some developer APIs like Service Work-
ers [1] and the geolocation API [24]. Their goal is to pre-
vent powerful browser APIs from being abused by net-
work attackers. Browser vendors and standards bodies
may wish to know what the compatibility cost is when
discussing whether to require HTTPS for a new API.

Developer frustration and low feature adoption rates
are the two main concerns in this scenario. How many
websites will be able to use the feature if its usage is
restricted to HTTPS pages? We recommend measuring
how many of the Alexa Million support HTTPS by de-
fault, since that list represents a wide set of actively vis-
ited websites. The number is currently low, which sug-
gests that many developers will need to do additional
work to use HTTPS-only features. This should not nec-
essarily deter browser vendors from setting those restric-
tions, but understanding the ecosystem status can help
set expectations for the reaction to a HTTPS restriction.

6.2.2 Changing security indicators

Browser security indicators have slowly changed over
time. Each iteration is accompanied by concerns about
how the change affects people’s perceptions of security
states (e.g., [16]). For example, people might become de-
sensitized to a negative or frightening security indicator
for HTTP if they see it all the time.

If the proposed UI treatment is displayed once at page
load, we recommend using a page load-based metric to
evaluate how often it will be shown. If the proposed
UI treatment would be permanently associated with the
loaded page, then we instead recommend using a time-
based metric. A time-based metric is appropriate because
it measures how long people actually see the new brows-
ing treatment. We do not think it is necessary to consult
server support rates when measuring the impact of UI
changes, since UI is between the browser and end user.
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When evaluating UI changes, we recommend split-
ting the relevant HTTPS metrics by operating system
and country to see whether any user populations will be
disproportionately impacted. In particular, it would be
worth understanding how the change will impact East
Asian countries due to their lower HTTPS usage.

6.2.3 Handling unknown protocols

If someone types a new website www.example.com into
a URL bar, should the browser load the website over
HTTP or HTTPS? All major browsers currently default
to HTTP in this situation, unless a preloaded HSTS
header instructs otherwise. At some point, browsers
should change their behavior to default to HTTPS in-
stead. This change cannot be made lightly because it car-
ries risk for websites that are still unavailable or appear
broken (e.g., due to mixed content) over HTTPS.

When considering such a change, one might be con-
cerned about end user pain (seeing broken pages). We
recommend measuring the impact of a proposal in terms
of strict page loads. The strict page load metric is a suit-
able measure of user pain in this situation because the
disappointing event might occur at page load, and it is
more conservative than the extended page load metric.

If the proposal results in slowing, breaking, or block-
ing some websites, one might also be concerned about
developer frustration. We therefore also recommend
measuring the impact of a proposal on developers in
terms of the Alexa Million, to gain insight into the long-
yet-still-active tail of the Web.

6.3 Impact of top websites

Our data suggests that top websites drive client HTTPS
usage on desktop, but Android is more sensitive to server
support among the long tail. We observe:

• Server support for HTTPS is more common for
top websites than for the long tail (the Alexa Mil-
lion or IPv4 hosts). The difference is especially
pronounced when considering how many support
HTTPS by default (Table 2).

• Websites that use the History API and fragment nav-
igation comprise a large amount of HTTPS web
browsing. We see this in Figure 3 by comparing
the extended page load metric (which includes those
types of navigations) to the strict page load met-
ric (which doesn’t). The extended page load metric
is 20 points higher than the strict page load met-
ric on desktop Chrome, and 9 points higher on An-
droid Chrome. These navigations are associated
with highly engineered, dynamic websites.

• Compared to desktop clients, Android clients load
fewer HTTPS pages and spend less time on HTTPS
pages in Chrome (Figure 3). We attribute this pri-
marily to the popularity of apps on Android, notably
including the Google Search and Facebook apps.
Long tail traffic remains in the browser.

• Not only do people spend more time on HTTPS
websites overall on desktop Chrome, but the web-
sites that people spend a very long time looking
at are more likely to be HTTPS. The distributions
for HTTP pages and HTTPS pages are similar log-
normal distributions, differing only in the very long
tail: 1% of HTTP page loads are kept open for more
than an hour, whereas 2% of HTTPS page loads are
kept open for more than an hour. An example of this
might be keeping GMail or Facebook open all day,
frequently returning to the tab.

We conclude that a small number of dynamic websites
account for a disproportionate percentage of desktop web
browsing. As these websites move to HTTPS by default,
HTTPS usage on desktop grows. The effect is smaller
on Android than desktop, where people spend more time
browsing HTTP websites in the long tail.

6.4 Benchmarking HTTPS adoption
Presenters or journalists may want to provide a summary
statistic when discussing the current state of HTTPS. In
such a situation, we recommend using the following:

• To give an overview of the end user experience, use
Chrome’s time-in-foreground metric (split by OS).
The time-based metric is intuitive and not sensitive
to tabbed browsing habits.

• To illustrate trends among influential websites, scan
the Google Top 100. The Google Top 100 list has
less repetition than the Alexa Top 100, but it’s still
grounded in user data (unlike HTTPSWatch).

• To track progress among the long tail, scan the
Alexa Million. It has a diverse mix of websites,
90% of which are considered part of the long tail
but all of which have been visited by real people
over the last three months.

6.5 HTTPS by default
Significant work remains to continue shifting the ecosys-
tem. The long tail (Alexa Million) and very long
tail (IPv4) still have little HTTPS support, and support
among top websites has only recently come close to 50%.

At current rates, we predict:
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• Top websites will be almost entirely HTTPS within
a year and a half. Half have moved, more are
preparing to move, and the reminder will feel pres-
sured to meet the changing industry standard.

• Widespread HTTPS adoption among the long tail
will take five more years unless a tool, hosting ser-
vice, or outreach effort yields a breakthrough.

• HTTPS usage on desktop will be largely HTTPS
within two years, due to an emphasis on top web-
sites. On Android, it will depend on trends in the
app vs web ecosystem.

6.6 Future outreach
We identified several areas where additional HTTPS out-
reach could yield benefits:

• East Asia lags behind the rest of the world in
HTTPS adoption. Understanding Japanese and
South Korean developers’ and users’ concerns (or
lack of interest) could help address this.

• Moving the long tail to HTTPS should help increase
HTTPS usage on Android, which currently lags be-
hind desktop. This is more challenging than doing
outreach to top websites because the outreach will
need to have massive scale. Moving this long tail
will require the change at points of centralization
that can upgrade many sites at once, e.g., hosting
providers or server software vendors.

• We should encourage new top websites to enable
HTTPS. Much of the progress in 2016 came from
top websites with some HTTPS support transition-
ing to HTTPS by default (Figure 6); as a result, most
of the top websites now have either default HTTPS
or no HTTPS at all.

7 Repeatability

Our metrics can be tracked or repeated by oth-
ers. Google releases summary statistics from Chrome
HTTPS telemetry weekly as part of the Google Trans-
parency Report17. Mozilla publishes aggregate Firefox
telemetry on their telemetry website. 18

Our server scans can be repeated by others using the
information in Section 4. Mozilla provides access to the
Mozilla Observatory through a public API.9 One excep-
tion is our scan of the Google Top 100, which used the
proprietary Googlebot. However, we provide the results
of those scans weekly as part of the Google Transparency
Report.19 Alternately, scans of the Google Top 100 can
be run by anyone using the Mozilla Observatory.
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A Archived list contents

Where possible, we provide copies of the lists that we
scanned in Section 4.2. Please be aware that the lists
contain websites with adult material.

A.1 Alexa
Amazon provides archived copies of Alexa’s rank-
ings via the Alexa Web Services API: https://aws.
amazon.com/alexa/.

A.2 HTTPSWatch
www.baidu.com, www.bing.com, duckduckgo.com,
www.google.com, www.sohu.com, www.yandex.ru,
www.yahoo.com, www.linkedin.com,
www.facebook.com, www.twitter.com,
www.pinterest.com, instagram.com, www.reddit.com,
www.youtube.com, vine.co, www.match.com,
www.okcupid.com, disqus.com, store.apple.com,
www.amazon.com, www.bestbuy.com, www.ebay.com,
www.craigslist.org, www.target.com,
www.walmart.com, www.cvs.com,
www.homedepot.com, www.barnesandnoble.com,
www.box.com, www.dropbox.com, drive.google.com,
www.icloud.com, onedrive.live.com, www.tarsnap.com,
www.blogger.com, medium.com, squarespace.com,
staff.tumblr.com, wordpress.com

A.3 Google Transparency Report
aliexpress.com, amazon.co.jp, amazon.co.uk,
amazon.com, amazon.de, bongacams.com,
chaturbate.com, cnet.com, facebook.com,
instagram.com, linkedin.com, mail.ru, netflix.com,
nih.gov, nytimes.com, ok.ru, paypal.com, pinterest.com,
reddit.com, seznam.cz, softonic.com, taobao.com,
theguardian.com, tmall.com, tripadvisor.com,
tumblr.com, twitter.com, vk.com, whatsapp.com,
wikimedia.org, wikipedia.org, wordpress.com,
xhamster.com, yahoo.com, yandex.ru, yelp.com,
amazon.in, apple.com, baidu.com, beeg.com,
imgur.com, sohu.com, stackoverflow.com, t.co, wp.pl,
xvideos.com, 360.cn, alibaba.com, amazonaws.com,
ask.com, ask.fm, bbc.co.uk, bing.com,

1336    26th USENIX Security Symposium USENIX Association

https://aws.amazon.com/alexa/
https://aws.amazon.com/alexa/


chinadaily.com.cn, cnn.com, craigslist.org,
dailymail.co.uk, dailymotion.com, daum.net,
ebay.co.uk, ebay.com, fc2.com, forbes.com, globo.com,
gmw.cn, go.com, goal.com, goo.ne.jp, hao123.com,
hausou.com, imagebam.com, imdb.com, live.com,
microsoft.com, milliyet.com.tr, mirror.co.uk, msn.com,
naver.com, office.com, olx.biz.id, onet.pl, pornhub.com,
pzy.be, qq.com, rakuten.co.jp, redtube.com,
sina.com.cn, soso.com, telegraph.co.uk, tianya.cn,
uol.com.br, weibo.com, wikia.com, wikihow.com,
xinhuanet.com, xnxx.com, yahoo.co.jp, youporn.com
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Abstract
Protecting communication content at scale is a difficult
task, and TLS is the protocol most commonly used to
do so. However, it has been shown that deploying it
in a truly secure fashion is challenging for a large frac-
tion of online service operators. While Let’s Encrypt
was specifically built and launched to promote the adop-
tion of HTTPS, this paper aims to understand the rea-
sons for why it has been so hard to deploy TLS correctly
and studies the usability of the deployment process for
HTTPS. We performed a series of experiments with 28
knowledgable participants and revealed significant us-
ability challenges that result in weak TLS configurations.
Additionally, we conducted expert interviews with 7 ex-
perienced security auditors. Our results suggest that the
deployment process is far too complex even for people
with proficient knowledge in the field, and that server
configurations should have stronger security by default.
While the results from our expert interviews confirm the
ecological validity of the lab study results, they addition-
ally highlight that even educated users prefer solutions
that are easy to use. An improved and less vulnerable
workflow would be very beneficial to finding stronger
configurations in the wild.

1 Introduction

Transport Layer Security (TLS) and its predecessor Se-
cure Sockets Layer (SSL) are fundamental cryptographic
protocols to secure information in transit across com-
puter networks and are employed to ensure privacy and
data integrity between two communicating parties. They
are used hundreds of million of times every day world-
wide in applications such as web browsers, smartphone
apps or in email communication. Recent studies on TLS
usage in the Internet ecosystem for both HTTPS [16, 25]
and email [24, 31], however, revealed that a large
fraction of communication endpoints are poorly secured

and suspectible to a broad array of possible attacks
(e.g., Heartbleed [3] and DROWN [11]). Additionally,
human-centric studies [20] have shown that warnings
are still clicked through and that users have little to no
understanding regarding the implications of visiting a
website without a valid certificate. Even worse, a large
number of services and websites still refrains from using
TLS by default for all communication channels despite
all efforts in propagating the use of encryption. While
the initiative Let’s Encrypt was specifically launched to
offer free certificates that are trusted by all browsers, it is
not yet ubiquitiously used for various reasons, e.g., the
lack of Extended Validation (EV) Ceritificates. Besides
that, Let’s Encrypt still requires to be configured at least
once.

To date, most studies on human-centric concerns
focused on non-expert end users and, to the best of our
knowledge, no user study has yet been conducted to
examine the usability of the TLS deployment process
directly. Our contribution aims to fill this gap by pre-
senting the first user study with expert users to identify
key usability issues in the deployment process of TLS
that lead to insecure configurations. We conducted lab
sessions that lasted 2 hours each with 28 university
students from 14 to 18 December 2015. Data was
collected via a think-aloud protocol as well as an entry
and exit questionnaire. In addition we collected the
bash and browser histories and the resulting server
configuration files. We focused on Apache, as this
is the most common web server to date [7] (A query
at censys.io resulted in 20,890,000 websites using
Apache). We found that configuring TLS on Apache
is perceived as a challenging task even by experienced
users. Our results suggest that administrators struggle
with important security decisions (e.g., choosing the
right cipher suites) which are mainly driven by concerns
about compatibility. Furthermore, our participants had
a hard time finding reliable sources on the Internet to
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support their decision making process. The configu-
ration options in Apache are perceived as difficult to
understand and therefore an additional source of error.
Through our expert interviews, we collected evidence
that insufficiently secure configurations – like those
from the majority of participants from our lab study –
are frequently encountered during security audits. Our
results shed light on major challenges from an expert
user’s perspective. We are confident that our results are
a good baseline for the development of improved tools
and policies that are better tied to the expert users’ needs.

The contributions of this paper thus are:

• a lab study with 28 participants to explore usabil-
ity challenges in the TLS configuration process

• expert interviews with 7 security auditors to pro-
vide a baseline for ecological validity and to further
explore potential usability improvements and rec-
ommendations for the deployment process.

2 Background & Related Work

Transport Layer Security is the foundation of today’s
web security. Several application layer protocols use
TLS to secure their online communication. The most
widely used protocol is HTTPS, i.e., TLS provides confi-
dentiality, authenticity and integrity for HTTP. Currently,
TLS 1.2 [14] is the most recent version of the SSL/TLS
protocol family, with TLS 1.3 on the horizon.1 Besides
securing the majority of today’s web traffic, researchers
have found several challenges regarding TLS, which are
vigorously discussed in the literature [13,37]. Guidelines
and best practices for a proper TLS deployment have also
been published [12, 38]. The goals of TLS include ex-
tensibility and interoperability. This includes the ability
to change the quality of the used certificate, settings of
used cryptographic primitives (cipher suites), enabling
of TLS extensions, use of different TLS versions and
the use of additional security features like HTTP Strict
Transport Security (HSTS) [23] and HTTP Public Key
Pinning (HPKP) [18]. In the last years, many studies
focused on empirically testing the quality of TLS con-
figurations by using Internet-wide scanning techniques
and showed that the TLS landscape is diverse and full of
misconfigurations. Lee et al. [29] analyzed the supported
SSL/TLS versions, the EFF started to analyze used cer-
tificates [17] with the most comprehensive study by Du-
rumeric et al. [16] and VanderSloot et al. [42]. With
a newly introduced search engine it is also possible to
monitor the ecosystem more easily [15]. Ristic [36] an-
alyzed different parameters and evaluated the quality by

1https://tools.ietf.org/html/draft-ietf-tls-tls13

a defined metric [2]. Huang et al. [26] surveyed the use
of cipher suites and Kranch and Bonneau [28] scanned
domains for HSTS and public key pinning.

Most user studies regarding TLS and human-
computer interaction focus on non-expert end users
that receive certificate warnings from their browsers.
Akhawe et al. [9] performed a large-scale study on the
effectiveness of SSL browser warnings and found that
that these warnings have high click-through rates, i.e.,
70.2% of Google Chrome’s SSL warnings did not pre-
vent users from visiting the initially requested insecure
site. Harbach et al. [22] presented an empirical analy-
sis of the influence of linguistic properties on the per-
ceived difficulty of descriptive text in warning messages
and found that the several steps can help to improve text
understandability.

Several studies have been conducted to improve SSL
warnings [20, 21, 41, 43]: E.g., Sunshine et al. [41] con-
ducted a survey to examine Internet users’ reactions to
and understanding of current SSL warnings. Based on
their findings, they designed new warnings and showed
that they performed significantly better. Weber et al. [43]
used a participatory design approach to improve SSL
warnings. Felt et al. [21] explored reasons for higher
click-through rates for SSL warnings in Google Chrome
compared to Mozilla Firefox. They also showed that the
design of warnings can lead users towards safer deci-
sions.

Oltrogge et al. [33] conducted an extensive study on
the applicability of pinning for non-browser software as
in Android apps. They found that only a quarter of their
participants understood the concept of pinning. Based on
their findings, they presented a web application to sup-
port developers in making the right decisions and guiding
them through the correct deployment.

Fahl et al. [19] presented the first study with system
administrators and found that many of their participants
wished for more simplicity, e.g., simpler interfaces and
automatic certificate renewal. Their results furthermore
highlight the need for a better technical education of re-
sponsible personnel. In comparison to our lab experi-
ments, the results from Fahl et al. [19] are based on self-
reported data gathered via an online questionnaire and
therefore provide a baseline for our study.

3 Lab Experiments
In the following, we describe the methodology used to
collect and analyze the data from the lab study.

3.1 Study Design and Procedure
In order to elicit a picture of usability challenges of
TLS deployment from an administrator’s point of
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view, we conducted a series of lab experiments with
28 participants. As described in Section 3.2, we re-
cruited students with expert knowledge in the field of
security and privacy-enhancing protocols at our univer-
sity who fulfilled the criteria to potentially work as an
administrator or were actually working as administrators.

Our experiments proceeded as follows: After the
recruitment phase, the participants were invited to the
lab where they were shortly briefed about the purpose of
our study. After signing a consent form, they received
the study assignment as presented in Appendix A. In the
given scenario, they assumed the role of an administrator
of an SME who is in charge of securing the communi-
cation to an Apache web server with HTTPS in order to
pass a security audit. The server system to secure was
based on Raspian, a Debian-based Linux distribution.
The Apache version in use was 2.4.11. We prepared
and implemented a fictive Certificate Authority (CA) in
order to facilitate the process of getting a valid certificate
and to remove any bias introduced by the procedures
from a certain CA. The fictive CA was available through
a simple web interface and required the submission of
a valid CSR (certificate signing request) for issuing a
valid certificate. The user interface was very simplistic
and the browser on the local machine already trusted
our CA. Figure 2 in Appendix A shows a screenshot
of the user interface. We opted for this study setting
as we solely wanted to focus on the actual deployment
process instead of the interaction with a CA. There was
no existing TLS configuration on the system, hence
the participants had to start a new configuration from
scratch. We chose Apache for our experimental setup
as to date, Apache maintains a clear lead regarding in
usage share statistics, followed by Microsoft and nginx,
e.g., [1].

We instructed the participants to make the configura-
tion as secure as possible, whereas the assignment did not
contain any specific security requirements, such as which
cipher suites to use or whether to deploy HSTS or not.
In order to collect data, we used a think-aloud protocol.
While the participants were working on the task, they
articulated their thoughts while an experimenter seated
next to them observed their work and took notes. We re-
frained from video recording due to the results from our
pre-test during which we filmed the sessions and noticed
a severe impact on the participants’ behavior. The par-
ticipants from the pre-study also explicitly reported that
they perceived the cameras as disruptive and distracting,
even though they were placed in a discreet way.

In addition to the notes from the observation, we cap-
tured the bash and browser history and the final config-
uration files. After completing the task, the participants

were asked to fill out a short questionnaire with closed-
and open-ended questions which covered basic demo-
graphics, previous security experience in industry and
reflections on the experiment. The complete assignment
and questionnaire can be found in the Appendix of this
paper.
As a result, we had a collection of both qualitative and
quantitative data that was further used for analysis as de-
scribed in Section 3.3.

3.2 Recruitment and Participants

In contrast to most previous studies in the area of TLS
usability, we focused on users that have proficient knowl-
edge in the field of security and privacy-enhancing tech-
nologies. As it was very difficult to recruit participants
from companies, irrespective of a financial incentive, we
decided to recruit participants at the university and tar-
geted students that had previously completed a set of se-
curity courses similar to recent studies with expert users,
e.g., [8, 35, 44].

To ensure that our sample reflected job requirements
of real world system administrators we reviewed open
job advertisements for system administrators to deter-
mine requirements for participation in our study. We then
invited a selected set of students that completed several
security-related courses to take an online quiz to addi-
tionally assess their knowledge irrespective of their pre-
viously issued grades. The full set of questions from the
quiz can be found in Appendix A. The quiz as well as the
required previously completed university courses were
selected based on a review of 15 open job advertisements
for system administrators in our region. The top 30 stu-
dents with the best scores were then invited to participate
in the lab study, and 28 of them did. The participants’
completed the quiz with scores ranging from 8.21 and 10
(out of 10). The average score was 9.15 (median = 9.37).
The average time to complete the quiz was 6.1 minutes.

Table 1 summarizes key characteristics of the partici-
pants: 2 participants were female, 26 were male; the age
range was 21 to 32 with a median of 23. Their experience
working in industry ranged from 2 to 120 months with a
median of 25 months. 17 of our 28 participants were al-
ready experienced system administrators and reported to
have deployed TLS before.

We are confident that our participants are suitable
to explore usability challenges in TLS deployment that
real-world system administrators face. To furthermore
strengthen ecological validity of our results we con-
ducted a set of interviews with security auditors (Sec-
tion 5).
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Demographic Number Percent

Gender
Female 2 10%
Male 26 90%

Age
Min. 21
Max. 32
Median 23

Months worked in industry
Min. 2
Max. 120
Median 25

Experienced as sysadmin
Yes 17 60%
No 11 40%

Configured TLS before
Yes 17 60%
No 11 40%

Currently administrating
Company web server 5 17%
Private web server 17 83%

Table 1: Participant characteristics from the lab experi-
ments. n=28

3.3 Data Analysis

For a qualitative analysis of the observation protocols we
performed a series of iterative coding which is often used
in usable security research to develop models and theo-
ries from qualitative data [27, 34, 39]. Our approach in-
volved several steps in the analysis process and was im-
plemented as follows: At first, two researchers traversed
all data segments independently point-by-point and as-
signed descriptive codes. This process is referred to as
open coding. The two researchers performed the initial
coding independently from each other to minimize the
susceptibility of biased interpretation. We evaluated the
quality of our initial codes and agreed on a final set of
codes which was then used to code the protocols. Our
analysis showed a good inter-rater agreement between
the two coders (Cohen’s κ=0.78). On the resulting initial
set of coded data we performed axial coding to look for
explanations and relationships among the codes and top-
ics to uncover structures in the data. Then we performed
selective coding to put the results together and derive a
theory from the data.
In order to structure the data from the open-ended ques-
tions collected through the questionnaire we used an it-
erative coding process. Hence we went through the col-

lected data and produced an initial set of codes. Then
we revised the retrieved codes and discussed recurring
themes, patterns and interconnections. After agreeing on
a final set of codes, we coded the entire data. As a result
of our analysis, we obtained a picture of usability chal-
lenges in the deployment process which is presented in
Section 4, grouped by themes.
To evaluate the (mostly) quantitative data acquired via
the bash/browser history and Apache log files, we ap-
plied metrics and measures to evaluate the quality of the
resulting configuration.

4 Results

In this section we present the results from our lab study
which are based on the data from the think-aloud proto-
col, the collected log files and the self-reported data from
the exit-questionnaire.

4.1 Security Evaluation
We based our evaluation criteria on Qualy’s SSL Test.2

We consider this rating scheme a useful benchmark
to assess the quality of a TLS configuration based
on the state of the art recommendations from various
RFCs [37, 38] and with respect to the most recently
discovered vulnerabilities and attacks in the protocol.
Since web services have different requirements, e.g.,
backward compatibility for outdated browsers, there is
no universally applicable recommendation to get the
highest grade. Still, the rating is widely accepted and
applicable to generic web services like in our study.
It must be mentioned that this benchmark reflects the
best-case scenario at the time of writing, but could
be different in the future if new vulnerabilities are
discovered.
The rating of the evaluation criteria is expressed with
a grade from A to F and composed out of three inde-
pendent values: (1) protocol support (30%), (2) key
exchange (30%) and (3) cipher strength (40%). Some
properties, e.g., support for the RC4 cipher cap the
overall grade as shown in Table 3. Table 2 summarizes
the results of a security evaluation based on the final
configuration per participant with additional information
in Table 3. The full set of evaluation criteria based on the
metrics used in Qualy’s SSL Test is listed in Appendix A.

Only four participants managed to deploy an A grade
TLS configuration, P24 received the best overall score.
B was the most commonly awarded grade (15 out of 28).
Four participants did not manage to deploy a valid TLS
configuration in the given time (P7, P18, P23, P26). Two

2https://www.ssllabs.com
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participants (P10 and P19) encrypted their private keys,
the passphrases were “abc123” and “pass”. One of these
two did not share the passphrase with us, however it was
easy to brute-force.
Fortunately, none of our participants chose a key size
smaller than 2048 for their RSA key. 15 participants
chose 2k- and eight chose 4k-sized keys. Five out of the
28 participants deployed the certificate chain correctly,
which is necessary to receive a grade better than B ac-
cording to our rating scheme.
Two participants did not make use of the study CA and
used self-signed certificates. Only one participant en-
abled a TLS version lower than TLS 1.0 (P8), another
participant had all versions but TLS 1.2 disabled (P14).
Only two participants configured RC4 support and only
one configuration (P8) was vulnerable to the POODLE
attack as SSL 3 was still supported. 14 participants fully
configured forward secrecy, the remaining participants
with valid configurations managed to at least partially
support it. Eleven participants included HSTS headers
to improve the security of their configuration and only
two participants deployed HPKP.

To determine whether the distribution of SSL Test
grades from our lab study reflects those from config-
urations found in the wild, we consider the estimation
from SSL Pulse [6] who regularly publishes data sets of
grade distribution measures based on the Alexa Top 1
Million. This data set as of the time our study was con-
ducted contains 141.890 surveyed sites of which 34.1%
were graded with A, 20.2% with B, 27.1% with C and
18.5% failed. Based on the 24 valid configurations from
our study, 25% of the study configurations were graded
with A, 67% with B and 8% with C. Given that the data
set from SSL Pulse [6] contains websites with potentially
higher security requirements or sites were administrators
were presumably given more time to obtain a secure con-
figuration. In particular the possibly very complex struc-
tures of real-world websites, as well as the inclusion of
third-party content, make our study non-representative.

4.2 TLS Deployment Model

Our qualitative analysis of the think-aloud protocols
from our lab study yielded a process model for a success-
ful TLS configuration. All participants who managed
a valid configuration in the given time can be mapped
to the stages presented in this model. The four partic-
ipants who did not manage to deploy TLS in the given
time significantly deviate from this model. We divide
the steps from our model into two phases, a setup phase
and a hardening phase. We refer to the setup phase as
to a set of tasks to get a basic TLS configuration, i.e.,
the service is reachable via https if requested. The hard-
ening phase comprises all necessary tasks to get a con-

Figure 1: Schematic representation of a successful work-
flow.

figuration which is widely considered secure with re-
spect to the metrics defined in A. Figure 1 shows our
deployment model. Participants who achieved at least
a basic configuration successfully completed all steps of
the setup phase, while better-graded configurations com-
pleted some steps from the hardening phase as well. We
identified iterative (tool-supported) security testing as a
key element for a successful hardening phase, since the
participants relied on external sources to evaluate the
quality of their configuration.

4.3 Usability Challenges in TLS Deploy-
ment

In the following, we present the usability challenges
identified through our analysis of qualitative data from
the think-aloud protocols and the quantitative data from
the collected log files.

Searching for information and finding the right work-
flow. Except for 3 experienced participants, who ex-
plicitly searched for tutorials they were aware of (e.g.,
bettercrypto.org), the study participants visited a
high number of websites and used multiple sources of in-
formation. The information sources were diverse regard-
ing their suggested deployment approaches and informa-
tion quality respectively. We frequently observed that a
participant started to follow an approach from one tuto-
rial and soon had to switch to another as the presented
approach was not feasible for our deployment scenario
and the given server configuration.

The lowest number of visited websites during the
lab study was 20 (P21). In contrary, participant P4
visited 147 websites during the given time. The average

USENIX Association 26th USENIX Security Symposium    1343

bettercrypto.org


ID Grad
e

Erro
rs

/ W
arn

ing
s / H

igh
lig

hts

Ciph
er

Stre
ng

th
Sco

re

Key
Exc

ha
ng

e Sco
re

Prot
oc

ol
Sup

po
rt

Sco
re

Com
mon

Nam
e

Key
Size

Cert
ifica

te
Cha

in
Len

gth

Used
Prov

ide
d CA

to
Sign

Enc
ryp

ted
Priv

ate
Key

SSL
2

SSL
3

TLS 1.0

TLS 1.1

TLS 1.2

RC4 Sup
po

rt

Vuln
era

ble
to

POODLE
(S

SL
3)

Forw
ard

Sec
rec

y

HSTS
HPKP

P1 A 2 90 90 95 web.local 4096 3  # # #    # #   #
P2 B 3 90 90 95 web.local 2048 1  # # #    # #  # #
P3 B 2,3 90 90 95 web.local 2048 1  # # #    # #   #
P4 A 90 90 95 web.local 2048 3  # # #    # #  # #
P5 B 90 90 95 web.local 4096 1  # # #    # #   #
P6 B 3 90 90 95 web.local 2048 1  # # #    # #  # #
P7 Not valid
P8 C 3-6,8 90 90 50 web.local 2048 1  # #   # #   G# # #
P9 B 1-3 100 90 95 web.local 4096 1  # # #    # #    

P10 B 1-3 90 90 95 web.local 4096 1  # # #    # #    
P11 B 3,4 90 90 95 web.local 2048 1   # #    # # G# # #
P12 B 2,3 90 90 95 web.local 4096 1  # # #  #  # #   #
P13 B 3 90 90 95 web.local 2048 1  # # #    # # G# # #
P14 A- 4 90 90 100 raspberrypi 2048 1 # # # # # #  # # G# # #
P15 C 4,7 50 90 95 - 2048 1 # # # #     # G# # #
P16 A- 4 90 90 95 web.local 2048 3  # # #    # # G# # #
P17 B 2,3 90 90 95 web.local 3096 1  # # #    # #   #
P18 Not valid
P19 B 2,3 90 90 95 web.local 2048 1   # #    # #   #
P20 B 2,3 90 90 95 web.local 2048 1  # # #    # #   #
P21 B 3,4 90 90 95 Test 2048 1  # # #    # # G# # #
P22 B 3,4 90 90 95 web.local 2048 1  # # #    # # G# # #
P23 Not valid
P24 A 2 90 90 97 web.local 2048 3  # # # #   # #   #
P25 B 3 90 90 95 SME 4096 1  # # #    # # G# # #
P26 Not valid
P27 B 3,4 90 90 95 web.local 4096 1  # # #    # # G# # #
P28 A 2 90 90 95 web.local 4096 3  # # #    # #   #

Table 2: Security evaluation of the final TLS configuration per participant.
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1 Highlight HTTP Public Key Pinning (HPKP) deployed on this server. Yay!
2 Highlight HTTP Strict Transport Security (HSTS) with long duration deployed on this server.
3 Warning This server’s certificate chain is incomplete. Grade capped to B.
4 Warning The server does not support Forward Secrecy with the reference browsers.
5 Warning This server accepts RC4 cipher, but only with older protocol versions. Grade capped to B.
6 Warning The server supports only older protocols, but not the current best TLS 1.2. Grade capped to C.
7 Warning This server uses RC4 with modern protocols. Grade capped to C.
8 Error This server is vulnerable to the POODLE attack. If possible, disable SSL 3 to mitigate. Grade capped to C.

Table 3: Errors / Highlights / Warnings as referred to in Table 2.

number of visited websites over all participants was 60
(median=49.5, sd=27). We consider this a relatively
high number given the low amount of time. Table 5
lists the most visited websites. The top-most visited site
points to a German Ubuntu and Linux wiki that is fre-
quently updated. The documentation for SSL on Apache
(second-most visited site) contains detailed information
on certificate creation and retrieval but only basic
information on hardening. In contrast, sslabs.com and
bettercrypto.org contain comprehensive tutorials on
hardening but require a detailed understanding of the un-
derlying fundamentals. The tutorial from raymii.org

provides step by step instructions but is not regularly
updated. Most participants expressed annoyance and
vexation about the incompatibility of the different infor-
mation sources. We also found that the number of visited
websites (high, medium, low) does not impact the qual-
ity of the resulting configuration, but this result is not
significant in our sample with χ2(0.23327892,6)> 0.05.

“I have absolutely no idea what I’m doing. Neither
am I aware of whether my online source is trustworthy.
(P23)”

Creating a Certificate Signing Request (CSR). A
CSR is a block of PEM-encoded text which is sent to
a CA to request a TLS certificate. It therefore contains
information that will be included in the certificate such
as organization name and common name (FQDN) and
enables users to send their public key along with some
information that identifies the domain name in a stan-
dardized way. When creating a CSR, the user is asked
to fill out the respective information. In order to create a
CSR, the user has to create a key pair. Our results sug-
gest that many users do not understand the purpose and
concept of a CSR, i.e., who it is authenticating towards
whom. 19 out of 30 participants from the lab study had to
create two or more requests due to errors in the CSR cre-
ation. The most common error was that they did not fill
out the requested common name field correctly (14 par-
ticipants) and thus did not receive a valid certificate for
their domain. In the end, 20 participants created a CSR

Participant ID Visited websites Grade

Most visited sites

P4 147 A
P19 116 B
P8 111 C
P2 109 B
P7 116 -

Least visited sites

P21 20 B
P12 36 B
P5 49 B
P10 49 B
P18 50 -

Table 4: Participants and their cumulative number of vis-
ited sites and overall rating.

with the correct common name as shown in Table 2. As
this is a common error in practice, some CAs even high-
light that the common name(s) can be altered later on.
This is especially useful when adding TLS support for
subdomains. Second, two participants (P14 and P15) did
not fully understand the difference between a CSR and a
(self-signed) certificate. Six participants initially created
a self-signed certificate instead of a CSR and tried to up-
load it to the CA. According to the self-reported work ex-
perience, this happened to participants regardless of their
experience. E.g., P15 reported to have recently deployed
TLS on Apache and still tried to upload a self-signed cer-
tificate to the CA. Four participants recognized the error
after receiving an error message from the CA and then
created a correct CSR including a correct common name.

Choosing the appropriate cipher suites. In TLS, ci-
pher suites are used to determine how secure commu-
nication takes place. Cipher suites are composed from
building blocks in order to achieve security through di-
versity. A person in charge of configuring TLS has to
select cipher suites that provide authentication and en-
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URL Visitors

wiki.ubuntuusers.de/Apache/SSL 25
httpd.apache.org/docs/2.4/ssl/ 20
www.ssllabs.com/ 16
bettercrypto.org 15
raymii.org/s/tutorials/Strong_SSL_Security_.. 14
httpd.apache.org/docs/2.2/mod/mod_ssl 11

Table 5: Top most visited websites.

cryption that is considered strong. However, this is a task
that requires a deep and up-to-date understanding on the
underlying algorithms in order to make informed deci-
sions about which cipher suites to support. In the course
of our lab experiments, all participants who came to this
point during the configuration assignment were aware of
the fact that they had to manually select cipher suites to
secure the communication. The decision making process
was exclusively based on search results and suggestions
from online resources without questioning. Some par-
ticipants also referred to recently published blog posts
where they read about the disadvantages of a certain al-
gorithm. This implies that the quality of the used infor-
mation source is crucial for the overall security of the
configuration as our participants lacked profound knowl-
edge and thus had to trust their source of information.
Table 2 shows how the selected cipher suites impact the
quality of the configuration.

Strict HTTPS. After finishing an initial valid config-
uration, most participants enforced strict HTTPS as a
first step of the hardening phase. Some were annoyed by
the fact that HTTPS does not immediately replace HTTP
as soon as it is available. Most participants were ini-
tially confused when they tested their configuration via
the browser and were redirected via http when they en-
tered the URL without the http(s):// prefix. They then
spent a significant amount of time to configure the vir-
tual host and the respective ports correctly, mostly also
due to misleading or incomplete information from online
sources.

Multiple configuration files. All but six participants
said that they found the configuration file structure con-
fusing, regardless of their prior experience with Apache.
P14 found it particularly challenging to find the right
configuration files. According to the think-aloud proto-
col, this was the main challenge that in the end resulted
in an invalid configuration. Several participants copied
and pasted entries between different configuration files
or had double entries, e.g., for SSLEngineOn. Nine par-
ticipants also struggled with loading the modules, e.g.,

P18 did not understand where to load the modules in the
configuration. Many participants were also not aware of
where and how to create a new virtual host which listens
on 443. P23, for example, did not understand the differ-
ences between the http.conf and apache.conf which dis-
tracted him/her from the TLS-specific tasks and security-
critical decisions.

Finding the right balance between security and com-
patibility. We observed that the majority of our par-
ticipants struggled with the definition of a secure con-
figuration. In our assignment we just stated that the
configuration should be as secure as possible to with-
stand an audit, without specifying any key properties.
Hence, the participants themselves had to make the deci-
sions. About 15 participants expressed concerns regard-
ing compatibility when configuring SSL/TLS versions
and cipher suites. A majority of them, however, decided
in favor of a securer option, e.g., disabling all TLS ver-
sions < TLS v1.1 and thus refraining from supporting
older versions of IE.

4.4 Impact of Prior Experience with TLS

As shown in Table 1 a significant proportion of the par-
ticipant pool has already administered or is currently ad-
ministering a server and 17 participants have configured
TLS before. Regardless of our relatively small sample
which is due to the qualitative nature of our study, we
provide statistical significance of the interplay between
prior experience and the resulting security grade from
our study. Table 6 shows the cumulative amount of par-
ticipants that achieved a certain security grade during
the study with respect to their prior experience. None
of the participants who did not manage to provide a
valid configuration in the given time had prior experi-
ence with server administration in a corporate environ-
ment. However, Table 6 shows that the majority of expe-
rienced users was not able to provide an A grade config-
uration. A significance test with χ2(7.9982,3) = 0.046
provides evidence to suggest that there is an association
between prior experience with configuring TLS and the
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grade of a participant’s TLS configuration from the lab
study. We could not identify dependence between prior
employment as system administrator and the SSL Test
grade based on the configuration from the lab study with
χ2(6.7667,3) = 0.07.

4.5 Perceptions of Usability
After the lab experiments, the study participants filled
out a short online questionnaire and reported reflections
on the assignment. 18 participants reported that they
thought they finished the assignment completely, while
nine thought that there were still some configuration
steps missing. One participant was not sure about
whether or not he/she finished the task. While ten
participants perceived the assigned task as difficult and
three as very difficult, only four participants thought
that it was easy and one that it was very easy. Twelve
participants rated the difficulty as neutral.

We also asked our participants what they think are the
most severe usability pitfalls in the deployment process.
In the following, we provide a respective list. Most fre-
quently mentioned were lack of best practice tutorials
(19), followed by misleading terminology (15) and weak
default configurations (12).

Lack of best practice tutorials. According to our par-
ticipants, it was difficult to determine a best practice on
how to deploy TLS. Our participants reported that they
came across outdated or simply wrong information in on-
line tutorials. 13 participants also mentioned that most
tutorials were not generic, but still not specific enough to
apply them to the system given in the assignment.

Misleading terminology and error messages. Espe-
cially with respect to interactions with the CA, partici-
pants expressed confusion about the terminology. Some
accidentally uploaded a self-signed certificate instead of
a CSR and found the file endings difficult to handle and
to distinguish, e.g., .key, .pem, .crt.

Weak default configuration. Eight participants ex-
plicitly criticized the high effort necessary to harden the
configuration, as too many cipher suites are enabled by
default. Also, they criticized that the selection of cipher
suites is a time-consuming task that requires profound
background knowledge in order to make an informed
decision and that bad decisions yield major security
vulnerabilities. One participant also suggested a simpli-
fied configuration option including a two- or three-way
variable to disable certain cipher suites (e.g., tinfoil hat
vs. maximum compatibility). Four participants also

stated that they would prefer if web servers had TLS
configured by default.

“It seems that there is already a certificate called
snakeoil, why can’t I use this one?” (P7)

Confusing config file structure. During the configu-
ration process, many participants perceived the Apache
config file structure as confusing and experienced it as
a severe source for errors. We also observed that some
participants had simple copy/paste errors in their config
files which highly distracted them from the actual main
task.

“There are multiple config files in /etc/apache2, how
and where do I have to load modules?” (P18)

“Why is there a snakeoil certificate in the config file?”
(P22)

Complex workflow. Six participants explicitly stated
that the workflow itself is too complex due to the differ-
ent approaches and branches that can be taken during the
configuration process as well as the dependencies of the
subtasks. Three participants stated these factors hindered
them in finding the source of an error afterwards.

“The configuration process is fiddly and one has to
google tons of pages to get it right. Even then one can-
not be sure to have a good configuration because SSL
vulnerabilities are discovered almost on a regular basis.”
(P9)

Too much background knowledge required. Many
participants expressed their concern about the high
amount of background knowledge required to success-
fully configure TLS in a secure way. Also, the fact that
a TLS configuration must be well maintained and fre-
quently updated requires the person in charge to be in-
formed about the latest TLS attacks and other vulner-
abilities which our participants considered infeasible in
practice.

Confusing permissions. Five participants also stated
that they found it hard to choose the correct location and
permissions for the certificate and private key.

5 Expert Interviews

In order to address ecological validity, we conducted ad-
ditional expert interviews with security consultants and
auditors about their experiences with insecure TLS con-
figurations. In this section, we describe the interview
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Experience A B C not valid

Configured TLS before? 5 11 1 0
Worked as admin in the past 4 4 0 0
Administering company server 1 3 1 0
Private server 4 9 0 2

Table 6: Prior experience with TLS deployment and server administration.

methodology and results of these expert interviews that
were conducted in April 2016. The interview guideline
can be found in Appendix A.

5.1 Recruitment and Interview Procedure
The participants were recruited at a security conference
in Germany with participants from both academia and
industry and via emails to regional security consulting
companies. The requirements for participation currently
work as a security consultant or auditor and to have at
least 2 years of prior experience in auditing web services.
The expert interviews were conducted as semi-structured
interviews with 7 security experts from well-respected
security consulting firms in the German-speaking region.
The experts were familiar with TLS misconfigurations
and frequently encountered misconceptions on how to
combat the trade-off between compatibility and security.
The interview segments were coded using iterative cod-
ing.

5.2 Results
Our results show that auditors commonly agree that poor
usability and too complex workflows and server config-
urations result in weak TLS configurations. They also
mentioned that the deployment process must be simpli-
fied and especially the default configuration should favor
security. In the following, we discuss their responses in
detail. Six interview participants were male, one was fe-
male. The average number of months spent as a pene-
tration tester or auditor was 53.2. Two participants work
in small companies with less than 10 employees, the re-
maining participants were employed in companies with
more than 10 but less than 100 employees.

Auditing TLS configurations. All expert interview
participants reported to focus on the following config-
uration characteristics during audits: activated TLS/SSL
version, activated cipher suites, if the certificate is recog-
nized by commonly used web browsers, whether HSTS
is configured and whether public key pinning is activated.
E3 and E7 also highlighted that they particularly pay at-
tention if recently discovered attacks are mitigated. E6

and E7 also said that in addition to automated tools, they
prefer to evaluate the server configuration directly, if it is
accessible.
All seven interview participants use Qualy’s SSL Test as
the de-facto standard to evaluate public domains. They
also use selected Nessus modules3 and OpenVAS4 for
internal sites. E2, E4 and E6 also reported to use
NMap [30].

Configuration mistakes in the wild. According to the
interview participants, the main concern when deploying
TLS is compatibility. Our interviewees, however, also
mentioned that in most cases the compatibility challenge
is just a mock argument which is often used as an ex-
cuse and not fully elaborated by the responsible employ-
ees. Compatibility is a challenge for publicly available
sites where almost any client may want to access. How-
ever, it is a rather easy-to-solve problem for services that
are only accessed internally, hence the set of potentially
accessing clients is well known. Also, backward com-
patibility with older client versions (i.e., <IE7) may not
be desired for a variety of reasons beyond TLS and will
only affect a minority of clients. However, E1 and E3
also reported that finding the best fit between security
and compatibility is hard even for security experts and
often arguable. Five of the interviewed auditors also re-
ported that they often find self-signed certificates which
do not fulfil the intended purpose. E1, E2, E3 and E7
mentioned that they often encounter weak default TLS
configurations with poor ciphers and no additional secu-
rity measures (e.g., HSTS).

Two auditors mentioned that in the course of look-
ing at TLS configurations for many years, they have
never encountered HTTP public key pinning during an
audit. Also, one interview participant reported that TLS
deployment is not sufficiently streamlined in compa-
nies. According to them, most companies have multi-
ple servers with varying configurations and each one is
maintained and updated separately.

E2 also highlights that the ideal TLS configuration
has changed frequently in the last two years or algo-

3https://www.tenable.com/products/nessus-

vulnerability-scanner
4http://www.openvas.org/
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rithms have been deprecated which implies a significant
overhead for administrators to keep their configurations
up to date. E2, E4 and E7 also reported that companies
do not fully make use of the online sources available,
such as using Qualy’s SSL test for public domains.

“In most cases backward compatibility is the show-
stopper regarding proper TLS configurations.” (E3)

Concerns in the wild. We also asked our interviewees
about the concerns that admins, CSOs and other persons
in charge have regarding TLS. Our experts agreed that
especially administrators are aware that configuring TLS
is a sensitive task during which several things can go
wrong. However, lack of time seems to be a major is-
sue and administrators often do not have the resources
to get a deep understanding on the fundamentals. To
our surprise, E4 and E7 reported that they frequently
encounter responsible persons that have little or no ex-
perience with security protocols such as TLS. All inter-
view participants reported that in the course of security
audits, they also frequently find weak default configura-
tions along with little awareness regarding the weakness
of such configurations and how they could easily be hard-
ened. E7 highlighted that responsible persons even report
that they are “afraid of using crypto”. As an example (de-
scribed in 5.2), E1 explicitly mentioned HSTS which is
easy to deploy and has no impact on compatibility, but is
rarely used in practice.

Also, compatibility still remains a key concern as lack
of compatibility often leads to overloaded help lines, as
reported by E1, E6 and E7. Also, the risk of MITM at-
tacks is often underestimated and companies do not per-
ceive themselves as targets of such attacks. E7 cited an
administrator from an SME saying: “Our configuration
supports basic encryption, so this should be more than
enough... and clearly is better than no encryption.” As E2
reports, companies are often concerned about introduc-
ing encryption due to the additional performance over-
head which is in their opinion not worth the effort.

Suggested usability improvements. A common opin-
ion of all interviewees was that the default server config-
urations must be improved by simplifications and default
security options. They said that server configurations
should be secure by default, i.e., that TLS should be en-
abled by default and hence must be explicitly disabled if
necessary. E1 highlighted that Apache has a weak default
configuration for compatibility reasons and mentioned
the Caddy web server5 as a good and usable example.
Caddy comes with a TLS configuration by default and

5https://caddyserver.com/

uses Let’s Encrypt to get certificates. Also, according
to E1 the by default activated cipher suites are a good
compromise, and even OCSP stapling and HSTS are de-
ployed by default. Also, the Caddy web server automati-
cally renews certificates. E1 highlights that configuration
directives must be simplified to yield strong configura-
tions and that Caddy web server is a good example for
this paradigm. E1 also suggests that compatibility flags
which administrators can use to configure cipher suites
would be much more helpful than letting them deal with
cipher suites directly.

Regarding the deployment process in larger enter-
prises that maintain multiple servers, E1 proposes to cre-
ate a strong sample configuration on a test server and to
then deploy them on all servers. This potentially helps to
avoid outdated configurations, as the updating process is
simplified and the person in charge is aware of the TLS
configuration on all devices by knowing the essentials of
the sample configuration.

E1 also suggests to deploy everything that does not re-
sult in lower compatibility, i.e., OCSP stapling which is
commonly ignored by clients who do not understand the
according header. While public key pinning is rather dif-
ficult to fully deploy, it can easily be used in report-only
mode and thus enables to detect MITM attacks. E1 high-
lights that these additional functionalities are beneficial
for security but rarely encountered in the wild.

E3 also suggests that HTTPS should fully replace
HTTP to solve security problems. E3 also thinks that
HTTP has no fundamental benefit over HTTPS with
TLS. E3 shifts the responsibility from servers to clients
and stated that clients should be frequently updated to
support the respective ciphers. Furthermore, E3 argues
that the concept behind CAs also has its flaws, i.e., lack
of certificate transparency, certificate revocation and law-
ful interception on the CA’s side without the end user’s
consent. She/he also claims that browsers generally trust
a high number of CAs with varying trustworthiness.

E7 highlighted the need for professional education and
that “doing it right” requires experienced professionals
that keep track of the ongoing changes. E7 also sug-
gested that there is a high demand for better config-
uration guides and easier-to-use default configurations
to compensate the lack of know-how of the persons in
charge as well as to make it easier for everyone to config-
ure TLS in a secure yet compatible way. Also, this inter-
view participant said that companies should have policies
regarding encryption and compatibility to make it easier
for administrators to choose the right configuration.

6 Discussion

While related work already showed that TLS configu-
rations in the wild are often weak and thus do not suf-
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ficiently protect Internet users from MITM attacks, our
work explores the reasons for this. In comparison to most
related user studies, we focus on the expert user role in-
stead of the non-expert end user who is mostly unaware
of potential risks and clicks through warnings which are
often hard to understand and do not sufficiently commu-
nicate security risks.

We were surprised by the helplessness that we encoun-
tered during the lab study. The security auditors who par-
ticipated in our expert interviews draw a similar picture
of the administrators’ reaction when confronted with the
results of an audit which strengthens the ecological va-
lidity of our results.

For our sample, we selected top students that success-
fully completed security courses and proved their techni-
cal knowledge in an initial knowledge survey. 17 out of
28 participants were already experienced with managing
servers in a corporate environment. We also compare the
technical knowledge of our participants with those from
Fahl et al. [19] who surveyed 755 webmasters. Their re-
sults suggest that webmasters often lack of a detailed un-
derstanding of the SSL security features and that they are
not sufficiently educated. Fahl et al. [19] also found that
real world webmasters heavily rely on online sources to
compensate for their lack of knowledge.

Based on this comparison and the results from our ex-
pert interviews we are confident that our sample is suited
to explore usability challenges and reflects the diverse
knowledge of administrators in the wild.

Our results suggest that poor usability is a key is-
sue and by far the main reason for weak configurations.
Through both our lab study and the expert interviews we
found that even professionals lack the knowledge regard-
ing the underlying cryptographic fundamentals such as
cipher suites and even basic concepts like the role of cer-
tificates. This result shows that there is a high demand for
better default configurations and/or tool support to pre-
vent administrators from dealing with mechanisms they
cannot fully understand.

As stated in Section 4.1, we based our evaluation cri-
teria on Qualy’s SSL Test to evaluate the configurations
from our lab study. Although these metrics are consid-
ered a good benchmark to assess TLS configuration, not
all of them are feasible for every real-world scenario.
For example, HPKP in theory is a mechanism to miti-
gate MITM attacks with fraudulent certificates but poses
additional risks and challenges in practice as key man-
agement for HPKP is hard to manage for long tail web-
sites. Possible solutions are to pin the CA certificate and
to use a backup key or to use CAA (Certification Author-
ity Authorization) DNS records to allow domain owners
to specify which CAs are allowed to issue certificates for
the respective domain. During our lab experiments, two
participants started deploying HPKP. However, from the

data we collected during the experiments, it is unlcear to
what extent the participants who wanted to deploy HPKP
were aware of the implied key management challenges.

In December 2015, the initiative Let’s Encrypt re-
leased its non-profit CA that provides free domain-
validated X.509 certificates and software to enable instal-
lation and maintenance of these certificates was launched
to make it easier for administrators to deploy TLS. Since
then, Let’s Encrypt changed the TLS market signifcantly.
It issued over 27 million active certificates for over 12
million registered domains (Feb. 2017). It is often called
the largest CA, but is still not clear how much this in-
fluenced the TLS ecosystem, since many certificates are
used for less popular web sites [4, 5]. However, Let’s
Encrypt is not directly improving TLS configurations. It
seems that the prime goal, the process of certificate is-
suance was improved, but the full TLS configuration is
still a manual process. Some plugins (e.g., for Apache in-
tegration) automatically set some TLS configuration pa-
rameters (e.g., protocol version, cipher suites) to a bal-
anced configuration in terms of security and backward
compatibility. However, it does not include other param-
eters like HSTS or the DH prime configuration. There-
fore, configurations with certificates issued by Let’s En-
crypt are not generically comparable with other con-
figurations, but it is clearly an opportunity to also im-
prove and automate the configuration process in the fu-
ture. Hence, Let’s Encrypt does not entirely automate
the workflow as presented in Figure 1. In fact it aimes to
ease the creation of a CSR and the interaction with the
CA. Regardless of these substantial improvements, Let’s
Encrypt needs to be configured at least once. While there
are dedicated tools available (e.g. ACME) it remains to
show to what extent the initial effort in configuring an
Apache web server actually decreases.

As mentioned by our security experts, there are al-
ready servers with a focus on better security: they let
their users make configurations less secure if desired in-
stead of providing no security by default and thus forcing
users to deploy security themselves. Also, they high-
light the demand for easier user interfaces for config-
uration purposes which corresponds to the findings of
Fahl et al. [19]. Our results also suggest that expert users
are often unable to decide on the appropriate level of se-
curity, which highlights the need for cross-organizational
guidelines and policies.

As creating a basic TLS configuration also involves
complex decisions (such as choosing the appropriate key
length) it is difficult for administrators to maintain or cor-
rect errors and wrong decisions.

Both the results from the lab study and the expert in-
terviews highlight that the complex deployment process
should be simplified, and that the difference between a
basic correct configuration and a secure one should not
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be too broad. Hence we suggest that newly designed
servers and/or supportive tools should merge the setup
and the hardening phase resulting in a best-case working
configuration if all steps are completed – which can then
be downgraded if necessary.

6.1 Limitations
A severe limitation of our lab study is that we only
looked at the initial deployment process and excluded
long-term maintenance effects, such as certificate re-
newal and the administrators’ reactions to newly discov-
ered vulnerabilities. The main reason is that it is difficult
to reliably study long-term effects in the lab. In the fu-
ture, we plan to conduct an additional case study in a
corporate environment to observe long-term effects over
a number of years. Also, as our study was performed in
the lab, the participants did not have a deep background
of the notional company they were administrating for the
study. Our primary goal was to recruit participants who
were fully employed as system administrators, but un-
fortunately did not manage to get enough responses re-
spectively commitments for participation. Therefore, we
chose to recruit participants among our computer science
students. To overcome this bias, we selected top students
that successfully completed security courses with good
grades and completed an initial assessment test. As our
results suggest, many of them were already experienced
with managing servers and some had even worked as sys-
tem administrators in companies and other organizations.
We therefore believe that our data is suited to explore us-
ability challenges. Our expert interviews with security
auditors underline the ecological validity of the results
from our lab study and suggest that configurations found
in the wild are even less secure than those generated by
our participants during the lab study. Another limitation
of our study is that we instructed the participants to de-
ploy the securest possible configuration. This goal could
be unrealistic in a corporate environment where compat-
ibility is a major concern. Therefore our results represent
an upper bound for security.

7 Ethical Considerations

Our university located in central Europe unfortunately
does not have an ethics board but has a set of guidelines
that we followed in our research. Also, we aligned the
methodology for our user study in related studies with
similar ethical challenges [35, 40, 44].

A fundamental requirement of our university’s ethics
guidelines is to preserve the participants’ privacy and to
limit the collection of person-related data as far as possi-
ble. Therefore, every study participant was assigned an
ID which was used throughout the experiment and for

the online questionnaire. All participants signed consent
forms prior to participating in our study. The consent
form explained the goal of our research, what we ex-
pected from them and how the collected data was used.
The signed consent forms were stored separately and did
not contain the subsequently assigned IDs to make them
unlinkable to their real names.

We refrained from video-recording the participants
during the study as the participants from our pre-study
reported that the awareness of being filmed made them
feel uncomfortable and had a negative impact on their
performance even if the camera was positioned in a non-
obtrusive way.

8 Conclusion

We conducted a lab study with 28 participants to ex-
plore usability challenges in the TLS deployment pro-
cess that lead to insecure configurations. In comparison
to related work, we contributed a study that focuses on
expert users, i.e., administrators who are in charge of se-
curing servers. Additionally, we conducted seven expert
interviews with penetration testers and security auditors
who frequently encounter poorly secured servers during
security audits.

We found that the TLS deployment process consists
of multiple critical steps which, if not done correctly,
lead to insecure communications and put Internet users at
risk for MITM attacks. Furthermore, our results suggest
that even computer scientists who are educated in terms
of privacy-enhancing protocols and information security
need additional support to make informed security deci-
sions and lack an in-depth understanding of the underly-
ing cryptographic fundamentals. Expert users also strug-
gle with the configuration file structure of Apache web
servers and have to put a lot of additional effort into se-
curing default configurations. Our expert interviews un-
derline the ecological validity of the results from our lab
study and shed light on the weaknesses of TLS configu-
rations found in the wild. According to our security audi-
tors, the main concern regarding TLS is interoperability.
They also highlighted that server infrastructures are of-
ten configured with poor defaults and badly maintained
and are therefore not up-to-date.
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A Appendix

Recruitment Questionnaire
• Which of the following directives is used to host

two different websites (www.website1.com and
www.website2.com) within the same Apache web-
server?

– NamedHost
– WebRoot
– VirtualHost
– ServerRoot

• Certificate files are usualy located at?

– /root/ssl/certs
– /etc/ssl/certs
– /tmp/certs
– /var/www/static/certs

• CSR means ...

– common-name signing request
– comodo signing request
– certificate signing request
– cross-site request

• Which is the best file permission for your private
keys on a Linux system?

– 0777
– 0300
– 0664
– 0600

• Which command is used to find out the currently
used IPs?

– ifconfig
– netstat
– ipconfig
– iptables

• Which files can the user www-data read?

– -rw——- root root filname
– -rw——- www www-data filename
– -rwxrwxrwx root root filename
– -rw-rw—- root www-data filename

• Which command is used to switch the user in
Linux?

– sudo
– su
– root
– switchuser

• A symlink is created with which command?

– ls -s TARGET LINK NAME
– symlink TARGET LINK NAME

– ln -s TARGET LINK NAME
– ln TARGET LINK NAME

• TLS uses ...

– symmetric cryptography
– asymmetric cryptography
– pem/der certificates
– X.509

• TLS is ...

– computationally very expensive
– complex to configure correctly
– originally invented by Facebook
– easy to buy using cloud services

• Which of the following commands is used to save a
file in vim (Vi Improved)?

– Strg + S
– Strg + X
– Esc; :s
– Esc; :w

• Which commands restarts the webserver?

– sudo service apache2 restart
– sudo /etc/init.d/apache2 restart
– sudo service webserver restart
– sudo service IIS restart

• The webserver has to have access to?

– The private key used for TLS
– The certificate used for TLS
– The certificate authority private key for TLS
– The certificate signing request used for TLS

• Where are HTML files served by the Apache Web-
server located after default installation?

– /usr/share/nginx/www
– /etc/www
– /var/www
– /home/www

Lab Study Assignment

You are the system administrator at a SME (small and
medium-sized enterprise). Your company runs a web
portal and your boss instructed you to secure the com-
munication by using TLS. Unfortunately you only have
a very limited amount of time because your company will
also soon be under security audit. This is why you should
start right away deploying TLS. Make your configuration
as secure as possible.

1354    26th USENIX Security Symposium USENIX Association



Figure 2: Screenshot of the CA we implemented for the
lab experiments.

System Configuration

• The company’s web server (Apache2) is currently
found at http://web.local on Port 80. There is only
HTTP activated. No TLS configuration is made so
far.

• You can connect to the web server with the com-
mand ssh web The username is pi, the password is
raspberry. There is no root password, so you can
just use sudo to execute commans as root user.

• You will have to use a Certificate Authority. You
find a CA at https://ca.local Your client’s Firefox
trusts this CA called TLS Userstudy Root CA. You
can test the certificate validation with this browser.
The DNS names of both servers are locally config-
ured at your client.

Post Lab Study Questionnaire
Demgraphics

• Participant ID (assigned prior to the lab experi-
ments)

• Age
• Gender
• Months of industry experience

Experience with TLS

• Are you currently in charge of a web server?
(Yes, I’m currently administrating a company web
server./ Yes, I’m currently administrating a private
web server./ Yes, I’m currently administrating at a
profit/non-profit association. /No.)

• Have you ever installed and configured SSL/TLS
before? (yes/no)

• Have you ever worked as a system administrator be-
fore? (yes/no)

Reflections on the Study Task

• Did you finish the TLS installation in the given
time? (yes, no, I’m not sure)

• If you didn’t finish the TLS installation in the given
time, which steps are still missing to secure the
communication? (open text)

• How difficult did you find TLS deployment? (Likert
scale: very easy to very difficult)

• What did you find particularly difficult? (open text)
• What do you think are the key usability pitfalls of

TLS deployment? (open text)
• What would you recommend a system administrator

who has to deploy TLS? (open text)
• Is there anything else you would like to let us know?

(open text)

Interview Questions - Expert Interviews

• As an auditor, how do you usually proceed to eval-
uate the security of a TLS configuration?

• What are the main vulnerabilities/configuration
mistakes that you encounter as an auditor?

• What botheres admins/CSOs the most regarding
TLS?

• What are the most critical steps in TLS deployment?
• How should the deployment process be improved?
• What piece of advice would you generally give to

anyone in charge of securing communication over
HTTPS?

Detailed Evaluation Criteria

Grade The overall grade for the configuration with a
valid certificate. The grade is calculated based on the
grading scheme from [2]. The score is based on indi-
vidual ratings for protocol support (30%), key exchange
(30%) and cipher strength (40%). The grade is issued
based on the following cumulative scores:

• A: score >= 80
• B: score >= 65
• C: score >= 50
• D: score >= 35
• E: score >= 20
• F: score < 20

Errors/warnings/highlights. This refers to remarks
that impacted the overall grading. The detailed descrip-
tion of these justifications is shown in Table 3.
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Cipher strength score. This is represented by a num-
ber between 0 and 100, with 100 being the best possible.
The cipher strength score contributes 40% to the overall
grade. As weak symmetric ciphers can be easily broken
by attackers, it is essential to the overall configuration
that strong ciphers are used. SSL Labs evaluate ciphers
based on an average cipher between the strongest and
weakest. The scores are rated as follows:
0 bits (no encryption): 0
< 128 bits (e.g., 40, 56): 20
< 256 bits (e.g., 128, 168): 80
>= 256: 100

Key exchange score. As described in [2], the key ex-
change phase serves two functions: (1) authentication to
verify the identity of the other party and (2) safe gener-
ation and exchange of secret keys to be used for the re-
maining session. Also, exportable key exchanges where
only a part of the key is exchanged can make the ses-
sion keys easier to compromise. Key exchange without
authentication is vulnerable to MITM attacks and allows
an attacker to gain access to the communication chan-
nel. Furthermore, the strength of the server’s private key
is crucial. The stronger it is, the more difficult it is to
break the key exchange phase. Some servers use the pri-
vate key just for authentication and not for the key ex-
change mechanism. Popular algorithms are the Diffie-
Hellman key exchange (DHE) and its elliptic curve ver-
sion (ECDHE). As in [2], the rating is calculated as fol-
lows:
Weak key or anonymous key exchange (e.g., Anonymous
Diffie-Hellman): 0
Key or DH parameter strength < 512 bits: 20
Exportable key exchange limited to 512 bits: 40
Key or DH parameter strength < 1024 bits: 40
Key or DH parameter strength < 2048 bits: 80
Key or DH parameter strength < 4096 bits: 90
Key or DH parameter strength >= 4096 bits: 100

Protocol support score [2]. Several (older) versions of
TLS have known weaknesses or are vulnerable to well-
known attacks. The configuration is graded as follows
with respect to the activated TLS versions. Again, if mul-
tiple versions are supported, the average between the best
and worst protocol score is considered.
SSL 2.0: 0
SSL 3.0: 80
TLS 1.0: 90
TLS 1.1: 95
TLS 1.2: 100

Common name. This refers to the common name field
specified in the CSR which specifies a FQDN (and re-

spective subdomains if applicable) the certificate is is-
sued for.

Key size. This refers to the size of the server’s key pair.

Certificate chain length. This refers to the length of
the certificate chain, including the server’s certificate and
certificates of intermediate CAs, and the certificate of a
root CA trusted by all parties in the chain. Every inter-
mediate CA in the chain holds a certificate issued by the
CA one level above it in the trust hierarchy. In our exam-
ple, the ideal length is 3.

Used provided CA to sign. In order to remove the
bias from different CAs with varying usability, we im-
plemented our own CA and provided the link to this CA
in the assignment. Two participants did not use this CA
and generated self-signed certificates instead.

Encrypted private key indicates whether the server’s
private key was encrypted by the study participant.

SSL 2 – TLS 1.2 indicates which protocol versions are
supported.

RC4 support. To date, RC4 is considered weak and
should therefore not be supported, unless required for
compatibility reasons as found in [10].

Vulnerable to POODLE indicates whether the config-
uration is vulnerable to POODLE [32].

Forward secrecy indicates whether the configuration
supports ciphers with forward secrecy (e.g., ECDHE).

HSTS indicates whether HTTP Strict Transport Secu-
rity is configured. The security benefit of HSTS is that
it forces secure communication with websites that use it
by automatically converting all plain text and disabling
click-through certificate warnings. If a client does not
support HSTS, it simply ignores the header. Hence, acti-
vating HSTS enhances security with minimal effort with-
out impact on compatibility.

HPKP indicates whether Public Key Pinning is used,
which is a useful feature to prevent attacks and making
the public aware of them.
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Abstract
The MPEG-DASH streaming video standard contains an
information leak: even if the stream is encrypted, the
segmentation prescribed by the standard causes content-
dependent packet bursts. We show that many video
streams are uniquely characterized by their burst pat-
terns, and classifiers based on convolutional neural net-
works can accurately identify these patterns given very
coarse network measurements. We demonstrate that this
attack can be performed even by a Web attacker who
does not directly observe the stream, e.g., a JavaScript
ad confined in a Web browser on a nearby machine.

1 Introduction
Everything has a fingerprint, and so do encrypted video
streams. Transport-layer encryption hides the content but
not the network characteristics such as the number of bits
transmitted per second. Video streams are known to be
bursty [2, 32, 42]. If their traffic patterns are correlated
with content, an adversary who can measure them may
be able to identify the video being streamed.

There have been several attempts to use traffic analysis
to identify encrypted streamed content [1, 11, 43, 44, 46].
Existing techniques, however, generate many false posi-
tives, make “closed-world” assumptions (i.e., the adver-
sary must know in advance that the streamed video be-
longs to a small known set), or are not robust to noise in
the network or the adversary’s measurements.

Further, prior work assumes that the adversary can di-
rectly observe the encrypted video stream either at the
network layer (e.g., a malicious Wi-Fi access point) [11]
or physical layer (e.g., a Wi-Fi sniffer) [43, 46], or else
that the adversary’s virtual machine is co-located with
the user’s virtual machine [1]. These threat models do
not include Web and mobile attackers who can remotely
execute some confined code on the user’s machine (e.g.,
a malicious JavaScript ad within the browser) but cannot
directly observe the encrypted stream.

Our contributions. First, we analyze the root cause of
the bursty, on-off patterns exhibited by encrypted video
streams. The MPEG-DASH streaming standard (1) cre-
ates video segments whose size varies due to variable-
rate encoding, and (2) prescribes that clients request con-
tent at segment granularity. We demonstrate that packet
bursts in encrypted streams correspond to segment re-
quests from the client and that burst sizes are highly cor-
related with the sizes of the underlying segments.

Second, we demonstrate that this leak is a fingerprint
for about 20% of YouTube videos because their burst
patterns are highly distinct. The adversary can mea-
sure video fingerprints on his own network and then use
them to recognize videos streamed on the target network.
We also argue that if the streamed video does not be-
long to the set known to the adversary, it will not be
mistaken for one of the known videos. This ensures a
high Bayesian detection rate: if the adversary identifies a
streamed video, then this is likely not a false positive.

Third, we develop a new video identification method-
ology based on convolutional neural networks and evalu-
ate it on video titles streamed by YouTube, Netflix, Ama-
zon, and Vimeo. Our YouTube detector has 0 false pos-
itives with 0.988 recall, while the Netflix detector has a
false positive rate of 0.0005 with 0.93 recall. In concur-
rent independent work, Reed and Kranch achieved com-
parable results for identifying streamed Netflix videos
using direct network observations [44] (see Section 11).

Fourth, we demonstrate that video identification based
on burst patterns does not require direct access to the
stream. Our attack can be performed by a remote at-
tacker who serves JavaScript code (e.g., a malicious Web
ad) running under the confinement of the browser’s same
origin policy, possibly on a different device. For exam-
ple, if the user is watching Netflix on his TV using a
Roku streaming device, his content may be identified by
the JavaScript executing on a PC on the same local net-
work. The attack code saturates a shared network link
carrying the targeted video stream and uses the result-
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Figure 2.1: Features of a Wireshark capture of Episode
3 of Mad Men. The left-hand figure shows packet sizes
along the time axis (packet sizes may be larger than Eth-
ernet MTU because of TCP offloading [53])—observe
the pattern of buffering followed by the on/off steady
state. The right-hand figure shows the size of bursts; the
first, largest burst is the size of the buffer.

ing contention to obtain coarse estimates of the stream’s
traffic rates and identify the video. This attacker is much
weaker than malicious ISPs and Wi-Fi access points typ-
ically considered in the traffic analysis literature.

In summary, we (1) explain the root causes of burst
patterns in encrypted video streams, (2) show how to ex-
ploit these patterns for video identification in an “open-
world” setting, (3) develop and evaluate a noise-tolerant
identification methodology based on deep learning, and
(4) demonstrate how a remote attacker without direct ob-
servations of the network can identify streamed videos.

2 Information Leak in Video Streams

Video streams are bursty. Video streaming traffic
is characterized by an initial short period of buffering,
followed by the steady state of alternating “On” (short
bursts of packets) and “Off” periods—see Figure 2.1.
This pattern has been observed for a wide variety of ser-
vices, devices, clients, and locations [2, 32, 42].

To avoid creating unnecessary traffic, streaming
clients typically throttle their content downloads: after
the initial buffering, they download at between 1X and
2X the content presentation speed. Clients maintain a
target buffer size proportional to presentation time and
request downloads when the buffer is below this target.

Streamed video content is typically segmented at the
application layer. Even if packets are encrypted at the
transport layer (e.g., using TLS), their sizes and times of
arrival—and, consequently, the sizes of packet bursts and
inter-burst intervals—are visible to anyone watching the
network. This is a repeated theme in the traffic-analysis
literature [8, 12, 46]. If the observable traffic features are
correlated with application-layer segmentation, they can
leak information about the content of the stream.

MPEG-DASH standard. Modern video streaming ser-
vices have broadly adopted [34, 59] the MPEG-DASH

standard [49, 52] for Dynamic Adaptive Streaming over
HTTP (DASH, in short). DASH aims to maximize sev-
eral measures of quality of experience (QoE) while sup-
porting interoperability with popular streaming technolo-
gies. DASH specifies a client-server interface for stream
fetching that is independent of the content’s bitrate and
quality. It does not prescribe any particular fetching dis-
cipline, encoding of content, or its presentation. DASH
uses TLS for content confidentiality. Content may be ad-
ditionally encrypted for DRM purposes, but this does not
change its network characteristics.

Bursty, on/off behavior of video streams predates
DASH, but DASH has effectively standardized it. DASH
divides video content into segments based on presen-
tation time. The content is stored in segment-files on
the server. Each file contains a particular encoding of
one segment. When a streaming session is initiated, the
server sends to the client a manifest referencing the time
segments and the available encodings. To obtain the con-
tent, the client submits requests for individual segments.
The client may request segment-files of any available en-
coding depending on the presentation considerations and
dynamic evaluation of network conditions.

DASH standardizes a leak. Video compression and
encoding algorithms exploit the fact that different video
scenes contain different amounts of perceptually mean-
ingful information. All popular streaming services use
variable-bitrate (VBR) encoding, where the bitrate of
an encoded video varies with its content. Therefore,
DASH segments of roughly the same duration (in video-
presentation seconds) have very different sizes (in bytes).

DASH video is always streamed in segment-sized
chunks. Furthermore, a client requests a new segment
when its buffer is just below the target value, and the en-
tire segment finishes downloading long before the client
requests another one. Therefore, in a steady-state, on/off
stream, burst sizes are correlated with the on-disk seg-
ment sizes. The latter sizes, in turn, leak information
about the encoded content due to variable-rate encod-
ing. We conjecture that a suffix of the vector of segment
sizes, arranged in the order they are fetched from the
server (which corresponds to the order of presentation),
can be estimated from the observable characteristics of
encrypted streaming traffic, up to a small error induced
by the varying overheads of lower network layers.

Example. Action scenes, where a lot happens on the
screen, are typically encoded with a higher bitrate than
slower scenes. Figure 2.2 shows how the bitrate of an
excerpt from the “Iguana vs. Snakes” video [40] in the
“Planet Earth” series changes over time (based on an
MP4 file downloaded from YouTube). The video starts
with an intense chase scene as the iguana is escaping
from snakes. In the last 15 seconds, the iguana reaches
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Figure 2.2: Bitrate of the “Iguana vs. Snakes” video.

higher ground and rests next to another friendly iguana.
To demonstrate this effect more systematically, we

created a 45-second “low action” scene by concatenat-
ing three copies of the 15-second footage of the resting
iguana, and a 45-second “high action” scene by concate-
nating 15-second footage from the height of the chase.
We then repeatedly alternated these scenes to craft an ar-
tificial 30-minute video, which we uploaded to YouTube
(as a private video). We played this video in a Chrome
browser configured with an HTTPS proxy. One of the
first HTTPS responses from the YouTube server is an
XML Media Presentation Description (MPD), which de-
scribes MPEG-DASH segmentation into 5-second seg-
ments. The MPD specifies the audio encoding (135 Kilo-
bits per second) and five video encoding options corre-
sponding to different resolutions: 144, 240, 360, 480,
and 720. Subsequent HTTPS responses contain audio
and 720p video for the requested segments. Audio and
video segment-files corresponding to a given time seg-
ment are fetched at roughly the same time, on two re-
spective HTTPS request-response pairs.

As this video is being streamed, we observe the ini-
tial buffering period of about 50 seconds, during which
segment-files are fetched at a rate higher than their pre-
sentation rate. Then the client reaches a steady state and
is fetching segment-files exactly every 5 seconds.

We used Wireshark to capture the same traffic en-
crypted under TLS. Figure 2.3 shows the buffer and burst
sizes of the “on” periods in the steady state. During
this steady state, when segments are fetched every 5 sec-
onds, burst sizes correspond to the sizes of segment-
files. When the segments with an escaping iguana are
being fetched, burst size increases. When the segments
with a resting iguana are being fetched, it decreases.
Because of the way this video was crafted, “low” and
“high” action—and the correspondingly high and low
burst sizes—alternate every 45 seconds (9 time seg-

Figure 2.3: Burst sizes when streaming a video with al-
ternating high- and low-bitrate periods. The first, largest
burst is the size of the client’s buffer.

ments). In a video stream with different content, the pat-
tern would have been different.

3 Attack Scenarios
3.1 Evaluated attack scenarios

On-path network attacker. If the attacker has passive
on-path access to the victim’s network traffic at the net-
work (IP) or transport (TCP/UDP) layers, he can directly
perform measurements needed for the attack. This in-
cludes malicious Wi-Fi access points, proxies, routers,
enterprise networks, ISPs, tapped network cables, etc.

Cross-site and cross-device attacker. Coarse measure-
ments of the victim’s stream can also be performed with-
out direct access. The attacker (1) saturates a network
link between the victim and the server, and (2) estimates
the fluctuations in the amount of congestion, which indi-
rectly reveal the victim’s traffic patterns. This is a special
case of timing side channels in schedulers [16, 25] that
can be exploited in a variety of attack scenarios.

We focus on remote attackers who can execute
JavaScript in the victim’s Web browser: rogue websites,
advertisers, analytics services, content distribution net-
works, etc. Their JavaScript is confined by the same ori-
gin policy [51], but it does not prevent the code from
using the above timing side channel to measure bursts in
a concurrent video stream as long as the stream and the
attacker’s own traffic share a network link. The client
receiving the stream may be running in a different tab
or browser instance on the same machine (a cross-site at-
tack) or on a different machine on the same local network
(a cross-device attack). For example, a smart TV may be
streaming a movie while the attacker’s JavaScript is run-
ning in a browser on a laptop on the same home network.

3.2 Other attack scenarios
There are several other scenarios where the attacker can
indirectly estimate the bitrate and other coarse features
of the victim’s video stream.

Wi-Fi sniffer. An attacker who is physically close to the
victim’s Wi-Fi network but not connected to it can set the
NIC of his PC or (rooted) smartphone to the promiscu-
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ous mode and estimate traffic rates by sniffing physical-
layer WLAN packets [3, 66]. If the connection is pro-
tected by 802.11, the attacker obtains frames in which
all data on top of the media access control (MAC) layer
(the lower sublayer of the link layer) is encrypted. This
attacker learns the direction of the frames (upstream or
downstream) and their sizes. He can also discard MAC-
layer management frames as identified by their headers.

Unlike an on-path attacker, a Wi-Fi sniffer cannot dis-
tinguish (1) session-layer packet retransmissions and the
original transmissions, nor (2) multiple TCP/IP flows on
the same link. Both factors introduce some noise into the
attacker’s observations. Under reasonable network con-
ditions, however, there will be few link-layer retransmis-
sions. We show that our JavaScript attack works even
with a noisy, flow-insensitive estimate of the burst size
(total number of bytes on the wire)—see Section 9.1. The
Wi-Fi sniffing attack should perform at least as well.

Fully remote attacker. A remote attacker who has no
foothold in the victim’s network can use the same net-
work congestion side channel as our JavaScript attack for
coarse-grained traffic measurement [15, 17, 23].

Shared-machine attacker. Our off-path attack is active:
it requires saturating the victim’s link in order to estimate
his traffic. If the attacker can execute code on the same
machine where the victim is streaming video (e.g., run
an app on the same smartphone or execute JavaScript in
a browser on the same PC), he may be able to estimate
traffic via other side channels, such as shared cache or
Linux virtual filesystems (sysfs and procfs) [41, 67].

4 Overview of the Attack

Create detectors. For every video file that the attacker
wants to identify, he constructs a detector algorithm that
determines, given measurements of a stream, whether the
stream is carrying this video file or not.

In this paper, we use machine-learning models as de-
tectors. To generate labeled training data, the attacker
streams the video of interest to his own computer and
captures the resulting traffic; he also streams other videos
as negative examples. This is repeated multiple times
(we used up to 100 samples of each video in our exper-
iments). The required capture length depends on the at-
tacker’s vantage point: we used 60 seconds per sample
for the Netflix on-path attacker, 5-6 minutes per sample
for the JavaScript attacker. In our experiments, we tar-
geted the first minutes of the stream, but this approach
works for any sufficiently long section of the video.

Critically, our detectors are network-agnostic, be-
cause the same segment-files streamed over different net-
works exhibit the same burst patterns. Therefore, the at-
tacker can train detectors using the data collected on his
own network, then use them to identify video streams on

another, target network (see Section 7.4).
Since our detectors identify a particular segmented file

and not the underlying content, the attacker needs a sepa-
rate detector for each segmented video he wants to iden-
tify. The same content served by different streaming ser-
vices or different CDN nodes of the same service could
have different encodings and segment-files. Moreover,
to maximize QoE under varying network conditions, the
same content usually has several encodings on the same
server (e.g., at different resolutions). YouTube and Net-
flix support a few dozen encodings [35, 65] but typically
no more than 10 per title and device type. The segment-
files streamed to the attacker when he is collecting train-
ing data must be identical to those streamed to the vic-
tim. In practice, we found that Netflix videos streamed
on Wi-Fi networks from different ISPs in the same city
have identical segmentation (see Section 7.4).

If the attacker’s client and network support the
highest-quality encoding, he can also get the service to
stream lower-quality encodings by downgrading through
the interface of the streaming application, or by imposing
traffic-shaping and policy limitations on his network.

Apply detectors. In the online phase of the attack, the
attacker measures the victim’s network traffic using one
of the methods from Section 3. Because video traffic
is very distinct and can be accurately recognized from
coarse-grained features [66], we assume that the attacker
can tell approximately when video playback begins.

He then applies his detectors to the collected measure-
ments to identify the streamed video or determine that it
is not one of the videos for which he has detectors.

5 Experimental Setup
5.1 Targets and attackers
As the streaming client, we used a Chrome browser run-
ning in an Ubuntu 14.04 VM on a Windows host with
an Intel i7-3720QM CPU. We also experimented with a
Roku Premiere streaming device (see Section 9.3).

The clients were connected to a university campus net-
work with over 105 Mbps upload and download band-
width (measured using [54]). We refer to it as the “train-
ing network.” For the cross-network experiments in
Section 7.4, we also used a campus Wi-Fi network (10
Mbps) and a home Wi-Fi network from a cable ISP (82
Mbps). We refer to them as “test networks.”

To evaluate on-path attacks, we assume that the at-
tacker directly observes the target stream as described in
Section 5.2. To evaluate off-path attacks, we assume that
the attacker executes his JavaScript client code either in
the same browser that is receiving the target stream (the
cross-site attack), or on a machine on the same local net-
work as the device that is receiving the target stream (the
cross-device attack). In both cases, the attacker’s client
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is communicating with a colluding attack server.
In both the cross-site and cross-device scenarios, (1)

the attacker’s client and the recipient of the target stream
are behind a congested home router, while (2) the attack
server and the streaming server are outside this router,
in different Internet locations. Consequently, the target
stream and the attacker’s client-server communications
share a congested network link. In Section 9, we de-
scribed our setup for these experiments in more detail.

5.2 Data collection
We focused on four popular streaming services: Net-
flix, YouTube, Amazon, and Vimeo. For our proof-of-
concept experiments, we manually chose a few titles
from each service: 11 popular TV series, with up to 10
episodes per series, for a total of 100 titles from Netflix;
20 titles from YouTube; and 10 titles each from Amazon
and Vimeo. See Appendix C for the list of titles.

Additionally, we crawled YouTube starting from the
main page and the front pages of topical channels (e.g.,
sports and movies) and recursively following recommen-
dation links. The links on the channel front pages are
very popular, with over 100k views each. Our crawler
thus emulates user behavior: it starts with popular videos
and follows YouTube’s recommendations. This crawl
yielded links to 3,558 videos, to be used in Section 6.

Automated capture. For each title, we spawned a
Chrome browser instance and used a service-specific
“rewind” procedure so that playback commenced at the
beginning of the content. For videos with an initial title
sequence, this (non-unique) sequence is downloaded as
part of the initial buffering; the bursts in the on-off phase
correspond to the segments of unique content.

We captured the network traffic of each streaming ses-
sion for a certain duration (see below) using Wireshark’s
tshark [60]. For Amazon, Netflix, and Vimeo, the
application-layer protocol is TLS; for YouTube, it is ei-
ther QUIC, or TLS. We will refer to the collected data as
captures or captured sessions.

Occasionally, playback failed because of a Chrome
failure or network glitch. The resulting captures con-
tained very few bytes and we discarded them.

Feature extraction. From each capture, we kept only
the TCP flow with the greatest amount of bits and ex-
tracted the time series of the following flow attributes:
down/up/all bytes per second (BPS), down/up/all packet
per second (PPS), and down/up/all average packet length
(PLEN). To create uniformly sized vectors, we aggre-
gated the series into 0.25-second chunks by averaging
over 0.25-second intervals.

A burst is a sequence of points in a time series (ti,yi)
such that ti−ti−1 < I for some I (we used I = 0.5). When
the points correspond to arrival times and packet sizes,

bursts are presumably associated with the transmission
of higher-level elements such as HTTP responses (see
Section 2). A burst series is a series where every point
corresponds to a burst. The time of the burst is the mid-
point between the beginning and the end of the point se-
quence that forms the burst. The value of the burst is the
sum of the values of points in the sequence. We aggre-
gate bursts series by summing into 0.25-second chunks.

Netflix. We streamed each of the 100 titles one by one
and captured the first minute of network traffic for each
stream. This was repeated 100 times.

For the cross-network experiments, we chose a sub-
set consisting of 5 episodes of “Mad Men” and 5 other
titles. For each title in this subset, we captured 20 90-
second streaming sessions on the training network and
20 sessions on the test networks.

YouTube. We streamed and captured each of the 20
selected titles 100 times, and each of the 3,558 titles
from the automated crawl once. Encoding for YouTube
videos varies and bitrate can be less variable than for Net-
flix; also, the content is sometimes preceded by an ad.
Therefore, we took 4.5-minute Wireshark captures and
cropped the captured streaming flows to 3 minutes. For
2 of the 20 titles, the ad was so long that the capture of
the actual content was shorter than 3 minutes. We dis-
carded these and only used the remaining 18 titles, with
3-minute content captures for each.

We also downloaded actual 720p MP4 file video files
(as opposed to their network streams) for the 3,558 ti-
tles from the crawl, using the SAVEFROM.NET Web tool.
These files were used for measuring the uniqueness of
burst patterns, not for identification experiments.

Amazon and Vimeo. We streamed every title 100 times.
For Amazon, we captured 90 seconds of each stream. For
Vimeo, we noticed that burst patterns are very consistent
and strongly identifying, so we only needed to capture
60 seconds per stream.

Storage. After feature extraction, the data saved for our
attack experiments totals 1.2GB for Netflix, 2.3GB for
YouTube, and about 0.5GB each for Vimeo and Amazon.

6 From Leaks to Fingerprints
In Section 2, we explained how DASH leaks information
about the segment sizes of video files. We now show that
for 19% of YouTube files, this leak is actually a finger-
print: the sequence of segment sizes identifies the video
with virtually no false positives.

Modeling the server. We used the Bento4 MPEG-
DASH toolset [4] to process our 3,558 YouTube videos
(see Section 5.2) for standardized streaming, i.e., divide
them into time segments and create the manifests. We
opted for 5-second segments, which matches our obser-
vations of both Netflix and YouTube and is close to a
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recent recommendation [10]. We believe that the encod-
ing parameters of these videos are representative of other
YouTube videos. The MPEG-DASH client-server inter-
action induced by our simulated server is close to what
we empirically observed on YouTube (see Section 2).

Modeling the attacker. Let m be a video. When m is
streamed, let its trace t ∈ Rk be the sizes (in bytes) of
the first k bursts and let T m denote the probability distri-
bution of these traces. We assume that T m is the same
whether the video is streamed to the attacker’s client
(during training) or to the victim’s client (during iden-
tification). This is empirically justified in Section 7.4.

For the theoretical analysis in this section, we use
a very simple fingerprinting algorithm. For any v =
(v1, . . .vk) ∈Rk, define α(v)≡ (v1, . . .vk,v2−v1, . . .vk−
vk−1). Intuitively, α(v) accounts for both the absolute
magnitudes of segment sizes and their variability pattern.

During training, the attacker acquires n training traces
T S = {t1, . . . tn} drawn from T m. Let sm =mean(T S), the
element-wise average over T S. Training produces α(sm),
which is the attacker’s fingerprint of m.

During the attack, the attacker is given the victim’s
trace t ∈ Rk and computes its traceprint, α(t). The at-
tacker concludes that the victim is watching m if and only
if ‖α(t)−α(sm)‖1 ≤ B, where B = 3,500,000 bytes.

Attacker’s recall. To compute the recall, or true
positive rate, of this attack, we first estimate the error
α(t)−α(sm) by lower-bounding the probability that this
error is small: Prt←T m [‖α(t)−α(sm)‖1 < B].

We expect that the bigger the burst size, the bigger the
potential error. For example, the average size of bursts in
the “Iguana vs. Snakes” video is particularly high, over
1MB, vs. the average of 693K across the videos in our
set. We streamed this video 100 times, aggregated the
traces, and computed the 10-burst fingerprint. We then
computed the error for each trace (i.e., the discrepancy
between the attacker-measured traceprint and the finger-
print of the underlying video) and fitted a Gaussian dis-
tribution using SciPy’s Maximum Likelihood Estimator.
The expected value of the error is 41,643 bytes, standard
deviation is 24,970 bytes. Observe that B/7 is over 10
standard deviations away from the expectation of the er-
ror. Thus, Prt←T m [‖α(t)−α(sm)‖1 ≤ B/7]≥ 1−10−12,
for the aforementioned k = 10.

To estimate the error for k = 40 (as will be needed
later), we partition1 t ∈ R40 into 4 contiguous blocks
of length 10 and apply the union bound on the prob-
abilities of error in each block and the difference el-
ements in α , i.e.,

∣∣∣(ti− t j)− (sm
i − sm

j )
∣∣∣ for (i, j) ∈

(11,10),(21,20),(31,30). For each of the 7 elements
of α , the error is bounded by B/7 with probability
≥ 1− 10−12. Total error is thus bounded by B with

1With longer captures, we could have estimated this error directly.

very high probability, Prt←T m [‖α(t)−α(sm)‖1 ≤ B] ≥
1−7 ·

(
10−12

)
≥ 1−10−11, implying very high recall.

Attacker’s precision. Even if the distance between
the attacker-measured “traceprint” and the video’s finger-
print is small, the attacker may still misclassify the video
if its fingerprint is close to another one. We show that for
almost 20% of the videos in our YouTube dataset, such
mistake is unlikely (and indeed never occurs in practice).

Let D be the 3,558 videos in our YouTube dataset. For
m ∈ D, let zm ∈ Rk denote the series of sizes (in bytes)
of the first k segments of m, as produced by the server’s
segmentation of the corresponding MP4 files. We say
that a video has variable segment size if (1) the overall
bitrate is over 100 kBps, and (2) in zm, more than half of
the adjacent pairs differ by more than 110 kB. Let V be
the set of videos with variable segment sizes. We observe
that in our dataset, |V |= 671 (≈19% of D).

A collision is video pair m ∈ V,m′ ∈ D∪V such that
m 6= m′,

∥∥∥α(zm)−α(zm′)
∥∥∥

1
≤ 2B. Then our attacker

could mistake m for m′ even if m’s traceprint is B-close
to the fingerprint (as must be the case with high proba-
bility). There are no such collisions in our dataset.

To estimate the attacker’s precision, we need to as-
sume that sm, the series of average burst sizes used to
compute the fingerprint, is similar to the correspond-
ing series of segment sizes zm in the following sense: if∥∥∥α(zm)−α(zm′)

∥∥∥
1
≥ 2B, then

∥∥∥α(sm)−α(sm′)
∥∥∥

1
≥ 2B.

This assumption is empirically true. In general, we ex-
pect each burst size to be related to the corresponding
segment size by an affine function (accounting for the
constant and multiplicative overheads of the encoding
and headers added by each network layer).

It follows that no two fingerprints α(sm),α(sm′) are
2B-close in the L1 norm. Since with probability 10−11 a
traceprint α(t) (of a video m with variable segment size)
is B-close to the correct fingerprint α(sm) (by the recall
bound above), the probability that an attacker mistakes
t’s video for another one in our dataset is at most 10−11.

Discussion. This theoretical analysis demonstrates that
a significant fraction of YouTube videos are unique given
a rudimentary fingerprinting algorithm. This algorithm
yields a very strong detector for the videos that satisfy
the variable segment size criterion, which is 671 videos
out of 3,558 in our dataset. The attacker can easily check
whether a particular video satisfies this criterion.

While our dataset is small in comparison to the en-
tire YouTube, the extremely low error rate and complete
absence of collisions indicate that the attack should gen-
eralize. The false positive rate for the the videos satis-
fying the criterion is very low, which guarantees that the
Bayesian detection rate is high even if the base rate is
low (see Section 8).
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In the following sections, we develop a more sophis-
ticated and accurate classification method based on ma-
chine learning, relax the simplifying assumptions made
in the theoretical analysis, and empirically evaluate our
method against popular streaming services.

7 Video Identification Using Neural Net-
works

Section 6 explains why DASH-based video streams are
fingerprintable, but the theoretical model underestimates
the capabilities of realistic attackers who can use traf-
fic features other than burst sizes (e.g., packet timing).
Moreover, the simple classifier based on L1 distance is
clearly suboptimal, e.g., it does not account for the asym-
metry of the error distribution. Also, the theoretical
model assumes that the attacker can reliably detect bursts
and is thus not robust to noisy network conditions.

A more sophisticated classifier would process more
and lower-level features and construct a more complex
model to characterize the network traces of a given video.
In this section, we use machine learning to construct such
classifiers. One plausible approach is to compute the
classifier of a video from its file, but we found it to be
relatively ineffective (see Appendix A). Instead, we use
multiple streams of the same content to train a classifier.

7.1 Background on CNNs
Deep learning [29] is a branch of machine learning based
on multi-layer artificial deep neural networks (DNNs).
DNNs have proved very effective for signal recognition
tasks such as speech transcription [19], image segmenta-
tion [14], image classification [28], and many others.

In a neural network, each layer of neurons does some
computation on its input and passes the output to the next
layer (or final output)—see Figure 7.1. The first, input
layer is a tensor representation of the input, e.g., pixels
in the case of image classification. The subsequent (low)
levels typically infer representations of the features of
the input, and the final (high) layers perform the learning
task (e.g., classification) given these features.

DNNs are good at capturing high-level concepts that
are easy for humans to agree on but hard to express for-
mally. In our case, we use DNNs to capture traffic-level
commonalities of the streaming sessions of a given ti-
tle, even in the presence of some traffic variations among
these sessions. Further, neural networks are flexible and
can leverage information from the low-level features,
such as packet lengths, as well as sequences of burst sizes
(as estimated from encrypted traffic). As input, they can
use any time series that characterizes the stream. We ex-
ploit this in both on-path and off-path attack scenarios.

Convolutional Neural Networks (CNNs) [9] are deep
neural networks whose lower layers apply the same lin-
ear transformation on many windows of the input data.

Figure 7.1: Our CNN architecture. k denotes the number
of feature types taken. n is the recording time in seconds
divided by the time-series sampling rate (0.25).

These layers are typically used to produce representa-
tions of local features (e.g., spatially local in an image,
or temporally local in a time series). These are suitable
for our setting, where the network events corresponding
to each DASH burst occur in close temporal proximity.

We use supervised training on a corpus that consists
of traffic measurements labeled with their correct class,
i.e., the identity of the corresponding video. Training
involves multiple epochs. During each epoch, an opti-
mization procedure processes a batch of training data and
adjusts the parameters in the functions computed by the
layers so as to minimize the error between the correct
classification and the output of the classifier. Learning is
successful only if (1) the classifier reduces the training
error, and (2) the reduced error rate generalizes to test
samples, i.e., inputs that the classifier was not trained on.

7.2 Our classifier

We use CNNs with three convolution layers, max pool-
ing, and two dense layers (see Figure 7.1). We train them
using an Adam [26] optimizer on batches of 64 samples,
with categorical cross-entropy as the error function.

The classifier is constructed using TensorFlow with
the Keras front end. For each task, we randomly shuffle
the samples, apply the 0.7-0.3 train-test split, and train
for a specified number of epochs. The dataset was nor-
malized on a per-feature basis: the time-series vector rep-
resenting a given feature in each sample was divided by
the maximum of the aggregated values of this feature.

Table 7.2 shows the training time, on a workstation
with Intel i7-5690X CPU and two NVidia Titan X GPUs.
For comparison, we also performed training in an Ubuntu
virtual machine on a commodity laptop with an i7-6600U
CPU (and no GPUs) running Windows 10; in this case
training was 35 times slower, but even so, the most
time-consuming training (that of the Netflix classifier for
1,400 epochs) took less than 10 hours.
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7.3 Classification results
We trained a separate classifier for each dataset and each
feature type listed in Section 5.2, as well as for each
traffic direction (inbound, outbound, or both). Table 7.2
shows the accuracy of these classifiers as the fraction of
correctly classified test samples.

The YouTube classifier is remarkably accurate. Not
only it achieves 99% accuracy, but it also distinguishes
20 known classes from a large “other” class (unknown
videos) with high probability. Furthermore, it works well
with any of the features. For example, it achieves 90%
accuracy given just the times of packet arrivals at a very
coarse granularity of 0.25-second intervals (i.e., the PPS
feature). This suggests that YouTube streams are partic-
ularly susceptible to adversarial identification.

Netflix 1/100 classifier. To gain some insight into how
accurate these classifiers are, consider the Netflix classi-
fier that was trained on the BPS feature for 1,400 epochs,
achieving 98% accuracy. Figure 7.3a shows the confu-
sion matrix. The classifier does not consistently mistake
any class for another. All mistakes but one happen just
once. This indicates that different classes do not collide
in the classifier’s internal representation.

Minimizing false positives. The output of the last, soft-
max layer of the neural network is traditionally inter-
preted as a vector of probabilities. The classifier’s pre-
diction is the class with the highest probability. We can
use this probability as a confidence measure.

Our goal is to ensure that the classifier produces no
false positives, at the cost of occasionally failing to detect
the match (false negatives). We set a confidence thresh-
old and only accept a match if the classifier’s confidence
is above the threshold. If confidence is below the thresh-
old, we intentionally classify the input as “other” regard-
less of the class chosen by the classifier.

Figure 7.3b shows the precision and recall of the clas-
sifier for various values of the confidence threshold. Pre-
cision and recall are calculated by aggregating the false
positives and false negatives of all classes except “other”.
Without any decrease in recall, we can achieve a false
positive rate of just 0.005 (precision of 0.995). By ac-
cepting a 0.07 false negative rate (0.93 recall), we obtain
a false positive rate of less than 0.0005, or precision of
0.9995, with just 1 false positive out of 2224 matches.

YouTube 1/18 classifier. Our YouTube classifier trained
for just 150 epochs on BURSTS achieves 0.994 accuracy.
Figure 7.4a shows the confusion matrix. Almost all mis-
classifications are for “other” (i.e., known titles not rec-
ognized), thus there are very few false positives.

Figure 7.4b shows the precision and recall of the
YouTube classifier as a function of the confidence thresh-
old. Even when the threshold is 0 (equivalent to simply
taking argmax of the classifier’s output), the false nega-

(a) Confusion matrix. The entries
off the diagonal are misclassifications.
Color in cell i, j denotes the number of
samples of class i classified as j.

(b) Precision vs. recall.

Figure 7.3: Netflix 1/100 classifier.

(a) Confusion matrix. The entries
off the diagonal are misclassifications.
The bottom row and rightmost column
are of the “other” class.

(b) Precision vs. recall.

Figure 7.4: YouTube 1/18 + “other” classifier.

tive rate is 0.01 (0.99 recall), and precision is better than
accuracy (0.995). By accepting a tiny, 0.002 drop in re-
call, we achieve zero false positives.

Using multiple feature types. The classifiers discussed
above use a single feature type and a one-dimensional in-
put layer (k = 1). We also tried more sophisticated clas-
sifiers that take in multiple features. In such an architec-
ture, we expect the same one-dimensional layer to pick
up localized attributes of different features. We used a
greedy search algorithm on the feature set space that be-
gins with an empty set of features and then adds the fea-
ture that maximizes test accuracy after training. Training
on multiple features was slower and did not produce sig-
nificantly more accurate classifiers in our experiments. It
is possible that a more elaborate neural network architec-
ture with k independent convolutional layers would work
better, albeit with slower training.

7.4 Cross-network training
To collect training data, the attacker must stream videos
and record traffic. He may be unable to do this on the
same local network as the victim, e.g., because that net-
work is secured, or because the attacker wants to identify
videos en masse for multiple users on different networks.
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Dataset TIME EPOCHS PLENIN PLENOUT PLEN BPSIN BPSOUT BPS BURSTS BURSTSIN BURSTSOUT PPSIN PPSOUT PPS

Netflix 497 700 0.318 0.377 0.333 0.983 0.901 0.982 0.926 0.044 0.708 0.917 0.892 0.921
994 1400 0.301 0.474 0.340 0.983 0.895 0.985 0.959 0.949 0.757 0.918 0.881 0.931

YouTube 94 150 0.993 0.993 0.994 0.995 0.994 0.995 0.984 0.989 0.988 0.995 0.993 0.995
Amazon 88 700 0.895 0.925 0.917 0.899 0.891 0.905 0.790 0.879 0.712 0.792 0.835 0.790
Vimeo 80 500 0.755 0.624 0.741 0.980 0.938 0.984 0.984 0.986 0.916 0.958 0.924 0.940

Figure 7.2: Accuracy of our classifiers. TIME is the approximate total training time, in seconds. EPOCHS is the number
of epochs. The remaining columns show the test accuracy of the classifier when trained on a given feature. The
features are the time series of, respectively, packet length, Bps, bursts series, and packets per second (see Section 5.2),
measured in the up, down, and both directions.

Figure 7.5: Burst sizes of streamed “Reservoir Dogs”.
The two captures were made on a campus network (+)
and a home network (∗).

The attacker can still collect training data by streaming
on his own Internet connection. This connection, how-
ever, may have different network characteristics, such as
bandwidth, latency, congestions and packet drops, all of
which affect the collected traces.

We conjecture that our classifiers learn high-level fea-
tures of video streams, such as burst patterns, that are
robust to reasonable differences in network characteris-
tics and will therefore maintain high accuracy even when
trained on a different network (in the absence of patho-
logical conditions such as excessive packet loss or inad-
equate bandwidth for streaming).

To confirm this, we captured 90-second streaming ses-
sions of 10 Netflix titles on a campus Wi-Fi network and
on a home Wi-Fi network from a cable ISP. We trained
our classifier on the campus data and measured its ac-
curacy on the home-network data. Our classifier uses
only the down BURST series (see Section 5.2). Trained
on 50 campus captures per title, it reaches 98% accuracy
on the home-network data (20 captures per title). Fig-
ure 7.5 shows that the burst patterns on the two networks
are highly correlated and aligned in time.

7.5 Possible improvements
Our classifiers attain very high accuracy but can benefit
from some potential improvements.

First, our Netflix classifier was trained on just 60-
second captures, equivalent to only about 45 seconds of
steady-state bursts after the (less discriminative) buffer-
ing period. It may be possible to train an even more pow-
erful classifier using 90-second captures.

Second, our relatively simple classifiers are slightly
under-fitted. More expressive classifiers (e.g., with more
hidden layers) suffer from over-fitting, but it may be
solved with more data, e.g., 1000 captures per video.

Finally, the low base rate potentially motivates the use
of detection cascades [56] consisting of a series of clas-
sifiers, each of which is more complex (with a larger in-
put feature space and more hidden layer activations) than
the previous one. During training, the (i+ 1)th classi-
fier is trained using only the samples accepted (possibly
falsely) by the ith classifier. A cascade thus accepts only
the inputs that are accepted by all of its classifiers and
is efficient to train because most inputs are rejected by
the simple lower-level classifiers. Cascades have demon-
strated almost human-level accuracy for complex tasks
with low base rate such as face detection [64].

8 Bayesian Detection Rate
In Sections 6 and 7, we showed detectors with very low
false positive rates. However, the attacker’s false detec-
tion rate is not the detector’s raw false positive rate but
the Bayesian Detection Rate (BDR). The BDR of a detec-
tor for video m is the probability Pr(M|A), conditioned
on the detector declaring that the victim is streaming m
(event A), that the victim is indeed streaming m (event
M). This probability is taken over all videos that the vic-
tim could be streaming, as well as network conditions
and measurement noise.

Pr(M|A) = Pr(A|M)Pr(M)
Pr(A|M)Pr(M)+Pr(A|¬M)Pr(¬M) by Bayes’

Law. We can estimate Pr(A|M) by the detector’s recall,
and Pr(A|¬M) by its false positive rate.

“Open world,” when the attacker does not know a pri-
ori a relatively small set of possibilities for the video be-
ing streamed, is characterized by an extremely low base
rate, i.e., probability P(M) that the video actually cor-
responds to any of the attacker’s detectors. In this set-
ting, when the attacker’s recall is sufficiently high, BDR
is dominated by the false positive rate.2

2For example, suppose the recall is Pr(A|M) = 1, false positive rate
is Pr(A|¬M) = 1

1000 , and the victim streams 100,000 videos sequen-
tially. If the attacker has a detector for one of them (i.e., the base rate is

1
100000 ), he would get roughly 100 false matches before the true match.
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We now analyze the detectors from Sections 6 and 7
in the “open-world” setting.

8.1 Distance detector
We first analyze the BDR of the detector from Section 6.

Let D̂ be the world of videos, and let V̂ ⊆ D̂ be the
world of videos with variable segment size. ψ D̂ is the
distribution over D̂. Assume that the victim chooses
m′← ψ D̂, and that the videos in our set D were likewise
sampled from ψ D̂ (i.e., by sampling videos according to
their popularity on the service). Let V ⊆D the the videos
in D with variable segment size. Assume the attacker has
a detector for some m ∈V .

Let t ← T m′ be an observed trace. If the detector
matches but m′ 6= m, then either

∥∥∥α(sm′)−α(t)
∥∥∥

1
≥ B,

or
∥∥∥α(sm)−α(sm′)

∥∥∥
1
≤ 2B. The probability of the for-

mer is low because the recall is very high, > 1− 10−11.
Let pCOL denote the probability of the latter event, corre-
sponding to a collision between two videos.

If pCOL ≥ 2
106 , then we are likely to observe a collision

in our dataset D. Under the simplifying assumption that
collisions in D are independent events,3 with overwhelm-
ing probability 1− (1− pCOL)

(|D|−|V |)|V |+|V |2/2 > 0.986
there exist mV ∈ V,mD ∈ D such that mV 6= mD and
‖α(smD)−α(smV )‖1 ≤ 2B. Since we did not observe
any such collisions in 2,162,297 pairwise tests over D,
it is likely that pCOL ≤ 2

106 .
In this case, assuming the open-world base rate is 2

106 ,
BDR is very close to 0.5.

8.2 Neural-network detector

YouTube. With our YouTube classifier, when we pre-
ferred precision over recall, there were no false positives:
we never observed an “other” video that was misclassi-
fied as one of the known videos. We view this as an
indication that our results generalize.

Netflix. With our Netflix classifier, when we preferred
precision over recall, we observed 1 false positive (com-
pared to 2,240 true positives), corresponding to the false
positive rate of 0.00045. Our recall is still > 0.93.

At first glance, this result seems harder to general-
ize. We cannot simply plug Pr(A|¬M) and Pr(A|M)
into the BDR formula and expect to get a good estima-
tion, since the distribution that this classifier was trained
on—without samples from the catchall “other” class—is

3This assumption is an approximation. It could have been strongly
violated, e.g., if all collisions are due to a small set Z of videos, each of
which collides with many other videos: if we didn’t hit any of Z when
picking D, we would not observe any collisions. However, due to the
geometrical structure of video fingerprints, this seems unlikely. If the
fingerprints of videos in Z are close to those of many other videos, then
the latter videos also have fingerprints that are geometrically close to
each other and are thus likely to collide in D.

fundamentally different from the distribution of videos
that might be streamed by the victim.

Similarly to the previous section, there are two causes
of false positives: similarities in the videos’ burst
patterns (which is what the classifier learns), i.e., a
classifier-collision false positive, and noise in the mea-
surements, i.e., a network-noise false positive.

The confusion matrix (Figure 7.3b) shows no pairwise
classifier collisions for the 100 titles. The classifier does
not consistently confuse any particular title for another
(even though many are episodes in the same TV series
with presumably similar visual attributes). This indicates
that classifier collisions are uncommon.

When collisions do not occur, our classifier, tuned for
precision over recall, performs very well and misclassi-
fies only 1 out of 2,224 test samples. No other sample
was close enough, in the classifier’s eyes, to any of the
99 classes. This means that the classifier made one “con-
fident” mistake out of 220,176 possibilities.

9 Off-path Attacks

9.1 Measurement with JavaScript
Consider a remote attacker who has a restricted foothold
in the victim’s network. For example, he controls an ad
embedded in some webpage visited by the victim. An
ad may include JavaScript code executing in the victim’s
browser, but because this code may come from a ques-
tionable source with strong commercial interest in users’
data (including their viewing habits), it is confined—both
by the main browser sandbox, which prevents it from is-
suing arbitrary requests to the OS, and by the same origin
policy [51], which prevents it from accessing the content
that belongs to other Web origins. In particular, even if
the victim is streaming a video in another tab of the same
browser, confined JavaScript code cannot directly access
the URL or content displayed in that tab.

The same origin policy does permit the attacker’s
JavaScript code to communicate with its own origin (e.g.,
the Web server that served the ad). This communica-
tion is carried over the same Internet connection as the
video being streamed by the victim. Since Internet links
usually have bounded bandwidth, this means that the
attacker’s JavaScript and the video stream share a lim-
ited resource. JavaScript can send and receive arbitrary
amounts of data to and from its colluding server to create
artificial congestion on the shared link.

When the shared link is congested, any attempt to use
it can create observable delays in the communication be-
tween the attacker’s JavaScript code and its own server.
The attacker can then estimate how much traffic is flow-
ing over the link by measuring these delays. This leaks
information about the content streamed from a different
origin by the same browser (a cross-site attack, see Fig-
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Figure 9.1: Cross-site attack.

Figure 9.2: Cross-device attack.

ure 9.1), or even by a different device on the same local
network (a cross-device attack, see Figure 9.2).

9.2 Simulating the attack
We implemented a malicious NODE.JS Web server
which, when accessed by the victim’s browser, serves
detector code written in JavaScript. This code, running
unprivileged within the browser sandbox, talks back to
the server via the SOCKET.IO API. The server sends a
stream of messages, causing congestion. The detector
code measures the arrival time of these messages, using
window.performance.now(), to estimate contention
from other traffic on the shared link.

Network. To simulate cross-site and cross-device at-
tacks, we run two browser windows concurrently, one
streaming the selected video, the other executing a
JavaScript attack client. In the cross-site setup, they run
on the same virtual machine. In the cross-device setup,
they run on different machines. Both machines are on
a home network, victim-LAN, behind a traffic-throttling
router that simulates a bandwidth-limited connection. In
the cross-site setup, we simulate victim-LAN and the
router with VMware Workstation. In the cross-device
setup, we use an actual home router. In both cases, the
router is connected to the Internet via a university LAN.
The attack server is on the same LAN. All traffic be-
tween victim-LAN (which includes the streaming client
and the attack JavaScript client) and the Internet (which
includes the streaming server and the attack server) thus
flows through a bandwidth-constrained router.

Data. We used 10 Netflix titles: 5 episodes from the
first season of “Mad Men” and 5 arbitrary other titles.
We streamed each title 100 times and used a JavaScript
client to indirectly measure the traffic as described above.
We used 5-minute captures in the cross-site experiment
and 6-minute captures in the cross-device experiment.

Cross-site attack. The attacked machine was an Ubuntu
14.04 VM, with a simulated 45 Mbps (5.625 MBps)
down/upstream bandwidth (capped by VMware Work-
station). The attack server’s messages contain 6 KB of
random data, sent at the rate of 1 per 0.001 seconds and
an overall transmission rate of 6 MBps. This is more than
enough to saturate the simulated link.4

From the {Xn} vector of message arrival times mea-
sured by the attacker’s client, we compute the vector
of message delays Y = (0)‖((X2, . . .Xn)− (X1, . . .Xn−1))
and filter the X ,Y time series for delays that exceed 8ms.
We then compute the burst series as in Section 5.2 with
0.25-second intervals and filter out the bursts whose sizes
are below 80, producing a delay bursts time series. To
create uniformly sized vectors, we aggregate this series
by averaging into 0.25-second chunks.

Cross-device attack. As the viewer device, we used a
laptop (Intel i7-5600U CPU) running Ubuntu 16.04. As
the neighbor device, we used a laptop (Intel i7-3720QM
CPU) running an Ubuntu 14.04 VM guest in a Windows
host. Both were connected over Wi-Fi to an Asus RT-
AC66U wireless router, connected to a university net-
work. The router was configured to cap its total down-
link speed at 45 Mbit, using the “Max Bandwidth Limit”
setting of the Tomato Advanced firmware. The attack
server was sending an 8KB message every 1.5ms, about
300 KBps short of saturating the network link.

In this experiment, we smoothed the time series of the
delay measurements by averaging over 0.1-second inter-
vals, filtered it for delays y > 2.1ms, computed the burst
series with 0.5-second intervals, and filtered out all bursts
whose sizes were below 10. To create uniformly sized
vectors, we chunked it into 0.1-second intervals.

Classifier. We used a variant of the classifier from Sec-
tion 7.2 that we found less prone to overfitting on the
noisier, longer samples in this attack. Between the last
max-pooling layer and the first fully-connected layer, we
added another convolution layer, with kernel size 7, fol-
lowed by a max pooling layer (both with ReLU activa-
tions). We applied 0.7 dropout after every hidden layer.
All other convolution-layer dimensions were changed to
1x12 and pooling-layer dimensions to 1x2. We used 16
filters for all hidden layers instead of 32. Finally, we used
Adadelta instead of the Adam optimizer.

4A portion of messages is queued at the server, taking up to 500MB
of memory. In the cross-device attack, we calibrated the transmission
rate in a different way, alleviating this.
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Figure 9.5: Cross-device attack on a Roku streamer. On
the left is the global view, including initial buffering. On
the right is the local view during steady-state streaming.
Bursts cause a visible increase in delays observed on the
neighbor machine.

9.3 Results
In all of our experiments, attacks were imperceptible to
the user and did not affect the viewing quality.

Cross-site attack. Figure 9.3a shows that bursts in the
video stream are very visible in the measurements per-
formed by the JavaScript client. Fig. 9.3b shows that the
delay bursts series is strongly correlated with the bursts
of the actual stream. Our 1/10 Netflix classifier attains
0.937 accuracy. As in Section 7, we can adjust our con-
fidence threshold to reduce false positives at the cost of
reducing recall (see Fig. 9.3c). By accepting 0.793 recall,
we obtain precision of 1.

Cross-device attack. The timing of the messages ob-
served by the detector code on the neighbor device ex-
hibits clear patterns corresponding to the stream received
by the viewer device. Figure 9.4a shows that bursts in the
stream during the steady state cause delays in the mes-
sages received by the neighbor. Figure 9.4b shows that
delay bursts are correlated with the size of bursts in the
stream (which, in turn, reflect segment sizes). Our clas-
sifier performs well, with 0.965 accuracy. By accepting
0.933 recall, we obtain precision of 0.997.

Cross-device attack on a Roku streamer. Many users
watch streaming video content on a smart TV or a dedi-
cated streaming device connected to a TV. To investigate
the feasibility of our attack in this scenario, we used the
cross-device attack setup from Section 9.2 except that the
viewer was a Roku Premiere streaming device (a very
popular brand), connected to the Internet via Wi-Fi.

The bursts corresponding to video segments are
clearly observable from a neighbor machine. Fig-
ure 9.5 shows the attacker-measured delays while Roku
is streaming Episode 1 of “Mad Men.” They exhibit the
expected pattern of a large burst followed by smaller ones
in steady intervals, each lasting a few seconds.

10 Limitations
Our attack relies on two assumptions: (1) the attacker
can measure traffic bursts in the victim’s video stream,
and (2) the pattern of these bursts is similar to what the
attacker observed when streaming the same title.

The attack works well using only very coarse traffic
features (see Section 7.3) and is therefore robust to minor
noise in the stream or in the attacker’s measurements.
If the noise is so significant as to dramatically change
the traffic characteristics of the stream (e.g., if the same
network connection is used to watch multiple concurrent
videos, upload media files, or for some other bandwidth-
intensive activity), the attack may not succeed.

In the off-path attack, the attacker’s server sends large
amounts of traffic to congest a shared network link and
his JavaScript client measures arrival times in the vic-
tim’s browser. To create congestion, the server needs
a high-bandwidth connection to the victim’s network.
Therefore, success of the off-path attack using a specific
server may depend on the victim’s location and ISP.

If the client code does not have access to precise time,
the roles must be reversed (see Section 12). The ability
of malicious JavaScript in the victim’s browser to con-
gest the network may be limited by resource-intensive
processes executing on the same machine.

As explained in Section 4, different encodings of the
same content create different burst patterns. The attack
will not succeed if the encoding of the streams used to
train the attacker’s detector is different from the encoding
of the victim’s stream. Specifically, in adaptive stream-
ing, encoding quality can be dynamically downgraded or
upgraded in response to changing network conditions. In
this paper, we did not evaluate a scenario where the vic-
tim is experiencing erratic network conditions causing
frequent switches between encodings.

Our techniques aim to identify standard, unmodified
streaming video (e.g., Netflix movies). They are not de-
signed to resist evasion. If the user or service re-encodes
the video (e.g., at a different resolution), the attacker’s
previously trained detectors will no longer work.

Our techniques can be automated and deployed on a
reasonably large scale to detect hundreds or thousands
of titles in an “open-world” setting, without assuming a
priori that the video belongs to small known set. Scaling
beyond that is likely to be expensive. Data collection is
the main bottleneck because training detectors requires
the attacker to stream the same title multiple times.

11 Related Work
11.1 Exploiting VBR leaks

Fine-grained video. Saponas et al. [46] observed that
encrypted, VBR-encoded videos leak information about
their content. To create a “signature” of a video, they
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(a) Actual bursts size vs. measurements from
JavaScript in a different origin.

(b) Delay bursts vs. actual traffic bursts (traffic
bursts are in units of 104 bytes).

(c) Precision vs. recall of our classifier

Figure 9.3: Cross-site attack.

(a) Raw attack measurements, showing delays at
roughly steady intervals.

(b) Delay bursts vs. actual traffic bursts. Traffic
bursts are divided by 100,000 for presentation.

(c) Precision vs. recall of our classifier

Figure 9.4: Cross-device attack.

take its traffic trace as a bits-per-second time series at
the granularity of 100 milliseconds, average, and apply a
sliding-window DFT. Their detector applies DFT to traf-
fic traces and matches to the closest signature.

Li et al. [30] focus on detecting re-encoded content.
They apply a wavelet transform to the time series of
frame sizes and cross-correlate the wavelet coefficient
series of the observed traffic with those of a reference
content file. In [31], Liu et al. use aggregated traffic
throughput traces (as opposed to frame-size time series)
and report 1% false positive rate and 90% recall rate.

These methods operate on time series resembling, and
close to the granularity of, the sizes of individual frames.
DFTs and wavelet transforms capture short-term varia-
tions due to changes of picture and long-term variations
due to changes of scene. In our setting, the observable
features are bursts 4–6 seconds (120–180 frames) apart.

Even though these methods rely on fine-grained mea-
surements, their false positive rates are prohibitively high
for “open-world” identification (with a low base rate,
even 1% false positive rate implies an extremely low
Bayesian Detection Rate). None of them would work
if the measurements of the attacker (e.g., performed by
sandboxed JavaScript) are noisy and coarse-grained.

Dubin et al. [11] suggest using the (unordered) set
of segment sizes as a title fingerprint. This detector is
far less accurate than our classifiers and vulnerable to
noise, and consequently cannot be used by a JavaScript
attacker. See Appendix B for the detailed analysis.

Reed and Klimovski [43] implement a Wi-Fi sniffing
attack and suggest an approach based on Pearson corre-
lation for identifying Netflix streams. In a preliminary
evaluation, they report correctly identifying, given 50
possible titles, 24 out of 25 streaming sessions. Con-
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currently and independently from our work, Reed and
Kranch [44] scale this approach by fingerprinting the en-
tire Netflix title selection. They assume an on-path at-
tacker who can observe TCP-layer traffic. This approach
has not been evaluated in an off-path setting, where the
attacker has only noisy side-channel measurements, nor
for any streaming services other than Netflix.

Mass fingerprinting in [44] relies on the metadata sent
by Netflix to the client at an early stage of the streaming
process, namely the .ismv file headers that contain all
segment sizes for all possible encodings of the title. They
are sent in the clear, while the video content is DRM-
encrypted. It is not clear how the approach of [44] would
work if these headers were DRM-protected, too.

VoIP. Wright et al. showed that VBR leakage in en-
crypted VoIP communication can be used to identify the
speaker’s language [62] and detect phrases [61]. Their
detector is a Hidden Markov Model trained to identify a
specific phrase. White et al. [58] extended this approach
to extract conversation transcripts.

11.2 Congestion and timing attacks
The general approach of creating congestion on a shared
resource (network, in our case) and using it to measure
a concurrent process’s consumption of that resource is
used, for example, in shared-cache attacks on crypto-
graphic computations [21, 37, 45].

Our network congestion attack works because traffic-
flow scheduling policies for a shared internet link are
leaky. Kadloor, Gong, et al. [16, 24, 25] studied
the tradeoffs between delays, fairness, and privacy in
scheduling policies on shared resources. Kadloor et
al. [23] also showed how to exploit the queueing policy in
DSL routers: by sending a series of ICMP echo requests
(pings) and timing RTTs, they infer the traffic patterns of
a remote user. This attack can also help infer the website
being visited [15, 17]. This attack is powerful because
the attacker only needs to know the user’s IP address, but
it cannot be deployed if the user is behind a firewall or
router that discards unsolicited packets from outside the
network (as many modern routers do by default).

Agarwal et al. [1] show how a VM can use link con-
gestion to infer the traffic patterns of a co-located VM.

To the best of our knowledge, the ability of confined
JavaScript to perform network measurements at suffi-
cient granularity to identify concurrent video streams
has never been empirically demonstrated before. This
is a particularly dangerous scenario because untrusted
JavaScript code from sources who have commercial in-
terest in users’ viewing habits is ubiquitous on the Web.

Timing attacks have a long history in computer se-
curity [6, 50]. Felten and Schneider [13] observed
that JavaScript can infer information from the timing
of cross-origin requests; Bortz and Boneh [5] demon-

strated several timing-related Web attacks; Van Goethem
et al. [55] proposed timing techniques that tolerate net-
work noise and server-side mitigations. Oren et al. [36]
used JavaScript timing mechanisms for a cache attack.
Kohlbrenner and Shacham [27] showed that existing
browser-based mitigations are insufficient and proposed
a new browser-based defense.

11.3 Fingerprinting and traffic analysis
There is a large body of research on identifying websites
in encrypted network traffic [7, 8, 15, 18, 20, 39, 48, 57].
Juarez et al. [22] argue that most of these efforts make
unrealistic assumptions and fail to cope with the base rate
fallacy. Panchenko et al. [38] evaluate a state-of-the-art
method for website detection and conclude that webpage
detection is infeasible. Traffic analysis was used to infer
application-specific sensitive information, such as health
conditions [8, 33], as well as Web sources of video traf-
fic [47]. Prior work also includes mitigations [63] and
counter-mitigations [12].

12 Mitigations

Segment size leak. The root cause of information leaks
in video streams is that, for any sufficiently long video,
the encoding bitrate changes over the presentation time
in a unique, identifying way. Segmenting video files and
transmitting them in bursts (which is primarily done to
maximize quality of experience) reduces the granularity
of the leak but does not prevent video fingerprinting.

Decreasing granularity further, to minutes, will not en-
tirely prevent the leak in longer videos, but will degrade
QoE and network efficiency. Segmenting VBR video
into uniformly sized segments is futile because then their
duration will differ, thus the timing of client requests will
still leak similar information.

Constant-rate encoding with tight rate control and
large segments will eliminate the leak, at the cost of a
very inefficient encoding. Similarly, padding bursts to
the maximum segment size would require transmitting
much more traffic than the actual file size.

The VBR pattern is inherently observable in traffic if
the duration of the client’s buffered video is close to con-
stant (or, in general, an affine function of presentation
time). Solving the problem requires a different buffer-
ing regime. Client-side-only changes are easier to deploy
than changes to segmentation on the server, but devising
such a regime is non-trivial even if we allow changes to
both client side and server side.

For example, consider a variable-size buffer that
fetches equally-sized segments every X seconds (where
X is fixed). This requires a balance between increas-
ing the fetching rate (lest the buffer runs out in the mid-
dle of long high-action scenes) and increasing the ini-
tial buffering time (for robustness to network conditions
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while also accounting for sudden buffer depletion due
to high-bitrate content). Both factors would directly de-
grade user experience and network efficiency.

Network congestion side channel. The congestion at-
tack requires big, frequent server-to-client messages that
may appear anomalous and thus recognizable at the net-
work level. Detection and prevention mechanisms can
be placed at the router, network, OS, or browser. A more
sophisticated attack implementation may be able to use
benign-looking traffic to circumvent such mechanisms.
Fuzzy-time sandbox solutions such as [27] would not en-
tirely prevent our attack: the JavaScript client can still
send packets to congest the uplink, yet timing measure-
ments can be performed by a colluding server.

13 Conclusions
Leakage of information about video content via network
traffic patterns is prevalent in modern streaming proto-
cols and popular services. We implemented and evalu-
ated a novel method based on deep learning that exploits
this leak for video identification.

Our method is tuned for high precision and effective
in an “open-world” setting. It can be used by on-path
adversaries such as ISPs and enterprise networks to spy
on their users. Furthermore, it exposes sensitive infor-
mation of the streaming service itself. For example, ISPs
can use it to construct a popularity histogram of Netflix
videos (Netflix does not release this information). We
also show how an off-path adversary who merely serves
a Web page or ad to a user can, via the network conges-
tion side channel, perform the measurements needed for
the attack and identify videos being streamed by the user
on the same or different device.
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A Streams vs. MP4 Files
Since the cause of the leak is the DASH standard, it
would be nice to compute detectors directly from video
files5 instead of streaming each video multiple times.

This approach faces several challenges. First, the
attacker must infer the exact segmentation parameters,
such as segment duration and minimal buffer time, and
how they change with respect to file encoding, size, bi-
trate, view count, etc. Each service has many combina-
tions of these parameters. Furthermore, they change over
time but changes may not apply to the already-segmented
files. Second, this approach does not work at all if the at-
tacker does not have the file (as in the case of Netflix).

To learn the relationship between MP4 files and
streams, we would like to train a classifier that takes in
an MP4 file and a traffic capture, and outputs whether
the latter is a stream of the former. We used our dataset
of 3,558 YouTube videos for which we have both the
files and the captures. First, we have to align the stream
with the file, i.e., match traffic bursts corresponding
to segment-files to the segment-files’ presentation time.
Then we train a binary classifier on the extracted VBR
pattern of an MP4 file and the (aligned) burst series to
tell if the former was generated by the latter.

Alignment is a difficult problem because the extracted
720p MP4 files may not be identical to the actual files
used by the streaming service (which may not even be
in 720p). We heuristically tried several values to align
each MP4-capture pair and used neural networks to train
a classifier. Our classifier achieved 74% accuracy. This
indicates a strong correlation between the files and the
streams of the same video, but it is not sufficient for
“open-world” identification. Our main approach of using
multiple streams of the same video to train the detector
achieves much higher accuracy in practice.

B Comparison with Nearest Neighbor
Dubin et al. [11] represent the attacker’s measurements
of a stream as a set of bursts and use a classifier that
maps each such set to the closest training example. If the
size of the set intersection is smaller than a threshold for
all examples, the stream is classified as “unknown.”

5There exist tools for downloading MP4 files of content from ser-
vices such as YouTube and Vimeo.
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Dataset
Added
noise? 0B 1B 5B 10B CNN

Netflix No 0.871 X X X 0.959
Yes 0.220 X X X 0.909

YouTube No X 0.962 0.967 0.832 0.991
Yes X 0.851 0.790 0.379 0.989

Table 1: T B (bucketed nearest neighbor classifier with
threshold T ) vs. CNN (our neural network).

We implemented and tried this approach for the Net-
flix dataset (which does not contain the “other” class, so
we used a threshold of 0, i.e., a match is always accepted)
and the YouTube dataset, with thresholds of 1, 5, and 10.
The test-train split was 0.9-0.1.

The nearest-neighbor classifier performs very poorly
on both datasets. For Netflix, it attained accuracy of
0.393. For YouTube, it attained accuracy of 0.624 with
threshold 1, 0.05 with threshold 5, and even less with
threshold 10. These results show that exact matches in
burst sizes are simply too rare. Even when the nearest
neighbor of a capture is actually found in its correct class,
there are fewer than 5 matches with it.

To further assess this approach, we “bucketed” all
burst sizes by rounding them to a multiple of 10, 100,
1000, and 10000. Rounding to a multiple of 1000 is ef-
fective, yielding 0.871 and 0.967 accuracy for the Netflix
and YouTube datasets, respectively. We call this classi-
fier the Bucket classifier (B).

This classifier is still very sensitive to noise and will
perform poorly if the attacker’s measurements are noisy
or if the streaming service deliberately pads bursts with a
few random bytes. We added a random number of bytes
between 0 and 2% to each burst size in the dataset and
measured the accuracy of the B classifier vs. our CNN-
based classifiers, which use the total burst series (see
Section 5.2) and are trained for 1,400 and 700 epochs
on the Netflix and YouTube data, respectively. We used
the 0.7-0.3 train-test split for the CNNs (vs. 0.9-0.1 split
for the B classifiers). Table 1 summarizes the results.

The KNN classifier of [11] is designed for direct ob-
servations of the streaming traffic. We attempted to ap-
ply it to the burst estimates as measured from JavaScript.
Because these estimates are sums of values returned
by window.performance.now(), they are measured in
milliseconds and in a floating-point representation that
captures time at an even finer granularity. Therefore,
to make it easier to recognize a (coarse) fingerprint, we
used the same approach as above and divided bursts into
coarse-grained buckets. We tried 100-second buckets, 10
seconds, seconds, deciseconds, centiseconds, millisec-
onds, decimilliseconds, centimilliseconds, and microsec-
onds. The KNN classifier of [11] works best at the granu-
larity of 10 seconds, and even then it only attains 0.22 ac-

curacy. We conclude that the approach proposed in [11]
does not work for an off-path attack.

C Titles Used in Experiments

Netflix:

• “Mad Men” Season 1, episodes 1-10
• “Arrested Development” Season 1, episodes 1-10
• “Narcos” Season 1, episodes 1-10
• “BoJACK Horseman” Season 1, episodes 1-10
• “The Office” Season 1, episodes 1-6; Season 2,

episodes 1-4
• “Luke Cage” Season 1, episodes 1-10
• “Louie” Season 3, episodes 1-10
• “Making a Murderer” Season 1, episodes 1-10
• “Stranger Things” Season 1, episodes 1-8
• “Master of None” Season 1, episodes 1-10
• “Parks and Recreation” Season 1, episodes 2-3

YouTube:

• https://www.youtube.com/watch?v=lc8804tkoaM
• https://www.youtube.com/watch?v=RDfjXj5EGqI
• https://www.youtube.com/watch?v=iW-y0Ci5nTI
• https://www.youtube.com/watch?v=_clqcSj2rKM
• https://www.youtube.com/watch?v=31784aZeJcc
• https://www.youtube.com/watch?v=DcJGalE3vn0
• https://www.youtube.com/watch?v=uINi-b5Fi1o
• https://www.youtube.com/watch?v=bFjrmATIUYU
• https://www.youtube.com/watch?v=fIOBSUSAikY
• https://www.youtube.com/watch?v=DpdJJN9OYMg
• https://www.youtube.com/watch?v=eyU3bRy2x44
• https://www.youtube.com/watch?v=0fYL_qiDYf0
• https://www.youtube.com/watch?v=Dgwyo6JNTDA
• https://www.youtube.com/watch?v=Z4uN9kh-gdE
• https://www.youtube.com/watch?v=DPeRRWSqPFY
• https://www.youtube.com/watch?v=Th9mfs5eobw
• https://www.youtube.com/watch?v=dUoC-GJ0FQY
• https://www.youtube.com/watch?v=tjhrNKQX29U
• https://www.youtube.com/watch?v=8YkLS95qDjI
• https://www.youtube.com/watch?v=BxKLpArDrC8

Vimeo:

• https://vimeo.com/110217114
• https://vimeo.com/111281488
• https://vimeo.com/11671747
• https://vimeo.com/116764246
• https://vimeo.com/120842635
• https://vimeo.com/126371564
• https://vimeo.com/130612876
• https://vimeo.com/138816246
• https://vimeo.com/146489061
• https://vimeo.com/153418170

Amazon: 10 episodes chosen arbitrarily from Season 1
of “The Wire”: 3, 4, 5, 6, 7, 8, 9, 11, 12, and 13.
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Abstract
Website fingerprinting (WF) is a traffic analysis attack

that allows an eavesdropper to determine the web activ-
ity of a client, even if the client is using privacy tech-
nologies such as proxies, VPNs, or Tor. Recent work
has highlighted the threat of website fingerprinting to
privacy-sensitive web users. Many previously designed
defenses against website fingerprinting have been broken
by newer attacks that use better classifiers. The remain-
ing effective defenses are inefficient: they hamper user
experience and burden the server with large overheads.

In this work we propose Walkie-Talkie, an effective
and efficient WF defense. Walkie-Talkie modifies the
browser to communicate in half-duplex mode rather than
the usual full-duplex mode; half-duplex mode produces
easily moldable burst sequences to leak less information
to the adversary, at little additional overhead. Designed
for the open-world scenario, Walkie-Talkie molds burst
sequences so that sensitive and non-sensitive pages look
the same. Experimentally, we show that Walkie-Talkie
can defeat all known WF attacks with a bandwidth over-
head of 31% and a time overhead of 34%, which is far
more efficient than all effective WF defenses (often ex-
ceeding 100% for both types of overhead). In fact, we
show that Walkie-Talkie cannot be defeated by any web-
site fingerprinting attack, even hypothetical advanced at-
tacks that use site link information, page visit rates, and
intercell timing.

1 Introduction

Website fingerprinting (WF) attacks are classification at-
tacks that allow a local, passively observing eavesdrop-
per1 to determine which web page a client is visiting by
observing the client’s sequence of packets. WF attacks
succeed against clients using privacy technologies, such

1Active eavesdroppers are not considered WF attackers in the liter-
ature, as later explained in Section 2.

as VPNs, IPsec, and Tor, that hide the contents and desti-
nations of packets. The attacker—such as the client’s ISP
or government—uses various packet sequence features,
such as packet counts, packet order, packet directions,
and unique packet lengths to classify the web page [5].
WF attacks require only local eavesdropping capabilities,
small computational cost, and carry little risk of detec-
tion. As web-browsing clients of these privacy technolo-
gies do not want to reveal the web pages they are visiting
to any eavesdropper, they need to defend their privacy
against WF in some way.

Website fingerprinting is a well-established threat to
privacy in the literature [8, 14, 23], as well as in prac-
tice: Tor, a popular anonymity network, has imple-
mented a WF defense [24, 26]. However, Tor’s de-
fense does not succeed in lowering the accuracy of
WF attacks [6, 31]. Researchers have proposed alterna-
tive defenses, but these defenses are either ineffective
against newer attacks [31] or carry a very large over-
head [4, 8, 20, 31]. We describe previous website finger-
printing work in detail in Section 2.

In this paper, we present Walkie-Talkie (WT), a new
WF defense, with the following properties:

1. Effective: Many WF defenses have failed against
newer WF attacks. WT succeeds against all known
WF attacks, including attacks that leverage timing
and packet ordering.

2. Efficient: A high bandwidth overhead burdens the
network, while a high time overhead frustrates the
user. (We define these terms rigorously in Sec-
tion 3.2.) WT requires a much smaller overhead
than all known effective defenses.

3. Easy to use: WT requires no changes to web servers
and therefore does not impact server performance,
as it needs to be deployed only on the client and
proxies. Our implementation only modifies the ap-
plication layer. Furthermore, the defense can be de-
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ployed incrementally as it does not depend on other
clients using the same defense.

Walkie-Talkie consists of two components: half-
duplex communication and burst molding. We describe
both components in Section 4. These components trans-
form packet sequences of monitored sensitive pages and
benign non-sensitive pages, so that these packet se-
quences are exactly the same (each packet has the same
timing, length, direction and ordering). Since the packet
sequences are exactly the same, and WF attacks are
based solely on classifying packet sequences, no WF at-
tack can succeed against Walkie-Talkie. To mold sen-
sitive packet sequences into non-sensitive packet se-
quences, the client would need to have some information
about them. We will show that such information can be
practically obtained and delivered to the client.

For the purposes of this paper, we base our experi-
ments and implementation on Tor, though Walkie-Talkie
works on any other setting where website fingerprint-
ing is a threat (using encryption with proxies to hide
from a local attacker). We evaluate Walkie-Talkie on
a data set collected over Tor, squaring off our defense
against known attacks and other known defenses in Sec-
tion 5. We show that known website fingerprinting at-
tacks are unable to succeed against packet sequences un-
der Walkie-Talkie, and that our defense has a signifi-
cantly lower overhead compared to known defenses. We
describe ways to defeat a hypothetical attacker using
more advanced strategies beyond known website finger-
printing attacks in Section 6. We conclude in Section 7,
and we include a link to share our code and data in the
Appendix.

2 Related Work

Remote side-channel analysis can be used to attack web
clients in a wide range of scenarios, including network
timing attacks [3], cache attacks [21], and browser fin-
gerprinting [9]. Some of these involve an active attacker,
for example one that may send JavaScript requests when
the client visits an attacker-controlled web page. This
work focuses on defeating website fingerprinting (WF),
where the attacker is passively monitoring web pack-
ets. Researchers have identified WF as a potential attack
against privacy since 1998 [7]. WF has become espe-
cially relevant with the growing popularity and usabil-
ity of privacy technologies such as Tor and the revela-
tion that state-level adversaries are willing to eavesdrop
on Internet users en masse [11]. As a result, Tor cur-
rently employs a WF defense [24]. In this section, we
discuss known WF attacks and defenses to contextualize
our work.

2.1 Attacks

There is a long line of research on WF attacks [6, 12,
13, 15, 16, 22, 23, 30, 31]. In WF, the attacker classi-
fies which web page each testing packet sequence be-
longs to. To do so, the attacker learns to classify using a
set of training packet sequences and a machine learning
technique. In the closed-world scenario, testing packet
sequences come from a (small) list of monitored sensi-
tive web pages the attacker knows, and the attacker must
distinguish packet sequences coming from each of those
pages. In the more realistic open-world scenario, testing
packet sequences could also originate from non-sensitive
web pages outside of the list and unknown to the attacker.
In the open-world scenario, the attacker needs to distin-
guish between sensitive web pages and be able to identify
that a non-sensitive web page is non-sensitive.

Over time, researchers have demonstrated increas-
ingly accurate [22] and noise-tolerant attacks [33] us-
ing better classifiers. While older attacks were only able
to identify pages in the closed-world scenario, newer at-
tacks are also able to tackle the open-world scenario, thus
posing a practical threat to privacy. We refer the reader to
previous work [5, 22, 31] for a more detailed discussion
of the specific workings of each WF attack and how they
have evolved.

2.2 Defenses

Wright et al. (2009) published traffic morphing [34], a
defense that randomly pads unique packet lengths so that
these packet lengths look as if they came from another
distribution of packet lengths corresponding to another
web page. They showed that this defense was effec-
tive against an earlier attack (2006) by Liberatore and
Levine [15], because that attack relies on unique packet
lengths and does not consider other features such as
packet ordering. Later, Wang et al. (2014) showed that
this defense was not effective against their new attack,
which uses packet ordering as a feature [31].

Luo et al. (2011) published HTTPOS (HTTP Obfus-
cation) [17]. They implemented the defense on the client
side using features in HTTP: the client sets a Range
header in order to split traffic into packets of random
length and uses HTTP pipelining to change the number
of outgoing packets. Luo et al. have shown that this is
a successful defense against older attacks [2, 15, 30], but
other researchers have also found that it is not a success-
ful defense against several newer attacks [6, 31].

Tor has implemented another WF defense [24] in re-
sponse to a WF attack by Panchenko et al. [23]. Tor’s
defense uses HTTP pipelining by randomizing the max-
imum number of requests in a pipeline, so that the order
of requests may change if the number of requests exceeds
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the depth of the pipeline. This defense has no bandwidth
overhead as pipelining does not introduce extra packets.
Tor has updated its defense [26] recently in response to
newer attacks, but both versions of Tor’s defense have
little effect on the accuracy of known attacks [6, 31, 32].

We are aware of six WF defenses that are still effec-
tive: Decoy (Panchenko et al. 2011 [23]), BuFLO (Dyer
et al. 2012 [8]), Tamaraw (Cai et al. 2014 [5]), CS-
BuFLO (Cai et al. 2014 [4]), Supersequence (Wang et
al. 2014 [31]), and Glove (Nithyanand et al. 2014 [20]).
We refer to BuFLO, Cs-BuFLO, and Tamaraw as BuFLO
defenses, as the latter two are modifications of BuFLO
to lower overhead. Supersequence and Glove share the
same usability issue as our work: they require the client
to have some information about web pages. Whereas the
issue is a stumbling block for Supersequence and Glove,
our work resolves this issue by using half-duplex com-
munication to minimize the amount of information the
client needs to have, which we describe in detail in our
evaluation (Section 5). All of these previous effective
defenses generally require more than 100% bandwidth
and/or time overhead.

3 Preliminaries

3.1 Attack Scenario
We consider a web-browsing client that is connecting to
the Internet using one or more proxies over an encrypted
connection. A packet received over such a network (e.g.,
a TLS packet) at some time t and having some length `
is denoted as p = (t, `). A packet sequence is denoted
as s = 〈p1, p2, . . .〉. We use positive lengths to denote
outgoing packets from the client and negative lengths to
denote incoming packets.

We assume the attacker is local to the client and pas-
sive, consistent with previous works on website finger-
printing. Possible local attackers may include the client’s
ISP, wiretappers, packet sniffers, and other eavesdrop-
pers. Since the attacker is local, the attacker knows the
client’s identity, but does not know which page she is vis-
iting because she is using one or more proxies. As a pas-
sive eavesdropper, the attacker never attempts to modify
the client’s packet sequence. The attacker is therefore
very hard to detect.

The attacker seeks to identify static web pages;
Walkie-Talkie does not protect dynamic content. It is
difficult to defend dynamic content as a whole, as band-
width and timing requirements vary significantly. For ex-
ample, it would be overwhelmingly expensive to make
an online chatroom confusable with a high-quality video
stream. Some types of dynamic content are not sus-
ceptible to WF, such as chatting and file downloading.
Other works have shown that search queries [18] and

videos [27] are susceptible to fingerprinting attacks. As
pages are static, they are associated with finite-length
packet sequences.

In our scenario, at least one proxy is outside the WF
attacker’s control. Otherwise, the attacker has already
won without the need of website fingerprinting: previous
work has shown that an attacker with control over both
ends of a multi-proxied connection can compromise the
client’s privacy completely [19]. The non-compromised
proxy (which we simply refer to as the proxy hereafter) is
willing to protect the client’s privacy by shaping the traf-
fic according to her specification. A proxy who shapes
the traffic incorrectly can be easily detected by the client,
who sees the whole packet sequence.

As a preliminary, the client and proxy implement a
simple defense: all packets they send to each other are
of the same length, much like in Tor. They can do so by
splitting longer packets and padding shorter ones. Pre-
vious work has shown that TCP packet lengths leak too
much information to the WF attacker [5]. Indeed, Tor re-
lays use fixed-length cells to deliver information; for this
reason, previous work has found that Tor is much harder
to attack with WF than many other web privacy technolo-
gies [13], though Tor is still vulnerable. Borrowing Tor’s
terminology, we use the term “cells” instead of “packets”
to describe the fixed-length data elements, and scale our
size units so that a cell has |`|= 1. Note that although we
borrow the fixed-size cell concept from Tor, our defense
is nevertheless applicable to other technologies such as
VPNs and IPsec.

3.2 Overhead

To show that WT is efficient, we will evaluate its band-
width overhead and time overhead.

The bandwidth overhead of a defense is the num-
ber of dummy cells added by the defense, divided by
the number of cells in the undefended (original) cell se-
quence. Dummy cells are necessary to obfuscate the true
amount of data on the wire. Bandwidth overhead repre-
sents a burden to the proxy and possibly other proxies be-
tween the client and the proxy. Note that the web server
does not suffer from bandwidth overhead; it will never
generate or see dummy cells.

The time overhead of a defense is the extra amount
of time required to load the cell sequence, divided by the
original amount of time required. To keep bandwidth
overhead and time overhead separate, we assume that
dummy cells do not add to the time overhead by them-
selves (i.e., the bandwidth is sufficient that extra dummy
cells can be sent without delaying real cells). Neverthe-
less, all known effective WT defenses incur a large time
overhead, typically because they artificially delay cells
in order to induce desired traffic patterns such as sending
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cells at a constant rate. A large time overhead deteri-
orates the client’s experience, as the client needs to wait
longer to load web pages, but it does not burden the prox-
ies.

4 Components of Walkie-Talkie

Walkie-Talkie consists of two components: half-duplex
communication and burst molding. To defend a cell se-
quence from a sensitive web page, half-duplex communi-
cation transforms the cell sequence into a burst sequence.
which is then molded into a burst sequence from a non-
sensitive web page. We describe both components and
how they work together in detail in this section.

4.1 Half-Duplex Communication

We modify the client’s web browser so that it commu-
nicates in half-duplex mode, much like a walkie-talkie.
Normally, web browsing is full-duplex: multiple servers
are sending web page data to the client while the client
simultaneously sends further resource requests, possibly
to new servers. The pattern of exactly when the client has
received, for example, an img tag within an HTML re-
source, causing it to immediately fetch the corresponding
image resource, is a strong feature for the WF attacker.
Under our defense, the client only sends requests after
the web servers have satisfied all previous requests. As
a result, the client and proxy both send data in interleav-
ing bursts of incoming and outgoing cells. Walkie-Talkie
does not affect web servers.

The goal of half-duplex communication is to
reduce the information available to the WF at-
tacker about the cell sequence s to the form s =
〈(b1+,b1−),(b2+,b2−), . . .〉, a burst sequence: each bi+
is the number of continuous outgoing cells sent in a burst
and each bi− is that for the succeeding incoming cells.
We can think of half-duplex communication as a way to
group same-direction cells together.

The benefit of using burst sequences instead of cell se-
quences is that they can be molded at little overhead, and
molding them is computationally cheap. (We describe
molding in detail in Section 4.3). Indeed, previous de-
fenses (Supersequence [31], Glove [20]) have attempted
to mold cell sequences directly, at a much greater cost in
overhead. Another issue with these previous defenses is
that they require the client to know the cell sequences of
many pages, but cell sequences carry a lot of information
and are therefore difficult to deliver and store. Burst se-
quences are much lighter in information content, and we
will show that it is practical to deliver and store hundreds
of thousands of burst sequences.

4.1.1 How browsers work

In this section we describe how browsers use persistent
connections to load data from a web server. We use the
terminology defined in RFC 7230 on “HTTP/1.1 Mes-
sage Syntax and Routing”, especially its discussion on
connection management in Section 6 [10]. While our
implementation is based on Tor Browser, any browser
with persistent connections (i.e., any browser supporting
HTTP/1.1) can be modified to support half-duplex com-
munication.

During web browsing, clients make requests to ob-
tain data from the server (or post data to the server). To
send requests, the browser creates or re-uses persistent
TCP/IP connections (up to a preset maximum number of
connections). When requests are complete, the browser
may close the attached connections, or keep them alive
as open connections in order to send further requests to
the same server.

As the total number of simultaneously open connec-
tions is (tightly) limited, a browser will often be un-
able to make further requests until current requests are
completed. Until then, the browser stores the request
in a pending request queue. When a request completes
or when a connection dies, the browser enumerates the
pending request queue in an attempt to send requests
(sometimes by creating new connections). During the
enumeration process, the browser may re-use open con-
nections or close them to make room for new connections
to other servers.

4.1.2 Implementation of half-duplex mode

We add two states to the browser to enforce half-duplex
communication: walkie and talkie. Conceptually, the
walkie state corresponds to an idle browser; the talkie
state corresponds to a browser that is actively loading a
page (which may be any number of resources). We ex-
plain each below. Our modification only adds 26 lines of
code and removes 12 lines of code from the connection
manager in Tor Browser (which is itself a modification
of Firefox), and it is available for download with a link
in Section 7.

The browser starts in the walkie state. When the client
starts any request while in the walkie state, the browser
sends the request immediately, and the browser switches
to the talkie state. After the page has finished loading,
when there are no pending requests left, the browser will
return to the walkie state.

In the talkie state, the browser is currently loading
a page. The browser always queues new requests in
this state; it never sends requests immediately. Further-
more, the browser does not enumerate the pending re-
quest queue whenever any connection dies or become
idle. Rather, the browser only enumerates the request
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queue and sends out requests when there are no active
connections left (i.e., all connections have died or be-
come idle). If instead the request queue is empty, the
browser returns to the walkie state; page loading has
stopped.

We justify why the above states implement half-
duplex communication by making the following obser-
vation: the client never attempts to initiate new HTTP
requests when there are any active connections left. This
is true in both the walkie and the talkie state. Since
an HTTP server does not actively initiate contact with
the client, the lack of active connections means that the
server is never sending data when the client initiates new
HTTP requests.

However, the above alone is not sufficient to ensure
half-duplex communication. This is because making a
new HTTP request is not instantaneous. Unless a pre-
existing open connection to the server exists, the client
must spend an extra round-trip time to open a new con-
nection. The round-trip time creates a time gap that
causes the client to talk when the servers are already re-
sponding to other HTTP requests. One way to solve this
problem is to ensure that the client must establish a con-
nection and send the HTTP request in two bursts rather
than one burst. We implement a more efficient solution
to this problem, as described below.

4.2 Optimistic data
Normally, when a client wishes to load a resource from
a web server, the client makes a TCP connection re-
quest, waits for the server’s request acknowledged mes-
sage, and only then will the client send a GET request to
load the resource. This creates an extra round-trip time
that can be removed by having the client send both the
TCP connection request2 and the HTTP GET request at
the same time. The final hop holds the GET request until
the TCP connection is established, and then sends out the
GET request. This is known as optimistic data in Tor, and
Tor Browser has used optimistic data since 2013 [25]. As
optimistic data works on Firefox in general if the client
is using a SOCKS proxy, users of other privacy options
and anonymity networks can use optimistic data as well.

Optimistic data works at the socket level. Normally,
after sending a connection establishment request, the
socket waits for an acknowledgement by the server be-
fore informing the browser that it is ready to send re-
quests. With optimistic data, the socket does not wait,
but rather it immediately pretends to the browser that the
server has established the TCP connection, which causes
the browser to send the GET request immediately. Op-

2The TCP connection request is here an application-layer message
instructing the last hop in the anonymity network to make a TCP con-
nection to the desired destination.

timistic data is useful for our defense, as it allows the
client to establish a new connection and send the rele-
vant request at the same time. Optimistic data reduces
the number of bursts and thus the amount of padding we
need to confuse the attacker.

4.3 Burst molding

Burst molding draws from the concept of Decoy, the WF
defense described by Panchenko et al. [23], which loads
two pages in parallel to confuse the adversary, at an ap-
proximately 100% bandwidth overhead. The adversary
cannot determine which of the two pages is really visited
by the client. We can further leverage the open-world
scenario to improve the defense mechanism: if the real
page is a non-sensitive page, we will choose a sensitive
page as the decoy page, and vice versa. If the client’s sen-
sitive pages are always loaded with popular non-sensitive
pages, the attacker can never determine that she has vis-
ited a sensitive page. This is especially effective if the
non-sensitive page is sufficiently popular, in which case
the attacker suffers from the base rate fallacy. It is plain
to see that Decoy is effective no matter what classifier the
WF attacker uses. Burst molding is able to achieve the
same property.

However, instead of actually loading two pages, burst
molding simulates loading two pages by loading the su-
persequence of two burst sequences, which allows a
much lower overhead than loading two pages. A se-
quence s′ is a supersequence of s if s′ contains s; this
applies to both cell sequences and burst sequences. The
idea of simulating supersequences is inspired by Super-
sequence [31] and Glove [20]. Allegorically, adding
padding cells is like injection molding: burst molding
adds cells to the original burst sequence so that it is
molded into the supersequence.

Burst molding adds fake cells to burst sequences
as follows. If the number of cells in a burst of the
real page is bi = (bi+,bi−), and for a burst of the
decoy page it is b′i = (b′i+,b

′
i−), we will send b̂i =

(max{bi+,b′i+},max{bi−,b′i−}) cells. We do so for ev-
ery burst in each burst sequence. If the number of bursts
in the two burst sequences is different, we add fake bursts
consisting of entirely fake cells to the shorter sequence.
We do so for each burst, resulting in a significantly lower
overhead compared to simply loading two pages at once:
burst molding uses the max, while Decoy would use the
sum of burst sequences. The attacker knows that any
subsequence of the above is possibly the real page—
including the real and decoy pages themselves—but can-
not tell which is the real page.

Fake cells in a burst add to the bandwidth overhead,
but do not add to the time overhead (according to our
definition in Section 3.2). Fake bursts consisting of en-

USENIX Association 26th USENIX Security Symposium    1379



Non-Sensitive 
Cell Sequence

Sensitive 
Cell Sequence

Half-Duplex Mode

Burst Molding

Figure 1: Diagram showing the effect of Walkie-Talkie
on cell sequences. Black circles indicate outgoing cells
and white circles indicate incoming cells. Walkie-Talkie
consists of two steps: half-duplex mode and burst mold-
ing. Half-duplex mode groups cells of the same direction
together, while burst molding adds fake cells to make
sensitive and non-sensitive cell sequences the same.

tirely fake cells add to both the bandwidth and time over-
head. We show the effect of half-duplex communication
and burst molding in Figure 1 as an illustration.

4.3.1 Advantages

We will show that burst molding is more effective and
has lower overhead compared to other defenses in Sec-
tion 5. Burst molding has several other qualitative ad-
vantages, which we describe below:

Cover story.
With burst molding, the client knows and could control
what non-sensitive web pages have been used to disguise
her page accesses. This gives the client an explicit cover
story for her actions. This is not the case in BuFLO [8],
Tamaraw [5], and CS-BuFLO [4], where the client can-
not know or control which other page her cell sequence
appears to come from (rather, the client is only given the
assurance that such a page is likely to exist).

Base rate.
Web pages are accessed with vastly different base rates in
the real world, but most work in the field (including all
defenses) has ignored this fact. Our design specifically
takes this into account, as we use more popular (and less
sensitive) Alexa’s top pages as decoy pages. In the above
scenario, an attacker trying to claim the client visited the
sensitive page is highly likely to be wrong. We further
develop on how varying base rates affect our defense ef-
fectiveness in Section 6.2.

Minimizing computation.
Wang et al. pointed out that Supersequence requires the
solution of an NP-hard problem [31] to minimize band-
width overhead for cell sequences. Both Supersequence
and Glove use an approximation algorithm to this prob-
lem. This approximation algorithm is nevertheless slow,
and the client would have trouble computing the super-
sequence of a large number of cell sequences. For WT,
computation of burst supersequences is cheap: we sim-
ply take the maximums of several pairs of numbers.

Minimizing client information.
WT, Supersequence, and Glove all require the client to
know some decoy pages. The difference is that WT re-
quires burst sequences, whereas the latter two require cell
sequences. Burst sequences are much easier to store than
cell sequences, because we do not need to store the or-
dering of cells. On our data, we found that we only need
about 20 bytes of information to describe the burst se-
quence of a web page, whereas cell sequences require 36
kB of information on average; burst sequences are about
1800 times more efficient to store and deliver. For exam-
ple, the client can know the burst sequences of 100,000
potential decoy web pages by loading and storing 2 MB
of data. Currently, a Tor client needs to load about 8 MB
of data when starting up Tor for relay discovery, so this
amount is feasible on Tor. Tor directory authorities can
collaborate with each other to collect cell sequence data,
and send the data to clients along with relay data.

4.3.2 Choosing decoy pages

We can optimize the overhead of burst molding by choos-
ing decoy pages cleverly, instead of simply choosing a
random burst sequence. For each sensitive page s in
our set of known burst sequences, we pre-compute its
overhead when sent with each of the set of non-sensitive
pages in our set; suppose non-sensitive page s′ caused
the minimum overhead when sent with s (conceptually,
s and s′ are similar cell sequences). Then we pair s and
s′ together, such that when the client needs to visit s, she
uses s′ as a decoy page; similarly when the client needs
to visit s′, she uses s as a decoy page. Each decoy page
is only paired with one other page. The choice of de-
coy pages is then symmetric between sensitive and non-
sensitive pages, and reveals no information as to which
one triggered the cell sequence. This optimization is only
possible if the client knows the burst sequence of her real
page. In case she does not, she defaults to simply choos-
ing a decoy page randomly. Burst molding is therefore
most efficient when the set of decoy pages is large, and
we have seen that a large set of decoy pages is practical.

Some clients may not want to use sensitive pages as
decoys, as they would rather not attract the attention of
eavesdroppers monitoring sensitive page access. It is
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however necessary that sensitive pages should be used
as decoys; otherwise, whenever the attacker detects that
the client is visiting either a sensitive page or a non-
sensitive page, the attacker would know that the non-
sensitive page is a decoy. Further, we argue that the use
of a sensitive decoy page is no more compromising than
the use of proxies or encryption: for instance, the pres-
ence of ciphertext does not suggest that the plaintext is
noteworthy. In particular, the client is never made to visit
sensitive pages under WT, which is an advantage over the
defense of Panchenko et al. [23] She only adds fake cells
in a way that matches the burst sequences of sensitive
pages.

We evaluate a fixed set of decoy pages in this work,
though it is possible for the client to choose her own de-
coy pages. For example, a German-speaking client may
choose popular German pages to be more convincing.

4.4 Practical implementation

In WT, the client and proxy construct the supersequence
together by respectively adding fake cells and bursts to
their outgoing packets. The client chooses the decoy
page and sends the decoy burst sequence to the proxy
before starting a page visit. The proxy counts the num-
ber of sent packets in each burst and adds packets if it is
lower than the number of required packets in the decoy
burst sequence. Therefore, there is almost no computa-
tion overhead to the proxy. WT is deployable: any proxy
that is willing to carry and encrypt traffic for the client
would also be willing to mold it slightly for her privacy.

As a proof of concept, we implemented burst molding
by modifying the Tor client. Our implementation adds
143 lines of code to Tor. We added two new cell types,
a fake cell and a fake burst end cell. During a real burst,
the client sends fake cells before sending real cells. The
proxy sees the client’s fake cells, drops them, and sim-
ilarly starts sending fake cells before sending real cells.
During a fake burst, the client and the proxy both use
fake burst end cells to mark the end of each fake burst.

The chief difficulty in our implementation was that the
Tor client had to stop delivering cells in the middle of
fake bursts. Otherwise, the fake burst would look dif-
ferent from real bursts. We did so by adding a queue
to each Tor circuit, so that each cell that was created in
between fake bursts would be queued. At the end of a
fake burst (signalled by the fake burst end cell), the client
empties the queue and sends the queued Tor cells as the
next burst. Our implementation does not rely on any Tor-
specific mechanics, and could be applied to other proxy
technologies.

Our implementation assumes that that the client can ei-
ther collect burst sequences or receive them from some-
where else. (Our security analysis assumes that the at-

tacker is allowed to see them.) We describe an alterna-
tive construction of Walkie-Talkie for which the client
has no information about any real burst sequences in Ap-
pendix A.

4.5 Security

We analyze the security of Walkie-Talkie against an at-
tacker who wants to know when a client has visited some
sensitive page s. The client really visits s at probability p
and chooses s as a decoy page for some other page with
probability p′. It is plain to see that the attacker’s preci-
sion cannot exceed p/(p+(1− p)p′), as no attacker can
distinguish between real visits and decoy visits.

To achieve the maximum precision, the attacker must
be able to correctly determine the two subsequences that
make up any given cell sequence of WT. We will see
in the evaluation (Section 5.2) that no real attack comes
close to doing so. Even a theoretical perfect classifier
fails to do so; in Section 5.4.2, we show that there are
often hundreds if not thousands of possible realistic sub-
sequences (from a set of 10,000 subsequences) for any
given cell sequence of WT.

We extend our analysis to include the scenario that the
client may not have chosen s as a decoy page. Consider
two types of clients: clients who really visit s at some
probability p taken from distribution X , and clients who
only use s as a decoy with probability p′ taken from some
distribution X ′. To distinguish between those two types
of clients, the attacker must be able to judge if the client’s
visits of s come from X or X ′. It is not practical for the at-
tacker to do so, as the attacker cannot directly measure X ,
X changes over time in an unpredictable manner, many
page visits would include s as a subsequence (even with-
out choosing s as either a real page or a decoy page), and
the attacker’s estimation of X ′ is significantly affected
by observation error, especially if the set of decoy pages
is rotated regularly. Therefore, the attacker cannot de-
termine if any given client has ever really visited s, or
merely uses it as a decoy page.

5 Evaluation

Here we evaluate WT on data collected from Tor using
the methodology described next in Section 5.1. In Sec-
tion 5.2 we show that WT is effective against known WF
attacks. In Section 5.3 we compare our defense against
known defenses to show the significantly lower overhead
of WT. WT is in fact effective against all possible WF
attacks; we rigorously define this notion and quantify
WT’s effectiveness against all WF attacks in Section 5.4.
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5.1 Setup and Data Collection

We collected our data on Tor Browser 6.0 (based on Fire-
fox 38.7.1) with Tor 0.2.8.1. To collect burst sequences
for WT, we modified Tor Browser to enable half-duplex
communication, as described in Section 4.1.2.

We collected data from Alexa’s top pages [1]; we
use long-standing pages to make our results more re-
producible and comparable to other papers in the field.
We use 100 of the top pages as the non-sensitive set (af-
ter removing duplicates due to different localizations or
URLs of the same page), and we collected 100 instances
of each page in the non-sensitive set. We use the next
10,000 pages in Alexa’s top pages as the sensitive set. In
the closed-world scenario, we only use the former data
set, in which case the 100 top pages are sensitive instead;
to avoid confusion, in this case we refer to the top 100
pages as the closed-world set. We dropped any instance
with fewer than 50 cells (25 kB) in it, in order to discard
pages that failed to load.

We added the capability to generate fake cells on Tor
clients and relays, but we will not use the latter to achieve
burst molding in this section. Rather, we will simu-
late burst molding after collecting data using half-duplex
mode. This is because we want to present experimental
results for a large number of parameter choices for burst
molding, and re-collecting data for each set of parame-
ters is infeasible. Our simulated burst molding does not
consider network instability events such as packet loss
and proxy dropping; these events are rare and unlikely to
be caused by and therefore linkable to the server.

5.2 Walkie-Talkie versus Attacks

We implemented nine known WF attacks and tested each
of them against WT. Each WF attack we tested was the
state of the art at the time of its publication. Since many
of the older attacks were not designed for the open-world
scenario, we tested all of them in the closed-world sce-
nario for consistent comparison. We use 100 instances of
each of the 100 closed-world pages for training and test-
ing with 10-fold cross validation. Since the closed-world
scenario is strictly easier to attack than the open-world
scenario, our results are a conservative estimate of WT’s
effectiveness.

We show the results in Table 1 under two columns: the
original accuracy on a Tor data set without our defense
(Undefended), and the new accuracy on a Tor data set
with our defense (Defended).

Jaccard and MNBayes are highly inaccurate even in
our Undefended case because they rely on unique packet
lengths, but all of our cells have the same length (see
Section 3.1). Out of all the attacks, SVM by Panchenko
et al. [23] appears to suffer least from WT, perform-

Table 1: Closed-world accuracy (TPR) of known attacks
against Tor (Undefended), and Tor protected by WT (De-
fended).

Attack Undefended Defended
Jaccard [15] 0.01 0.01

Naive Bayes [15] 0.49 0.16
MNBayes [13] 0.03 0.02

SVM [23] 0.81 0.44
DLevenshtein [6] 0.94 0.19

OSAD [32] 0.97 0.25
FLevenshtein [32] 0.79 0.24

kNN [31] 0.95 0.28
CUMUL [22] 0.64 0.20

kFP [12] 0.86 0.41

Table 2: Open-world accuracy (TPR and FPR) of known
attacks against Tor (Undefended), and Tor protected by
WT (Defended).

True Positive Rate (TPR)
Attack Undefended Defended

SVM [23] 0.47 0.33
kNN [31] 0.98 0.68

CUMUL [22] 0.78 0.20

False Positive Rate (FPR)
Attack Undefended Defended

SVM [23] 0.05 0.20
kNN [31] 0.09 0.62

CUMUL [22] 0.04 0.35

ing slightly better than kNN [31]. Indeed, previous au-
thors [5,8] have noted the resilience of this attack against
random noise, possibly due to its use of a “kernel trick”
transforming distances between cell sequences, allowing
greater flexibility in ignoring dummy cells. While our
experiments on the closed-world scenario show that WT
is successful, WT truly shines in the more realistic open-
world scenario, which we investigate next.

We designed WT for the open world, as it attempts to
confuse sensitive and non-sensitive pages. We focus on
three WF attacks that have been successful in the open-
world scenario: SVM, kNN, and CUMUL, and present
their TPR and FPR in Table 2. We see that the FPR for
each attack increases significantly with the application
of WT. kNN adopts an aggressive strategy, achieving a
high TPR but suffering a high FPR, whereas CUMUL
and SVM both suffer a low TPR with a low FPR.

The base rate fallacy tells us that since the TPR and
FPR are similar for all three attacks, they are highly im-
precise if the base rate of sensitive page access is low.
This is an important consideration as realistically, clients
do not often visit sensitive pages. For example, if the rate
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Table 3: Accuracy of each feature category of kNN
against Tor (Undefended), and Tor protected by WT (De-
fended).

Category Undefended Defended
Sequence length 0.67 0.14

Location of outgoing cells 0.01 0.01
Ratio of outgoing cells 0.79 0.19

Cell bursts 0.81 0.27
Direction of initial cells 0.04 0.01

Intercell times 0.10 0.04

of sensitive page access is 5%, then kNN would have a
precision of only 5.5%; almost all of its sensitive classi-
fications are wrong. Despite having a decent recall rate,
kNN would be useless against WT as the attacker cannot
act upon its sensitive classifications.

We seek to delve deeper into the success of WT against
known WF attacks by examining how WT affects indi-
vidual features. To do so, we examine the feature cat-
egories defined by kNN [31]. We choose kNN because
its feature categories are diverse and understandable, and
it is one of the better attacks. Returning to the closed-
world scenario for this experiment, we measure the ef-
fectiveness of each individual category by calculating the
classification accuracy if only features from that category
were used for kNN classification. We contrast the effec-
tiveness of each category before and after WT is applied
on our cell sequences.

We plot the six feature categories and their results in
Table 3. Each feature category that was useful for clas-
sification in the Undefended case has been covered by
WT. Although WT makes no explicit attempt to cover
intercell times, the addition of fake cells appears to dis-
rupt intercell times as a feature. Comparing Table 3 and
the entry for kNN in Table 1, we see that the accuracy of
kNN under WT would be almost unchanged if only the
sizes of the cell bursts were used and other feature cate-
gories were discarded. This reflects the fact that WT ef-
fectively reduces the information available to the attacker
to simply the burst sequences.

5.3 Walkie-Talkie versus Defenses

In the other direction, we compare WT with a basket
of known website fingerprinting defenses in Table 4, in
terms of bandwidth overhead (BWOH), time overhead
(TOH), and accuracy of the kNN attack by Wang et
al. [31]. We use the kNN attack because it is the cur-
rent state-of-the-art attack on Tor. We implemented all
of these attacks based on their original authors’ descrip-
tions. We did not include some older defenses which had
no effect on cell sequences, as they only affected packet
sizes.

Table 4: Bandwidth overhead (BWOH) and time over-
head (TOH) of the best WF defenses, as well as the ac-
curacy of kNN on them in our data set.

Defense BWOH TOH kNN acc.
Adaptive [29] 193% 16% 0.67

Decoy [23] 100% 39% 0.25
BuFLO [8] 145% 180% 0.08

Supersequence [31] 222% 112% 0.05
Tamaraw [5] 103% 140% 0.05

WT (this work) 31% 34% 0.28

We can see from Table 4 that WT has a markedly
smaller bandwidth overhead (BWOH) and time over-
head (TOH) than many of the previous attacks, and it
is still able to defeat kNN. Across our data set, the band-
width overhead of WT is 31%± 16% and its time over-
head is 34%± 5%; different cell sequences vary signifi-
cantly in bandwidth overhead but not time overhead. Bu-
FLO, Supersequence, and Tamaraw are able to further
decrease kNN accuracy (0.05 to 0.08) compared to WT
(0.28), but this effectiveness comes at a high cost in over-
head. kNN’s higher accuracy against WT is not practi-
cally meaningful: nevertheless, the attacker cannot iden-
tify accesses to sensitive pages under WT due to the base
rate fallacy. For WT, any cell sequence always looks as if
it could have come from at least two different web pages
due to burst molding, which means that no WF attack
can reach an accuracy above 0.5. We develop this notion
further in Section 5.4.

Tamaraw, Supersequence, and WT are all tunable:
each defense can decrease its own time overhead by in-
creasing its bandwidth overhead and vice versa. Further-
more, each defense can increase either overhead to in-
crease the effectiveness of the defense against attacks.
A proper comparison of these defenses requires further
analysis. We focus on Tamaraw as it has a lower over-
head than Supersequence.

We investigate the trade-off between time overhead
and bandwidth overhead. To do so, we fix the effective-
ness of Tamaraw and WT to be the same against attacks
in general (see Section 5.4 for details on how we com-
pute this). For Tamaraw, the trade-off is achieved by
varying the fixed intercell times. For WT, the trade-off
is achieved by changing which cell sequences to choose
in burst molding. We can prefer cell sequences that min-
imize bandwidth overhead at the cost of time overhead
and vice versa. We plot the results in Figure 2. We find
that the range of possible overheads for WT is quite small
compared to Tamaraw. Half-duplex communication in-
duces a 30% time overhead in our experiments, so that is
the minimum value for WT. While the overhead of Tama-
raw can vary significantly, its range of both bandwidth
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Figure 2: Bandwidth and time overhead for Tamaraw and
WT.

and time overhead is in any case much higher than that of
WT. To reach a bandwidth overhead less than 100%, for
example, a time overhead over 150% is required, which
is a large increase in page load time.

To investigate the trade-off between overhead and ef-
fectiveness, we need a general notion of effectiveness for
all attacks, not just any given attack. We next develop
such a notion and show that WT is effective against all
WF attacks in general.

5.4 Defending against any classification at-
tack

Observing that many older defenses have not proven ef-
fective against newer attacks, authors in the field [4, 31]
have suggested that a defense should be designed to be
effective against all possible WF attacks. To do so, the
output cell sequences of some web pages should be ex-
actly the same as some other web pages. To be spe-
cific, the cell sequences should be the same length, and
the timing, direction, and size of all cells should be the
same.3 If this is achieved, then no attacker can distin-
guish between those web pages, independent of the clas-
sification mechanism they use.

The above is achieved in both Tamaraw and WT. We
compare Tamaraw and WT in terms of their effectiveness
against all possible WF attacks.

5.4.1 Maximum Attacker Accuracy

Borrowing terminology from the k-anonymity literature,
we say that two cell sequences s,s′ belong to the same
collision set C(s) if they become the same sequence af-
ter applying the defense. They may come from different
web pages; we denote the page a cell sequence comes
from as Page(s). An effective defense’s objective is to

3We do not need to ensure that the cells were received at the same
time including network noise; we only need to ensure that the cells were
attempted to be sent at the same time, as any timing difference then
would only indicate network noise and reveals no information about
the cells themselves.

cause cell sequences to collide. We measure the effec-
tiveness by defining a notion of Maximum Attacker Ac-
curacy (MAA). The MAA of a cell sequence is equal to:

MAA(s) =
|{s′ ∈C(s)|Page(s′) = Page(s)}|

|C(s)|

The MAA describes an attacker who, seeing that they
cannot distinguish between any of the cell sequences in
the collision set, decides to simply randomly guess which
page it is. On the other hand, if all cell sequences in
the collision set belong to the same page anyway, the
attacker’s guess will be exactly correct. The attacker
maximizes classification accuracy in the sense that they
know exactly which page each cell sequence belongs to
(Page(s) is known to the attacker for all s). No classifier’s
accuracy can exceed the MAA; the lower the MAA, the
more effective the defense. We thus favor the MAA as an
intuitive, attack-agnostic metric for measuring the mini-
mum effectiveness of a defense. Later, in Section 6.2,
we expand on the MAA by investigating WT in an open-
world scenario with different page visit rates; for now,
we evaluate WT on a simpler MAA.

It is easy to see that the MAA of Walkie-Talkie is 0.5.
Each cell sequence is in a collision set with exactly one
other cell sequence from a different page due to burst
molding. Furthermore, since the decoy page selection
mechanism is symmetric (Section 4.3.2), the collision set
does not reveal which cell sequence is the true cell se-
quence. However, if we increase the number of colliding
cell sequences, the MAA can lower further. We develop
this idea next.

5.4.2 Maximum Attacker Accuracy of WT

In the context of WT, the MAA is that of an attacker who
knows exactly which two pages can be the decoy page
and the real page, but not which is which. In other words,
he resorts to guessing one out of two pages. We can de-
crease his MAA by molding towards the supersequence
of several decoy cell sequences, not just one decoy cell
sequence.

The greater the number of cell sequences chosen, the
greater the overhead. We investigate the MAA of WT
and compare it with Tamaraw. We show the results in
Figure 3, plotting MAA against bandwidth overhead.
WT is generally more efficient even if the user desires
a very low MAA. The time overhead of WT goes up to
45% for the values in this graph, while it increases much
more quickly for Tamaraw, from 130% to 350%.

WT has another advantage over other WF defenses:
any defended cell sequence could have come from many
different web pages. This is because any subsequence of
a defended cell sequence could have been the original un-
defended cell sequence. Not all possibilities are equally
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Figure 4: Cumulative distribution frequency graph of
WT collision set sizes. A collision set of a defended
cell sequence is the set of undefended cell sequences that
could have generated it when the defense is applied.

likely: burst molding attempts to minimize overhead, so
from the attacker’s perspective, the true cell sequence is
not likely to be much smaller than the observed cell se-
quence. Nevertheless, this observation produces a con-
fusing effect on the attacker that has not been accounted
for in the MAA; that is, a realistic attacker’s accuracy is
likely to be lower than the MAA.

We evaluate this effect on our closed-world page set
of 100 pages and 100 instances each. For each defended
cell sequence, we calculate the number of possible unde-
fended cell sequences from other web pages that could
have generated it. We call this the collision set size. The
maximum collision set size is therefore 9900. We show
the cumulative distribution frequency graph in Figure 4.
There was only a .1% chance that the collision set size
was smaller than 10 (it was always at least 2 because of
burst molding), and a 4% chance that it was smaller than
100. The median collision set size was 860. We con-
trast this with Tamaraw, where on our data set there was
a 2% chance that the collision set size was smaller than
10 and a 13% chance it was smaller than 100; the largest
collision set size was 795. The attacker’s ability to rule
out possible web pages given a defended cell sequence is
much more limited under WT.

6 Extensions of Walkie-Talkie

In this section, we present several extensions of Walkie-
Talkie to defeat three WF attackers that are more ad-
vanced than that of previous work. In Section 6.1 we
describe multi-page attackers, who understand the rela-
tionship between several pages of the same site and can
determine when the client is on the same site. In Sec-
tion 6.2 we describe attackers who know that the client
visits pages at different base rates, and can estimate this
base rate. In Section 6.3 we investigate attackers that
can use timing information to defeat Walkie-Talkie. We
show that, with some modifications, WT can effectively
defend clients at little extra cost against all of these ad-
vanced attackers.

6.1 Defending against multi-page classifi-
cation

In Section 5, we analyzed Walkie-Talkie against an at-
tacker who classifies pages one at a time, independently
of any other page. A realistic attacker could leverage his
knowledge of the link structure of web sites to achieve
greater accuracy. For example, if the attacker knows a
priori that two web page accesses came from the same
site, then the attacker can more accurately identify what
site that is.

Defending against multi-page classification critically
relies on the ability to specify which non-sensitive decoy
page to use for each sensitive page. With this feature, we
can specify non-sensitive pages from the same site as de-
coys when the client is visiting sensitive pages from the
same site. BuFLO-based defenses are unable to specify
decoy pages, while Supersequence and Glove must suf-
fer significant overhead to do so. However, WT is able
to choose decoy pages with great efficiency. WT is thus
well suited as a defense against multi-page classification.
We modify WT so that it chooses decoy pages more clev-
erly. When the client is visiting sensitive pages from the
same site, WT also mimics non-sensitive pages from the
same site, each one of which is likely to lead to the next.

With the above modification, WT will succeed in de-
fending clients against multi-page attacks, which no pre-
vious WF defense has done. To demonstrate this, we will
evaluate its overhead and Maximum Attacker Accuracy
against multi-page attackers. We expect the overhead to
be higher than before, because the client has less freedom
of choice in page selection.

We experiment by configuring our Tor Browser client
to randomly follow links on each of Alexa’s top 100 sites.
Unfortunately, we do not know the true probabilities with
which real clients visit links from Alexa’s top 100 sites,
so we choose the next link uniformly randomly from the
set of all links on the page. The client stops after 10 page
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loads. Then, we test the bandwidth and time overhead of
a client attempting to decoy random sensitive pages with
those page loads. We find that, maintaining an MAA of
0.5, the bandwidth overhead necessary to defend against
a multi-page attacker increases from 31% to 53%, and
the time overhead increases from 34% to 42%. The in-
crease is small, and demonstrates that a client can effec-
tively defend herself against multi-page attacks as well,
with no decrease in minimal defense effectiveness.

6.2 Incorporating prior knowledge
For analytical simplicity, our experiments assumed a
client that visits all pages with the same likelihood; to
our knowledge, all other works in website fingerprinting
make this assumption. Realistically, a client would visit
pages with different probabilities, and the attacker may
have prior knowledge of such a distribution. Here, we
remove the previous assumption and adopt a model for
estimating page likelihood, assuming that the attacker
knows the client’s distribution fully. We examine how
this affects Walkie-Talkie.

We obtain basic estimated page view data for Alexa’s
top 10,000 sites from StatShow, and perform least-
squared approximation on the logarithm of the number
of page views. We attempted to approximate the number
of page views with the following function

Views = a · ebx · (x+1)c

In the above, a, b, and c are parameters, and x being the
index of the page (1 being most popular). We obtain the
parameters by performing Levenberg-Marquardt least-
squared approximation on the logarithm of the above
function, resulting in a = 36000, b = −0.000083, c =
−1.0. However, we found that the number of page views
dropped precipitously near the end of our data set, ren-
dering parameter estimation inaccurate. We believe this
is because our list of top sites was incomplete at the end
of the list. Instead of trying to fit all of our data, we fit the
top 5,000 sites and then extrapolate. The resultant curve
had a mean squared error of 0.0002 on the logarithm of
the number of page views.

We simulate clients that visit pages with probability
based on this curve, with no limit on the index of the
page. Our model suggests that 57% of all page views are
in the top 100 sites, and 40% of all page views are in the
next 10,000 sites. We use the former set as non-sensitive
decoy pages and the latter as monitored sensitive pages.
Considering an ambitious, powerful attacker who is al-
ways capable of identifying the potential decoy and sen-
sitive page in a WT-protected page access (but not which
is which), the attacker can achieve a precision of 41% by
simply guessing that all pages are sensitive (with a recall
of 100%). In a more realistic scenario when the attacker
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Figure 5: Maximum precision/recall graph for an at-
tacker on Tor defended by WT, after incorporating page
likelihood.

is interested in much fewer than 10,000 pages, the maxi-
mum precision would be proportionally lower.

We draw the attacker’s precision/recall curve by hav-
ing him cleverly choose to identify sensitive pages in de-
creasing order of precision, and gradually increasing the
set of such pages he was willing to classify. This gives
the attacker the maximum precision at each level of re-
call. We draw the graph in Figure 5. For instance, we
find that at 25% recall, the attacker has a maximum pre-
cision of 90%. Even with such a low recall, the attacker
frequently makes mistakes in identifying sensitive pages.
We can contrast this with kNN, which can achieve a pre-
cision of 99% with a recall of 80% on a non-defended Tor
data set [31]. The attacker’s precision does not change
even if the attacker had prior information indicating that
the client is not visiting certain monitored pages, as long
as the visit rate of other pages is unchanged.

We consider a page-view-sensitive variation of WT
where we also choose decoy pages based on the popu-
larity of the page, not just the potential overhead. This
method would come with a penalty to the overhead. We
take the value of maximum precision for at least 25%
recall, and we we plot the graph of maximum precision
to bandwidth overhead in Figure 6. (Time overhead in-
creased slowly from 34% to 42% within the range of
this graph.) The maximum precision starts at 90% and
then drops sharply to 64%. (The minimum precision
of simply randomly guessing if each page is sensitive
is 41%.) However, as we increase the weight for page
popularity further, we see that the maximum precision
increases counter-productively. This represents the case
where the client starts choosing only the first few most
popular pages, which limits her set of potential decoys,
weakening her defense.

6.3 Intercell timing
WT may have a subtle timing leak: the incoming cell rate
may leak information about the destination web page—
more precisely, the number of servers that are sending in-
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Figure 6: Maximum precision/bandwidth overhead
graph for an attacker on Tor defended by a page-view-
sensitive variation of WT. The variation decreases preci-
sion further for a small increase in bandwidth overhead.

formation simultaneously, and their possible processing
times before starting to send the page data. For outgo-
ing cells, timing leaks no information for WT, because
there is only one client and half-duplex communication
ensures that the client is dumping all the requests she can
send as quickly as possible, after which she falls silent.
In this section, we first argue with empirical evidence
why the incoming intercell timing leak of WT may not
be practically usable by any attacker. Nevertheless, we
then show how WT can be modified to cover any possi-
ble incoming intercell timing leak. Despite the lack of
empirical evidence that this timing leakage can be lever-
aged by any attacker, we provide such a modification to
preserve the theoretical guarantees of WT against future
WF attacks that may more cleverly use intercell timing.

Is timing useful for classification?

The results of this work have already suggested that
intercell timing is not useful: in Section 5.2 and Sec-
tion 5.3, we allowed WT to leak intercell timing, and WT
was nevertheless able to efficiently defeat known attacks.
In fact, WF researchers tend to avoid the use of intercell
timing in general: out of fourteen known WF attacks we
surveyed, we found that only three attacks used intercell
timing: the two oldest WF attacks [2, 29] (both are sig-
nificantly less effective than newer attacks on Tor), and
kNN [31]. We specifically saw in Table 3 that intercell
timing does not aid classification in kNN either. We ran
a further classification test using kNN only on extracted
intercell timing values of the top 100 pages, and achieved
a 0.5% TPR.

We suggest that this is because intercell timing is
highly inconsistent for the same site, but the distribu-
tion of timings is similar across different sites. Network
conditions fluctuate rapidly as proxies need to be rotated
frequently to safeguard anonymity. We constructed ker-
nel density estimators using Scott’s rule [28] on intercell
timing, and found that the resulting probability density
functions overlapped significantly. Experimentally, we
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Figure 7: 100 random intercell times from each of 50 top
pages. Each cross represents an intercell time. Note that
the y-axis is logarithmic.

found that the attacker could only achieve a maximum
2% accuracy on the top 100 pages by choosing the most
likely page for each sampled intercell timing value.

To illustrate this point visually, we plotted 100 ran-
dom intercell times from each of the top 50 pages4 in
Figure 7, in ascending order of mean intercell times. Fig-
ure 7 suggests that intercell times vary significantly, but
their patterns are not noticeably different across different
sites. This shows that individual intercell times are not
correlated with the true page of a cell sequence.

Equalizing intercell timing
We have nevertheless designed an extension of WT to

hide all timing information, though this comes at the cost
of a greater bandwidth and time overhead.

One solution would be to have the proxy behave the
same way as the client: it queues all received cells in
each burst until the servers have sent all of their data,
and sends them all at once back to the client. In this
case, timing would contain no information, and this can
be implemented with a small time overhead and no band-
width overhead. However, this implementation may not
be practical, because it would require proxies to read
client cells to determine when bursts end.

Our timing fix is inspired by a similar mechanism in
Tamaraw. We choose a fixed cell rate rcontrol such that
whenever it is the proxy’s turn to send data, the proxy
attempts to deliver rcontrol incoming cells per second. If
there is no data to send when a cell is due, the proxy
generates a dummy cell, which will be dropped by the
client. This covers the incoming intercell timing leak
as the intercell time will always be rcontrol for incoming
cells. Varying rcontrol , we evaluate the added overhead of
timing control in Figure 8. For example, we can equalize
intercell timing at a cost of 50% bandwidth overhead and
36% time overhead.

We can use the same dummy cells described in Sec-
tion 4.3 for both burst molding and equalizing intercell
timing, without compromising either objective. This

4We used 50 pages instead of our full 100 pages so that the graph
would be clear.
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Figure 8: Possible bandwidth and time overhead cost for
equalizing intercell timing, obtained by varying rcontrol .

means that, effectively, the bandwidth overhead values
for timing control and burst molding do not add to-
gether in WT; instead, the maximum of the two becomes
the bandwidth overhead of WT. The overhead of WT
with intercell timing equalized would be 50% bandwidth
overhead and 66% time overhead, which is still much
lower than known defenses (Table 4).

7 Conclusion

In this paper, we presented Walkie-Talkie: a flexible,
easy-to-use defense with low overhead that can defend
web clients against all website fingerprinting attacks.
Walkie-Talkie consists of two components: half-duplex
communication and burst molding. Half-duplex commu-
nication produces burst sequences that are concise and
easy to manipulate, which allows burst molding to mimic
non-sensitive web pages at minimal overhead. Walkie-
Talkie is highly effective against all known attacks at
overhead costs much lower than all known effective de-
fenses. Furthermore, it is capable of defending against all
possible WF attacks, because pairs of sensitive and non-
sensitive web pages will be molded to the same cell se-
quence under WT. We have implemented Walkie-Talkie
so that it functions on the Tor client and Tor nodes: in
general, it can be implemented on any proxy network
(such as VPNs).

We also considered advanced attackers beyond previ-
ous work in website fingerprinting, who are able to lever-
age site link information, page visit rates, and timing in-
formation to strengthen their attacks. Walkie-Talkie can
defend against all these types of attacks effectively, as it
gives the client the freedom to choose which pages to use
as decoys. It remains to be seen whether Walkie-Talkie
would be useful as well against other advanced attacks,
such as active adversaries and dynamic content identifi-
cation.
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A Removing the need for client informa-
tion

One limitation of burst molding is that the client needs to
know the burst sequences of some non-sensitive pages.
While it is highly practical to deliver such information
to clients on an anonymity network like Tor (see Sec-
tion 4.3.1), we have also designed a variation of Walkie-
Talkie that is useful on networks where there may not be
a party that can deliver burst sequence information.

In this variation of Walkie-Talkie, burst molding is
random: instead of adding cells according to the superse-
quence of sensitive and non-sensitive pages, we add cells
randomly. We refer to this variation of Walkie-Talkie
as Random-WT. Random-WT is less efficient, but it can
also defend against all possible WF attacks.

A.1 Design of Random-WT

Given a cell sequence s = (b1,b2,b3, ...,b|s|) with bi =
(bi+ ,bi−), we apply defense D as follows to produce
D(s):

1. Padding real bursts: From two uniform distributions
Xi+ and Xi−, we draw xi+ and xi− respectively, and
add them to bi, such that b̂i = (bi++xi+,bi−+xi−).

2. Adding fake bursts: From two uniform distributions
Xid+ and Xid−, we draw xid+ and xid−, and generate
a new fake burst b̂i = (xid+,xid−). In a fake burst, all
outgoing and incoming cells are fake cells. We add
fake bursts at random with probability p f ake before
each real burst of cells.

Random-WT is therefore defined by the bounds of the
uniform distributions Xi+, Xi−, Xid+, Xid−, as well as the
probability p f ake. We chose uniform distributions after
preliminary experiments and analysis indicated that uni-
form distributions are highly efficient at defending burst
sequences. The freedom of choice allows Random-WT
to be tunable (i.e., a client may wish to increase collision
rate by increasing overhead).

The fact that any burst in an observed cell sequence is
equally likely to be fake is a powerful feature of Random-
WT. In practice, we found that many cell sequences have
multiple bursts with few cells and one or two large bursts
with many cells. Random-WT covers the position of
large bursts in the cell sequence, so that they cannot be
leveraged by the attacker.
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Figure 9: Bandwidth overhead and MAA for Random-
WT, WT and Tamaraw across a range of parameters. No
WF attack can achieve a classification accuracy above
the MAA.

Fake bursts should be similar in length to real bursts so
as to maximize collision; we do not want the attacker to
be able to distinguish between real bursts and fake bursts
with high accuracy. In our experiments, we set the lower
bound of the uniform distributions for Xi+, Xi−, Xid+, and
Xid− to be 0. This minimizes overhead without affecting
effectiveness. We set Xid+ and Xid− to fit the observed
burst sizes of real cell sequences. Then, we vary the max-
imum range of Xi+ and Xi−, as well as p f ake, to obtain
a range of overhead and effectiveness values, which we
present below.

A.2 Experimental analysis of Random-WT
We analyze the MAA of Random-WT using the same
experimental methodology in Section 5.4. We draw Fig-
ure 9 by taking Figure 3 and adding a line for Random-
WT to compare with basic WT and Tamaraw. Figure 9
does not plot the time overhead, which is around 30%
throughout the graph for both Random-WT and WT, and
ranging from 130% to 350% for Tamaraw.

Though Figure 9 shows that the MAA of Random-WT
is worse than both WT and Tamaraw, it is still signifi-
cant enough to confuse an attacker, especially if the at-
tacker needs a low false positive rate (for example, when
attempting to identify accesses to rare pages). An ad-
vantage of both WT and Random-WT over Tamaraw is
that they are not sensitive to network conditions; pre-
vious work has shown that Tamaraw performs worse
than expected if network conditions are not correctly pre-
dicted [4].

B Publication of code and data

To ensure that our results can be reproduced, we publish
the following:

• Our implementation of Walkie-Talkie: the Firefox
code that modifies the browser to enable half-duplex

communication, the Tor code that modifies the Tor
client to enable molding, and our experiment code
for WT.

• Our experimental data sets: the cell sequences we
collected over Tor with and without half-duplex
communication.

• Our implementations of previous attacks and de-
fenses.

The code and data are available at
https://crysp.uwaterloo.ca/software/
webfingerprint/.
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Abstract

Online tracking is evolving from browser- and device-
tracking to people-tracking. As users are increasingly access-
ing the Internet from multiple devices this new paradigm
of tracking—in most cases for purposes of advertising—is
aimed at crossing the boundary between a user’s individual
devices and browsers. It establishes a person-centric view
of a user across devices and seeks to combine the input from
various data sources into an individual and comprehensive
user profile. By its very nature such cross-device tracking can
principally reveal a complete picture of a person and, thus,
become more privacy-invasive than the siloed tracking via
HTTP cookies or other traditional and more limited tracking
mechanisms. In this study we are exploring cross-device
tracking techniques as well as their privacy implications.

Particularly, we demonstrate a method to detect the occur-
rence of cross-device tracking, and, based on a cross-device
tracking dataset that we collected from 126 Internet users,
we explore the prevalence of cross-device trackers on mobile
and desktop devices. We show that the similarity of IP
addresses and Internet history for a user’s devices gives rise
to a matching rate of F-1 = 0.91 for connecting a mobile to
a desktop device in our dataset. This finding is especially
noteworthy in light of the increase in learning power that
cross-device companies may achieve by leveraging user data
from more than one device. Given these privacy implications
of cross-device tracking we also examine compliance with
applicable self-regulation for 40 cross-device companies and
find that some are not transparent about their practices.

1 Introduction

A recent study by Google showed that 98% of surveyed Inter-
net users in the U.S. use multiple devices on a daily basis, and
90% switch devices sequentially to accomplish a task over

∗Most of the work on which we are reporting was done when Sebastian
Zimmeck and Hyungtae Kim were at Columbia University.

Figure 1: Identifying and correlating Sally’s phone and desktop
among all devices on the Internet allows cross-device companies
to target ads on both of her devices.

time [37]. From an ad network’s1 perspective these develop-
ments create a challenging environment as they increase the
complexity of targeting advertising to specific users. Attribut-
ing conversions of ads to actual purchases and frequency
capping to avoid showing a user the same ad over and over
again becomes more difficult as well. However, there is a
solution to these challenges: cross-device tracking. This tech-
nique presents a fundamental shift from device tracking to
people tracking. As shown in Figure 1, it principally allows
ad networks to follow a user on his or her online journey
through all devices. However, at the same time, cross-device
tracking of users is potentially more privacy-invasive than
the tracking of individual devices without connecting them.

In this study we are exploring the emerging cross-device
tracking ecosystem from a privacy perspective. Particularly,
we are interested in studying the tracking techniques used
by cross-device companies,2 understanding the extent to

1We are using the term ad network broadly encompassing ad exchanges,
demand/supply side platforms, and other companies in the online ad space.

2The term cross-device company encompasses ad networks, analytics ser-
vices, and other companies that are using cross-device tracking techniques.
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which cross-device tracking occurs on desktop and mobile
devices, and evaluating the privacy implications of machine
learning applications to cross-device data. We understand
cross-device tracking to mean the tracing of an individual’s
usage of the Internet on multiple devices and combining all
resulting information into one comprehensive user profile.

Cross-device tracking exists in a deterministic and
probabilistic variant. The former is based on a first-party
relationship that often permits user identification with
certainty, for example, when a user logs into a social network
account from multiple devices. For the majority of our study
we focus on probabilistic cross-device tracking, which is
used by services that are limited to a third-party relationship
with users. To that end, ad networks and analytics services
oftentimes cooperate with web and app publishers that
have a first-party user relationship and deploy tracking
mechanisms on their properties. Applying machine learning
they then correlate the various data streams to identify those
belonging to the same users. Probabilistic and deterministic
cross-device tracking approaches are often combined as
companies of different provenance collaborate and exchange
data [32]. While we examine cross-device tracking via
HTTP cookies, pixel tags, and other traditional mechanisms,
such tracking can also occur via ultrasound signals [7,31,59]
or other side channels, which we do not examine here.

As some cross-device companies match billions of
devices [22] and social networks have cross-device function-
ality naturally built into their systems lawmakers began to
take notice. In particular, the U.S. Federal Trade Commission
(FTC) hosted a cross-device workshop [29] facilitating
an initial public discussion on the privacy implications of
this form of Internet tracking. The regulators discussed
with industry representatives, academics, and various other
stakeholders privacy risks, consumer transparency, and
effective industry self-regulation. They followed up with
privacy recommendations for cross-device companies [32].
As evidenced by a recent case on cross-device tracking via
ultrasound signals and the withdrawal of the service from the
U.S. market, the FTC is determined to enforce the existing
laws and regulations [31, 32], however, is hampered by
insufficient insight into the used technologies [30].

In this study we are exploring cross-device tracking
through the lens of privacy contributing the following:

1. By means of a brief case study we introduce a method
for detecting cross-device trackers. We find statistical
significance for various ad networks’ capabilities of
targeting mobile users on their desktop. (§ 3.)

2. We make publicly available a cross-device tracking
dataset as well as software that we used for collecting
the data.3 We give a statistical overview of cross-device
usage patterns for the users in our dataset. (§ 4.)

3The dataset and software can be found at https://github.com/

SebastianZimmeck/Cross_Device_Tracking.

3. We design a basic algorithm and evaluate features
and parameters for probabilistic cross-device tracking
based on relevant patent and other industry documents.
Using IP addresses, web domains, and app domains
our techniques achieve an F-1 score of 0.91 on the
collected data. (§ 5.)

4. Leveraging our dataset we analyze how the availability
of both mobile and desktop data may impact the
prediction of users’ demographics and interests.
Specifically, we examine predictions for gender and
interest in finance. (§ 6.)

5. Based on our dataset we calculate the penetration of
cross-device tracking on the Internet and conclude
that some cross-device companies seem to have broad
insight into Internet users’ cross-device usage. (§ 7.)

6. Finally, we explore the efficacy of the industry’s self-
regulation and find that some cross-device companies
do not transparently disclose their practices. (§ 8.)

2 Related Work

Our study is based on work in online tracking (§ 2.1), human-
computer interaction (§ 2.2), and machine learning (§ 2.3).

2.1 Online Tracking
Much research was published on online tracking. Notably,
Roesner et al. [72] developed a tracker taxonomy and exam-
ined how tracking occurs in the wild. Lerner et al. [56] pro-
vided a historical perspective of tracker evolution over time.
However, few existing efforts discuss tracking across devices.
Similar to traditional tracking such cross-device tracking
requires the identification of individual users’ browser
instances. In this regard, Englehardt et al. [27] point out that
cookies allow for linking a user’s visits to different websites
even if his or her device IP address varies. They conducted
a large-scale measurement of traditional online tracking
using their OpenWPM platform [26]. Cross-device tracking
further requires the correlation of users’ different devices.
As Olejnik et al. [67] remarked, browsing histories could
potentially identify the same user across multiple devices.

In the closest work to ours Brookman and his co-authors
from the FTC [11] examine the potential for device
correlation by surveying the occurrence of cross-device
trackers on 100 popular websites. They also evaluate the
extent to which cross-device companies notify users of their
practices. While this inquiry into privacy transparency is
part of our study as well (§ 8), we extend their work. In
particular, we provide statistical support for the occurrence
of cross-device tracking (§ 3), evaluate cross-device tracking
techniques (§ 5), analyze the potential increase in learning
power from cross-device data (§ 6), and examine the
penetration of cross-device trackers (§ 7); all on real user
data (§ 4). Our study is also complementary to the work of
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Mavroudis et al. [59] and Arp et al. [7], who present analyses,
attacks, and defenses for ultrasound-based cross-device
tracking. We are exploring cross-device tracking based on
cookies and other traditional tracking mechanisms.

If a browser does not accept cookies, it still can be tracked
via device fingerprinting as initially shown by Kohno et
al. [51], Eckersley et al. [25], and extensively surveyed by
Lerner et al. [56]. Kurtz et al. [52] and Gulyás et al. [39]
showed that mobile device fingerprints are often unique, dis-
tinguishable, and re-identifiable. Fingerprinting can be based
on sensors [19] and, notably for our purposes, can be em-
ployed across browsers [15]. With their FPDetective Acar et
al. [2] conducted a large-scale study of device fingerprinting.
Nikiforakis et al. [66] provided insight into the practices of
three popular browser-fingerprinting libraries and introduced
PriVaricator [65], which is a defense against browser finger-
printing based on randomization. Three advanced tracking
mechanisms—canvas fingerprinting, evercookies, and use of
cookie syncing—were investigated by Acar et al. [1]. In our
study we are now exploring the extent to which fingerprinting
can play a role in cross-device tracking (§§ 5.1, 7.1). Various
works on website fingerprinting [12,13,17,41,44,69] inform
our study in this regard as well.

As we conduct a first cross-device tracking data flow
experiment our work also relates to similar experiments and
methodologies in other areas of online tracking. Particularly,
our work relates to the study of Meng et al. [60], who
showed that there is a correlation between Google ads and
users’ profiles and evaluated the likelihood of learning users’
sensitive information. Focusing on Google as well, Lécuyer
et al. [54, 55] were able to show a correlation between
users’ e-mail content and ads served to them. Further, Book
and Wallach [10] collected a set of about 225K ads on 32
simulated devices and analyzed how the ads were targeted
by correlating them to targeting profiles. In addition, Zarras
et al. [85] performed a large-scale study on the security
of ad serving, and Meng et al. [61] presented an ad fraud
attack that enables publishers to increase their ad revenue.
In our experiment we follow the recommendations given
for information flow experiments by Tschantz et al [81].

2.2 Human-Computer Interaction

While there are only few online tracking studies investigating
how users are tracked across devices, various efforts on
human-computer interaction are informative for our purposes.
The goal of these studies is to improve website navigation,
browser prediction of user destinations, and search result
relevance for search engines [3]. To that end, we leverage the
insight of some studies focusing on website revisit patterns
and highlighting the identifying potential of such revisits. In
this regard, Tauscher and Greenberg [78] found that 58%
of a user’s visits to websites constitute revisits. People tend
to access only a few pages frequently and browse in small

clusters of related pages. Adar et al’s [3] analysis reveals
various patterns of revisits, each with unique behavioral,
content, and structural characteristics.

Some studies took a closer look at website revisits across
devices. Tossell et al. [79] were able to detect that revisits
occurred very infrequently with approximately 25% of
URLs revisited by each user. They further found that,
compared to desktops, mobile browsers are accessed less
frequently, for shorter durations, and to visit fewer pages.
Users seem to rely on apps instead. Different from websites,
apps have a revisit rate of 97.1% driven by a high number
of visits to the five most frequently accessed apps. It appears
that mobile web use is more concentrated and narrow than
its desktop counterpart. Indeed, Kamvar et al.’s work [46]
confirms this conjecture for the use of web search.

In their quest for improving the sharing of bookmarks and
other information across devices Kane et al. [47] found that
users tend to visit many of the same domains on both their
mobile phones and desktops. Specifically, they found that a
median of 75.4% of the domains viewed on the phone were
also viewed on the desktop, and a median of 13.1% of the do-
mains viewed on the desktop were also viewed on the phone.
Despite the differing browsing habits across devices, partic-
ularly, the higher number of websites visited on desktops,
they conclude that users’ web browsing activities are similar
across devices. However, users do not use all of their devices
in the same way but rather assign them different roles, as
Dearman and Pierce [20] found. As we will explore further
(§ 6), these different roles could be a reason for why learning
about users’ interests can be more comprehensive with data
from more than one device. While the sharing of devices
can also principally impact cross-device companies’ ability
to track users across those, Matthew et al.’s study [58] found
that phones were never shared among multiple individuals
for mutual use, and computers were shared moderately.

2.3 Machine Learning

Different from traditional types of online tracking cross-
device tracking is often based on machine learning. In 2015,
Drawbridge [22], an ad network specialized on cross-device
tracking, hosted the ICDM 2015: Drawbridge Cross-Device
Connections competition asking competition participants to
leverage machine learning techniques to correlate devices to
users [23]. The competition participants were given access
to an anonymized proprietary dataset with mostly hidden fea-
tures. The competition generated various short papers [14,48,
50,53,62,71,75,82] that take the perspective of an ad network.
They focus on improving machine learning performance for
a narrow set of features; essentially, only exploiting similarity
of IP addresses. Our evaluation of tracking techniques broad-
ens this research and is centered on privacy implications.

The first place solution of Walthers [82], which reached
an F-0.5 score of 0.9, is in some ways representative for the
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1. google.com
2. google.com; buy pet food - Google Search
3. m.petsmart.com; PetSmart
4. m.petsmart.com; Food
5. m.petsmart.com; Fancy Feast Classic Adult Cat
6. google.com; petco - Google Search
7. m.petco.com; Pet Supplies, Pet Food, and Pet P.
8. m.petco.com; Cat Furniture: Cat Trees, Towers
9. m.petco.com; Cat Food
10. m.petco.com; Browse & Buy Hill’s Science Diet
11. m.petco.com; Hills Science Diet Adult Perfect W.
12. instinctpetfood.com; Instinct Pet Food
13. instinctpetfood.com; Instinct Pet Food For Your Cat
14. instinctpetfood.com; Instinct Raw for Cats
15. google.com; beneful cat food - Google Search
16. google.com; instacart
17. google.com
18. google.com; buy watch - Google Search
19. brilliantearth.com; Beyond Conflict Free Diamonds
20. google.com; buy refrigerator - Google Search
21. offers.geappliances.com; Drimmers - Offers GE A.
22. m.homedepot.com; Top Freezer Refrigerators - Re.
23. m.homedepot.com; Refrigerators
24. searshometownstores.com; Refrigerators & Freez.
25. searsoutlet.com; Refrigerators & Freezers for Sale
26. amazon.com
27. amazon.com; search for refrigerator
28. amazon.com; LG LSXS26366S 35-Inch Side
29. shoppermart.net; ShopperMart.net: Find the best
30. samsung.com; Galaxy TabPro S - 2-in-1 Tablet

Figure 2: The mobile browser history (without visits to the
Alexa-ranked homepages in the first two months of the experiment).
The list shows the domains and the titles of the webpages, if any.

A. PetSmart

nytimes.com

adsense.com

Google AdSense

Google Display Network

B. Miele/Abt

latimes.com

as.chango.com

Rubicon Project 

Tapad

C. Kate Spade

aol.com

redirectingat.com

Skimlinks 

Lotame

Figure 3: Selected ads served to the desktop browser after visiting
the sites in Figure 2 on the mobile browser. We had not seen any
of these ads in our desktop browser session two months before.

approaches taken in the competition. Comparable to other
participants’ solutions [14,50,53], it identified IP addresses
that devices of the same user were connected to as the most
important feature. Intuitively, as conjectured by Cao et
al. [14], devices with similar IP footprints are more likely
to be used by the same individual. Thus, the simple reliance
on IP address history can already lead to an F-0.5 score of
0.86 [14]. However, various studies found that not all IP
addresses are equally meaningful, in particular, because the
same public or cellular IP address can be assigned to many
different users at different times [48,82].

Participants in the Drawbridge competition [23] did not
find online history particularly useful for their task. They re-
ported that correlating online history across devices provided
only minimal gain [50, 53]. This seemingly contradictory
result to the previously discussed usability studies, which
hinted at cross-device website revisit patterns as an impor-
tant feature, could be due to the fact that the Drawbridge
dataset [45] provided only app history for mobile devices.
Thus, the absence of mobile web history could be a reason
for participants’ inability to reach Drawbridge’s precision of
0.97 [22]. While the Drawbridge competition was about the
correlation of different user devices, it did not address the pur-
pose of the correlation: the prediction of users’ demographics
and interests, which we will discuss in our study (§ 6).

3 Detecting Cross-device Trackers

In order to evaluate the occurrence of cross-device tracking
in the wild we conducted an exploratory case study.
Purpose. It could be argued that our case study is aimed at
the obvious: detecting the existence of cross-device tracking.
However, we emphasize that it is our intention to show a
procedure for identifying unknown cross-device companies.
The procedure is also intended to be used for determining
whether known companies are adhering to the limits that
(self-)regulation imposes on them, in particular, as users are
given the right to opt out from cross-device tracking [21].
Our case study provides an initial information flow
experiment in the cross-device space. However, we caution
that we leave a comprehensive analysis, which was done in
other areas of online tracking [54,55], for further research.
Establishing an IP Address Connection. We began our
experiment by connecting two devices—a desktop and a
mobile device—to the same router and modem. Using a
fresh desktop browser without any user data we visited the
homepages of five randomly selected news websites from
the Alexa rankings [4]—aol.com, latimes.com, nytimes.com,
wsj.com, and washingtonpost.com (the test homepages). We
refreshed each test homepage ten times, as recommended
for these type of information flow experiments [81], and
observed the ads that were served. We also set up a desktop
device with a fresh browser connected to a different router
and modem as control instance. In the following two months
we occasionally and randomly visited 100 highly ranked
homepages [4] on our fresh mobile browser.
Observing Cross-device Ads. After two months we used
the mobile browser to visit the websites shown in Figure 2.
We searched Google for various consumer products and
clicked on ads served for those on the search results pages.
After a few hours we switched to our desktop browser and
accessed the test homepages. We refreshed each ten times.
Some of the served ads, which we had not seen before, were
for products we had searched for on the mobile device. Fig-
ure 3 shows the ads and associated information, that is, the
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name of the ad (e.g., PetSmart), the domain on which it was
served (e.g., nytimes.com), the domain of the ad server (e.g.,
adsense.com), the ad network serving the ad (e.g., Google Ad-
Sense), and the involved cross-device tracking provider (e.g.,
Google Display Network).4 Our results suggest that the ad
networks serving the ads had learned that the user who did the
search on the phone was the same as the user on the desktop.

To assess the similarity of ads we categorized each ad
according to Google ad categories [35]. Then, based on an
exact one-tailed permutation test, as recommended [81], we
compared the ad distribution served on the desktop browser
to the ad distribution served on the desktop control browser.
We evaluated the null hypothesis that both distributions do
not differ from each other at the 0.05 significance level.
However, the result of p = 0.02 indicates that the null
hypothesis should be rejected and that the deviation of both
distributions is statistically significant at the 0.05 level. This
finding suggests that we successfully identified instances of
cross-device tracking. We also found mobile cookie syncing
between Rubicon Project and Tapad. However, confirming
earlier observations [11], we did not detect any cookie
syncing across devices.
Direction of Ad Serving and App-Web Correlation. In
addition to cross-device tracking from mobile to desktop
we were further interested in the reverse direction. However,
searching Google on our desktop for buying products did not
seem to lead to ads for these products on our mobile browser.
One explanation might be that the ad serving was limited
to one direction—from mobile to desktop— as users tend to
move from a smaller to a larger screen [33,37]. Another ex-
planation could be that ad networks attached more weight to
the history on the device to which an ad was served and less
to other connected devices. Further, we might simply have
missed all cross-device campaigns at the time for the prod-
ucts we searched for. Finally, we were not able to notice any
correlation in ad serving in either direction when repeating
our experiment with mobile apps instead of websites.

4 The Cross-device Tracking Dataset

A major reason for the scarcity of academic research in
cross-device tracking is the unavailability of data. Generally,
only proprietary industry data exists.5 Thus, we collected
our own cross-device tracking dataset (the CDT dataset).
Here we describe how we collected the data and highlight
cross-device usage patterns of the users in the dataset.

4We assume that the Google Display Network covers sites using
AdSense, DoubleClick, Blogger, YouTube, and AdMob. On one side, this
is likely an overestimation as not all sites using these trackers are part of
the Google Display Network. On the other side, it is an underestimation
as there are sites that are part of it, however, not using any of the trackers.
In total, the Google Display Network covers over two million sites [34].

5The Drawbridge dataset [45] was only accessible to participants of the
Drawbridge competition [23] and limited in its use for that purpose.

Desktop Web Mobile Web Mobile Apps
Users 125 102 104
IPs 1,994 5,784
Domains 23,517 3,876 845

Table 1: Summary statistics showing the total number of unique
users, IP addresses, and domains in the CDT dataset.

Desktop Web Mobile Web Mobile Apps
25th, 50th, 75th 25th, 50th, 75th 25th, 50th, 75th

Days 19, 22, 26 9, 17, 23 19, 22, 24
IPs 6, 17, 24 25, 63, 92
Domains 149, 251, 374 9, 31, 70 19, 30, 44

Table 2: Summary statistics for the CDT dataset per user showing
the unique values at the 25th, 50th, 75th percentiles. The data
was collected for the same continuous time period for every user.
However, not every user made use of his or her devices every day.

Data Collection Procedure. Before we began the data col-
lection we obtained approval from Columbia University’s In-
stitutional Review Board (IRB). We built our data collection
system such that interested users could sign up on our project
website, at which point we also took a device fingerprint for
each signed up device. We asked users to supply basic infor-
mation on their demographics (e.g., age and gender), interests
(e.g., finance, games, shopping) [36], and personas (e.g., avid
runners, bookworms, pet owners) [84]. In order to capture
users’ mobile and desktop history we provided them with
browser extensions and an Android app that we developed
for automatically collecting such information.6 Details on the
types of information that we collected are contained in Ap-
pendix A. We do not have any indication that users behaved
differently in our study than under real-world conditions.

We only signed up users of Android phones with
Android’s native browser, Google Chrome, or the Samsung
S-Browser. We did not support iOS or other operating
systems. Our app requires Android 4.0.3 and runs without
root access. Every minute it checks for a new foreground app
running on the device as well as new entries in the browsing
history database of the phones’ browsers. If new apps or
URLs are detected, a new history datapoint is transmitted
to our server.7 On the desktop side we provided users of all
operating systems with data collection browser extensions
for Google Chrome, Mozilla Firefox, and Opera. At the
conclusion of the study we rewarded each user with an
Amazon gift card for $15 to $50 depending on the amount
of data we received from them.
Dataset Characteristics. We collected data from 126 users.
Tables 1 and 2 show further details. We signed up 125
desktop and 108 mobile users with an intersection of 107

6When we refer to desktops, we include laptops but exclude tablets.
7For some users with Google Chrome and Android 6.0 or higher we

did not receive the full browsing history due to browser restrictions. We
asked affected users to send us their history manually.
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users from whom we obtained both mobile and desktop data.
While our data faithfully represents that not every Internet
user has multiple devices, it does not reflect that users in the
real world can have more than two devices. However, despite
this limitation we believe that our dataset is generally an
accurate reflection of real multi-device usage on the Internet
because the vast majority of mobile devices is associated with
only one desktop browser [71]. Therefore, it seems plausible
to adopt this understanding of the problem here as well.
Further, only 3/108 (3%) of mobile users and 4/125 (3%)
of desktop users in our study reported that they are sharing
their devices. As this result seems in line with findings that
phones are never shared for mutual use and that computers
are only shared for a moderate amount [58], it appears that
our data is a realistic representation in this regard.

118 users in our study were affiliates of Columbia Uni-
versity, mostly students. Based on this population we believe
that our data is more homogeneous than a data from, say, the
general population of New York City. However, we also note
that our users are less likely to encounter typical restrictions
of device use that many employees face in the workplace,
e.g., corporate networks blocking certain websites. For the
median user we collected about three weeks of data of which
IP addresses and domains are of particular importance for
probabilistic cross-device tracking because they can be used
to measure the similarity between devices (§ 5.2).

It is noteworthy that the total unique mobile IP count
(5,784) is nearly three times the total unique desktop IP
count (1,994), which reflects mobile usage on the go. It
should be noted, though, that the real unique mobile IP
count is likely even higher as our method did not allow us
to collect mobile IPs with every datapoint. However, the
high number of unique desktop domains (23,517), compared
to the homogeneous usage of apps (845), underscores the
diversity of desktop browsing. While it is much more diverse
in terms of domains (3,876), mobile web usage pales in
comparison to app usage. As shown by the 25th, 50th, and
75th percentiles, the median user accessed the mobile web
only for 17 days visiting only 31 unique domains.8 While
app usage is more popular with a median of 22 days, the
median usage of 30 unique apps is comparable to that of the
mobile web. However, the median number of unique mobile
IP addresses (63) more than triples desktop IP addresses (17).

Figure 4 shows that many users visit a relatively large
number of unique mobile device IP addresses and desktop
web domains. However, there does not seem to be a
correlation between desktop and mobile devices to the effect
that lower usage of one would imply more usage of the other
or that both are used to an equal degree.

8A day was counted if a user’s device had at least one desktop
web, mobile web, or app access on a given day. Also, uniqueness of
a domain is dependent on its top and second level. Thus, for example,
we treat facebook.com and linkedin.com as different domains, however,
linkedin.com and blog.linkedin.com as the same domain.
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Figure 4: Unique IP address (top) and web domain (bottom) count
for each user in our dataset for whom we had both mobile and
desktop data. For example, Peggy has 82 unique mobile and 35
unique desktop IP addresses (top). To the right of Peggy about two
thirds of users visited fewer than 56 unique mobile domains and
to the right of Don about a fourth visited fewer than ten (bottom).

5 Methods for Cross-device Tracking

How cross-device companies operate is not known in
detail [49]. In order to get an understanding of their
capabilities we designed an algorithm and evaluated features
and parameters informed by a review of public materials,
particularly, Adelphic’s cross-device patent [83] and Tapad’s
patent application for managing associations between device
identifiers [80]. Essentially, cross-device tracking is based
on resolving two tasks: first, uniquely identifying users’
devices (§ 5.1), and, second, correlating those that belong
to the same user (§ 5.2).

5.1 Identifying Devices

Traditionally, HTTP cookies are used to identify desktop
devices. Indeed, many cross-device companies are employ-
ing cookies for their tracking purposes as well. For mobile
devices the use of advertising identifiers, such as Google’s
Advertising ID (AdID), is common and often combined
with cookie tracking. Thus, if users are allowing cookies
and do not opt out from being tracked, both their mobile
and desktop devices can be easily identified. However,
with the surge of tracking- and ad-blocking software, which
some consider a mainstream technology on mobile by
now [68], unconventional identification technologies, such
as device fingerprinting, are becoming more prevalent.
While it does not appear that they will generally replace
cookies and advertising identifiers any time soon, various
cross-device companies—for example, BlueCava [9] and
AdTruth [28]—are making use of device fingerprinting.
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Desk Devices Mob Devices
H, Hn, Ĥ H, Hn, Ĥ

User Agent 4.46, 0.64, 4.96 6.43, 0.95, 8.5
Display Size/Colors 5.34, 0.77, 6.08 1.72, 0.25, 2.08
Fonts 6.11, 0.88, 7.33 1.21, 0.18, 1.33
Accept Headers 2.86, 0.41, 3.29 2.34, 0.35, 3
System Language 0.41, 0.06, 0.51 0.81, 0.12, 1
Time Zone 0.25, 0.04, 0.35 0.53, 0.07, 0.74
Mobile Carrier N/A 1.39, 0.21, 1.45
Do Not Track Enabled 0.67, 0.1, 0.67 0.18, 0.03, 0.19
Geolocation Enabled 0.45, 0.07, 0.45 1, 0.15, 1
Touch Enabled 0.72, 0.1, 0.72 N/A
Total per Device Type 6.96, 1, 12.95 6.69, 0.99, 10.87
Total 7.84, 1, 13.37

Table 3: Entropy (H), normalized entropy (Hn), and estimated
entropy (Ĥ) for various browser features in our CDT dataset. The
normalized entropy ranges from 0 (all features are the same) to
1 (all features are different). We calculated the estimated entropy
according to Chao and Shen [16]. For the totals we considered
all listed features. Overall, our dataset contains 3 duplicate mobile
fingerprints and 1 duplicate desktop fingerprint.

Cross-device companies that are solely relying on device
fingerprinting must be able to identify both desktop and
mobile devices using this technique. While it was reported
that device fingerprints generally do not work well on
mobile devices [25], our results do not support such broad
conclusion. Particularly, mobile user agents often contain
distinctive features and are far more diverse (6.43 bits) than
user agents on desktops (4.46 bits). Also, the entropy in
our dataset only represents a lower bound as we imposed
substantial limitations for users’ participation in our study;
most notably, requiring them to have an Android phone with
Android 4.0.3 or higher and use the native browser, Chrome,
or S-Browser. We also did not consider, for instance, canvas
fingerprinting [1], sensor data [19], or the order in which
fonts and plugins were detected [25]. However, most mobile
devices in our dataset were still identifiable. The detailed
findings for the 107 mobile and 126 desktop devices in our
CDT dataset are shown in Table 3.9 Due to the small size
of our dataset we caution to interpret our results as indicative
for the reliability of mobile device fingerprinting, though.

5.2 Correlating Devices
After uniquely identifying each device cross-device com-
panies must match those that appear similar. Successfully
matching devices at scale is the core challenge for cross-
device companies. Devices are represented in graphs known
as Device Graphs [76], Connected Consumer Graphs [22], or
under similar proprietary monikers. From a graph-theoretical
perspective a device graph can be built from connected

9One user did not submit a mobile fingerprint and another user
submitted two different desktop fingerprints.

Figure 5: Our cross-device tracking approach. A. First, a mobile de-
vice is identified. B. Its similarity to each identified desktop device,
s, is calculated. C. The mobile-desktop pair with the maximum
similarity, max, that is above a similarity threshold, t, is determined,
if any. D. If such pair exists, it is added to the device graph and
the next iteration starts with a new mobile device. This routine is
repeated in three consecutive stages each evaluating similarities
between mobile and desktop IP addresses, mobile and desktop
URLs, and mobile apps and desktop URLs, respectively. If a mobile
device cannot be matched in one stage due to not overcoming the
similarity threshold, a match is attempted in the next.

components (each of which represents a user) with a
maximum number of vertices (devices) and edges (device
connections) [18]. Matching every mobile with exactly one
desktop device will result in a bipartite graph. The goal is
to achieve a perfect matching of similar devices.
Algorithm, Features, and Parameters. While determin-
istic cross-device companies can simply match a user’s
devices based on his or her login information, which may
also extend towards third party properties through single
sign-on functionality, achieving a high match rate is more
difficult for probabilistic cross-device tracking companies.
In the Drawbridge competition [23] many participants
applied gradient boosting [48, 50, 53, 62, 71]. However,
some participants also combined support vector machines
and factorization models into field-aware factorization
machines [75] or employed pairwise ranking and ensemble
learning techniques [14]. Interestingly, the best performing
solution relied on learning-to-rank models instead of using
the more conventional binary classification models [82].

In our approach, as outlined in Figure 5, we determine the
similarity between devices based on distance metrics, most
notably, the Bhattacharyya coefficient, which is defined for
the distributions p and q as Bhatta(p,q)=∑x∈X

√
p(x)q(x).

The use of distance metrics for device correlation was
described in Adelphic’s cross-device patent [83]. Our
cross-device tracking algorithm works in multiple stages.
Using a key insight from the patent, for each feature a
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Sim Feature Mapping Distance Metric Sim Thresh Mean Sim nq Acc Prec Rec F-1
Stage 1 Mob IPs to Desk IPs Bhatta 0.07 0.33 44 0.61 1 0.63 0.77
Stage 2 Mob URLs to Desk URLs Bhatta’ 0.13 0.18 44 0.52 0.85 0.59 0.7
Stage 3 Mob Apps to Desk URLs Bhatta* 0.02 0.11 44 0.16 0.19 0.5 0.27
Stages 1–3 Same as in Individual Stages above 0.33, 0.16, 0.03 44 0.84 0.88 0.95 0.91

Table 4: Test set results. The first three rows show the results for running each stage individually. The fourth row shows the results for
running the three stages consecutively. We normalized the Bhattacharyya coefficient (Bhatta) to a range between 0 (low similarity) and
1 (high similarity). Bhatta’ denotes the exclusion of URLs in the Alexa Top 50 [4] and all columbia.edu URLs. Further, Bhatta* excludes
the most used 100 apps according to our training set. We selected the best similarity threshold (Sim Thresh) for each stage according
to observations in our training runs. Mean Sim is the mean similarity across all 44 device pairs in the test set, and nq is the size of the test set.

similarity threshold is set. If a threshold is reached at one
stage, a match is declared for the mobile-desktop device pair
with the highest similarity score. Otherwise, the algorithm
continues to evaluate whether the similarity threshold for
a different feature is reached in the next stage. To evaluate
the similarity between a mobile and a desktop device it
compares mobile to desktop IP addresses, mobile to desktop
web URLs, and mobile apps to desktop web URLs.
Test Set Results. To test our approach we randomly sepa-
rated the set of device pairs in our dataset into a training (nt =
63) and a test set (nq=44). We used the former to tune our
algorithm and features and held out the latter for performance
evaluation. As shown in Table 4, running all three stages of
the algorithm consecutively on our test set leads to precision,
recall, and F-1 scores of 0.88, 0.95, and 0.91, respectively.
The F-0.5 score [50], which emphasizes precision over recall,
reaches 0.91. In detail, we obtained 37 true positives (TP), 5
false positives (FP), 0 true negatives (TN), and 2 false neg-
atives (FN). These results are based on the usual definitions,
i.e., accuracy, Acc=(TP+TN)/(TP+TN+FP+FN), pre-
cision, Prec=TP/(TP+FP), recall, Rec=TP/(TP+FN),
and F-1 score, F-1 =(2·Prec·Rec)/(Prec+Rec).

To make the matching more difficult we included in
each run of our algorithm in every stage data from users for
which we only had data from one device type: data from
one user who only submitted mobile data and from 18 users
who only submitted desktop data. Further, our results are
based on modeling device correlation as binary classification.
Specifically, for each correct match between a user’s mobile
and desktop device we counted a true positive. For each
incorrect match we noted a false positive. If a mobile device
would have no corresponding desktop device it would have
been counted as a true negative if it remained unmatched.
However, as there was only one such instance in our test set
and that mobile device was actually matched, we counted
it as false positive. A false negative means that an instance
should have been matched, however, remained unmatched.

Running the three stages of our algorithm consecutively
leads to approximately balanced results for precision (0.88)
and recall (0.95), as shown in Table 4. However, when
running the stages individually, we obtain relatively higher
precision and lower recall in the first two stages and lower
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Stage 3 0.29, 0.1 0.29, 0.4 0.12, 0

Figure 6: Precision and recall for matching devices based on various
distance metrics and thresholds. The table shows the best F-1 scores
and their corresponding similarity thresholds. The features are the
same as described in the respective stages in Table 4. However,
the evaluation is performed here on the full dataset. For higher
thresholds recall scores tend to decrease while precision scores
tend to increase (except when they exclude too many true positives).
Overall, the Bhattacharyya coefficient returns the best results.

precision and higher recall in the third stage. This difference
highlights the tradeoff between achieving correct matches
(precision) and broad user coverage (recall). While it is
challenging to improve one without adversely affecting the
other [49,73], the similarity thresholds provide the controls
for adjustment. Figure 6 shows changes in precision and
recall for different similarity thresholds and distance metrics.

The high precision scores of Drawbridge (0.97 [22]) and
Tapad (0.91 [77]) seem to suggest that the industry favors
precision over recall.10 However, there is also an argument

10We interpret Tapad’s usage of the term accuracy to mean precision
(“[W]henever our Device Graph indicated a relationship between two or
more devices, it was accurate 91.2 percent of the time.”).
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to be made against emphasizing precision: some device
mismatches may be irrelevant. Particularly, we believe that
mismatches might happen for people living in the same
household (in case of mobile IP to desktop IP similarity) or
individuals having the same interests (in case of web domain
and app to web domain similarity). In these situations a
mismatched device might still be a meaningful ad target [24].
The reason is that targeted purchase decisions might be
made at the household level or look-alike audiences might
be sufficiently valuable for an ad network [80].

Our results show that IP addresses are very meaningful
for matching devices, which is in line with Cao et al.’s
findings [14]. They reached an average F-0.5 score of 0.86
in the Drawbridge competition [23] using only features
from IP address data. However, beyond this finding our
results further suggest that visited web domains are a good
indicator for device similarity as well. In fact, there might
be situations in which they can be more revealing than IP
addresses. For example, if users of the same household share
an IP address, their devices can not be distinguished based
on this feature. Also, while the correlation between apps
and desktop domains does not contribute as much as the
IP address and domain correlations, it still provides some
meaningful signal as the results for the individual run of
the third stage in Table 4 demonstrate. Most importantly,
however, performance seems to increase if multiple features
are applied consecutively. Some users can be better matched
based on IP addresses and others on web domains or apps.

We note that we leveraged a manual mapping between
apps and desktop domains via company names or other
common identifiers thereby transforming a feature with
minimal effect in our dataset and the Drawbridge competi-
tion [14,48,50,53,62,71,75,82] to a useful feature. Similarly,
the domain mapping proved to be useful as well due to users’
visits to the same domains across devices. These results
highlight that cross-device matching is not completely reliant
on IP matching, as suggested by the results in the Drawbridge
competition. Our results seem to confirm the conjecture that
carefully hand-crafted similarity features are of paramount
importance while algorithms play a smaller role for the task
of correlating mobile and desktop devices [82].

We experimented with various other features that
ultimately did not prove useful. In particular, an algorithm
leveraging system language and time zone did not match
devices better than random. We also tried excluding sets of
frequently used public IP addresses. However, different from
excluding domains and apps, which, as described in Table 4,
proved to be beneficial, this measure did not lead to better
performance. We further tried different matching thresholds
and evaluated various distance metrics as shown in Figure 6.
In future work it would be interesting to examine the extent
to which the time, order, and duration of app and url access
play a role for device correlation. E-mail and other message
content is an obvious candidate for a useful feature as well.

Applicability to Larger Datasets. With a runtime of
O(n(n−1)/2) our algorithm is suitable for large scale anal-
ysis. However, it is obvious that our dataset is many orders
smaller than the data that cross-device companies are usually
working with. This difference in size begs the question to
which extent our findings are applicable to larger datasets.
For the similarity of IP addresses this question was already
reliably answered. The Drawbridge competition results, for
instance, by Landry et al. [53], are based on a set of about
62K mobile devices and confirm the meaningfulness of IP
features. For web domain features the situation is different
as the Drawbridge data did not contain those for mobile
devices. However, we can make an argument that lends some
supports for the applicability of our results to larger datasets.

Whether web data can be correlated across devices
rests on two premises: first, users visiting an intersecting
set of domains on both their mobile and desktop devices
and, second, domains being sufficiently distinct to allow
identification of users. To examine the first premise we
randomly selected 50 U.S. domains out of the top 5K sites
that were quantified by Quantcast [70] and found a mean of
17.1% users visiting a website both on a mobile and desktop
device (during a 30-day period and at the 95% confidence
level with a lower bound of 14.4% and an upper bound
of 19.5% using the bootstrap technique). As to the second
premise, it was shown for a set of about 368K desktop
and mobile Internet users that 97% of them were uniquely
identifiable if at least four visited websites were known.11

Limitations. It would be an interesting exercise to compare
our techniques against those currently in use in industry.
However, we are not aware of any publicly available
resources allowing us to do so. The same is true for
cross-device tracking datasets. To our knowledge, there
is no dataset publicly available beyond the CDT dataset
that we created. The only other cross-device tracking
dataset we know of was made available by Drawbridge
to participants of the Drawbridge competition solely for
competition purposes [23]. However, even if this dataset
would be available, it would only allow an incomplete
analysis, particularly, as features were generally anonymized
and mobile web history was not included in the dataset.
Consequently, at this point it does not seem possible to
compare our approach to others or evaluate its performance
on a different dataset. However, as we implemented key
design elements that we found in available industry materials,
we believe that our results provide a first approximation for
cross-device tracking approaches applied in practice.

There are various considerations of identifying and corre-
lating devices in practice that we cannot meaningfully test.
A first point concerns the time period for which users are
being tracked. We believe that the three weeks of data that
we have available for most users (Table 2)—the concrete

11All users in our dataset who visited at least one mobile and one desktop
website had unique web histories as well.
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length depending on the number of days on which they used
their devices—are realistic. However, we lack the insight
for which duration cross-device tracking actually occurs in
practice. Also, despite some cross-device companies’ broad
coverage of websites and apps (§ 7), none of them has access
to complete IP, web, and app data of Internet users. However,
ultimately this limitation is one of reach and not of perfor-
mance. By setting similarity thresholds high even companies
with limited data can obtain precise results, albeit, at the cost
of low recall. Further, our dataset does not contain full IP his-
tories either. In addition, our data is probably more homoge-
nous than real data, and, thus, more difficult to assess. Users
in our study were mostly students located in a confined space
with many commonly shared web domains and IP addresses.

6 Learning from Cross-device Data

In this section we examine whether cross-device data enables
cross-device companies to make more accurate predictions
than they could make using data from individual devices
alone. We address this question for two inquiries: users’ inter-
est in finance—a randomly selected interest category—and
gender. Both are relevant ad targeting criteria. For interest in
finance we obtained the most accurate predictions by using
data from both mobile and desktop devices. Consequently,
this is a task in which predictions about a user from
cross-device data appear more privacy-invasive than those
from single device data sources. However, as we also found
a lack of performance increase for predicting a user’s gender,
it appears that some prediction tasks might not become more
accurate with the availability of cross-device data.
Predicting Interest in Finance. As a starting point for
our feature creation we used Alexa category rankings [5]
and Google Play store categories [38] to identify the top
25 finance domains that have both a website and an app.
Then, we used the Weka machine learning toolkit [40] to
explore the potential for predicting interest in finance. We
experimented with various features and all available standard
algorithms. We used a word-to-vector preprocessor and
found logistic regression to be the most effective technique.
Due to the class imbalance of only 23% users in our dataset
expressing an interest in finance we ran logistic regression
as a cost-sensitive classifier increasing the cost for a false
positive on average 1.5 times over the cost for a false
negative. Our results, which are shown in Figure 7 and
based on 10-fold cross validation, suggest that predicting an
interest in finance for users in our dataset is more accurate
if both desktop and mobile data are available.

In particular, predicting from mobile data alone proved to
be the weakest option. One reason seems to be that we only
had 90 features from the mobile data compared to 106 and
107 for the desktop and combined data, respectively. Using
desktop data only we tried to increase the performance to
the level of the combined mobile and desktop data, which
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Acc 95% CI Prec Rec F-1 ROC
A. 0.64 0.55–0.73 0.26 0.22 0.24 0.5
B. 0.75 0.67–0.83 0.5 0.52 0.51 0.68
C. 0.79 0.71–0.87 0.57 0.59 0.58 0.75
D. 0.83 0.76–0.9 0.68 0.63 0.65 0.79

Figure 7: Logistic regression for predicting interest in finance from
mobile web domains and apps (Mob) and desktop web domains
(Desk). 95% CI designates the binomial proportion confidence
interval for the accuracy at the 95% level assuming a normal
distribution. The F-1 score based on features from both types of
data (Mob & Desk - 108 Features) is higher than the scores obtained
using mobile and desktop data individually (even with more
features as in Desk - 2,923 Features). We observed similar results
for value shoppers with F-1 scores of 0.17 (Mob - 85 Features),
0.25 (Desk - 99 Features), and 0.41 (Mob & Desk - 104 Features).

reached an F-1 score of 0.65. However, we were only able to
obtain an F-1 score of 0.58 by substantially increasing the fea-
ture space to 2,923 features, at which point we saw no further
improvement. Combining desktop and mobile data and lever-
aging 107 features outperformed all other approaches. The
ROC curves in Figure 7 visualize this finding. The predic-
tions that users have an interest in finance are shown in orange
while the negative predictions for not having an interest in
finance are displayed in blue. For the latter the F-1 scores are:
Mob - 91 Features: 0.77, Desk - 107 Features: 0.83, Desk -
2,923 Features: 0.86, and Mob & Desk - 108 Features: 0.89.
Predicting Gender. While the predictive performance of
a user’s interest in finance increased with the availability
of both desktop and mobile data, it appears that such
improvement does not necessarily hold for all classification
tasks. Particularly, classifier performance for the prediction
of gender from combined desktop and mobile data was
not better than the performance using desktop data alone.
Applying logistic regression with 10-fold cross validation we
obtained identical scores for precision, recall, and F-1 with
values of 0.82, 0.81, and 0.82, respectively. It did not make a
difference whether mobile data was added to the desktop data
or not. This result suggests that for some tasks the availability
of cross-device data does not lead to better predictions.
Impact of Device Usage Patterns. What could be the rea-
son for the differing utility of cross-device data in the two
prediction tasks? Subject to the results of further experiments

1400    26th USENIX Security Symposium USENIX Association



12/25 (48%) 2/10 (20%)

7/10 (70%)

13/25 (52%) 1/10 (10%)
0%

25%

50%

75%

100%

Interest in Finance Value Shoppers

Internet Access Type

Desk   

Mob   

Mob & Desk   

Figure 8: Mobile and desktop device usage patterns. Some users in
our dataset access finance and value shopping domains only from
their desktop or mobile device (i.e., from a mobile website or app).

it seems that having both mobile and desktop data available
can be an advantage for predictions that rely on features ex-
hibited on one device type only. We did not only observe
such patterns for users with an interest in finance but also
for value shoppers—a randomly selected persona category.
For both interest in finance and the value shopper persona
we evaluated to which extent users respectively accessed the
top 25 finance and value shopping domains on their mobile
and desktop devices. Our results, illustrated in Figure 8,
support the conclusion that having data available from both
mobile and desktop devices increases the chances of captur-
ing (more) salient features for the aforementioned predictions.
For example, an ad network without access to desktop data
would have difficulty to make correct classifications for users
that only access respective domains on their desktop device.
We note that the observed patterns are based on a small
number of users. Thus, further investigation is warranted.
Absence of Device Usage During our study we realized the
possibility of making predictions about users who do not
make use of their devices. Predicting a user’s Jewish religion
serves as an illustrative example.12 Obviously, religious web
domains and apps can be meaningful features for predicting
adherence to a particular faith. However, such predictions are
also possible based on subtler user behaviors. Most notably,
as the data collection of our study covered the last two days of
the Jewish Passover holiday we noticed that a few users in our
study did not use either of their devices as the Jewish faith pre-
scribes abstinence from using electronics. Among all users in
our study the pattern of holiday observation became obvious.
This signal was especially clear from the insight into multiple
devices. While some users did not use one of their devices,
only those observant of Passover did not use both. This ex-
ample illustrates that device activity as such can be a useful
predictor that might be exploitable by cross-device tracking.

7 The Scope of Cross-device Tracking

The scope of cross-device tracking on the Internet is yet
to be explored. For example, through their integration into
many websites and apps Facebook and Google appear to
have vast reach into the various devices of their users as
well as the ability to deterministically match those [73].

12As we obtained this result by chance we confirmed that its publication
is covered by applicable IRB regulations of Columbia University.

However, the percentage to which a typical Internet user
is tracked across devices by those and other cross-device
companies is not known. We examine this question for the
users in our dataset based on a procedure for detecting the
presence of cross-device trackers in their browsing and app
histories (§ 7.1) and analyzing their occurrence accounting
for industry collaborations and consolidation (§ 7.2).

7.1 Detecting Cross-device Trackers

Procedure. We examined the trackers on the websites that
the users in our study visited by automating a Firefox browser
with Selenium [74]. The browser included Lightbeam [63]
and User Agent Switcher [64] browser extensions that al-
lowed us to record the trackers on each domain for both mo-
bile and desktop websites. Third party trackers that we found
in a subdomain were added to the domain, however, not vice
versa. Thus, for example, the domain linkedin.com contains
all trackers that we found on blog.linkedin.com but not the
other way around. To identify trackers inside of apps we
selected a total of 153 third party software development kits
(SDKs) listed on AppBrain [6] encompassing SDKs of ad
networks (e.g., Smaato), social networks (e.g., Twitter), and
analytics services (e.g., comScore). Leveraging AppBrain’s
statistics on the inclusion of SDKs in apps we then deter-
mined which SDKs are included in the apps of our dataset.

We qualify a company as cross-device company based on
our detection of their trackers on both mobile and desktop
domains, the former including apps, and their websites’
claims that they indeed perform cross-device tracking. We
identified cross-device trackers by using Whois domain
searches and tracker blocking lists, especially, the list of the
Better tracker blocker [42]. For some companies—Google
AdSense, Rubicon Project, Skimlinks, Tapad, and Lotame—
our information flow experiment (§ 3) provides empirical
support for qualifying them as cross-device companies. It
would be interesting to extend this or a similar information
flow experiment towards other companies.
Lower Bound. Our approach for detecting trackers should
be understood as a lower bound for various reasons.
First, trackers not identified in Lightbeam will remain
undetected. The same is true for SDKs not included in the
pre-defined set of 153 SDKs from AppBrain. Further, we
only detect app tracking via SDKs and do not account for
Android WebViews and app-internal browsers that could
contain tracking cookies or other traditional online tracking
mechanisms [18]. We believe that these technologies warrant
substantial further investigation as we suspect that a large
amount of trackers make use of them.
Limitations. It is a limitation of our crawl that some
websites in our dataset were not accessible (e.g., sites that
required a user login). In some cases our crawl was also
redirected or the requested page was not found. However,
these limitations only affected few URLs. Also, it should
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Figure 9: As the ad ecosystem in general, cross-device tracking is characterized by a few large companies with extensive reach and a
long tail of smaller companies, some of which are focusing on the mobile space (e.g., Smaato with 2% mobile and 0.2% desktop coverage).
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Figure 10: Total unique third party trackers in our dataset. We found
124 cross-device trackers that belong to 87 different companies.

be noted that we crawled the sites about a month after we
finished collecting data from the study participants. Thus, in
the meantime, some websites might have different trackers
than at the time they were actually visited. Ideally, it would
have been possible to capture the trackers live from our users’
devices during the study. However, such collection is difficult
due to the constraints of the Android environment, most
notably, the sandboxing of mobile browsers. In addition,
our mobile tracker count may be off as we did not use real
mobile devices but instead a spoofed desktop browser.

7.2 Cross-Device Tracking Analysis
As shown in Figure 10, websites accessed from desktop
and mobile devices contained a respective total of 9,732 and
3,243 unique third party trackers. 2,571 trackers were on both
desktop and mobile websites; Brookman et al. [11] found
861 such trackers. Out of the 153 SDKs from AppBrain
we found 81 in our dataset.13 From these sets of third party
trackers we identified 124 cross-device trackers; 118 trackers
that appeared on both mobile and desktop websites and 6
SDKs that are associated with a desktop tracker as well. We
found that the 124 cross-device trackers belong to 87 different
companies. It appears that 22 follow a deterministic approach,
39 use probabilistic techniques, and 26 leverage both.
Tracking of the Average User in our Dataset. On average
each user is tracked across devices on his or her desktop
in 67% of all desktop website visits. We measured a
similar average for mobile web visits with 64%. These

13The app tracker count includes affiliated company’s SDKs. Thus, for ex-
ample, the Facebook SDK inside the Instagram app is counted as one tracker.

Desk Mob Apps
Google Analytics (D) 58% 43.6% 5.1%
Google Display (D,P) 51.6% 41.7% 13.1%
Facebook (D) 27.8% 27.7% 20.3%
Atlas (Facebook) (D,P) 7.8% 2.4% N/A*
Facebook & Atlas (D,P) 27.9% 29.1% 20.3%
Twitter (D) 11.9% 6.6% 0.7%
comScore (D,P) 11.3% 15.1% 1.7%
LinkedIn (Microsoft) (D) 4.9% 1.9% N/A*
Rubicon Project (P) 4.6% 5.8% N/A*
Tapad (P) 1.1% 1.9% N/A
Rubicon & Tapad (P) 5.4% 6.7% N/A*
Advertising.com (AOL) (P) 4% 3.5% N/A
Lotame (D,P) 2.7% 3.8% N/A*
Skimlinks (D,P) 1.1% 1.6% N/A
Lotame & Skimlinks (D,P) 3.5% 5% N/A*
Drawbridge (P) 1.2% 1.7% N/A
BlueCava (P) 0.2% 0.5% N/A
Smaato (D,P) 0.2% 2% 0.1%

Table 5: Cross-device companies’ (D = deterministic and P =
probabilistic according to their websites’ claims) coverage of
websites and apps on average for the users in our dataset (n = 107).
Some of the companies either do not seem to offer an SDK for app
integration (N/A) or we did not analyze it as it was not contained
in our initial set of SDKs from AppBrain (N/A*). The full list,
including the tracking server domains, is attached in Appendix B.

high percentages illustrate that cross-device tracking is a
broadly occurring phenomenon. Table 5 shows the reach
of individual companies. Google Analytics, Google Display,
and Facebook can capture at least 20% of an average user’s
online traffic across devices. This percentage is about
the same that Roesner et al. [72] provided a few years
ago for tracking of individual devices. It is particularly
noteworthy that the companies with the broadest reach have a
deterministic approach, which means that their cross-device
tracking is also very accurate. Figure 9 shows the tracking
coverage for the 87 cross-device companies we identified.

Partnerships between various cross-device companies ex-
tend their reach. For example, Atlas receives user data from
Facebook [8] to track users deterministically. However, Atlas
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Figure 11: The ten domains with the highest number of cross-device companies on their desktop websites (out of 1,829 total domains).
It can be observed that they tend to have higher concentrations of cross-device companies on their mobile sites as well.

Desk Mob Rank-Country
ew.com 52 4 466-US
observer.com 39 8 1,191-US
latimes.com 35 19 133-US
bust.com 34 21 25,690-US
ft.com 31 22 166-UK
globo.com 30 9 5-BR
biography.com 29 12 1141-US
ted.com 26 13 635-US
uol.com.br 26 8 N/A
amny.com 25 15 N/A
gameofthrones.wikia.com 14 35 45-US
androidauthority.com 11 34 570-IN
food.com 26 31 600-US
sacbee.com 0 31 2,985-US
sfgate.com 19 30 310-US
philly.com 15 29 908-US
southcoasttoday.com 17 28 N/A
nypost.com 17 28 154-US
nytimes.com 18 28 48-US
jalopnik.com 15 27 782-US

Table 6: Domains with the highest cross-device company counts out
of 1,829 domains whose URL occurred in both mobile and desktop
data in our CDT dataset. With a total of 57 trackers (31 mobile
web and 26 desktop web) food.com had the highest count overall.

is intended to serve advertisements outside of Facebook’s
reach and shares the data it collects with Facebook as well [8].
Particularly, as shown in Table 5, Atlas’ cross-device trackers
extend Facebook’s mobile web reach from 27.7% to 29.1%.
As another example, the partnership between Lotame and
Skimlinks [57], which we actually observed in our initial
experiment (§ 3), also extends their respective reach. In
those cases the relationship between companies needs to be
accounted for to accurately determine their full coverage.
Domains with Cross-device Company Concentration.
It appears that media websites, in particular, websites of
newspapers, contain the largest concentration of trackers
from cross-device companies. Table 6 shows the top ten
domains—separated for desktop and mobile websites—on

which we found the highest number of trackers from the
87 identified cross-device companies. Coincidentally, it
turns out that the website of the LA Times was a good
selection for our case study (§ 3) as it had trackers from 35
cross-device companies on its desktop website.

Beyond the concentration of cross-device companies’
trackers in the media category it is also striking that many
websites that are hosting those trackers are fairly popular
sites. Table 6 shows the Quantcast country rank according
to the site’s traffic [70]. This placement of cross-device
trackers on popular sites exposes them to large audiences.
However, as it can be observed in Table 6 as well, the shown
domains contain a maximum number of trackers from
cross-device companies on either their mobile or desktop
sites but not on both. This finding holds in general. While
there is a tendency that domains that host many cross-device
companies on their desktop site also host many on their
mobile site, we could not find any statistically significant
correlation in this regard. Figure 11 shows the distribution.

8 Does Self-Regulation Work?

The FTC recommends that cross-device companies should
be transparent about their data practices [32]. While there are
no specific statutes or regulations for cross-device tracking in
the U.S., the field is subject to self-regulation, most notably
by the Digital Advertising Alliance (DAA) and the Network
Advertising Initiative. The DAA requires its member
cross-device companies to disclose “the fact that data
collected from a particular browser or device may be used
with another computer or device that is linked to the browser
or device on which such data was collected.” [21] In order
to examine the level of compliance with this transparency
requirement we randomly selected 40 DAA member ad
networks that advertised their cross-device capabilities on
their websites and analyzed their privacy policies.

We found that 23 disclosed their cross-device tracking
activities while 17 omitted those. After contacting the latter,
we received a response from seven. Two pointed us to docu-
ments that were linked from the policy that indeed contained
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compliant descriptions. A representative from another cross-
device company wrote that their cross-device functionality is
not yet fully rolled out to clients, and three others announced
that they will change their policy (one of those still has to
follow through). Another representative simply claimed that
the company is “not violating anything.” Without contacting
us five further cross-device companies simply changed their
policies, of which four became compliant. Finally, there was
no reaction or policy change from five. As of June 9, 2017
we count a total of eight instances of non-compliance.

Overall, it appears that there is a lack of transparency
when it comes to the disclosure of cross-device tracking.
At this point, the DAA guidance does not seem to be
enforced rigorously. While it may be true that the majority of
consumers will not take the time to understand the tracking
practices described in privacy policies,14 we think that it is
still a worthwhile endeavor for cross-device companies to
properly disclose their practices, particularly, for audit and
enforcement purposes as well as for signaling trustworthiness
to the marketplace and to build an environment of rules and
norms in privacy disclosure.

9 Conclusion

Cross-device tracking is an emerging tracking paradigm that
challenges current notions of privacy. This study is intended
as a broad overview of selected privacy topics in mainstream
cross-device technologies. In a brief case study we have
demonstrated how cross-device tracking can be observed
with statistical confidence by means of an information flow
experiment. Using our own cross-device tracking dataset
we designed a cross-device tracking algorithm and evaluated
relevant features and parameter settings grounded in a
review of publicly available information on the practices of
cross-device companies. For some predictive tasks it appears
that those companies can learn more about users than from
individual device data. As the penetration of cross-device
tracking on the Internet already appears relatively high it is
even more important that companies active in this field are
transparent about their practices.

Going forward we hope that the various privacy implica-
tions of cross-device tracking technologies will be studied fur-
ther. In this regard, proprietary research is substantially ahead
of current efforts in academia. While a few major points are
known—for example, that IP addresses are a crucial fea-
ture for correlating devices—many important details on how
cross-device companies operate remain opaque. To shed
more light on the subject we publicized our dataset together
with the software that we developed for further exploration.

14Using tracking protection software and ad blockers is a much more effi-
cient approach from a user perspective. Thus, when evaluating cross-device
tracking in terms of a threat model, the most effective defense would be
to block tracking. In this regard, the defenses against cross-device tracking
are the same as the defenses against the tracking of individual devices.

As cross-device tracking continues to mature and become an
integral part of tracking on the Internet we believe that a com-
prehensive view including legal and business considerations
is helpful. Establishing an enforceable self-regulatory frame-
work for companies to be transparent about their practices
will help to protect consumer privacy and allow cross-device
companies to conduct their businesses responsibly.

Ultimately, cross-device tracking is part of a larger
trend: the Internet of Things (IoT). In this regard, we
see cross-device tracking as an early harbinger of the
increasing inter-connectivity of devices. Increasingly,
buildings, cars, appliances, and other things are connected
to the Internet and are interacting with other online devices.
However, the development and deployment of privacy
solutions has to keep pace with the emerging IoT landscape.
Ensuring transparency and practicable control mechanisms
for information that is traversing device boundaries and
permeates between the online and offline worlds is a critical
element. Given standardized interfaces [43], perhaps, an
intelligent personal privacy assistant that is connected to all
services and devices of person could be a solution.
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A Cross-device Tracking Dataset
Device Fingerprints (n=234)
User Agent 1st Party HTTP Cookies Enabled
Browser Vendor 3rd Party HTTP Cookies Enabled
Browser Engine Do Not Track Enabled
Plugins Installed Touchscreen
Operating System Internet Connection Type
Time Zone Latency
Screen (Color Depth, etc.) Fonts Installed
System Language Local Storage Enabled
Adobe Flash Version Session Storage Enabled
Microsoft Silverlight Version HTTP Accept Headers
JavaScript Enabled

App and Browsing Histories (n=233)
IP Address Browser Tab ID
Browser Vendor Referrer URL
Date URL/App Package ID
Time URL Title
Time Zone 3rd Party Trackers/SDKs

Interest Questionnaires (n=126)
Arts and Entertainment (68%) Beauty and Fitness (33%)
Food and Drink (64%) Internet and Telecom (33%)
Computers and Electronics (63%) Sports (29%)
Science (62%) Online Communities (24%)
News (60%) Finance (23%)
Books and Literature (55%) Pets and Animals (23%)
Jobs and Education (52%) Business and Industrial (21%)
Games (43%) World Localities (15%)
Travel (40%) Reference (13%)
Law and Government (37%) Autos and Vehicles (11%)
Shopping (36%) Home and Garden (11%)
Hobbies and Leisure (34%) Real Estate (4%)
People and Society (34%)

Persona Questionnaires (n=126)
Music Lovers (47%) Hardcore Gamers (11%)
Movie Lovers (46%) Photo and Video Enthusiasts (11%)
Food and Dining Lovers (40%) Fashionistas (10%)
Singles (39%) Personal Finance Geeks (10%)
Bookworms (33%) Avid Runners (7%)
Entertainment Enthusiasts (31%) Flight Intenders (6%)
Tech and Gadget Enthusiasts (31%) Social Influencers (6%)
Casual and Social Gamers (30%) Catalog Shoppers (5%)
News and Magazine Readers (23%) Auto Enthusiasts (3%)
Leisure Travelers (21%) Business Travelers (3%)
Sports Fans (21%) Small Business Owners (3%)
Health and Fitness Enthusiasts (20%) Home Design Enthusiasts (2%)
Mobile Payment Makers (19%) Real Estate Followers (2%)
Value Shoppers (18%) High Net Individuals (1%)
Parenting and Education (15%) Mothers (1%)
Pet Owners (14%) Home and Garden Pros (0%)
Business Professionals (13%) New Mothers (0%)
American Football Fans (11%) Slots Players (0%)

Age Groups (n=126)
18–20 (18%) 31–35 (6%)
21–25 (51%) over 35 (3%)
26–30 (21%)

Gender (n=126)
Women (34%) Men (66%)

B Cross-device Trackers
Type Desk Web Mob Web Mob Apps

33Across P 0.1 0.4 N/A
- 33across.com
Adbrain P 0.4 1 N/A
- adbrn.com
AddThis (Oracle) P 3.4 1.6 N/A*
- addthis.com
- addthisedge.com
Adelphic D, P 0.1 0.7 N/A
- ipredictive.com
Adform D, P 0.4 1.3 N/A*
- adform.net
- adformdsp.net
Adobe Marketing Cloud D 5.4 3.9 N/A*
- 2o7.net
- adobetag.com
- omtrdc.net
AdRoll D 2 1.7 N/A
- adroll.com
Advertising.com (AOL) P 4 3.5 N/A
- advertising.com
Amobee D 0 0 N/A*
- amgdgt.com
AOL ONE P 3.7 4.6 N/A*
- adap.tv
- adtech.de
- adtechus.com
- aol.com
- atwola.com
- jumptap.com
AppNexus P 9.2 8.9 N/A*
- adnxs.com
Arbor D 0.1 0.4 N/A
- pippio.com
Atlas (Facebook) D, P 7.8 2.4 N/A*
- atdmt.com
AudienceScience D, P 0.9 2.4 N/A
- revsci.net
Baidu P 0.3 0 N/A
- baidu.com
Bidtellect P 0.1 0.5 N/A
- bttrack.com
Bing ads (Microsoft) D 3.2 1.6 N/A
- bing.com
- msn.com
BlueCava P 0.2 0.5 N/A
- bluecava.com
BlueKai (Oracle) D, P 3.8 4.8 N/A*
- bkrtx.com
- bluekai.com
BrightRoll (Yahoo) D, P 0.8 2.6 N/A
- btrll.com
Cardlytics P 0.2 0 N/A
- cardlytics.com
Casale Media P 3.8 4.3 N/A
- indexww.com
- casalemedia.com
ChoiceStream D, P 0.1 0 N/A
- choicestream.com
Clearstream TV P 0.1 0 N/A
- clrstm.com
comScore D, P 11.3 15.1 1.7
- comscore.com
- scorecardresearch.com
- zqtk.net
- comScore SDK
Connexity P 0.1 0.4 N/A
- connexity.net
Crimtan D, P 0 0.3 N/A
- ctnsnet.com
Criteo D 5.3 5.5 N/A
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Type Desk Web Mob Web Mob Apps
- criteo.com
- criteo.net
Cross Pixel Media D 0.3 0.2 N/A
- crsspxl.com
Datalogix (Oracle) P 1.6 3.3 N/A
- nexac.com
DataXu D, P 1.1 2.5 N/A
- w55c.net
Datonics P 0.2 0.5 N/A
- pro-market.net
Deep Forest Media (Rakuten) P 0.3 0.4 N/A
- dpclk.com
Demandbase D 0.2 0 N/A
- company-target.com
DistroScale P 0.1 0 N/A
- jsrdn.com
DoubleClick (Google) D, P 50.2 41.1 13.1
- 2mdn.net
- dmtry.com
- doubleclick.net
- AdMob SDK
Drawbridge P 1.2 1.7 N/A
- adsymptotic.com
Dstillery P 0.3 1.3 N/A
- media6degrees.com
engage:BDR P 0 0.1 N/A
- bnmla.com
Ensighten D 1.3 1.2 N/A
- ensighten.com
eXelate (Nielsen) D, P 1.4 2.9 N/A*
- exelator.com
Eyereturn marketing D 0 0.3 N/A
- eyereturn.com
Eyeview P 0.1 0.4 N/A
- eyeviewads.com
Facebook D 27.8 27.7 20.3
- facebook.com
- facebook.net
- fb.me
- Facebook SDK
FreeWheel (Comcast) P 0.3 0.6 N/A
- fwmrm.net
Gigya D 0.6 0.8 N/A
- gigya.com
Google Analytics D 58 43.6 5.1
- google-analytics.com
- Google Analytics SDK
Google Display Network D, P 51.6 41.7 13.1
- 2mdn.net
- adsense.com
- blogger.com
- dmtry.com
- doubleclick.net
- googleadservices.com
- youtube.com
- AdMob SDK
IgnitionOne P 1 0.4 N/A
- netmng.com
Interstate D 0 0 N/A
- interstateanalytics.com
IXI Services (Equifax) D, P 1.6 3.7 N/A
- ixiaa.com
Kenshoo D, P 0.1 0.4 N/A
- xg4ken.com
Krux D, P 3.5 5.2 N/A
- krxd.net
LinkedIn D 4.9 1.9 N/A*
- bizographics.com
- linkedin.com
Lotame D, P 2.7 3.8 N/A*
- crwdcntrl.net
Magnetic P 0.6 0.6 N/A
- domdex.com

Type Desk Web Mob Web Mob Apps
MaxPoint D 0.1 0.6 N/A
- mxptint.net
MediaMath P 5 4.9 N/A
- mathtag.com
Moat D, P 6.8 6.7 N/A
- moatads.com
Neustar D, P 3.7 6.1 N/A
- adadvisor.net
- agkn.com
Nielsen D, P 5.5 5.3 N/A*
- imrworldwide.com
Optimizely D 3.4 3.6 N/A*
- optimizely.com
Perfect Audience P, D 0.3 0.4 N/A*
- prfct.co
PubMatic P 2.7 3.3 N/A*
- pubmatic.com
Quantcast P 9.7 8.5 N/A
- quantserve.com
RadiumOne D 0.4 0.9 N/A*
- gwallet.com
Resonate P 0 0.3 N/A
- reson8.com
Rocket Fuel P 1.8 3 N/A
- rfihub.com
Rubicon Project P 4.6 5.8 N/A*
- chango.com
- rubiconproject.com
RUN P 0.1 0.3 N/A
- rundsp.com
Signal D 1.1 0.8 N/A
- thebrighttag.com
Sizmek P 3.9 4 N/A
- peer39.com
- peer39.net
- serving-sys.com
Skimlinks D, P 1.1 1.6 N/A
- skimresources.com
- redirectingat.com
Smaato D, P 0.2 2 0.1
- smaato.net
- Smaato SDK
Smart AdServer P 0.4 1.1 N/A
- smartadserver.com
Sonobi P 1.3 2.4 N/A
- sonobi.com
SpotX D, P 0.9 3.1 N/A*
- spotxchange.com
Tapad P 1.1 1.9 N/A
- tapad.com
Tealium D 1.9 2 N/A
- tiqcdn.com
The Trade Desk P, D 4.4 6.6 N/A
- adsrvr.org
Turn P 1.1 2.7 N/A
- turn.com
Twitter D 11.9 6.6 0.7
- ads-twitter.com
- twitter.com
- Twitter SDK
Undertone P 0.2 0.4 N/A
- legolas-media.com
- undertone.com
Vindico (Time) D, P 0.2 0.4 N/A*
- vindicosuite.com
Weborama P 0 0 N/A*
- weborama.fr
- weborama.io
Yahoo D 5 6.5 N/A*
- yahoo.com
Yieldbot P 0.8 1.6 N/A
- yldbt.com
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Abstract

Cryptocurrencies such as Bitcoin and Ethereum are op-
erated by a handful of mining pools. Nearly 95% of Bit-
coin’s and 80% of Ethereum’s mining power resides with
less than ten and six mining pools respectively. Although
miners benefit from low payout variance in pooled min-
ing, centralized mining pools require members to trust
that pool operators will remunerate them fairly. Further-
more, centralized pools pose the risk of transaction cen-
sorship from pool operators, and open up possibilities for
collusion between pools for perpetrating severe attacks.

In this work, we propose SMARTPOOL, a novel pro-
tocol design for a decentralized mining pool. Our pro-
tocol shows how one can leverage smart contracts, au-
tonomous blockchain programs, to decentralize cryp-
tocurrency mining. SMARTPOOL gives transaction se-
lection control back to miners while yielding low-
variance payouts. SMARTPOOL incurs mining fees lower
than centralized mining pools and is designed to scale to
a large number of miners. We implemented and deployed
a robust SMARTPOOL implementation on the Ethereum
and Ethereum Classic networks. To date, our deployed
pools have handled a peak hashrate of 30 GHs from
Ethereum miners, resulting in 105 blocks, costing miners
a mere 0.6% of block rewards in transaction fees.

1 Introduction

Cryptocurrencies such as Bitcoin and Ethereum offer the
promise of a digital currency that lacks a centralized is-
suer or a trusted operator. These cryptocurrency net-
works maintain a distributed ledger of all transactions,
agreed upon by a large number of computation nodes (or
miners). The most widely used protocol for agreement
is Nakamoto consensus, which rewards one miner ev-
ery epoch (lasting, say, 10 minutes as in Bitcoin) who
exhibits a solution to a probabilistic computation puzzle
called a “proof-of-work” (or PoW) puzzle [1]. The win-

ning miner’s solution includes a transaction block, which
is appended to the distributed ledger that all miners main-
tain. The reward is substantial (e.g. 12.5 BTC in Bitcoin,
or 30,000 USD at present), incentivizing participation.

Nakamoto-based cryptocurrencies, such as Bitcoin
and Ethereum, utilize massive computational resources
for their mining. Finding a valid solution to a PoW puz-
zle is a probabilistic process, which follows a Poisson
distribution, with a miner’s probability of finding a solu-
tion within an epoch determined by the fraction of com-
putation power it possesses in the network. Miners with
modest computational power can have extremely high
variance. A desktop CPU would mine 1 Bitcoin block
in over a thousand years, for instance [2]. To reduce
variance, miners join mining pools to mine blocks and
share rewards together. In a mining pool, a designated
pool operator is responsible for distributing computation
sub-puzzles of lower difficulty than the full PoW block
puzzle to its members. Each solution to a sub-puzzle has
a probability of yielding a solution to the full PoW block
puzzle—so if enough miners solve them, some of these
solutions are likely to yield blocks. When a miner’s sub-
mitted solution yields a valid block, the pool operator
submits it to the network and obtains the block reward.
The reward is expected to be fairly divided among all
pool members proportional to their contributed solutions.

Problem. Centralized pool operators direct the massive
computational power of their pools’ participants. At the
time of this writing, Bitcoin derives at least 95% of its
mining power from only 10 mining pools; the Ethereum
network similarly has 80% of its mining power ema-
nating from 6 pools. Previous works have raised con-
cerns about consolidation of power on Bitcoin [3,4]. Re-
cent work by Apostolaki et al. has demonstrated large-
scale network attacks on cryptocurrencies, such as dou-
ble spending and network partitioning, which exploit
centralized mining status quo [5]. By design, if a single
pool operator controls more than half of the network’s
total mining power, then a classical 51% attack threat-
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ens the core security of the Nakamoto consensus protocol
[1]. Cryptocurrencies have witnessed that a single pool
has commandeered more than half of a cryptocurrency’s
hash rate (e.g. DwarfPool1 in Ethereum and GHash.io2

in Bitcoin) on several occasions. In such cases, the pool
operator’s goodwill has been the only barrier to an attack.

Furthermore, pools currently dictate which transac-
tions get included in the blockchain, thus increasing the
threat of transaction censorship significantly [6]. While
some Bitcoin pools currently offer limited control to
miners of transaction selection via the getblocktemplate
protocol [7], this protocol only permits a choice between
mining with a transaction set chosen by the pool or min-
ing an empty block. The situation is worse in Ethereum
where it is not yet technically possible for miners in cen-
tralized pools to reject the transaction set selected by the
operator. For example, users recently publicly speculated
that a large Ethereum pool favored its own transactions
in its blocks to gain an advantage in a public crowdsale 3.

One can combat these security issues by running a
pool protocol with a decentralized network of miners in
place of a centralized operator. In fact, one such solution
for Bitcoin, called P2POOL [8], already exists. How-
ever, P2POOL has not attracted significant participation
from miners, and consequently its internal operational
network remains open to infiltration by attackers. Sec-
ondly, technical challenges have hindered widespread
adoption. Scalable participation under P2POOL’s cur-
rent design would require the system to check a mas-
sive number of sub-puzzles. Furthermore, P2POOL only
works for Bitcoin; we are not aware of any decentralized
mining approach for Ethereum.

Solution. This work introduces a new and practical so-
lution for decentralized pooled mining called SMART-
POOL. We claim two key contributions. First, we ob-
serve that it is possible to run a decentralized pool mining
protocol as a smart contract on the Ethereum cryptocur-
rency. Our solution layers its security on the existing
mining network of a large and widely deployed cryp-
tocurrency network, thereby mitigating the difficulty of
bootstrapping a new mining network from scratch. Sec-
ondly, we propose a design that is efficient and scales
to a large number of participants. Our design uses a
simple yet powerful probabilistic verification technique
which guarantees the fairness of the payoff. We also in-
troduce a new data structure, the augmented Merkle tree,
for secure and efficient verification. Most importantly,
SMARTPOOL allows miners to freely select which trans-

1https://forum.ethereum.org/discussion/5244/
dwarfpool-is-now-50-5

2https://www.cryptocoinsnews.com/warning-ghash-io-
nearing-51-leave-pool/

3https://www.reddit.com/r/ethereum/comments/6itye9/
collecting information about f2pool/

action set they want to include in a block. If widely
adopted, SMARTPOOL makes the underlying cryptocur-
rency network much more censorship-resistant. Finally,
SMARTPOOL does not charge any fees 4, unlike central-
ized pools, and disburses all block rewards to pool par-
ticipants entirely.

SMARTPOOL can be used to run mining pools for sev-
eral different cryptocurrencies. In this work, we demon-
strate concrete instantiations for Bitcoin and Ethereum.
SMARTPOOL can be run natively within the protocol of
a cryptocurrency — for instance, it can be implemented
in Ethereum itself. We believe SMARTPOOL can sup-
port a variety of standard payoff schemes, as in present
mining pools. In this work, we demonstrate the standard
pay-per-share (or PPS) scheme in our implementation.
Supporting other standard schemes like pay-per-last-n-
shares (PPLNS) and schemes that disincentivize against
block withholding attacks [9–11] is left for future work.

Results. We have implemented SMARTPOOL and a sta-
ble SMARTPOOL implementation has been released and
deployed on the main network via a crowd-funded com-
munity project [12]. As of 18 June 2017, SMARTPOOL-
based pools have mined in total 105 blocks on both
Ethereum and Ethereum Classic networks and have suc-
cessfully handled a peak hashrate of 30 GHs from 2 sub-
stantial miners. SMARTPOOL costs miners as little as
0.6% for operational transaction fees, which is much less
than 3% fees taken in centralized pools like F2Pool 5.
Furthermore, each miner has to send only a few mes-
sages per day to SMARTPOOL. Finally, although being
decentralized, SMARTPOOL still offers the advantage of
low variance payouts like centralized pools.

As a final remark, SMARTPOOL does not make cen-
tralized pooled mining in cryptocurrencies impossible,
nor does it incentivize against centralized mining or alter
the underlying proof-of-work protocol (as done in work
by Miller et al. [13]). SMARTPOOL simply offers a prac-
tical alternative for miners to move away from central-
ized pools without degrading functionality or rewards.

Contributions. We claim the following contributions:

• We introduce a new and efficient decentralized
pooled mining protocol for cryptocurrencies. By
leveraging smart contracts in existing cryptocurren-
cies, a novel data structure, and an efficient verifi-
cation mechanism, SMARTPOOL provides security
and efficiency to miners.

• We implemented SMARTPOOL and deployed real
mining pools on Ethereum and Ethereum Classic.
The pools have so far mined 105 real blocks and

4The caveat here is that cryptocurrency miners will pay Ethereum
transaction fees to execute SMARTPOOL distributively.

5https://www.f2pool.com/ethereum-blocks
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have handled significant hashrates while deferring
only 0.6% of block rewards to transaction fee costs.

2 Problem and Challenges

We consider the problem of building a decentralized pro-
tocol which allows a large open network to collectively
solve a computational PoW puzzle, and distribute the
earned reward between the participants proportional to
their computational contributions. We expect such a pro-
tocol to satisfy the following properties:

• Decentralization. There is no centralized operator
who operates the protocol and manage other partic-
ipants. The protocol is collectively run by all par-
ticipants in the network. There is also no require-
ment for joining, i.e. anyone with sufficient compu-
tation power can freely participate in and contribute
to solving the PoW puzzle.
• Efficiency. The protocol running costs should be

low and offer participants comparable reward and
low variance guarantees as centralized operations.
Furthermore, communication expenses, communi-
cation bandwidth, local computation and other costs
incurred by participants must be reasonably small.
• Security. The protocol protects participants from at-

tackers who might steal rewards or prevent others
from joining the protocol.
• Fairness. Participants receive rewards in proportion

to their share of contributions.

In this paper we focus on this list of properties with
respect to mining pools. Cryptocurrencies like Bitcoin
and Ethereum reward network participants (or miners)
new crypto-coins for solving computationally hard puz-
zles (or proof-of-work puzzles) [1,14,15]. Typically, Bit-
coin miners competitively search for a nonce value sat-
isfying

H(BlockHeader || nonce)≤ D (1)

where H is some preimage-resistant cryptographic hash
function (e.g. SHA-256), BlockHeader includes new
set of transactions that the miner wants to append to the
ledger and D is a global parameter which determines
the puzzle hardness. Ethereum uses a different, ASIC-
resistant PoW function [16]. which requires miners to
have a (predetermined) big dataset of 1 GB (increasing
over time). Thus, in Ethereum, the condition (1) becomes

H(BlockHeader || nonce || dataset)≤ D

in which the dataset includes 64 elements of the 1GB
dataset that are randomly sampled with the nonce and
the BlockHeader as the random seed.

Finding a solution for a PoW puzzle in cryptocurren-
cies requires enormous amount of computation power.
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Figure 1: The effect of share’s difficulty on i) the probability of
a miner with 1 GHs finding a share within a day as per [2]; ii)
resource (i.e. number of messages) consumed by a miner; in a
decentralized mining pool for Bitcoin (e.g. P2POOL).

Thus miners often join resources and solve the puzzle to-
gether via pooled mining. Currently, most mining pools
follow a centralized approach in which an operator man-
ages the pool and distributes work to pool miners. Here
we are interested in a decentralized approach that allows
miners to collectively run and manage the pool without
inherent trust in any centralized operator.

Threat model and security assumptions. Cryptocur-
rencies like Bitcoin and Ethereum allow users to use
pseudonymous identities in the network. Users do not
have any inherent identities and there is no PKI in the
network. Our solution adheres to this setting.

We consider a threat model where miners are ratio-
nal, which means they can deviate arbitrarily from the
honest protocol to gain more reward. An alternative is a
malicious model where the attacker does anything just to
harm other miners. In this work, we are not interested
in the malicious model since i) such sustained attacks in
cryptocurrencies often require huge capital, and ii) exist-
ing centralized pools are not secure in such a model ei-
ther [9–11]. We also assume that the adversary controls
less than 50% of the computation power in the network
on which SMARTPOOL runs. This assumption rules out
double-spending via 51% attacks [1].

On the other hand, we do not make any assumption on
the centralization or trusted setup in our solution apart
from what have been made in existing cryptocurrencies 6.

2.1 Existing Solutions
In the widely adopted centralized pooled mining proto-
col, there is a pool operator who asks pool miners to
solve pool sub-puzzles by finding nonce so that the hash
satisfies some smaller difficulty d (d � D). A solution

6Bitcoin and Ethereum have trusted setups where the first blocks
are constructed and provided by Satoshi Nakamoto (for Bitcoin) and
Ethereum Foundation (for Ethereum).
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for a pool-puzzle is called a share and has some prob-
ability of being a valid solution for the main PoW puz-
zle. Once a miner in the pool finds a valid block, the re-
ward, i.e., new crypto-coins, is split among all pool min-
ers in proportion to the number of their valid submitted
shares [2].

Despite being widely used in practice, centralized
mining pools have several problems including network
centralization and transaction censorship as discussed in
Section 1. P2POOL for Bitcoin is the first and only
deployed solution we are aware of which decentralizes
pooled mining for cryptocurrencies [8]. At a high level,
P2POOL decides on the contribution of each miner by
running an additional Nakamoto Consensus protocol to
build a share-chain between all miners in the pool. The
share-chain includes all shares submitted to the pool, one
after another (akin to the normal Bitcoin blockchain, but
each block is a share). To guarantee that each share is
submitted and credited exactly once, P2POOL leverages
coinbase transactions, which are special transactions that
pay block reward to miners (see details in Section 3.3).

P2POOL satisfies almost all ideal properties of a de-
centralized pool (defined in Section 2) except the effi-
ciency and security properties. Specifically, P2POOL en-
tails a high performance overhead since the number of
messages exchanged between miners is a scalar multi-
ple of the number of shares in the pool. When the share
difficulty is low, miners have to spend a lot of resources
(e.g. bandwidth, local computation) to download, and
verify each other’s shares. Figure 1 demonstrates how
adjusting the difficulty of shares affects the variance of
miners’ reward and the amount of resource (both band-
width and computation) consumed per miner (with 1GHs
capacity) in a decentralized pool like P2POOL. As a re-
sult, P2POOL requires high share difficulty in order to
reduce the number of transmitted messages. Therefore
P2POOL miners experience higher reward variance than
they would when mining with centralized pools. As dis-
cussed in [2], high variance in the reward (i.e. the supply
of money) decreases miners’ utility by making it harder
for them to predict their income and verify that their sys-
tems are working correctly. Perhaps as a result, P2POOL
has to date attracted only a few miners who comprise a
negligible fraction of Bitcoin mining power (as of June
23, 2017, the last block mined by P2POOL was 22 days
ago [8]).

The security of P2POOL’s share-chain depends on the
amount of computation power in its pool. As of this writ-
ing, P2POOL accounts for less than 0.1% of Bitcoin min-
ing power, thus P2POOL’s share chain is vulnerable to
51% attacks from adversaries who control only 0.1% of
Bitcoin mining power. Hence P2POOL may not offer
better security guarantees than centralized pools.

2.2 Our Solution and Challenges
Our solution for a decentralized pooled mining lever-
ages Ethereum smart contracts which are decentralized
autonomous agents running on the blockchain itself [17,
18]. A non-contract account has an address and balance
in Ether, the native currency for Ethereum. A smart con-
tract has, in addition, code and private persistent storage
(i.e. a mapping between variables and values). Smart
contract code is akin to a normal program which can ma-
nipulates stored variables. To invoke a contract (i.e. ex-
ecute its code) at address addr, users send a transaction
to addr with an appropriate payload, i.e. payment for the
execution (in Ether) and/or input data for the invocation.
The contract code executes correctly on the blockchain
as long as a majority of Ethereum miners faithfully fol-
low the Ethereum protocol.

At a high level, SMARTPOOL replaces the mining pool
operator with a smart contract. The smart contract acts as
a trustless bookkeeper for the pool by storing all shares
submitted by miners. When a new share is submitted, the
contract verifies the validity of the share, checks that no
previous record of the share exists, and then updates the
corresponding miner’s record. We allow miners to lo-
cally generate the block template of the pool (discussed
more in Section 3.3). If a miner finds a share which is a
valid block, it will broadcast the block to the cryptocur-
rency network, the reward will be instantly credited to
SMARTPOOL. SMARTPOOL then disburses the block re-
ward fairly to all miners in the pool.
Challenges. There are several challenges in building
such a smart contract for a mining pool. We illus-
trate them by considering a straw-man solution (called
StrawmanPool) in Figure 2 which implements a decen-
tralized pool as a Ethereum smart contract. The solution
works by having a smart contract which receives all the
shares submitted by miners, verifies each of them and
records number of shares one has submitted. The con-
tract has a designated address for receiving block reward.
A share is valid if it uses the contract address as the coin-
base address (i.e., the address that the block reward is
sent to) and satisfies the predefined difficulty (e.g. Line
6). On each share submission, the pool verifies the share
and updates the contribution statistics of the pool mem-
bers (Line 13). If a miner finds a valid block, the smart
contract distributes the reward to miners in the pool pro-
portional to their contribution by using any of the stan-
dard payout schemes [2](Line 16). The solution in Fig-
ure 2 has the following shortcomings and challenges.

• C1. The number of shares in the pool may be
large, thus resulting in an unwieldy number of mes-
sages sent to the contract. For example, it may
take 1,000,000 shares on average to get a valid
block. A naı̈ve solution might require miners to
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1 contract StrawmanPool{
2 mapping (uint256 => boolean) mSubmittedShares;
3 mapping (uint256 => int) mContribution;
4 function submitShare(someShare) returns (boolean ){
5 // check validity
6 if !isValid(someShare)
7 return false;
8 // check if the share has been submitted
9 if mSubmittedShares[someShare.hash]

10 return false;
11 mSubmittedShares[someShare.hash] = true;
12 // update miner’s contribution
13 mContribution[msg.owner] += 1;
14 // distribute reward if is a valid block
15 if isValidBlock(someShare)
16 distributeReward(mContribution );
17 return true;
18 }}

Figure 2: Pseudo-code of a straw-man solution which imple-
ments a mining pool in a smart contract.

create 1,000,000 transactions and send all of them
to the pool’s contract. No existing open network
agreement protocol can process that many transac-
tions within the course of a few minutes [19, 20].
On the other hand, reducing the number of shares
per block by increasing the share difficulty will in-
crease the variance in reward for miners, thus negat-
ing the sole advantage of pooled mining (see [2] for
more analysis on the effects of share difficulty).

• C2. A valid share earns miners a small amount
of reward, but miners may have to pay much more
in Ethereum gas fees when submitting their shares
to the pool. The gas fee compensates for the
storage and computation required to verify shares
and update the contract state (see [21, 22]). Thus,
StrawmanPool may render a negative income for
miners when the fee paid to submit a share out-
weighs the reward earned by the share itself.

• C3. In Ethereum, transactions are in plaintext; thus,
any network adversary can observe other miners’
transactions that include the shares and either steal
or resubmit the shares. This challenge does not ex-
ist in centralized pools where miners can establish
secure and private connections to the pools. In de-
centralized settings, such secure connections are not
immediate since i) there is no centralized operator
who can initiate secure connections to miners, and
ii) there is no PKI between miners in the pool. Thus,
a good design for a mining pool must prevent the
adversary from stealing others’ shares. Similarly,
the pool should prevent miners from over-claiming
their contribution by either re-submitting previous
shares or submitting invalid shares. Centralized
pools can efficiently guarantee this since the pool
manager can check every submission from miners.

• C4. This challenge is specific to the scenario when

one wishes to use SMARTPOOL for a different cryp-
tocurrency (e.g. Bitcoin) than the one on which
its contract is deployed (e.g. Ethereum). A smart
contract in Ethereum running a Bitcoin mining pool
must guarantee correct payments in Bitcoin. This
is tricky because Bitcoin miners expect to receive
rewards in Bitcoin, but Ethereum contracts can op-
erate only on balances in Ether.

3 Design

SMARTPOOL’s design can be used to implement a de-
centralized mining pool on Ethereum for many existing
target cryptocurrencies, but for ease of explanation we fix
Ethereum as the target. In Section 5, we discuss how one
can use SMARTPOOL-based decentralized mining pools
for other cryptocurrencies (e.g. Bitcoin).

3.1 Approach

We briefly describe how we address the challenges from
Section 2.2 in SMARTPOOL.

• SMARTPOOL guarantees the decentralization prop-
erty by implementing the pool as a smart contract.
Like any smart contract, SMARTPOOL is operated
by all miners in the Ethereum network, yet it can se-
cure other cryptocurrency networks including Bit-
coin as well as the underlying Ethereum network
itself. SMARTPOOL relies on the Ethereum’s con-
sensus protocol to agree on the state of the pool.
The security of SMARTPOOL depends exclusively
on the underlying network (i.e. Ethereum) which
runs smart contracts, not on how many users adopt
the pool.
• SMARTPOOL’s efficiency comes from allowing

miners to claim their shares in batches, e.g. one
transaction to the SMARTPOOL contract can claim,
say, 1 million shares. Furthermore, miners do not
have to submit data of all shares but only a few for
verification purposes, hence the transaction fee per
share is negligible. As a result, the number of trans-
actions required to send to SMARTPOOL is several
orders of magnitude less than the number of shares
(i.e. the number of messages in P2POOL).
• We propose a simple but powerful probabilistic ver-

ification of submissions from miners. Our mech-
anism, aided by a new and efficient Merkle-tree
based commitment scheme, guarantees the same av-
erage outcome as running a full verification for each
submission by enforcing a penalty function to disin-
centivize cheating. Our mechanism detects miners
submitting duplicated shares or resubmitting shares
in different batched claims. As a result, we guar-
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antee fairness in that miners receive their expected
reward based on their contributions even when other
dishonest miners submit invalid shares.
• SMARTPOOL forces the miner to commit the right

set of beneficiary addresses in the share before min-
ing, so that it cannot be changed after a solution
is found. This commitment prevents share theft,
wherein a network participant tries to use someone
else’s solutions to pay itself.
• For the case of running an external SMARTPOOL-

based Bitcoin mining pool on top of Ethereum,
SMARTPOOL leverages the Bitcoin coinbase

transaction to guarantee that miners can mine di-
rectly in their target currency (i.e. Bitcoin) without
trusting a third party to proxy the payment (e.g. be-
tween Ethereum and Bitcoin). Nevertheless, miners
still need to acquire Ether to pay for the gas when
interacting with the SMARTPOOL smart contract.
Such costs are less than 1% of miners’ reward as
we show in our experiments with a deployment in
Ethereum testnet. Indeed SMARTPOOL operates at
lower cost than today’s centralized pools.

3.2 Overview of SMARTPOOL

SMARTPOOL is a smart contract which implements a de-
centralized mining pool for Ethereum and runs on the
Ethereum network. SMARTPOOL maintains two main
lists in its contract state — a claim list claimList and
a verified claim list verClaimList. When a miner sub-
mits a set of shares as claim for the current Ethereum
block, it is added to the claimList. This step acts as a
cryptographic commitment to the set of shares claimed
to be found by the miner. Each claim specifies the num-
ber of shares the miner claims to have found, and it has
a particular structure that aids verification in a subse-
quent step. SMARTPOOL then proceeds to verify the
validity of the claim, and once verified, it moves it to
the verClaimList. Claim verification and payments for
verified claims happen atomically in a single Ethereum
transaction. Each claim allows miners to submit a batch
of (say, 1 million) shares. Submitted claims need to in-
clude sufficient meta-data for verification purposes. Dur-
ing the first step of mining the shares, if a miner finds
a valid block in the target cryptocurrency, it can directly
submit the found block to the target cyrptocurrency net-
work with the SMARTPOOL address as the beneficiary.
Thus, miners receive payouts for their shares one or more
blocks after SMARTPOOL receives reward from the tar-
get network; and, the mechanism ensures that the cryp-
tographic commitment strictly preceeds the verification
step (the cryptographic reveal phase).

In Section 3.4 we will discuss our verification pro-
tocol, a key contribution of this work which enables

Field Size
(bytes) Name Data type

4 number uint
32 parent hash uint
32 TRIEHASH(TX list) uint
20 coinbase address address
32 state root uint
32 extra data char[32]
8 timestamp uint
8 difficulty uint
8 nonce uint

Table 1: Some important fields of a block header in Ethereum.
“coinbase address” is the address that receives the block re-
ward, while “extra data” allows miners to include any data
(upto 32 byes) to the block header.

efficiency. The goal of the verification process is to
prevent miners from both submitting invalid shares and
over-claiming the number of shares they have found.
SMARTPOOL pays claimants proportional to the number
of shares claimed, if the verification succeeds, and other-
wise nothing. The key guarantee here is that of fairness
— SMARTPOOL does not advantage miners who cheat
by claiming invalid or duplicate shares. The expected
payoff from cheating is the same (or worse) as honestly
reporting shares.

In order to join the pool, miners only need to prepare
a correct block template. SMARTPOOL maintains the
verClaimList array in the contract which records the
contributed shares by different miners to date. To enable
efficient verification checks, SMARTPOOL forces miners
to search for blocks with a particular structure and dic-
tates a particular template for claim submissions, which
we discuss in Section 3.3. Unlike P2POOL, SMART-
POOL miners do not have to run an additional consensus
protocol to agree on the list state.

3.3 Claim Submissions

Miners can submit a large batch of shares in a single
claim. To permit this, SMARTPOOL defines a Claim
structure which consists of a few pieces of data. First,
the miner cryptographically commits to the set of shares
he is claiming. The cryptographic commitment goes via
a specific data structure we call an augmented Merkle
tree, as discussed in Section 3.5. The Merkle root of this
data structure is a single cryptographic hash representing
all the shares claimed and is included in the Claim as a
field called ShareAugMT.

After a miner claims several shares in a batch, SMART-
POOL requires the miner to submit proofs to demon-
strate that the shares included in the claim are valid. For
each claimed share being examined, SMARTPOOL de-
fines a ShareProof structure to help validate the share.
First, SMARTPOOL requires a Merkle proof, denoted as
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AugMkProof, to attest that the share has been commit-
ted to ShareAugMT. Furthermore, SMARTPOOL ensures
that if a miner finds a share that is a valid Ethereum
block, then the corresponding block reward is distributed
among the pool members. In an Ethereum block, there
is a special field called “coinbase address” which speci-
fies the address that receives the block reward. A share
in SMARTPOOL is valid only if the miner uses pool’s ad-
dress as the “coinbase address.”

It is straightforward to see how SMARTPOOL’s use of
cryptographic commitments prevents certain timing vul-
nerabilities. SMARTPOOL asks the miners to fix their
coinbase address before starting to find shares. Once a
share is found, it is not possible to change or eliminate
the coinbase address. SMARTPOOL also asks miners to
put their beneficiary address in the “extra data” field, so
SMARTPOOL can extract the address to credit the share
to. Although miners may use different addresses to sub-
mit their claims to the contract, SMARTPOOL credits the
share to only one account by fetching the beneficial ad-
dress from the “extra data” field. This prevents miners
from claiming the same share to different Ethereum ad-
dresses (or accounts), forcing a one-to-one mapping be-
tween shares found and addresses credited for them. If
a network attacker steals someone else’s share, it can-
not pay itself since the coinbase transaction has already
committed to a payee.

3.4 Batching & Probabilistic Verification
SMARTPOOL processes share claims efficiently. Min-
ers can claim multiple shares to SMARTPOOL in a single
submission. Each Claim includes less than one hundred
bytes consisting of a cryptographic commitment for the
shares, in a field called ShareAugMT. This cryptographic
commitment forces the miner to commit to a set of shares
before including them in the claim. Ideally, before ac-
cepting any claim of n shares submitted by the miner, we
want to verify that

(i) all shares submitted are valid;
(ii) no share is repeated twice in a claim;

(iii) each share appears in at most one claim.

Probabilistic verification. For efficiency, SMARTPOOL
uses a simple but powerful observation: if we probabilis-
tically verify the claims of a miner, and pay only if no
cheating is detected, then expected payoffs of cheating
miners are the same or less than those of honest miners.
In effect, this observation reduces the effort of verifying
millions of shares down to verifying one or two!

We provide a way to sample shares to verify, outline
a detailed procedure for checking validity in Section 3.5,
and a full proof in Section 4. Here, we explain this ob-
servation with an example, since it may appear counter-
intuitive at first. Let us consider a case where cheating

miner finds 500 valid shares but claims that he has found
1000 valid shares to SMARTPOOL. If SMARTPOOL were
able to randomly sample one share from the miner’s
committed set, and verify its validity, then the odds of
having detected the cheating is 500/1000 (or 1/2). If the
miner is caught cheating, he is paid nothing; if he gets
lucky without being detected, he gets rewarded for 1000
shares. Note that the expected payoff for such a miner is
still 500, computed as (0.5 ·1000+0.5 ·0) = 500, which
is the same as that of an honest miner that claimed the
right amount of valid shares. The argument extends eas-
ily to varying amounts of cheating; if the cheater wishes
to claim 1,500 shares, he is detected with with probabil-
ity 2/3 and stands to get nothing. The higher his claim
away from the true value of found shares, the lower is the
chance of a successful payout. By sampling k ≥ 1 times,
SMARTPOOL can reduce the probability of a cheater re-
maining undetected exponentially small in k, as we show
in Section 4.

Searching for shares. To enable probabilistic verifi-
cation, SMARTPOOL prescribes a procedure for mining
shares. Each SMARTPOOL miner is expected to search
for shares in a monotonic order, starting from a distinct
value that it commits to. Specifically, when a miner
claims shares S = {s1,s2, . . . ,sn}, SMARTPOOL extracts
a unique counter from each share, e.g., taking the first k
(say 20) bits, and requires that the counters of all si ∈ S
to be strictly increasing. Each time a miner finds a valid
nonce that yields a valid share, he increases the counter
by at least 1 and searches for the next share. When the
miner claims for the set S, its submitted elements must be
lexicographically ordered by counter values. The miner
commits the latest counter in his Claim to this set S,
which has at most one share for each counter value. This
eliminates any repeats in claimed shares in one claim,
and across claims by one miner. In SMARTPOOL im-
plementation as an Ethereum contract, as discussed in
Section 3.5, we use the share’s timestamp and the used
nonce to act as the counter value of a share.

SMARTPOOL guarantees that miners produce distinct
shares by providing a unique value in the “extra data”
field in each miner’s share template. This ensures that
miners search in distinct sub-spaces of the search space.

Checking Validity of Shares. SMARTPOOL checks
that miners have followed the prescribed mining proce-
dure by randomly sampling a share from each submitted
Claim along with a ShareProof (as described in Sec-
tion 3.3). SMARTPOOL validates the following:

(i) the hash of the share meets the difficulty criterion;
(ii) the share is constructed correctly, i.e., uses the

SMARTPOOL’s address as the beneficiary address
of the block reward.

(iii) the share correctly satisfies the proof-of-work
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(PoW) solution constraints (e.g. the use of prede-
termined 1GB dataset mandated by the Ethereum
PoW scheme)

The checks for (i) and (ii) are straightforward. The
check for (iii) is to guarantee that miners actually have
and use the data cache when they generate the shares.
This 1GB of data cache is introduced in Ethereum to
make its PoW ASIC-resistant. Thus, skipping checking
(iii) would allow rational miners to easily mine a lot of
invalid shares and still get paid from SMARTPOOL. It
is not straightforward to efficiently check (iii) inside a
smart contract. Indeed a naı̈ve solution would require a
massive amount of gas and hence invoke enormous trans-
action fees. We discuss implementation tricks on how to
check (iii) in Section 6.1.1.

It remains to discuss (a) how miners cryptographically
commit to a batched set of shares in a claim, (b) how
SMARTPOOL verifies that the committed set has mono-
tonically increasing counters, and (c) how shares are
sampled. For (a) and (b), one can think of using a stan-
dard Merkle tree on all the claimed share set to generate
the cryptographic commitment. However, in a standard
Merkle tree, verifying the inclusion of a share is efficient,
but checking the ordering of the set elements is not effi-
cient. In SMARTPOOL, we devise a new data structure
called augmented Merkle tree to help us verify inclusion
and ordering of shares efficiently.

3.5 Detailed Constructions
In this section, we discuss an efficient verification
scheme using probabilistic share sampling and a simple
penalty function that penalizes cheaters. The description
here takes an Ethereum pool as a target, but the same
data structure works for other PoW-based cryptocurrency
such as Bitcoin as we discuss in Section 5.
Augmented Merkle tree. Recall that a Merkle tree is
a binary tree in which each node is the hash of the con-
catenation of its children nodes. In general, the leaves
of a Merkle tree will collectively contain some data of
interest, and the root is a single hash value which acts
as a certificate commitment for the leaf values in the fol-
lowing sense. If one knows only the root of a Merkle
tree and wants to confirm that some data x sits at one of
the leaves, then holder of the original data can provide
a “Merkle path” from the root to the leaf containing x
together with the children of each node traversed in the
Merkle tree. Such a path is difficult to fake because one
needs to know the children’s preimages for each hash in
the path, so with high probability the data holder will
supply a correct path if and only if x actually sits at one
of the leaves.

For the purposes of submitting shares in SMART-
POOL, we not only want to ensure that shares exist in

the batch list but also that there are no repeats and order-
ing of the counters is correct. We therefore introduce an
augmented Merkle tree structure which we use to guard
against duplicates in the leaves.

Definition 1 (Augmented Merkle tree). Let ctr be
a one-to-one function that maps shares to integers.
An augmented Merkle tree for a set of objects S =
{s1,s2, . . . ,sn} is a tree whose nodes x have the form
(min(x),hash(x),max(x)) where:
(I) min(x) is the minimum of the children’s min (or

ctr(si), if x is a leaf corresponding to the object si),
(II) hash(x) is the cryptographic hash of the concatena-

tion of the children nodes (or hash(si) if x is a leaf
corresponding to the object si), and

(III) max(x) is the maximum of the children’s max (or
ctr(si), if x is a leaf corresponding to the object si).

An augmented Merkle tree is called sorted if all of its
leaves occur in strictly increasing order from left to right
with respect to its counter function.

SMARTPOOL expects claims of submitted shares to be
monotonically ordered by their counters. Thus, one can
think of each share si to have a “timestamp” given by
its ctr(x), since integer-valued counters can be naturally
ordered (ascending or descending). For implementation
in Ethereum, we can use the block timestamp and an the
nonce to serve as the counter. In Appendix 10.2, we dis-
cuss alternative candidates for the ordering function ctr
with backward compatibility to serve Bitcoin mining.

Figure 3 gives an example of an augmented Merkle
tree based on four submitted shares with timestamps as
1,2,3,4 respectively. To prove that the share c has been
committed, a miner has to submit two nodes d and e to
SMARTPOOL. SMARTPOOL can reconstruct other nodes
on the path from c to the root (i.e. b and a sequentially)
and accepts the proof if the computed root is the same
as the committed one. The proof for one share, thus,
in a Merkle tree of height h will contain h hashes. The
algorithm to check the validity of a proof for a valid path
in an augmented Merkle is in Algorithm 1.

Batch submission with augmented Merkle trees. Af-
ter collecting a list of shares, the miner locally constructs
an augmented Merkle tree for all the shares in the list. It
then submits the data of the root node of the tree along
with a number indicating how many shares it finds to
SMARTPOOL. For example, the miner in Figure 3 sub-
mits the node a as the cryptographic commitment, which
has min and max as 1 and 4 respectively. We use this
committed data to i) verify that the sampled shares are
found before the miner submits the claim; ii) efficiently
check whether a share is duplicated in a claim. Verify-
ing i) is straightforward as mentioned before. To ver-
ify ii), we observe that any duplicated shares in a claim
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Algorithm 1 Algorithm to verify the validity of one path
in a augmented Merkle tree
1: procedure VALIDATENODEINPATH(x)
2: Check if x is a leaf :
3: if isALeaf(x) then
4: if !(x.min == x.max == x.ctr) or !isValidShare(x) then
5: return false
6: end if
7: else
8: left← x.leftChild
9: right← x.rightChild

10: if !isHashValid(x,x.hash) then
11: return false
12: end if
13: if (!(x.min < x.max) or !(left.min == x.min)
14: or !(right.max == x.max)
15: or !(left.max < right.min)) then
16: return false
17: end if
18: end if
19:
20: Check if x is the root:
21: if isRoot(x) then
22: return true
23: else
24: return ValidateNodeInPath(x.parent)
25: end if
26: end procedure

a = [1, hash(b, e), 4]

b=[1, hash(c, d), 2]

c=[1, s1, 1] d=[2, s2, 2]

e=[3, hash(f, g), 4]

f=[3, s3, 3] g=[4, s4, 4]
Figure 3: A sorted augmented Merkle tree for a list of shares
(s1 to s4) with timestamp values from 1 to 4.

will yield a sorting error in at least one path of the aug-
mented Merkle tree. Thus, by sampling the tree in a con-
stant number of leaves and checking their corresponding
paths, with high probability we will detect a sorting error
in the augmented Merkle tree if there is one.

Prevent over-claiming shares across claims. Our aug-
mented Merkle tree allows us to detect if miners over
claim shares or submit invalid shares in a claim. How-
ever, it does not help guarantee that miners do not sub-
mit the same shares in two different claims, i.e. over-
claiming shares across claims. We prevent this prob-
lem by tracking counters of the shares in every claim
and randomizing the counter start scheme for each claim.
For example, we can use the the pair (block-timestamp,
nonce) as a counter in an Ethereum block. We observe
that, for a single miner, the counters for each claim are
distinct because of the nonce. At the same time, times-
tamps monotonically order shares across claims, since
the block timestamp monotonically increases over time.

Thus for any two distinct claims, the maximum share
counter among an earlier claim is always smaller than
the minimum counter of the shares in a later one. This
observation enables a simple duplication check on the
shares submitted in two different claims. Specifically,
we require miners to submit their claims in chronolog-
ically increasing order of timestamp values (which are
prefixes in the counter values). We use an additional vari-
able last max in our smart contract to keep track of the
maximum counter (i.e. max value of the root node in
the augmented Merkle tree) from the last claim. We only
accept a new claim if the min value of the root node is
greater than last max, and update last max properly if
the new claim is valid.

Penalty scheme. Miners are rewarded according to the
amount of shares that they submitted to the pool. In cen-
tralized pools, the pool manager is able to check every
share submitted by miners, thus miners cannot cheat. In
SMARTPOOL, since we use probabilistic verification, we
introduce a penalty scheme that penalizes detected cheat-
ing, independent of the reward distribution scheme used.
The penalty scheme in Definition 2 is simple and suffices
to disincentivize cheating, assuming rational miners.

Definition 2 (Penalty Scheme). In SMARTPOOL, the
penalty scheme for a claim of n shares is as follow:{

Pay all n shares if invalid share was not detected;
Pay 0 otherwise.

In Section 4, we prove that our penalty scheme dis-
incentivizes rational miners from submitting wrong or
duplicated shares. Our detailed analysis shows that for
k ≥ 1 samples, honesty maximizes payout.

Randomly sampling shares. In order to randomly sam-
ple, we need a source of randomness. A practical way
to obtain such a random seed to use the hash of a fu-
ture block. To reduce the amount of bias that any adver-
sary can introduce to the block hash, one can take several
samples based on several consecutive block hashes. For
example, let us consider a scenario where a miner sub-
mits a claim of 1 million shares at block 1, and we wish
to sample 2 random shares for our probabilistic verifica-
tion. The miner is required to submit the data of 2 shares
which are corresponding to hashes of blocks 1 and 2 (e.g.
the hash values modulo 106) to SMARTPOOL for verifi-
cation. If the miner fails to submit any of these deter-
mined shares, they will not be able to claim the reward.

Putting everything together, we summarize the entire
SMARTPOOL protocol in Figure 4 of the Appendix. Due
to the space constraints, we address other technical ques-
tions in the full version of the paper [23].
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4 Analysis

We analyze the security that SMARTPOOL provides
through probabilistic verification and the penalty scheme
in Definition 2.

We begin by informally reviewing the properties of
our Merkle tree test and then formally establishing its
correctness in Corollary 9 below. The intuition is if a
claim has n valid shares and m invalid or duplicated ones,
by randomly sampling a share from the claim, we can de-
tect invalid shares with probability m/(n+m). Suppose
that a claim submitted by the adversary has n valid shares
and m invalid or duplicated ones. If our test procedure is
correct, the probability that our test on k independently
chosen random samples fails to catch the cheating is at
most (1− m

n+m )
k. In this case, the cheating miner gets

paid for n+m shares, which is higher than reward for
being honest (i.e. n shares). Corollary 9 shows that for
all choices of m, for k≥ 1, the adversary’s advantage (ex-
pected payoff) from cheating does not exceed the guar-
anteed payoff he would obtain from honestly submitting
shares. Further, it is easy to see that over all choices of m
the attacker’s advantage is bounded by a negligible func-
tion in k (the number of samples checked).

Note that we establish that the adversary’s advantage
is minimal using a simple penalty function presented in
Definition 2. Our probabilistic verification with penalties
provide a basis to determine which shares to pay; how-
ever, any rewarding scheme can determine how to pay
for the valid shares (e.g. using PPS, PPLNS, and so on).

Finally, we consider other possible attacker manipula-
tions. One further security concern, in particular, merits
analysis. The seed for our sampling is based on a block
hash chosen by miners. We show that this source of ran-
domness has a (low) bias, assuming that at least 50% of
the mining network is honest. However, we establish in
Theorem 10 that by sampling k ≥ 2 times, the expected
reward from honest submissions majorizes the expected
payoff advantage from biased sampling.

4.1 Analysis of Expected Payoffs

We first analyze the scenario where the adversary can-
not drop Ethereum blocks to introduce bias on sampling
random seed, so the sample blocks in our probabilistic
scheme are randomly selected. Furthermore, we assume
that the adversary does not attempt to manipulate the ex-
pected format of the submitted data aside from possi-
bly submitting duplicate or invalid shares. We will relax
these conditions in Section 4.2.

It suffices for the SMARTPOOL contract to check a
single, randomly chosen path through a submitted aug-
mented Merkle tree in order to pay fairly for shares, on
average (Corollary 9). If all submitted shares are valid

and there are no duplicates, then SMARTPOOL pays for
all shares with probability 1 (Theorem 7). The following
facts will be useful.

Lemma 3. For any node x in a augmented Merkle tree,

(I) min(x) is the minimum of all nodes below x, and

(II) max(x) is the maximum of all nodes below x.

Proof. We will prove (I), and (II) follows by symmetry.
Let y be any node below x, and trace a path from x to
y in the given augmented Merkle tree. The min of x’s
immediate children along this path is, by definition of
augmented Merkle tree, no greater than min(x). Simi-
larly for the next children down, and so on, down to y.
Therefore min(x)≤ y.

Proposition 4. Let A be an augmented Merkle tree. The
following are equivalent:

(I) A is sorted (see Definition 1).

(II) For every node x, the max of x’s left child is less
than the min of x’s right child.

Proof. We argue by induction. Assume (I), and further
assume than (II) holds restricted to the first n levels above
the leaves (the leaves are at the ground, i.e. zero level).
Consider a node x at depth n+ 1. By the inductive hy-
pothesis, the max of x’s left child is less than the min of
the next right child down, which is less than the min of
the next right child down and so on, all the way down
to some leaf y. By a symmetrical argument, the min of
x’s left child is greater than some leaf z which happens
to be to the right of y. Since A is sorted, it follows that
min(x)< y < z <max(x).

Next assume (II), and let y and z be any two leaves.
Let x be the lowest node (farthest from the root) which is
an ancestor of both y and z. By Lemma 3, y is less than or
equal to the max of x’s left child, and z is is greater than
or equal to the min of x’s right child. Now y < z follows
from the assumption, hence A is sorted.

Definition 5. A node in an augmented Merkle tree which
satisfies condition (II) of Proposition 4 is called valid.
Furthermore, we say that a path from a root to a leaf is
valid if all its constituent nodes are valid. A path which
is not valid is invalid.

The adversary can submit any arbitrary tree with the
syntactic structure of an augmented Merkle tree, but not
satisfying the constraint outlined in Definition 1. Let us
call such a tree which syntactically has the structure of
a augmented Merkle tree, but not necessarily satisfy the
Definition 1 simply as a Merkle tree. A submitted Merkle
tree can have any number of invalid or duplicate shares
as well as ill-constructed internal nodes. Intuitively, an
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Merkle tree with invalid nodes will have sorting errors,
which are defined below, and include both duplicates as
well as decreasing share counters.

Definition 6. An element x in an array is out of order if
there exists a corresponding witness, namely an element
to the left of x which is greater than or equal to x, or an
element to the right of x which is less than or equal to x.
A leaf in a Merkle tree contains a sorting error if its label
value is out of order when viewing the leaves’ labels as
an array.

Now, we will show that any submitted Merkle tree has
at least as many invalid paths as the sorting errors it has.

Theorem 7. Let A be a Merkle tree. If A is sorted, then
all paths in A are valid. If A is not sorted, then every leaf
containing a sorting error lies on an invalid path.

Proof. If A is sorted then all its nodes are valid by Propo-
sition 4, hence all paths in A are valid. Now suppose A
is not sorted, and consider the highest node x in the tree
(farthest from the root) which is is an ancestor of two dis-
tinct leaves y and z where y is left of z but z≤ y. Now x is
not valid, because by Lemma 3 the max of x’s left child is
at least y and the min of x’s right child is no more than z.
It follows that neither the path from root to y nor the path
from root to z is valid because both pass through x.

The theorem above shows that miners who submit
sorted augmented Merkle trees will receive their proper
reward. Algorithm 1 checks the validity of a given path
in a tree, and we omit a proof of its correctness here
leaving it to inspection. It remains to demonstrate that
sampling and checking a single path in the augmented
Merkle tree suffices to discourage miners from submit-
ting duplicate shares.

Corollary 8. Every Merkle tree has at least as many in-
valid paths as sorting errors among the leaves. In par-
ticular, there are at least as many invalid paths as there
are duplicate values among the leaves.

Proof. Theorem 7 gives an injection from sorting errors
to invalid paths. Since each duplicate and out of order
leaf yields a sorting error, the result follows.

Finally, we calculate the adversary’s expected reward.

Corollary 9. Under the payment scheme in Definition 2,
if SMARTPOOL checks one random path in the aug-
mented Merkle tree of a claim, the expected reward when
submit invalid or duplicated shares is the same as the
expected reward when submit only valid shares.

Proof. Suppose that in a claim of an adversary, there are
k shares which are either invalid or duplicated. Since
we randomly pick a path, by Corollary 8, we sample an

invalid share with probability k/n and a valid share with
probability (n−k)/n. Hence the expected profit from the
payment scheme in Definition 2 is(

k
n

)
·0+

(
n− k

n

)
·n = n− k.

One expects to obtain this same profit by submitting only
the n− k valid shares. Thus, on average, it is not prof-
itable to submit invalid shares to SMARTPOOL if we em-
ploy the payment scheme in Definition 2 and check one
random path from the augmented Merkle tree.

In summary, SMARTPOOL can efficiently probabilis-
tically check that an augmented Merkle tree is sorted.

4.2 Discussion of Attacker Strategies
In this section, for clarity, we discuss ways in which an
adversary might deviate from intended claim submission
behavior and argue that these deviations do not obtain
him greater rewards.

4.2.1 Rearrangements

The adversary cannot increase his expected profits by
permuting the leaves of the Merkle tree. Observe that,
given a list of integers L which may include repeats,
a non-decreasing arrangement of L’s members in the
leaves of a Merkle tree minimizes sorting errors. By
Theorem 7, every duplicate yields a sorting error regard-
less of permutation. Furthermore, the number of sorting
errors that occur when the leaves are in non-decreasing
order is exactly the number of duplicates. Hence a ra-
tional miner has no incentive to deviate from this non-
decreasing configuration.

4.2.2 Bogus entries in augmented Merkle tree

Falsifying Merkle tree nodes does not decrease the num-
ber of invalid paths. Indeed, note that increasing the
range for a given node can only increase the number of
invalid paths, so we need only consider the case where
the cheater makes the range smaller. If the range is made
smaller so as to exclude the value of a leaf above that
doesn’t have a sorting error, then a new invalid path was
introduced by cheating. If the range is made smaller so
as to exclude a sorting error, then the path leading to that
sorting error is still invalid, and therefore injection from
Theorem 7 still applies.

4.3 Analysis of Bias In Seed Selection
We next consider the scenario in which the the adversary
is able to drop Ethereum blocks to bias the random seed.
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Thus, the sample blocks in our probabilistic verification
are not randomly selected, i.e. the adversary can drop the
blocks which sample invalid shares from his claim. We
show that, even in the extreme case where the adversary
controls up to 50% of Ethereum mining power (i.e. can
drop 50% of the blocks), it suffices to check only two
randomly chosen paths through a submitted augmented
Merkle tree in order to discourage the adversary from
cheating.

Theorem 10. If an adversary controls less than 50% of
Ethereum hash power, then it suffices to sample only two
paths of the augmented Merkle tree based on two con-
secutive blocks to pay miners fairly, on average.

Proof. We call an Ethereum block a good block for the
adversary if its hash samples a valid share in the adver-
sary’s claim. Suppose that in the adversary’s claim, γ

fraction of the shares are invalid (0 ≤ γ ≤ 1). By Theo-
rem 7, at least γ fraction of the paths in the corresponding
augmented Merkle tree are invalid. Hence, on average
1− γ fraction of the blocks are good blocks, since each
block hash is a random number. The probability that the
adversary’s claim is still valid after two samples is the
probability that two consecutive blocks in Ethereum are
good blocks. We aim to compute this latter probability.

Let us assume that the choices of the two sample
shares are drawn based on the hash of a single block
hash, and that attacker controls p fraction of the net-
work’s mining power. The attacker’s strategy is to suc-
cessively drop blocks until he finds one that favorably
samples his claim submission. We estimate his prob-
ability of success. The probability that he succeeds in
exactly one round, regardless of who mined the block,
is (1 − γ)2, that is, if the samples drawn are favor-
able. The chances that the attacker wins in exactly two
rounds is the probability that the first block gave un-
favorable sampling, but the attacker managed to mine
it, and the next sample was favorable. The probabil-
ity that all three of these independent events occur is
[1− (1− γ)2] · p · (1− γ)2. In general, the chance that
the attacker succeeds in exactly k rounds is

f (k) =
(
1− (1− γ)2)k−1 · pk−1 · (1− γ)2.

Summing over all possible game lengths k, we find that
the chance that the attacker wins is exactly

∞

∑
k=1

f (k) = (1− γ)2 ·
∞

∑
k=0

[(
1− (1− γ)2) · p]k .

Since the right-hand side is a geometric series in which
the magnitude of the common ratio is less than 1, we
obtain

∞

∑
k=1

f (k) =
1

1− (1− (1− γ)2) · p
=

1
1+(γ2−2γ)p

.

The block withholding strategy is profitable if and only
if this probability exceeds the attacker’s chances of suc-
cess without block withholding, namely 1− γ . That is,
the value p for which block withholding is advantageous
satisfies

1
1+(γ2−2γ)p

> 1− γ. (2)

We complete the analysis by inspecting the cases where
p is greater than or less than the threshold 1/(2γ−γ2). In
the first case it follows that p≥ 1/2, since this threshold
is always at least 1/2 when 0 < γ ≤ 1, and if γ = 0 then
the attacker has no incentive for dropping blocks. In the
second case, the left hand side of (2) is negative, and so
the inequality in (2) fails in this case.

5 Supporting Other Cryptocurrencies

One can use SMARTPOOL’s design to build decentral-
ized mining pools for other cryptocurrencies. For clarity
of exposition, we fix Bitcoin as the target in this section.
The overall protocol is still similar to what have been dis-
cussed in previous sections, but here we present the detail
changes to make SMARTPOOL work with Bitcoin while
the contract is running on the Ethereum blockchain.

Generating a block template. In Ethereum, it is
straightforward to to generate a valid block template, i.e.,
just by using the pool’s address in the “coinbase address.”
It is tricker in Bitcoin since the block header is much sim-
pler, (see Table 3 in Appendix 10.2) and the pool oper-
ates in another cryptocurrency (i.e., Ethereum). To gen-
erate a share that belongs to the pool, we leverage a spe-
cial transaction in Bitcoin called a “coinbase transaction”
whose outputs consist of a list of Bitcoin addresses paid
and along with their payment amounts.

Specifically, in order to generate valid shares, a miner
queries the verClaimList in the contract which records
the contributed shares by different miners to date. The
miner then prepares the coinbase transaction such that
the first output pays to the miner who mined the block;
the latter outputs pay to other miners included in the
verClaimList. The sum of all outputs in the coinbase
transaction equals the block reward. Thus, if a miner
finds a fraction f of the shares in SMARTPOOL, he gets
paid proportional to f in the reward that SMARTPOOL’s
miners get every time they mine a valid block.

Verifying a claim. As before, we use the probabilis-
tic approach which samples random shares from a claim.
However, in SMARTPOOL, verifying a Bitcoin share is
slightly different from verifying an Ethereum share. Typ-
ically, a Bitcoin share is valid if the miner can demon-
strate that the share has a valid coinbase transaction (la-
beled as the field Coinbase) in their ShareProof paid
out to the pool members. The miner cannot selectively
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choose to omit this transaction; it is required to be the
first transaction in the list of transactions (called TxList)
on which the miner has searched for shares. The claimant
must submit a Merkle root as commitment over the set
TxList he has selected, and a Merkle proof (labeled
CoinProof) that it contains the coinbase transaction.
Second, the ShareProof contains an indication of the
verClaimList based on which the payouts to miners
were determined by the claimant. This last field is called
a Snapshot to allow discretizing payouts over an ever-
growing verClaimList. This is used to check the cor-
rectness of the coinbase transaction, i.e. if all the out-
puts pay to miners correctly. Figure 4 in the Appendix
reports on all data fields of our Claim and ShareProof
structures.

6 Implementation and Evaluation

We implemented SMARTPOOL and deployed it on
Ethereum and Ethereum classic (main) networks. In this
section, we describe the implementation (along with a
Bitcoin pool implementation) and report actual fees from
real mining that was done with SMARTPOOL.

6.1 Implementation

We implement SMARTPOOL protocol (as described in
Figure 4) in an Ethereum smart contract and a miner soft-
ware (client) that interacts with the contract according
to our protocol [12]. Our smart contract implementation
consists of two main modules, namely, claim submission,
claim verification.

Claim submission. This module allows miners to sub-
mit their shares in batch. A miner submits a batch of
shares by calling submitClaim() with the parameters:
(i) the root of the corresponding augmented Merkle
tree for the shares; (ii) number of shares in the tree;
(iii) counter interval of the shares. A submission is ac-
cepted only if the smallest counter is greater than the
current biggest counter.

Claim verification. A miner submits a proof for
the validity of his last submitted claim by calling
verifyClaim() with a branch in the augmented Merkle
tree that corresponds to the next block hash. We allow
different claims to include different amounts of shares,
i.e. NShare can vary between claims. If the verification
fails, then the claim is discarded, and the miner will not
be able to submit all the shares (or a subset of them) again
(forced by validating the counter in submitClaim()). If
the verification is successful, then the claim is added to
the to the verClaimList list.

6.1.1 Verifying Ethereum PoW

The PoW function that Ethereum is using is Ethash [16].
Ethash is not a native opcode nor a pre-compiled con-
tract in the Ethereum virtual machine (EVM). Hence, to
verify that a block header satisfies the required difficulty
we have to explicitly implement Ethash function. Ethash
was designed to be ASIC resistant, which is achieved by
forcing miners to extract 64 values from pseudo-random
positions of a 1 GB dataset. Thus, to explicitly com-
pute Ethash, one would have to store 1 GB data in a
contract, which costs roughly 33,554 Ether (storing 32
bytes of data costs 50,000 gas). Moreover, the Ethereum
protocol dictates that the dataset is changed every four
days (on average). Hence, one would require a budget
of approximately $3,000,000 per day as of June 2017 to
maintain the dataset, which is impractical. Alternatively,
one could store a smaller subset of the seed elements and
calculate the values of the dataset on the fly. Unfortu-
nately, to extract values from the seed one would have
to compute several SHA3 512 calculations, which is not
a native opcode in the EVM, and would require massive
gas usage if queried many times.

Fortunately, for our purposes, we do not need to fully
compute Ethash. Instead it is enough to just verify the
result of an Ethash computation. Thus, we ask the miner
to submit along with every block header the 64 dataset
values that are used when computing its Ethash and a
witness for the correctness of the dataset elements. The
witness shows that the 64 values are from the correspond-
ing positions in the 1 GB dataset. Intuitively, to verify
the witness for dataset elements, the contract will keep
the Merkle-root of the dataset and a witness for a single
element is its Merkle-branch. Formally, the pool contract
holds the Merkle-roots of all the 1 GB datasets that are
applicable for the next 10 years. We note that the con-
tent of the dataset only depends on block number (i.e.,
the length of the chain). Hence, it is predictable and the
values of all future datasets are already known. Storing
the Merkle roots of one year dataset requires storing 122
Merkle hashes, and would cost only 0.122 Ether.

We note that technically, our approach does not pro-
vide a mathematical guarantee for the correct computa-
tion of Ethash. Instead it guarantees the correct compu-
tation provided that the public dataset roots stored on the
contract were correct. Hence, it is the miner’s respon-
sibility (and best interest) to verify the stored values on
the contract before joining the pool. As the verification
is purely algorithmic, no trust on the intentions of the
contract authors is required.

6.1.2 Coinbase Transactions in Bitcoin

Recall that the payment to the Bitcoin miners is done
via the coinbase transaction of a block. As per Figure 4,
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SMARTPOOL allows miners to fetch the verClaimList
and build the coinbase transaction locally. This ap-
proach, however, has a technical challenge regarding the
transaction size when we implement SMARTPOOL in the
current Ethereum network. Specifically, a single coin-
base transaction may have many outputs to pay to hun-
dreds or thousands of miners. As a result, the size of the
coinbase transaction could be in the order of 10KB (e.g.,
P2POOL’s coinbase transactions is of size 10KB [24]).
Hence, it is expensive to submit a coinbase transaction
of that size to an Ethereum contract. In SMARTPOOL
implementation we could not ask miners to construct the
coinbase transaction naively and submit as the input for
verifyClaim() function.

To address the challenge, we modify SMARTPOOL
protocol slightly. Instead of asking miners to construct
the coinbase transaction naively as in P2POOL, we ask
them to work on only a small part of it. Specifically,
we observe that we can fix the postfix of the coinbase
transaction by using the pay per share scheme. Recall
that the block reward consists of the block subsidy (12.5
Bitcoin) and the transaction fees. Thus, in our imple-
mentation, we pay the transaction fees to the miner who
finds the block. The remaining 12.5 Bitcoin (the block
subsidy) is paid to, say, the next 1 million shares in
verClaimList. This distribution is encoded in all the
latter outputs. Thus, we can fix all the outputs but the
first one in the coinbase transaction, since the next 1 mil-
lion shares in verClaimList are the same for all min-
ers. This allows us to maintain the postfix of the coinbase
transaction in SMARTPOOL and only ask miners to sub-
mit the prefix (the first output) when they verify a share.
Our approach significantly reduces both the gas fees paid
for verifyClaim() and also the amount of bandwidth
that miners have to send for verification.

Block submission. In SMARTPOOL-based pool for Bit-
coin, there exists the block submission module which al-
lows any user to submit a witness for a new valid block
in the Bitcoin blockchain so that SMARTPOOL can have
the latest state of the blockchain. If the block is mined
by miners in SMARTPOOL, SMARTPOOL updates the
verClaimList to remove the paid shares from the list.
This also reduces the amount of persistent storage re-
quired in the contract since we do not need to store all
verified claims in SMARTPOOL.

There are other technical subtleties in block submis-
sion and constructing coinbase transactions. We discuss
these in Appendix 10.2.

6.2 Experimental Results
We deployed SMARTPOOL on Ethereum [25] (and
Ethereum classic [26]) live networks and mined with
them with 30GH/s (4GH/s) hash power for 7 days (1

Function Gas Price % of reward
submitClaim() 79,903 0.000319612 0.01%
verifyClaim() 2,872,693 0.011490772 0.6%

Table 2: Ethereum fees of contract operations for Ethereum
pool. Prices are in Ether. We note that in verifyClaim() for
the Ethereum pool, 2.1M gas is spent on Ethash verification.

week). The pool successfully mined over 20 blocks [27]
(85 blocks [28]) in corresponding periods. In this sec-
tion we report the deployment cost of the contract and
the fees that our protocol entails.

For verifyClaim(), we measure the cost to check 1
sample. The cost to check multiple samples can be eas-
ily computed from the cost to check 1. The results are
presented in Tables 2.

The contract consists of over 1,300 lines of Solid-
ity code. The deployment of the contract consumed
4,351,573 gas (6.24 USD). The contract source code is
publicly available [29]. To reduce verification costs, we
have submitted 1024 Merkle nodes for each 1GB dataset,
namely, all the nodes in depth 10 of the Merkle tree. This
operation was done is 11 transactions, which consumed
in total around 6,000,000 gas (around 15 USD) [30]. We
emphasize that this operation is done only once every
30,000 Ethereum blocks, or roughly 5 days. We report
the evaluation of the claim submission and verification in
transactions [31,32]. In our report, a miner with 20 GH/s
submits a batch of shares every 3 hours. Every batch is
rewarded with around 1.8 Ether (630 USD), and entails
total gas fees of 0.011 Ether. Hence, the miner pays 0.6%
for the effective pool fees.

7 Related Work

A number of previous works have studied the problem
of addressing centralization in cryptocurrencies, and ad-
dressing flaws in pool mining protocols. We discuss
these here, and further discuss security of smart contract
applications of which SMARTPOOL is an instance.

P2POOL. The work which most directly relates to
SMARTPOOL is P2POOL [8]. As discussed in Sec-
tion 2.1, P2POOL consumes much more resources (both
computation and network bandwidth), and the variance
of reward is much higher than in centralized pools.
SMARTPOOL solves these problems in P2POOL by i)
relying on the smart contracts which are executed in a
decentralized manner; ii) using probabilistic verification
and a novel data structure to reduce verification costs
significantly; iii) applying simple penalty scheme to dis-
courage cheating miners. As a result, SMARTPOOL is
the first decentralized pooled mining protocol which has
low costs, guarantees low variance of reward to miners.
Further, SMARTPOOL is more secure than P2POOL since
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any miner who has more than 50% of the mining power
in P2POOL can fork and create a longer share-chain.
On the other hand, the adversary has to compromise the
Ethereum network to attack SMARTPOOL.

Pooled mining research. Several previous works have
analysed the security of pooled mining in Bitcoin [2, 4,
9–11]. In previous works [9–11], researchers study the
block withholding attack to mining pools and show that
the attack is profitable when conducted properly. In [2]
Rosenfeld et al. discussed (i) “pool hopping” in which
miners hop across different pools to exploit a weakness
of an old payoff scheme, and (ii) “lie in wait” attacks that
allows miner to strategically calculate the time to sub-
mit his blocks. These challenges also apply to SMART-
POOL when SMARTPOOL is used as a decentralized min-
ing pool in existing networks, and have specific payoff
schemes to reward miners as solutions. The design of
SMARTPOOL is agnostic to the payoff scheme used to
reward miners. Furthermore, if SMARTPOOL were to be
deployed natively in a cryptocurrency as the only mining
pool (see Appendix 10.1), these attacks no longer work.

In [13], Miller et al. study different puzzles and pro-
tocols which either make pooled mining impossible and/
or disincentivize it. Out work is different from [13] in
several aspects. First, we aim to provide an efficient and
practical decentralized pooled mining protocol so miners
have an option to move away from centralized mining
pools. Second, SMARTPOOL is compatible with current
Bitcoin and Ethereum networks as we do not require any
changes in the design of these cryptocurrencies. In [13],
the solutions are designed for new and future cryptocur-
rencies.

In [3, 4], the authors study the decentralization of the
Bitcoin network. Previous works have highlighted that
Bitcoin is not as decentralized as it was intended ini-
tially in terms of services, mining and protocol develop-
ment [3,33]. On the other hand, Bonneau et al. provided
an excellent survey on Bitcoin which also covered the
security concerns of pooled mining [4].

Smart contract applications. Previous works pro-
posed several applications which leveraged smart con-
tracts [34–36]. For example, in [35], Juels et al. study
how smart contracts support criminal activities, e.g.
money laundering, illicit marketplaces, and ransomware
due to the anonymity and the elimination of trust in the
platform. Such applications are built separately from the
underlying consensus protocol of the network. In this
work, we propose a new application of smart contract
that enhances the security of the underlying network by
supporting decentralized mining pools. Bugs in smart
contract implementations are a practical concern; we be-
live the use of bug-detection tools such as Oyente [17]
are useful to SMARTPOOL as well as other.

8 Conclusion
In this paper, we present a new protocol design for an
efficient decentralized mining pool in existing cryptocur-
rencies. Our protocol, namel SMARTPOOL, resolves the
centralized mining problem in Bitcoin and Ethereum by
enabling a platform where mining is fully decentralized,
yet miners still enjoy low variance in reward and better
security. Our experiments on Ethereum and Ethereum
Classic show that SMARTPOOL is efficient.
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10 Appendix

10.1 Applications

We discuss several applications that can be built based
on SMARTPOOL. One straightforward application is
to build decentralized mining pools for cryptocurren-
cies as we have established. Apart from requiring low
costs, guaranteeing low variance in rewards to miners
than the only related solution P2POOL, SMARTPOOL is
also more secure. Specifically, one must compromise the
entire Ethereum network (e.g. having more than 50%
of Ethereum network) in order to compromise SMART-
POOL. On the other hand, the adversary only needs to
acquire 51% of P2POOL’s mining power in order to build
the longest share-chain in P2POOL and rule out other
miners’ contributions.

The second application is a new cryptocurrency based
on SMARTPOOL in which mining is fully decentralized.
Typically, we enforce the consensus rules such that only
blocks generated by SMARTPOOL are accepted valid
blocks. One can easily build a SMARTPOOL-based cryp-
tocurrency by using our introduced solution and adding
the aforementioned consensus rule which dictates that
only SMARTPOOL can produce new valid blocks. Such
cryptocurrencies can offer several good properties to the
network that existing cryptocurrencies cannot. First,
mining is fully decentralized, yet miners still enjoy low
variance in reward. This improves the security of the
underlying network as a whole significantly. Second,
miners are not susceptible to several attacks targeting
to pooled mining. For example, in [9–11] the authors
demonstrate that if a malicious miner withholds blocks
from a victim pool and mines privately in other pool, the
miner can earn more profits from the loss of miners in
the victim pool. Such block withholding attack does not
work in SMARTPOOL-based cryptocurrencies since there
is only one pool in the network.
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Field Size
(bytes) Name Data type

4 version int32 t
32 prevBlock char[32]
32 TxMerkleRoot char[32]
4 timestamp uint32 t
4 bits uint32 t
4 nonce uint32 t

Table 3: Header of a Bitcoin block. This is also used as the
header for shares in pooled mining.

10.2 Implementation Subtleties for
SMARTPOOL-based Bitcoin pool

In this section we address two technical issues that arise
from the design of the protocol. The first issue is the
format of a witness for a new valid block, and the sec-
ond issue is how a miner should decide on his coinbase
transaction in the next share he mines.
Witness for a new valid block. Intuitively, a witness for
a new block is a block header (see Table 3) with suffi-
cient difficulty. However, in Bitcoin network (like in any
blockchain based network), some of the mined blocks
could be orphan, namely, they could be transmitted to the
network a short period before or after an uncle block (a
block that extends the a previous block but does not reach
the blockchain) was found. In this case the network will
eventually form a consensus over only one of the blocks,
and the other block(s) will become orphan (and will not
get any block reward from the network). In our proto-
col we must update the miners verClaimList list only
according to non-orphan blocks. For this purpose, as a
witness we ask for a chain of six blocks. While in the-
ory, even a chain of six blocks could become orphan, in
practice this never happens.
Deciding on the coinbase transaction of the next
share. In order for a share to be valid it must have a coin-
base transaction that corresponds to a verClaimList

list. However, the verClaimList list is updated by the
Ethereum contract. Hence, the contract is only aware of
the Ethereum timestamp at the time the list is updated.
On the other hand, the function verifyClaim() is sup-

posed to verify the coinbase transaction according to the
Bitcoin timestamp of the share. Hence SMARTPOOL
must synchronize Bitcoin and Ethereum time-stamps.
The synchronization is done by introducing a new time
metric, namely, the number of blocks SMARTPOOL has
found. With this new notion of timestamp, we imple-
ment the verClaimList list in such way that a list of
payment claims is maintained for every block number n.
The list of n corresponds to the payments that have to be
done when SMARTPOOL finds block number n. As new
blocks might be reported with some delay, a payment re-
quest for a bulk that is verified in time n is added to the
payment list of time n+20.

Given this implementation, the miner should construct
the coinbase transaction in time n in the following way:
As long as a new block is not found, the coinbase should
correspond to list n. Once a new block is added to Bit-
coin’s blockchain, the miner should immediately start
working on list n + 1 (which already exists, as it was
constructed at time n−19), even before the new block is
submitted to the contract. If the new block becomes or-
phan, the miner should switch back to list n. Otherwise,
after six blocks he should submit a witness for block n.

We note that in this approach the miner might do some
stale unrewarded work in case the new block ends as an
orphan block. However, such cases are also not rewarded
in standard pools.
Other candidates for counter. Careful readers may re-
alize that the timestamp field has only 4 bytes, thus we
will run out of values for the counter after 232 shares.
In SMARTPOOL, one can have several ways to imple-
ment the share’s counter. For example, one can embed
the counter inside the coinbase transaction of a share.
Specifically, Bitcoin allows users to insert 40 random
bytes in a transaction output after the OP RETURN op-
code 7. SMARTPOOL can force miners to store the
share’s counter in these 40 bytes, which can accommo-
date much more number of shares (i.e. 2320).

7https://en.bitcoin.it/wiki/OP RETURN
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Notations
• Let NSize,NSample denote the number of shares included in a claim and the number of random samples

SMARTPOOL will verify in each claim respectively.
• Let claimList[x] store all unverified claims submitted by the miner at address x.
• Let verClaimList[x][y] store all verified and unpaid claims submitted by the miner at address x at block y.
• Let maxCounter[x] store the maximum counter of the miner at address x.
• We denote d as the minimum difficulty of a share.

Data structures.
The Claim structure has the following fields.

1. the number NSize of claimed shares;
2. the ShareAugMT commitment of the set of claimed shares.

The ShareProof structure for a share si has the following fields.
• the header of the share si located at the i-th leaf in the augmented Merkle tree;
• the AugMkProof, attesting that si is committed to the ShareAugMT;

For SMARTPOOL-based Bitcoin pool, the following additional data fields are included in the ShareProof
• the Coinbase transaction;
• the CoinProof, attesting that the coinbase transaction is included in the TxList of si; and
• the Snapshot of verClaimList that the Coinbase is computed on.

Main executions in SMARTPOOL

• Accept a claim. Accept a claim C which has the Claim structure and includes NSize shares from a miner x.
Add C to claimList[x] and update maxCounter[x].

• Verify a claim. Receive a proof p which has ShareProof structure for a share si included in a claim C from
miner x. SMARTPOOL verifies the following.

1. if i is the supposed position that we want to sample based on the intended block hash;
2. if si’s hash is included in the claim C by verifying amkpsi

;
3. if si meets the minimum difficulty d;
4. if si’s counter is greater than the last maxCounter[x];
5. if the coinbase address is the pool contract’s address for Ethereum; or if Coinbase is included
in si based on CoinProof and if Coinbase is correctly constructed with respect to Snapshot of
verClaimList for Bitcoin.

We reject the claim C if any of the above checks fail. If everything is correct and we have verified NSample

from C , update verClaimList[x]. Otherwise, wait for more proofs from miner x.
• Get a new valid block (for Bitcoin’s pool only). If a new block is mined by SMARTPOOL, update
verClaimList.

• Request payment (for Ethereum’s pool only). When a miner requests his/ her payment, send the payment in
proportional to his/her shares in verClaimList. Update verClaimList when the payment is done.

For miners

• Construct block template. For Ethereum, simply use the pool contract’s address as the coinbase address. For
Bitcoin, fetch verClaimList from SMARTPOOL and build the correct coinbase transaction locally.

• Find valid shares. Simply search for valid nonce which yields valid shares.
• Submit a claim. If have found enough NSize shares, build an augmented Merkle tree and submit a claim C to

SMARTPOOL to claim these NSize shares.
• Submit proofs. Wait until C is accepted then construct and submit NSample proofs pi (i = 1,2, . . . ,NSample),

each follows the ShareProof structure, to SMARTPOOL.
Figure 4: Summary of how SMARTPOOL protocol works for both the pool and miners.
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Abstract
Blockchains show promise as potential infrastructure
for financial transaction systems. The security of
blockchains today, however, relies critically on Proof-of-
Work (PoW), which forces participants to waste compu-
tational resources.

We present REM (Resource-Efficient Mining), a new
blockchain mining framework that uses trusted hardware
(Intel SGX). REM achieves security guarantees similar
to PoW, but leverages the partially decentralized trust
model inherent in SGX to achieve a fraction of the waste
of PoW. Its key idea, Proof-of-Useful-Work (PoUW), in-
volves miners providing trustworthy reporting on CPU
cycles they devote to inherently useful workloads. REM
flexibly allows any entity to create a useful workload.
REM ensures the trustworthiness of these workloads by
means of a novel scheme of hierarchical attestations that
may be of independent interest.

To address the risk of compromised SGX CPUs, we
develop a statistics-based formal security framework,
also relevant to other trusted-hardware-based approaches
such as Intel’s Proof of Elapsed Time (PoET). We show
through economic analysis that REM achieves less waste
than PoET and variant schemes.

We implement REM and, as an example application,
swap it into the consensus layer of Bitcoin core. The
result is the first full implementation of an SGX-based
blockchain. We experiment with four example appli-
cations as useful workloads for our implementation of
REM, and report a computational overhead of 5−15%.

1 Introduction

Despite their imperfections [21, 31, 33, 61, 66],
blockchains [34, 60, 62] have attracted the interest of
the financial and technology industries [11, 20, 30,
41, 64, 69] as a way to build a transaction systems
with distributed trust. One fundamental impediments
to the widespread adoption of decentralized or “permis-

sionless” blockchains is that Proofs-of-Work (PoWs) in
blockchains are wasteful.

PoWs are nonetheless the most robust solution today
to two fundamental problems in decentralized cryptocur-
rency design: How to select consensus leaders and how
to apportion rewards fairly among participants. A partic-
ipant in a PoW system, known as a miner, can only lead
consensus rounds in proportion to the amount of compu-
tation she invests in the system. This prevents an attacker
from gaining majority power by cheaply masquerading
as multiple machines. The cost, however, is the above-
mentioned waste. PoWs serve no useful purpose beyond
consensus and incur huge monetary and environmental
costs. Today the Bitcoin network uses more electricity
than produced by a nuclear reactor, and is projected to
consume as much as Denmark by 2020 [25].

We propose a solution to the problem of such waste in
a novel block-mining system called REM. Nodes using
REM replace PoW’s wasted effort with useful effort of
a form that we call Proof of Useful Work (PoUW). In a
PoUW system, users can utilize their CPUs for any de-
sired workload, and can simultaneously contribute their
work towards securing a blockchain.

There have been several attempts to construct cryp-
tocurrencies that recycle PoW by creating a resource use-
ful for an external goal, but they have serious limitations.
Existing schemes rely on esoteric resources [49], have
low recycling rates [58], or are centralized [36]. Other
consensus approaches, e.g., BFT or Proof of Stake, are
in principle waste-free, but restrict consensus participa-
tion or have notable security limitations.

Intel recently introduced a new approach [41] to elim-
inating waste in distributed consensus protocols that re-
lies instead on trusted hardware, specifically a new in-
struction set architecture extension in Intel CPUs called
Software Guard Extensions (SGX). SGX permits the exe-
cution of trustworthy code in an isolated, tamper-free en-
vironment, and can prove remotely that outputs represent
the result of such execution. Leveraging this capability,
Intel’s proposed Proof of Elapsed Time (PoET) is an in-
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novative system with an elegant and simple underlying
idea. A miner runs a trustworthy piece of code that idles
for a randomly determined interval of time. The miner
with the first code to awake leads the consensus round
and receives a reward. PoET thus promises energy-
waste-free decentralized consensus with security predi-
cated on the tamper-proof features of SGX. PoET oper-
ates in a partially-decentralized model, involving limited
involvement of an authority (Intel), as we explain below.

Unfortunately, despite its promise, as we show in this
paper, PoET presents two notable technical challenges.
First, in the basic version of PoET, an attacker that can
corrupt a single SGX-enabled node can win every con-
sensus round and break the system completely. We call
this the broken chip problem. Second, miners in PoET
have a financial incentive to power mining rigs with
cheap, outmoded SGX-enabled CPUs used solely for
mining. The result is exactly the waste that PoET seeks
to avoid. We call this the stale chip problem.

REM addresses both the stale and broken chip prob-
lems. Like PoET, REM operates in a partially decentral-
ized model: It relies on SGX to prove that miners are
generating valid PoUWs. REM, however, avoids PoET’s
stale chip problem by substituting PoUWs for idle CPU
time, disincentivizing the use of outmoded chips for min-
ing. Miners in a PoUW system are thus entities that use
or outsource SGX CPUs for computationally intensive
workloads, such as scientific experiments, pharmaceuti-
cal discovery, etc. All miners can concurrently mine for
a blockchain while REM gives them the flexibility to use
their CPUs for any desired workload.

We present a detailed financial analysis to show that
PoUW successfully addresses the stale chip problem.
We provide a taxonomy of different schemes, including
PoW, PoET, novel PoET variants, and PoUW. We ana-
lyze these schemes in a model where agents choose how
to invest capital and operational funds in mining and how
much of such investment to make. We show that the
PoUW in REM not only avoids the stale chip problem,
but yields the smallest overall amount of mining waste.
Moreover, we describe how small changes to the SGX
feature set could enable even more efficient solutions.

Unlike PoET, REM addresses the broken chip prob-
lem. Otherwise, compromised SGX-enabled CPUs
would allow an attacker to generate PoUWs at will, and
both unfairly accrete revenue and disrupt the security of
the blockchain [24, 70, 73]. Intel has sought to address
the broken chip problem in PoET using a statistical-
testing approach, but published details are lacking, as
appears to be a rigorous analytic framework. For REM,
we set forth a rigorous statistical testing framework for
mitigating the damage of broken chips, provide analytic
security bounds, and empirically assess its performance

given the volatility of mining populations in real-world
cryptocurrencies. Our results also apply to PoET.

A further challenge arises in REM due to the feature
that miners may choose their own PoUWs workloads. It
is necessary to ensure that miner-specified mining appli-
cations running in SGX accurately report their computa-
tional effort. Unfortunately SGX lacks secure access to
performance counters. REM thus includes a hierarchical
attestation mechanism that uses SGX to attest to com-
pilation of workloads with valid instrumentation. Our
techniques, which combine static and dynamic program
analysis techniques, are of independent interest.

We have implemented a complete version of REM, en-
compassing the toolchain that instruments tasks to pro-
duce PoUWs, compliance checking code, and a REM
blockchain client. As an example use, we swap REM
in for the PoW in Bitcoin core. As far as we are
aware, ours is the first full implementation of an SGX-
backed blockchain. (Intel’s Sawtooth Lake, which in-
cludes PoET, is implemented only as a simulation.) Our
implementation supports trustworthy compilation of any
desired workload. As examples, we experiment with four
REM workloads, including a commonly-used protein-
folding application and a machine learning application.
The resulting overhead is about 5−15%, confirming the
practicality of REM’s methodology and implementation.

Paper organization
The paper is organized as follows: Section 2 provides
background on proof-of-work and Intel SGX. We then
proceed to describe the contributions of this work:

• PoUW and REM, a low-waste alternative to PoW
that maintains PoW’s security properties (§3).

• A broken-chip countermeasure consisting of a rig-
orous statistical testing framework that mitigates the
impact of broken chips (§4).

• A methodology for trustworthy performance instru-
mentation of SGX applications using a combination
of static and dynamic program analysis and SGX-
backed trusted compilation (§5).

• Design and full implementation of REM as a
resource-efficient PoUW mining system with auto-
matic tools for compiling arbitrary code to a PoUW-
compliant module. Ours is the first full implemen-
tation of an SGX-backed blockchain protocol (§5).

• A model of consensus-algorithm resource consump-
tion that we use to compare the waste associated
with various mining schemes. We overview the
model and issues with previous schemes (§6) and
defer the details to the full version [76].

We discuss related work in §7 and conclude in §8.
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2 Background

2.1 Blockchains
Blockchain protocols allow a distributed set of partici-
pants, called miners, to reach a form of consensus called
Nakamoto consensus. Such consensus yields an ordered
list of transactions. Roughly speaking, the process is as
follows. Miners collect cryptographically signed trans-
actions from system users. They validate the transac-
tions’ signatures and generate blocks that contain these
transactions plus a pointer to a parent block. The result
is a chain of blocks called (imaginatively) a blockchain.

Each miner, as it generates a block, gets to choose the
block’s contents, specifically which transactions will be
included and in what order. System participants are con-
nected by a peer-to-peer network that propagates trans-
actions and blocks. Occasionally, two or more miners
might nearly simultaneously generate blocks that have
the same parent, forming two branches in the blockchain
and breaking its single-chain structure. Thus a mech-
anism is used to choose which branch to extend, most
simply, the longest chain available [60].1

An attacker could naturally seek to generate blocks
faster than everyone else, forming the longest chain and
unilaterally choosing block contents. To prevent such an
attack, a block is regarded as valid only if it contains
proof that its creator has performed a certain amount of
work, a proof known as a Proof of Work (PoW).

A PoW takes the form of a cryptopuzzle: In most cryp-
tocurrencies, a miner must change an input (nonce) in the
block until a cryptographic hash of the block is smaller
than a predetermined threshold. The security properties
of hash functions force a miner to test nonces by brute
force until a satisfying block is found. Such a block con-
stitutes a solution to the cryptopuzzle and is itself a PoW.
Various hash functions are used in practice. Each type
puts different load on the processor and memory of a
miner’s computing device [60, 58, 72].

The process of mining determines an exponentially
distributed interval of time between the blocks of an in-
dividual miner, and, by extension, between blocks in the
blockchain. The expected amount of work to solve a
cryptopuzzle, known as its difficulty, is set per a deter-
ministic algorithm that seeks to enforce a static expected
rate of block production by miners (e.g., 10 minute block
intervals in Bitcoin). An individual miner thus generates
blocks at a rate that is proportional to its mining power,
its hashrate as a fraction of that in the entire population
of miners. Compensation to miners is granted per block
generated, leading to an expected miner revenue that is
proportional to the miner’s hashrate.

1There are alternatives to this protocol [33, 52, 68, 72], however the
differences are immaterial to our exploration here.

As the mining power that is invested in a cryptocur-
rency grows, the cryptocurrency’s cryptopuzzle difficulty
rises to keep the block generation rate stable. When com-
pensation is sufficiently high, it is worthwhile for a large
number of participants to mine, leading to a high diffi-
culty requirement. This, in turn, makes it difficult for
an attacker to mine a large enough fraction of blocks to
perform a significant attack.

PoW properties. The necessary properties for PoW to
support consensus in a blockchain, i.e., resist adversarial
control, are as follows. First, a PoW must be tied to a
unique block, and be valid only for that block. Other-
wise, a miner can generate conflicting blocks, allowing
for a variety of attacks. A PoW should be moderately
hard [10], and its difficulty should be accurately tunable
so that the blockchain protocol can automatically tune
the expected block intervals. Validation of PoWs, on the
other hand, should be as efficient as possible, given that it
is performed by the whole network. (In most cryptocur-
rencies today, it requires just a single hash.) It should
also be possible to perform by any entity with access to
the blockchain — If the proofs or data needed for valida-
tion are made selectively available by a single entity, for
instance, that entity becomes a central point of control
and failure.2

2.2 SGX
Intel Software Guard Extensions (SGX) [39, 40, 42, 43,
8, 37, 57] is a set of new instructions available on recent-
model Intel CPUs that confers hardware protections on
user-level code. SGX enables process execution in a
Trusted Execution Environment (TEE), and specifically
in SGX in a protected address space known as an en-
clave. An enclave protects the confidentiality and the
integrity of the process from certain forms of hardware
attack and other processes on the same host, including
privileged processes like operating systems.

An enclave can read and write memory outside the en-
clave region as a form of inter-process communication,
but no other process can access enclave memory. Thus
the isolated execution in SGX may be viewed in terms of
an ideal model in which a process is guaranteed to exe-
cute correctly and with perfect confidentiality, but relies
on a (potentially malicious) operating system for sup-
porting services such as I/O, etc. This model is a simpli-
fication: SGX is known to expose some internal enclave
state to the OS [73]. Our basic security model assumes

2 The Bitcoin protocol is expected to soon allow for the so-called
segregated witness architecture [17, 55]. Then, transaction signatures
(witnesses) are kept in a data structure that is technically separate (seg-
regated) from the blockchain data structure. Despite this separation of
data structures, the data in both must be propagated to allow for dis-
tributed validation.
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ideal isolated execution, but as we detail in Section 4, we
have baked a defense against compromised SGX CPUs
into REM.

Attestation SGX allows a remote system to verify the
software running in an enclave and communicate se-
curely with it. When an enclave is created, the CPU
produces a hash of its initial state known as a measure-
ment. The software in the enclave may, at a later time,
request a report which includes a measurement and sup-
plementary data provided by the process. The report is
digitally signed using a hardware-protected key to pro-
duce a proof that the measured software is running in an
SGX-protected enclave. This proof, known as a quote, is
part of an attestation can be verified by a remote system.

SGX signs quotes in attestations using a group signa-
ture scheme called Enhanced Privacy ID or EPID [67].
This choice of primitive is significant in our design of
REM, as Intel made the design choice that attestations
can only be verified by accessing Intel’s Attestation Ser-
vice (IAS) [44], a public Web service maintained by In-
tel whose primary responsibility is to verify attestations
upon request.
REM uses attestations as proofs for new blocks, so

miners need to access IAS to verify blocks. The current
way in which IAS works forces miners to access IAS on
every single verification, adding an undesirable round-
trip time to and from Intel’s server to the block verifica-
tion time. This overhead, however, is not inherent, and
is due only to a particular design choice by Intel. As we
suggest in Section 5.4, a simple modification, to the IAS
protocol, which Intel is currently testing, can eliminate
this overhead entirely.

Randomness As operating systems sit outside of the
trusted computing base (TCB) of SGX, OS-served ran-
dom functions such as srand and rand are not acces-
sible to enclaves. SGX instead provides a hardware-
protected random number generator (RNG) using the
rdrand instruction. REM relies on the SGX RNG.

3 Overview of PoUW and REM

The basic idea of PoUW, and thus REM, is to replace
the wasteful computation of PoW with arbitrary useful
computation. A miner proves that a certain amount of
useful work has been dedicated to a specific branch of
the blockchain. Intuitively, due to the value of the useful
work outside of the context of the blockchain supported
by REM, the hardware and power are well spent, and
there is no waste. A comprehensive analysis of the waste
is deferred to the full version [76]. Here we describe the
security model of REM and then give an overview of its
system mechanics.

3.1 Security Model
A PoW solution embodies a statistical proof of an ef-
fort spent by the miner. With PoUW, however, a miner
reports its own effort. The rational miner’s incentive is
to lie, report more work than actually performed, and
monopolize the blockchain. In PoUW / REM, use of a
TEE — Intel SGX in particular — prevents such attacks
and enforces correct reporting of work. The resulting
trust model is starkly different from that in traditional
PoW.

PoET introduced, and we similarly use in REM, a par-
tially decentralized blockchain model. The blockchain is
permissionless, i.e., any entity can participate as a miner,
as in a fully decentralized blockchain such as Bitcoin.
It is only partially decentralized, though, in that it relies
for security on two key assumptions about the hardware
manufacturer’s behavior.

First, we must assume that Intel correctly manages
identities, specifically that it assigns a signing key (used
for attestations) only to a valid CPU. It follows that Intel
does not forge attestations and thus mining work. Such
forgery, if detected in any context, would undermine the
company’s reputation and the perceived utility of SGX,
costing far more than potential blockchain revenue. Sec-
ond, we assume that Intel does not blacklist valid nodes
in the network, rendering their attestations invalid when
the IAS is queried. Such misbehavior would be publicly
visible and similarly damaging to Intel if unjustified.

Even assuming trustworthy manufacturer behavior,
though, a limited number of individual CPUs might be
physically or otherwise compromised by a highly re-
sourced adversary (or adversaries). Our trust model as-
sumes the possibility of such an adversary and makes
the strong assumption that she can learn the attestation
(EPID signing) key for compromised machines and thus
can issue arbitrary attestations for those machines. In
particular, as we shall see, she can falsify random num-
ber generation and lie about work performed in REM.

Even this strong adversary, though, does have a key
limitation: As signing keys are issued by the manufac-
turer, and given our first assumption above, it is not
possible for an adversary to forge identities. We fur-
ther assume that the signatures are linkable. In SGX,
the EPID signature scheme for attestations has a linkable
(pseudonymous) mode [44, 8, 67], which permits anyone
to determine whether two signatures were generated by
the same CPU. As a result, event a compromised node
cannot masquerade as multiple nodes.

Outside the REM security model It is important to
note that REM is a consensus framework, i.e., a means to
generate blocks, not a cryptocurrency. REM can be in-
tegrated into a cryptocurrency, as we show by swapping
it into the Bitcoin consensus layer. As REM has roughly
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the same exponentially distributed block-production in-
terval, such integration need not change security proper-
ties above the consensus layer. For example, fork res-
olution, transaction validation, block propagation, etc.,
remain the same in a REM-backed blockchain as in a
PoW-based one. Thus we do not expand the discussion
of the security issues relevant to those elements in the
REM security model.

3.2 REM overview
Figure 1 presents an architectural overview of REM.

There are three types of entities in the ecosystem of
REM: A blockchain agent, one or more REM miners, and
one or more useful work clients.

The useful work clients supply useful workloads to
REM miners in the form of PoUW tasks, each of which
encompass a PoUW enclave and some input. Any SGX-
compliant program can be transformed into a PoUW en-
clave using the toolchain we developed. Note that a
PoUW enclave has to conform to certain security re-
quirements. The most important is that it meters effort
correctly, something that can be efficiently verified by a
compliance checker and a novel technique we introduce
called hierarchical attestation. We refer readers to §5.2
and §5.3 for details.

The blockchain agent collects transactions and gener-
ates a block template, a block lacking the proof of useful
work (PoUW). As detailed later, a REM miner will attach
the required PoUW and return it to the agent. The agent
then publishes the full block to the P2P network, making
it part of the blockchain and receiving the corresponding
reward.

A miner takes as input a block template and a PoUW
task to produce PoUWs. It launches the PoUW enclave
in SGX with the prescribed input and block template.
Once the PoUW task halts, its results are returned to the
useful work client. The PoUW enclave meters work per-
formed by the miner and declares whether the mining
effort is successful and results in a block. Effort is me-
tered on a per-instruction basis. The PoUW enclave ran-
domly determines whether the work results in a block by
treating each instruction as a Bernoulli trial. Thus min-
ing times are distributed in much the same manner as
in proof-of-work systems. While in, e.g., Bitcoin, effort
is measured in terms of executed hashes, in REM, it is
the number of executed useful-work instructions. Intu-
itively, REM may be viewed as simulating the distribu-
tion of block-mining intervals associated with PoW, but
REM does so with PoUW, and thus eliminates wasted
CPU effort.

When a PoUW enclave determines that a block has
been successfully mined, it produces a PoUW, which
consists of two parts: an SGX-generated attestation

demonstrating the PoUW enclave’s compliance with
REM and another attestation that a block was success-
fully mined by the PoUW enclave at a given difficulty pa-
rameter. The blockchain agent concatenates the PoUW
to the block template, forming a full block, and publishes
it to the network.

When a blockchain participant verifies a fresh block
received on the blockchain network, in addition to ver-
ifying higher-layer properties (e.g., in a cryptocurrency
such as Bitcoin, that transactions, previous block refer-
ences, etc., are valid), the participant verifies the attesta-
tions in the associated PoUW.

Intel’s PoET scheme looks similar to REM in that its
enclave randomly determines block intervals and attests
to block production. PoET, however, lacks the produc-
tion of useful work, an essential ingredient, as we explain
later in the paper. We now discuss our strategy in REM
for handling compromised nodes.

4 Tolerating Compromised SGX Nodes

SGX does not achieve perfect enclave isolation. While
no real practical attack is known, researchers have
demonstrated potentially dangerous side-channel attacks
against applications [73] and even expressed concerns
about whether an attestation key might be extracted [24].

Therefore, even if we assume SGX chips are manu-
factured in a secure fashion, some number of individ-
ual instances could be broken by well-resourced adver-
saries. A single compromised node could be catastrophic
to an SGX-based cryptocurrency, allowing an adversary
to create blocks at will and perform majority attacks on
the blockchain. While she could not spend other people’s
money, which would require access to their private keys,
she could perform denial-of-service attacks, selectively
drop transactions, or charge excessive transaction fees.

In principle, a broken attestation key can be revoked
through the Intel Attestation Service (IAS), but this can
only happen if the break is detected to begin with. Conse-
quently, Intel has explored ways of detecting SGX com-
promise in PoET [6] by statistically testing for implau-
sibly frequent mining by a given node (using a “z-test”).
Details are lacking in published materials, however, and
a rigorous analytic framework seems to be needed.

For REM, we explore compromise detection within a
rigorous definitional and analytic framework. The cen-
terpiece is what we call a block-acceptance policy, a
flexibly defined rule that determines whether a proposed
block in a blockchain is legitimate. As we show, defining
and analyzing policies rigorously is challenging, but we
provide strong analytical and empirical evidence that a
relatively simple statistical-testing policy (which we de-
note Pstat) can achieve good results. Pstat both limits an
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Figure 1: Architecture overview of REM

adversary’s ability to harvest blocks unfairly and mini-
mizes erroneous rejection of honestly mined blocks.

4.1 Threat Model and Definitions

4.1.1 Basic notation

To model block-acceptance policies, let M =
{m1, · · · ,mn} be the set of all miners, which we
assume to be static. (Miners can join and leave the
system; M includes all potential miners.) An adversary
A controls a static subset MA ∈ M, where |MA| = k.
rate(mi) specifies the mining rate of mi, the number of
mining operations per unit time it performs.

We define a candidate block to be a tuple B = (t,m,d),
where t is a timestamp, m ∈ M the identity of the CPU
that mines the block, and d is the block difficulty. Diffi-
culty d is defined as the win probability per mining op-
eration in the underlying consensus protocol (e.g. a hash
in Bitcoin, a unit time of sleep in PoET, an instruction in
PoUW). B denotes the set of possible blocks B.

A blockchain is an ordered sequence of blocks. At
time τ , blockchain C(τ) is a sequence of accepted blocks
C(τ) = {B1,B2, . . . ,Bn} for some n. We drop τ where
its clear from context. We let r(τ) denote the number of
rejected blocks of honest miners, i.e., miners in M−MA,
in the history of C(τ). (Of course, r(τ) is not and indeed
cannot be recorded in a real blockchain system.) Let C
be the space of all possible blockchains C. Let Cm denote
blockchain C restricted to blocks mined by miner m∈M.

In REM, a blockchain-acceptance policy is used to de-
termine whether a block appears to come from a legiti-
mate miner (CPU that hasn’t been compromised).

Definition 1. (Blockchain-Acceptance Policy) A
blockchain-acceptance policy (or simply policy)
P : C ×B → {reject,accept} is a function that takes as
input a blockchain and a proposed block, and outputs
whether the proposed block is legitimate.

4.1.2 Security and efficiency definitions

We model the consensus algorithm for the blockchain,
the adversary A, and honest miners respectively as
(ideal) programs progchain, progA, and progm. Together,

they define what we call a security game S(P) for a par-
ticular policy P.

We define security games and their constituent pro-
grams formally in Appendix A.2. Where clear from con-
text in what follows, we use the notation S, rather than
S(P), i.e., omit P.

A security game S may itself be viewed as a proba-
bilistic algorithm. Thus we may treat the blockchain re-
sulting from execution of S for interval of time τ as a
random variable CS(τ).

Normalizing the revenue from mining a block to 1, we
define the payoff for a miner m for a given blockchain C
as πm(C) = |Cm|.

An adversaryA seeks to maximize payoffs for its min-
ers, as reflected in the following definition:

Definition 2. (Advantage of A). For a given security
game S, the advantage of A for time τ is:

AdvS
A(τ) =

E[πm̂(CS(τ))]

maxm j∈M−MA E[πm j(CS(τ))]
,

for any m̂ ∈MA. Note that E[πm̂(CS(τ))] is equal for all
such m̂, as they all use strategy ΣA and can emit blocks
as frequently as desired (ignoring rate(m̂)).

A policy that keeps AdvS
A(τ) low is desirable, but

there’s a trade-off. A policy that rejects too many policies
incurs high waste, meaning that it rejects many blocks
from honest miners. We define waste as follows.

Definition 3. (Waste of a policy). For a given blockchain
C(τ) = {(B1,B2, . . . ,Bn)}, the waste is defined as

Waste(C(τ)) =
r(τ)

n+ r(τ)
.

For security game S, the waste at time τ is defined as

WasteS(τ) = E[Waste(CS(τ))].

Our exploration of policies focuses critically on the
trade-offs between low AdvS

A(τ) and low WasteS(τ). To
illustrate the issue, we give a simple example in Ap-
pendix A.3 of a policy that allows any CPU to mine only
one block over its lifetime. As τ → ∞, it achieves the
optimal AdvS

A(τ) = 1, but at the cost of WasteS(τ) = 1,
i.e., 100% waste.
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Pα,ratebest
stat (C,B):

parse B→ (τ,m,d)
if |Cm|> F−1(1−α,dτ(ratebest)):

output reject
else

output accept

Figure 2: Pα
stat. F−1(·,λ ) is the quantile function for Poisson

distribution with rate λ .

4.2 The REM policy: Pstat

REM makes use of a statistical-testing-based policy that
we denote by Pstat. Pstat is compatible not just with
PoUW, but also with PoET and potentially other SGX-
based mining variants.

There are two parts to Pstat. First, Pstat estimates the
rate of the fastest honest miner(s) (fastest CPU type), de-
noted by ratebest = maxm∈M−MA rate(m). There are var-
ious ways to accomplish this; a simple one would be to
have an authority (e.g., Intel) publish specs on its fastest
CPUs’ performance. (In PoET, mining times are uni-
form, so ratebest is just a system parameter.) We describe
an empirical approach to estimating ratebest in REM in
Appendix A.1.

Given an estimate of ratebest, Pstat tests submitted
blocks statistically to determine whether a miner is min-
ing blocks too quickly and may thus be compromised.
The basic principle is simple: On receiving a block B
from miner m, Pstat tests the null hypothesis

H0 = {rate(m)≤ ratebest}.

We use |Cm(τ)|, the number of blocks mined by m at
time τ , as the test statistic. Under H0, |Cm| should obey
a Poisson distribution with rate dτ(ratebest), denoted as
Pois[dτ(ratebest)]. Pstat rejects H0 if |Cm| is greater than
the (1−α)-quantile of the Poisson distribution. The false
rejection rate for a single test is therefore at most α . We
specify Pstat (for a given ratebest) in Figure 2.

An important property that differentiates Pstat from
canonical statistical tests is that Pstat repeatedly applies
a given statistical test to an accumulating history of sam-
ples. The statistical dependency between samples makes
the analysis non-trivial, as we shall show.

4.3 Analysis of Pstat

We now analyze the average-case and worst-case waste
and adversarial advantage of Pstat. We assume for sim-
plicity that ratebest is accurately estimated. We remove
this assumption in the worst-case analysis below. We
also assume that the difficulty d(t) is stationary over the
period of observation.

Waste Under Pstat, a miner generates blocks accord-
ing to a Poisson process; whether a block is accepted
or rejected depends on whether the miner has gener-
ated more blocks than a time-dependent threshold. This
process is obviously not memoryless and thus not di-
rectly representable as a Markov process. We can, how-
ever, achieve a close approximation using a discrete-time
Markov chain. Indeed, as we show, we can represent
waste in Pstat using a discrete-time Markov chain that is
periodically identical to the process it models, meaning
that its expected waste is identical at any time nτ , for
n ∈ Z+ and τ a model parameter specified below. This
Markov chain has a stationary distribution that yields
an expression upper-bounding waste in Pstat. (We be-
lieve, and the periodic identical property suggests, that
this bound is very tight.)

To construct the Markov Chain, we partition time into
intervals of length τ; we regard each such interval as a
discrete timestep. Assuming that all honest miners mine
at rate rate, let λ = dτ(rate). Thus an honest miner gen-
erates an expected Pois[λ ] blocks in a given timestep i,
which we may represent as a random variable Yi. With-
out loss of generality, we may set τ = 1/(d× rate) and
thus λ = 1 and E[Pois[λ ]] = 1.

We represent the state of an honest miner at timestep n
by a random variable Xn =∑

n
i=1(Yi−E[Yi]) = (∑n

i=1 Yi)−
n. Thus Xn ∈ Z is simply difference between the miner’s
actually mined blocks and the expected number.

Our Markov chain consists of a set of states C = Z
representing possible values of Xn (we use the notation C
here, as states represent |Cm| for an honest miner m). Fig-
ure 3 gives a simple example of such a chain (truncated
to only four states).

Our statistical testing regime may be viewed as reject-
ing blocks when a transition is made to a state whose
value is above a certain threshold thresh. We denote the
set of such states Crej = { j | j ≥ thresh} ∈ C and depict
corresponding nodes visually in our example in Figure 3
as red. Pstat sets thresh according to the statistical-testing
regime we describe above and a desired false-rejection
(Type-I) parameter α . Specifically,

Crej[α] = { j ∈ Z | j ≥ F−1(1−α,τ× rate)}. (1)

The transition probabilities in our Markov chain are:

P[i→ j | i ∈C \Crej[α]] =

{
P( j− i+1) if j ≥ i−1
0 otherwise

(2)

P[i→ j | i ∈Crej[α]] =

{
P( j+1) if j ≤−1
0 otherwise.

(3)

An example of transitions is given in Figure 3. For
instance, from state −1, the next state can be −2 if the
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Figure 3: Markov chain with states C representing Pstat. Red
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going edges from 0 are omitted for clarity.
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Figure 4: 60-day simulation of Pstat. The fastest honest CPU
mines one block per hour. The Markov chain analysis yields a
long-term advantage upper bound of 1.006 and waste of 0.006.

miner doesn’t produce any block in this step with prob-
ability P(0), or state −2+ i if the miner produces i+ 1
blocks in this step, thus with probability P(i+1).

Finally, an upper bound on the false rejection rate
can be derived from the stationary probabilities of the
Markov chain. Letting q(s) denote the stationary proba-
bility of state s,

Waste(Pα
stat) = ∑

s∈Crej[α]

sq(s). (4)

We compare our analytic bounds with simulation re-
sults in below.

Adversarial Advantage We denote by Σstat the strat-
egy of an adversary that publishes blocks as soon as they
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Figure 5: 60-day simulation of Pstat, under various α . The
fastest honest CPU mines an expected one block per hour.

will be accepted by Pstat. In Appendix A.4, we show the
following:

Theorem 1. In a (non-degenerate) security game S
where A uses strategy Σstat,

Adv
S(Pα

stat)
A =

1
1−Waste(Pα

stat)
.

Simulation We simulate Pstat to explore its efficacy in
both the average case and the worst case. Figure 4 shows
the result of 1000 runs of a 60-day mining period sim-
ulation under Pstat. We set α = 0.4. We present statis-
tics with respect to the fastest (honest) CPU in the sys-
tem, which for simplicity we assume mines one block
per hour in expectation and refer to simply as “the hon-
est miner.” The adversary uses attack strategy Σstat.

In Figure 4a, the solid blue line shows the average ag-
gregate number of blocks mined by the adversary, and
the dashed one those of the honest miner. The attacker’s
advantage is, of course, the ratio of the two values. Ini-
tially, the adversary achieves a relatively high advantage
(≈ 127%), but this drops below 110% within 55 blocks,
and continues to drop. Our asymptotic analytic bound on
waste (given below) implies an advantage of 100.6%.

Figure 4b shows the average waste of Pstat and abso-
lute number of rejected blocks. The waste quickly drops
below 10%. As blocks accumulate, the statistical power
of Pstat grows, and the waste drops further. Analytically,
we obtain Waste(Pα

stat) = 0.006, or 0.6% from Eqn. 4.

Setting α Setting the parameter α imposes a trade-off
on system implementers. As noted, α corresponds to the
Type-I error for a single test in Pstat. As Pstat performs
continuous testing, however, a more meaningful secu-
rity measure is Waste(Pα

stat), the rate of falsely rejected
blocks. Similarly there is no notion of Type-II error—
particularly, as our setting is adversarial. AdvS(Pα

stat)
A cap-

tures the corresponding notion in REM. As shown in Fig-
ure 5, raising α results in a lower AdvS(Pα

stat)
A , but higher

Waste(Pα
stat), and vice versa.
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Algorithm 1: Miner Loop. The green highlighted
line is executed in a TEE (e.g., an SGX enclave).

1 while True do
2 template← read from blockchain agent
3 hash, difficulty← process(template)
4 task← get from useful work client
5 outcome, PoUW← TEE(task, hash, difficulty)
6 send outcome to useful work client
7 if PoUW 6=⊥ then
8 block← formBlock(template, PoUW)
9 send block to blockchain agent

5 Implementation Details

We have implemented a full REM prototype using
SGX (§5.1), and as an example application swapped
REM into the consensus layer of Bitcoin-core [18].
We explain how we implemented secure instruction
counting (§5.2), and our hierarchical attestation frame-
work (§5.3) that allows for arbitrary tasks to be used for
work. We explain how to reduce the overhead of at-
testation due to SGX-specific requirements (§5.4). Fi-
nally (§5.5) we present two examples of PoUW and eval-
uate the overhead of REM.

5.1 Architecture
Figure 1 shows the architecture of REM. As discussed
in §3.2, the core of REM is a miner program that does
useful work and produces PoUWs. Each CPU instruction
executed in the PoUW is analogous to one hash function
computation in PoW schemes. That is, each instruction
has some probability of successfully mining a block, and
if the enclave determines this is the case, it produces a
proof — the PoUW.

Pseudocode of the miner’s iterative algorithm is given
in Algorithm 1. In a given iteration, it first takes a
block template from the agent and calculates the previ-
ous block’s hash and difficulty. Then it reads the task to
perform as useful work. Note that the enclave code has
no network stack, therefore it receives its inputs from
the miner untrusted code and returns its outputs to the
miner untrusted code. The miner calls the TEE (SGX
enclave) with the useful task and parameters for mining,
and stores the result of the useful task. It also checks
whether the enclave returned a successful PoUW; if so,
it combines the agent-furnished template and PoUW into
a legal block and sends it to the agent for publication.
In REM, the miner untrusted layer is implemented as a
Python script using RPC to access the agent.

To securely decide whether an instruction was a “win-
ning” one, the PoUW enclave does the equivalent of

generating a random number and checking whether it
is smaller than value target that represents the desired
system-wide block rate, i.e., difficulty. For this purpose,
it uses SGX’s random number generator (SRNG). How-
ever, calling the SRNG and checking for a win after
every single instruction would impose prohibitive over-
head. Instead, we batch instructions by dividing useful
work into subtasks of short duration compared to the
inter-block interval (e.g. 10 second tasks for 10 minute
average block intervals). We let each such subtask run
to completion, and count its instructions. The PoUW en-
clave then calls the SRNG to determine whether at least
one of the instructions has won, i.e., it checks for a re-
sult less than target, weighted by the total number of
executed instructions. If so, the enclave produces an at-
testation that includes the input block hash and difficulty.

Why Count Instructions While instructions are rea-
sonable estimates of the CPU effort, CPU cycles would
have been a more accurate metric. However, although cy-
cles are counted, and the counts can be accessed through
the CPU’s performance counters, they are vulnerable to
manipulation. The operating system may set their values
arbitrarily, allowing a rational operator, who controls her
own OS, to improve her chances of finding a block by
faking a high cycle count. Moreover, counters are incre-
mented even if an enclave is swapped out, allowing an
OS scheduler to run multiple SGX instances and having
them double-count cycles. Therefore, while instruction
counting is not perfect, we find it is the best method for
securely evaluating effort with the existing tools avail-
able in SGX.

5.2 Secure Instruction Counting

As we want to allow arbitrary useful work programs, it is
critical to ensure that instructions are counted correctly
even in the presence of malicious useful work programs.
To this end, we adopt a hybrid method combining static
and dynamic program analysis. We employ a customized
toolchain that can instrument any SGX-compliant code
with dynamic runtime checks implementing secure in-
struction counting.

Figure 6 shows the workflow of the PoUW toolchain.
First, the useful work code (usefulwork.cpp), C /
C++ source code, is assembled while reserving a regis-
ter as the instruction counter. Next, the assembly code
is rewritten by the toolchain such that the counter is in-
cremented at the beginning of each basic block (a lin-
ear code sequence with no branches) by the number of
instructions in that basic block. In particular, we use
the LEA instruction to perform incrementing for two rea-
sons. First, it completes in a single cycle, and second, it
doesn’t change flags and therefore does not affect con-
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Figure 6: REM toolchain to transfer a useful work to an PoUW-ready program. Everything in the diagram has been implemented
besides existing tools such as ld and SGX signing tool.

Algorithm 2: PoUW Runtime

1 Function TEE(task, hash, diff)
2 outcome,n := task.run()
3 win := 0
4 PoUW :=⊥

/* simulating n Bernoulli tests */

5 l←U [0,1] /* query SGX RNG */

6 if l ≥ 1− (1−diff)n then
7 PoUW = Σintel[hash |diff |1 ]
8 return outcome, PoUW

ditional jumps. The count is performed at the beginning
of a block rather than its end to prevent a cheater from
jumping to the middle of a block and gaining an exces-
sive count.

Another challenge is to ensure the result of instruction
counting is used properly—we cannot rely on the use-
ful work programs themselves. The solution is to wrap
the useful work with a predefined, trusted PoUW run-
time, and make sure to the enclave can only be entered
through the PoUW runtime. The logic of PoUW run-
time is summarized in Algorithm 2, and it is denoted
as PoUWruntime.so in Figure 6. The PoUW runtime
serves as an “in-enclave” loader that launches the useful
work program with proper input and collects the result
of instruction counting. It takes the block hash and diffi-
culty and starts mining by running the mining program.
Once the mining program returns, the PoUW runtime ex-
tracts the instruction counter from the reserved register.
Then it draws a random value from SRNG and deter-
mines whether a new block should be generated, based
on the instruction counter and the current difficulty. If a
block should be generated, the PoUW runtime produces
an attestation recording the template hash that it is called
with and the difficulty.

The last step of the toolchain is to compile the re-
sultant assembly and link it (using linker GNU ld) with
the PoUW runtime (PoUWruntime.so), to produce the

...

.LEHB0:

leaq 1(%r15), %r15 # added by PoUW

call _ZN11stlpmtx_std12basic_stringIcNS...

.LEHE0:

.loc 7 70 0 is_stmt 0 discriminator 2

leaq 3(%r15), %r15 # added by PoUW

leaq -80(%rbp), %rax #, tmp94

movq %rax, %rsi # tmp94,

movq %rbx, %rdi # _4,

.LEHB1:

leaq 1(%r15), %r15 # added by PoUW

call _ZN11stlpmtx_std12out_of_rangeC1ER...

.LEHE1:

...

Figure 7: A snippet of assembly code instrumented with
the REM toolchain. Register r15 is the reserved instruction
counter; it is incremented at the beginning of each basic block
in the lines commented added by PoUW.

PoUW enclave. Figure 7 shows a snippet of instru-
mented assembly code. This PoUW enclave is finally
signed by an Intel SGX signing tool, creating an applica-
tion PoUWEnclave.so that is validated for loading into
an enclave.

The security of instruction counting relies on the as-
sumption that once instrumented, the code cannot alter
its behavior. To realize this assumption in SGX, we need
to require two invariants. First, code pages must be non-
writable; second, the useful work program must be single
threaded.

Enforcing Non-Writable Code Pages Writable code
pages allow a program to rewrite itself at runtime. Al-
though necessary in some cases (e.g. JIT), writable code
opens up potential security vulnerabilities. In particu-
lar, writable code pages are not acceptable in REM be-
cause they would allow a malicious useful work program
to easily bypass the instrumentation. A general memory
protection policy would be to require code pages to have
W⊕X permission, namely to be either writable or exe-
cutable, but not both. However, W⊕X permissions are

1436    26th USENIX Security Symposium USENIX Association



.section data

ENCLAVE_MTX:

.long 0

.section text

...

enclave_entry:

xor %rax, %rax

xchgl ENCLAVE_MTX(%rip), %rax

cmp %rax, 0

jnz enclave_entry

Figure 8: Code snippet: a spinlock to allow only the first thread
to enter enclave entry

not enforced by the hardware. Intel has in fact acknowl-
edged this issue [5] and recommended that enclave code
contain no relocation to enable the W⊕X feature.

REM thus explicitly requires code pages in the enclave
code (usefulwork.so) to have W⊕X permission. This
is straightforward to verify, as with the current imple-
mentation of the SGX loader, code page permissions are
taken directly from the ELF program headers [4].

Enforcing Single Threading Another limitation of
SGX is that the memory layout is largely predefined
and known to the untrusted application. For example,
the State Save Area (SSA) frames are a portion of stack
memory that stores the execution context when handling
interrupts in SGX. This also implies that the SSA pages
have to be writable. The address of SSA frames for
an enclave is determined at the time of initialization, as
the Thread Control Structure (TCS) is loaded by the un-
trusted application through an EADD instruction. In other
words, the address of SSA is always known to the un-
trusted application. This could lead to attacks on the
instruction counting if a malicious program has multi-
ple threads that interact via manipulation of the execu-
tion context in SSA. For example, as we will detail later,
REM stores the counter in one of the registers. When
one thread is swapped out, the register value stored in an
SSA is subject to manipulation by another thread.

While more complicated techniques such as Address
Space Layout Randomization (ASLR) for SGX could
provide a general answer to this problem, for our pur-
poses it suffices to enforce the condition that an enclave
can be launched by at most one thread. As an SGX en-
clave has only one entry point, we can instrument the
code with a spinlock to allow only the first thread to pass,
as shown in Figure 8.

Known entry points REM expects the PoUW
toolchain and compliance checker to provide and verify
a subset of Software Fault Isolation (SFI), specifically in-
direct control transfers alignment [26, 53, 74, 38]. This
ensures that the program can only execute the instruction
stream parsed by the compliance checker, and not jump

to the middle of an instruction to create its own alternate
execution that falsifies the instruction count. Our imple-
mentation does not include SFI, as off the shelf solutions
such as Google’s Native Client could be integrated with
the PoUW toolchain and runtime with well quantified
overheads [74].

5.3 Hierarchical Attestation

A blockchain participant that verifies a block has to
check whether the useful work program that produced
the block’s PoUW followed the protocol and correctly
counted its instructions. SGX attestations require such a
verifier to obtain a fingerprint of the attesting enclave. As
we allow arbitrary work, a naı̈ve implementation would
store all programs on the blockchain. Then a verifier that
considers a certain block would read the program from
the blockchain, verify it correctly counts instructions,
calculate its fingerprint, and check the attestation. Be-
yond the computational effort, just placing all programs
on the blockchain for verification would incur prohibitive
overhead and enable DoS attacks via spamming the chain
with overly large programs. The alternative of having an
entity that verifies program compliance is also unaccept-
able, as it puts absolute blockchain control in the hands
of this entity: it can authorize programs that determinis-
tically win every execution.

To resolve this predicament, we form PoUW attesta-
tions with what we call two-layer hierarchical attesta-
tions. We hard-code only a single program’s fingerprint
into the blockchain, a static-analysis tool called compli-
ance checker. The compliance checker runs in a trusted
environment and takes a user-supplied program as input.
It validates that it conforms with the requirements de-
fined above. First, it confirms the text section is non-
writable. Then it validates the work program’s compli-
ance by disassembling it and confirming that the dedi-
cated register is reserved for instruction counting and that
counts are correct and appear where they should. Next,
it verifies that the PoUW runtime is correctly linked and
identical to the expected PoUW runtime code. Finally,
it verifies the only entry point is the PoUW runtime and
that this is protected by a spinlock as shown in Figure 8.
Finally, it calculates the program’s fingerprint and out-
puts an attestation including this fingerprint.

Every PoUW then includes two parts: The useful work
program attestation on the mining success, and an at-
testation from the compliance checker of the program’s
compliance (Figure 9). Note that the compliance attes-
tation and the program’s attestation must be signed by
the same CPU. Otherwise an attacker that compromises a
single CPU could create fake compliance attestations for
invalid tasks. Such an attacker could then create blocks at
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Figure 9: Block structure with a proof comprising the quotes
from the compliance enclave and a work enclave.

will from different uncompromised CPUs, circumvent-
ing the detection policy of Section 4.

In summary, the compliance enclave is verified
through the hard-coded measurement in the blockchain
agent. Its output is a measurement that should be
identical to the measurement of the PoUW enclave
PoUWEnclave.so. PoUW Enclave’s output should
match the block template (namely the hash of the block
prefix, up to the proof) and the prescribed difficulty.

Generalized Hierarchical Attestation The hierarchi-
cal attestation approach can be useful for other scenar-
ios where participants need to obtain attestations to code
they do not know in advance. As a general approach, one
hard-codes the fingerprint of a root compliance checker
that verifies its children’s compliance. Each of them, in
turn, checks the compliance of its children, and so on,
forming a tree. The leaves of the tree are the programs
that produce the actual output to be verified. A hierarchi-
cal attestation therefore comprises a leaf attestation and
a path to the root compliance checker. Each node attests
the compliance of its child.

5.4 IAS access overhead

Verifying blocks doesn’t require trusted hardware. How-
ever, due to a design choice by Intel, miners must contact
the IAS to verify attestations. Currently there is no way
to verify attestations locally. This requirement, however,
does not change the basic security assumptions. More-
over, a simple modification to the IAS protocol, which is
being tested by Intel [3], could get rid of the reliance on
IAS completely on verifiers’ side.

Recall that the IAS is a public web service that re-
ceives SGX attestations and responds with verification
results. Requests are submitted to the IAS over HTTPS;
a response is a signed “report” indicating the validation
status of the queried platform [44]. In the current ver-
sion of IAS, a report is not cryptographically linked with
its corresponding request, which makes the report only
trustworthy for the client initiating the HTTPS session.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

Protein Folding SVM zlib SHA3

6.5%
14.4%

5.8% 10.8%

Native
SGX
REM

Figure 10: REM Overhead

Therefore an IAS access is required for every block ver-
ification by every blockchain participant.

However, the following modification can eliminate
this overhead: simply echoing the request in the body of
the report. Since the report is signed by Intel using a pub-
lished public key [44, 45], only one access to IAS would
be needed globally for every new block. Other miners
could use the resulting signed report. Such a change is
under testing by Intel for future versions of the IAS [3].

5.5 Experiments
We evaluate the overhead of REM with four examples of
useful work benchmarks in REM as mining programs: a
protein folding algorithm [1], a Support Vector Machine
(SVM) classifier [22], the zlib compression algorithm
(iterated) [2], and the SHA3-256 hash algorithm (iter-
ated) [7]. We evaluate each benchmark in three modes:

Native We compile with the standard toolchain.

SGX We port to SGX by removing system calls and re-
placing system libraries with SGX-compliant ones.
Then we compile in SGX-prerelease mode and run
with the SGX driver v1.7 [43].

REM After porting to SGX, we instrument the code us-
ing our REM toolchain. We then proceed as in the
SGX mode.

We use the same optimization level (-O2) in all modes.
The experiments are done on a Dell Precision Worksta-
tion with an Intel 6700K CPU and 32GB of memory. For
more details on the experiment setup, we refer readers to
the full version [76].

We compared the running time in three modes and
the results are shown in Figure 10. The running time of
the native mode is normalized to one as a baseline. For
all four useful workloads, we observe a total overhead
of 5.8% ∼ 14.4% in REM relative to the native mode.
Because the code is instrumented at control flow trans-
fers, workloads with more jumps will incur more count-
ing overhead. For example, SHA3-256 is highly iterative
compared with the other workloads, so it incurs the most
counting overhead.

We note that overhead for running in SGX is not uni-
form. For computation-bound workloads such as protein
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folding, zlib, and SHA3, SGX introduces little overhead
(< 1%) because the cost of switching to SGX and obtain-
ing attestations is amortized by the longer in-enclave ex-
ecution time of the workload. In the shorter SVM bench-
mark, the cost of entering SGX is more significant.

In summary, we observe an overhead of roughly 5−
15% for converting useful-work benchmarks into REM
PoUW enclave.

6 Waste Analysis

To compare PoUW against PoET and alternative
schemes, we explore a common game-theoretic model
(with details deferred to the appendix). We consider a
set of operators / agents that can either work locally on
their own useful workloads or utilize their resource for
mining. Based on the revenue from useful work and
mining, and the capital and operational costs, we com-
pute the equilibrium point of the system. We calculate
the waste in this context as the ratio of the total resource
cost (in U.S. dollars) spent per unit of useful work on a
mining node compared with the cost when mining is not
possible and all operators do useful work. We plug in
concrete numbers for the parameters based on statistics
we collected from public data sources.

Initial study of PoET identified a subtle pitfall involv-
ing miner’s ability to mine simultaneously on multiple
blockchains, a problem solved by He et al. [59] in a
scheme we call Lazy-PoET. Our analysis, however, re-
veals that even Lazy-PoET suffers from what we call
the stale-chip problem. Miners are better off maintain-
ing farms of cheap, outdated CPUs just for mining than
using new CPUs for otherwise useful goals.

We consider instead an approach in which operators
utilize their CPUs while mining, making newer CPUs
more attractive due to the added revenue from the useful
work done. We call this scheme Busy PoET. We find that
it improves on Lazy Poet, but remains highly wasteful.

This observation leads to another approach, Proof of
Potential Work (PoPW). PoPW is similar to Busy-PoET,
but reduces mining time according to the speed of the
CPU (its potential to do work), and thus rewards use
of newer CPUs. Although PoPW would greatly reduce
waste, SGX does not allow an enclave to securely re-
trieve its CPU model, making PoPW theoretical only.

We conclude that PoUW incurs the smallest amount
of waste among the options under study. For full de-
tails on our model, parameter choices, and analyses of
the various mining schemes, we refer the reader to the
full version [76].

7 Related Work

Cryptocurrencies and Consensus. Modern decentral-
ized cryptocurrencies have stimulated strong interest in

Proof-of-Work (PoW) systems [12, 29, 46] as well as
techniques to reduce their associated waste.3

An approach similar to PoET [41], possibly originat-
ing with Dryja [27], is to limit power waste by so-called
Proof-of-Idle. Miners buy mining equipment and get
paid for proving that their equipment remains idle. Be-
yond the technical challenges, as in PoET, an operator
with a set budget could redirect savings from power to
purchase more idle machines, producing capital waste.

Alternative approaches, like PoUW, aim at PoW pro-
ducing work useful for a secondary goal. Permacoin [58]
repurposes mining resources as a distributed storage net-
work, but recycles only a small fraction of mining re-
sources. Primecoin [49] is an active cryptocurrency
whose “useful outputs” are Cunningham and Bi-twin
chains of prime numbers, which have no known utility.
Gridcoin [36, 35], an active cryptocurrency whose min-
ers work for the BOINC [9] grid-computing network, re-
lies on a central entity. FoldingCoin [65] rewards par-
ticipants for work on a protein folding problem, but as a
layer atop, not integrated with, Bitcoin.

Proof-of-Stake [71, 14, 48, 16] is a distinct approach in
which miners gain the right to generate blocks by com-
mitting cryptocurrency funds. It is used in experimen-
tal systems such as Peercoin [50] and Nxt [23]. Unlike
PoW, however, in PoS, an attacker that gains majority
control of mining resources for a bounded time can con-
trol the system forever. PoS protocols also require that
funds, used as stake, remain frozen (and unusable) for
some time. To remove this assumption, Bentov et al. [15]
and Duong et al. [28] propose hybrid PoW / PoS sys-
tems. These works, and the line of hybrid blockchain
systems starting with Bitcoin-NG [32, 51, 63], can all
utilize PoUW as a low-waste alternative to PoW.

Another line of work on PoW for cryptocurrencies
aims at PoWs that resist mining on dedicated hard-
ware and prevent concentration of mining power, e.g.,
via memory-intensive hashing as in Scrypt [54] and
Ethereum [19]. Although democratization of mining
power is not our focus here, PoUW in fact achieves this
goal by restricting mining to general-use CPUs.

SGX. Due to the complexity of the x86-64 architecture,
several works [24, 70, 73] have exposed security prob-
lems in SGX, such as side-channel attacks [73]. Tramer
et al. [70] consider the utility of SGX if its confidentiality
guarantees are broken. Similar practical concerns moti-
vate REM’s tolerance mechanism of compromised SGX
chips.

Ryoan [38] is a framework that allows a server to
run code on private client data and return the output to

3“Permissioned” systems, as supported in, e.g., Hyperledger [20]
and Stellar [56], avoid waste by using traditional consensus protocols
at the cost of avoiding decentralization.
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the client. The (trusted) Ryoan service instruments the
server operator’s code to prevent leakage of client data.
In contrast, in REM, the useful-workload code is instru-
mented in an untrusted environment, and an attestation
of its validity is produced within a trusted environment.

Haven [13] runs non-SGX applications by incorporat-
ing a library OS into the enclave. REM, in contrast, takes
code amenable to SGX compilation and enforces cor-
rect instrumentation. In principle, Haven could allow for
non-SGX code to be adapted for PoUW.

Zhang et al. [75] and Juels et al. [47] are the first works
we are aware of to pair SGX with cryptocurrencies. Their
aim is to augment the functionality of smart contracts,
however, and is unrelated to the underlying blockchain
layer in which REM operates.

8 Conclusion

We presented REM, which supports permissionless
blockchain consensus based on a novel mechanism
called Proof of Useful Work (PoUW). PoUW leverages
Intel SGX to significantly reduce the waste associated
with Proof of Work (PoW), and builds on and reme-
dies shortcomings in Intel’s innovative PoET scheme.
PoUW and REM are thus a promising basis for partially-
decentralized blockchains, reducing waste given certain
trust assumptions in a hardware vendor such as Intel.

Using a rigorous analytic framework, we have shown
how REM can achieve resilience against compromised
nodes with minimal waste (rejected honest blocks). This
framework extends to PoET and potentially other SGX-
based mining approaches.

Our implementation of REM introduces powerful new
techniques for SGX applications, namely instruction-
counting instrumentation and hierarchical attestation, of
potential interest beyond REM itself. They allow REM
to accommodate essentially any desired workloads, per-
mitting flexible adaptation in a variety of settings.

Our framework for economic analysis offers a general
means for assessing the true utility of mining schemes,
including PoW and partially-decentralized alternatives.
Beyond illustrating the benefits of PoUW and REM, it
allowed us to expose risks of approaches such as PoET in
the use of stale chips, and propose improved variants, in-
cluding Proof of Potential Work (PoPW). We found that
small changes to the TEE framework would be signifi-
cant for reduced-waste blockcain mining. In particular,
allowing for secure instruction (or cycle) counting would
reduce PoUW overhead, and a secure chip-model read-
ing instruction would allow for PoPW implementation.

We reported on a complete implementation of REM,
swapped in for the consensus layer in Bitcoin core in
a prototype system. Our experiments showed mini-
mal performance impact (5-15%) on example bench-

marks. In summary, our results show that REM is practi-
cally deployable and promising path to fair and environ-
mentally friendly blockchains in partially-decentralized
blockchains.
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A Tolerating Compromised SGX Nodes:
Details

A.1 Mining Rate Estimation
We start by discussing how to statistically infer the power
of a CPU from its blocks in the blockchain. Reading the
difficulty of each block in the main chain and the rate
of blocks from a specific CPU, we can estimate a lower
bound of that CPU’s power – it follows directly from the
rate of its blocks. It is a lower bound since the CPU might
not be working continuously, and the estimate’s accuracy
increases with the number of available blocks.

Recall Cmi is the blocks mined by miner mi so far. Cmi

may contain multiple blocks, perhaps with varying dif-
ficulties. Without loss of generality, we write the diffi-
culty as a function of time, d(t). The difficulty is the
probability for a single instruction to yield a win. De-
note the power of the miner, i.e., its mining rate, by ratei.
Therefore in a given time interval of length T , the num-
ber of blocks mined by a specific CPU obeys Poisson
distribution (since CPU rates are high and the win prob-
ability is small, it’s appropriate to approximate a Bino-
mial distribution by a Poisson distribution,) and with rate
rateiT d(t). Further, under independence assumption, the
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mining process of a specific CPU is specified by a Pois-
son process with rate λi(t) = rateid(t), the product of the
probability and the miner’s rate ratei.

There are many methods to estimate the mean of a
Poisson distribution. We refer readers to the full ver-
sion [76] for more details. Knowing rates for all miners,
the rate of the strongest CPU (ratebest) can be estimated.
The challenge here is to limit the influence of adversar-
ial nodes. To this end, instead of finding the strongest
CPU directly, we approximate ratebest based on rateρ

(e.g. f90%), namely the ρ−percentile fastest miner.

Bootstrapping. During the launch of a cryptocur-
rency, it could be challenging to estimate the mining
power of the population accurately, potentially leading
to poisoning attacks by an adversary. At this early stage,
it makes sense to hardwire a system estimate of the max-
imum mining power of honest miners into the system
and set conditions (e.g., a particular mining rate or tar-
get date) to estimate ratebest as we propose above. If the
cryptocurrency launches with a large number of miners,
an even simpler approach is possible before switching
to ratebest estimation: We can cap the total number of
blocks that any one node can mine, a policy we illustrate
below. (See Psimple.)

A.2 Security game definition
We model REM as an interaction among three entities: a
blockchain consensus algorithm, an adversary, and a set
of honest miners. Their behavior together defines a secu-
rity game, which we define formally below. We charac-
terize the three entities respectively as (ideal) programs
progchain, progA, and progm, which we now define.

Blockchain consensus algorithm (progchain). A con-
sensus algorithm determines which valid blocks are
added to a blockchain C. We assume that underlying
consensus and fork resolution are instantaneous; loosen-
ing this assumption does not materially affect our anal-
yses. We also assume that block timestamping is accu-
rate. Timestamps can technically be forged at block gen-
eration, but in practice miners reject blocks with large
skews [18], limiting the impact of timestamp forgery.

Informally, progchain maintains and broadcasts and au-
thoritative blockchain C. In addition to verifying that
block contents are correct, progchain appends to C only
blocks that are valid under a policy P. We model the
blockchain consensus algorithm as the (ideal) stateful
program specified in Figure 11.

Adversary A (progA). In our model, an adversary A
executes a strategy ΣA that coordinates the k miners MA
under her control to generate blocks. Specifically:

progchain[P]

State:
C: the chain

On receive “init”:
C :=∅
d := d0
Send (C,P,d) to all miners

On receive “submit” B from m:
if P(C,B) = accept:

C←C∪{B}
d← adjust(C,d)
Send (C,P,d) to all miners

Figure 11: The program for a blockchain. We omit details here
on how difficulty d is set, i.e., how d0 and adjust are chosen.

progA[ΣA]

On receive (C,P,d) from progchain
t̂, m̂← ΣA(MA,C,P,d)
if t̂ is not ⊥:

wait until t̂
send “submit” (t̂, m̂,d) to progchain

Figure 12: The program for an adversary A that controls k
nodes MA = {mA1, · · · ,mAk}.

Definition 4. (Adversarial Strategy). An adversarial
strategy is a probabilistic algorithm ΣA that takes in a
set of identities, the current blockchain and the policy,
and outputs a time-stamp and identity for block submis-
sion. Specifically, (MA,C, t,P)→ (t̂, m̂) ∈ R+×MA.

In principle, ΣA can have dependencies among indi-
vidual node behaviors. In our setting, this would not ben-
efit A, however. As we don’t know MA a priori, though,
the only policies we consider operate on individual miner
block-generation history.

As a wrapper expressing implementation by A of ΣA,
we modelA as a program progA, specified in Figure 12.

Honest miners (progm). Every honest miner m ∈ M−
MA follows an identical strategy, a probabilistic algo-
rithm denoted Σh. In REM, Σh may be modeled as a sim-
ple algorithm that samples from a probability distribution
on block mining times determined by rate(m) (specifi-
cally in our setting, an exponential distribution with rate
rate(m)). We express implementation by honest miner m
of Σh as a program progm[Σh] (Figure 13).

To understand the security of REM, we consider a se-
curity game that defines how an adversary A interacts
with honest miners, a blockchain consensus protocol,
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progm[Σh]

On receive (C,P,d) from progchain
t̂← Σh(C,d)
Send “submit” (t̂,m,d) to progchain

Figure 13: The program for an honest miner. Σh is the protocol
defined by progchain(e.g. PoET or PoUW).

Psimple(C,B):
parse B→ (τ,m,d)
if |Cm|> 0:

output reject
else

output accept

Figure 14: A simple policy that allows one block per CPU over
its lifetime.

and a policy given the above three ideal programs. For-
mally:

Definition 5. (Security Game) For a given triple
of ideal programs (progchain[P],progA[ΣA],progm[Σh]),
and policy P, a security game S(P) is a tuple S(P) =
((M,MA,rate(·));(ΣA,Σh)).

We define the execution of S(P) as an interactive exe-
cution of programs (progchain[P],progA[ΣA],progm[Σh])
using the parameters of S(P). As P, ΣA and Σh are ran-
domized algorithms, such execution is itself probabilis-
tic. Thus we may view the blockchain resulting from
execution of S for interval of time τ as a random variable
CS(τ).

A non-degenerate security game S is one in which
there exists at least one honest miner m with rate(m)> 0.

A.3 Warmup policy
As a warmup, we give a simple example of a poten-
tial block-acceptance policy. This policy just allows one
block throughout the life of a CPU, as shown in Fig-
ure 14.

Clearly, an adversary cannot do better than mining
one block. Denote this simple strategy Σsimple. For any
non-degenerate security game S, therefore, the advantage
Adv

S(Psimple)
A (τ) = 1 as τ → ∞. This policy is optimal in

that an adversary cannot do better than an honest miner
unconditionally. However the asymptotic waste of this
policy is 100%.

Another disadvantage of this policy is that it discour-
ages miners from participating. Arguably, a miner would
stay if the revenue from mining is high enough to cover
the cost of replacing a CPU. But though a CPU is still

valuable in other contexts even if it is is blacklisted for-
ever in this particular system, repurposing it incurs op-
erational cost. Therefore chances are this policy would
cause a loss of mining power, especially when the ini-
tial miner population is small, rendering the system more
vulnerable to attacks.

A.4 Adversarial advantage
A block-acceptance policy depends only on the number
of blocks by the adversary since its first one. There-
fore an adversary’s best strategy is simply to publish its
blocks as soon as they won’t be rejected. Denote this
strategy as Σstat.

Clearly, an adversary will submit F−1(1 − α, td ·
ratebest) blocks within [0, t]. On the other hand, the
strongest honest CPU with rate ratebest mines td · ratebest
blocks in expectation. Recall that according to our
Markov chain analysis, Pstat incurs false rejections for
honest miners with probability wh(α), which further
reduces the payoff for honest miners. For a (non-
degenerate) security game S, in which A uses strategy
Σstat, the advantage is therefore:

Adv
S(Pα

stat)
A = lim

t→∞

F−1(1−α, td · ratebest)

(1−wh(α)) td · ratebest
(5)

Theorem 1. In a (non-degenerate) security game S
where A uses strategy Σstat,

Adv
S(Pα

stat)
A =

1
1−Waste(Pα

stat)
.

Proof. Let λ = td · ratebest. It is known that as λ for a
Poisson distribution goes to infinity, it converges in the
limit to a normal distribution with mean and variance λ .
Therefore,

lim
λ→∞

F−1(1−α,λ )

(1−wh(α))λ
= lim

λ→∞

λ +
√

λ zp

(1−wh(α)) λ
=

1
1−wh(α)

.

Early in a blockchain’s evolution, the potential advan-
tage of an adversary is relatively high. The confidence in-
terval is wide at this point, allowing the adversary to per-
form frequent generation without triggering detection.
As the adversary publishes more blocks, the confidence
interval tightens, forcing the adversary to reduce her min-
ing rate. This is illustrated by our numerical simulation
in Section 4.3.
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Abstract
Database-backed applications rely on access control

policies based on views to protect sensitive data from
unauthorized parties. Current techniques assume that
the application’s database tables contain a column that
enables mapping a user to rows in the table. This as-
sumption allows database views or similar mechanisms
to enforce per-user access controls. However, not all
database tables contain sufficient information to map a
user to rows in the table, as a result of database normal-
ization, and thus, require the joining of multiple tables.
In a survey of 10 popular open-source web applications,
on average, 21% of the database tables require a join.
This means that current techniques cannot enforce secu-
rity policies on all update queries for these applications,
due to a well-known view update problem.

In this paper, we propose phantom extraction, a tech-
nique, which enforces per user access control policies on
all database update queries. Phantom extraction does not
make the same assumptions as previous work, and, more
importantly, does not use database views as a core en-
forcement mechanism. Therefore, it does not fall victim
to the view update problem. We have created SafeD as
a practical access control solution, which uses our phan-
tom extraction technique. SafeD uses a declarative lan-
guage for defining security policies, while retaining the
simplicity of database views. We evaluated our system
on two popular databases for open source web appli-
cations, MySQL and Postgres. On MySQL, which has
no built-in access control, we observe a 6% increase in
transaction latency. On Postgres, SafeD outperforms the
built-in access control by an order of magnitude when
security policies involved joins.

1 Introduction
Stateful (server-side) applications often rely on a back-
end database to manage their state. When sensitive data
is involved, these databases become prime targets for
attackers. Web applications, especially, are subject to

attacks due the large number of users and easy access
through the Internet. To protect the sensitive data these
web application store in thee database, proper access
control is required. Unfortunately, securing web applica-
tions has remained a challenge, mainly for three reasons:
(i) the incompatibility of modern web architecture and
the security mechanisms of database systems, (ii) limi-
tations of the automated techniques for enforcing a se-
curity policy, and (iii) failure to write secure, non-buggy
code when implementing access contol logic within the
application.

1. Architectural Incompatibility — Some database
systems provide vendor-specific syntax for fine-grained
access control [13, 16, 18, 23, 24] with support for se-
curity policies that involve joins. However, use of a spe-
cific database’s access control mechanism makes the ap-
plication DBMS-specific. A larger problem is that exist-
ing the web application architecutre is incompatible with
the database access control architecture. Most modern
web applications use an over-privileged database account
with the authority to access and modify any information
stored in the database [19, 21]. This setup is popular
because it avoids the performance overhead of creating
(and tearing down) new database connections on-the-fly
for possibly millions of end users. Using an overprivi-
leged account, the web application can simply maintain
a pool of active database connections that can execute
queries on behalf of any end user.

To use a DBMS’ mechnisms, (1) each application user
must be assigned a unique database account, and (2)
a separate database connection (using the assigned ac-
count) must be used for processing each user’s requests.1

Making such changes to web applications would prevent

1This is because most databases, for security reasons, disallow [31]
or limit [20, 23, 41] a connection’s ability to switch its user context
once it is created. Databases that allow but limit context switching
for existing connections are still vulnerable to (1) application bugs in
switching users, and (2) SQL injection whereby malicious users ma-
nipulate the functionality to switch to previous user contexts.
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them from using a connection pool, and result in perfor-
mance degradation [33, 48].
2. Limitations of Existing Techniques — The incom-
patability of DBMS access control with modern web ap-
plication has resulted in numerous access control solu-
tions, which exist as a security layer between the appli-
cation and the database. These solutions restrict each ap-
plication user to a portion of the database [39, 43, 36].
Before issuing a query, the application rewrites the query
to use the restricted portion of the datbase based on
the authenticated user. Often, database views are the
central mechnism these systems rely on [39, 43]. Al-
though current techniques can fully restrict database
reads [43, 45], they do not support database updates (i.e.,
INSERT, DELETE, and UPDATE queries) due to the view
update problem [27]. The view update probem states that
write queries cannot execute on a view when there is not
a “one-to-one relationship between the rows in the view
and those in the underlying table” [22]. Such a problem
can occur when a view definition contains a join query.

Consider OsCommerce, an open-source e-commerce
web application, which allows customers to leave re-
views on products. The metadata for reviews is stored
in the reviews table. In OsCommerce, customers can
only review products they have purchased. The follow-
ing query represents the allowable set of rows that con-
form to this access control policy:

SELECT R.*

FROM review R,orders_products OP ,

orders O

WHERE O.customer_id=current_id

AND

O.orders_id=OP.orders_ID

AND

OP.product_id=R.product_ID

AND

R.customer_ID=current_id;

The first three conditions in the WHERE clause obtain
the set of products a customer has ordered, and the last
condition ensures that the customer and the current user
are the same. Although this view definition correctly
captures the intended access control policy, it cannot be
enforced with existing query re-writing techniques, as
such a view is not updatable. This is because there is no
one-to-one mapping between the rows in the view and
those in the base tables, e.g., a user can purchase a prod-
uct multiple times across different orders.

Previous work has largely ignored the view update
problem by assuming that any table on which a security
policy is defined contains the user id, thus joins are not
required to map a user to rows in the table [36, 39, 43].
Unfortunately, as our survey of popular open-source web
applications in this paper reveals, on average, 21% (and

up to 50%) of the tables do not contain sufficient infor-
mation to map a user to rows in the table due to a lack of
a user id field or similar, thus a join query is required. In
other words, existing access control solutions would not
be able to fully support database updates for any of these
popular applications.
3. Unsecure and Buggy Code — In today’s web appli-
cation architecture, developers cannot rely on databases
to enforce access control policies due to the reliance
of the applications on a pool of persistent connections.
They cannot use existing access control solutions either,
due to the lack of support for write queries when tables
that do not contain user information. As a result, de-
velopers often implement their own access control login
within the application and such implementations must be
secure [47]. In theory, the application will only issues
queries in accordance with the access control rules for
the authenticated user.

In practice, however, most implementations have se-
curity flaws. According to a five-year study of 396 open-
source web applications, over 200 security vulnerabili-
ties were discovered [26]. Likewise, a study of vulner-
abilities in open-source Java projects [12] found 8.61
defects for every 100,000 lines of code. Unsecure or
buggy code leave web applications vulnerable to numer-
ous access control bypass attacks, such as SQL injec-
tion [8, 25, 28, 34, 35, 38, 42] and insecure direct ob-
ject reference attacks [14, 44]. These issues allow at-
tackers to cause the application to issue unauthorized
queries with respect to the current user and leak sensitive
data. For example, a vulnerability in Symantec’s web-
based management console allowed authenticated low-
privileged users to execute arbitrary SQL queries on the
backend database, and change their account privileges to
administrator level [25]. Data leaks have also occurred
in mobile apps, such as Uber and SwiftKey, that use a
database-backed web service [15, 30].

Such vulernerabilities occur because there is not a
declarative way to define an access control policy within
the application. Rather, developers have an idea of what
the security policy should be and attempt to implement
in code whenever database queries are issued. A proper
access control solution should exist between the appli-
cation and the database and allow a devloper to declar-
atively define an access control policy in a centralized
location. Furthermore, the solution should meet the fol-
lowing key criteria:

C1. Generality: The access control policy can be en-
forced for all read (SELECT) and write (UPDATE,
INSERT, and DELETE) queries on any table (whether
it contains the user id as a column or not);

C2. Correctness: The application user should only be
able to access and modify authorized information as
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defined by the developer’s policy;

C3. Database Independence: The mechanism should
not rely on vendor-specific features of the backend
database; and

C4. Connection Sharing: For compatibility with ex-
isting web applications, the solution should allow
for reusing a set of persistent and over-privileged
database connections to serve requests of multiple
end users.

Our Approach — We introduce the phantom extrac-
tion technique for enforcing access control on write
queries, while being robust to policies that involve joins.
Before executing a write query, we copy the rows from
the target table that the user is authorized to modify into
a temporary table. The query is then copied and modi-
fied to operate on the temporary table. We refer to mod-
ified copy as the query’s phantom. Once SafeD deems
the phantom’s modifications on the temporary table to
be safe, the changes are copied over to the original table.
The view update problem does not apply to phantom ex-
tractions because database views are not used in any part
of the process. The correctness of phantom extraction
is established with a formal notion of query safety that
guarantees a query is compliant with a given security pol-
icy (see Section 5). We present necessary and sufficient
conditions to achieve that guarantee.

With phantom extraction, we created SafeD (Safe
Driver), a pratical access control solution that supports
policy enforcement for both read and write queries.
SafeD extends existing database drivers, such as JDBC
and ODBC, and transparently enforces an application’s
access control policy. Policies are defined by a set of
declarative statements which use a syntax similar to dat-
base views. Since the access control is evaluated at the
driver level, SafeD does not require a new database con-
nection to establish a new user context, nor is it tied to
a particular database backend. The user context is estab-
lished when users authenticate themselves to the appli-
cation, and SafeD enforces the access control policy for
all database connections in the application’s connection
pool.
Contributions —

1. We surveyed 10 popular open-source web applica-
tions and show that complex row-level access con-
trol policies with joins queries are required for, on
average, 21% of the tables to define per-user poli-
cies (Section 3).

2. We establish a formal notion of query safety and
prove the necessary and sufficient conditions for
the safety of all database operations, i.e., SELECT,
DELETE, INSERT, and UPDATE (Section 5).

3. We present a new technique, phantom extraction,
which ensures the safety of database updates with
full generality (Section 6).

4. We present SafeD as a practical solution for en-
forcing per-user access control policies within the
database. On MySQL (which lacks built-in support
for row-level access control for read/write queries),
a 6% increase in transaction latency is observed
(Section 8.1). On Postgres, SafeD provides com-
parable performance to Postgres’ access control for
simple policies, but outperforms it by an order of
magnitude for row-level access control policies with
joins in terms of transaction latency and throughput
(Section 8.2).

2 Related Work
The related work on access control can be categorized
into application-centered versus database-centered ap-
proaches.

2.1 Application Access Control
CLAMP[43] and Nemesis [36] have similarities to SafeD
in that each defines a per-user access policy in terms of
views on the underlying tables. However, both works as-
sume the underlying tables contain a column, such as a
user id, which enables mapping a user to rows in the ta-
ble. If the underlying table does contain a column, such
as a user id [column], a join with one or more additional
tables is necessary. For example, in OsCommerce, the
security policy for reviews requires joining reviews with
orders and orders products to map a user to the set of re-
views they can update (see Section 1). A view defined by
a join query can result in the view update problem [27]. A
database view is updatable only when there is a one-to-
one mapping of rows in the view to rows in the underly-
ing table. Therefore, CLAMP does not support per-user
access control for write queries when the database view
is not updatable. SafeD does not use database views to
define per-user access control policies. Rather, SafeD
rewrites queries to conform to the defined access control
policy and executes the modified queries on tables in the
database, thus avoiding the view update problem entirely.

In addition to assuming a table contain a column that
enables mapping a user to rows in the table, Nemesis [36]
also assumes that INSERT statements do not read exist-
ing rows in the database. However, this may not hold in
many cases (e.g., consider INSERT INTO T1 AS SELECT

* FROM T2). This query reads information from table T2
and copies it into T1. In contrast, SafeD makes no such
assumption and can handle both blind and nested INSERT
queries.

Diesel [39] implements module-based access control,
whereby an application is broken into a series of code
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Solution Generality Correctness Database
Independent

Connection
Sharing

Diesel [39] x x � �
CLAMP [43] x � � �
Nemesis [36] x � � �
Oracle [13] � � x x
Postgres [23] � � x x
SafeD � � � �

Table 1: Comparison of SafeD to existing solutions. (See
Section 1 for criteria definitions.)

modules, each restricted to only a portion of the database
needed to complete its task. While the authors remark
that Diesel can be extended to user-based access control
(e.g., by duplicating all the modules for each connected
user), they also acknowledge that their solution would
not scale [39] and suggest using database access control
in conjunction. SafeD does not require database access
control and is thus compatible with today’s web architec-
ture.

Table 1 summarizes SafeD’s differences with prior
work.

2.2 Database Access Control
Stonebraker and Wong presented the first database ac-
cess control through query rewriting in INGRES [46],
which supported read queries, but not write queries. IN-
GRES’ treatment of read access restrictions as predicates
has been adopted by modern databases. For instance,
Oracle’s VPD allows administrators to define a series of
functions for each relation based on the mode of access.
These functions append a predicate to the query to en-
force access rules based on the user context [29]. Defin-
ing these functions via procedural code offers flexibility,
but is also more error-prone compared to simply writing
declarative policy statements as in SafeD.

More recently, Postgres 9.5 has added support for
fine-grained access control, whereby administrators de-
fine two policy conditions for each table and each role.
The first condition is evaluated against SELECT and
DELETE queries, while the second condition is evaluated
for INSERT queries. (UPDATE queries are treated as a
DELETE followed by an INSERT.) Postgres’s design as-
sumes that if users can view information, they should
also be able to delete it. SafeD does not make this as-
sumption, decoupling a user’s read and write permis-
sions.

As mentioned in Section 1, the key advantage of
SafeD over access control features of database systems
is that the former is compatible with today’s web appli-
cation architecture. Both Oracle and Postgres rely on
the database connection to obtain user context. Web
applications have avoided this approach due to perfor-
mance implications of creating new database connec-
tions [33]. In contrast, SafeD allows applications to share

connections across users. SafeD also provides database-
independence, and offers a simple syntax for defining a
security policy compared to database solutions. SafeD
only requires an understanding of SELECT queries. Or-
acle and Postgres each use a different syntax, and re-
quire developers to understand more complicated con-
cepts, such as creating system contexts, system context
triggers, and policy functions. (See Table 1.)

3 Survey of Modern Web Applications
Modern web applications currently define and enforces
access control policies within the code. MediaWiki, for
example, stores user groups and the associated access
control rules within a PHP config file [4], and the ac-
cess control rules are enforced within the PHP functions.
As evidenced by numerous attacks on web applications,
the current apporach is flawed [8, 25, 28, 34, 35, 38, 42].
Thus, prior work has proposed alternatives that decouple
access control logic from the application, but all exist-
ing work cannot handle write queries when a declarative
policy definition requires a join. These types of policies,
which we call join policies, occur when a database table
does not contain a field corresponding to a user, such as
user id, which enables a mapping of rows in the table to
a user. To determine the prevalence of join policies in
modern web applications, we surveyed 10 open-source
Java web applications of varying size and complexity.

Before determining which tables require a join policy,
we first must identify the user information table. Typi-
cally, the user information table contains a unique user
ID that is used in other tables to map a row to a user.
Given two tables, A and B, we say that table A is the par-
ent of table B if B has a column that refers to the primary
key of A. Similarly, given two tables, A and B, we say
table A is the grandparent of table B if B has a column
which refers to the primary key of a child of A. Often,
these relationships are represented as a foreign key ref-
erence, but some of the applications we surveyed did not
contain any such declarations. The lack of explicit for-
eign key declarations required us to infer the implied par-
ent and grandparent relationships based on the database
schema and structure.

In general, any table that has the user information ta-
ble as its grandparent requires a join policy to define a
per-user access control policy. Additional tables are in-
cluded in our evaluation if accompanying documentation
indicates a relationship between a user and a table de-
spite no parent or grandparent relationship with the user
information table. For example, in MediaWiki, pages can
be semi-protected so only confirmed and autoconfirmed
users2 can modify them. In MediaWiki 1.10 and later,
this information is stored in the page restriction table. In

2Users whose account is at least four days old and has at least ten
edits to Wikipedia
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Web App Total Tables Tables Requiring Join Policy
Wordpress [10] 12 4 (33%)
hotCRP [40] 24 6 (25%)
LimeSurvey [3] 36 18 (50%)
osCommerce [7] 40 4 (10%)
MediaWiki [4] 48 10 (21%)
WeBid [9] 55 5 (9%)
Drupal [2] 60 12 (20%)
myBB [5] 75 8 (11%)
ZenCart [11] 96 18 (19%)
Cyclos [1] 185 24 (13%)
Average Percent 21%

Table 2: Summary of the number of tables in 9 web ap-
plications that require a join query to define a per-user
policy declaratively.

Figure 1: Two web application architectures. A trusted
authentication component within the app or on the server
provides SafeD with the correct user context.

order to define a policy for the page table, a join with
page restriction is necessary to determine which pages a
user can edit.

For each web application, we recorded the total num-
ber of tables in the database and the fraction of those
tables that require a join query in a declarative policy
definition to enforce a per-user policy.

Our survey results, shown in table 2, indicate that an
average of 21% of an application’s database tables re-
quire a join query to define a per-user policy declara-
tively. Web applications with a large amount of normal-
ization tend to have a higher number of tables requiring
a join query in their policy. LimeSurvey, which has the
highest percentage of such tables, contains a user table
with only a few children, but the children are heavily nor-
malized resulting in numerous grandchildren. Zen Cart
and Cyclos, which contain user tables with only a few
children but multiple grandchildren, show similar trends.

4 Overview
Figure 1 shows the deployment architecture of SafeD.
SafeD extends an existing database driver (e.g., JDBC or
ODBC) to add a security layer that ensures all queries
issued by the application are compliant with the defined
declarative security policy (see Figure 2).

The application developer (or the system administra-

Figure 2: Given a query and a user context, SafeD ob-
tains the user’s security policy and creates a safe version
of the query, which is executed on the database.

tor) specifies the desired security policy via a set of
declarative rules. These rules define the read and write
permissions of each application user in the database
(Section 5). At run-time, SafeD automatically trans-
forms each query into a read-safe or write-safe query
(i.e., one that is compliant with the read and write poli-
cies). SafeD provides Truman model semantics, i.e.,
the transformed query provides the same results as if
the original query executed on a restricted view of the
database that is accessible to the user. SafeD supports ar-
bitrary read and write queries. SafeD’s query transforma-
tion module (Section 6) ensures necessary and sufficient
conditions for query safety. A developer can also use
SafeD in an experimental debugging mode of operation,
in which a query is tested for policy-compliance first. In
this mode (a.k.a. non-Truman model [45]), a query is
executed only if it is compliant, and is rejected other-
wise (see Section 6). We implement our prototype by
extending a JDBC driver (Section 7), and evaluate it us-
ing the TPC-C benchmark. Our results show that SafeD
can protect practical database-backed applications at a
negligible cost (Section 8).

4.1 Threat Model
We assume that a database app (e.g., web app) is benign,
but buggy. We assume a remote attacker who attempts to
exploit the web app, but cannot authenticate as another
user. This is a reasonable assumption since most existing
web frameworks, such as Django or Tomcat, have stan-
dardized support for authenticating users. In other words,
the web application is assumed to reliably verify the end-
user’s identity and make it available to SafeD along with
the issued query, but the query itself can be arbitrarily
over-privileged, due to bugs or remote exploits.

Note that there are two causes of data leakage in a
web application: incorrect policy definitions and incor-
rect policy enforcement. SafeD focuses on the latter, en-
suring that all queries obey the developer-defined policy.
However, if the policy is incorrectly defined, SafeD can-
not prevent the undesirable actions of authorized users.
One benefit of this decoupling is that developers are
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forced to explicitly define their security policies. These
explicit definitions are often easier to debug than their
implementation code.

5 Formal Results
In this section, we first describe the notion of per-user,
row-level security policies. We then formally define the
notion of safety for read and write queries. Finally,
we derive necessary and sufficient conditions to achieve
safety. These conditions are subsequently used to show
correctness of our algorithms that render queries safe
with respect to a given policy. Appendix B provides sev-
eral examples of how safety can be enforced based on the
results and definitions presented in this section.

5.1 Security Policy Definition
In SafeD, a security policy is composed of two sets of
access rules: the read policy and the write policy. Given
a user, the read policy identifies the tuples in the database
that the user can read. Likewise, the write policy iden-
tifies the tuples in the database that the user can modify,
remove, or add. These policies are specified as a read set
and a write set for each table of the database. For each
user and each table, a read (write) set identifies the set of
tuples the user can read from (modify, remove from, or
add to) that table. On a given table, the write set of a user
must be a subset of his/her read set (i.e., users can read
tuples that they can modify).

SafeD assumes that the authentication component of
the web application provides the user’s identity and, op-
tionally, a ‘role’ assigned to the user. This role is only
relevant to SafeD for selecting a policy and is not re-
lated to database roles. The user identity would usually
be based on his/her authentication cookie and, possibly,
the web request being made. SafeD takes as input a pol-
icy file comprised of a set of policy statements defining
the read sets and write sets for each user and each role.
The following are examples of policy statements for the
customer and manager roles 3 :

DEFINE WRITESET FOR

ROLE customer USER $i

ON TABLE cust_info

AS SELECT * FROM cust_info

WHERE cid=$i

Listing 1: Customer’s write set for the cust info table.

DEFINE WRITESET FOR ROLE manager USER $i

ON TABLE ordertable

AS SELECT * FROM ordertable

Listing 2: Manager’s write set for the ordertable table.

3For simplicity, we define policies at the granularity of entire rows,
but SafeD can be extended to finer granularities, e.g., at the attribute
level.

Here, $i is a wildcard that is replaced at runtime with
the attribute(s) identifying the current user.4 Read sets
are defined similarly, except that the READSET keyword
is used instead of WRITESET.

The definition of the read and write sets for a table
may involve nested queries or joins with other tables.
For example, suppose there are two additional tables in
the database: carts and cart info. The carts table maps a
customer id to a cart id (cart id), while the cart info ta-
ble contains the items in each cart. Since cart info only
contains cart id, a join with carts is necessary to retrieve
the cid. Listing 3 shows the cart info table’s read set for
different customers.

DEFINE READSET ON ROLE customer USER $i

ON TABLE cart_info

AS SELECT * FROM cart_info x,

carts y

WHERE x.cart_id = y.cart_id

AND y.cid=$i;

Listing 3: The read set for cart info involving a join.

Next, we define read and write sets formally. In
our discussion, an operation can be a SELECT, INSERT,
DELETE, or UPDATE statement. (We use query and oper-
ation interchangeably.) We denote the set S as the tuple
space, representing the (infinite) universe of all possible
tuples. A relational database consists of a collection of
tables. A table T is a finite subset of S. Since each ele-
ment of a set is unique, we allow for duplicate entries by
taking the Cartesian product of S with the natural num-
bers, N× S, and use that as our new tuple space. Du-
plicate entries will have a unique number in S. We also
denote the number of tuples in a table T as |T |. Further-
more, given any subset s⊆ S, we denote its complement
as sc = S\ s.

Given a set of users U , we define a security policy
as a pair of two functions (pr, pw), where pr is the read
policy and pw is the write policy, defined below.

Definition 1 (Read/Write Policy). Given a user u, the
read policy pr(u) is the subset of S that u is allowed to
read. Likewise, the write policy pw(u) is the subset of S
that u is allowed to add or modify.

A modification can be addition, removal, or update of
a tuple. Based on the definition of a security policy, we
now define the read set and write set for a user u.

Definition 2. (Read/Write Set) Given a user u ∈U and a
table T ⊆ S,

• The read set of T , Vr(T,u) = T ∩ pr(u), represents
the set of tuples in T that user u can read.

4Currently, we assume the mapping of the current user to their role
and identifying attribute is performed by the application.
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• The write set of T , Vw(T,u) = T ∩ pw(u), represents
the set of tuples in T that user u can modify5.

Note that the READSET and WRITESET statements in-
troduced earlier correspond to these formal notions of
read and write sets, given a table and user information,
by simply instantiating the user identifier and applying
their SELECT statements to T .

We also define the negated read set of T as NVr(T,u)=
T \ Vr(T,u), which is the set of all tuples in T the
user cannot read. Similarly, negated write set of T
NVw(T,u) = T \Vw(T,u), which is the set of all tu-
ples in T the user cannot modify. It is trivial to show
NVr(T,u) = T \ pr(u) and NVw(T,u) = T \ pw(u).

5.2 Safe Reads and Safe Writes
Now that we have formally defined a security policy and
the read/write sets, we can formally define safe opera-
tions. We first consider read queries, which correspond
to SELECT queries in SQL, and then write queries,
which correspond to UPDATE, INSERT, and DELETE

queries in SQL.

Definition 3 (Read-safety). A query R by a user u with
read policy pr is read-safe if the query would return
the same result when executed on the subset of tuples in
the accessed tables that are readable to the user, namely
pr(u).

In other words, a read-safe SELECT query should re-
turn the same result whether executed on the original ta-
bles or on the read sets of those tables. Note that pr(u)
can, in general, be a set of tuples from multiple tables for
queries with joins.

Corollary 1. A query that only accesses tables whose
tuples are all in pr(u) is read-safe.

The above corollary implies the following: if in a
query R, each table Ti of the database accessed in
the FROM clause is replaced by a table T ′i where T ′i =
T ∩ pr(u), then the resulting query R ′ will be read-
safe. Such an approach has been proposed by previous
systems [43, 46], and is also taken by SafeD. (As we
will discuss shortly, enforcing safety for write queries is
more challenging.) SafeD automatically transforms any
SELECT queries (including those nested within other
queries) by appending additional tables and conditions
to the operation’s FROM and WHERE clauses, respectively,
that are implied by the READSET policy rules. We refer
to this process as read policy intersection. Also, note
that checking whether a query is read-safe can be more
expensive than transforming it to be safe, since checking
may require executing the query twice.

5Since an INSERT query adds tuples not in T , the write set is eval-
uated after the new tuples are added (See Section 5.2)

We next define the notion of read-safety and write-
safety for a write query. As in SQL, we assume that a
write query can read any set of tables (via nested SE-
LECT statements), but modify only a single table and re-
turn, as its result, the modified table. Intuitively, a write
query by a user u that updates a table T is write-safe if
1) it does not modify anything outside table T ’s write set,
and 2) any nested SELECTs within it are also read-safe
(so that it does not leak data via the writes). Formally,

Definition 4. A write query W by a user u that modifies
table T is read-safe if all of its nested queries (which
must be SELECTs) are read-safe. Furthermore, it is
write-safe if it does not modify the set of tuples that
are outside its write set for table T , i.e., NVw(T,u) =
NVw(W (T ),u), where W (T ) represents the tuples in ta-
ble T after executing W .

Let A = W (T ) \ T represent the new entries added
by W to T , and let D = T \W (T ) represent the en-
tries removed from T . It trivially follows that W (T ) =
(T ∪A)\D. For INSERT queries, D will be an empty set
and for DELETE queries, A will be an empty set. For
UPDATE queries, both A and D could be non-empty.

We denote 〈W (T )〉 to be the sum of the cardinality
of A and the cardinality of D for tuples added or deleted
from T as a result of executing W . It can be formally
shown that the definition of write-safety does not require
comparing W (T ) with T , but only examining cardinality
of changes. In particular, the following theorem can be
shown to hold:

Theorem 1. Given a user u∈U, a tuple space S, a set of
tuples s ⊆ S, a table T ⊆ S, a write operation W that is
read-safe, the write policy pw, and the write set Vw(T,u),
the following conditions,

(1) Vw(W (T ),u) = W (Vw(T,u))

(2) 〈W (T )〉= 〈W (Vw(T,u))〉

are necessary and sufficient to ensure W is write-safe,
i.e.,

NVw(T,u) = NVw(W (T ),u).

Intuitively, condition (1) states that the resulting table
from a write-safe write query should be the same whether
the write is done on the original table T or on the write
set Vw(T,u). Condition (2) states that the total count of
tuples added/deleted in T from executing W (T ) should
be identical to the count of tuples added/deleted if W was
instead executed on Vw(T,u). This ensures that W does
not cause any tuples to be moved outside its write set as
a result of changes. We defer the proof of Theorem 1 to
the Appendix.

We now can define the notion of a query being safe in
terms of read-safety and write-safety for the four types
of queries addressed in this paper.
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Definition 5 (Safe Query). Given a policy (pr, pw), we
consider a SELECT query for a user u to be safe if it is
read-safe. We consider an INSERT, DELETE, or UPDATE
query to be safe if it is read-safe and write-safe.

Corollary 2 (Safety of INSERT). INSERT queries: If all
created tuples by an INSERT query are within the write
set of the user, then the query is write-safe.

Proof outline: In this case, the same tuple(s) will be
added, irrespective of whether they are added to T or
Vw(T,u). Thus, conditions (1) and (2) in Theorem 1 hold.

Corollary 3 (Safety of DELETE). DELETE queries: A
DELETE query that only deletes from Vw(T,u) is write-
safe.

Proof outline: The query only deletes tuples in the
write set so tuples in NVw(T ) are not changed. There-
fore, it trivially satisfies Definition 4. of Theorem 1 and
takes advantage of the properties of DELETE.

Corollary 4 (Safety of UPDATE). UPDATE queries: An
UPDATE query W that only updates tuples in Vw(T,u) is
write-safe if W (Vw(T,u)) \Vw(T,u) is within the user’s
write set.

Proof outline: An UPDATE can be thought of as a
DELETE of the old tuples followed by an INSERT of the
new tuples. From Corollary 3, we know the DELETE op-
eration of the UPDATE is safe. If W (Vw(T,u))\Vw(T,u)
is in the user’s write set, then the INSERT operation of
the UPDATE is write-safe due to Corollary 2.

The new value of an updated tuple has to be within the
write set. If T is replaced by Vw(T,u) in Theorem 1, it
can be shown that the condition in the corollary implies
both conditions of the theorem.

6 SafeD Design and Algorithms
SafeD operates as a modified JDBC driver that is trans-
parent to the application. It transforms a submitted query
into a safe query and returns the corresponding result. To
do that, SafeD applies the Truman model [32] semantics
for read queries, in which a query only sees tuples in its
read sets. For write queries, SafeD uses a novel tech-
nique, called phantom extraction, to ensure only the por-
tion of the table within the write set is updated (Section
6.1).

SafeD also provides an experimental (i.e., debugging)
mode in which a read/write operation is carried out only
if it is safe in the first place (a.k.a. “non-Truman”
model [45]). Unfortunately, with the current state of the
art, providing such a semantics is expensive. Consider
a SELECT query. To know whether the query is safe,
one needs to run the query on the original tables as well
as their read sets and compare the results. Truman se-
mantics avoid the need to execute the query twice since

execution of the query on the original tables is not re-
quired. We prototyped this strategy and tested it with the
TPC-C benchmark and found it to thrash at low transac-
tion rates. We thus focus on the strategy of transforming
queries to make them safe in rest of the paper.

6.1 Phantom Extraction
We say that a write query’s phantom is a read-safe copy
of the query, which only updates rows in the write set. In
SafeD, write queries issued by the application are never
executed on the database. Instead, each query’s phan-
tom is extracted and evaluated for write-safety. Phantom
extraction involves 3 steps. First, transform the original
query into a read-safe query using read policy intersec-
tion (Section 5.2). Then, modify the read-safe query so it
only updates rows in the write set. This modified query is
the phantom. Finally, determine if the phantom is write-
safe. If the query’s phantom is write-safe, the phantom’s
changes to the database are made permanent. Otherwise
a permission violation error is returned and the changes
are rolled back. In 6.2, we present two algorithms for
phantom extraction.

6.2 Query Transformation Strategy
The transformation module automatically transforms a
query Q into a safe query that is guaranteed to satisfy the
two conditions in Theorem 1 for read-safety and write-
safety, while providing the illusion that the query oper-
ates on the view of tables that are in the user’s read set
and write set. The algorithm we present can, at times, re-
quire issuing multiple queries to the database to check
write-safety. Appendix B provides several illustrating
examples of query transformation using the algorithms
presented in this section.

Algorithm 1 shows the general transformation logic
to transform a query Q issued by a user u. The queries
currently handled by SafeD include SELECT, INSERT,
UPDATE, and DELETE queries, which require row-level
access controls. The transformation algorithm is a two-
step process. First, SafeD must ensure that the trans-
formed query is read-safe, i.e., s⊆ pr(u) is true, where s
is the set of tuples read by the query and gives the illusion
that the query is running against the read set of accessed
tables in the database (lines 2-5). Given a user u and
a query Q, SafeD uses read policy intersection (Section
5.2) to create a read-safe query rsQ. Read policy inter-
section automatically transforms a SELECT query in Q
into one that is read-safe by appending additional tables
and conditions to each query based on the read policy.

Nested Queries (read-safety) — SELECT queries can
be nested within other queries, including write queries.
SafeD transforms them recursively to make them read-
safe. Starting from the deepest sub-query, SafeD con-
catenates the associated read view predicates to the
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WHERE clause of the sub-query.

Write Queries (write-safety) — Given rsQ, a read-
safe transformation of Q, SafeD next executes the Phan-
tomExtract function that results in a write-safe execution
of the query using the phantom extraction technique (line
8). An input to PhantomExtract is the WRITESET def-
inition that applies to this query (which is essentially a
SELECT statement – see Section 5.1).

Algorithm 1 General Safe Execution Algorithm

1: function SAFEEXECUTE(USER u, QUERY Q)
2: read policy← GetReadPolicy(u)
3: rsQ← IntersectReadPolicy(Q,readpolicy)
4: if (Q is a Select query) then
5: return Execute(rsQ)
6: T← GetWriteTable(rsQ)
7: writesetde f ← GetWriteSetDef(u,T)
8: return PhantomExtract(rsQ,T,writesetdef)

SafeD uses one of two strategies for implementing the
PhantomExtract function: V-Copy or No-Copy. Both al-
gorithms will result in only allowing permissible writes
on the database. We present V-Copy strategy first.

The V-Copy strategy is shown in Algorithm 2. Instead
of modifying T directly, an empty temporary table with
the same schema as T is created in the database and the
corresponding reference (i.e. the table name), tempT, is
returned. The algorithm uses Corollary 2 to check the
safety of INSERT (line 3), which means all inserts are
performed on an empty table, tempT . For UPDATE or
DELETE, the write set of T is added to tempT during
initialization (lines 5-6). After initilizing tempT , rsQ
is modified to execute on it, thus creating phantom, the
phantom of the original query. After executing phantom
on the database (line 8) , either (1) new tuples are in-
serted into tempT ; (2) tuples are deleted from tempT ; or
(3) tuples are updated in tempT ;. The check on Line 10
holds if the query’s phantom is write-safe. The remain-
ing lines of Algorithm 2 ensure that inserted or updated
tuples have not gone outside the user’s write set for ta-
ble T (if they have, an exception is raised). Finally, T is
modified based on the state of addTup and rmTup

An alternate strategy, No-Copy (Algorithm 3), can
sometimes reduce the amount of work performed by the
database and evaluates the conditions of Theorem 1 lo-
cally when possible. If the write set does not contain a
join, No-Copy parses non-nested queries and determines
if the query would result in tuples outside of the write
set. This parsing can be always done for blind INSERT

queries, which contain the new values for a tuple in the
VALUE clause. Sometimes, the parsing can be done for
UPDATE queries as well. If the UPDATE’s SET clause
does not assign values based on a computation, i.e., “at-

Algorithm 2 V-Copy PhantomExtract

1: function PHANTOMEXTRACT(QUERY rsQ,
STRING T, WRITESET writesetde f )

2: if rsQ is an Insert Query then
3: tempT← CreateTemp(T, null)
4: else
5: authTup← GetAuth(T, writesetdef )
6: tempT← CreateTemp(T,authTuples)
7: phantom← ChangeWriteTable(rsQ, tempT)
8: Execute(phantom)
9: curTup← GetAll(tempT)

10: authTup← GetAuth(tempT, writesetdef )
11: rmTup←∅; addTup←∅
12: if curTup == authTup then
13: authTup← GetAuth(T, writesetdef )
14: addTup← SetMinus(curTup,authTup)
15: if rsQ is not an Insert Query then
16: rmTup← SetMinus(authTup,curTup)
17: else Raise permission exception
18: Insert(T, addTup)
19: Delete(T, rmTup)

tribute name = function()”, parsing can be performed.
No-Copy creates a list of the attributes modified by the
query and checks if any of the attribute are part of the
write set’s definition, i.e., contained in the WHERE clause
of the write set. If so, then the value assigned to the at-
tribute must satisfy the conditions defined in the write
set. If the conditions are not satisfied, then the query
will always result in tuples outside of the write set and is
therefore not write-safe.

For DELETE queries, due to the Corollary 3, No-Copy
executes the DELETE query on the subset of T that is
within its write set, ensuring that only writable tuples are
deleted.

Write set intersection is also used to transform rsQ
into phantom if rsQ is an UPDATE. Since rsQ does not
add tuples outside of the write set, phantom will not ei-
ther, which means condition (1) of Theorem 1 is satisfied.
Condition (2) requires that the number of modifications
made to a table is equal to the number of modifications
made in the write set of the table. Since the query’s phan-
tom only modifies tuples in the write set by definition,
the number of changes made by phantom on T is equal
to 〈W (Vw(T,u))〉 where W is the write operation repre-
senting phantom.

7 Implementation
We have implemented a prototype of SafeD by extend-
ing the JDBC driver. As previously shown in Figure 2,
SafeD is comprised of two key modules: a transforma-
tion module and a policy one. The transformation mod-
ule requires 317 lines of code in V-Copy and 452 lines in

USENIX Association 26th USENIX Security Symposium    1453



Algorithm 3 No-Copy PhantomExtract

1: function QUERY rsQ, STRING T, WRITESET
writesetde f )

2: phantom← NullQuery
3: if rsQ is not an Insert then
4: phantom← IntersectWriteSet(rsQ,writeset)
5: else
6: phantom← rsQ
7: if phantom is a Delete then
8: return Execute(phantom)
9: if (phantom is a nested query) OR

(writeset contains a join) then
10: Use Algorithm 2
11: attList← GetAttributes(phantom)
12: if not(CanEvaluateLocal(modifiedList, writeset))

then
13: Use Algorithm 2
14: condList← GetWhereConditions(writeset)
15: for all a ∈ modi f iedList do
16: if condList.contains(a.name) then
17: pass←IsValidValue(condList, a.value)
18: if pass == f alse then
19: return Execute(NullQuery)
20: return Execute(phantom)

No-Copy. The policy module requires 119 lines.
Our policy module stores the read and write policies

defined by the developer for each role, as well as a
mapping between users and roles. Upon establishing a
database connection, this module creates a connection
state object that contains the security policy. When a user
is identified, the module uses the supplied user context
to initialize the read and write sets for the user. Given a
SQL query and a user context, SafeD either verifies the
compliance of the query before sending it for execution
(in debug mode), or transforms it into a compliant query
(in run-time mode).

8 Evaluation
Our experiments seek to answer the following questions:

1. What is SafeD’s performance overhead for a
database without built-in support for access control?
(Section 8.1)

2. How does SafeD’s performance compare to that of
a built-in mechanism in a database that does support
row-level access control? (Section 8.2)

3. How does SafeD’s performance vary with the ratio
of unsafe queries in the workload? (Section 8.3)

When studying SafeD’s performance, we compare the
V-Copy and No-Copy strategies. We experiment with

both MySQL and Postgres. MySQL is perhaps the most
popular open source database used by web applications,
including several high-volume web sites, such as Face-
book and Zappos [6]. However, given MySQL’s lack of
built-in support for row-level access control, web appli-
cations implement their own security policies. Postgres,
on the other hand, offers row-level access control and
thus provides a comparison point between a database-
enforced access control with the costs of SafeD’s ap-
proach. Postgres is also popular for small to medium-
sized web applications [17].

Setup — In all experiments, we used two machines run-
ning Ubuntu 12.04 with 32GB of memory, configured as
a client and a database server. The server had 8 CPUs
(2.40 GHz each), while the client had 12 Xenon CPUs
(2.67 GHz each). The client machine was used to send
TPC-C queries to the database sever using the OLTP-
Bench suite [37]. For TPC-C, we used its standard mix-
ture of transactions (43% payment, 4% order status, 4%
delivery, 4% stock-level, and 4% new order) and a scale
factor of 20. For our database, we used MySQL 5.7 and
Postgres 9.5.

Security Policies — Based on the semantics of the TPC-
C benchmark, we used two different security policies.
For both policies, there existed an administrator role
with full read and write access to every table. In Pol-
icy 1, we defined two non-admin roles: a manager role
and a customer role. A manager’s user context contains
two attributes: the warehouse id (WID) and the district
id (DID). A customer’s user context contains three at-
tributes: the warehouse id (WID), the district id (DID),
and the customer id (CID). Most of the database tables
contain attributes that can be mapped directly to values
in the user context. In these cases, a user is given read or
write access (or both) to tuples where the user context
matches the associated attributes in the tuples. When
the target tables do not contain the necessary attributes
to map the current user to tuples in the table, i.e, the
New Order and Order Line tables, a join between the tar-
get table(s) and the OOrder table is necessary to obtain
the set of order ids (O ID) that the current user can ac-
cess. The access rules for each role in Policy 1 are sum-
marized in Table 3. We assigned each transaction type in
TPC-C to one of the roles. Customers execute the new
order, order status, and payment transactions, while man-
agers execute the delivery and stock-level transactions.

Our second policy, Policy 2, tests the sensitivity of
the performance results of SafeD and Postgres’s row-
level access control by adding restrictions to Policy 1.
We modified the manager policy for the OOrder and
New Order tables as follows. First, a manager can read
or modify tuples in the OOrder table only when the
O C ID ≥ 0. Second, a manager can only read and
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Table Name Customer Manager

Customer(C ID, C D ID, C W ID) =(CID,DID,WID) Full Access
District(D ID, D W ID) =(DID,WID) =(DID,WID)
Warehouse(W ID) =(WID) Full Access
OOrder(O C ID, O D ID, O W ID) =(CID,DID,WID) =(DID,WID)
New Order(NO O ID) Full Access Full Access
Order Line(OL O ID) Full Access Full Access
History(H C ID, H D ID, H W ID) =(CID,DID,WID) Full Access
Item Full Access Full Access
Stock No Access Full Access

Table 3: Policy 1 access rules for users. The user context
is compared to the attributes in the table to determine if
the user can read/write a tuple. Here, the read and write
permissions are identical.

modify tuples in the New Order table that correspond to
authorized tuples in the OOrder table. Note that Pol-
icy 2 is still semantically equivalent to Policy 1 for the
benchmark application since O C ID≥ 0 is always true.
However, the purpose of these constraints is to intro-
duce artificial join constraints in the manager policy, and
thereby assess their impact on SafeD’s performance. Ta-
ble 4 summarizes the change and shows how it alters the
database account’s privileges.

Table Name Manager

OOrder(O C ID) O C ID≥ 0
New Order(NO O ID) Contain (OID) in OOrder

Table 4: Changes to Policy 1 to get Policy 2 and the new
privileges for a database account. The changes result
from modifications made to the manager role.

8.1 Performance Overhead of MySQL +
SafeD

Since MySQL does not natively support row-based ac-
cess control, we evaluated the overhead of adding ac-
cess control to it using SafeD. Figure 3 shows the latency
overhead on MySQL when SafeD verifies and enforces
Policy 1 for varying transaction rates. The results show
that SafeD can enforce a fine-grained security policy at a
negligible cost to latency compared to having no protec-
tion (6.1% for No-Copy and 5.9% for No-Copy strategy).

8.2 Postgres + SafeD versus Postgres’s
Built-in Access Control

Unlike MySQL, some databases such as Postgres come
with their own built-in row-level access control. The
main advantage of SafeD over such built-in mechanisms
is its compatibility with the common architecture of ex-
isting web applications (See Section 1). Nonetheless, we
also wanted to compare the performance of the two ap-
proaches. We thus compared the costs of enforcing Poli-
cies 1 and 2 in Postgres using its internal access control
versus using SafeD.

For Policy 1, to allow for reusing the same connec-

Figure 3: The performance overhead of different access
control strategies compared to no access control (NULL)
for TPC-C and Policy 1 on MySQL.

tions, we created a single role in Postgres for the bench-
mark application, and granted it the union of the priv-
ileges of all users so that the application can execute
transactions on behalf of both customers or managers.
The results are shown in Figure 4a, where NULL rep-
resents the baseline at which no access control was en-
forced. All three access control strategies (built-in, V-
Copy, and No-Copy) had a maximum throughput of 350
to 400 transactions per second. Overall, the average la-
tencies of all three strategies were also comparable (i.e.,
within 5% of one another). However, note that these re-
sults represent best-case scenarios for Postgres’s built-in
mechanism, since the benchmark application had full ac-
cess to every table.

We conducted a second set of experiments using Pol-
icy 2 in order to artificially force both strategies (SafeD
and built-in) to perform joins during their access control
checks.

The results are shown in Figure 4b. In Policy 2, the
write set for the New Order table was defined as a join
between the New Order and OOrder tables. This consid-
erably lowered the performance of V-Copy, due to its cre-
ation of temporary tables and copying of the write sets.
Since V-Copy resulted in database thrashing and was un-
able to sustain any transaction rates, it is omitted from
Figure 4b. The Postgres’s throughput also dropped sig-
nificantly with its built-in access control, down to only 9
tps (transactions per second). The throughput with No-
Copy remained an order of magnitude higher, namely 85
tps. As reported in Table 5, even at 9 tps, Postgres’s built-
in mechanism is 387 times slower than SafeD when pro-
cessing delivery transactions. The delivery transaction
executes a large number of SELECT and UPDATE queries
on the New Order table. These results indicate that when
a user’s write set contains joins, SafeD using No-Copy
significantly outperforms Postgres’s built-in access con-
trol.

While SafeD outperforms the built-in access control,
the performance of both strategies could be improved. In
particular, we identified two sources of overhead when
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(a) Postgres: Policy 1 (b) Postgres: Policy 2

Figure 4: The performance overhead of different access control strategies compared to no access control (NULL),
using TPC-C on Postgres for Policy 1 (a) and Policy 2 (b). All numbers are average latencies.

Transaction Null(s) Built-in(s) No-Copy(s) Speedup

Delivery 0.05247 41.03159 0.10597 x387

Table 5: Transaction latency at 9 tps. Speedup is SafeD’s
performance compared to the built-in access control.

Figure 5: Average latency in SafeD for varying ratio of
unsafe queries in the workload, at 100 tps.

enforcing Policy 2: (1) when the write set contains a join,
a join query is issued to the database to create a copy of
the write set; and (2) when the transformed query intro-
duces a join or a nested sub-query. Thus, to reduce the
performance overhead, we repeated the experiment with
a denormalized database, i.e, we added a new column,
NO C ID, to the New Order table. As shown in Figure
4b, while the performance of both strategies improved
significantly, SafeD remained the superior strategy.

8.3 Impact of Unsafe Queries on Perfor-
mance

Unsafe queries are those that attempt to view or modify
unauthorized tuples. In previous experiments, we mea-
sured SafeD’s overhead when all queries in the work-
load were safe. To measure the impact of having unsafe
queries on SafeD’s performance, we modified the TPC-
C workload by adding additional queries that are unsafe
under Policy 1. We varied the ratio of such queries be-
tween 1% to 10% of the overall workload. The results
for this experiment are shown in Figures 5 and 6.

As the number of unsafe queries increases, V-Copy’s

Figure 6: Achievable throughput in SafeD for varying
ratio of unsafe queries in the workload.

latency greatly increases, whereas No-Copy’s latency
overhead is relatively constant. This is because V-Copy
creates temporary tables and executes additional queries
to verify write-safety. Consequently, when 3% of the
workload is unsafe, V-Copy thrashes. Figure 6 shows
a similar trend for throughput. In conclusion, when a
large number of unsafe queries are expected, No-Copy is
a superior choice in terms of performance.

8.4 Developer Effort
The primary manual effort required by developers when
using SafeD is the defining of desired security policies.
SafeD’s policies are relatively compact. For example,
Table 6 reports the number of lines of code needed to
define Policy 1 in SafeD, Oracle (which also offers row-
level access control), and Postgres. For SafeD, we count
each read or write set declaration as one line of code.
For Oracle, the count includes all of the procedural code
necessary to establish the user context and enforce the
read and write policies. For Postgres, we count each pol-
icy declaration and each ALTER TABLE command as one
line. We also count the lines of code required to create
an administrator role and a default role with no access.

We observe that Oracle requires the most lines of
code, while Postgres and SafeD both require consider-
ably fewer lines. Furthermore, Oracle requires the de-
veloper to understand how to define policy functions,
policies, and system context triggers. Postgres requires
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Access Control Mechanism LOC

SafeD 36
Postgres’s Built-in Access Control 54
Oracle’s Built-in Access Control (a.k.a. VPD) 544

Table 6: Lines of code required to define a policy using
three different syntaxes.

developers to work with DBAs to define policies and
manage end-user roles. SafeD requires an understanding
of SELECT statements to define policies. Thus, overall,
defining security policies in SafeD seems to be relatively
straightforward.

SafeD also simplifies developer effort when ensuring
the application issues safe queries. To enforce a desired
access control policy, developers add multiple security-
oriented checks within the code to protect the database.
For example, in WordPress 4.6.1, we identified about 515
lines of security-oriented checks in the code base. Each
check is required to ensure no sensitive data is leaked,
but there may be more checks necessary to fully protect
the database [8], especially if the application’s code is
updated. SafeD reduces the effort required to protect the
database because the security policies are declared ex-
plicitly within SafeD, thus they exist separately from the
application and persist despite changes made to the ap-
plication’s code.

9 Conclusion
Database-backed application developers often imple-
ment their access control policies procedurally in code
because the access control mechnisms of database sys-
tems are not adequate for enforcing access control for
multi-user applications. Implementing access control
procedurally in applicaton logic is both cumbersome and
error-prone. Previous work has examined access con-
trol solutions for such situations, often using database
views as the main mechanism for enforcing per-user ac-
cess control. However, due to the view update problem,
database views are not updatable when the view defini-
tion involves a join query. As our survey of 10 popular
open-source web applications showed, on average, 21%
of the tables require a join query to define a security pol-
icy. Therefore, previous work cannot enforce access con-
trol rules on write queries.

We proposed a new technique, phantom extraction
that, given a write query, extracts a similar write query
(known as the query’s phantom), which only modifies
permitted tuples in the database. Phantom extraction
does not use database views, thus avoiding the view up-
date problem. The correctness of the technique is estab-
lished by a formal notion of query safety. We incorpo-
rated this technique into a system, SafeD, and provided

a simple syntax for defining per-user (or per-role) access
control policies declaratively. We also provide two possi-
ble design strategies, V-Copy and No-Copy, for perform-
ing query extraction.
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A Proof of Theorem 1
To prove Theorem 1, we first prove the following lem-
mas.

Lemma 1. Distributive Laws for Tables and their Read-
/Write Sets

The read and write set, V ∈ {Vr,Vw}, are distributive
with respect to the basic set operations. That is, for any
tables or other subsets A,B⊆S ,

V (A∪B,u) =V (A,u)∪V (B,u)

V (A∩B,u) =V (A,u)∩V (B,u)

V (A\B,u) =V (A,u)\V (B,u)
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Proof. These follow trivially from laws for set opera-
tions since V (A,u) = A∩ p(u), where p is pr or pw de-
pending on V being Vr or Vw. We omit the details. For
example, V (A∪B,u) = A∪B∪ p(u) = (A∪ p(u))∪ (B∪
p(u)) =V (A,u)∪V (B,u).

Also, these results apply for NV ∈ {NVr,NVw}, since
NV (A,u)=A\ pu(u)=A∪ pc(u), where pc(u)= S\ p(u)
and S represents the tuple space for the database.

Lemma 2. Given a policy pw, a user u ∈U, a write set
Vw, a table update operation W , and any table T ⊆S ,
the following conditions are equivalent:

(1) NVw(A,u) = NVw(D,u) =∅,

(2) NVw(T,u) = NVw(W (T ),u)

where A and D are the set of tuples added and removed
from T.

Proof. Suppose that condition (1) holds. Then we find
that

NVw(W (T ),u) = NVw((T ∪A)\D,u) def of W

= (NVw(T,u)∪NVw(A,u))\ NVw(D,u) Lemma 1
= NVw(T,u) by condition (1)

Conversely, suppose that condition (2) holds. Then

NVw(A,u) = NVw(W (T )\T,u) def of A

= NVw(W (T ),u)\NVw(T,u) Lemma 1
= NVw(T,u)\NVw(T,u) condition (2)
=∅

The same approach also reveals that NVw(D,u) =∅.

Theorem 1. (Same statement as in Section 5)

Proof. Part 1 — First, we show that the two conditions
imply

NVw(T,u) = NVw(W (T ),u)

. We can partition the sets A and D into the disjoint por-
tions consisting of those entries accessible to user u, and
those that are not, giving

〈W (T )〉= |Vw(A,u)∪NVw(A,u)|+|Vw(D,u)∪NVw(D,u)|.

From their definitions, these are each clearly disjoint so
that they may be separated into

〈W (T )〉= |Vw(A,u)|+|NVw(A,u)|+|Vw(D,u)|+|NVw(D,u)|.

If we define Av = W (Vw(T,u)) \Vw(T,u) and Dv =
Vw(T,u) \ W (Vw(T,u)), then from the definition of
〈W (T )〉, we have

〈W (Vw(T,u))〉= |Av|+ |Dv|

However, we also see that from making use of condition
(1) we have

Vw(A,u) =Vw(W (T )\T,u) def of A

=Vw(W (T ))\Vw(T,u) Lemma 1
= W (Vw(T,u))\Vw(T,u) condition (1)
= Av def of Av.

Likewise, the same procedure reveals that Vw(D,u) =Dv.
Applying these two results, along with condition (2),

we find that

|Av|+ |Dv|= 〈W (Vw(T,u))〉
= 〈W (T )〉
= |Vw(A,u)|+ |NVw(A,u)|+
|Vw(D,u)|+ |NVw(D,u)|

= |Av|+ |NVw(A,u)|+ |Dv|+ |NVw(D,u)|

Removing |Av| and |Dv| from both sides, we are left with

|NVw(A,u)|+ |NVw(D,u)|= 0.

But clearly, since both values are non-negative, this
means that we must have

NVw(A,u) = NVw(D,u) =∅

Hence by Lemma 2, we also have

NVw(T,u) = NVw(W (T ),u).

We have shown that conditions (1) and (2) imply this
condition.

Part 2 — Now we will show that NVw(T,u) =
NVw(W (T ),u), implies both condition (1) and condition
(2). Suppose that for an arbitrary update operation f,

NVw(T,u) = NVw(W (T ),u)

is true. We partition the set A into its disjoint portions
consisting of the entries accessible to user u and those
that are not, giving

A =Vw(A,u)∪NVw(A,u)

=Vw(A,u)∪∅ by Lemma 2
=Vw(A,u)
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The same procedure shows that Vw(D,u)=D. With these
results, we find that

Vw(W (T ),u) =Vw((T ∪A)\D,u) def of W (T )

= (Vw(T,u)∪Vw(A,u))

\Vw(D,u) Lemma 1
= (Vw(T,u)∪A)\Vw(D,u) Vw(A,u) = A

= (Vw(T,u)∪A)\D Vw(D,u) = D

= W (Vw(T,u)) def of W (Vw(T,u))

This shows that condition (1) is true. For condition (2),
We again partition the sets A and D into the disjoint por-
tions consisting of those entries accessible to user u, and
those that are not, giving

〈W (T )〉= |Vw(A,u)|+|NVw(A,u)|+|Vw(D,u)|+|NVw(D,u)|.

Using Lemma 2, this simplifies to |Vw(A,u)| +
|Vw(D,u)|. Focusing on Vw(A,u), we find

Vw(A,u) =Vw(W (T )\T,u) def of A

=Vw(W (T ),u)\Vw(T,u) Lemma 1
= W (Vw(T,u))\Vw(T,u) condition (1)

With a similar procedure, we can show that Vw(D,u) =
Vw(T,u)\W (Vw(T,u)). If we define Av =W (Vw(T,u))\
Vw(T,u) and Dv =Vw(T,u)\W (Vw(T,u)), then from the
definition of 〈W (T )〉, we have

〈W (Vw(T,u))〉= |Av|+ |Dv|

With this, we find

〈W ,T 〉= |Vw(A,u)|+ |Vw(D,u)|
= |W (Vw(T,u))\Vw(T,u)|+ |Vw(T,u)\W (Vw(T,u))|
= |Av|+ |Dv|
= 〈W (Vw(T,u))〉

Since conditions (1) and (2) imply NVw(T,u) =
NVw(W (T ),u) and vice versa, the conditions are neces-
sary and sufficient.
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B Query Transformation Examples
To better understand the transformation described in Sec-
tion 6, we describe the steps of the No-Copy Strategy,
which is comprised of Algorithms 1 and 3, using three
example queries. In these examples, we use the osCom-
merce database schema and focus on queries that read or
modify the reviews table. In osCommerce, a customer
can read a reviews for any product but can only write re-
views for products that the customer has purchased. Af-
ter writing a review, the customer can also edit it. These
policies can be expressed in SafeD as the read and write
sets shown in Listings 4 and 5.

DEFINE READSET FOR ROLE customer USER $i

ON TABLE reviews

AS SELECT * FROM reviews

Listing 4: Customer’s read set for the reviews table.

DEFINE WRITESET FOR

ROLE customer USER $i

ON TABLE reviews

AS SELECT R.* FROM reviews

R,

orders_products OP,orders O

WHERE

O.customers_id=current_id

AND

O.orders_id=OP.orders_id

AND

OP.products_id=R.

products_id AND

R.customers_id=current_id

Listing 5: Customer’s write set for the reviews table.

B.1 Select Query Example
Suppose a customer with current id=2 manages to (e.g.,
by exploiting a bug in the application) cause the web ap-
plication to issue the following query:

SELECT * FROM reviews

WHERE products_id IN (

SELECT products_id

FROM orders_products OP , orders

O

WHERE O.customers_id = 1 AND

O.orders_id=OP.orders_id)

Listing 6: Original SELECT query issued by the
application

First, SafeD must obtain the current customer’s read
policy and intersect it with the customer’s query. The
only tables appearing in this query are reviews, orders,
and orders products. Hence, SafeD only needs to obtain

the read sets of these three tables (Alg. 1 line 2). The read
set for orders, and orders products are given in Listing 7
and Listing 8. For orders, a customer is only permitted to
view their own order information. For orders products,
a customer is only permitted to view order product infor-
mation for their own orders.

DEFINE READSET FOR ROLE customer USER $i

ON TABLE orders

AS SELECT * FROM orders O

WHERE O.customers_id=

current_id

Listing 7: Customer’s read set for the orders table.

DEFINE READSET FOR ROLE customer USER $i

ON TABLE orders_products

AS SELECT OP.*

FROM orders_products OP,

orders O

WHERE O.customers_id=

current_id

AND O.orders_id=OP.

orders_id

Listing 8: Customer’s write set for the orders products
table.

Since the query in Listing 6 is a nested query, SafeD
performs read set intersections recursively, starting with
the deepest sub-query (Alg. 1 line 3). As stated in Sec-
tion 5.2, SafeD appends additional tables and conditions
in accordance with the read set definition, thus trans-
forming each SELECT query into a read-safe one. The
original query is thus transformed into the following
read-safe query and then executed (using Alg. 1 lines 4-
5):

SELECT * FROM reviews

WHERE products_id IN (

SELECT products_id

FROM orders_products OP , orders

O

WHERE (O.customers_id = 1 AND

O.orders_id=OP.orders_id) AND

O.customers_id = 2 AND

O.customers_id = 2 AND

O.orders_id=OP.orders_id);

Listing 9: write-safe SELECT query created by SafeD

Note that, in the original query, the customer at-
tempted to see reviews for products purchased by another
customer with customers id=1. Although the customer
has full read access to reviews, it is a breach of policy for
a customer to read another customer’s information in the
orders products table.
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B.2 Delete Query Example
Suppose a customer with current id=2 causes the appli-
cation to issue the following query:

DELETE FROM reviews

Listing 10: Original DELETE query issued by the
application

First, SafeD obtains the customer’s read policy for ta-
bles used in any SELECT’s in the query, but there are no
SELECT queries. This means, by definition, the current
query is write-safe. SafeD then identifies the table mod-
ified by the query, reviews, and obtains the customer’s
write set definition for this table (Alg. 1 lines 6-7). SafeD
passes the user context, the write-safe DELETE query, and
the write set definition to PhantomExtract (Alg. 1 line 8).

Given that the current write-safe query is a DELETE,
SafeD performs write set intersection by appending ad-
ditional conditions to the outer query’s WHERE clause
(Alg. 3 lines 3-4). This results in the following query:

DELETE FROM reviews

WHERE customers_id = 2 AND

products_id IN (

SELECT products_id

FROM orders_products OP,

orders O

WHERE O.customers_id = 2

AND

O.orders_id=OP.orders_id)

Listing 11: Transformed write-safe DELETE query
created by SafeD 2

Since the write set includes a join (see Listing 5, an ad-
ditional nested query is added to obtain a list of products
purchased by the current customer. This list represents
the set of products the customer is allowed to reviews.

Since the transformed query is a DELETE, it is deemed
safe and executed by SafeD (Alg. 3 lines 7-8). Note that
the original query (Listing 10) attempted to remove all of
the reviews in the database, but SafeD transformed it into
a safe form, i.e., a query that only deletes the reviews of
the customer with current id=2.

B.3 Insert Query Example
As a last example, suppose a customer with current id=2
causes the application to issue the following query.

INSERT INTO reviews

(reviews_id , products_id ,

customers_id , customers_name

,

reviews_rating , date_added ,

last_modified , reviews_read)

VALUES(-1, 1, 1, ’John’,

5, 1-1-2016, 1-1-2016, 50)

Listing 12: Original INSERT query issued by the
application

Similar to the DELETE query example, the original
INSERT query is read-safe by definition. SafeD identi-
fies the table modified by the query, reviews, obtains the
customer’s write set definition for that table, and passes
the user context, the write-safe INSERT query, and the
write set definition to PhantomExtract (Alg. 1 lines 6-8).

Given that the current write-safe query is an INSERT,
SafeD does not perform write set intersection (Alg. 3
lines 5-6) . Since the query is not a DELETE and the write
set contains a join, Algorithm 2 is invoked (from Alg.
3 lines 9-10). SafeD creates an empty copy of reviews,
which we will call temp (Alg. 2 lines 3-5). Then, it ex-
tracts the phantom of the INSERT query, by copying the
write-safe query and executing it on temp (Alg 2. lines 8-
9). After execution, SafeD determines if the rows added
to and removed from temp both belong to the write set
(Alg. 2 lines 10-12). Based on the query in Listing 12,
we see that the original query adds a single row with cus-
tomers id=1. Therefore, the phantom adds a single row
with customers id=1 to temp, which is not in write set,
thus the phantom is not write-safe. No modification is
made to the reviews table (Alg. 2 line 17) and temp is
dropped.
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Abstract

Many database-backed systems store confidential data
that is accessed on behalf of users with different priv-
ileges. Policies governing access are often fine-grained,
being specific to users, time, accessed columns and rows,
values in the database (e.g., user roles), and operators
used in queries (e.g., aggregators, group by, and join).
Today, applications are often relied upon to issue policy
compliant queries or filter the results of non-compliant
queries, which is vulnerable to application errors. Qapla
provides an alternate approach to policy enforcement that
neither depends on application correctness, nor on spe-
cialized database support. In Qapla, policies are specific
to rows and columns and may additionally refer to the
querier’s identity and time, are specified in SQL, and
stored in the database itself. We prototype Qapla in a
database adapter, and evaluate it by enforcing applicable
policies in the HotCRP conference management system
and a system for managing academic job applications.

1 Introduction
Confidential information stored in systems backed by re-
lational databases is often subject to complex access poli-
cies. In a personnel management system, for instance,
ordinary employees may query their own personal infor-
mation but not that of others. Members of a workers’
council may be able to query the columns containing
employee names and ages separately, but not together,
to prevent them from linking employees to their ages.
Similarly, members of the payroll department may not
be able to query the health history of individual employ-
ees, but they may be able to query aggregates over the
health histories of all employees.

Today, such fine-grained policies are enforced by
adding policy compliance checks to application code
wherever the database is queried. This approach
is cumbersome, error-prone, and inappropriate: Poli-
cies are usually derived from the privacy requirements
of the broader legal/enterprise context and are code-

independent, yet every code path in every application
leading to a query must be instrumented by a program-
mer to perform a check. It is easy to miss such checks.
Moreover, when the policy changes, application devel-
opers must update these checks everywhere.

Alternatively, policy compliance can rely on fine-
grained access-control support in the underlying
database management system (DBMS). Unfortunately,
the extent of the support and the language used to
express the policies varies across DBMSs. For instance,
a cell-level policy can be specified in Oracle using its
VPD technology [11], whereas the same policy will
require a combination of views (for column access
control) and row-level policies in PostgreSQL [7].

Furthermore, DBMS support for policies is limited to
standard row-, column- and cell-level access control but,
in practice, policies are often more complex. For in-
stance, a policy may prohibit the linking or joining of
two or more columns, while allowing those columns to
be read independently. Similarly, a policy may allow cer-
tain principals to query for aggregates (sometimes based
on user-defined functions), while prohibiting them from
reading individual values. To the best of our knowl-
edge, such complex policies can be implemented in ex-
isting DBMSs only through extensive use of application-
specific views. However, views can neither support link
policies nor are they transparent to applications. When
using policy-specific views, all queries, even if they are
compliant, must be modified whenever policies change.

Goals. Based on these observations, our goal is to pro-
vide a policy compliance system for database-backed ap-
plications that satisfies the following requirements. (i) It
must be able to express a rich class of policies including
standard fine-grained row-, column- and cell-level poli-
cies and also complex policies that limit data linking or
allow aggregation. (ii) The policy specification must be
associated with the database schema and independent of
applications, and it must be simple and intuitive for pol-
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icy administrators to adopt. (iii) The system should not
depend on specific support from the DBMS and it should
be transparent to applications that issue policy-compliant
queries.

We emphasize that our primary goal is to protect the
confidentiality of data in the face of application bugs.
The threat is not from active attacks, although our design
defends against some kinds of application compromise.

Our design, Qapla, is a policy-compliance middle-
ware for database-backed systems, which satisfies all the
aforementioned goals with moderate overheads on appli-
cation performance. In Qapla, policies are specified in a
SQL-like language, as a function of the database schema,
and stored in the database (in separate tables). SQL is a
natural choice for Qapla’s policy language since its syn-
tax is widely understood. Furthermore, the use of SQL
syntax leads to a simple enforcement mechanism that we
describe below.

For policy enforcement, Qapla integrates a refer-
ence monitor with a generic database adapter, which
intercepts all application queries, looks up applicable
policies, and rewrites queries to ensure compliance.
The SQL-like syntax of Qapla policies simplifies query
rewriting. Moreover, the enforcement is transparent to
application queries that are already policy compliant, so
the application has to be changed only where its queries
are not policy compliant.

Qapla requires no changes to and no specific support
from the DBMS (although we describe how database-
specific support like materialized views can be used
to optimize Qapla’s performance). Furthermore, since
the Qapla reference monitor is integrated in a generic
database adapter and does not depend on DBMS-specific
access control support, it is portable across DBMSs.
Qapla removes the often large and rapidly evolving ap-
plications from the codebase trusted for compliance,
simplifies new applications by obviating the need for per-
vasive filtering code, and avoids compliance bugs due to
incorrect or missing application checks.

Qapla’s approach of stating policies in a high-level,
declarative, and familiar SQL-like language, associated
with the database schema and not within the application
code provides additional benefits. Declarative, schema-
based policies are easier to reason about, analyze, and
audit than policies written in application code. More-
over, policy changes can be affected reliably based on
the schema, without requiring inspection of queries or
modification of compliant queries. The use of SQL-like
syntax and the high-level of policy abstraction further aid
policy writing, debugging and audit.

We demonstrate Qapla’s portability by incorporating
it with PHP’s and Python’s database adapters, and us-
ing it to enforce fine-grained policies in two applica-
tions: the widely-used HotCRP conference management

system [2], and the APPLY system for managing aca-
demic job applications, which we use in our organiza-
tion. HotCRP includes fine-grained policies to maintain
confidentiality of paper submissions, provide author and
reviewer anonymity, and prevent untimely disclosure of
results to authors and PC members. APPLY likewise has
policies to control access to application materials, ref-
erence letters, and evaluators’ notes depending on user
roles and to allow users access to aggregated historical
information yet prevent them from seeing their own past
case materials. The policies cover many important appli-
cation workflows such as user login, searching for pa-
pers, reviews, comments by authors, chair, reviewers,
etc., in HotCRP, and applications, letter request, review,
and search in APPLY. We identified and implemented a
total of 30 policies in HotCRP and 41 policies in APPLY.
The policies are concise, specified in one place, and tend
to require only local changes or extensions when new
features are introduced to applications.

An experimental evaluation shows that Qapla incurs
moderate overheads. Interestingly, we also observe that
Qapla overheads are generally lower than the overheads
of native access control support in a commercial database
on policies that can be expressed using the latter.

To summarize, our contributions lie in the architecture,
design, policy language and evaluation of Qapla, which
enables the specification and enforcement of a rich class
of complex and fine-grained policies (including those
based on linking and aggregation) in a database-agnostic
and application-transparent manner.

Organization. We present Qapla’s policy language in
Section 2 and its architecture in Section 3. Our applica-
tion of Qapla to HotCRP and APPLY is described in Sec-
tion 4, followed by an experimental evaluation in Sec-
tion 5. We discuss related work in Section 6 and con-
clude in Section 7.

2 Qapla policy framework
Qapla allows a policy compliance team to associate a set
of policies with a database schema. These policies spec-
ify data confidentiality requirements that take into ac-
count the database schema, contents, the authenticated
user, time and operations like joins, aggregations and
UDFs. We do not consider data integrity policies al-
though we believe they can be added to our design.

Every Qapla policy applies to a class of queries and
specifies how those queries must be restricted to be com-
pliant. These restrictions are specified as SQL WHERE
clauses that are added to the query by Qapla before
the query is executed, thus filtering out non-compliant
records. We formally define when a policy applies to
a query and the query rewriting procedure in Section 3.
An application can obtain a tuple using a query only if
(a) at least one policy applies to that query, and (b) the
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query rewritten under the restrictions of the policy pro-
duces that tuple. If no policy applies to a query, the query
is not executed. This whitelist principle ensures that data
is accessed only due to some explicitly written policy and
never leaked due to accidental omission of policies.

The remaining section provides an overview
of Qapla policies using the running example of
the human resource’s database of a fictitious
company, Acme. The database has three tables
Employees(empID, name, address, age,
gender, dept), Payroll(empID, salary)
and Benefits(empID, health_plan). The first
table maps employees to their home address, age, gender
and department. The second table maps employees to
their salary, while the third table specifies which health
plan each employee subscribes to.

Single-column policies. The simplest Qapla policy
protects a single database column by specifying which
rows of the column can be accessed by each user, and
when. It has the form: col :- W . Here, W is a SQL
WHERE clause that specifies which rows from the col-
umn col can be returned. W may refer to the authen-
ticated user and the wall clock time using the variables
$user and $time, which are instantiated by the Qapla ref-
erence monitor when the clause is added to the query.
The policy applies to any query that references only the
column col (queries that read more than one column are
subject to link policies described later).

Example 1 (name, age, health_plan) The names of
Acme’s employees should be accessible to all other em-
ployees. The following policy specifies this.

name :- EXISTS(SELECT 1 FROM Employees
WHERE empID= $user)

The SQL fragment EXISTS(. . .) specifies a condition that
holds only if the authenticated user exists in the table
Employees. An identical policy applies to the columns
age and health_plan. Reading the columns in isola-
tion only allows enumeration of the set of ages or health
plans of all employees.

Example 2 (address, salary) The columns address
and salary can be read only by members of the HR
(human resources) department. Additionally, an em-
ployee may read his or her own address or salary. The
following policy enforces this on address. A similar
policy applies to salary.

address :- (empID= $user) OR
EXISTS(SELECT 1 FROM Employees
WHERE empID= $user AND dept= HR)

Compared to the policy of name, this policy allows dif-
ferent employees access to different entries in address.

Note that the WHERE clause is organized as a disjunction
of conditions, one for each class of users.

This is an example of a role-based access control
(RBAC) policy, where an employee’s role is dictated by
her affiliation with a particular department. This policy
relies on the availability of the mapping from users to
their roles in the database itself. In applications where
this mapping is outside the database (e.g., on a file sys-
tem), Qapla’s policy language can be easily extended to
support predicates that lookup this mapping outside the
database. Qapla can interpret these non-database predi-
cates in the policies using native procedures, and apply
the remaining SQL policy to the database queries.

Link policies. When a query reads two or more
columns, the applicable policy may be more restrictive
than the individual policies of all the columns read, be-
cause additional information can be exposed by linking
the columns to each other, as in the following example.

Example 3 (linking name and age) The policies of
the columns name and age allow any employee to read
these columns individually (Example 1). However, not
every employee should be able to read the columns name
and age together since that reveals every employee’s
age, which may be private. The right policy is that only
members of HR and an employee himself/herself may
read the employee’s name and age together. In Qapla,
this policy is expressed by mentioning both columns age
and name to the left of :- in the policy.

{name,age} :- Employees : ((empID= $user) OR
EXISTS(SELECT 1 FROM Employees
WHERE empID= $user AND

dept= HR))

Such policies, which apply to simultaneous access of two
or more columns, are called link policies. Their general
form is

{col1, . . . ,coln} :- filter conditions
with filter conditions of the form T1:W1 , . . . , Tm:Wm.
Here, {col1, . . . ,coln} are columns spanning the tables
T1, . . . ,Tm and W1, . . . ,Wm are separate WHERE clauses
for these tables. This policy applies to any query that
reads a subset of the columns {col1, . . . ,coln} (for any
purpose including projection, selection, joining, group-
ing or aggregation). The WHERE clauses of all the tables
mentioned in the query are added to the query by Qapla
(see Section 3 for details).

Columns in separate tables. When the goal is to re-
strict the linking of data in two or more separate tables,
the effect of a link policy can sometimes be simulated by
simply restricting access to the individual columns con-
taining the common keys of the two tables. However,
when different sets of columns spanning the tables need
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different policies, the policies must be specified using the
general form of link policies described above.

Transformation policies. Applications often apply
functions or transformations to columns to hide sensi-
tive information. A transformed column may have more
permissive policies than the column itself. Qapla directly
supports such transformations-aware policies.

Example 4 Suppose Acme provides a home-to-office
shuttle service to its employees, run by Acme’s “logis-
tics” department. The shuttle service has a fixed stop in
every neighborhood that houses an employee but it is not
door-to-door. In order to provide this service, members
of the logistics department must know the neighborhood
in which every employee lives, but not their precise home
addresses. To enforce this, the privacy compliance team
can create a user-defined function (UDF), neigh, that
maps an address to a neighborhood, and add the follow-
ing Qapla policy.

{name,address[neigh]} :-
(empID= $user) OR
EXISTS(SELECT 1 FROM Employees

WHERE empID= $user AND
(dept= HR OR dept= logistics))

This policy says that an employee’s name and
neigh(address) can be linked by the employee,
members of HR and members of logistics. The pol-
icy is strictly more permissive than the policy on
{name,address}, which allows access only to
the respective employee and HR, but not to logis-
tics. The revised policy allows logistics to run the query
“SELECT name, neigh(address) FROM Employees”,
but not “SELECT name, address FROM Employees”.

The general form of a Qapla transformation policy is

{col1[t1], . . . ,coln[tn]} :- filter conditions

The filter conditions are of the same form as in a link
policy. The policy applies to any query that accesses a
subset of the columns col1, . . . ,coln but only after the
respective transformations t1, . . . ,tn have been applied.

Aggregation policies. Many applications declassify
aggregate statistics on otherwise private columns. Ac-
cordingly, Qapla provides aggregation policies. An ag-
gregation policy specifies two sets of columns: 1) LS
(link set)—columns which can be projected, used to join
or group data (SQL’s GROUP BY) or be aggregated in a
query, and 2) JS (join set)—columns which can be used
only to join tables in the query and nothing else. With
each column in LS an optional transformation or aggre-
gation operation can be specified, which restricts the use
of that column to only that transformation or aggregation.

The general syntax is

{JS = {jcol1, . . . ,jcolm},
LS = {col1[t1], . . . ,coln[tn]}} :- filter conditions

Example 5 Suppose Acme has a workers’ council
(WoC) that periodically computes salary statistics to en-
sure fairness in worker compensation. One statistic it
computes is the distribution of average salary over age
ranges (20-30 years, 30-40 years, etc.). Rather than pro-
vide WoC full access to the Employees table, the pol-
icy compliance team can selectively provide WoC rights
to compute only such statistics by writing the following
aggregation policy. Here, age_range is a function that
rounds an individual’s age to a 10-year range.

{JS = {Payroll.empID,Employees.empID},
LS = {age[age_range],salary[AVG]}} :-

EXISTS(SELECT 1 FROM Employees
WHERE empID= $user AND
(dept= HR OR dept= WoC))

This policy allows WoC to run any query that joins ta-
bles Payroll and Employees, and then uses only
age_range(age) and average on salary (in any
way). For example, it allows the following two queries
among many other instances of similar queries:

(i) SELECT AVG(salary), age_range(age)
FROM Employees,Payroll GROUP BY
age_range(age) HAVING AVG(salary)>
50000

which lists age groups with average salaries above
50000.

(ii) SELECT AVG(salary) FROM Employees,
Payroll WHERE age_range(age) = (30,40)

which lists the average salary of a specific age
group.

Correctly, the policy does not allow queries that look
at the age or salary columns directly. For in-
stance, the following query is disallowed by the policy:
SELECT AVG(salary) WHERE age= 75.

Relation between policy classes. Qapla’s four policy
classes—single-column policies, link policies, transfor-
mation policies and aggregation policies—are increas-
ingly more general. Single-column policies are an in-
stance of link policies, where the set of linked columns
is a singleton. Link policies are a special case of trans-
formation policies where the transformations are identity
functions. A transformation policy S :- filter conditions
is the same as the aggregation policy {JS = {},LS =
S} :- filter conditions.
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Figure 1: Qapla architecture

Policy inference heuristics. To reduce the burden of
specifying policies, Qapla provides safe heuristics.

Heuristic 1: A link policy for a set of columns also au-
tomatically applies to any subset of those columns since
reading a subset only reveals less information than does
reading the whole set. Thus, there is no need to spec-
ify a link policy on a subset unless the subset’s policy is
strictly more permissive than the policy of the whole set,
and some application needs the permissiveness.

Heuristic 2: If a query uses column transformations or
aggregations but a specific applicable transformation or
aggregation policy does not exist, Qapla applies the link
policy of the set of columns that occur in the query, if one
exists. This is safe because transforming or aggregating
a column always reduces the information revealed.

Heuristic 3: In place of writing an explicit link pol-
icy on a set of columns, the designer can explicitly in-
struct Qapla to automatically construct a link policy for a
set of columns by combining the policies of the individ-
ual columns in the set. This synthesized policy applies
the filter conditions of the individual columns even when
they are read together. This is useful in some cases. For
instance, we may want to allow only HR members and an
employee simultaneous access to the employee’s name
and address. However, this is exactly the policy of
the individual column address (Example 2), so in this
case, the policy designer can ask Qapla to synthesize the
link policy for {name,address} by combining the in-
dividual policies of name and address.

3 Qapla design
Figure 1 depicts Qapla’s architecture. Qapla’s metadata
and policies are stored in the database separate from the
application data. The Qapla reference monitor authenti-
cates with the database with its own unique credentials,
and it has the exclusive privilege to access all tables di-
rectly. It intercepts the application’s database queries,
and associates each query with the authenticated end user
on whose behalf the query was issued by the application.
The query is rewritten to ensure its compliance with poli-
cies, and the rewritten query is executed by the database.

3.1 Threat model

Qapla is designed to prevent data leaks due to application
bugs that result in non-compliant queries to the database.
Qapla intercepts all queries to the database in a reference
monitor and rewrites the queries to make them policy
compliant. In our current design and implementation, the
reference monitor runs in the same address space as the
application. Consequently, any application-level bugs or
vulnerabilities that circumvent this monitor to access the
database directly or steal the reference monitor’s privi-
leged database credentials are out of scope. Additionally,
we rely on the application to correctly tell Qapla which
user’s behalf it (the application) is acting on. However, it
is not difficult to change this design to avoid these limi-
tations (see Section 3.5 for initial ideas).

We also assume that users do not collude offline to
combine non-overlapping parts of the database they are
individually authorized to read, and that individual users
do not link information they have obtained in separate
queries.

The Qapla reference monitor, the database adapter it is
embedded in, the database system, the operating system,
the storage layer, and the communication between the
database adapter and the database system are assumed to
be correctly configured and trusted. The database cura-
tor or compliance team is assumed to have installed cor-
rect policies, and any information referenced by policies
is assumed to be correctly stored in the database. Un-
der these assumptions, Qapla guarantees that only policy
compliant query results are returned to the application.

3.2 Enforcement

Qapla’s policy enforcement on a query consists of two
steps: 1) Identifying the set of policies that apply to the
query, and 2) Rewriting the query to filter out tuples dis-
allowed by all the applicable policies. We describe the
two steps in detail.

Applicable policies. Internally, Qapla treats every pol-
icy as an aggregation policy of the form {JS,LS} :-
filter conditions, where JS and LS are, respectively, the
set of columns that may be used to (only) join two or
more tables, and the set of columns that may be pro-
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Does a policy apply to a query?
1 input: Query Q; Policy {JS,LS} :- filter conditions
2 output: true if policy applies to Q, false otherwise

3 { js, ls} = parseQuery(Q)
4 if ( js 6⊆ JS) return false
5 for each column c in ls:
6 if (c 6∈ LS) then return false
7 for each transformed/aggregated column c[t] in ls:
8 if (c[t] 6∈ LS and c 6∈ LS) then return false
9 return true

Figure 2: Algorithm to decide if a policy applies to a query

jected, grouped by and aggregated. As explained in
Section 2, this is the most general form of policies;
all single-column, link and transformation policies can
be expressed in this form. Qapla parses every appli-
cation query to extract the corresponding sets js and ls
of columns that are used only to join and those that the
query actually projects, groups by, or aggregates.

A policy applies to a query if the query’s use of
the columns js and ls is allowed by the corresponding
sets JS and LS of the policy. Formally, the policy
applies to the query when js ⊆ JS and when every
column c and every transformed column c[t] in ls is
dominated by a column or transformed column in LS.
Domination is defined as follows: Every (transformed)
column dominates itself, and a column dominates
any transformation of itself. Thus, a policy with
JS = {Benefits.empID,Employees.empID} and
LS = {age,health_plan} applies to a query with
js = {Benefits.empID,Employees.empID} and
ls = {age[age_range],health_plan[COUNT]}.
Figure 2 summarizes this algorithm.

To efficiently find all policies that apply to a query,
Qapla maintains two data structures. The first data struc-
ture maps every pair of a column and a transformation
(that applies to the column) to a bitvector representing
the policies in the system. The ith bit is set in the bitvec-
tor of the (transformed) column j if policy i’s LS contains
a column that dominates j. To find all applicable policies
whose LS matches a given query’s ls, Qapla simply takes
the bit-wise AND of the bitvectors of all (transformed)
columns in ls. The second data structure is similar but
applies to JS and allows finding all policies whose JS
matches a query’s js.

Query rewriting algorithm. The query rewriting al-
gorithm modifies an application query to make it com-
pliant. In the simple and common case where only one
policy applies to the query, the policy rewriting algorithm
replaces each reference to a table in the query with a sub-
query that generates a list of rows compliant with the
filter conditions of the columns accessed from the table.

The subquery is of the form (SELECT ∗ FROM table
WHERE list-of-conditions), where list-of-conditions are
the filter conditions of the table provided in the policy.
The overall effect is that the application query is executed
over joins of policy-compliant sub-tables of one or more
database tables, where the sub-tables have been created
using the filter conditions of the applicable policy.

Example 6 In the context of Acme’s database, as-
sume that some link policy exists for the column set
{name, age, health_plan, Employees.empID,
Benefits.empID} and that it specifies the
WHERE clauses fE and fB for filtering the tables
Employees and Benefits, respectively. Con-
sider the following query: SELECT name, age,
health_plan FROM Employees JOIN Benefits
ON Employees.empID = Benefits.empID. This
query will be rewritten to:

SELECT name, age, health_plan FROM
(SELECT ∗ FROM Employees WHERE fE )
Employees JOIN
(SELECT ∗ FROM Benefits WHERE fB)
Benefits ON
(Employees.empID = Benefits.empID)

When more than one policy applies to a query and the
query does not return an aggregate, Qapla rewrites the
query according to each applicable policy and takes a
SQL UNION of these. This ensures that a tuple exists
in the result only when at least one applicable policy al-
lows it. If the query returns an aggregate value and more
than one policy applies, Qapla picks the first applicable
policy, but the application may override this to a specific
applicable policy at the cost of minor changes to its code.
(We have not encountered the need for such changes in
our evaluation.)

3.3 Optimizations

We describe three optimizations to reduce the overhead
of policy enforcement in Qapla. Our current prototype
and evaluation only include the first optimization, but im-
plementing the remaining two optimizations is not diffi-
cult.

Query template cache. The Qapla reference monitor
implements a query template cache to amortize the over-
head of parsing and rewriting queries with the same
structure. A query template is a query with all its con-
stant values replaced with placeholder variables. The
Qapla template cache maps query templates to their
rewritten forms. When a query is received, Qapla con-
verts the query to a template and checks if a query tem-
plate with the same hash is cached (if the application
query is already parametrized, Qapla hashes it directly).
For a hit, Qapla retrieves the associated rewritten query
template, and binds its variables with the values from the
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submitted query. For a miss, Qapla parses and rewrites
the query with the applicable policies, and inserts the re-
sulting rewritten query template into the cache.

Partial evaluation. The Qapla reference monitor of-
ten generates complex rewritten queries containing sev-
eral nested sub-queries accessing one or more tables, and
having large filter conditions. Executing the query ef-
ficiently depends on the ability of the DBMS to gener-
ate an efficient execution plan for the rewritten query.
To reduce the complexity of the rewritten query, Qapla
can pre-evaluate parts of the rewritten query that do not
depend on database values (e.g., parts that depend only
on the identity of the user on whose behalf the applica-
tion makes the access) before posting the query to the
database. This can significantly simplify the query since
any predicates connected by ‘AND’ to a pre-evaluated
predicate that is false can all be replaced by a single false
before the query is sent to the database. Similarly, any
predicates connected by ‘OR’ to a pre-evaluated predi-
cate that is true can all be replaced by a single true.

Materialized Views. To offset the cost of policy
checks during query evaluation, Qapla can create ma-
terialized views, one for each (group of) user(s) with
similar permissions, by applying applicable policies to
the tables offline. In a group’s materialized view, every
cell inaccessible to the group is replaced with a special
value that is not a legal value for the underlying table.
At runtime, every application query is run against the
materialized view appropriate for the authenticated user.
The query is rewritten by Qapla to disregard any record
that contains the special value in a field that is used in
the query.1 Our preliminary evaluation suggests that
this optimization can reduce runtime overheads on read-
intensive workloads by an order of magnitude. However,
proportional to the number of user groups with differ-
ent policies, maintaining materialized views adds stor-
age cost and runtime overhead to propagate updates to
all materialized views.

3.4 Cell-blinding mode

The policy enforcement algorithm described in Sec-
tion 3.2 drops a row during query execution if any field
in the row is inaccessible according to the policy and is
used in the query. This row-suppression mode of policy
enforcement ensures that information about an inacces-
sible field cannot be inferred even when that information
is correlated with other fields in the row. This makes
row-suppression a very safe choice for policy enforce-
ment (and, hence, Qapla uses it by default). However,

1For confidentiality, it is insufficient to disregard a record only when
one of its inaccessible fields is projected. It is also necessary to dis-
regard a record if one of its inaccessible fields will be tested by the
query’s WHERE clause(s). Doing so prevents implicit information leaks
through the WHERE clause(s).

row-suppression is not the only possible way of enforc-
ing Qapla’s policies. We briefly describe here a second
mode of policy enforcement, the cell-blinding mode.

The primary consideration for the cell-blinding mode
is compatibility with legacy applications, which may
issue broad queries that project more columns than
actually necessary, and eventually remove these extra
columns internally in their own code. With the row-
suppression mode, such broad queries may result in
fewer records than expected by the application. Transi-
tioning such applications to make them compatible with
row-suppression may require effort and time, as devel-
opers may have to rewrite queries to not project unneces-
sary columns. This transition can be particularly difficult
when the set of necessary columns depends on the appli-
cation state.

The cell-blinding mode changes the semantics of
policy enforcement to compromise some security and
efficiency in return for accommodating overly broad
queries. In this mode, Qapla rewrites the application
queries to replace (blind) inaccessible cells with special
values that can be returned in results, before executing
the original query’s logic. (This replacement is identical
to the replacement of inaccessible cells in the creation of
materialized views from Section 3.3 but, here, the special
values must not depend on any secrets since they can be
returned directly in query results.)

However, the cell-blinding mode has two drawbacks.
First, if some fields of a record are inaccessible accord-
ing to the policy, the record is still returned (with the in-
accessible fields blinded). This leaks some information
when the presence of the record in the database is sen-
sitive and when blinded fields are correlated with other
non-blinded fields. Second, the cell-blinding mode im-
poses significant overhead on query execution (up to two
orders of magnitude for some queries with MySQL) due
to the need to check policies on, and possibly blind, in-
dividual cells in every query. We believe that the use of
materialized views described in Section 3.3 can reduce
this overhead substantially. A full study of this approach
remains as future work.

Due to these limitations of the cell-blinding mode, it is
preferable to use the row-suppression mode and to mod-
ify the application to restrict overly general queries. The
rest of the paper uses only the row-suppression mode of
policy enforcement.

3.5 Discussion

We discuss some limitations of Qapla’s current threat
model and some ideas on how to strengthen the design
to eliminate these threats. We also discuss how Qapla
can be used for logging policy violations.

Isolation of the reference monitor. Currently, we as-
sume that the application, which runs in the same ad-
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dress space as the reference monitor, cannot circumvent
the reference monitor or steal its authentication creden-
tials. However, this is not a fundamental limitation. To
provide guarantees against a malicious application, we
can also isolate the reference monitor in a separate pro-
cess [15, 24], or co-locate it with the DB servers. There
are also efficient ways of isolating the reference moni-
tor within the application address space, such as using
light-weight contexts [30].

User authentication. Qapla’s current design requires
the application to specify which user’s behalf it is acting
on. An application may specify the wrong user to Qapla
due to a bug, thus breaking Qapla’s policy enforcement.
This problem can be easily addressed by having the user
authenticate to the reference monitor instead of the appli-
cation. The application can then ask for the authenticated
user’s identity from the reference monitor.

Protection against offline linking attacks. Qapla
does not protect against offline linking attacks that span
multiple queries. For two queries whose results can be
linked offline (such as in example 3), randomizing the
order of query results may mitigate the attack in some
cases. However, randomizing the order of query results
cannot eliminate linking attacks in all cases. In partic-
ular, some linking may be possible due to information
contained in the data itself (e.g., names may have high
correlation with the nationality of users, or fine-grained
aggregate queries may reveal individual records). We
expect the policy designer to be aware of potential data
leaks of this type, and design the policies such that com-
pliant queries return a minimum threshold number of re-
sults (similar to k-anonymity [37]). Tools to check such
conditions on policies can be easily designed.

Support for logging. A natural question is whether we
can modify Qapla’s reference monitor to detect and log
non-compliant queries (e.g., for debugging or auditing).
While this is not a design goal, Qapla can be used to
detect non-compliant queries to a limited extent – by re-
running a query twice, with and without policy checks
and comparing the results for any differences. Non-
compliant queries can then be logged.

3.6 Implementation

The Qapla implementation consists of about 20K lines of
C code. It provides the API to create application-specific
policies, associates policies with column identifiers, and
maintains an in-memory mapping from column identi-
fiers to associated policies. It also provides an API for
setting application-specific user authentication parame-
ters in the reference monitor. Qapla uses an existing
SQL parser from the MySQL workbench [4] to extract
accessed tables and columns. A rewrite module imple-
ments the lookup for applicable policies and the query

rewriting algorithm. A template cache module maintains
a cache of rewritten query templates, and a customiz-
able translation module can translate the SQL dialect of
one DBMS to that of another, allowing Qapla uses across
DBMSs. In our evaluation, we translate MySQL queries
into a commercial DBMS’s queries.

Qapla can support existing PHP and Python based ap-
plications. For PHP applications, we modified the PHP
Data Objects (PDO) [5] module in the PHP interpreter.
For Python applications, we rely on the Django frame-
work [1], which provides an object-relational mapping
(ORM) API for database interaction. Django provides a
database-independent abstraction to the application de-
veloper. We modified this abstraction and interface with
the Qapla reference monitor using the ctypes library.
Both PDO and Django can be used to connect with dif-
ferent databases, such as MySQL, SQLite, MSSQL and
Oracle. Modifications to PDO and Django were limited
to 135 and 141 lines of code, respectively.

4 Case studies
In this section, we describe our use of Qapla to ensure
policy compliance in HotCRP and APPLY.

4.1 HotCRP compliance with Qapla

Policies. We studied HotCRP’s schema and wrote poli-
cies based on our knowledge of its workflow. In many
cases, we reverse-engineered HotCRP’s policies by in-
specting its code base to confirm and correct our intu-
ition. In total, we specified 30 policies for the 22 ta-
bles and 215 columns in the schema of HotCRP version
2.99, which supports a broad range of configurations for
a conference. The policies cover a single-track confer-
ence with a double-blind submission process, handling
of chair conflicts with paper managers, and a review pro-
cess with no rebuttal. Due to space constraints we cannot
show all the policies but Table 1 shows the policies as-
sociated with important tables like contacts, papers, re-
views, and conflicts. The policies are explained in plain
English for clarity and brevity of exposition but are ac-
tually written in the language introduced in Section 2.
Macros abbreviate common SQL fragments that appear
in many policies. Many of the policies are fine-grained
access control predicates on user, time, and the content
of various database tuples. There are also link and aggre-
gation policies.

Link policy example. An author can independently
view the names of all PC members, his own paper sub-
mission, and the reviews for his papers after the notifi-
cation date. However, the author is not allowed to see
the join of the three columns, which reveals the review-
ers’ identities. In the HotCRP schema, these columns re-
side in three different tables (ContactInfo, Paper, and Pa-
perReview). The PaperReview table can be joined with
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id table column list allow the authenticated user U access to row R if ...

C1
ContactInfo email

(U is a chair) or (R is U’s contact information) or (U and R are on
the PC)

C2
ContactInfo password (R is U’s contact information) or (U is chair)

P1
Paper

paperId, title, abstract,
timeSubmitted,
timeWithdrawn

(U is R’s author) or (U is on the PC and either the submission
deadline has not passed or R was submitted fully)

P2
PaperStorage

paperStorageId, size, paper,
other paper metadata

(U is R’s author) or (U is on the PC and R was submitted fully)

P3
Paper

authorInformation,
collaborators

(U is R’s author) or (the notification deadline has passed, R was
accepted and U is on the PC)

P4
Paper outcome

(the notification deadline has passed and U is R’s author or a PC
member) or (U is R’s paper manager or a non-conflicted PC
member)

P5
Paper shepherdContactId

(the notification deadline has passed and U is R’s author) or (U is
R’s paper manager or a non-conflicted PC member)

P6
Paper managerContactId (U is a chair or R’s manager or a non-conflicted PC member)

P7
Paper leadContactId

(U is R’s manager) or (U has submitted a review for R) or (U is a
non-conflicted PC member and the discussion has started)

R1
PaperReview

reviewId, paperId, <review
content>, reviewSubmitted

(P7 conditions) or (the notification deadline has passed and U is R’s
author or a non-conflicted PC member)

R2
PaperReview

contactId, reviewEditVersion,
reviewRound, requestedBy,
reviewType, commentToPC,
reviewToken, timeRequested

(P7 conditions) or (R is a sub-review and U is the reviewer who
asked for it)

C PaperConflict all columns
(U is R’s author) or (U is a chair) or (U is a PC member and the
subject of R)

AL
ActionLog all columns U is R’s manager or a non-conflicted chair

AO
Outcome
statistics

Total number of submissions
and accepted papers

the notification deadline has passed

AS
Avg. review
scores

Average score across all
submitted reviews

U is a PC member

AR
Review
statistics

Number of reviews submitted
by each PC member

U is a PC member and statistics excludes each row conflicted with U

Table 1: Subset of HotCRP policies

Contact via the contactId key column, and with Paper via
the paperId key column. The link policy can be imple-
mented by specifying a restrictive policy for PaperRe-
view.contactId, which does not allow the author to read
the column (R2 in Table 1). The policy prevents PC au-
thors from identifying reviewers of their own papers, yet
allows them to know and participate in discussions with
reviewers of non-conflicted papers.

Aggregation policy example. During the review and
discussion process, HotCRP provides aggregate statistics
to all reviewers. The statistics include the average review
score across all papers as well as the number of reviews
submitted by each PC member. To allow this feature to
function correctly, we specify two aggregate policies (AS
and AR in Table 1), one allowing an AVG computation
on the overAllMerit score field and the other allowing a

COUNT on the review field grouped by PC member. In
the second case, conflicted papers must be excluded.

Implementation effort. We replaced the MySQLi
database adapter [6] normally used in HotCRP with
our modified Qapla-enabled PDO adapter. We modified
HotCRP to forward the user authentication credentials to
the Qapla reference monitor. (Apache was configured to
fork a separate process for each HotCRP user session, so
there is a separate instance of the adapter/reference mon-
itor for each user session.) HotCRP uses broad queries
and relies on post-filtering to remove the information the
user should not see. We changed approximately 150 LoC
in HotCRP’s code to make these queries policy compli-
ant so that they can work with Qapla. In most cases, we
added a couple of queries to identify the contextual infor-
mation required to convert the broad queries into more
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specific queries. With Qapla in place, we can remove
the post-filtering queries, but we ignored them for now.
Table 2 summarizes the changes we made in HotCRP.

Type of change lines of code
Replace MySQLi with PDO adapter 96
Change paper query 110
Change review query 25
Change comment query 17
Authentication with Qapla 5

Table 2: HotCRP changes

4.2 APPLY compliance with Qapla

We briefly describe our use of Qapla to protect the appli-
cation management system (APPLY) for managing fac-
ulty, PhD, post-doc, and internship applications in our
organization. APPLY’s database is similar to the ficti-
tious Acme database from Section 2 and the confidential-
ity concerns are also similar. The database contains user
accounts for applicants and reviewers, contact and ap-
plication details of the applicants, references, and inter-
nal application review aspects such as comments. Users
within the organization are assigned roles based on what
application type (intern, PhD, postdoc, faculty) they are
allowed to access. APPLY prevents reviewers from ac-
cessing applications created before they joined the orga-
nization. Additionally, APPLY allows explicit delegation
of the right to view (sets of) applications to specific users
or roles, and disallows a user from accessing an applica-
tion in case of a conflict of interest. A single policy con-
dition, listed below, covers a large number of columns
across many tables.
User U has access to application A if:

(A is U’s own application) or
((U joined before A was submitted) and
(U has no conflict of interest with A) and
((U is faculty) or (U has been delegated access to A)))

There are additional restrictions on many sensitive
columns and exceptions for other roles. For example,
users cannot see reference letters written for them and
an applicant’s country of birth and citizenship cannot be
seen by reviewers until the application has been accepted
(to prevent discrimination). Office staff can access all
applicant names, emails, and postal addresses (to corre-
spond with them) and CVs of accepted applicants (to pre-
pare contracts). In total, we wrote 41 policies for APPLY.

Implementation effort. APPLY is implemented using
Django and Python and stores its data in a database com-
prising 36 tables and 202 columns. The modifications
necessary for APPLY were quite similar to those required
for HotCRP. First, we modified 10 LoC to pass user au-
thentication credentials to the Qapla reference monitor.
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Figure 3: HotCRP query latency on MySQL and a commercial
DBMS (baseline is measured without Qapla).

Second, we changed 63 LoC to remove unused columns
from queries to make them compatible with our policies.

5 Evaluation
In this section, we present results of an experimental
evaluation of Qapla’s overhead when used with HotCRP
and APPLY. We also perform a brief security evaluation
by injecting HotCRP bugs that existed in prior versions.

All experiments were performed on Dell Precision
T1600 workstations with an Intel Xeon E3-1225 3.1Ghz
quad core CPU, 8GB main memory, and 10Gbit Ether-
net links. The client and server machines were running
OpenSuse Linux 12.1 (kernel version 3.1.10-1.29, x86-
64). The HotCRP server software consisted of Apache
HTTP server 2.4.18, PHP 5.6.15, and HotCRP 2.99. The
APPLY software included Python 2.7 and Django 1.9.7.
By default, the backend database for each application
was MySQL Server 5.7.11. In some experiments, we
used instead a well-known commercial DBMS, which re-
mains unnamed due to license restrictions on the publica-
tion of benchmark results. Both DBMSs were configured
with a query cache of 500MB, unless stated differently.
Unless stated otherwise, the results correspond to the de-
fault setup with MySQL.

For HotCRP, we used an anonymized database snap-
shot of a major conference hosted on HotCRP in the past.
The database included about 150 submissions, over 400
contacts, and over 700 reviews. The papers were re-
viewed in 3 rounds. For APPLY, we used an anonymized
database snapshot of 9396 applications received by our
organization for internships, doctoral, postdoc and fac-
ulty positions.

5.1 Query latency

The first experiment measures Qapla’s latency overhead
on individual queries. Qapla introduces overheads asso-
ciated with query parsing, query rewriting, and execut-
ing the rewritten query in the database. Table 3 lists the
actual HotCRP queries we used in the experiment. Fig-
ure 3 shows the average query latency over 1000 trials,
on MySQL and on the commercial DBMS. The Qapla la-
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Baseline query Policy summary
Q1 select title, abstract from Paper where paperId=X paper author or PC member and the paper is under submission
Q2 select title, overAllMerit from Paper join PaperRe-

view where paperId=X
paper author after notification or PC member who is not a conflict
and has submitted his/her review and the paper is under submission

Q3 select title, overAllMerit, reviewerName from Paper
join PaperReview join ContactInfo where paperId=X

PC member who is not conflicted and has submitted his/her review
and the paper is under submission

Table 3: Microbenchmarks queries

tency is broken down into three components: query pars-
ing (Qaplaparse), query rewriting (Qaplarewrite), and
execution of the rewritten query (Qaplaexec). The error
bars show the standard deviation. In this experiment, the
query caches of the backend DBMSs and Qapla’s tem-
plate cache were disabled.

The contribution of query parsing and rewriting is
small, particularly for the more complex queries (on
MySQL, 23%, 15%, 8% of the overall query latency for
Q1, Q2, and Q3 respectively). The query rewriting over-
head is slightly larger with the commercial DBMS, be-
cause Qapla has to translate HotCRP queries, which were
written for MySQL, to use a SQL syntax appropriate for
that DBMS.

In all cases, Qapla’s latency overhead is dominated
by the execution time of the rewritten queries. A query
rewritten with policy conditions may be significantly
more complex than the original query as each relation
in the query is replaced with a subquery, which may ac-
cess additional tables that appear in the policy. The ef-
ficiency of the rewritten query depends on the database
query optimizer being able to generate an efficient query
plan. The costs of executing the rewritten queries are
lower with the commercial DBMS, whose query opti-
mizer likely is more sophisticated than that of MySQL.
Thus, while the commercial DBMS has a slightly higher
baseline latency, it is able to execute the rewritten queries
relatively faster than MySQL, reducing Qapla’s overhead
substantially for the more complex queries Q2 and Q3.

Our experiment inflates Qapla’s true overheads to
some extent, because the rewritten query may require
accessing tables that are not mentioned in the original
query to ensure compliance. HotCRP accesses these
same tables in a separate query to perform the filtering
in its own code. To understand this further, we measure
the overheads for traces of queries corresponding to user
actions in the next experiment.

5.2 Action overhead and latency

A user task in HotCRP and APPLY typically involves
multiple actions, such as logging in, clicking on a url to
visit a page, and clicking on a button to save a form. For
each action, the application in turn issues several SQL
queries to get the required data for the response and for
policy compliance checks. In this section, we measure

the overhead for the sequence of SQL queries involved
in several application user tasks. We recorded the SQL
queries issued for each of the tasks, and replay the query
trace with and without Qapla.

We measured the overhead for executing the query
traces and the client-perceived latency overhead under
various configurations of the baseline and Qapla. Base is
the baseline system without Qapla. Qapla is Qapla and
Qaplat-cache is Qapla with the template cache enabled. In
all configurations, the query cache of the backend DBMS
was enabled.

5.2.1 HotCRP

In HotCRP, we measured four user tasks: H1: As an
author, view reviews for a submission (resulting in two
actions). H2: As a PC member, search for a paper with a
keyword, and add a comment (resulting in four actions).
H3: As PC chair, search for a paper with a keyword,
and declare a conflict with a PC member (resulting in
five actions). H4: As PC chair, invoke the automatic
review assignment for all submissions (resulting in three
actions).

Task trace execution overhead. First, we measured
the average time for executing the traces for tasks H1-
H4 on MySQL and the commercial DBMS, respectively,
under the three configurations and across 1000 trials (all
standard deviations are below 5%).

With MySQL, the relative overheads of Qaplat-cache
are 6x, 4.7x, 5.4x, and 7.8x for the tasks, respectively.
With the commercial DBMS, the relative overheads of
Qaplat-cache are 2.5x, 6.5x, 3.8x, and 2.9x. The re-
sults for Qaplat-cache show that Qapla’s query template
cache is effective in reducing the overhead resulting from
Qapla’s query parsing and rewriting. The template cache
hit rates for each action are 25%, 71%, 82%, and 99%,
respectively, yielding a reduction in Qapla’s overhead of
up to 22%, relative to Qapla, for H4 with the commer-
cial DBMS. In the case of H1, we observe a net increase
in overhead, because the cost of maintaining the template
cache cannot be offset due to the low hit rate.

Client-side latency. To measure the client-perceived
latencies from the perspective of a Web client, we exe-
cuted each task with a client-side driver that issues HTTP
requests to HotCRP for each action involved in per-

USENIX Association 26th USENIX Security Symposium    1473



 0

 1

 2

 3

 4

 5

H1 H2 H3 H4

N
o

rm
a

liz
e

d
 l
a

te
n

c
y

HotCRP highest overhead action in each task

Base

59.7  101.6  93.7  1517.5  

Qaplat-cache

Figure 4: HotCRP client latency of highest overhead action in
each task. MySQL, normalized to Base. The labels show Base
absolute latency numbers in milliseconds.

forming the task manually. The driver fetches the static
HTML pages (but excludes dynamic content such as css,
javascripts) from HotCRP and stores them locally. Thus,
the experiment includes the overheads of executing PHP
code, including database queries, and sending the HTML
pages over the network. The template cache as well as
the database query cache were flushed after each iteration
of a task to fully expose worst-case latency overheads.

Figure 4 shows the average latency, across 1000 tri-
als, of the action with the highest relative overhead in
Qaplat-cache (all standard deviations are below 0.05%).
The latency overheads for the actions are 40%, 25%,
47%, and 320%, respectively. The latency could be re-
duced further by removing the redundant post-filtering
queries in HotCRP.

Most of the latency is due to the PHP execution (in-
cluding database queries), while the network overhead
is minimal (0.2ms on average). All the actions are per-
formed in less than 150ms, except the assignment page
generated in H4, which takes 1.5 seconds in Base and
6.4 seconds in Qaplat-cache. The assignment algorithm
invokes about 3780 queries for the given set of papers
and reviewers, while the remaining actions invoke less
than 200 queries. H4 is a task used by the PC chair(s)
only, and normally only a few times per conference, de-
pending on the number of reviewing rounds.

5.2.2 APPLY

In APPLY, we measured the following tasks: A1: As
an applicant, view the status of a submitted application
(resulting in 3 actions). A2: As the faculty member in
charge of post-doc applications, mark the status of mul-
tiple applications to reject, and send rejection emails to
the marked applications (resulting in 7 actions). A3: As
a faculty member, search for an applicant by name, and
request recommendation letters from the applicant’s rec-
ommenders (resulting in 7 actions). A4: As a student
reviewing doctorate applications, see a list of doctorate
applications currently under review, and view the details
of a single application (resulting in 4 actions).
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Figure 5: APPLY client latency of highest overhead action,
MySQL, normalized to Base. The labels show Base absolute
latency numbers in milliseconds.

Task execution trace overhead. With MySQL, the
relative overheads of Qaplat-cache are 5.35x, 5.4x, 5.2x,
and 4.5x for A1-A4, respectively. With the commercial
DBMS, the relative overheads are 4.2x, 3x, 3.3x, and
3.3x, respectively.

Client-side latency. Figure 5 shows the average la-
tency, across 100 trials, of the action with the highest
relative overhead in Qaplat-cache (all standard deviations
are below 12%). The latency overheads are low except
for an action in A3: 12.5%, 74%, 6.25x, and 34%, re-
spectively. The high overhead in action A3 is due to a
single query with very high runtime, which is the cause
of nearly all the overhead. On investigating the query
behavior, we found that the performance overhead is due
to the MySQL query optimizer’s inability to deal with
a specific query pattern, possibly because this pattern is
unlikely to occur in hand-written queries. When we ran
the same query on the commercial DBMS, the overheads
came down to approximately 50%.

5.3 HotCRP submission throughput

For most HotCRP actions, latency is the metric of inter-
est, as it affects user-perceived delays. Right before a
submission deadline, however, throughput is also a mea-
sure of interest, because many authors re-submit a final
revision of their submission within the last minutes be-
fore a deadline. To examine the performance under such
conditions, we measured the number of submissions per
second HotCRP can sustain with and without Qapla.

In this experiment, clients concurrently upload sub-
missions of size 356KB, which is close to the average
submission size in the past HotCRP conference deploy-
ment. We varied the number of concurrent clients from
1 to 64. 32 clients were sufficient to saturate the CPU.
Prior to the experiment, we cached the entire conference
database (∼880MB) in memory. Figure 6 shows the
number of submissions per second our HotCRP instal-
lation can sustain for different numbers of concurrently
connected clients. The results were averaged across 3
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Figure 6: Submission throughput

runs, each of 120 seconds. The error bars show the stan-
dard deviation across 3 runs. The overheads are mod-
erate (below 20.2%), and can be compensated by provi-
sioning a somewhat faster server.

5.4 Trace replay

In the next experiment, we check if HotCRP-Qapla can
correctly execute all the actions performed in a HotCRP
conference deployment across the various review stages,
and produce the same output as the unmodified HotCRP.
We use a trace derived from the anonymized logfile of
the past HotCRP deployment. The logfile contains over
10,000 log entries that correspond to HotCRP database
updates. From it, we constructed a trace by inspecting
the HotCRP codebase to determine the set of SELECT
queries that typically precede a specific update. For ex-
ample, submitting a review for a submission must have
been preceded by viewing the submission page. Since
update queries are not subject to policy checks in Qapla,
they are not of interest to our experiment and were not in-
cluded in the trace. Table 4 shows the actions performed
for each log entry.

The trace consists of actions corresponding to four
phases: submissions, review, discussion, and post noti-
fication stage. We replayed the entire trace against the
original HotCRP and HotCRP-Qapla and compared the
outputs. Because the trace is read-only, we replayed it
against the final state of the HotCRP database at the end
of the conference review period. As a result, several
policies were not exercised the way they would be in a
real deployment and, consequently, the outputs of ap-
proximately 27% of the actions differed with and with-
out Qapla enforcement (e.g., withdraw link enabled or
not, papers may have been withdrawn at a later stage of
the conference). Most of these actions were in the first
phase. We verified separately that the relevant policies
are enforced as expected.

We found that approximately 3% of action outputs dif-
fered for other reasons. These reasons are: (i) some
non-compliant queries we have not yet modified (e.g.,
chair unable to make assignments to conflict papers), (ii)

Log entry High-level task reads Count
Create/update
account

User logs in, visits her profile 1090

Register, update,
submit, or with-
draw paper

User logs in, visits the submis-
sion page

2082

Added prima-
ry/none reviewer

Chair logs in, visits the paper’s
reviewers assignment/conflicts

1335

Set paper lead-
/shepherd

Chair logs in, visits the paper’s
page

126

Save/submit/delete
review/comment

Reviewer logs in, visits the pa-
per’s page

3279

Download pa-
per(s)

Reviewer logs in, visits the pa-
per’s page, downloads the paper

2582

Send accept/re-
ject notification

Chair logs in, sends decisions to
contact authors

2

Table 4: Trace actions for HotCRP

policies that are more restrictive than HotCRP assumes
(e.g., conflicted PC members unable to download the pa-
per), and (iii) missing policies (e.g., external reviewers
not considered).

5.5 Native DBMS access control

As discussed in Section 6, some production DBMS sys-
tems support fine-grained access control over tables and
views to a limited extent. In this section, we compare us-
ing Qapla to enforcing policies directly in our commer-
cial DBMS, which unlike MySQL has some support for
fine-grained access control. More precisely, this database
supports the equivalent of our single-column policies
through a special configuration mechanism. We speci-
fied many of the HotCRP policies through this mecha-
nism. However, as our work on HotCRP and APPLY
demonstrates, applications often require richer policies
(such as link and aggregate policies), which cannot be
expressed using the DBMS’s policy mechanism. To en-
force these policies, we had to create additional views on
all HotCRP tables, restrict access to those views and up-
date all queries, whether compliant or not, to use views
rather than the underlying tables.

We ran the experiments from Section 5.2 to compare
the performance of the DBMS access control mecha-
nism with that of Qapla. Figure 7 shows the average
latency for HotCRP actions, across 100 trials, normal-
ized to Base. The error bars show the standard devia-
tion. Qapla policy enforcement overhead is lower than
the overhead of enforcing policies through the DBMS
access control for most actions.

The results show that using the native support for fine-
grained access control in the commercial DBMS is less
efficient than Qapla’s policy enforcement. Moreover,
to get this level of performance from the commercial
DBMS, we had to carefully tune its cache configuration
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Figure 7: HotCRP action latency with policies enforced using
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for this experiment. Qapla, on the other hand, achieves
better performance with both MySQL and the commer-
cial DBMS, has a DBMS-independent policy language,
and does not require the use of views and the resulting
changes to compliant queries.

5.6 Fault injection experiments

To verify that Qapla is effective at preventing acciden-
tal data leaks, we manually reviewed HotCRP’s change
logs for bugs that caused data leaks and other policy vio-
lations [2]. We are confident that Qapla can prevent any
data leaks that are related to missing or incorrect filtering
code in HotCRP, which appear to account for the major-
ity of cases.

As a sanity check, we reproduced two sample bugs
HotCRP had in the past. One bug notified authors about
changes to PC-only fields during response periods. An-
other bug allowed PC members to search for papers
based on their acceptance status and learn of the accep-
tance of their papers prematurely. We simulated these
bugs by making changes to the policy check functions
implemented in HotCRP, or by removing the invocations
of these functions at certain places in the application. We
executed user actions on the buggy HotCRP application
with and without Qapla and manually examined the out-
puts. We verified that Qapla prevents the data from being
revealed to unauthorized parties.

There is one class of data leaks that Qapla cannot
prevent by itself, namely when a policy depends on in-
correct data recorded in the database. For instance, if
HotCRP failed to record the conflicts declared by users
correctly in the database, Qapla could not prevent the as-
sociated leak. We have not found instances of such bugs
in HotCRP’s change logs, but it is possible that such bugs
might occur.

6 Related work
Database access control. The database community
has explored fine-grained access and disclosure control
within databases, using SQL conditions [28], queries
against restricted authorization views [34], and data-
derived security views [13]. A formal framework for
the design of database access control is presented by
Guarnieri et al. [26]. In contrast to these systems,
Qapla’s goal is to provide a portable policy layer that
works with existing DBMSs and applications, without
relying on any support for policies within the DBMSs.

DataLawyer [40] is a database middleware system that
analyzes and rejects non-compliant queries to a rela-
tional DBMS. Policies are stated as SQL queries on the
database and a usage log, which contains provenance
information. DataLawyer supports rich policies, moti-
vated, for instance, by medical databases. Since policies
are associated with the entire database, each query must
be checked against all policies, each requiring a sepa-
rate query. Qapla policies are more restricted (e.g., they
cannot refer to provenance), but Qapla is much more ef-
ficient because policies are indexed by columns. Also
Qapla policies are expressed directly as filter conditions,
making them easy to write and understand.

In the context of link policies, DiMon [16], its exten-
sion D2Mon [38] and Biskup’s work [14] enforce access
policies by relying on an explicit, complete specification
of information that a querier can infer from past queries.
These systems deny a query when the query would allow
the inference of policy-prohibited information. Qapla’s
approach is complementary and easier to implement and
use; we require the specification of only access rules, ab-
stracting away the inferences those accesses would allow.
If indeed a complete specification of possible inferences
were to exist, it could be used to assist the policy designer
understand the consequences of Qapla policies.

Turan et al. [39] present an algorithm to partition a
database schema such that two pieces of data that should
not be linked (according to a policy) lie in separate logi-
cal subschemas. This could be a useful optimization in a
Qapla deployment. However, it cannot be used for poli-
cies where, of three columns, any two may be linked to-
gether, but all three may not be linked simultaneously.

IVD [31] is an authorization system deployed in Face-
book, which automatically learns write access control
rules on their graph database system from production
logs, and enforces them at runtime. Qapla’s focus, on
the other hand, is on read access control and link policies
in relational DBMSs.

Access control in production DBMSs. Current pro-
duction DBMSs support access control at various levels
of granularity. However, the extent of support and the
language used to express policies varies among DBMSs
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and, as far as we know, no DBMS can support all
of Qapla’s policies without requiring changes to either
the schema or queries (including queries that are policy
compliant). Qapla enforces fine-grained policies with-
out requiring changes to the schema or policy compli-
ant queries, and requires no support for such policies in
the backend DBMS. Moreover, as shown in Section 5.5,
Qapla’s overhead is lower than a commercial database’s
native support for fine-grained policies.

Oracle VPD [11] provides extensive support for cell-
level access control on tables and views. However, a pol-
icy on a table cannot depend on the results of a query
on the table itself. Such policies occur in our applica-
tions. For instance, the first clause in policy C1 in Table 1
checks that the user is the chair, which is defined using
the table that the policy protects. Such policies can be
enforced in VPD only by either changing the schema or
creating additional views. The use of views, in general,
also requires changing queries to use the views instead
of the underlying tables. On the other hand, automatic
query rewriting as in Qapla is transparent to applications
that issue policy compliant queries.

IBM DB2 [9] and SQL Server [10] require a combi-
nation of row-level (data-dependent) access control and
column masking policies to specify fine-grained poli-
cies, which can obscure the policy specification. Post-
greSQL [7] has support for row-level policies, but they
apply to all columns of a table uniformly. A policy on a
subset of columns requires the creation of a view contain-
ing only those columns. MySQL and MariaDB do not
support data-dependent access control. Fine-grained ac-
cess control in these DBMSs requires creating a separate
view for every group of users with the same privilege,
or creating stored procedures and granting privileges to
users to execute the procedures [3, 8].

In all production DBMSs we know of, enforcing link
policies requires creating a separate view for each policy.
Transformation and aggregation policies require separate
views or stored procedures. As mentioned above, creat-
ing additional views or using stored procedures requires
significant changes even to applications that issue only
policy-compliant queries.

Database interposition. Interposing on database
queries to improve security is a common technique. Per-
haps most closely related to our work is CLAMP [33],
which has the same goals as Qapla. However, CLAMP’s
architecture and policy language are different from
Qapla’s. In CLAMP, when a user initiates a session, the
enforcement framework performs user authentication,
instantiates a logical view of the database restricted only
to data that the user can access (based on applicable
policies), and isolates a fresh instance of the application
in a virtual machine, restricting it to only communicate
with the authenticated user and giving it access to only

the logical view of the database via query interposition
(as in Qapla). CLAMP’s design supports a stronger
threat model than Qapla’s current prototype—CLAMP
isolates user sessions from each other and from the
reference monitor, and does not rely on the application
to authenticate the user (see Section 3.5)—but the
expressiveness of policies, which is really the focal
point of our work, is limited in CLAMP. CLAMP only
supports per-table policies, which specify the rows that
each user has access to. Support for finer policies that
differentiate columns of a table from each other or take
into account linking, transformation and aggregation
is missing in CLAMP. Qapla can be strengthened with
CLAMP’s isolation and authentication techniques in a
straightforward manner.

Diesel [24] is a framework for applying the principle
of least privilege on relational databases. Diesel poli-
cies specify subsets of a database that each application
module can access. For example, a policy may specify
that a user-facing module can only access the Users ta-
ble, but not administrative tables, thus limiting damage
in the event of a user session compromise. This is very
different from Qapla’s (and CLAMP’s) goal of specify-
ing what data each user can access. Nonetheless, Diesel
also relies on query interposition (as in Qapla) to enforce
its policies.

Passe [15] hardens the web framework Django to iso-
late application modules from each other. Like Diesel,
it uses query interposition to enforce least privilege on
data accessible to each module. Unlike Diesel, but
like CLAMP and Qapla, Passe’s policies are sensitive
to the authenticated user. However, Passe’s policies are
fundamentally different from those of Qapla, CLAMP
and Diesel—they enforce data-dependency relations on
query parameters. For example, a Passe policy may en-
force that the third parameter of the second query made
by a specific application module is always a value re-
turned for the first query of the module. Moreover,
Passe’s policies are not specified by administrators. In-
stead, they are learnt by automated testing in an offline
phase. This learning can have both false positives (it may
learn a policy that is too restrictive) and false negatives (it
may not learn a required policy). Due to the very differ-
ent nature of Passe’s policies, it is not possible to directly
compare their expressiveness to that of Qapla’s policies.

Policy languages. EPAL [12] specifies enterprise pri-
vacy policies in terms of user categories, data categories,
purposes, actions, obligations, and conditions. Qapla
relies on authentication-based access control instead of
purpose-based access control. Also, Qapla uses SQL
syntax to specify policy languages, similar to [19, 28].
SQL is a natural choice to specify policies for database-
backed applications, since it enables specifying complex
policies on query operators easily, and developers are al-
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ready familiar with it.

CMS confidentiality. CoCon is a new conference
management system whose confidentiality properties
were verified formally in the Isabelle proof assistant [27].
Qapla on the other hand, is a general, language-
independent runtime compliance layer for database
queries, which we have used to enforce compliance in an
existing and widely used conference management sys-
tem, HotCRP.

Privacy in statistical databases. Differential pri-
vacy [23] and privacy-preserving queries [32, 17] are fo-
cused on statistical databases, where only statistical in-
formation, but no information about individual records,
should be revealed. Qapla instead focuses on applica-
tions that require access to specific database records, sub-
ject to fine-grained policies.

Information Flow Control. UrFlow [19], Hails [25],
Jacqueline [41], DBTaint [22], RESIN [42], La-
belFlow [18] and Nemesis [21] use language-based tech-
niques to enforce information flow control in web appli-
cations written in specific languages. In contrast, Qapla
can be ported to any language easily but it enforces ac-
cess policies, not information flow control. Qapla can
be integrated with a language-based technique to control
information flow with fine-grained policies.

IFDB [36] enforces authorization policies by modify-
ing the PostgreSQL database engine, as well as the ap-
plication environments in PHP and Python. For enforc-
ing column policies, IFDB relies on declassifying views.
Row policies are specified with secrecy and integrity la-
bels, which are associated with database records. IFDB
enforces row policies by tracking the labels through the
application process and stored procedures. Qapla speci-
fies all policies using one mechanism. Qapla’s enforce-
ment uses query rewriting and is database-agnostic.

Sif [20], SeLINQ [35], and Li et al. [29] assign labels
or security types to database columns, and use security-
typed programming languages to write restricted query
interfaces to the database and the application code. How-
ever, these systems cannot enforce data-dependent poli-
cies. Furthermore, some of these systems [35, 29] rely
on programming applications in languages that integrate
database query mechanisms. While the current prototype
of Qapla focuses on applications using SQL to query
databases, it can be easily extended to protect applica-
tions using other programming paradigms for database
queries. Qapla does not impose any restrictions on the
programming language for the applications themselves.

7 Conclusion
We have presented and evaluated Qapla, a system
that ensures compliance with confidentiality policies in
database-backed systems. Fine-grained access policies

are stated in a SQL-like language separate from applica-
tion code, and may refer to user id, time, tables, columns,
rows, as well as query operators like aggregation, group
by, and join. Qapla adds a reference monitor to the
database adapter, which intercepts and rewrites queries
to ensure compliance.

Qapla reliably prevents a large class of data confi-
dentiality breaches due to application bugs. Qapla’s
declarative specification of applicable policies, separate
from application code and associated with the database
schema, eases the task of specifying, enforcing and au-
diting confidentiality policy. The system’s policy lan-
guage and enforcement is independent of the DBMS
used as a backend.
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