¢ conference

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

proceedings

NOILVIDOSSY
Xiuosn

Proceedings of the
26th USENIX
Security Symposium

wnisodwAg A14n2aS XINISN Y19Z 8yl jo sbuipasaoliy

Vancouver, BC, Canada
August 16-18, 2017

Sponsored by

usenix

EEEEEEEEEEE
SSSSSSSSSSSSSSSS

ISBN 978-1-931971-40-9

/10Z ‘8191 1snbny  epeues ‘9g 18Anoaue)



Thanks to Our USENIX Security ’17 Sponsors

Platinum Sponsor

facebook

Gold Sponsor

Silver Sponsors

CISCO. Go gle NETFLIX

Bronze Sponsors

] VISA

Research
Research

Nt

Bai'é.b.'E

Media Sponsors and Industry Partners
ACM Queue FreeBSD Foundation
Distributed Management Mainland Advanced Research Society
Task Force (DMTF) No Starch Press
© 2017 by The USENIX Association
All Rights Reserved

This volume is published as a collective work. Rights to individual papers remain with the author or the author’s
employer. Permission is granted for the noncommercial reproduction of the complete work for educational or research
purposes. Permission is granted to print, primarily for one person’s exclusive use, a single copy of these Proceedings.

USENIX acknowledges all trademarks herein.

ISBN 978-1-931971-40-9

Thanks to Our USENIX Supporters

USENIX Patrons
Facebook Google Microsoft NetApp

USENIX Benefactor
VMware

USENIX Partners
Booking.com Can Stock Photo Cisco Meraki FotoSearch

Open Access Publishing Partner
Peer]






USENIX Association

Proceedings of the
26th USENIX Security Symposium

August 16-18, 2017
Vancouver, BC, Canada



Conference Organizers

Program Co-Chairs
Engin Kirda, Northeastern University

Thomas Ristenpart, Cornell Tech

Program Committee
Devdatta Akhawe, Dropbox

Manos Antonakakis, Georgia Institute of Technology

Michael Backes, CISPA, Saarland University, and Max
Planck Institute for Software Systems (MPI-SWS)

Michael Bailey, University of lllinois at Urbana—
Champaign

Davide Balzarotti, Eurecom

Lujo Bauer, Carnegie Mellon University

Karthikeyan Bhargavan, Inria

Leyla Bilge, Symantec

Joseph Bonneau, Electronic Frontier Foundation and
Stanford University

Kevin Butler, University of Florida

Juan Caballero, IMDEA Software Institute

Srdjan Capkun, ETH Zurich

David Cash, Rutgers University

Stephen Checkoway, University of Illinois at Chicago

Nicolas Christin, Carnegie Mellon University

Manuel Costa, Microsoft Research

Brendan Dolan-Gavitt, New York University

Adam Doupé, Arizona State University

Tudor Dumitras, University of Maryland

Manuel Egele, Boston University

Serge Egelman, International Computer Science
Institute and University of California, Berkeley

William Enck, North Carolina State University

Roya Ensafi, Princeton University

Cédric Fournet, Microsoft Research

Matthew Fredrikson, Carnegie Mellon University
Guofei Gu, Texas A&M University

Nadia Heninger, University of Pennsylvania

Thorsten Holz, Ruhr-Universitdit Bochum

Suman Jana, Columbia University

Martin Johns, SAP Research

Ari Juels, Cornell Tech

Chris Kanich, University of Illinois at Chicago
Alexandros Kapravelos, North Carolina State University
Tadayoshi Kohno, University of Washington

Farinaz Koushanfar, University of California, San Diego
Andrea Lanzi, University of Milan

Wenke Lee, Georgia Institute of Technology

Tim Leek, MIT Lincoln Laboratory

Zhenkai Liang, National University of Singapore

David Lie, University of Toronto

Zhiqiang Lin, The University of Texas at Dallas

Ben Livshits, Imperial College London

Long Lu, Stony Brook University

Ivan Martinovic, Oxford University

Michelle Mazurek, University of Maryland

Damon McCoy, New York University

Jonathan McCune, Google

Sarah Meiklejohn, University College London

Andrew Miller, University of Illinois at Urbana—
Champaign

Prateek Mittal, Princeton University

Nick Nikiforakis, Stony Brook University

Alina Oprea, Northeastern University

Kenny Paterson, Royal Holloway, University of London

Mathias Payer, Purdue University

Roberto Perdisci, University of Georgia

Michalis Polychranakis, Stony Brook University

Christina Popper, New York University

Adrienne Porter Felt, Google

Georgios Portokalidis, Stevens Institute of Technology

William Robertson, Northeastern University

Franziska Roesner, University of Washington

Andrei Sabelfeld, Chalmers University of Technology

Thomas Shrimpton, University of Florida

Stelios Sidiroglou-Douskos, Massachusetts Institute of
Technology

Robin Sommer, International Computer Science
Institute

Deian Stefan, University of California, San Diego
Gianluca Stringhini, University College London
Kurt Thomas, Google

Patrick Traynor, University of Florida

Blase Ur, University of Chicago

Giovanni Vigna, University of California, Santa
Barbara

Xi Wang, University of Washington
XiaoFeng Wang, Indiana University
Yuval Yarom, University of Adelaide
Yingian Zhang, The Ohio State University



Invited Talks Committee

Michael Bailey, University of Illinois

Casey Henderson, USENIX Association
David Molnar (Chair), Microsoft

Franziska Roesner, University of Washington

Poster Session Chair

Nick Nikiforakis, Stony Brook University

Test of Time Awards Committee
Matt Blaze, University of Pennsylvania

Dan Boneh, Stanford University

Kevin Fu, University of Michigan

David Wagner, University of California, Berkeley

Lightning Talks Co-Chairs
Kevin Butler, University of Florida

Deian Stefan, University of California, San Diego

Hadi Abdullah
Martin Albrecht
Joey Allen
Aslan Askarov
Sarah Azouvi
Musard Balliu
Erick Bauman
Sruti Bhagavatula
Antonio Bianchi
Logan Blue
Kevin Borgolte
Jasmine Bowers
Fraser Brown
Swarup Chandra
Shang-Tse Chen
Simon Chung
David Clark
Moritz Contag
Vijay D’Silva
Philip Daian
Anupam Das
Alex Davidson
Martin Degeling
Ruian Duan
Mattia Fazzini
Yanick Fratantonio
Daniel Genkin

Steering Committee

Matt Blaze, University of Pennsylvania

Dan Boneh, Stanford University

Kevin Fu, University of Michigan
Casey Henderson, USENIX Association
Thorsten Holz, Ruhr-Universitit Bochum

Jaeyeon Jung, Microsoft Research

Tadayoshi Kohno, University of Washington

Niels Provos, Google

David Wagner, University of California, Berkeley

Dan Wallach, Rice University

External Reviewers

Dov Gordon

Paul Grubbs

Eric Gustafson
Florian Hahn

Per Hallgren
Daniel Hausknecht
Grant Hernandez
Sanghyun Hong
Kevin Hong

Yuval Ishai

Kai Jansen

Yang Ji

Jeff Johns

Lachlan Kang
Vishal Karande
Yigitcan Kaya
Marcel Keller
David Kohlbrenner
Katharina Kohls
Benjamin Kollenda
Philipp Koppe
BumJun Kwon
Sangho Lee
Yeonjoon Lee
Tongxin Li

Xiapu Luo
Aravind Machiry

Mary Maller
Srdjan Matic
William Melicher
Abner Mendoza
Kristopher Micinski
Payman Mohassel
Magnus Myreen
Adwait Nadkarni
Claudio Orlandi
Xiaorui Pan
Kyuhong Park
Andre Pawlowski
Christian Peeters
Giancarlo Pellegrino
Chenxiong Qian
Willard Rafnsson
Bradley Reaves
David Rupprecht
Theodor Schnitzler
Daniel Schoepe
Will Scott
Mahmood Sharif
Yan Shoshitaishvili
Alexander Sjosten
Kyle Soska
Octavian Suciu
Janos Szurdi

Josh Tan

Yuan Tian

Erkam Uzun
Luke Valenta
Steven Van Acker
Luis Vargas
Giorgos Vasiliadis
Fish Wang
Weiren Wang
Xueqgiang Wang
Wenhao Wang
Haopei Wang
Zachary Weinberg
Lei Xu

Carter Yagemann
Guangliang Yang
Cong Zhang

Nan Zhang

Zhe Zhou

Ziyun Zhu



Message from the
26th USENIX Security Symposium
Program Co-Chairs

Welcome to the USENIX Security Symposium in Vancouver! The symposium, now in its 26th year, is a premier
venue for security and privacy research, and gathers together researchers from both industry and academia to
discuss the latest on improving computer security. The program consists of research papers selected during a peer-
review process, invited talks, and professional and social events.

This was the biggest year ever for our peer-review submissions process. Like last year, the symposium had two
chairs. We were supported by an excellent program committee (PC) consisting of 77 members. Of those, 35 were
remote PC members whereas 42 also attended an in-person PC meeting in Boston that lasted a day and a half. The
PC members did an incredible amount of work, and we can’t thank them enough for their efforts!

The double-blind review process this year worked as follows: We received 572 submissions—the most ever for the
symposium—by the submission deadline of February 16, 2017. Of these, 19 were desk-rejected for various violations
of the call for papers. Reviewing proceeded in two rounds. In the first round, every paper was assigned to
two reviewers, and 199 papers were marked for rejection after the first round (due to unanimously low scores by
two confident reviewers). We allowed a special appeals process in case of reviewer error; none of the appealed
papers were revived after inspection of the authors’ concerns. The remaining papers passed on to a second round,
and received one or more additional reviews.

In an online discussion phase, the committee attempted to accept or reject a large number of papers before the
in-person meeting. This was to ensure that there was sufficient time at the meeting to discuss the most contentious
papers. We pre-accepted 49 papers during online discussions and discussed about 80 papers during the meeting.
Each paper was allowed up to eight minutes of discussion, with few exceptions. The vast majority were easily
decided upon within that time. Unlike last year, we did not unblind the authors during the PC meeting and believe
the benefits (in terms of discouraging negative or positive bias) outweighed the few situations that arose in which the
PC members would have benefited from knowing the authorship. The chairs also decided to keep the PC members
somewhat in the dark about the number of papers being accepted over the course of the meeting in the hope that
discussions could focus on the merit of individual papers rather than on the need to “fill a program.”

At the meeting, the committee had an extensive discussion about whether more theory-oriented papers are suitably
in-scope for the symposium. Over the last few years, the symposium has seen an increasing number of papers that
only very tangentially target computer security problems faced in practice, most notably in the context of papers
developing or improving cryptographic protocols not yet addressing specific security applications. After extensive
discussion, the committee decided that the broader community would be better served by encouraging such papers
to seek other venues. This was not a decision taken lightly, and it resulted in a number of very good papers being
rejected for reason of fit.

Ultimately, the committee decided to accept 85 papers, a record number for the symposium. Of these, 38 were con-
ditionally accepted and shepherded to ensure that the camera-ready version of the paper reflected reviewer feedback.
In the end, this resulted in a 15% acceptance rate, meaning that the conference continues to be exceptionally com-
petitive. We believe the final set of accepted papers represent excellent work, and the authors should be congratu-
lated for their notable achievement!

The conference would not be possible without the help of a huge number of people. The staff at USENIX ensure
that everything runs smoothly behind the scenes, and Casey Henderson and Michele Nelson specifically helped us
in innumerable ways. The PC, of course, did a tremendous amount of work, with each member reviewing about 20
papers, for a total of over 1600 reviews and over 2200 comments across the entire process. We also thank the exter-
nal reviewers who were brought in due to their particular expertise to review a smaller number of papers. We would
also like to thank for their hard work: the invited talks committee (Michael Bailey, Casey Henderson, David Molnar,
and Franziska Roesner); the Test-of-Time award committee (Matt Blaze, Dan Boneh, Kevin Fu, and David Wagner);
the poster-session chair Nick Nikiforakis; and the lightning talks chairs Kevin Butler and Deian Stefan. Finally, we
thank all of the authors of the 572 submitted papers for participating in the 26th USENIX Security Symposium.

Engin Kirda, Northeastern University
Thomas Ristenpart, Cornell Tech
USENIX Security "17 Program Co-Chairs



USENIX Security ’17:
26th USENIX Security Symposium

Bug Finding I

How Double-Fetch Situations turn into Double-Fetch Vulnerabilities: A Study of Double Fetches

inthe Linux Kernel. .. ... ..ottt iiiiiiiiiiiitetieeteeoeeneneseesescncsssnsncnnns 1
Pengfei Wang, National University of Defense Technology, Jens Krinke, University College London; Kai Lu

and Gen Li, National University of Defense Technology; Steve Dodier-Lazaro, University College London

Postmortem Program Analysis with Hardware-Enhanced Post-Crash Artifacts . .............coo0vvenns 17
Jun Xu, The Pennsylvania State University; Dongliang Mu, Nanjing University; Xinyu Xing, Peng Liu,
and Ping Chen, The Pennsylvania State University; Bing Mao, Nanjing University

Ninja: Towards Transparent Tracing and Debugging on ARM .........cciiiiiiiiierirrecncnnansnnns 33
Zhenyu Ning and Fengwei Zhang, Wayne State University

Side-Channel Attacks I
Prime+Abort: A Timer-Free High-Precision L3 Cache Attack using Intel TSX......................... 51
Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen, University of California, San Diego

On the effectiveness of mitigations against floating-point timing channels .................... .. ... 69
David Kohlbrenner and Hovav Shacham, UC San Diego

Constant-Time Callees with Variable-Time Callers ..........coititiiiiiiiiiririeereesocnsnseosasns 83
Cesar Pereida Garcia and Billy Bob Brumley, Tampere University of Technology

Systems Security I

Neural Nets Can Learn Function Type Signatures From Binaries..........coiviiiiiiiiirenncncnnnes 99
Zheng Leong Chua, Shigi Shen, Prateek Saxena, and Zhenkai Liang, National University of Singapore

CAn’t Touch This: Software-only Mitigation against Rowhammer Attacks targeting Kernel Memory. . ... 117
Ferdinand Brasser, Technische Universitdt Darmstadt; Lucas Davi, University of Duisburg-Essen; David Gens,
Christopher Liebchen, and Ahmad-Reza Sadeghi, Technische Universitit Darmstadt

Efficient Protection of Path-Sensitive Control Security .......coovveeierirerrersreneerscnsessesnsas 131
Ren Ding and Chenxiong Qian, Georgia Tech; Chengyu Song, UC Riverside; Bill Harris, Taesoo Kim, and
Wenke Lee, Georgia Tech

Bug Finding 11

Digtool: A Virtualization-Based Framework for Detecting Kernel Vulnerabilities ..................... 149
Jianfeng Pan, Guanglu Yan, and Xiaocao Fan, IceSword Lab, 360 Internet Security Center

kAFL: Hardware-Assisted Feedback Fuzzing for OSKernels ..........c.cciiitiiiiiiiiiieiererennnes 167

Sergej Schumilo, Cornelius Aschermann, and Robert Gawlik, Ruhr-Universitdt Bochum; Sebastian Schinzel,
Miinster University of Applied Sciences; Thorsten Holz, Ruhr-Universitit Bochum

Venerable Variadic Vulnerabilities Vanquished ...........coiiitiiiiiiiiiiiiiiiiiiiricnsreresnnas 183
Priyam Biswas, Purdue University; Alessandro Di Federico, Politecnico di Milano; Scott A. Carr, Purdue
University; Prabhu Rajasekaran, Stijn Volckaert, Yeoul Na, and Michael Franz, University of California, Irvine;
Mathias Payer, Purdue University

(continued on next page)



Side-Channel Countermeasures

Towards Practical Tools for Side Channel Aware Software Engineering: ‘Grey Box’ Modelling
for Instruction Leakages . .......ovuititiiiiiiiiiiineeeeeeneeseeresassssosossssssossssssosnsas 199
David McCann, Elisabeth Oswald, and Carolyn Whitnall, University of Bristol

Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory ........... 217
Daniel Gruss, Graz University of Technology, Graz, Austria; Julian Lettner, University of California, Irvine, USA;
Felix Schuster, Olya Ohrimenko, Istvan Haller, and Manuel Costa, Microsoft Research, Cambridge, UK

CacheD: Identifying Cache-Based Timing Channels in Production Software............... ..o 235
Shuai Wang, Pei Wang, Xiao Liu, Danfeng Zhang, and Dinghao Wu, The Pennsylvania State University

Malware and Binary Analysis

BinSim: Trace-based Semantic Binary Diffing via System Call Sliced Segment Equivalence Checking . . . .253
Jiang Ming, University of Texas at Arlington; Dongpeng Xu, Yufei Jiang, and Dinghao Wu, Pennsylvania State
University

PlatPal: Detecting Malicious Documents with Platform Diversity ..............coiiiiiiiiiiiiiiae, 271
Meng Xu and Taesoo Kim, Georgia Institute of Technology
Malton: Towards On-Device Non-Invasive Mobile Malware Analysis for ART ........................ 289

Lei Xue, The Hong Kong Polytechnic University; Yajin Zhou, unaffiliated; Ting Chen, University of Electronic
Science and Technology of China; Xiapu Luo, The Hong Kong Polytechnic University; Guofei Gu, Texas A&M
University

Censorship

Global Measurement of DNS Manipulation. . .........oiiiiiiiiiiiiiiiiiiiiiiiiiiiieneneenensnnns 307
Paul Pearce, UC Berkeley; Ben Jones, Princeton; Frank Li, UC Berkeley; Roya Ensafi and Nick Feamster,
Princeton; Nick Weaver, ICSI; Vern Paxson, UC Berkeley

Characterizing the Nature and Dynamics of Tor Exit Blocking ..............coiiiiiiiiiiiiiiiiin, 325
Rachee Singh, University of Massachusetts — Amherst; Rishab Nithyanand, Stony Brook University; Sadia Afroz,
University of California, Berkeley and International Computer Science Institute; Paul Pearce, UC Berkeley;
Michael Carl Tschantz, International Computer Science Institute; Phillipa Gill, University of Massachusetts —
Ambherst; Vern Paxson, University of California, Berkeley and International Computer Science Institute

DeTor: Provably Avoiding Geographic Regionsin Tor...........cooiiiiiiiiiiiiiiiiiiiiiiiiiiiennn. 343
Zhihao Li, Stephen Herwig, and Dave Levin, University of Maryland

Embedded Systems

SmartAuth: User-Centered Authorization for the Internet of Things .............cciiiiiiiiiiienn.. 361

Yuan Tian, Carnegie Mellon University; Nan Zhang, Indiana University, Bloomington; Yueh-Hsun Lin,
Samsung; Xiaofeng Wang, Indiana University, Bloomington,; Blase Ur, University of Chicago; Xianzheng Guo
and Patrick Tague, Carnegie Mellon University

AWare: Preventing Abuse of Privacy-Sensitive Sensors via Operation Bindings ....................... 379
Giuseppe Petracca, The Pennsylvania State University, US; Ahmad-Atamli Reineh, University of Oxford, UK;
Yugqgiong Sun, The Pennsylvania State University, US; Jens Grossklags, Technical University of Munich, DE;

Trent Jaeger, The Pennsylvania State University, US

6thSense: A Context-aware Sensor-based Attack Detector for Smart Devices ........ccceiiiieeennnnn 397
Amit Kumar Sikder, Hidayet Aksu, and A. Selcuk Uluagac, Florida International University



Networking Security

Identifier Binding Attacks and Defenses in Software-Defined Networks............cccviiiiiennn.. 415
Samuel Jero, Purdue University; William Koch, Boston University; Richard Skowyra and Hamed Okhravi, MIT
Lincoln Laboratory; Cristina Nita-Rotaru, Northeastern University; David Bigelow, MIT Lincoln Laboratory

HELP: Helper-Enabled In-Band Device Pairing Resistant Against Signal Cancellation................. 433
Nirnimesh Ghose, Loukas Lazos, and Ming Li, Electrical and Computer Engineering, University of Arizona,
Tucson, AZ

Attacking the Brain: Racesin the SDN Control Plane . ..........cciiiiiiiiiiiiiiiiinneereesacnnnns 451
Lei Xu, Jeff Huang, and Sungmin Hong, Texas A&M University; Jialong Zhang, IBM Research; Guofei Gu, Texas
A&M University

Targeted Attacks

Detecting Credential Spearphishing Attacks in Enterprise Settings ............coiiiiiiiiiiiiiine.. 469
Grant Ho, UC Berkeley; Aashish Sharma, The Lawrence Berkeley National Laboratory; Mobin Javed, UC
Berkeley; Vern Paxson, UC Berkeley and ICSI; David Wagner, UC Berkeley

SLEUTH: Real-time Attack Scenario Reconstruction from COTS AuditData ............cc0evieennns 487
Md Nahid Hossain, Stony Brook University, Sadegh M. Milajerdi, University of Illinois at Chicago,; Junao Wang,
Stony Brook University; Birhanu Eshete and Rigel Gjomemo, University of Illinois at Chicago; R. Sekar and

Scott Stoller, Stony Brook University; V.N. Venkatakrishnan, University of Illinois at Chicago

When the Weakest Link is Strong: Secure Collaboration in the Case of the Panama Papers ............. 505
Susan E. McGregor, Columbia Journalism School; Elizabeth Anne Watkins, Columbia University;, Mahdi
Nasrullah Al-Ameen and Kelly Caine, Clemson University; Franziska Roesner, University of Washington

Trusted Hardware

Hacking in Darkness: Return-oriented Programming against Secure Enclaves..................00u0t. 523
Jaehyuk Lee and Jinsoo Jang, KAIST; Yeongjin Jang, Georgia Institute of Technology; Nohyun Kwak, Yeseul

Choi, and Changho Choi, KAIST; Taesoo Kim, Georgia Institute of Technology; Marcus Peinado, Microsoft
Research; Brent Byunghoon Kang, KAIST

VIZ: Virtualizing ARM TrusStZione .. .....coueeeentoeoeessesocnssesossssssosssssssssssssssosssas 541
Zhichao Hua, Jinyu Gu, Yubin Xia, and Haibo Chen, Institute of Parallel and Distributed Systems, Shanghai

Jiao Tong University; Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong
University; Binyu Zang, Institute of Parallel and Distributed Systems, Shanghai Jiao Tong University; Haibing
Guan, Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University

Inferring Fine-grained Control Flow Inside SGX Enclaves with Branch Shadowing.................... 557
Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, and Hyesoon Kim, Georgia Institute of Technology;
Marcus Peinado, Microsoft Research

Authentication

AuthentiCall: Efficient Identity and Content Authentication for Phone Calls....................ooou0. 575
Bradley Reaves, North Carolina State University; Logan Blue, Hadi Abdullah, Luis Vargas, Patrick Traynor, and
Thomas Shrimpton, University of Florida

Picking Up My Tab: Understanding and Mitigating Synchronized Token Lifting and Spending

in Mobile PAyment . ........couiuiiuieieninreeenreeasossesosnssesossssssosassssssosnssssosnsas 593
Xiaolong Bai, Tsinghua University; Zhe Zhou, The Chinese University of Hong Kong; XiaoFeng Wang,

Indiana University Bloomington; Zhou Li, IEEE Member; Xianghang Mi and Nan Zhang, Indiana University
Bloomington; Tongxin Li, Peking University, Shi-Min Hu, Tsinghua University; Kehuan Zhang, The Chinese
University of Hong Kong

(continued on next page)



TrustBase: An Architecture to Repair and Strengthen Certificate-based Authentication................ 609
Mark O’Neill, Scott Heidbrink, Scott Ruoti, Jordan Whitehead, Dan Bunker, Luke Dickinson, Travis Hendershot,
Joshua Reynolds, Kent Seamons, and Daniel Zappala, Brigham Young University

Malware and Obfuscation

Transcend: Detecting Concept Drift in Malware Classification Models ..............ccoiiiiiiiiann, 625
Roberto Jordaney, Royal Holloway, University of London; Kumar Sharad, NEC Laboratories Europe; Santanu

K. Dash, University College London; Zhi Wang, Nankai University; Davide Papini, Elettronica S.p.A.; llia
Nouretdinov and Lorenzo Cavallaro, Royal Holloway, University of London

Syntia: Synthesizing the Semantics of Obfuscated Code ........covtiiiiiriirerirrrerscnseesesnsas 643
Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz, Ruhr-Universitdt Bochum

Predicting the Resilience of Obfuscated Code Against Symbolic Execution Attacks via

Machine Learning. . . ..o ovvuitttiiueenenrerosesreensossesossssesossssssssassssssssnssssosnsas 661
Sebastian Banescu, Technische Universitdt Miinchen; Christian Collberg, University of Arizona; Alexander
Pretschner, Technische Universitdit Miinchen

Web Security I

Extension Breakdown: Security Analysis of Browsers Extension Resources Control Policies............. 679
Iskander Sanchez-Rola and Igor Santos, DeustoTech, University of Deusto; Davide Balzarotti, Eurecom

CCSP: Controlled Relaxation of Content Security Policies by Runtime Policy Composition.............. 695
Stefano Calzavara, Alvise Rabitti, and Michele Bugliesi, Universita Ca’ Foscari Venezia

Same-Origin Policy: Evaluation in Modern Browsers ........c.ceiiiiieiiiiitiieineiieeneeneeneenns 713
Jorg Schwenk, Marcus Niemietz, and Christian Mainka, Horst Gortz Institute for IT Security, Chair for Network
and Data Security, Ruhr-University Bochum

Privacy

Locally Differentially Private Protocols for Frequency Estimation ..............cciiiiiiiiiiiiennn.. 729
Tianhao Wang, Jeremiah Blocki, and Ninghui Li, Purdue University; Somesh Jha, University of Wisconsin
Madison

BLENDER: Enabling Local Search with a Hybrid Differential Privacy Model ........................ 747
Brendan Avent and Aleksandra Korolova, University of Southern California; David Zeber and Torgeir Hovden,
Mozilla; Benjamin Livshits, Imperial College London

Computer Security, Privacy, and DNA Sequencing: Compromising Computers with Synthesized DNA,
Privacy LeaKks, and More . ......ocouietetieeeeetesoesnsosessssssosossssnsossssssssessssacnsass 765
Peter Ney, Karl Koscher, Lee Organick, Luis Ceze, and Tadayoshi Kohno, University of Washington

Systems Security 11

BootStomp: On the Security of Bootloaders in Mobile Devices. .. .......oviiiiiiiiiiiiieninnecnnnns 781
Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio, Antonio Bianchi, Eric Gustafson, Yan
Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna, UC Santa Barbara

Seeing Through The Same Lens: Introspecting Guest Address Space At Native Speed.................. 799
Siqi Zhao and Xuhua Ding, Singapore Management University; Wen Xu, Georgia Institute of Technology;,
Dawu Gu, Shanghai JiaoTong University

Oscar: A Practical Page-Permissions-Based Scheme for Thwarting Dangling Pointers ................. 815
Thurston H.Y. Dang, University of California, Berkeley; Petros Maniatis, Google Brain; David Wagner,
University of California, Berkeley



Web Security 11

PDF Mirage: Content Masking Attack Against Information-Based Online Services.................... 833
Tan Markwood, Dakun Shen, Yao Liu, and Zhuo Lu, University of South Florida

Loophole: Timing Attacks on Shared Event Loopsin Chrome............ccoiiiiiiiiiiiiiiiiiiieenns 849
Pepe Vila, IMDEA Software Institute & Technical University of Madrid (UPM); Boris Kopf, IMDEA Software
Institute

Game of Registrars: An Empirical Analysis of Post-Expiration Domain Name Takeovers............... 865
Tobias Lauinger, Northeastern University; Abdelberi Chaabane, Nokia Bell Labs; Ahmet Salih Buyukkayhan,
Northeastern University; Kaan Onarlioglu, www.onarlioglu.com; William Robertson, Northeastern University

Applied Cryptography
Speeding up detection of SHA-1 collision attacks using unavoidable attack conditions .................. 881
Marc Stevens, CWI; Daniel Shumow, Microsoft Research

Phoenix: Rebirth of a Cryptographic Password-Hardening Service...........coiiiiiiiiiiienenennns 899
Russell W. F. Lai, Friedrich-Alexander-University Erlangen-Niirnberg, Chinese University of Hong Kong;
Christoph Egger and Dominique Schroder, Friedrich-Alexander-University Erlangen-Niirnberg; Sherman S. M.
Chow, Chinese University of Hong Kong

Vale: Verifying High-Performance Cryptographic Assembly Code .............cooiiiiiiiiiiiiinnnn. 917
Barry Bond and Chris Hawblitzel, Microsoft Research; Manos Kapritsos, University of Michigan; K. Rustan

M. Leino and Jacob R. Lorch, Microsoft Research; Bryan Parno, Carnegie Mellon University; Ashay Rane, The
University of Texas at Austin; Srinath Setty, Microsoft Research; Laure Thompson, Cornell University

Web Security 111

Exploring User Perceptions of Discrimination in Online Targeted Advertising ........................ 935
Angelisa C. Plane, Elissa M. Redmiles, and Michelle L. Mazurek, University of Maryland; Michael Carl
Tschantz, International Computer Science Institute

Measuring the Insecurity of Mobile Deep Links of Android.........ccitiiiiiiiiiiirneereesocnnnss 953
Fang Liu, Chun Wang, Andres Pico, Danfeng Yao, and Gang Wang, Virginia Tech
How the Web Tangled Itself: Uncovering the History of Client-Side Web (In)Security .................. 971

Ben Stock, CISPA, Saarland University, Martin Johns, SAP SE; Marius Steffens and Michael Backes, CISPA,
Saarland University

Software Security

Towards Efficient Heap Overflow Discovery.......c.oeiuiiiitiiiieerersecsseseesssosessssacnsass 989
Xiangkun Jia, TCA/SKLCS, Institute of Software, Chinese Academy of Sciences; Chao Zhang, Institute for

Network Science and Cyberspace, Tsinghua University; Purui Su, Yi Yang, Huafeng Huang, and Dengguo Feng,
TCA/SKLCS, Institute of Software, Chinese Academy of Sciences

DR. CHECKER: A Soundy Analysis for Linux Kernel Drivers .........ccoiiiiiiiiiiricnrereennsns 1007
Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel, and Giovanni Vigna, UC
Santa Barbara

Dead Store Elimination (Still) Considered Harmful. ...........ciiittiiiiiiiiiiieineeeenoneennnnns 1025
Zhaomo Yang and Brian Johannesmeyer, University of California, San Diego; Anders Trier Olesen, Aalborg
University; Sorin Lerner and Kirill Levchenko, University of California, San Diego

Side-Channel Attacks I1

Telling Your Secrets Without Page Faults: Stealthy Page Table-Based Attacks on Enclaved Execution . ..1041
Jo Van Bulck, imec-DistriNet, KU Leuven; Nico Weichbrodt and Riidiger Kapitza, IBR DS, TU Braunschweig;
Frank Piessens and Raoul Strackx, imec-DistriNet, KU Leuven

(continued on next page)



CLKSCREW: Exposing the Perils of Security-Oblivious Energy Management .. .......cceveetucaness 1057
Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo, Columbia University

AutoLock: Why Cache Attacks on ARM Are Harder Than You Think ....................ooiii, 1075
Marc Green, Worcester Polytechnic Institute; Leandro Rodrigues-Lima and Andreas Zankl, Fraunhofer AISEC;
Gorka Irazoqui, Worcester Polytechnic Institute; Johann Heyszl, Fraunhofer AISEC,; Thomas Eisenbarth,

Worcester Polytechnic Institute

Understanding Attacks

Understanding the Mirai Botnet .. .......coiititiiiiiiiiiiiireinrernsesrerososesssssssssssncans 1093
Manos Antonakakis, Georgia Institute of Technology; Tim April, Akamai; Michael Bailey, University of

Lllinois, Urbana-Champaign; Matt Bernhard, University of Michigan, Ann Arbor; Elie Bursztein, Google;

Jaime Cochran, Cloudflare; Zakir Durumeric and J. Alex Halderman, University of Michigan, Ann Arbor; Luca
Invernizzi, Google; Michalis Kallitsis, Merit Network, Inc.; Deepak Kumar, University of Illinois, Urbana-
Champaign,; Chaz Lever, Georgia Institute of Technology; Zane Ma and Joshua Mason, University of Illinois,
Urbana-Champaign; Damian Menscher, Google; Chad Seaman, Akamai; Nick Sullivan, Cloudflare; Kurt

Thomas, Google; Yi Zhou, University of Illinois, Urbana-Champaign

MPI: Multiple Perspective Attack Investigation with Semantics Aware Execution Partitioning.......... 1111
Shiqing Ma, Purdue University; Juan Zhai, Nanjing University; Fei Wang, Purdue University; Kyu Hyung Lee,
University of Georgia; Xiangyu Zhang and Dongyan Xu, Purdue University

Detecting Android Root Exploits by Learning from Root Providers ..............oiiiiiiiiiiiiian. 1129
Ioannis Gasparis, Zhiyun Qian, Chengyu Song, and Srikanth V. Krishnamurthy, University of California,
Riverside

Hardware Security

USB Snooping Made Easy: Crosstalk Leakage Attackson USBHubs..........ccoviiiiiiiiiiienenn, 1145
Yang Su, Auto-ID Lab, The School of Computer Science, The University of Adelaide; Daniel Genkin, University

of Pennsylvania and University of Maryland; Damith Ranasinghe, Auto-1D Lab, The School of Computer

Science, The University of Adelaide; Yuval Yarom, The University of Adelaide and Data61, CSIRO

Reverse Engineering x86 Processor Microcode. . .......oovtiiiitiiiiieeereresesenrecncsnsesncnns 1163
Philipp Koppe, Benjamin Kollenda, Marc Fyrbiak, Christian Kison, Robert Gawlik, Christof Paar, and Thorsten
Holz, Ruhr-University Bochum

See No Evil, Hear No Evil, Feel No Evil, Print No Evil? Malicious Fill Patterns Detection in

Additive Manufacturing. . . ..o vt ittt tiiiiit it iiteteneeenesstesnssssetossssssosscsssesncnns 1181
Christian Bayens, Georgia Institute of Technology; Tuan Le and Luis Garcia, Rutgers University; Raheem Beyah,
Georgia Institute of Technology; Mehdi Javanmard and Saman Zonouz, Rutgers University

Privacy & Anonymity Systems

The Loopix Anonymity SyStem .. ...uoutetieieeeteeeeeossressosocesossosssosssssssssessssasnses 1199
Ania M. Piotrowska and Jamie Hayes, University College London, Tariq Elahi, KU Leuven; Sebastian Meiser
and George Danezis, University College London

MCMix: Anonymous Messaging via Secure Multiparty Computation. .............coivviiiiiienene. 1217
Nikolaos Alexopoulos, TU Darmstadt; Aggelos Kiayias, University of Edinburgh; Riivo Talviste, Cybernetica AS;
Thomas Zacharias, University of Edinburgh

ORide: A Privacy-Preserving yet Accountable Ride-Hailing Service.............ccoiiiiiiiiiiiene. 1235
Anh Pham, Italo Dacosta, Guillaume Endignoux, and Juan Ramon Troncoso Pastoriza, EPFL; Kevin Huguenin,
UNIL, Jean-Pierre Hubaux, EPFL



Software Integrity

Adaptive Android Kernel Live Patching ...........ccoitiiiiiiiiiiiiiiiiiiirerenrncncsnsesncnns 1253
Yue Chen, Florida State University; Yulong Zhang, Baidu X-Lab; Zhi Wang, Florida State University;
Liangzhao Xia, Chenfu Bao, and Tao Wei, Baidu X-Lab

CHAINIAC: Proactive Software-Update Transparency via Collectively Signed Skipchains and

Verified Builds. . ... oottt it it ittt ittt iaiteeateenassennerannssannsonnns 1271
Kirill Nikitin, Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, and Linus Gasser, Ecole

polytechnique fédérale de Lausanne (EPFL); Ismail Khoffi, University of Bonn; Justin Cappos, New York
University; Bryan Ford, Ecole polytechnique fédérale de Lausanne (EPFL)

ROTE: Rollback Protection for Trusted Execution ..........cccitieiiiiiieiinenrernesecesassacnsns 1289
Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, and Arthur Gervais, ETH Zurich;
Ari Juels, Cornell Tech; Srdjan Capkun, ETH Zurich

Crypto Deployment

A Longitudinal, End-to-End View of the DNSSEC Ecosystem .......ccooeeteieeesesrsccossocncnns 1307
Taejoong Chung, Northeastern University; Roland van Rijswijk-Deij, University of Twente and SURFnet bv;
Balakrishnan Chandrasekaran, TU Berlin; David Choffnes, Northeastern University; Dave Levin, University

of Maryland; Bruce M. Maggs, Duke University and Akamai Technologies; Alan Mislove and Christo Wilson,
Northeastern University

Measuring HTTPS Adoptiononthe Web ........iiiiiiiiiiiiirieinoesretosssessscsssssosncnns 1323
Adrienne Porter Felt, Google,; Richard Barnes, Cisco,; April King, Mozilla; Chris Palmer, Chris Bentzel, and
Parisa Tabriz, Google

“I Have No Idea What I’m Doing” - On the Usability of Deploying HTTPS .........coiviieiiienenss 1339
Katharina Krombholz, Wilfried Mayer, Martin Schmiedecker, and Edgar Weippl, SBA Research

Privacy Attacks & Defense

Beauty and the Burst: Remote Identification of Encrypted Video Streams...................cvvene. 1357
Roei Schuster, Tel Aviv University, Cornell Tech; Vitaly Shmatikov, Cornell Tech; Eran Tromer, Tel Aviv
University, Columbia University

Walkie-Talkie: An Efficient Defense Against Passive Website Fingerprinting Attacks ................. 1375
Tao Wang, Hong Kong University of Science and Technology, Ian Goldberg, University of Waterloo

A Privacy Analysis of Cross-device Tracking .........cooiiiiiiiiiiiiiiiiiiiiiiiiiieneenenenenns 1391
Sebastian Zimmeck, Carnegie Mellon University; Jie S. Li and Hyungtae Kim, unaffiliated; Steven M. Bellovin
and Tony Jebara, Columbia University

Blockchains

SmartPool: Practical Decentralized Pooled Mining . .........cootiiiiiiitiinrenenrncnconsesncnns 1409
Loi Luu, National University of Singapore; Yaron Velner, The Hebrew University of Jerusalem; Jason Teutsch,
TrueBit Foundation; Prateek Saxena, National University of Singapore

REM: Resource-Efficient Mining for Blockchains . ..........coiiiiiiiiiiiiiiiiiiiiiienreenenns 1427
Fan Zhang, Ittay Eyal, and Robert Escriva, Cornell University; Ari Juels, Cornell Tech; Robbert van Renesse,
Cornell University

Databases

Ensuring Authorized Updates in Multi-user Database-Backed Applications ..............cccvvin. 1445
Kevin Eykholt, Atul Prakash, and Barzan Mozafari, University of Michigan Ann Arbor

Qapla: Policy compliance for database-backed systems . .........coiiiiitiiiirireereresereesacnnes 1463
Aastha Mehta and Eslam Elnikety, Max Planck Institute for Software Systems (MPI-SWS), Katura Harvey,
University of Maryland, College Park and Max Planck Institute for Software Systems (MPI-SWS),; Deepak Garg
and Peter Druschel, Max Planck Institute for Software Systems (MPI-SWS)






How Double-Fetch Situations turn into Double-Fetch Vulnerabilities:
A Study of Double Fetches in the Linux Kernel

Pengfei Wang

National University of Defense Technology

Kai Lu
National University of Defense Technology

Jens Krinke
University College London

Gen Li
National University of Defense Technology

Steve Dodier-Lazaro
University College London

Abstract

We present the first static approach that systematically
detects potential double-fetch vulnerabilities in the Linux
kernel. Using a pattern-based analysis, we identified 90
double fetches in the Linux kernel. 57 of these occur
in drivers, which previous dynamic approaches were un-
able to detect without access to the corresponding hard-
ware. We manually investigated the 90 occurrences, and
inferred three typical scenarios in which double fetches
occur. We discuss each of them in detail. We further de-
veloped a static analysis, based on the Coccinelle match-
ing engine, that detects double-fetch situations which can
cause kernel vulnerabilities. When applied to the Linux,
FreeBSD, and Android kernels, our approach found six
previously unknown double-fetch bugs, four of them in
drivers, three of which are exploitable double-fetch vul-
nerabilities. All of the identified bugs and vulnerabilities
have been confirmed and patched by maintainers. Our
approach has been adopted by the Coccinelle team and
is currently being integrated into the Linux kernel patch
vetting. Based on our study, we also provide practical so-
lutions for anticipating double-fetch bugs and vulnerabil-
ities. We also provide a solution to automatically patch
detected double-fetch bugs.

1 Introduction

The wide use of multi-core hardware is making concur-
rent programs increasingly pervasive, especially in oper-
ating systems, real-time systems and computing inten-
sive systems. However, concurrent programs are also
notorious for difficult to detect concurrency bugs. Real-
world concurrency bugs can be categorized into three
types: atomicity-violation bugs, order-violation bugs,
and deadlocks [20].

A data race is another common situation in concurrent
programs. It occurs when two threads are accessing one
shared memory location, at least one of the two accesses

is a write, and the relative ordering of the two accesses is
not enforced by any synchronization primitives [30, 15].
Data races usually lead to concurrency bugs because
they can cause atomicity-violations [22, 21, 23] or order-
violations [33, 40]. In addition to occurring between two
threads, data races can also happen across the kernel and
user space. Serna [32] was the first to use the term “dou-
ble fetch” to describe a Windows kernel vulnerability
due to a race condition in which the kernel fetches the
same user space data twice. A double-fetch bug occurs
when the kernel reads and uses the same value that re-
sides in the user space twice (expecting it to be identi-
cal both times), while a concurrently running user thread
can modify the value in the time window between the
two kernel reads. Double-fetch bugs introduce data in-
consistencies in the kernel code, leading to exploitable
vulnerabilities such as buffer overflows [1, 32, 14, 37].

Jurczyk and Coldwind [14] were the first to study dou-
ble fetches systematically. Their dynamic approach de-
tected double fetches by tracing memory accesses and
they discovered a series of double-fetch vulnerabilities in
the Windows kernel. However, their dynamic approach
can achieve only limited coverage. In particular, it can-
not be applied to code that needs corresponding hard-
ware to be executed, so device drivers cannot be analyzed
without access to the device or a simulation of it. Thus,
their analysis cannot cover the entirety of the kernel. In
fact, their approach has not discovered any double-fetch
vulnerability in Linux, FreeBSD or OpenBSD [13]. Be-
sides, Jurczyk and Coldwind have brought attention to
not only on how to find but also on how to exploit double-
fetch vulnerabilities. Instructions on how to exploit dou-
ble fetches have recently become publicly available [11].
Thus, auditing kernels, in particular drivers, for double-
fetch vulnerabilities has become urgent.

Device drivers are critical kernel-level programs that
bridge hardware and software by providing interfaces be-
tween the operating system and the devices attached to
the system. Drivers are a large part of current operat-

USENIX Association

26th USENIX Security Symposium 1



ing systems, e.g., 44% of the Linux 4.5 source files be-
long to drivers. Drivers were found to be particularly
bug-prone kernel components. Chou et al. [7] empiri-
cally showed that the error-rate in device drivers is about
ten times higher than in any other parts of the kernel.
Swift et al. [34] also found that 85% of system crashes
in Windows XP can be blamed on driver errors. Further-
more, Ryzhyk et al. [29] found that 19% of the bugs in
drivers were concurrency bugs, and most of them were
data races or deadlocks.

Because drivers are such a critical point of failure in
kernels, they must be analyzed for security vulnerabili-
ties even when their corresponding hardware is not avail-
able. Indeed, 26% of the Linux kernel source files belong
to hardware architectures other than x86 which cannot be
analyzed with Jurczyk and Coldwind’s x86-based tech-
nique. Thus, dynamic analysis is not a viable, affordable
approach. Therefore, we developed a static pattern-based
approach to identify double fetches in the Linux kernel,
including the complete space of drivers. We identified 90
double fetches which we then investigated and catego-
rized into three typical scenarios in which double fetches
occur. We found that most double fetches are not double-
fetch bugs because although the kernel fetches the same
data twice, it only uses the data from one of the two
fetches. We therefore refined the static pattern-based ap-
proach to detect actual double-fetch bugs and vulnera-
bilities, and analyzed Linux, Android and FreeBSD with
it.

We found that most of the double fetches in Linux 4.5
occur in drivers (57/90) and so do most of the identified
double-fetch bugs (4/5). This means dynamic analysis
methods fail to detect a majority of double fetch bugs,
unless researchers have access to the complete range of
hardware compatible with the kernel they analyze. This
is confirmed by a comparison with Bochspwn, a dynamic
analysis approach, which was unable to find any double-
fetch bug in Linux 3.5.0 [13] where our approach finds
three. In summary, we make the following contributions
in this paper:

(1) First systematic study of double fetches in the
Linux kernel. We present the first (to the best of our
knowledge) study of double fetches in the complete
Linux kernel, including an analysis of how and why a
double fetch occurs. We used pattern matching to auto-
matically identify 90 double-fetch situations in the Linux
kernel, and investigated those candidates by manually
reviewing the kernel source. We categorize the identi-
fied double fetches into three typical scenarios (type se-
lection, size checking, shallow copy) in which double
fetches are prone to occur, and illustrate each scenario
with a detailed double fetch case analysis. Most (57/90)
of the identified double fetches occur in drivers.

(2) A pattern-based double-fetch bug detection ap-
proach. We developed a static pattern-based approach to
detect double-fetch bugs'. The approach has been imple-
mented on the Coccinelle program matching and trans-
formation engine [17] and has been adapted for check-
ing the Linux, FreeBSD, and Android kernels. It is the
first approach able to detect double-fetch vulnerabilities
in the complete kernel including all drivers and all hard-
ware architectures. Our approach has been adopted by
the Coccinelle team and is currently being integrated into
the Linux kernel patch vetting through Coccinelle.

(3) Identification of six double-fetch bugs. In total, we
found six real double-fetch bugs. Four are in the drivers
of Linux 4.5 and three of them are exploitable vulner-
abilities. Moreover, all four driver-related double-fetch
bugs belong to the same size checking scenario. The bugs
have been confirmed by the Linux maintainers and have
been fixed in new versions as a result of our reports. One
double-fetch vulnerability has been found in the Android
6.0.1 kernel, which was already fixed in newer Linux ker-
nels.

(4) Strategies for double-fetch bug prevention. Based
on our study, we propose five solutions to anticipate
double-fetch bugs and we implemented one of the strate-
gies in a tool that automatically patches double-fetch
bugs.

The rest of the paper is organized as follows: Sec-
tion 2 presents relevant background on memory access in
Linux, specifically in Linux drivers, and on how double-
fetch bugs occur. Section 3 introduces our approach to
double fetch detection, including our analysis process,
the categorization of the identified double fetches into
three scenarios, and what we learned from the identi-
fied double-fetch bugs. Section 4 presents the evaluation
of our work, including statistics on the manual analysis
and the results of applying our approach to the Linux,
FreeBSD, and Android kernels. Section 5 discusses the
detected bugs, implications of double-fetch bug preven-
tion, an interpretation of our findings, as well as limi-
tations of our approach. Related work is discussed in
Section 6, followed by conclusions.

2 Background

We provide readers with a reminder of how data is ex-
changed between the Linux kernel and its drivers and the
user space, and of how race conditions and double-fetch
bugs can occur within this framework.

1Our analysis is available at https://github.com/UCL-CREST/
doublefetch

2 26th USENIX Security Symposium

USENIX Association



2.1 Kernel/User Space Protection

In modern computer systems, memory is divided into
kernel space and user space. The kernel space is where
the kernel code executes and where its internal data is
stored, while the user space is where normal user pro-
cesses run. Each user space process resides in its own
address space, and can only address memory within that
space. Those virtual address spaces are mapped onto
physical memory by the kernel in such a way that iso-
lation between separate spaces is guaranteed. The kernel
also has its own independent address space.

Special schemes are provided by the operating sys-
tem to exchange data between kernel and user space.
In Windows, we can use the device input and output
control (IOCTL) method, or a shared memory object
method to exchange data between kernel and user space’
which is very similar to shared memory regions. In
Linux and FreeBSD, functions are provided to safely
transfer data between kernel space and user space which
we call transfer functions. For instance, Linux has
four often used transfer functions, copy_from_user(),
copy_to_user(), get_user(), and put_user(), that
copy single values or an arbitrary amount of data to
and from user space in a safe way. Transfer functions
not only exchange data between kernel and user space
but also provide a protection mechanism against invalid
memory access, such as illegal addresses or page faults.
Therefore, any double fetch in Linux will involve multi-
ple invocations of transfer functions.

2.2 Memory Access in Drivers

Device drivers are kernel components responsible for en-
abling the kernel to communicate with and make use of
hardware devices connected to the system. Drivers have
typical characteristics, such as support for synchronous
and asynchronous operations and the ability to be opened
multiple times [8]. Drivers are critical to security be-
cause faults in them can result in vulnerabilities that
grant control of the whole system. Finally, drivers of-
ten have to copy messages of variable type or variable
length from the user space to the hardware, and, as we
will see later, this often leads to double-fetch situations
that cause vulnerabilities.

In Linux, all devices have a file representation which
can be accessed from user space to interact with the hard-
ware’s driver. The kernel creates a file in the /dev di-
rectory for each driver, with which user space processes
can interact using file input/output system calls. The
driver provides implementations of all file related op-
erations, including read() and write() functions. In
such functions, the driver needs to fetch the data from

2https://support.microsoft.com/en-us/kb/ 191840

Kernel Space

ent 1st fetch
i check

2nd fetch|__
real use;

|

1

1

1

user data

S syscall
O

1
1
1
1
1
i
malicious) ______
update

Figure 1: Principal Double Fetch Race Condition

the user space (in write) or copy data to the user space
(in read). The driver uses the transfer functions to do so,
and again, any double fetch will involve multiple invoca-
tions of transfer functions.

2.3 Double Fetch

A double fetch is a special case of a race condition
that occurs in memory access between the kernel and
user space. The first vulnerability of this type was pre-
sented by Serna [32] in a report on Windows double-
fetch vulnerabilities. Technically, a double fetch takes
place within a kernel function, such as a syscall, which
is invoked by a user application from user mode. As il-
lustrated in Figure 1, the kernel function fetches a value
twice from the same memory location in the user space,
the first time to check and verify it and the second time to
use it (note that the events are on a timeline from left to
right, but the user data is the same object all the time).
Meanwhile, within the time window between the two
kernel fetches, a concurrently running user thread modi-
fies the value. Then, when the kernel function fetches the
value a second time to use, it gets a different value, which
will not only result in a different computation outcome,
but may cause a buffer overflow, a null-pointer crash or
even worse consequences.

To avoid confusion, we use the term double fetch or
double-fetch situation in this paper to represent all the
situations in which the kernel fetches the same user data
more than once, and a so-called double fetch can be fur-
ther divided into the following cases:

Benign double fetch: A benign double fetch is a case
that will not cause harm, owing to additional protection
schemes or because the double-fetched value is not used
twice (details will be discussed in Section 5.3).

Harmful double fetch: A harmful double fetch or
a double-fetch bug is a double fetch that could actually
cause failures in the kernel in specific situations, e.g., a
race condition that could be triggered by a user process.

Double-fetch vulnerability: A double-fetch bug can
also turn into a double-fetch vulnerability once the conse-
quence caused by the race condition is exploitable, such

USENIX Association

26th USENIX Security Symposium 3



140 int cmsghdr_from_user_compat_to_kern(struct msghdr *kmsg,
141 unsigned char *stackbuf, int stackbuf_size)
142 {

143  struct compat_cmsghdr __user *ucmsg;

144 struct cmsghdr *kcmsg, *kcmsg_base;

145 compat_size_t ucmlen;

149  kcmsg_base = kcmsg = (struct cmsghdr *)stackbuf;
150 ucmsg = CMSG_COMPAT_FIRSTHDR (kmsg) ;
151 while(ucmsg != NULL) {

152 if(get_user(ucmlen, &ucmsg->cmsg_len))

153 return -EFAULT;

156 if(CMSG_COMPAT_ALIGN(ucmlen) <

157 CMSG_COMPAT_ALIGN(sizeof(struct compat_cmsghdr)))
158 return -EINVAL;

159 if((...)(((char __user *)ucmsg - (char __user®)...
160 + ucmlen) > kmsg->msg_controllen)
161 return -EINVAL;

166 ucmsg = cmsg_compat_nxthdr(kmsg, ucmsg, ucmlen);

167 }

168 if(kcmlen == 0)
169 return -EINVAL;

183 ucmsg = CMSG_COMPAT_FIRSTHDR(kmsg) ;
184 while(ucmsg != NULL) {

185 __get_user(ucmlen, &ucmsg->cmsg_len);
186 tmp = ((ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg))) +
187 CMSG_ALIGN(sizeof(struct cmsghdr)));

188 kcmsg->cmsg_len = tmp;

193 if(copy_from_user (CMSG_DATA(kcmsg) ,

194 CMSG_COMPAT_DATA (ucmsg) ,
195 (ucmlen - CMSG_COMPAT_ALIGN(sizeof(*ucmsg)))))
212 }

Figure 2: Double-Fetch Vulnerability in Linux 2.6.9

as through a buffer overflow, causing privilege escala-
tion, information leakage or kernel crash.

In this paper, we investigate both harmful double
fetches and benign double fetches. Even though be-
nign double fetches are currently not vulnerable, some
of them can turn into harmful ones when the code is
changed or updated in the future (when the double-
fetched data is reused). Moreover, some benign double
fetches them can cause performance degradation when
one of the fetches is redundant (discussed in Section 5).

Double-fetch vulnerabilities occur not only in the
Windows kernel [14], but also in the Linux kernel. Fig-
ure 2 shows a double-fetch bug in Linux 2.6.9, which
was reported as CVE-2005-2490. In file compat.c,
when the user-controlled content is copied to the ker-
nel by sendmsg(), the same user data is accessed
twice without a sanity check at the second time.
This can cause a kernel buffer overflow and there-
fore could lead to a privilege escalation. The func-
tion cmsghdr_from_user_compat_to_kern() works
in two steps: it first examines the parameters in the first
loop (line 151) and copies the data in the second loop
(line 184). However, only the first fetch (line 152) of
ucmlen is checked (lines 156-161) before use, whereas
after the second fetch (line 185) there are no checks be-

Kernel Space 1st fetch 1st use 2nd fetch 2nd use
entry -
coj check (] real use;
b4 b4

\ kernel copy #1 \ \
Y

kernel copy #2 \
Y

user data ]
7

S/ syscall
e

1
1
1
1
1
i
malicious) ______
update

Figure 3: Double Fetch with Transfer Functions

fore use, which may cause an overflow in the copy oper-
ation (line 195) that can be exploited to execute arbitrary
code by modifying the message.

Plenty of approaches have been proposed for data race
detection at memory access level. Static approaches ana-
lyze the program without running it [35, 28, 12, 6, 10, 19,
38]. However, their major disadvantage is that they gen-
erate a large number of false reports due to lack the full
execution context of the program. Dynamic approaches
execute the program to verify data races [31, 16, 15],
checking whether a race could cause a program failure
in executions. Dynamic approaches usually control the
active thread scheduler to trigger specific interleavings
to increase the probability of a bug manifestation [41].
Nevertheless, the runtime overhead is a severe problem
and testing of driver code requires the support of specific
hardware or a dedicated simulation. Unfortunately, none
of the existing data race detection approaches (whether
static or dynamic) can be applied to double-fetch bug de-
tection directly, for the following reasons:

(1) A double-fetch bug is caused by a race condition
between kernel and user space, which is different from
a common data race because the race condition is sepa-
rated by the kernel and user space. For a data race, the
read and write operations exist in the same address space,
and most of the previous approaches detect data races by
identifying all read and write operations accessing the
same memory location. However, things are different for
a double-fetch bug. The kernel only contains two reads
while the write resides in the user thread. Moreover, the
double-fetch bug exists if there is a possibility that the
kernel fetches and uses the same memory location twice,
as a malicious user process can specifically be designed
to write between the first and second fetch.

(2) The involvement of the kernel makes a double-
fetch bug different from a data race in the way of
accessing data. In Linux, fetching data from user
space to kernel space relies on the specific parameters
passed to transfer functions (e.g., copy_£from_user()
and get_user()) rather than dereferencing the user
pointer directly, which means the regular data race de-
tection approaches based on pointer dereference are not
applicable anymore.

4 26th USENIX Security Symposium

USENIX Association



(3) Moreover, a double-fetch bug in Linux is more
complicated than a common data race or a double-fetch
bug in Windows. As shown in Figure 3, a double-fetch
bug in Linux requires a first fetch that copies the data,
usually followed by a first check or use of the copied
data, then a second fetch that copies the same data again,
and a second use of the same data. Although the dou-
ble fetch can be located by matching the patterns of fetch
operations, the use of the fetched data varies a lot. For
example, in addition to being used for validation, the first
fetched value can be possibly copied to somewhere else
for later use, which means the first use (or check) could
be temporally absent. Besides, the fetched value can be
passed as an argument to other functions for further use.
Therefore, in this paper, we define the use in a double
fetch to be a conditional check (read data for compar-
ison), an assignment to other variables, a function call
argument pass, or a computation using the fetched data.
We need to take into consideration these double fetch
characteristics.

For these reasons, identifying double-fetch bugs re-
quires a dedicated analysis and previous approaches are
either not applicable or not effective.

2.4 Coccinelle

Coccinelle [17] is a program matching and transforma-
tion engine with a dedicated language SmPL (Seman-
tic Patch Language) for specifying desired matches and
transformations in C code. Coccinelle was initially tar-
geted for collateral evolution in Linux drivers, but now is
widely used for finding and fixing bugs in systems code.

Coccinelle’s strategy for traversing control-flow
graphs is based on temporal logic CTL (Computational
Tree Logic) [3], and the pattern matching implemented
on Coccinelle is path-sensitive, which achieves better
code coverage. Coccinelle is highly optimized to im-
prove performance when exhaustively traversing all the
execution paths. Besides, Coccinelle is insensitive to
newlines, spaces, comments, etc. Moreover, the pattern-
based analysis is applied directly to the source code,
therefore operations that are defined as macros, such as
get_user() or __get_user(), will not be expanded
during the matching, which facilitates the detection of
double fetches based on the identification of transfer
functions. Therefore, Coccinelle is a suitable tool for us
to carry out our study of double fetches based on pattern
matching.

3 Double Fetches in the Linux Kernel

In this paper, our study of double fetches in the Linux
kernel is divided into two phases. As shown in Figure 4,
in the first phase, we analyze the Linux kernel with the

void function_name(*src)
copy_from_user(dst1, sr, lent)

copy_from_user(dstz, sre, len2)

N —— |  Manual
i e Analysis
[N Coccinelle
Source | | Matching
Files Engine
Phase 2: Refined Pattern r
_——»
D

——
Phase 1: Basic Pattern

ouble
Rule 0 : Basic pattern Fetch Trigger &
Rule 1 : No pointer change Consequence
Rule 2 : Pointer aliasing Context

<\: Information

Rule 3 : Explicit type conversion
Rule 4 : Combination of element

fetch and pointer fetch
Rule 5 : Loop involvement

Bug Details

Categorization

Figure 4: Overview of our Two-Phase Coccinelle-Based
Double-Fetch Situation Detection Process

Coccinelle engine using a basic double-fetch pattern that
identifies when a function has multiple invocations of a
transfer function. Then we manually investigate the can-
didate files found by the pattern matching, to categorize
the scenarios in which a double fetch occurs and when
a double-fetch bug or vulnerability is prone to happen
based on the context information that is relevant to the
bug. In the second phase, based on the knowledge gained
from the manual analysis, we developed a more precise
analysis using the Coccinelle engine to systematically
detect double-fetch bugs and vulnerabilities throughout
the kernel, which we also used to additionally analyze
FreeBSD and Android.

3.1 Basic Pattern Matching Analysis

There are situations in which a double fetch is hard to
avoid, and there exist a large number of functions in the
Linux kernel that fetch the same data twice. According
to the definition, a double fetch can occur in the kernel
when the same user data is fetched twice within a short
interval. Therefore we can conclude a basic pattern that
we will use to match all the potential double-fetch sit-
uations. The pattern matches the situation in which a
kernel function is using transfer functions to fetch data
from same user memory region at least twice. In the
case of the Linux kernel, the transfer functions to match
are mainly get_user () and copy_from_user() in all
their variants. The pattern allows the target of the copy
and the size of the copied data to be different, but the
source of copy (the address in user space) must be the
same. As shown in Figure 4, we implemented the basic
pattern matching in the Coccinelle engine.

Our approach examines all source code files of the
Linux kernel and checks whether a kernel function con-
tains two or more invocations of transfer functions that
fetch data from the same user pointer. From the 39,906
Linux source files, 17,532 files belong to drivers (44%),
and 10,398 files belong to non-x86 hardware architec-

USENIX Association

26th USENIX Security Symposium 5



tures (26%) which cannot be analyzed with Jurczyk and
Coldwind’s x86-based technique. We manually analyzed
the matched kernel functions to infer knowledge on the
characteristics of double fetches, i.e., how the user data
is transferred to and used in the kernel, which helped us
to carry out a categorization of double-fetch situations,
as we discuss in Section 3.2. The manual analysis also
helped us refine our pattern matching approach and more
precisely detect actual double-fetch bugs, as explained in
Section 3.3.

During the investigation, we noticed that there are
plenty of cases where the transfer functions fetch data
from different addresses or from the same address but
with different offsets. For example, a kernel function
may fetch the elements of a specific structure separately
instead of copying the whole structure to the kernel. By
adding different offsets to the start address of that struc-
ture, the kernel fetches different elements of the struc-
ture separately, which results in multiple fetches. An-
other common situation is adding a fixed offset to the
source pointer, so as to process a long message sepa-
rately, or just using self-increment (++) to process a mes-
sage automatically in a loop. All these cases are false
positives caused by the basic pattern matching, and 226
cases of our initial reports were identified as false posi-
tives, which have been automatically removed in our re-
fined phase since they are not considered as double-fetch
situations and cannot cause a double-fetch bug because
every single piece of the message is only fetched once.

The first phase of our study concentrates on the un-
derstanding of the contexts in which double fetches are
prone to happen, rather than on exhaustively finding po-
tential double-fetch bugs. Even though the analysis and
characterization is not fully automated, it only resulted
in 90 candidates that needed manual investigation, which
took only a few days to analyze them, making the needed
manual effort of our approach acceptable.

3.2 Double Fetch Categorization

As we manually inspected the double fetch candidates,
we noticed that there are three common scenarios in
which double fetches are prone to happen, which we
categorized as type selection, size checking and shallow
copy. We now discuss these in detail.

Most of the time, copying data from the user space to
the kernel space is straightforward via a single invocation
of a transfer function. However, things get complicated
when the data has a variable type or a variable length,
depending on the data itself. Such data usually starts with
a header, followed by the data’s body. In the following,
we consider such data to be messages, as we empirically
found that variable data was often used by drivers to pass
messages to the hardware from user space.

*ptr

User Y
Msg Header

content

 J
struct header(*ptr)
{

Size
Checking

—

copy_from_user( hdr, ptr, sizeof(header));
unsigned int size; buf = kalloc(hdr.size)
unsigned type;
copy_from_user(buf, ptr, hdr.size);
thdr;

copy_from_user( hdr, ptr, sizeof(header));

switch(hdr.type){

case 1:

Type copy_from_user()
Selection
case 2:

copy_from_user()

default:

Figure 5: How Message Structure Leads to Double
Fetches

Figure 5 illustrates the scenario: A message copied
from the user space to the kernel (driver) space usually
consists of two parts, the header and the body. The
header contains some meta information about the mes-
sage, such as an indicator of the message fype or the
size of the message body. Since messages have differ-
ent types and the message lengths may also vary, the
kernel usually fetches (copies) the header first to decide
which buffer type needs to be created or how much space
needs to be allocated for the complete message. A sec-
ond fetch then copies the complete message into the al-
located buffer of the specified type or size. The sec-
ond fetch not only copies the body, but also copies the
complete message including the header which has been
fetched already. Because the header of the message is
fetched (copied) twice, a double-fetch situation arises.
The double-fetch situation turns into a double-fetch bug
when the size or type information from the second fetch
is used as the user may have changed the size or type
information between the two fetches. If, for example,
the size information is used to control buffer access, the
double-fetch bug turns into a vulnerability.

The double-fetch situations where a message header is
copied twice could easily be avoided by only copying the
message body in the second fetch and then joining the
header with the body. However, copying the complete
message in the second step is more convenient, and there-
fore such a double-fetch situation occurs very often in the
Linux kernel. Moreover, large parts of the Linux kernel
are old, i.e., they have been developed before double-
fetch bugs were known or understood. Therefore, we
will discuss such double-fetch situations in the kernel in

6 26th USENIX Security Symposium

USENIX Association



more detail and also highlight three cases we have found
during the manual analysis.

3.2.1 Type Selection

A common scenario in which double fetches occur is
when the message header is used for type selection. In
other words, the header of the message is fetched first
to recognize the message type and then the whole mes-
sage is fetched and processed dependent on the identi-
fied type. We have observed that it is very common in
the Linux kernel that one single function in a driver is
designed to handle multiple types of messages by using
a switch statement structure, in which each particular
message type is fetched and then processed. The result
of the first fetch (the message type) is used in the switch
statement’s condition and in every case of the switch,
the message is then copied by a second fetch to a local
buffer of a specific type (and then processed).

Figure 6 shows an example of a double-fetch situ-
ation due to type selection in the file cxgb3_main.c,
part of a network driver. The function cxgb_exten-
sion_ioctl() first fetches the type of the message
(a command for the attached hardware) into cmd from
the pointer into user space useraddr at line 2136. It
then decides based on cmd which type the message
has (e.g., CHELSIP_SET_QSET_PARAMS, CHELSIP_-
SET_QSET_NUM or CHELSIO_SETMTUTAB) and copies the
complete message into the corresponding structure (of
type ch_gset_params, ch_reg, ch_mtus, ...). The type
of the message will be fetched a second time as part
of the whole message (lines 2149, 2292, 2355 respec-
tively). As long as the header part of the message is not
used again, the double fetch in this situation does not
cause a double-fetch bug. However, if the header part
(the type/command) of the second fetch would be used
again, problems could occur as a malicious user could
have changed the header between the two fetches. In the
case of cxgb_extension_ioctl(), a manual investi-
gation revealed no use of the type part in the buffers t,
edata, m, ... and the double-fetch situation here does not
cause a double-fetch vulnerability.

We found 11 occurrences of this double-fetch cate-
gory, 9 of them in drivers. None of the 11 occurrences
used the header part of the second fetch and therefore,
they were not causing double-fetch bugs.

3.2.2 Size Checking

Another common scenario occurs when the actual length
of the message can vary. In this scenario, the message
header is used to identify the size of the complete mes-
sage. The message header is copied to the kernel first to
get the message size (first fetch), check it for validity, and

2129 static int cxgb_extension_ioctl(struct net_device *dev,
void __user *useraddr)
2130 {

2133 u32 cmd;

2136  if (copy_from user(&cmd, useraddr, sizeof(cmd)))
2137 return -EFAULT;

2138

2139  switch (cmd) {

2140 case CHELSIO_SET_QSET_PARAMS:{

2143 struct ch_gset_params t;

2149 if (copy_from user(&t, useraddr, sizeof(t)))
2150 return -EFAULT;

2151 if (t.gset_idx >= SGE_QSETS)

2152 return -EINVAL;

2238 break;

2239}

2284 case CHELSIO_SET_QSET_NUM: {

2285 struct ch_reg edata;

2292 if (copy_from_user(&edata, useraddr, sizeof(edata)))
2293 return -EFAULT;

2294 if (edata.val < 1 |

2295 (edata.val > 1 && !(...)))

2296 return -EINVAL;

2313 break;

2314 }

2345 case CHELSIO_SETMTUTAB:{

2346 struct ch_mtus m;

2355 if (copy_from_user(&m, useraddr, sizeof(m)))
2356 return -EFAULT;

2357 if (m.nmtus != NMTUS)

2358 return -EINVAL;

2359 if (m.mtus[0] < 81)

2360 return -EINVAL;

2369 break;
2370 }

2499 }

Figure 6: A Double-Fetch Situation Belonging to the
Type Selection Category in cxgb3_ main.c

allocate a local buffer of the necessary size, then a sec-
ond fetch follows to copy the whole message, which also
includes the header, into the allocated buffer. As long as
only the size of the first fetch is used and not retrieved
from the header of the second fetch, the double fetch in
this situation does not cause a double-fetch vulnerability
or bug. However, if the size is retrieved from the header
of the second fetch and used, the kernel becomes vul-
nerable as a malicious user could have changed the size
element of the header.

One such double-fetch bug (CVE-2016-6480) was
found in file commctrl.c in the Adaptec RAID con-
troller driver of the Linux 4.5. Figure 7 shows the re-
sponsible function ioctl_send_£fib() which fetches
data from user space pointed by pointer arg via
copy_from_user () twice in line 81 and line 116. The

USENIX Association

26th USENIX Security Symposium 7



60 static int ioctl_send_fib(struct aac_dev* dev,
void __user *arg)

61 {

62  struct hw_fib * kfib;

81 if (copy_from_user((void *)kfib, arg, sizeof(...))) {

82 aac_fib_free(fibptr);
83 return -EFAULT;
84 }

90 size = lel6_to_cpu(kfib->header.Size) + sizeof(...);
91 if (size < lel6_to_cpu(kfib->header.SenderSize))

92 size = lel6_to_cpu(kfib->header.SenderSize);

93  if (size > dev->max_fib_size) {

101 kfib = pci_alloc_consistent(dev->pdev, size, &daddr);

114 }

115

116 if (copy_from user(kfib, arg, size)) {
117 retval = -EFAULT;

118 goto cleanup;

119 }

120

121 if (kfib->header.Command == cpu_to_lel6(...)) {

iéé } else {

129 retval =
aac_fib_send(lel6_to_cpu(kfib->header.Command), ...

130 lel6_to_cpu(kfib->header.Size) , FsaNormal,

131 1, 1, NULL, NULL);

139}

160 }

Figure 7: A Double-Fetch Vulnerability in commctrl.c
(CVE-2016-6480)

first fetched value is used to calculate a buffer size (line
90), to check the validity of the size (line 93), and to al-
locate a buffer of the calculated size (line 101), while the
second copy (line 116) fetches the whole message with
the calculated size. Note that the variable kfib pointing
to the kernel buffer storing the message is reused in line
101. The header of the message is large and various ele-
ments of the header are used after the message has been
fetched the second time (e.g., kfib->header.Command
in line 121 and 129). The function also uses the size el-
ement of the header a second time in line 130, causing a
double-fetch vulnerability as a malicious user could have
changed the Size field of the header between the two
fetches.

We observed 30 occurrences of such size checking
double-fetch situations, 22 of which occur in drivers, and
four of them (all in drivers) are vulnerable.

3.2.3 Shallow Copy

The last special case of double-fetch scenario we identi-
fied is what we call shallow copy issues. A shallow copy
between user and kernel space happens when a buffer
(the first buffer) in the user space is copied to the ker-
nel space, and the buffer contains a pointer to another

55 static int sclp_ctl_ioctl_sccb(void __user *user_area)

57 struct sclp_ctl_sccb ctl_scch;
58 struct sccb_header *sccb;
59 int rc;

61 if (copy_from_user(&ctl_sccb, user_area,
sizeof(ctl_scch)))

62 return -EFAULT;

65 scch = (void *) get_zeroed_page(GFP_KERNEL | GFP_DMA);

66 if (!sccb)

67 return -ENOMENM;

68 if (copy_from_user(scch, u64_to_uptr(ctl_sccb.scch),
sizeof(*sccb))) {

69 rc = -EFAULT;
70 goto out_free;

}
72 if (sccb->length > PAGE_SIZE || sccb->length < 8)
73 return -EINVAL;
74  if (copy_from_user(sccb, u64_to_uptr(ctl_sccb.scch),
sccb->length)) {

75 rc = -EFAULT;
76 goto out_free;
77 }

81 if (copy_to_user(u64_to_uptr(ctl_sccb.scchb), sccb,

sccb->length))
82 rc = -EFAULT;

Figure 8: A Double-Fetch Bug in sclp_ctl.c (CVE-
2016-6130)

buffer in user space (the second buffer). A transfer func-
tion only copies the first buffer (a shallow copy) and the
second buffer has to be copied by the second invocation
of a transfer function (to perform a deep copy). Some-
times it is necessary to copy data from user space into
kernel space, act on the data, and copy the data back into
user space. Such data is usually contained in the second
buffer in user space and pointed to by a pointer in the
first buffer in user space containing additional data. The
transfer functions perform shallow copies and therefore
data pointed to in the buffer copied by a transfer func-
tion must be explicitly copied as well, so as to perform
a deep copy. Such deep copies will cause multiple in-
vocations of transfer functions which are not necessarily
double fetches as each transfer function is invoked with
a different buffer to be copied. We observed 31 of such
situations, 19 of them in drivers.

The complexity of performing a deep copy with
transfer functions that only do shallow copies can
cause programmers to introduce bugs, and we found
one such bug in file sclp_ctl.c of the IBM S/390
SCLP console driver, where the bug is caused by a
shallow copy issue (CVE-2016-6130). The function
sclp_ctl_ioctl_sccb in Figure 8 performs a shallow
copy of a data structure from user space pointed to by
user_area into ctl_sccb (line 61). To do a deep copy,
it then has to copy another data structure from user space
pointed to by ctl_sccb.sccb. However, the size of the

8 26th USENIX Security Symposium

USENIX Association



trans_func(dstz, src)

trans_func(dsti, src)

trans_func(dsti, src)

trans_func(dsti, ptr->len)

trans_func(dstz, ptr)

p =src

trans_func(dstz, p)

trans_func(dsti, msg.len)

trans_func(dstz, &msg)

¢ Rule 2

L Rule 4
N

Refined Rule-based Pattern Matching

¢ Rule 0
Source
Code Files

T Rule 1

T Rule 3

Double-
T Rule 5

trans_func(dsti, src)

when != src = src+ offset
when != src += offset
when !=sr¢ ++

when !=src = ptr

trans_func(dsti, (T1)src)

trans_func(dstz, (T2)src)

trans_func(dsti, src)

Fetch Bug
for(i=0; i<c; i++){
trans_func(dsti, sre[i])

trans_func(dstz, sreli])

}

trans_func(dstz, (T)src)

trans_func(dstz, src)

Figure 9: Refined Coccinelle-Based Double-Fetch Bug
Detection

data structure is variable, causing a size checking sce-
nario. In order to copy the data, it first fetches the header
of the data structure into the newly created kernel space
pointed to by sccb (line 68) to get the data length in
sccb->length which is checked for validity in line 72.
Then, based on sccb->length, it copies the whole con-
tent with a second fetch in line 74. Finally at line 81,
the data is copied back to the user space. While it looks
like both invocations of the transfer functions in lines 74
and 81 use the same length sccb->length, line 81 actu-
ally uses the value as copied in line 74 (the second fetch)
while line 74 uses the value from the first fetch.

Again, this is a double-fetch bug as a user may have
changed the value between the two fetches in lines 68
and 74. However, this double-fetch bug is not causing a
vulnerability because neither can the kernel be crashed
by an invalid size given to a transfer function, nor can
information leakage occur when the kernel copies back
data beyond the size that it received earlier because the
copied buffer is located in its own memory page. An
attempt to trigger the bug will simply end in termination
of the system call with an error code in line 82. The
double-fetch bug has been eliminated in Linux 4.6.

3.3 Refined Double-Fetch Bug Detection

In this section, we present the second phase of our study
which uses a refined double-fetch bug detection approach
that is again based on the Coccinelle matching engine.
While the first phase of our study was to identify and cat-
egorize scenarios in which double fetches occur, the sec-
ond phase exploited the gained knowledge from the first
phase to design an improved analysis targeted at specifi-
cally identifying double-fetch bugs and vulnerabilities.
As shown in Figure 9, in addition to the basic double-
fetch pattern matching rule (Rule 0), which is trig-

gered when two reads fetch data from the same source
location, we added the following five additional rules
to improve precision as well as discover corner cases.
The Coccinelle engine applies these rules one by one
when analyzing the source files. A double-fetch bug
could involve different transfer functions, therefore,
we have to take the four transfer functions that copy
data from user space (get_user(), __get_user(),
copy_from_user(), __copy_from_user()) into con-
sideration. We use trans_func() in Figure 9 to repre-
sent any possible transfer functions in the Linux kernel.

Rule 1: No pointer change. The most critical rule in
detecting double-fetch bugs is keeping the user pointer
unchanged between two fetches. Otherwise, different
data is fetched each time instead of the same data being
double-fetched, and false positives can be caused. As
can be seen from Rule 1 in Figure 9, this change might
include cases of self-increment (++), adding an offset, or
assignment of another value, and the corresponding sub-
traction situations.

Rule 2: Pointer aliasing. Pointer aliasing is com-
mon in double-fetch situations. In some cases, the user
pointer is assigned to another pointer, because the origi-
nal pointer might be changed (e.g., processing long mes-
sages section by section within a loop), while using two
pointers is more convenient, one for checking the data,
and the other for using the data. As can be seen from
Rule 2 in Figure 9, this kind of assignment might appear
at the beginning of a function or in the middle between
the two fetches. Missing aliasing situation could cause
false negatives.

Rule 3: Explicit type conversion. Explicit pointer
type conversion is widely used when the kernel is fetch-
ing data from user space. For instance, in the size check-
ing scenario, a message pointer would be converted to a
header pointer to get the header in the first fetch, then
used again as a message pointer in the second fetch. As
can be seen from Rule 3 in Figure 9, any of the two
source pointers could involve type conversion. Missing
type conversion situations could cause false negatives.
In addition, explicit pointer type conversions are usually
combined with pointer aliasing, causing the same mem-
ory region to be manipulated by two types of pointers.

Rue 4: Combination of element fetch and pointer
fetch. In some cases, a user pointer is used to both
fetch the whole data structure as well as fetching only
a part by dereferencing the pointer to an element of
the data structure. For instance, in the size check-
ing scenario, a user pointer is first used to fetch the
message length by get_user(len, ptr->len), then
to copy the whole message in the second fetch by
copy_from_user(msg, ptr, len), which means the
two fetches are not using exactly the same pointer as
the transfer function arguments, but they cover the same

USENIX Association

26th USENIX Security Symposium 9



value semantically. As we can see from Rule 4 in Fig-
ure 9, this situation may use a user pointer or the address
of the data structure as the argument of the transfer func-
tions. This situation usually appears with explicit pointer
type conversion, and false negatives could be caused if
this situation is missed.

Rule 5: Loop involvement. Since Coccinelle is path-
sensitive, when a loop appears in the code, one transfer
function call in a loop will be reported as two calls, which
could cause false positives. Besides, as can be seen from
Rule 5 in Figure 9, when there are two fetches in a loop,
the second fetch of the last iteration and the first fetch of
the next iteration will be matched as a double fetch. This
case should be removed as false positive because the user
pointer should have been changed when crossing the iter-
ations and these two fetches are getting different values.
Moreover, cases that use an array to copy different values
inside a loop also cause false positives.

4 Evaluation

In this section, we present the evaluation of our study,
which includes two parts: the statistics of the manual
analysis, and the results of the refined approach when
applied to three open source kernels: Linux, Android,
and FreeBSD. We obtained the most up-to-date versions
available at the time of the analysis.

4.1 Statistics and Analysis

In Linux 4.5, there are 52,881 files in total and 39,906 of
them are source files (with a file extension of .c or .h),
which are our analysis targets (other files are ignored).
17,532 source files belong to drivers (44%). After the
basic pattern matching of the source files and the man-
ual inspection to remove false positives, we obtained 90
double-fetch candidate files for further inspection. We
categorized the candidates into the three double-fetch
scenarios Size Checking, Type Selection and Shallow
Copy. They are the most common cases on how a double
fetch occurs while user space data is copied to the kernel
space and how the data is then used in the kernel. We
have discussed these scenarios in detail with real double-
fetch bug examples in the previous section. As shown
in Table 1, of the 90 candidates we found, 30 were re-
lated to the size checking scenario, 11 were related to the
type selection scenario, and 31 were related to the shal-
low copy scenario, accounting for 33%, 12%, and 34%
respectively. 18 candidates did not fit into one of the
three scenarios.

Furthermore, 57 out of the 90 candidates were part of
Linux drivers and among them, 22 were size checking re-
lated, 9 were type selection related and 19 were shallow
copy related.

Table 1: Basic Double Fetch Analysis Results

Category Occurrences In Drivers

Size Checking 30 33% 22 73%
Type Selection 11 12% 9 82%
Shallow Copy 31 34% 19  61%
Other 18 20% 7 39%
Total 90 100% 57 63%
True Bugs 5 6% 4 80%

Table 2: Refined Double-Fetch Bug Detection Results

Total Reported True Size Type
Kernel Files  Files Bugs Check. Sel.
Linux 4.5 39,906 53 5 23 6
Android 6.0.1 35,313 48 3 18 6
FreeBSD 32,830 16 0 8 3

Most importantly, we found five previously unknown
double-fetch bugs which include four size checking sce-
narios and one shallow copy scenario which also be-
longs to the size checking scenario. Three of them are
exploitable vulnerabilities. The five bugs have been re-
ported and they all have been confirmed by the develop-
ers and have meanwhile been fixed. From the statistical
result, we can observe the following:

1. 57 out of 90 (63%) of the candidates were driver
related and 22 out of 30 (73%) of the size checking
cases, 9 out of 11 (82%) of the type selection cases
and 19 out of 31 (61%) of the shallow copy cases
occur in drivers.

2. 4 out of 5 (80%) of the double-fetch bugs we found
inside drivers and belong to the size checking cate-
gory.

Overall, this leads to the conclusion that most double
fetches do not cause double-fetch bugs and that double
fetches are more likely to occur in drivers. However, as
soon as a double fetch is due to size checking, developers
have to be careful: Four out of 22 size checking scenarios
in drivers turned out to be double-fetch bugs.

4.2 Analysis of Three Open Source Kernels

Based on the double fetch basic pattern matching and
manual analysis, we refined our double fetch pattern
and developed a new double-fetch bug detection analysis
based on the Coccinelle engine. In order to fully evalu-
ate our approach, we analyzed three popular open source
kernels, namely Linux, Android, and FreeBSD. Results
are shown in Table 2.

10 26th USENIX Security Symposium

USENIX Association



For the Linux kernel, the experiment was conducted
on version 4.5, which was the newest version when the
experiment was conducted. The analysis took about 10
minutes and reported 53 candidate files. An investigation
of the 53 candidates revealed five true double-fetch bugs,
which were also found by the previous manual analysis.
Among the reported files, 23 were size checking related,
and 6 were type selection related.

For Android, even though it uses Linux as its ker-
nel as well, we analyzed version 6.0.1 which is based
on Linux 3.18. There are still differences between the
Android kernel and original Linux kernel: A kernel for
Android is a mainstream Linux kernel, with additional
drivers for the specific Android device, and other ad-
ditional functionality, such as enhanced power manage-
ment or faster graphics support. Our analysis took about
9 minutes and reported 48 candidate files, including
seven files that were not included in the original Linux
kernel reports. Among the reported candidates, three
were true double-fetch bugs, including two that were
shared with the Linux 4.5 report above, and one that was
only reported for Android. Among the results, 18 candi-
dates were size checking related, and six candidates were
type selection related.

For FreeBSD, we needed to change the transfer func-
tions copy_from_user() and __copy_from_user()
to the corresponding ones in FreeBSD, copyin() and
copyin_nofault (). We obtained the source code from
the master branch®. This analysis took about 2 minutes
and only 16 files were reported, but none of them turned
out to be a vulnerable double-fetch bug. Among the re-
ported candidates, eight were size checking related, and
three were type selection related. It is interesting to note
that 5 out of these 16 files were benign double fetches,
which would have been double-fetch bugs but were pre-
vented by additional checking schemes. The develop-
ers of FreeBSD seem to be more aware of double-fetch
bugs and try to actively prevent them. In comparison,
for Linux, only 5 out of the 53 reports were protected by
additional checking schemes.

In this experiment, we only counted the size check-
ing and type selection cases because the refined pattern
matching approach discards shallow copy cases that are
not able to cause a double-fetch bug. Our approach
matches the double fetch pattern that fetches data from
the same memory region, which ignores the first buffer
fetches in the case of a shallow copy and only considers
multiple fetches to the same second buffer. Such shallow
copy cases usually combine with other scenarios such as
size checking and type selection. In Table 2, the size
checking cases of the Linux kernel also includes one case
that occurred in a shallow copy scenario.

3From GitHub as of July 2016 (https://github.com/freebsd/freebsd)

5 Discussion

In this section, we discuss the discovered double-fetch
bugs and vulnerabilities in Linux 4.5 and how double-
fetch bugs can be prevented in the presence of double-
fetch situations. We also interpret our findings and the
limitations of our approach.

5.1 Detected Bugs and Vulnerabilities

Based on our approach, we found six double-fetch bugs
in total. Five of them are previously unknown bugs that
have not been reported before (CVE-2016-5728, -6130, -
6136, -6156, -6480), and the sixth one (CVE-2015-1420)
is a double-fetch bug present in the newest Android (ver-
sion 6.0.1) which is based on an older Linux kernel (ver-
sion 3.18) containing the bug, which has been fixed in
the mainline Linux kernel since Linux 4.1. Three of the
five new bugs are exploitable double-fetch vulnerabili-
ties (CVE-2016-5728, -6136, -6480). Four of the five
are in drivers (CVE-2016-5728, -6130, -6156, -6480).
All bugs have been reported to the Linux kernel main-
tainers who have confirmed them. All of these reported
bugs are fixed as of Linux 4.8. We did not find any new
double-fetch bugs in FreeBSD. Details on the detected
bugs are shown in Table 3.

The presented approach identifies a large number of
double-fetch situations for which only a small number
are double-fetch bugs (or even vulnerabilities). How-
ever, even though the cases we call benign double-fetch
situations are not currently faulty, they could easily turn
into a double-fetch bug or vulnerability when the code is
updated without paying special attention to the double-
fetch situation. We observed an occurrence of such
a situation when investigating the patch history of the
double-fetch bug CVE-2016-5728. A reuse of the sec-
ond fetched value was introduced when the developer
moved functionality from the MIC host driver into the
Virtio Over PCIe (VOP) driver, therefore introducing a
double-fetch bug. A major part of our future work will
be preventing such benign double fetch situations from
turning into harmful ones.

We did not find any false negatives while manually
checking random samples of Linux kernel source code
files.

5.2 Comparison

Only a few systematic studies have been conducted on
double fetches. Bochspwn [14, 13] is the only approach
similar enough to warrant a comparison with. An anal-
ysis of Linux 3.5.0 with Bochspwn did not find any
double-fetch bug, while producing up to 200KB of dou-
ble fetch logs. In the same kernel, our approach identi-

USENIX Association

26th USENIX Security Symposium 11



Table 3: Description of Identified Double Fetch Bugs and Vulnerabilities (*)

IDs File Description
CVE- mic_virtio.c Race condition in the vop_ioct1 function allows local users to obtain sensitive
2016- MIC architecture VOP information from kernel memory or cause a denial of service (memory cor-
5728* (Virtual I/O Over PCle) ruption and system crash) by changing a certain header, aka a “double fetch”

driver vulnerability.

Linux 4.5 Belongs to the size checking scenario.
CVE- sclp_ctl.c Race condition in the sclp_ctl_ioctl_sccb function allows local users to
2016- IBM S/390 SCLP console  obtain sensitive information from kernel memory by changing a certain length
6130  driver value, aka a “double fetch” vulnerability.

Linux 4.5 Belongs to the size checking scenario.
CVE- auditsc.c Race condition in the audit_log_single_ execve_arg function allows local
2016- Linux auditing subsystem  users to bypass intended character-set restrictions or disrupt system-call audit-
6136* Linux 4.5 ing by changing a certain string, aka a “double fetch” vulnerability.
CVE- cros_ec_dev.c Race condition in the ec_device_ioctl_xcmd function allows local users to
2016- Chrome OS Embedded cause a denial of service (out-of-bounds array access) by changing a certain size
6156  Controller driver value, aka a “double fetch” vulnerability.

Linux 4.5 Belongs to the size checking scenario.
CVE- commctrl.c Race condition in the ioctl_send_£fib function allows local users to cause a
2016- Adaptec RAID controller  denial of service (out-of-bounds access or system crash) by changing a certain
6480* driver size value, aka a “double fetch” vulnerability.

Linux 4.5 Belongs to the size checking scenario.
CVE- fhandle.c Race condition in the handle_to_path function allows local users to cause a
2015- File System denial of service (out-of-bounds array access) by changing a certain size value,
1420* Android 6.0.1, (Linux 3.18) aka a “double fetch” vulnerability.

Belongs to the size checking scenario.

fied 3 out of the above discussed 6 double-fetch bugs (the

5.3 Double-Fetch Bug Prevention

other 3 bugs we found are in files that were not present
in Linux 3.5.0).

It is likely that Bochspwn could not find these bugs

Even though we provide an analysis to detect double-
fetch bugs, developers must still be aware of how they
occur and preemptively prevent double-fetch bugs. Hu-
man mistakes are to be expected in driver development

because they were present in drivers. Indeed, dynamic
approaches cannot support drivers without correspond-
ing hardware or simulations of hardware. Bochspwn re-
ported an instruction coverage of only 28% for the ker-
nel, while our approach statically analyses the complete
source code.

As for efficiency, our approach takes only a few min-
utes to conduct a path-sensitive exploration of the source
code of the whole Linux kernel. In contrast, Bochspwn
introduces a severe runtime overhead. For instance, their
simulator needs 15 hours to boot the Windows kernel.

While it only took a few days to investigate the 90
double-fetch situations, Jurczyk and Coldwind did not
report the time they needed to investigate the 200KB of
double fetch logs generated by their simulator.

when dealing with variable messages leading to new
double-fetch situations.

(1) Don’t Copy the Header Twice. Double-fetch situa-
tions can be completely avoided if the second fetch only
copies the message body and not the complete message
which copies the header a second time. For example, the
double-fetch vulnerability in Android 6.0.1 (Linux 3.18)
is resolved in Linux 4.1 by only copying the body in the
second fetch.

(2) Use the Same Value. A double-fetch situation turns
into a bug when there is a use of the “same” data from
both fetch operations because a (malicious) user can
change the data between the two fetches. If develop-
ers only use the data from one of the fetches, problems
are avoided. According to our investigation, most of the
double-fetch situations are benign because they only use
the first fetched value.

12 26th USENIX Security Symposium

USENIX Association



(3) Overwrite Data. There are also situations in which
the data has to be fetched and used twice, for exam-
ple, the complete message is passed to a different func-
tion for processing. One way to resolve the situation
and eliminate the double-fetch bug is to overwrite the
header from the second fetch with the header that has
been fetched first. Even if a malicious user changed
the header between the two fetches, the change would
have no impact. This approach is widely adopted in
FreeBSD code, such as in sys/dev/aac/aac.c and
sys/dev/aacraid/aacraid.c.

(4) Compare Data. Another way to resolve a double-
fetch bug is to compare the data from the first fetch to
the data of the second fetch before using it. If the data is
not the same, the operation must be aborted.

(5) Synchronize Fetches. The last way to prevent a
double-fetch bug is to use synchronization approaches
to guarantee the atomicity of two inseparable operations,
such as locks or critical sections. As long as we guaran-
tee that the fetched value cannot be changed between the
two fetches, then nothing wrong will come out of fetch-
ing multiple times. However, this approach will incur
performance penalties for the kernel, as synchronization
is introduced on a critical section.

Since the Compare Data approach does not need to
modify very much of the source code, most of the identi-
fied double-fetch bugs we found have been patched in
this way by the Linux developers (CVE-2016-5728, -
6130, -6156, -6480). If the overlapped data sections from
the two fetches are not the same, the kernel will now re-
turn an error. One can argue that it would have been
better to avoid the double fetch of the headers with any
of the other first three recommendations. However, com-
paring the data has two advantages: it not only allow de-
tecting attacks by malicious users but also protects from
situation in which the data is changed without malicious
intent (e.g., by some bug in user space code).

We have implemented the Compare Data approach
in Coccinelle as an automatic patch that injects code to
compare the data from the first fetch with the data from
the second fetch at places where a double-fetch bug has
been found. It is able to automatically patch all size
checking double-fetch bugs, which accounts for most of
the identified bugs (5/6).

5.4 Interpretation of Results

Double fetches are a fundamental problem for kernel de-
velopment. Popular operating systems like Windows,
Linux, Android, and FreeBSD all had double-fetch bugs
and vulnerabilities in the past. Double-fetch issues have
a long history, and one bug we identified (CVE-2016-
6480) has existed for over ten years.

Double fetches are prevalent and sometimes inevitable
in kernels. We categorized three typical double fetch
scenarios from the occurrences we detected. 63% of
these double fetches occur in drivers, which implies that
drivers are the hard-hit area. Four out of the five new
bugs belong to size checking scenarios, indicating that
variable length message processing needs vetting for
double-fetch bugs.

In the Linux kernel, double-fetch bugs are more com-
plex than in Windows because transfer functions separate
the fetches from the uses in a double-fetch bug, mak-
ing it harder to separate benign from vulnerable double
fetches. A previous dynamic approach has not found
any double-fetch bug in Linux, where our static approach
found some, demonstrating the power of a simple static
analysis.

Our approach requires manual inspection, however,
the manual inspection does not have to be repeated
for the full kernel as future analyses can be limited to
changed files. Moreover, developing a static analysis that
automatically identifies double-fetch bugs with higher
accuracy would have cost much more time than develop-
ing our current approach, running it on different kernels,
and the manual investigating the results together. Also,
before our analysis and categorization, it was not known
in which situations double-fetch bugs occur in the Linux
kernel—knowledge that was needed in order to design a
more precise static double-fetch bug analysis. With the
refined approach, one would only have had to look at the
53 potential double-fetch bugs, not at all 90 double-fetch
situations. Therefore, the manual analysis part of our ap-
proach is inevitable but highly beneficial.

As for prevention, all of the four size checking bugs
are patched by the Compare Data method, indicating the
double fetches are not avoided completely as the patched
situations still abort the client program by returning an
error. Moreover, even benign double-fetch situations are
not safe because they can turn into harmful ones easily.
One such bug (CVE-2016-5728 ) was introduced from
a benign double-fetch situation by a code update. How-
ever, most of these potential cases are not fixed as they
are currently not vulnerable.

Even if a double fetch is benign, i.e., is not vulnera-
ble, it can be considered a performance issue since one
of the fetches (invocations of the transfer functions) is
redundant.

5.5 Limitations

We focused on analyzing situations in which double
fetches occur in Linux with a pattern-based analysis of
the source code. However, the nature of the analysis
prevents the detection of double fetches that occur on a
lower level, e.g., in preprocessed or compiled code.

USENIX Association

26th USENIX Security Symposium 13



Double-fetch bugs can even occur in macros. In one
such case [24], the macro fetches a pointer twice, the
first time to test for NULL and the second time to use it.
However, due to the potential pointer change between the
two fetches, a null-pointer crash may be caused.

A double-fetch bug can also be introduced through
compiler optimization. It then occurs in the compiled
binary but not in the source code. Wilhelm [37] recently
found such a compiler-generated double-fetch bug in the
Xen Hypervisor, which is because the pointers to shared
memory regions are not labeled as volatile, allowing the
compiler to turn a single memory access into multiple ac-
cesses at the binary level, since it assumes that the mem-
ory will not be changed.

6 Related Work

So far, research conducted on double-fetch analysis has
exclusively focused on dynamic analysis, whereas we
proposed a static analysis approach. In addition to the
already discussed work on Bochspwn [14, 13], there are
also a few related studies as follows.

Wilhelm [37] used a similar approach to Bochspwn
to analyze memory access pattern of para-virtualized de-
vices’ backend components. His analysis identified 39
potential double fetch issues and discovered three novel
security vulnerabilities in security-critical backend com-
ponents. One of the discovered vulnerabilities does not
exist in the source code but is introduced through com-
piler optimization (see the discussion in Section 5.5).
Moreover, another discovered vulnerability in the source
code is usually not exploitable because the compiler opti-
mizes the code in a way that the second fetch is replaced
with a reuse of the value of the first fetch.

Double-fetch race conditions are very similar to Time-
Of-Check to Time-Of-Use (TOCTOU) race conditions
caused by changes occurring between checking a con-
dition and the use of the check’s result (by which the
condition no longer holds). The data inconsistency in
TOCTOU is usually caused by a race condition that re-
sults from improper synchronized concurrent accesses to
a shared object. There are varieties of shared objects in
any computer system, such as files [2], sockets [36] and
memory locations [39], therefore, a TOCTOU can exist
in different layers throughout the system. TOCTOU race
conditions often occur in file systems and numerous ap-
proaches [5, 9, 18, 4, 27] have been proposed to solve
these problems, but there is still no general, secure way
for applications to access file systems in a race-free way.

Watson [36] worked on exploiting wrapper concur-
rency vulnerabilities that come from system call inter-
position. He focused on the wrapper vulnerabilities
that will lead to security issues such as privilege esca-
lation and audit bypass. By identifying resources rel-

evant to access control, audit, or other security func-
tionality that are accessed concurrently across a trust
boundary, he found vulnerabilities from the wrappers and
demonstrated the exploit techniques with examples. He
also categorized the Time-Of-Audit to Time-Of-Use and
Time-Of-Replacement to Time-Of-Use issues in addition
to the Time-Of-Check to Time-Of-Use issue. However,
he focused on the system call interposition security ex-
tensions rather than the kernel as we do. He did not pro-
vide details of how he found these vulnerabilities either.

Yang et al. [39] cataloged concurrency attacks in the
wild by studying 46 different types of exploits and pre-
sented their characteristics. They pointed out that the risk
of concurrency attacks was proportional to the duration
of the vulnerability window. Moreover, they found that
previous TOCTOU detection and prevention techniques
are too specific and cannot detect or prevent general con-
currency attacks.

Coccinelle [17], the program matching and transfor-
mation engine we use in our approach, was initially tar-
geted for collateral evolution in Linux drivers, but now is
widely used for finding and fixing bugs in systems code.
With Coccinelle, Nicolas et al. [26, 25] performed a
study of all the versions of Linux released between 2003
and 2011, ten years after the work of Chou et al. [7], who
gave the first thorough study on faults found in Linux.
Nicolas et al. pointed out that the kind of faults con-
sidered ten years ago were still relevant, and were still
present in both new and existing files. They also found
that the rate of the considered kinds of faults were falling
in the driver directory, which supported Chou et al.

7 Conclusion

This work provides the first (to the best of our knowl-
edge) static analysis of double fetches in the Linux
kernel. It is the first approach able to detect double-
fetch vulnerabilities in the complete kernel including all
drivers and all hardware architectures (which was impos-
sible using dynamic approaches). Based on our pattern-
based static analysis, we categorized three typical sce-
narios in which double fetches are prone to occur. We
also provide recommended solutions, specific to typical
double-fetch scenarios we found in our study, to prevent
double-fetch bugs and vulnerabilities. One solution is
used to automatically patch double-fetch bugs, which is
able to automatically patch all discovered bugs occurring
in the size-checking scenario.

Where a known dynamic analysis of the Linux,
FreeBSD, and OpenBSD kernels found no double-fetch
bug, our static analysis discovered six real double-fetch
bugs, five of which are previously unknown bugs, and
three of which are exploitable double-fetch vulnerabili-
ties. All of the reported bugs have been confirmed and

14 26th USENIX Security Symposium

USENIX Association



fixed by the maintainers. Our approach has been adopted
by the Coccinelle team and is currently being integrated
into the Linux kernel patch vetting.

Acknowledgments

The authors would like to sincerely thank all the re-
viewers for your time and expertise on this paper.
Your insightful comments help us improve this work.
This work is partially supported by the The National
Key Research and Development Program of China
(2016YFB0200401), by the program for New Century
Excellent Talents in University, by the National Sci-
ence Foundation (NSF) China 61402492, 61402486,
61379146, 61472437 ,and by the laboratory pre-research
fund (9140C810106150C81001).

References

[1

—

Bug 166248 — CAN-2005-2490 sendmsg compat stack over-
flow. https://bugzilla.redhat.com/show_bug.cgi?id=
166248.

BisHop, M., DiLGer, M., ET AL. Checking for race conditions in
file accesses. Computing systems 2,2 (1996), 131-152.

[2

—

[3] BrunEeL, J., Dorigez, D., Hansen, R. R., LawarL, J. L., anp
MULLER, G. A foundation for flow-based program matching: Us-
ing temporal logic and model checking. In Proceedings of the
36th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages (POPL) (2009).

[4] Cari X., Gur, Y., anD Jonnson, R. Exploiting UNIX file-system
races via algorithmic complexity attacks. In 30th IEEE Sympo-
sium on Security and Privacy (2009), pp. 27-41.

[5] CHeNn, H., AND WAGNER, D. MOPS: an infrastructure for examining
security properties of software. In Proceedings of the 9th ACM
conference on Computer and communications security (2002),
pp. 235-244.

[6] CHeN, J., aND MacDonaLD, S. Towards a better collaboration of
static and dynamic analyses for testing concurrent programs. In
Proceedings of the 6th workshop on Parallel and distributed sys-
tems: testing, analysis, and debugging (2008), p. 8.

[7]1 Cuou, A., YaNG, J., CueLr, B., HALLEM, S., AND ENGLER, D. An
empirical study of operating systems errors. In Proceedings of
the Eighteenth ACM Symposium on Operating Systems Principles
(SOSP) (2001).

[8] Corser, J., RuBiNi, A., AND KrRoaH-HARTMAN, G. Linux Device

Drivers. O’Reilly Media, Inc., 2005.

[9] Cowan, C., Beartig, S., WriGHT, C., AND KroAH-HARTMAN, G.
RaceGuard: Kernel protection from temporary file race vulner-
abilities. In USENIX Security Symposium (2001), pp. 165-176.

ENGLER, D., aND AsHCRAFT, K. RacerX: effective, static detection
of race conditions and deadlocks. In Proceedings of the Nine-
teenth ACM Symposium on Operating Systems Principles (SOSP
’03) (2003), ACM, pp. 237-252.

Hammou, S. Exploiting Windows drivers: Double-fetch
race condition vulnerability, 2016. http://resources.
infosecinstitute.com/exploiting-windows-drivers-
double-fetch-race-condition-vulnerability/.

[10]

(11]

[12] Huang, J., AND ZHANG, C. Persuasive prediction of concurrency
access anomalies. In Proceedings of the 2011 International Sym-

posium on Software Testing and Analysis (2011), pp. 144-154.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Jurczyk, M., anp Corpwinp, G. Bochspwn:  Identify-
ing O-days via system-wide memory access pattern analy-
sis. Black Hat 2013, 2013. http://vexillium.org/dl.
php?BH2013_Mateusz_Jurczyk _Gynvael _Coldwind.pdf.

Jurczyk, M., aNp CoLpwinp, G. Identifying and exploiting win-
dows kernel race conditions via memory access patterns. Tech.
rep., Google Research, 2013. http://research.google.com/
pubs/archive/42189.pdf.

Kasikcr, B., ZamrIr, C., ANpD CANDEA, G. Data races vs. data race
bugs: telling the difference with portend. In Proceedings of the
Seventeenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2012), pp. 185-198.

Kasikcr, B., Zamrir, C., AND CANDEA, G. RaceMob: crowdsourced
data race detection. In Proceedings of the twenty-fourth ACM
symposium on operating systems principles (2013), pp. 406-422.

LawaLL, J., LAurie, B., HANSEN, R. R., PaLix, N., AND MULLER, G.
Finding error handling bugs in OpenSSL using Coccinelle. In
European Dependable Computing Conference (EDCC) (2010),
pp. 191-196.

Lueg, K.-S., anp CHAPIN, S. J. Detection of file-based race con-
ditions. [International Journal of Information Security 4, 1-2
(2005), 105-119.

Lu, K., Wu, Z., Wang, X., CHeN, C., aNp ZHou, X. RaceChecker:
efficient identification of harmful data races. In 2015 23rd Eu-
romicro International Conference on Parallel, Distributed, and
Network-Based Processing (2015), pp. 78-85.

Lu, S., Park, S., Seo, E., ANp ZHou, Y. Learning from mistakes:
a comprehensive study on real world concurrency bug character-
istics. In Proceedings of the 13th International Conference on
Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS) (2008), pp. 329-339.

Lu, S., Park, S., AND ZHou, Y. Finding atomicity-violation bugs
through unserializable interleaving testing. IEEE Transactions on
Software Engineering 38, 4 (2012), 844-860.

Lu, S., Tucek, J., Qv, F.,, aNp Znou, Y. AVIO: detecting atomicity
violations via access interleaving invariants. In ACM SIGARCH
Computer Architecture News (2006), vol. 34, pp. 37-48.

Lucia, B., Ceze, L., anp Strauss, K. Colorsafe: architectural
support for debugging and dynamically avoiding multi-variable
atomicity violations. ACM SIGARCH computer architecture
news 38, 3 (2010), 222-233.

McKenney, P. E. list: Fix double fetch of pointer in
hlist_entry_safe(), 2013. https://lists.linuxfoundation.
org/pipermail/containers/2013-March/031996.html.

Pauix, N., THomas, G., SaHa, S., Cawves, C., LAwALL, J., AND
MuLLER, G. Faults in Linux: Ten years later. In Proceedings of
the Sixteenth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS)
(2011).

PaLix, N., THoMas, G., SaHA, S., Carves, C., MULLER, G., AND
LawaLt, J. Faults in Linux 2.6. ACM Transactions on Computer
Systems (TOCS) 32,2 (2014), 4.

Paver, M., anp Gross, T. R. Protecting applications against
TOCTTOU races by user-space caching of file metadata. In Pro-
ceedings of the 8th ACM SIGPLAN/SIGOPS Conference on Vir-
tual Execution Environments (2012), pp. 215-226.

PratikAKIs, P., FOSTER, J. S., AnDp Hicks, M. LOCKSMITH: Prac-
tical static race detection for C. ACM Transactions on Program-
ming Languages and Systems (TOPLAS) 33, 1 (2011), 3.

Ryzuyk, L., CHuss, P., Kuz, 1., anp HEISER, G. Dingo: Taming de-
vice drivers. In Proceedings of the 4th ACM European conference
on Computer systems (2009), pp. 275-288.

USENIX Association

26th USENIX Security Symposium 15



[30]

[31]

[32

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

SAVAGE, S., BurRrOWS, M., NELSON, G., SOBALVARRO, P., AND ANDER-
soN, T. Eraser: A dynamic data race detector for multithreaded
programs. ACM Transactions on Computer Systems (TOCS) 15,
4(1997), 391-411.

Sen, K. Race directed random testing of concurrent programs.
ACM SIGPLAN Notices 43, 6 (2008), 11-21.

SerNa, F. J. MS08-061: the case of the kernel mode double-
fetch, 2008. https://blogs.technet.microsoft.com/
srd/2008/10/14/ms08-061-the-case-of-the-kernel-
mode-double- fetch/.

SH1, Y., Park, S., YIN, Z., Lu, S., Znou, Y., CHEN, W., AND ZHENG,
W. Do i use the wrong definition?: Defuse: definition-use in-
variants for detecting concurrency and sequential bugs. In ACM
Sigplan Notices (2010), vol. 45, ACM, pp. 160-174.

Swirt, M. M., BersHaD, B. N., anp Levy, H. M. Improving the
reliability of commodity operating systems. ACM Trans. Comput.
Syst. 23, 1 (Feb. 2005), 77-110.

Voung, J. W., JuaLa, R., aND LErRNER, S. RELAY: static race de-
tection on millions of lines of code. In Proceedings of the the
6th joint meeting of the European software engineering confer-
ence and the ACM SIGSOFT symposium on The foundations of
software engineering (2007), pp. 205-214.

Warson, R. N. Exploiting concurrency vulnerabilities in system
call wrappers. In First USENIX Workshop on Offensive Technolo-
gies (WOOT) (2007).

WiLHELM, F. Tracing privileged memory accesses to discover soft-
ware vulnerabilities. Master’s thesis, Karlsruher Institut fiir Tech-
nologie, 2015.

Wu, Z., Lu, K., Wang, X., ANDp Znou, X. Collaborative technique
for concurrency bug detection. International Journal of Parallel
Programming 43, 2 (2015), 260-285.

YANG, J., Cul, A., STOLFO, S., AND SETHUMADHAVAN, S. Concurrency
attacks. In Proceedings of the 4th USENIX Conference on Hot
Topics in Parallelism (2012).

ZuANG, M., Wu, Y., Lu, S., Qr, S., ReN, J., AND ZHENG, W. Ai:
a lightweight system for tolerating concurrency bugs. In Pro-
ceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering (2014), ACM, pp. 330—
340.

ZHANG, W., Sun, C., anp Lu, S. ConMem: detecting severe con-
currency bugs through an effect-oriented approach. In Proceed-
ings of the Fifteenth Edition of ASPLOS on Architectural Support
for Programming Languages and Operating Systems (ASPLOS
XV) (2010), pp. 179-192.

16

26th USENIX Security Symposium

USENIX Association



POMP: Postmortem Program Analysis with
Hardware-Enhanced Post-Crash Artifacts

Jun XuT, Dongliang Muﬁ, Xinyu XingT, Peng LiuT, Ping ChenT, and Bing Mao

' College of Information Sciences and Technology, The Pennsylvania State University

*State Key Laboratory for Novel Software Technology, Department of Computer Science and
Technology, Nanjing University
{jxx13,dzm77,xxing, pliu, pzc10} @ist.psu.edu, {maobing} @nju.edu.cn

Abstract

While a core dump carries a large amount of infor-
mation, it barely serves as informative debugging aids
in locating software faults because it carries information
that indicates only a partial chronology of how program
reached a crash site. Recently, this situation has been
significantly improved. With the emergence of hardware-
assisted processor tracing, software developers and secu-
rity analysts can trace program execution and integrate
them into a core dump. In comparison with an ordinary
core dump, the new post-crash artifact provides software
developers and security analysts with more clues as to a
program crash. To use it for failure diagnosis, however, it
still requires strenuous manual efforts.

In this work, we propose POMP, an automated tool to
facilitate the analysis of post-crash artifacts. More specif-
ically, POMP introduces a new reverse execution mecha-
nism to construct the data flow that a program followed
prior to its crash. By using the data flow, POMP then
performs backward taint analysis and highlights those
program statements that actually contribute to the crash.

To demonstrate its effectiveness in pinpointing program
statements truly pertaining to a program crash, we have
implemented POMP for Linux system on x86-32 platform,
and tested it against various program crashes resulting
from 31 distinct real-world security vulnerabilities. We
show that, POMP can accurately and efficiently pinpoint
program statements that truly pertain to the crashes, mak-
ing failure diagnosis significantly convenient.

1 Introduction

Despite the best efforts of software developers, software
inevitably contains defects. When they are triggered, a
program typically crashes or otherwise terminates ab-
normally. To track down the root cause of a software
crash, software developers and security analysts need to
identify those program statements pertaining to the crash,

analyze these statements and eventually figure out why
a bad value (such as an invalid pointer) was passed to
the crash site. In general, this procedure can be signif-
icantly facilitated (and even automated) if both control
and data flows are given. As such, the research on post-
mortem program analysis primarily focuses on finding
out control and data flows of crashing programs. Of
all techniques on postmortem program analysis, record-
and-replay (e.g., [10, 12, 14]) and core dump analysis
(e.g., [16, 26, 36]) are most common.

Record-and-replay is a technique that typically instru-
ments a program so that one can automatically log non-
deterministic events (i. e., the input to a program as well
as the memory access interleavings of the threads) and
later utilize the log to replay the program deterministically.
In theory, this technique would significantly benefit root
cause diagnosis of crashing programs because develop-
ers and security analysts can fully reconstruct the control
and data flows prior to a crash. In practice, it however is
not widely adopted due to the requirement of program in-
strumentation and the high overhead it introduces during
normal operations.

In comparison with record-and-reply, core dump analy-
sis is a lightweight technique for the diagnosis of program
crashes. It does not require program instrumentation, nor
rely upon the log of program execution. Rather, it facil-
itates program failure diagnosis by using more generic
information, i. e., the core dump that an operating system
automatically captures every time a process has crashed.
However, a core dump provides only a snapshot of the
failure, from which core dump analysis techniques can
infer only partial control and data flows pertaining to pro-
gram crashes. Presumably as such, they have not been
treated as the first choice for software debugging.

Recently, the advance in hardware-assisted processor
tracing significantly ameliorates this situation. With the
emergence of Intel PT [6] — a brand new hardware feature
in Intel CPUs — software developers and security ana-
lysts can trace instructions executed and save them in a

USENIX Association

26th USENIX Security Symposium 17



circular buffer. At the time of a program crash, an oper-
ating system includes the trace into a core dump. Since
this post-crash artifact contains both the state of crashing
memory and the execution history, software developers
not only can inspect the program state at the time of the
crash, but also fully reconstruct the control flow that led to
the crash, making software debugging more informative
and efficient.

While Intel PT augments software developers with the
ability of obtaining more informative clues as to a soft-
ware crash, to use it for the root cause diagnosis of soft-
ware failures, it is still time consuming and requires a
lot of manual efforts. As we will discuss in Section 2,
a post-crash artifact' typically contains a large amount
of instructions. Even though it carries execution history
that allows one to fully reconstruct the control flow that a
crashing program followed — without an automated tool
to eliminate those instructions not pertaining to the fail-
ure — software developers and security analysts still need
to manually examine each instruction in an artifact and
identify those that actually contribute to the crash.

To address this problem, recent research [22] has pro-
posed a technical approach to identify program statements
that pertain to a software failure. Technically speaking,
it combines static program analysis with a cooperative
and adaptive form of dynamic program analysis that uses
Intel PT. While shown to be effective in facilitating failure
diagnosis, particularly those caused by concurrency bugs,
this technique is less likely to be effective in analyzing
crashes resulting from memory corruption vulnerabilities
(e.g. buffer overflow or use after free). This is due to
the fact that a memory corruption vulnerability allows an
attacker to manipulate the control (or data) flow, whereas
the static program analysis heavily relies upon the as-
sumption that program execution does not violate control
nor data flow integrity. Given that the technique proposed
in [22] needs to track data flow using hardware watch-
points in a collaborative manner, this technique is also less
suitable to the situation where program crashes cannot be
easily collected in a crowd-sourcing manner.

In this work, we design and develop POMP, a new auto-
mated tool that analyzes a post-crash artifact and pinpoints
statements pertaining to the crash. Considering that the
control flow of a program might be hijacked and static
analysis is unreliable, the design of POMP is exclusively
on the basis of the information residing in post-crash arti-
facts. In particular, POMP introduces a reverse execution
mechanism which takes as input a post-crash artifact, an-
alyzes the crashing memory and reversely executes the
instructions residing in the artifact. With the support of
this reverse execution, POMP reconstructs the data flow

By a post-crash artifact, without further specification, we mean a
core dump including both the snapshot of crashing memory and the
instructions executed prior to the crash.

that a program followed prior to its crash, and then utilizes
backward taint analysis to pinpoint the critical instructions
leading up to the crash.

The reverse execution proposed in this work is novel.
In previous research, the design of reverse execution is
under the assumption of the data integrity in crashing
memory [16, 37] or heavily relies upon the capability of
recording critical objects in memory [7-9, 13]. In this
work, considering a software vulnerability might incur
memory corruption and object recording imposes over-
head on normal operations, we relax this assumption and
the ability of data object recording, and introduce a recur-
sive algorithm. To be specific, the algorithm performs the
restoration of memory footprints by constructing the data
flow prior to the crash. In turn, it also employs recovered
memory footprints to improve data flow construction. If
needed, the algorithm also verifies memory aliases and
ensures data flow construction does not introduce errors
or uncertainty. We detail this algorithm in Section 4.

To the best of our knowledge, POMP is the first work
that can recover the data flow prior to a program crash.
Since POMP relies only upon a post-crash artifact, it is
non-intrusive to normal operations and, more importantly,
generally applicable to any settings even though crash
report collection cannot be performed in a cooperative
manner. Last but not least, it should be noted that the
impact of this work is not just restricted to analyzing
the abnormal program termination caused by memory
corruption vulnerabilities. The technique we proposed is
generally applicable to program crashes caused by other
software bugs, such as dereferencing null pointers. We
will demonstrate this capability in Section 6.

In summary, this paper makes the following contribu-
tions.

o We designed POMP, a new technique that analyzes
post-crash artifacts by reversely executing instruc-
tions residing in the artifact.

e We implemented POMP on 32-bit Linux for facili-
tating software developers (or security analysts) to
pinpoint software defects, particularly memory cor-
ruption vulnerabilities.

e We demonstrated the effectiveness of POMP in fa-
cilitating software debugging by using various post-
crash artifacts attributable to 31 distinct real world
security vulnerabilities.

The rest of this paper is organized as follows. Section 2
defines the problem scope of our research. Section 3
presents the overview of POMP. Section 4 and 5 describe
the design and implementation of POMP in detail. Sec-
tion 6 demonstrates the utility of POMP. Section 7 sum-
marizes the work most relevant to ours followed by some
discussion on POMP in Section 8. Finally, we conclude
this work in Section 9.

18 26th USENIX Security Symposium

USENIX Association



1 wvoid test (void) {

2

3}

4

5 int child(int =xa) {

6 al0] = 1; // assigning value to var
7 alll = 2; // overflow func
8 return 0;

9 1}

10

11 int main () {

12 void (xfunc) (void);

13 int wvar;

14 func = &test;

15 child(&var);

16 func(); // crash site

17 1}

Table 1: A toy example with a stack overflow defect.

2 Problem Scope

In this section, we define the problem scope of our re-
search. We first describe our threat model. Then, we
discuss why failure diagnosis can be tedious and tough
even though a post-crash artifact carries information that
allows software developers to fully reconstruct the control
flow that a program followed prior to its crash.

2.1 Threat Model

In this work, we focus on diagnosing the crash of a pro-
cess. As a result, we exclude the program crashes that do
not incur the unexpected termination of a running process
(e.g., Java program crashes). Since this work diagnoses a
process crash by analyzing a post-crash artifact, we fur-
ther exclude those process crashes that typically do not
produce an artifact. Up to and including Linux 2.2, the de-
fault action for CPU time limit exceeded, for example, is
to terminate the process without a post-crash artifact [3].

As is mentioned above, a post-crash artifact contains
not only the memory snapshot of a crashing program but
also the instructions that the program followed prior to
its crash’. Recall that the goal of this work is to identify
those program statements (i. e., instructions) that actually
pertain to the crash. Therefore, we assume the instruction
trace logged in an artifact is sufficiently long and the
root cause of a program failure is always enclosed. In
other words, we assume a post-crash artifact carries all
the instructions that actually contribute to the crash. We
believe this is a realistic assumption because a software
defect is typically close to a crash site [19, 27, 39] and

2While Intel PT does not log unconditional jumps and linear code,
a full execution trace can be easily reconstructed from the execution
trace enclosed in a post-crash artifact. By an execution trace in a post-
crash artifact, without further specification, we mean a trace including
conditional branch, unconditional jump and linear code.

an operating system can easily allocate a memory region
to store the execution trace from a defect triggered to an
actual crash. Since security analysts may not have the
access to source code of crashing programs and they can
only pinpoint software defects using execution traces left
behind crashes, it should be noted that we do not assume
the source code of the crashing program is available.

2.2 Challenge

As is mentioned earlier, Intel PT records program execu-
tion in a circular buffer. At the time a software defect is
triggered and incurs a crash, the circular buffer has gener-
ally accumulated a large amount of conditional branches.
After the control flow reconstruction from these branches,
a full execution trace may carry more than a billion in-
structions. Even if zooming in the trace from where a fault
is triggered to where a crash occurs, a software developer
(or security analyst) may confront tens of thousands of
instructions. As such, it is tedious and arduous for a
software developer to plow through an execution trace to
diagnose the root cause of a software failure.

In fact, even though an execution trace is short and con-
cise, it is still challenging for commonly-adopted manual
diagnosis strategies (like backward analysis). Here, we
detail this challenge using a toy example shown in Table 1.
As is shown in the table, the program crashes at 1ine
16 due to an overflow that occurs at 1ine 7. After the
crash, an execution trace is left behind in a post-crash
artifact shown in Figure 1. In addition to the trace, the
artifact captures the state of the crashing memory which
is illustrated as the values shown in column 75g.

To diagnose the root cause with backward analysis for
the program crash shown in Figure 1, a software developer
or security analyst typically follows through the execution
trace reversely and examines how the bad value in register
eax was passed to the crash site (i. e., instruction A20
shown in Figure 1). In this procedure, his effort can be
prematurely blocked when his analysis reaches instruction
A19. In that instruction mov overwrote register eax
and an inverse operation against this instruction lacks
information to restore its previous value.

To address this problem, one straightforward solution
is to perform forward analysis when backward analysis
reaches a non-invertible instruction. Take instruction A1 9
for the example. By following a use-define chain, we can
construct a data flow. Then, we can easily observe that
instruction A15 specifies the definition of register eax,
and that definition can reach instruction A1 9 without any
other intervening definitions. As a result, we can restore
the value in register eax and thus complete the inverse
operation for instruction A1 9.

While the backward and forward analysis provides se-
curity analysts with an effective method to construct data

USENIX Association

26th USENIX Security Symposium 19



Time

T19 T18 T17 T16 TlS T14 T13 T12

0x0002

0x0002 | 0x0000 | 0x0000 | 0x0000 | Ox0000 | Oxfflc | Oxfflc | Oxff18

Oxff28 | Oxff28 | Oxff28 | Oxff28 | Oxff08 | Oxff@8 | Oxff@8 | OxffO8

Oxffl4 | Oxffl4 | Oxff10 | OxffOc | OxffO8 | Oxff@8 | Oxff@8 | OxffO8

0x0002

0x0002 | 0x0002 | 0x0002 | 0x0002 | 0x0002 | Ox00Q2 | test test

0x0001

0x0001 | 0x0001 | 0x0001 | 0x0001 | 00001 | 0x0001 | 0x0001 | 0x0001

0x0000

0x0000 | 0x0000 | 0x0000 | 0x0000 | 0x0000 | 0x0000 | 0x0000 | 0x0000

oxff18

Oxffi18 | Oxff18 | Oxff18 | Oxff18 | Oxff18 | Oxff18 | Oxff18 | Oxff18

A18 A18 A18 A18 A18 A18 A18 A18

Time Execution trace
T ) Al1: push ebp
Tl A2: mov ebp, esp
TZ A3: sub esp, 0x14
3 . =
T A4: mov [ebp-0xc], test o eax
T‘ A5: lea eax, [ebp-0x10] 3
5 5 o
A6: push eax ;argument of &var )
. 0xff28
;G A7: call child =Y ebp
v A8: push ebp &J
$8 A9: mov ebp, esp esp Dl
Tg A1Q: mov eax, [ebp+@x8]
Tm A11: mov [eax], @x1 ;a[@]=1 oxfflc
Tn A12: mov eax, [ebp+0x8] ")) oxFf18
Tu A13: add eax, Ox4 ]
T13 A14: mov [eax], @x2 ;a[1]=2 % oxffl4
TM Al15: mov eax, 0x0 E:
15 .
T A16: pop ebp | oxffleo
T16 Al17: ret ‘6
17 .
o A18: add esp, Ox4 qE) oxffoc
18 A19: mov eax, [ebp-0xc] =
;19 A20: call eax ;crash site Oxffo8
20 )

oxff28

Oxff28 | Oxff28 | Oxff28 | Oxff28 | Oxff28 | Oxff28 | Oxff28 | Oxff28

Crashing memory j

Y

Memory footprints reconstructed across time

Figure 1: A post-crash artifact along with the memory footprints recovered by reversely executing the trace enclosed in the artifact.
Note that, for simplicity, all the memory addresses and the value in registers are trimmed and represented with two hex digits. Note
that A18 and test indicate the addresses at which the instruction and function are stored.

flows, this is not sufficient for completing program fail-
ure diagnosis. Again, take for example the execution
trace shown in Figure 1. When backward analysis passes
through instruction A15 and reaches instruction A14,
through forward analysis, a security analyst can quickly
discover that the value in register eax after the execution
of A14 is dependent upon both instruction A12 and A13.
As a result, an instinctive reaction is to retrieve the value
stored in the memory region specified by [ebp+0x8]

shown in instruction A12. However, memory indicated
by [ebp+0x8] and [eax] shown in instruction A14
might be alias of each other. Without an approach to re-
solve memory alias, one cannot determine if the definition
in instruction A14 interrupts the data flow from instruc-
tions A12 and A13. Thus, program failure diagnosis has
to discontinue without an outcome.

3 Overview

In this section, we first describe the objective of this re-
search. Then, we discuss our design principle followed
by the basic idea on how POMP performs postmortem
program analysis.

3.1 Objective

The goal of software failure diagnosis is to identify the
root cause of a failure from the instructions enclosed in
an execution trace. Given a post-crash artifact containing
an execution trace carrying a large amount of instructions
that a program has executed prior to its crash, however,
any instructions in the trace can be potentially attributable

to the crash. As we have shown in the section above, it is
tedious and tough for software developers (or security an-
alysts) to dig through the trace and pinpoint the root cause
of a program crash. Therefore, the objective of this work
is to identify only those instructions that truly contribute
to the crash. In other words, given a post-crash artifact,
our goal is to highlight and present to software developers
(or security analysts) the minimum set of instructions that
contribute to a program crash. Here, our hypothesis is that
the achievement of this goal can significantly reduce the
manual efforts of finding out the root cause of a software
failure.

3.2 Design Principle

To accomplish the aforementioned objective, we de-
sign POMP to perform postmortem analysis on binaries
— though in principle this can be done on a source code
level — in that this design principle can provide software
developers and security analysts with the following bene-
fits. Without having POMP tie to a set of programs written
in a particular programming language, our design prin-
ciple first allows software developers to employ a single
tool to analyze the crashes of programs written in vari-
ous language (e.g., assembly code, C/C++ or JavaScript).
Second, our design choice eliminates the complication
introduced by the translation between source code and
binaries in that a post-crash artifact carries an execution
trace in binaries which can be directly consumed by anal-
ysis at the binary level. Third, with the choice of our
design, POMP can be generally applied to software failure
triage or categorization in which a post-crash artifact is

20 26th USENIX Security Symposium

USENIX Association



the only resource for analysis and the source code of a
crashing program is typically not available [16, 18].

3.3 Technical Approach

As is mentioned earlier in Section 1, it is significantly con-
venient to identify the instructions pertaining to a program
crash if software developers and security analysts can ob-
tain the control and data flows that a program followed
prior to its crash.

We rely on Intel PT to trace the control flow of a pro-
gram and integrate it into the post-crash artifact. PT
is a low-overhead hardware feature in recent Intel pro-
cessors (e.g., Skylake series). It works by capturing in-
formation about software execution on each hardware
thread [6]. The captured information is orgranized in
different types of data packets. Packets about program
flow encodes the transfers of control flow (e.g., targets of
indirect branches and taken/not-taken indications of con-
ditional direct branches). With the control flow transfers
and the program binaries, one is able to fully reconstruct
the trace of executed instructions. Details of our configu-
ration and use with PT are presented in Section 5.

Since a post-crash artifact has already carried the con-
trol flow that a crashing program followed, the main focus
is to reconstruct the data flow from the post-crash artifact
that a crashing program left behind.

To reconstruct the data flow pertaining to a program
failure, POMP introduces a reverse execution mechanism
to restore the memory footprints of a crashing program.
This is due to the fact that the data flow can be easily
derived if machine states prior to a program crash are all
available. In the following, we briefly describe how to
recover memory footprints and build a data flow through
reverse execution, and how to utilize that data flow to
refine instructions that truly pertain to a program crash.

Our reverse execution mechanism is an extension of
the aforementioned forward-and-backward analysis. Not
only does it automate the forward-and-backward analysis,
making the inverse operations for instructions effortless,
but also automatically verifies memory aliases and en-
sures an inverse operation does not introduce errors or
uncertainty.

With this reverse execution mechanism, POMP can eas-
ily restore the machine states prior to the execution of
each instruction. Here, we illustrate this with the example
shown in Figure 1. After reverse execution completes
the inverse operation for instruction A19 through the
aforementioned forward and backward analysis, it can
easily restore the value in register eax and thus the mem-
ory footprint prior to the execution of A19 (see memory
footprint at time 7T1g). With this memory footprint, the
memory footprint prior to instruction A18 can be easily
recovered because arithmetical instructions do not intro-

duce non-invertible effects upon memory (see the memory
footprint at time 777).

Since instruction A17 can be treated as mov eip,

[esp] and then add esp, 0x4, and instruction A16

is equivalent to mov ebp, [esp] and then add
esp, 0x4,reverse execution can further restore mem-
ory footprints prior to their execution by following the
scheme of how it handles mov and arithmetical instruc-
tions above. In Figure 1, we illustrate the memory foot-
prints prior to the execution of both instructions.

Recall that performing an inverse operation for instruc-
tion A15, forward and backward analysis cannot deter-
mine whether the use of [ebp+0x8] specified in instruc-
tion A12 can reach the site prior to the execution of in-
struction A15 because [eax] inAl4 and [ebp+0x8]
in A12 might just be different symbolic names that access
data in the same memory location.

To address this issue, one instinctive reaction is to use
the value-set analysis algorithm proposed in [11]. How-
ever, value-set analysis assumes the execution complies
with standard compilation rules. When memory corrup-
tion happens and leads to a crash, these rules are typically
violated and, therefore, value-set analysis is very likely to
be error-prone. In addition, value-set analysis produces
less precise information, not suitable for reverse execu-
tion to verify memory aliases. In this work, we employ
a hypothesis test to verify possible memory aliases. To
be specific, our reverse execution creates two hypotheses,
one assuming two symbolic names are aliases of each
other while the other assuming the opposite. Then, it tests
each of these hypotheses by emulating inverse operations
for instructions.

Let’s continue the example shown in Figure 1. Now,
reverse execution can create two hypotheses, one assum-
ing [eax] and [ebp+0x8] are aliases of each other
while the other assuming the opposite. For the first
hypothesis, after performing the inverse operation for
instruction A15, the information carried by the mem-
ory footprint at 714 would have three constraints, in-
cluding eax = ebp + 0x8, eax = [ebp + 0x8] + Ox4 and
[eax] = 0x2. For the second hypothesis, the constraint set
would include eax # ebp + 0x8, eax = [ebp + 0x8] 4 0x4
and [eax] = 0x2. By looking at the memory footprint at
T4 and examining these two constraint sets, reverse exe-
cution can easily reject the first hypothesis and accept the
second because constraint eax = ebp + 0x8 for the first
hypothesis does not hold. In this way, reverse execution
can efficiently and accurately recover the memory foot-
print at time Tj4. After the memory footprint recovery
at T14, reverse execution can further restore earlier mem-
ory footprints using the scheme we discussed above, and
Figure 1 illustrates part of these memory footprints.

With memory footprints recovered, software develop-
ers and security analysts can easily derive the correspond-

USENIX Association

26th USENIX Security Symposium 21



[A18] use: esp [Oxff10 ]

[AI8] def: esp=esp+4 (Oxffi4)

[A19] use: ebp [oxff28]  [Al19] use: ebp [ 0xff28 |
\ Al9 | use: [ebp-0xc] ‘OXOOOZ‘ \ Al9 | use: [ebp-0xc] ‘OXOOOZ‘
[A19] use: eax I [A19] use: eax [ 77 ]

[[A19 Jdef: eax = [ebp-0xc][0x0002]  [A19 |def: eax = [ebp-0xc][0x0002]

[A20 ] [0x0002]  [A20]

Before After

use: eax use: eax [0x0002]

Figure 2: A use-define chain before and after appending new
relations derived from instruction A1 8. Each node is partitioned
into three cells. From left to right, the cells carry instruction
ID, definition (or use) specification and the value of the variable.
Note that symbol ?? indicates the value of that variable is
unknown.

ing data flow and thus pinpoint instructions that truly
contribute to a crash. In our work, POMP automates this
procedure by using backward taint analysis. To illustrate
this, we continue the aforementioned example and take
the memory footprints shown in Figure 1. As is described
earlier, in this case, the bad value in register eax was
passed through instruction A19 which copies the bad
value from memory [ebp—-0xC] to register eax. By
examining the memory footprints restored, POMP can eas-
ily find out that the memory indicated by [ebp-0xC]

shares the same address with that indicated by [eax]

in instruction A14. This implies that the bad value is ac-
tually propagated from instruction A14. As such, POMP
highlights instructions 219 and A14, and deems they
are truly attributable to the crash. We elaborate on the
backward taint analysis in Section 4.

4 Design

Looking closely into the example above, we refine an
algorithm to perform reverse execution and memory foot-
print recovery. In the following, we elaborate on this
algorithm followed by the design detail of our backward
taint analysis.

4.1 Reverse Execution

Here, we describe the algorithm that POMP follows when
performing reverse execution. In particular, our algorithm
follows two steps — use-define chain construction and
memory alias verification. In the following, we elaborate
on them in turn.

4.1.1 Use-Define Chain Construction

In the first step, the algorithm first parses an execution
trace reversely. For each instruction in the trace, it extracts
uses and definitions of corresponding variables based on
the semantics of that instruction and then links them to
a use-define chain previously constructed. For example,
given an initial use-define chain derived from instructions
A20 and A19 shown in Figure 1, POMP extracts the use
and definition from instruction A1 8 and links them to the
head of the chain (see Figure 2).

As we can observe from the figure, a definition (or
use) includes three elements — instruction ID, use (or def-
inition) specification and the value of the variable. In
addition, we can observe that a use-define relation in-
cludes not only the relations between operands but also
those between operands and those base and index regis-
ters enclosed (see the use and definition for instruction
A19 shown in Figure 2).

Every time appending a use (or definition), our algo-
rithm examines the reachability for the corresponding
variable and attempts to resolve those variables on the
chain. More specifically, it checks each use and defi-
nition on the chain and determines if the value of the
corresponding variable can be resolved. By resolving,
we mean the variable satisfies one of the following con-
ditions — @ the definition (or use) of that variable could
reach the end of the chain without any other intervening
definitions; @ it could reach its consecutive use in which
the value of the corresponding variable is available; ® a
corresponding resolved definition at the front can reach
the use of that variable; @ the value of that variable can
be directly derived from the semantics of that instruction
(e.g., variable eax is equal to 0x00 for instruction mov
eax, 0x00).

To illustrate this, we take the example shown in
Figure 2. After our algorithm concatenates definition
def:esp=esp+4 to the chain, where most variables
have already been resolved, reachability examination in-
dicates this definition can reach the end of the chain.
Thus, the algorithm retrieves the value from the post-
crash artifact and assigns it to esp (see the value in cir-
cle). After this assignment, our algorithm further prop-
agates this updated definition through the chain, and at-
tempts to use the update to resolve variables, the values
of which have not yet been assigned. In this case, none
of the definitions and uses on the chain can benefit from
this propagation. After the completion of this propaga-
tion, our algorithm further appends use use:esp and
repeats this process. Slightly different from the process
for definition def : esp=esp+4, for this use, variable
esp is not resolvable through the aforementioned reach-
ability examination. Therefore, our algorithm derives
the value of esp from the semantics of instruction A18

22 26th USENIX Security Symposium

USENIX Association



[AIl]  def: [eax] [0x0001] — [A12] use: ebp [0xff08 |
4 v
[ALL] use: [eax] [ 22 ] [A12] use: [ebp+0x8] ——22—
4 v
[ALL] use: eax [ 22 ] [A12] use: eax [ 22 ]
4 v
[A10] def: eax [ 22 ] [A12] def: eax [ 22 ]
4 v o
g [A10] use: eax [ 22 ] [A13] use: eax [ 22 ] Q
= 4 v o
S| [AI0] use: [ebp+0x8] | 22 | [AI3] def: eax [ 2 1|8
d v s
[A10] use: ebp [oxffog] [Al4] use: eax [ 22 ]
v
[A9 ] def: ebp [oxffog] [Al4] use: [eax] [ 22 ]
[} v
[A9 ] use: ebp [ 22 ] [Al4] def: [eax] ——]-0x2—»)
) v
[A9 | use: esp [0xffo8 ] L] [ ]

Figure 3: A use-define chain with one intervening tag conser-
vatively placed. The tag blocks the propagation of some data
flows. Note that X represents the block of a data flow.

(i. e, esp=esp—4).

During use-define chain construction, our algorithm
also keeps track of constraints in two ways. In one way,
our algorithm extracts constraints by examining instruc-
tion semantics. Take for example instruction A19 and
dummy instruction sequence cmp eax, ebx; = Ja
target; = inst_at_target Our algorithm
extracts equality constraint eax=[ebp-0xc] and in-
equality constraint eax>ebx, respectively. In another
way, our algorithm extracts constraints by examining use-
define relations. In particular, ® when the definition of a
variable can reach its consecutive use without intervening
definitions, our algorithm extracts a constraint indicat-
ing the variable in that definition shares the same value
with the variable in the use. @ When two consecutive
uses of a variable encounters no definition in between,
our algorithm extracts a constraint indicating variables
in both uses carry the same value. @ With a variable re-
solved, our algorithm extracts a constraint indicating that
variable equals to the resolved value. The reason behind
the maintenance of these constraints is to be able to per-
form memory alias verification discussed in the following
section.

In the process of resolving variables and propagating
definitions (or uses), our algorithm typically encounters a
situation where an instruction attempts to assign a value
to a variable represented by a memory region but the
address of that region cannot be resolved by using the
information on the chain. For example, instruction A14
shown in Figure 1 represents a memory write, the address
of which is indicated by register eax. From the use-define
chain pertaining to this example shown in Figure 3, we
can easily observe the node with A13 def:eax does
not carry any value though its impact can be propagated
to the node with A14 def: [eax] without any other
intervening definitions.

As we can observe from the example shown in Fig-
ure 3, when this situation appears, a definition like A14
def: [eax] may potentially interrupt the reachability
of the definitions and uses of other variables represented
by memory accesses. For example, given that memory
indicated by [ebp+0x08] and [eax] might be an alias
of each other, definition A14 def: [eax] may block
the reachability of A12 use: [ebp+0x08]. As such,
in the step of use-define chain construction, our algorithm
treats those unknown memory writes as an intervening
tag and blocks previous definitions and uses accordingly.
This conservative design principle ensures that our al-
gorithm does not introduce errors to memory footprint
recovery.

The above forward-and-backward analysis is mainly
designed to discover the use-define reltaions. Other tech-
niques, such as static program slicing [34], can also iden-
tify use-define relations. However, our analysis is novel.
To be specific, our analysis discovers the use-define re-
lations and use them to perform the restoration of mem-
ory footprints. In turn, it leverages recovered memory
footprints to further find use-define relations. This inter-
leaving approach leads more use-define relations to being
identified. Additionally, our analysis conservatively deals
with memory aliases and verifies them in an error-free
manner. This is different from previous techniques that
typically leverage less rigorous methods (e.g., value-set
analysis). More details about how we resolve memory
alias are presented in the next section.

4.1.2 Memory Alias Verification

While the aforementioned design principle prevents intro-
ducing errors to memory footprint recovery, this conser-
vative strategy hinders data flow construction and limits
the capability of resolving variables (see the flow block
and non-recoverable variables shown in Figure 3). As a
result, the second step of our algorithm is to minimize the
side effect introduced by the aforementioned strategy.

Since the conservative design above roots in “undecid-
able” memory alias, the way we tackle the problem is to
introduce a hypothesis test mechanism that examines if a
pair of symbolic names points to the same memory loca-
tion. More specifically, given a pair of symbolic names,
this mechanism makes two hypotheses, one assuming
they are alias of each other and the other assuming the
opposite. Based on the hypotheses, our algorithm ad-
justs the use-define chain as well as constraints accord-
ingly. For example, by assuming [eax] is not aliased
to [ebp+0x8], our algorithm extracts inequility con-
straint eax#ebp+0x8 and releases the block shown in
Figure 3, making 212 use: [ebp+0x8] further prop-
agated.

During the propagation, our algorithm walks through

USENIX Association

26th USENIX Security Symposium 23



each of the nodes on the chain and examines if the newly
propagated data flow results in conflicts. Typically, there
are two types of conflicts. The most common is incon-
sistence data dependency in which constraints mismatch
the data propagated from above (e.g., the example dis-
cussed in Section 3). In addition to the conflict commonly
observed, another type of conflict is invalid data depen-
dency in which a variable carries an invalid value that is
supposed to make the crashing program terminate earlier
or follow a different execution path. For example, given
a use-define chain established under a certain hypothe-
sis, the walk-through discovers that a register carries an
invalid address and that invalid value should have the
crashing program terminate at a site ahead of its actual
crash site.

It is indisputable that once a constraint conflict is ob-
served, our algorithm can easily reject the corresponding
hypothesis and deem the pair of symbolic names is alias
(or non-alias) of each other. However, if none of these
hypotheses produce constraint conflicts, this implies that
there is a lack of evidence against our hypothesis test.
Once this situation appears, our algorithm holds the cur-
rent hypothesis and performs an additional hypothesis test.
The reason is that a new hypothesis test may help remove
an additional intervening tag conservatively placed at the
first step, and thus provides the holding test with more
informative evidence to reject hypotheses accordingly.

To illustrate this, we take a simple example shown in
Figure 4. After the completion of the first step, we assume
that our algorithm conservatively treats A2 def: [R;]
and A4 def: [Rs] asintervening tags which hinder data
flow propagation. Following the procedure discussed
above, we reversely analyze the trace and make a hy-
pothesis, i. e., [R4] and [Rs] are not alias. With this
hypothesis, the data flow between the intervening tags
can propagate through, and our algorithm can examine
conflicts accordingly. Assume that the newly propagated
data flow is insufficient for rejecting our hypothesis. Our
algorithm holds the current hypothesis and makes an ad-
ditional hypothesis, i. e., [R1] and [R;] are not alias of
each other. With this new hypothesis, more data flows
pass through and our algorithm obtains more information
that potentially helps reject hypotheses. It should be noted
that if any of the hypotheses fail to reject, our algorithm
preserves the intervening tags conservatively placed at the
first step.

It is not difficult to spot that our hypothesis test can
be easily extended as a recursive procedure which makes
more hypotheses until they can be rejected. However,
a recursive hypothesis test introduces computation com-
plexity exponentially. In the worse case, when performing
execution reversely, the inverse operation of each instruc-
tion may require alias verification and each verification
may require further alias examination. When this situa-

Al: mov RO, [R1] ; R1 =addr1
A2: mov [R2],0x00 ;R2=7??
A3:  mov R3, [R4] ; R4 =addr2
A4: mov [R5],0x08 ;R5=72?

(a) The execution trace.

(| I = [ .. ]

4 v
X«FA2 fef: [R2]=0x0] 0x00 | [A3 | use:R4 [ addr2 |
A v
[A2] wse:[R2] [ 22 ] [A3] use:[R4] 22—
3 A v
Q [A2] uweR2 [ 27 | [A3] uwseR3 | 22 ]
5 S
S [ATldef:RO=RO] ?? | [[A3[def:R3=[R4][ 22 | |§
[ v )
[AT] weR0O [ 22 | [A4] uweR5 | 22 | [&§
[ v S
AR use: [R1] [ 22 ] [A4] use:[R5] | 7?2 |
A v
[Al ] wuse:Rl [addrl | [A4 [Hef: [R5]=0x8]-0x08—>X
v

(b) The use-define chain.

Figure 4: A dummy use-define chain and execution trace with
two pairs of memory aliases. Note that Ry, Ry, - - - Rs represent
registers in which the values of R, and R5 are unknown. Note
that X represents the block of a data flow.

tion appears, the algorithm above becomes an impractical
solution. As such, this work empirically forces a hypoth-
esis test to follow at most a recurssion depth of two. As
we will show in Section 6, this setting allows us to per-
form reverse execution not only in an efficient but also
relatively effective manner.

4.1.3 Discussion

During the execution of a program, it might invoke a
system call, which traps execution into kernel space. As
we will discuss in Section 6, we do not set Intel PT to trace
execution in kernel space. As a result, intuition suggests
that the loss of execution tracing may introduce problems
to our reverse execution. However, in practice, a majority
of system calls do not incur modification to registers and
memory in user space. Thus, our reverse execution can
simply ignore the inverse operations for those system calls.
For system calls that potentially influence the memory
footprints of a crashing program, our reverse execution
handles them as follows.

In general, a system call can only influence memory
footprints if it manipulates register values stored by the
crashing program or touches the memory region in user
space. As a result, we treat system calls in different
manners. For system calls that may influence a register
holding a value for a crashing program, our algorithm

24 26th USENIX Security Symposium

USENIX Association



simply introduces a definition on the use-define chain.
For example, system call read overwrites register eax
to hold its return value, and our algorithm appends defi-
nition def : eax="? to the use-define chain accordingly.
Regarding the system calls that manipulate the memory
content in user space (e.g., write and recv), our al-
gorithm checks the memory regions influenced by that
call. To be specific, it attempts to identify the starting
address as well as the size of that memory region by using
the instructions executed prior to that call. This is due
to the fact that the starting address and size are typically
indicated by arguments which are handled by those in-
structions prior to the call. Following this procedure, if
our algorithm identifies the size of that memory region, it
appends definitions to the chain accordingly. Otherwise,
our algorithm treats that system call as an intervening tag
which blocks the propagation through that call®. The rea-
son behind this is that a non-deterministic memory region
can potentially overlap with any memory regions in user
space.

4.2 Backward Taint Analysis

Recall that the goal of this work is to pinpoint instruc-
tions truly pertaining to a program crash. In Section 3,
we briefly introduce how backward taint analysis plays
the role in achieving this goal. Here, we describe more
details.

To perform backward taint analysis, POMP first identi-
fies a sink. In general, a program crash results from two
situations — executing an invalid instruction or derefer-
encing an invalid address. For the first situation, POMP
deems the program counter (eip) as a sink because exe-
cuting an invalid instruction indicates e ip carries a bad
value. For the second situation, POMP treats a general
register as a sink because it holds a value which points to
an invalid address. Take the example shown in Figure 1.
POMP treats register eax as a sink in that the program
crash results from retrieving an invalid instruction from
the address held by register eax.

With a sink identified, POMP taints the sink and per-
forms taint propagation backward. In the procedure of
this backward propagation, POMP looks up the aforemen-
tioned use-define chain and identifies the definition of the
taint variable. The criteria of this identification is to en-
sure the definition could reach the taint variable without
any other intervening definitions. Continue the exam-
ple above. With sink eax serving as the initial taint
variable, POMP selects A19 def:eax=[ebp-0xc]
on the chain because this definition can reach taint vari-
able eax without intervention.

3Note that an intervening tag placed by a system call blocks only
definitions and uses in which a variable represents a memory access
(e.g., def: [eax] oruse: [ebp]).

From the definition identified, POMP parses that def-
inition and passes the taint to new variables. Since any
variables enclosed in a definition could potentially cause
the corruption of the taint variable, the variables which
POMP selects and passes the taint to include all operands,
base and index registers (if available). For example, by
parsing definition A19 def:eax=[ebp-0xc], POMP
identifies variables ebp and [ebp-0xc], and passes the
taint to both of them. It is not difficult to note that such a
taint propagation strategy can guarantee POMP does not
miss the root cause of a program crash though it over-
taints some variables that do not actually contribute to the
crash. In Section 6, we evaluate and discuss the effect of
the over-tainting.

When passing a taint to a variable indicated by a mem-
ory access (e.g., [Ro]), it should be noted that POMP may
not be able to identify the address corresponding to the
memory (e.g., unknown Ry for variable [Ry]). Once this
situation appears, therefore, POMP halts the taint propaga-
tion for that variable because the taint can be potentially
propagated to any variables with a definition in the form
of def: [R;] (where R; is a register).

Similar to the situation seen in reverse execution, when
performing taint propagation backward, POMP may en-
counter a definition on the chain which intervenes the
propagation. For example, given a taint variable [Ry]
and a definition de f : [R;] with Ry unknown, POMP can-
not determine whether Ry and R; share the same value
and POMP should pass the taint to variable [R;]. When
this situation appears, POMP follows the idea of the afore-
mentioned hypothesis test and examines if both variables
share the same address. Ideally, we would like to re-
solve the unknown address through a hypothesis test so
that POMP can pass that taint accordingly. However, in
practice, the hypothesis test may fail to reject. When “fail-
to-reject” occurs, therefore, POMP over-taints the variable
in that intervening definition. Again, this can ensure that
POMP does not miss the enclosure of root cause.

S Implementation

We have implemented a prototype of POMP for Linux 32-
bit system with Linux kernel 4.4 running on an Intel i7-
6700HQ quad-core processor (a 6th-generation Skylake
processor) with 16 GB RAM. Our prototype consists of
two major components — @ a sub-system that implements
the aforementioned reverse execution and backward taint
analysis and @ a sub-system that traces program execu-
tion with Intel PT. In total, our implementation carries
about 22,000 lines of C code which we will make publicly
available at https://github.com/junxzm1990/pomp.git. In
the following, we present some important implementation
details.

USENIX Association

26th USENIX Security Symposium 25


https://github.com/junxzm1990/pomp.git

Following the design description above, we imple-
mented 65 distinct instruction handlers to perform re-
verse execution and backward taint analysis. Along with
these handlers, we also built core dump and instruction
parsers on the basis of 1ibelf [2] and 1ibdisasm[1],
respectively. Note that for instructions with the same se-
mantics (e.g., je, jne, and jg) we dealt with their inverse
operations in one unique handler. To keep track of con-
straints and perform verification, we reuse the Z3 theorem
prover [5, 17].

To allow Intel PT to log execution in a correct and
reliable manner, we implemented the second sub-system
as follows. We enabled Intel PT to run in the Table of
Physical Addresses (ToPA) mode, which allows us to
store PT packets in multiple discontinuous physical mem-
ory areas. We added to the ToPA an entry that points to
a 16 MB physical memory buffer. In our implementa-
tion, we use this buffer to store packets. To be able to
track if the buffer is fully occupied, we clear the END bit
and set the INT bit. With this setup, Intel PT can signal
a performance-monitoring interrupt at the moment the
buffer is fully occupied. Considering the interrupt may
have a skid, resulting in a potential loss in PT packets,
we further allocated a 2 MB physical memory buffer to
hold those packets that might be potentially discarded. In
the ToPA, we introduced an additional entry to refer this
buffer.

At the hardware level, Intel PT lacks the capability of
distinguishing threads within each process. As a result,
we also intercepted the context switch. With this, our
system is able to examine the threads switched in and
out, and stores PT packets for threads individually. To
be specific, for each thread that software developers and
security analysts are interested in, we allocated a 32MB
circular buffer in its user space. Every time a thread is
switched out, we migrated PT packets stored in the afore-
mentioned physical memory buffers to the corresponding
circular buffer in user space. After migration, we also
reset the corresponding registers and make sure the physi-
cal memory buffers can be used for holding packets for
other threads of interest. Note that our empirical experi-
ment indicates the aforementioned 16 MB buffer cannot
be fully occupied between consecutive context switch,
and POMP does not have the difficulty in holding all the
packets between the switch.

Considering the Intel CPU utilizes Supervisor Mode
Access Prevention (SMAP) to restrict the access from
kernel to user space, our implementation toggles SMAP
between packet migration. In addition, we configured In-
tel PT to exclude packets irrelevant to control flow switch-
ing (e.g., timing information) and paused its tracing when
execution traps into kernel space. In this way, POMP is
able to log an execution trace sufficiently long. Last but
not least, we introduced new resource limit PT _LIMIT

into the Linux kernel. With this, not only can software
developers and security analysts select which processes
to trace but also configure the size of the circular buffer
in a convenient manner.

6 Evaluation

In this section, we demonstrate the utility of POMP using
the crashes resulting from real-world vulnerabilities. To
be more specific, we present the efficiency and effective-
ness of POMP, and discuss those crashes that POMP fails
to handle properly.

6.1 Setup

To demonstrate the utility of POMP, we selected 28 pro-
grams and benchmarked POMP with their crashes result-
ing from 31 real-world PoCs obtained from Offensive
Security Exploit Database Archive [4]. Table 2 shows
these crashing programs and summarizes the correspond-
ing vulnerabilities. As we can observe, the programs se-
lected cover a wide spectrum ranging from sophisticated
software like BinUtils with lines of code over 690K
to lightweight software such as st ftp and psutils
with lines of code less than 2K.

Regarding vulnerabilities resulting in the crashes, our
test corpus encloses not only memory corruption vulnera-
bilities (i. e., stack and heap overflow) but also common
software defects like null pointer dereference and invalid
free. The reason behind this selection is to demonstrate
that, beyond memory corruption vulnerabilities, POMP
can be generally applicable to other kinds of software
defects.

Among the 32 PoCs, 11 of them perform code injection
(e.g., nginx—-1.4.0), one does return-to-libc attack
(aireplay-ng-1.2b3), and another one exploits via
return-oriented-programming (mcrypt—2.5. 8). These
exploits crashed the vulnerable program either because
they did not consider the dynamics in the execution
environments (e.g., ASLR) or they mistakenly polluted
critical data (e.g., pointers) before they took over the
control flow. The remaining 18 PoCs are created
to simply trigger the defects, such as overflowing a
stack buffer with a large amount of random characters
(e.g., BinUtils—2.15) or causing the execution to use
a null pointer (e.g., gdb—7.5.1). Crashes caused by
these PoCs are similar to those occured during random
exercises.

6.2 Experimental Design

For each program crash shown in Table 2, we performed
manual analysis with the goal of finding out the minimum
set of instructions that truly contribute to that program

26 26th USENIX Security Symposium

USENIX Association



Program Vulnerability Diagnose Results
Name Size (LoC) CVE-ID Type Trace Size of # of Ground Mem addr Root Time
length mem (MB) taint truth unknown cause

coreutils-8.4 138135 2013-0222 Stack overflow 50 56.61 3 2 1 v 1 sec
coreutils-8.4 138135 2013-0223 Stack overflow 90 59.66 2 2 0 v 1 sec
coreutils-8.4 138135 2013-0221 Stack overflow 92 120.95 3 2 0 v 1 sec
mcrypt-2.5.8 37439 2012-4409 Stack overflow 315 0.59 3 2 3 v 3 sec
BinUtils-2.15 697354 2006-2362 Stack overflow 867 0.37 16 7 0 v 1 sec
unrtf-0.19.3 5039 NA Stack overflow 895 0.34 7 4 10 v 1 min
psutils-p17 1736 NA Stack overflow 3123 0.34 7 3 28 v 4 min
stftp-1.1.0 1559 NA Stack overflow 3651 0.39 29 6 15 v 4 min
nasm-0.98.38 33553 2004-1287 Stack overflow 4064 0.58 3 2 4 v 44 sec
libpng-1.2.5 33681 2004-0597 Stack overflow 6026 0.35 6 2 86 v 5 min
putty-0.66 90165 2016-2563 Stack overflow 7338 0.45 4 2 21 v 30 min
Unalz-0.52 8546 2005-3862 Stack overflow 10905 0.40 14 10 7 v 30 sec
LaTeX2rtf-1.9 14473 2004-2167 Stack overflow 17056 0.37 11 5 122 v 8 min
aireplay-ng-1.2b3 62656 2014-8322 Stack overflow 18569 0.59 2 2 223 X 7 min
corehttp-0.5.3a 914 2007-4060 Stack overflow 25385 0.32 19 6 0 v 52 min
gas-2.12 595504 2005-4807 Stack overflow 25713 4.17 3 2 346 v 40 min
abc2mtex-1.6.1 4052 NA Stack overflow 29521 0.33 12 2 12 v 1 min
LibSMI-0.4.8 80461 2010-2891 Stack overflow 50787 0.33 46 5 730 v 4 sec
gif2png-2.5.2 1331 2009-5018 Stack overflow 70854 0.51 49 4 396 v 46 min
O3read-0.03 932 2004-1288 Stack overflow 78244 0.32 7 2 20 v 15 min
unrar-3.9.3 17575 NA Stack overflow 102200 243 33 5 1033 v 6 hour
nullhttp-0.5.0 1849 2002-1496 Heap overflow 141 0.54 3 2 0 v 1 sec
inetutils-1.8 98941 NA Heap overflow 28720 0.40 237 7 111 v 14 min
nginx-1.4.0 100255 2013-2028  Integer overflow 158 0.62 11 4 0 4 1 sec
Python-2.2 416060 2007-4965  Integer overflow 3426 0.89 31 7 117 v 3 min
Overkill-0.16 16361 2006-2971 Integer overflow 10494 4.27 1 NA 0 X 2 sec
openjpeg-2.1.1 169538 2016-7445 Null pointer 67 0.37 10 5 5 v 1 sec
gdb-7.5.1 1651764 NA Null pointer 2009 2.94 23 2 79 v Isec
podofo-0.9.4 60147 2017-5854 Null pointer 42165 0.65 4 80 v 2 min
Python-2.7 906829 NA Use-after-free 551 2.14 6 1 0 v 0.17 sec
poppler-0.8.4 183535 2008-2950 Invalid free 672 1.39 16 4 0 v 13 sec

Table 2: The list of program crashes resulting from various vulnerabilities. CVE—ID specifies the ID of the CVEs. Trace length
indicates the lines of instructions that POMP reversely executed. Size of mem shows the size of memory used by the crashed
program (with code sections excluded). # of taint and Ground truth describe the lines of instructions automatically
pinpointed and manually identified, respectively. Mem addr unknown illustrates the amount of memory locations, the addresses

of which are unresolvable.

crash. We took our manual analysis as ground truth and
compared them with the output of POMP. In this way,
we validated the effectiveness of POMP in facilitating
failure diagnosis. More specifically, we compared the
instructions identified manually with those pinpointed by
POMP. The focuses of this comparison include @ examin-
ing whether the root cause of that crash is enclosed in the
instruction set POMP automatically identified, @ investi-
gating whether the output of POMP covers the minimum
instruction set that we manually tracked down, and ®
exploring if POMP could significantly prune the execution
trace that software developers (or security analysts) have
to manually examine.

In order to evaluate the efficiency of POMP, we
recorded the time it took when spotting the instructions
that truly pertain to each program crash. For each test
case, we also logged the instructions that POMP reversely
executed in that this allows us to study the relation be-
tween efficiency and the amount of instructions reversely
executed.

Considering pinpointing a root cause does not require
reversely executing the entire trace recorded by Intel PT,
it is worth of noting that, we selected and utilized only a
partial execution trace for evaluation. In this work, our
selection strategy follows an iterative procedure in which
we first introduced instructions of a crashing function
to reverse execution. If this partial trace is insufficient
for spotting a root cause, we traced back functions previ-
ously invoked and then included instructions function-by-
function until that root cause can be covered by POMP.

6.3 Experimental Results

We show our experimental results in Table 2. Except
for test cases Overkill and aireplay-ng, we ob-
serve, every root cause is included in a set of instructions
that POMP pinpointed. Through a comparison mentioned
above, we also observe each set encloses the correspond-
ing instructions we manually identified (i. e., ground
truth). These observations indicate that POMP is effective

USENIX Association

26th USENIX Security Symposium 27



in locating instructions that truly contribute to program
crashes.

In comparison with instructions that POMP needs to
reversely execute, we observe, the instructions eventu-
ally tainted are significantly less. For example, backward
analysis needs to examine 10,905 instructions in order
to pinpoint the root cause for crashing program Unalz,
whereas POMP highlights only 14 instructions among
which half of them truly pertain to the crash. Given that
backward taint analysis mimics how a software developer
(or security analyst) typically diagnoses the root cause of
a program failure, this observation indicates that POMP
has a great potential to reduce manual efforts in failure
diagnosis.

Except for test case coreutils, an instruction set
produced by POMP generally carries a certain amount
of instructions that do not actually contribute to crashes.
Again, take Unalz for example. POMP over-tainted 7
instructions and included them in the instruction set it
identified. In the usage of POMP, while this implies a
software developer needs to devote additional energies to
those instructions not pertaining to a crash, this does not
mean that POMP is less capable of finding out instructions
truly pertaining to a crash. In fact, compared with hun-
dreds and even thousands of instructions that one had to
manually walk through in failure diagnosis, the additional
effort imposed by over-tainting is minimal and negligible.

Recall that in order to capture a root cause, the design
of POMP taints all variables that possibly contribute to the
propagation of a bad value. As our backward taint analy-
sis increasingly traverses instructions, it is not difficult to
imagine that, an increasing number of variables might be
tainted which causes instructions corresponding to these
variables are treated as those truly pertaining to program
crashes. As such, we generally observe more instructions
over-tainted for those test cases, where POMP needs to
reversely execute more instructions in order to cover the
root causes of their failures.

As we discuss in Section 4, ideally, POMP can employ
a recursive hypothesis test to perform inverse operations
for instructions that carry unknown memory access. Due
to the concern of computation complexity, however, we
limit the recursion in at most two depths. As such, reverse
execution leaves behind a certain amount of unresolvable
memory. In Table 2, we illustrate the amount of memory
the addresses of which remain unresolvable even after a
2-depth hypothesis test has been performed. Surprisingly,
we discover POMP can still effectively spot instructions
pertaining to program crashes even though it fails to re-
cover a certain amount of memory. This implies that our
design reasonably balances the utility of POMP as well as
its computation complexity.

Intuition suggests that the amount of memory unresolv-
able should correlate with the number of instructions that

POMP reversely executes. This is because the effect of
an unresolvable memory might be propagated as more in-
structions are involved in reverse execution. While this is
generally true, an observation from test case corehttp
indicates a substantially long execution trace does not al-
ways necessarily amplify the influence of unknown mem-
ory access. With more instructions reversely executed,
POMP may obtain more evidence to reject the hypotheses
that it fail to determine, making unknown memory access
resolvable. With this in mind, we speculate POMP is not
only effective in facilitating failure diagnosis perhaps also
helpful for executing substantially long traces reversely.
As a future work, we will therefore explore this capability
in different contexts.

In Table 2, we also illustrate the amount of time that
POMP took in the process of reverse execution and back-
ward taint analysis. We can easily observe POMP typically
completes its computation in minutes and the time it took
is generally proportional to the number of instructions
that POMP needs to reversely execute. The reason be-
hind this observation is straightforward. When reverse
execution processes more instructions, it typically encoun-
ters more memory aliases. In verifying memory aliases,
POMP needs to perform hypothesis tests which are slightly
computation-intensive and time-consuming.

With regard to test case aireplay—-ng in which
POMP fails to facilitate failure diagnosis, we look closely
to instructions tainted as well as those reversely executed.
Prior to the crash of aireplay—-ng, we discover the
program invoked system call sys_read which writes a
data chunk to a certain memory region. Since both the
size of the data chunk and the address of the memory
are specified in registers, which reverse execution fails
to restore, POMP treats sys_read as a “super’” interven-
ing tag that blocks the propagation of many definitions,
making the output of POMP less informative to failure
diagnosis.

Different from aireplay-ng, the failure for
Overkill results from an insufficient PT log. As is
specified in Table 2, the vulnerability corresponding to
this case is an integer overflow. To trigger this security
loophole, the PoC used in our experiment aggressively
accumulates an integer variable which makes a PT log
full of arithmetic computation instructions but not the
instruction corresponding to the root cause. As such, we
observe POMP can taint only one instruction pertaining to
the crash. We believe this situation can be easily resolved
if a software developer (or security analyst) can enlarge
the capacity of the PT buffer.

7 Related Work

This research work mainly focuses on locating software
vulnerability from its crash dump. Regarding the tech-

28 26th USENIX Security Symposium

USENIX Association



niques we employed and the problems we addressed, the
lines of works most closely related to our own include
reverse execution and postmortem program analysis. In
this section, we summarize previous studies and discuss
their limitation in turn.

Reverse execution. Reverse execution is a conventional
debugging technique that allows developers to restore the
execution state of a program to a previous point. Pioneer-
ing research [7-9, 13] in this area relies upon restoring
a previous program state from a record, and thus their
focus is to minimize the amount of records that one has
to save and maintain in order to return a program to a
previous state in its execution history. For example, the
work described in [7-9] is mainly based on regenerating
a previous program state. When state regeneration is not
possible, however, it recovers a program state by state
saving.

In addition to state saving, program instrumentation is
broadly used to facilitate the reverse execution of a pro-
gram. For example, Hou ez al. designed compiler frame-
work Backstroke [21] to instrument C++ program in
a way that it can store program states for reverse exe-
cution. Similarly, Sauciuc and Necula [30] proposed to
use an SMT solver to navigate an execution trace and
restore data values. Depending on how the solver per-
forms on constraint sets corresponding to multiple test
runs, the technique proposed automatically determines
where to instrument the code to save intermediate values
and facilitate reverse execution.

Given that state saving requires extra memory space
and program instrumentation results in a slower forward
execution, recent research proposes to employ a core
dump to facilitate reverse execution. In [16] and [37],
new reverse execution mechanisms are designed in which
the techniques proposed reversely analyzes code and then
utilizes the information in a core dump to reconstruct the
states of a program prior to its crash. Since the effective-
ness of these techniques highly relies upon the integrity
of a core dump, and exploiting vulnerabilities like buffer
overflow and dangling pointers corrupts memory informa-
tion, they may fail to perform reverse execution correctly
when memory corruption occurs.

Different from the prior research works discussed
above, the reverse execution technique introduced in this
paper follows a completely different design principle, and
thus it provides many advantages. First, it can reinstate a
previous program state without restoring that state from a
record. Second, it does not require any instrumentation
to a program, making it more generally applicable. Third,
it is effective in performing execution backward even
though the crashing memory snapshot carries corrupted
data.

Postmortem program analysis. Over the past decades,

there is a rich collection of literature on using program
analysis techniques along with crash reports to identify
faults in software (e.g., [15, 20, 24, 25, 28, 29, 32, 38]).
These existing techniques are designed to identify some
specific software defects. In adversarial settings, an at-
tacker exploits a variety of software defects and thus they
cannot be used to analyze a program crash caused by a
security defect such as buffer overflow or unsafe dangling
pointer. For example, Manevich et al. [24] proposed
to use static backward analysis to reconstruct execution
traces from a crash point and thus spot software defects,
particularly typestate errors [33]. Similarly, Strom and
Yellin [32] defined a partially path-sensitive backward
dataflow analysis for checking typestate properties, specif-
ically uninitialized variables. While demonstrated to be
effective, these two studies only focus on specific types-
tate problems.

Liblit et al. proposed a backward analysis technique for
crash analysis [23]. To be more specific, they introduce
an efficient algorithm that takes as input a crash point
as well as a static control flow graph, and computes all
the possible execution paths that lead to the crash point.
In addition, they discussed how to narrow down the set
of possible execution paths using a wide variety of post-
crash artifacts, such as stack traces. As is mentioned
earlier, memory information might be corrupted when
attackers exploit a program. The technique described
in [23] highly relies upon the integrity of the informa-
tion resided in memory, and thus fails to analyze program
crash resulting from malicious memory corruption. In this
work, we do not infer program execution paths through
the stack traces recovered from memory potentially cor-
rupted. Rather, our approach identifies the root cause
of software failures by reversely executing program and
reconstructing memory footprints prior to the crash.

Considering the low cost of capturing core dumps, prior
studies also proposed to use core dumps to analyze the
root cause of software failures. Of all the works along this
line, the most typical ones include CrashLocator [35],
lanalyze [18] and RETracer [16] which locate soft-
ware defects by analyzing memory information resided
in a core dump. As such, these techniques are not
suitable to analyze crashes resulting from malicious
memory corruption. Different from these techniques,
Kasikci et al. introduced Gist [22], an automated de-
bugging technique that utilizes off-the-shelf hardware to
enhance core dump and then employs a cooperative debug-
ging technique to perform root cause diagnosis. While
Gist demonstrates its effectiveness on locating bugs
from a software crash, it requires the collection of crashes
from multiple parties running the same software and suf-
fering the same bugs. This could significantly limit its
adoption. In our work, we introduce a different technical
approach which can perform analysis at the binary level

USENIX Association

26th USENIX Security Symposium 29



without the participation of other parties.

In recent research, Xu et al. [36] introduced CREDAL,
an automatic tool that employs the source code of a crash-
ing program to enhance core dump analysis and turns a
core dump to an informative aid in tracking down mem-
ory corruption vulnerabilities. While sharing a common
goal as POMP— pinpointing the code statements where a
software defect is likely to reside — CREDAL follows a
completely different technical approach. More specifi-
cally, CREDAL discovers the mismatch in variable values
and deems the code fragments corresponding to the mis-
match as the possible vulnerabilities that lead to the crash.
While it has been shown that CREDAL is able to assist soft-
ware developers (or security analysts) in tracking down
a memory corruption vulnerability, in most cases, it still
requires significant manual efforts for locating a memory
corruption vulnerability in a crash for the reasons that
the mismatch in variable values may be overwritten or
the code fragments corresponding to mismatch may not
include the root cause of the software crash. In this work,
POMP precisely pinpoints the vulnerability by utilizing
the memory footprints recovered from reverse execution.

8 Discussion

In this section, we discuss the limitations of our current
design, insights we learned and possible future directions.

Multiple threads. POMP focuses only on analyzing the
post-crash artifact produced by a crashing thread. There-
fore, we assume the root cause of the crash is enclosed
within the instructions executed by that thread and other
threads do not intervene the execution of that thread prior
to its crash. In practice, this assumption however may
not hold, and the information held in a post-crash artifact
may not be sufficient and even misleading for root cause
diagnosis.

While this multi-thread issue indeed limits the capabil-
ity of a security analyst using POMP to pinpoint the root
cause of a program crash, this does not mean the failure of
POMP nor significantly downgrades the utility of POMP
because of the following. First, a prior study [31] has
already indicated that a large fraction of software crashes
involves only the crashing thread. Thus, we believe POMP
is still beneficial for software failure diagnosis. Second,
the failure of POMP roots in incomplete execution trac-
ing. Therefore, we believe, by simply augmenting our
process tracing with the capability of recording the timing
of execution, POMP can synthesize a complete execution
trace, making POMP working properly. As part of the
future work, we will integrate this extension into the next
version of POMP.

Just-in-Time native code. Intel PT records the addresses
of branching instructions executed. Using these addresses

as index, POMP retrieves instructions from executable and
library files. However, a program may utilize Just-in-
Time (JIT) compilation in which binary code is generated
on the fly. For programs assembled with this JIT func-
tionality (e.g., JavaScript engine), POMP is less likely to
be effective, especially when a post-crash artifact fails to
capture the JIT native code mapped into memory.

To make POMP handle programs in this type, in the fu-
ture, we will augment POMP with the capability of tracing
and logging native code generated at the run time. For ex-
ample, we may monitor the executable memory and dump
JIT native code accordingly. Note that this extension does
not require any re-engineering of reverse execution and
backward taint analysis because the limitation to JIT na-
tive code also results from incomplete execution tracing
(i. e., failing to reconstruct all the instructions executed
prior to a program crash).

9 Conclusion

In this paper, we develop POMP on Linux system to an-
alyze post-crash artifacts. We show that POMP can sig-
nificantly reduce the manual efforts on the diagnosis of
program failures, making software debugging more infor-
mative and efficient. Since the design of POMP is entirely
on the basis of the information resided in a post-crash
artifact, the technique proposed can be generally applied
to diagnose the crashes of programs written in various
programming languages caused by various software de-
fects.

We demonstrated the effectiveness of POMP using the
real-world program crashes pertaining to 31 software vul-
nerabilities. We showed that POMP can reversely recon-
struct the memory footprints of a crashing program and
accurately identify the program statements (i. e., , instruc-
tions) that truly contribute to the crash. Following this
finding, we safely conclude POMP can significantly down-
size the program statements that a software developer (or
security analyst) needs to manually examine.

10 Acknowledgments

We thank the anonymous reviewers for their helpful feed-
back and our shepherd, Andrea Lanzi, for his valuable
comments on revision of this paper. This work was sup-
ported by ARO WI11NF-13-1-0421 (MURI), NSF CNS-
1422594, NSF CNS-1505664, ONR N00014-16-1-2265,
ARO W911NF-15-1-0576, and Chinese National Natural
Science Foundation 61272078.

30 26th USENIX Security Symposium

USENIX Association



References

(1]

(2]

3

—

[4

—

[5

—

[6

—_

[7

—

(8

—_—

[9

[

[10]

(11]

(12]

(13]

(14]

[15]

(16]

libdisasm: x86 disassembler library.
sourceforge.net/libdisasm.html.

http://bastard.

Libelf - free software directory. https://directory.fsf.org/
wiki/Libelf.

Linux programmer’s manual. http://man7.org/linux/man-
pages/man7/signal.7.html.

Offensive security exploit database archive. https://www.
exploit-db.com/.

The z3 theorem prover. https://github.com/Z3Prover/z3.

Processor tracing. https://software.intel.com/en-us/blogs/
2013/09/18/processor-tracing, 2013.

T. Akgul and V. J. Mooney, III. Instruction-level reverse
execution for debugging. In Proceedings of the 2002 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, 2002.

T. Akgul and V. J. Mooney III. Assembly instruction level
reverse execution for debugging. ACM Trans. Softw. Eng.
Methodol., 2004.

T. Akgul, V. J. Mooney III, and S. Pande. A fast assem-
bly level reverse execution method via dynamic slicing.
In Proceedings of the 26th International Conference on
Software Engineering, 2004.

S. Artzi, S. Kim, and M. D. Ernst. Recrash: Making soft-
ware failures reproducible by preserving object states. In
Proceedings of the 22Nd European Conference on Object-
Oriented Programming, 2008.

G. Balakrishnan and T. Reps. Analyzing memory accesses
in x86 executables. In cc, pages 5-23, 2004.

J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight
recording to reproduce field failures. In Proceedings of the
2013 International Conference on Software Engineering,
2013.

B. Biswas and R. Mall. Reverse execution of programs.
SIGPLAN Not., 1999.

Y. Cao, H. Zhang, and S. Ding. Symcrash: Selective
recording for reproducing crashes. In Proceedings of the
29th ACM/IEEE International Conference on Automated
Software Engineering, 2014.

H. Cleve and A. Zeller. Locating causes of program fail-
ures. In Proceedings of the 27th International Conference
on Software Engineering, 2005.

W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and V. P.
Kemerlis. Retracer: Triaging crashes by reverse execution
from partial memory dumps. In Proceedings of the 38th
International Conference on Software Engineering, 2016.

[17]

(18]

[19]

[20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

L. De Moura and N. Bjgrner. Z3: An efficient smt solver.
In International conference on Tools and Algorithms for
the Construction and Analysis of Systems, pages 337-340.
Springer, 2008.

K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Or-
govan, G. Nichols, D. Grant, G. Loihle, and G. Hunt.
Debugging in the (very) large: Ten years of implementa-
tion and experience. In Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles, 2009.

W. Gu, Z. Kalbarczyk, R. K. Iyer, Z.-Y. Yang, et al. Char-
acterization of linux kernel behavior under errors. In DSN,
volume 3, pages 22-25, 2003.

S. Hangal and M. S. Lam. Tracking down software bugs
using automatic anomaly detection. In Proceedings of the
24th International Conference on Software Engineering,

2002.

C. Hou, G. Vulov, D. Quinlan, D. Jefferson, R. Fujimoto,
and R. Vuduc. A new method for program inversion.
In Proceedings of the 21st International Conference on
Compiler Construction, 2012.

B. Kasikei, B. Schubert, C. Pereira, G. Pokam, and G. Can-
dea. Failure sketching: A technique for automated root
cause diagnosis of in-production failures. In Proceedings
of the 25th Symposium on Operating Systems Principles,
2015.

B. Liblit and A. Aiken. Building a better backtrace: Tech-
niques for postmortem program analysis. Technical report,
2002.

R. Manevich, M. Sridharan, S. Adams, M. Das, and
Z. Yang. Pse: Explaining program failures via postmortem
static analysis. In Proceedings of the 12th ACM SIGSOFT
Twelfth International Symposium on Foundations of Soft-
ware Engineering, 2004.

D. Molnar, X. C. Li, and D. A. Wagner. Dynamic test
generation to find integer bugs in x86 binary linux pro-
grams. In Proceedings of the 18th Conference on USENIX
Security Symposium, 2009.

P. Ohmann. Making your crashes work for you (doctoral
symposium). In Proceedings of the 2015 International
Symposium on Software Testing and Analysis, 2015.

F. Qin, J. Tucek, J. Sundaresan, and Y. Zhou. Rx: treat-
ing bugs as allergies—a safe method to survive software
failures. In ACM SIGOPS Operating Systems Review,
volume 39, pages 235-248. ACM, 2005.

M. Renieris and S. P. Reiss. Fault localization with nearest
neighbor queries. In Proceedings of IEEE/ACM Interna-
tional Conference on Automated Software Engineering,
2003.

S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve. Using
likely invariants for automated software fault localization.

USENIX Association

26th USENIX Security Symposium 31


http://bastard.sourceforge.net/libdisasm.html
http://bastard.sourceforge.net/libdisasm.html
https://directory.fsf.org/wiki/Libelf
https://directory.fsf.org/wiki/Libelf
http://man7.org/linux/man-pages/man7/signal.7.html
http://man7.org/linux/man-pages/man7/signal.7.html
https://www.exploit-db.com/
https://www.exploit-db.com/
https://github.com/Z3Prover/z3
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing

In Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages and
Operating Systems, 2013.

[30] R. Sauciuc and G. Necula. Reverse execution with con-
straint solving. Technical report, EECS Department, Uni-
versity of California, Berkeley, 2011.

[31] A. SchrAditer, N. Bettenburg, and R. Premraj. Do stack
traces help developers fix bugs? In Proceedings of the 7th
IEEE Working Conference on Mining Software Reposito-
ries, 2010.

[32] R.E. Strom and D. M. Yellin. Extending typestate check-
ing using conditional liveness analysis. IEEE Transaction
Software Engineering, 1993.

[33] R. E. Strom and S. Yemini. Typestate: A programming
language concept for enhancing software reliability. /EEE
Transaction Software Engineering, 1986.

[34] M. Weiser. Program slicing. In Proceedings of the 5th
international conference on Software engineering, pages
439-449. 1EEE Press, 1981.

[35] R. Wu, H. Zhang, S.-C. Cheung, and S. Kim. Crashlocator:
Locating crashing faults based on crash stacks. In Pro-
ceedings of the 2014 International Symposium on Software
Testing and Analysis, 2014.

[36] J. Xu, D. Mu, P. Chen, X. Xing, P. Wang, and P. Liu.
Credal: Towards locating a memory corruption vulnerabil-
ity with your core dump. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications
Security, 2016.

[37] C.Zamfir, B. Kasikci, J. Kinder, E. Bugnion, and G. Can-
dea. Automated debugging for arbitrarily long executions.
In Proceedings of the 14th USENIX Conference on Hot
Topics in Operating Systems, 2013.

[38] A. Zeller. Isolating cause-effect chains from computer
programs. In Proceedings of the 10th ACM SIGSOFT Sym-
posium on Foundations of Software Engineering, 2002.

[39] W. Zhang, J. Lim, R. Olichandran, J. Scherpelz, G. Jin,
S. Lu, and T. Reps. Conseq: detecting concurrency bugs
through sequential errors. In ACM SIGPLAN Notices,
volume 46, pages 251-264. ACM, 2011.

32 26th USENIX Security Symposium USENIX Association



Ninja: Towards Transparent Tracing and Debugging on ARM

Zhenyu Ning and Fengwei Zhang

Wayne State University

{zhenyu.ning, fengwei} @wayne.edu

Abstract

Existing malware analysis platforms leave detectable fin-
gerprints like uncommon string properties in QEMU,
signatures in Android Java virtual machine, and arti-
facts in Linux kernel profiles. Since these fingerprints
provide the malware a chance to split its behavior de-
pending on whether the analysis system is present or
not, existing analysis systems are not sufficient to ana-
lyze the sophisticated malware. In this paper, we pro-
pose NINJA, a transparent malware analysis framework
on ARM platform with low artifacts. NINJA leverages a
hardware-assisted isolated execution environment Trust-
Zone to transparently trace and debug a target applica-
tion with the help of Performance Monitor Unit and Em-
bedded Trace Macrocell. NINJA does not modify system
software and is OS-agnostic on ARM platform. We im-
plement a prototype of NINJA (i.e., tracing and debug-
ging subsystems), and the experiment results show that
NINJA is efficient and transparent for malware analysis.

1 Introduction

Malware on the mobile platform exhibits an explosive
growth in recent years. To solve the threat of the mali-
cious applications, a variety of tools have been proposed
for malware detection and analysis [[18, 22} |37, 44, 45|
521 155, 156]]. However, sophisticated malware, which is
also known as evasive malware, is able to evade the anal-
ysis by collecting the artifacts of the execution environ-
ment or the analysis tool, and refuses to perform any ma-
licious behavior if an analysis system is detected.

As most of the existing mobile malware analysis sys-
tems [18, 45, |52] are based on emulation or virtual-
ization technology, a series of anti-emulation and anti-
virtualization techniques [29, [36] 48] have been devel-
oped to challenge them. These techniques show that
the emulation or virtualization can be easily detected
by footprints like string properties, absence of particu-

lar hardware components, and performance slowdown.
The hardware-assisted virtualization technique [[17, |50]
can improve the transparency of the virtualization-based
systems; however, this approach still leaves artifacts on
basic instruction execution semantics that could be easily
detected by malware [39]].

To address this challenge, researchers study the mal-
ware on bare-metal devices via modifying the system
software [22} 137, 144,155 or leveraging OS APIs [[15}156]
to monitor the runtime behavior of malware. Although
bare-metal based approaches eliminate the detection of
the emulator or hypervisor, the artifacts introduced by the
analysis tool itself are still detectable by malware. More-
over, privileged malware can even manipulate the anal-
ysis tool since they run in the same environment. How
to build a transparent mobile malware analysis system is
still a challenging problem.

This transparency problem has been well studied in
the traditional x86 architecture, and similar milestones
have been made from emulation-based analysis sys-
tems [2, 40] to hardware-assisted virtualization analysis
systems [19, 120, 32], and then to bare-metal analysis sys-
tems [30L 31, 41 154]. However, this problem still chal-
lenges the state-of-the-art malware analysis systems.

We consider that an analysis system consists of an En-
vironment (e.g., operating system, emulator, hypervisor,
or sandbox) and an Analyzer (e.g., instruction analyzer,
API tracer, or application debugger). The Environment
provides the Analyzer with the access to the states of the
target malware, and the Analyzer is responsible for the
further analysis of the states. Consider an analysis sys-
tem that leverages the emulator to record the system call
sequence and sends the sequence to a remote server for
further analysis. In this system, the Environment is the
emulator, which provides access to the system call se-
quence, and both the system call recorder and the remote
server belong to the Analyzer. Evasive malware can de-
tect this analysis system via anti-emulation techniques
and evade the analysis.

USENIX Association

26th USENIX Security Symposium 33



To build a transparent analysis system, we propose
three requirements. Firstly, the Environment must be iso-
lated. Otherwise, the Environment itself can be manip-
ulated by the malware. Secondly, the Environment ex-
ists on an off-the-shelf (OTS) bare-metal platform with-
out modifying the software or hardware (e.g., emulation
and virtualization are not). Although studying the anti-
emulation and anti-virtualization techniques [29, 136, |39,
48| helps us to build a more transparent system by fix-
ing the imperfections of the Environment, we consider
perfect emulation or virtualization is impractical due to
the complexity of the software. Instead, if the Environ-
ment already exists in the OTS bare-metal platform, mal-
ware cannot detect the analysis system by the presence of
the Environment. Finally, the Analyzer should not leave
any detectable footprints (e.g., files, memory, registers,
or code) to the outside of the Environment. An Analyzer
violating this requirement can be detected.

In light of the three requirements, we present NINJAB
a transparent malware analysis framework on ARM plat-
form based on hardware features including TrustZone
technology, Performance Monitoring Unit (PMU), and
Embedded Trace Macrocell (ETM). We implement a
prototype of NINJA that embodies a trace subsystem
with different tracing granularities and a debug subsys-
tem with a GDB-like debugging protocol on ARM Juno
development board. Additionally, hardware-based traps
and memory protection are leveraged to keep the use of
system registers transparent to the target application. The
experimental results show that our framework can trans-
parently monitor and analyze the behavior of the mal-
ware samples. Moreover, NINJA introduces reasonable
overhead. We evaluate the performance of the trace sub-
system with several popular benchmarks, and the result
shows that the overheads of the instruction trace and sys-
tem call trace are less than 1% and the Android API trace
introduces 4 to 154 times slowdown.

The main contributions of this work include:

e We present a hardware-assisted analysis framework,
named NINJA, on ARM platform with low artifacts.
It does not rely on emulation, virtualization, or sys-
tem software, and is OS-agnostic. NINJA resides
in a hardware isolation execution environment, and
thus is transparent to the analyzed malware.

e NINJA eliminates its footprints by novel techniques
including hardware traps, memory mapping inter-
ception, and timer adjusting. The evaluation result
demonstrates the effectiveness of the mitigation and
NINJA achieves a high level of transparency. More-
over, we evaluate the instruction-skid problem and
show that it has little influence on our system.

' A NINJA in feudal Japan has invisibility and transparency ability

64-bit ARMv8 Exception Levels ARMv7 modes and PLs

Non-Secure state Secure state

ELO ELO
Applications Applications

EL1 EL1
Rich OS Secure OS

EL2
Hypervisor

usr mode (PLO)

fig/irg/svc/abt/und/sys mode (PL1)

hyp mode (PL2)

EL3 fig/irg/sve/mon/abtiund/sys mode (PL3)
Secure monitor

Figure 1: The ARMv8 and ARMv7 Architectures.

e We implement debugging and tracing subsystems
with a variety of program analysis functionalities.
NINJA is capable of studying kernel- or hypervisor-
level malware. The tracing subsystem exhibits a low
performance overhead and the instruction and sys-
tem call tracing is immune to timing attacks.

2 Background

2.1 TrustZone and Trusted Firmware

ARM TrustZone technology [[12] introduces a hardware-
assisted security concept that divides the execution envi-
ronment into two isolated domains, i.e., secure domain
and non-secure domain. Due to security concerns, the
secure domain could access the resources (e.g., mem-
ory and registers) of the non-secure domain, but not vice
versa. In ARMvS architecture, the only way to switch
from normal domain to secure domain is to trigger a
secure exception [8], and the exception return instruc-
tion eret is used to switch back to the normal domain
from the secure domain after the exception is handled.

Figure |1 shows the difference between the ARMv8
and the ARMvV7 architectures. In the new architecture,
ARM removes the execution modes in ARMv7 and re-
names the Privilege Level (PL) to Exception Level (EL).
The term EL indicates the level where an exception can
be handled and all ELs except ELO can handle excep-
tions. Any exception occurs in a certain level could only
be handled in the same level or a higher level.

The names of the system registers in 64-bit ARMv8
architecture contain a suffix that indicating the lowest
EL at which the register can be accessed. For example,
the name of the PMEVCNTR_ELO register indicates that the
lowest EL to access this register is ELO. Similarly, the
registers with suffix EL3 can only be accessed in EL3.

ARM Trusted Firmware [7] (ATF) is an official im-
plementation of secure domain provided by ARM, and
it supports an array of hardware platforms and emula-
tors. While entering the secure domain, the ATF saves
the context of the normal domain and dispatches the se-
cure exception to the corresponding exception handler.
After the handler finishes the handling process, the ATF

34 26th USENIX Security Symposium

USENIX Association



restores the context of the normal domain and switches
back with eret instruction. ATF also provides a trusted
boot path by authenticating the firmware image with sev-
eral approaches like signatures and public keys.

2.2 PMU and ETM

The Performance Monitors Unit (PMU) [8] is a fea-
ture widely implemented in both x86 and ARM architec-
tures [42]], which leverages a set of performance counter
registers to calculate CPU events. Each architecture
specifies a list of common events by event numbers,
and different CPUs may also maintain additional event
numbers. A Performance Monitor Interrupt (PMI) can
be triggered while a performance counter register over-
flows. Note that the PMU is a non-invasive debug feature
that does not affect the performance of the CPU.

The Embedded Trace Macrocell (ETM) [11] is another
non-invasive debug component in ARM architecture. It
traces instructions and data by monitoring instruction
and data buses with low performance impact. Actually,
ARM expects that ETM has no effect on the functional
performance of the processor. The ETM generates an
element for executed signpost instructions that could be
further used to reconstruct all the executed instructions.
The generated elements are encoded into a trace stream
and sent to a pre-allocated buffer on the chip.

According to Futuremark [23]], 21 of the most popu-
lar 50 smartphones and tablets are equipped with ARM
Cortex-ASx or Cortex-A7x series processors, in which
the PMU and ETM components are included.

3 Related Work

3.1 Transparent Malware Analysis on x86

Ether [20] leverages hardware virtualization to build a
malware analysis system and achieves high transparency.
Spider [19] is also based on hardware virtualization, and
it focuses on both applicability and transparency while
using memory page instrument to gain higher efficiency.
Since the hardware virtualization has transparency is-
sues, these systems are naturally not transparent. LO-
PHI [41]] leverages additional hardware sensors to moni-
tor the disk operation and periodically poll memory snap-
shots, and it achieves a higher transparency at the cost of
incomplete view of system states.

MalT [54] increases the transparency by involving
System Manage Mode (SMM), a special CPU mode in
x86 architecture. It leverages PMU to monitor the pro-
gram execution and switch into SMM for analysis. Com-
paring with MalT, NINJA improves in the following as-
pects: 1) The PMU registers on MalT are accessible by
privileged malware, which breaks the transparency by

checking the values of these registers. By leveraging
TrustZone technology, NINJA configures needed PMU
registers as secure ones so that even the privileged mal-
ware in the normal domain cannot access them. 2) MalT
is built on SMM. However, SMM is not designed for se-
curity purpose such as transparent debugging (originally
for power management); frequent CPU mode switching
introduces a high performance overhead (12 us is re-
quired for a SMM switch [54]). NINJA is based on Trust-
Zone, a dedicated security extension on ARM. The do-
main switching only needs 0.34 us (see Appendix [B). 3)
Besides a debugging system, NINJA develops a transpar-
ent tracing system with existing hardware. The instruc-
tion and system call tracing introduce negligible over-
head, which is immune to timing attacks while MalT suf-
fers from external timing attack.

BareCloud [31] and MalGene [30] focus on detect-
ing evasive malware by executing malware in different
environments and comparing their behavior. There are
limitations to this approach. Firstly, it fails to transpar-
ently fetch the malware runtime behavior (e.g., system
calls and modifications to memory/registers) on a bare-
metal environment. Secondly, it assumes that the eva-
sive malware shows the malicious behavior in at least
one of the analysis platforms. However, sophisticated
malware may be able to detect all the analysis platforms
and refuse to exhibit any malicious behavior during the
analysis. Lastly, after these tools identify the evasive
malware from the large-scale malware samples, they still
need a transparent malware analysis tool which is able to
analyze these evasive samples transparently. NINJA pro-
vides a transparent framework to study the evasive mal-
ware and plays a complementary role for these systems.

3.2 Dynamic Analysis Tools on ARM

Emulation-based systems. DroidScope [52] rebuilds
the semantic information of both the Android OS and
the Dalvik virtual machine based on QEMU. Copper-
Droid [45] is a VMI-based analysis tool that automati-
cally reconstructs the behavior of Android malware in-
cluding inter-process communication (IPC) and remote
procedure call interaction. DroidScibe [18] uses Cop-
perDroid [45] to collect behavior profiles of Android
malware, and automatically classifies them into differ-
ent families. Since the emulator leaves footprints, these
systems are natural not transparent.

Hardware virtualization. Xen on ARM [50] mi-
grates the hardware virtualization based hypervisor Xen
to ARM architecture and makes the analysis based
on hardware virtualization feasible on mobile devices.
KVM/ARM [[17]] uses standard Linux components to im-
prove the performance of the hypervisor. Although the
hardware virtualization based solution is considered to

USENIX Association

26th USENIX Security Symposium 35



be more transparent than the emulation or traditional vir-
tualization based solution, it still leaves some detectable
footprints on CPU semantics while executing specific in-
structions [39]].

Bare-metal systems. TaintDroid [22] is a system-wide
information flow tracking tool. It provides variable-level,
message-level, method-level, and file-level taint propa-
gation by modifying the original Android framework.
TaintART [44]] extends the idea of TaintDroid on the
most recent Android Java virtual machine Android Run-
time (ART). VetDroid [55]] reconstructs the malicious be-
havior of the malware based on permission usage, and
it is applicable to taint analysis. DroidTrace [56] uses
ptrace to monitor the dynamic loading code on both
Java and native code level. BareDroid [34] provides a
quick restore mechanism that makes the bare-metal anal-
ysis of Android applications feasible at scale. Although
these tools attempt to analyze the target on real-world
devices to improve transparency, the modification to the
Android framework leaves some memory footprints or
code signatures, and the ptrace-based approaches can
be detected by simply check the /proc/self/status
file. Moreover, these systems are vulnerable to privileged
malware.

3.3 TrustZone-related Systems

TZ-RKP [13] runs in the secure domain and protects the
rich OS kernel by event-driven monitoring. Sprobes [51]]
provides an instrumentation mechanism to introspect the
rich OS from the secure domain, and guarantees the ker-
nel code integrity. SeCReT [28]] is a framework that en-
ables a secure communication channel between the nor-
mal domain and the secure domain, and provides a trust
execution environment. Brasser et al. [14] use TrustZone
to analyze and regulate guest devices in a restricted host
spaces via remote memory operation to avoid misusage
of sensors and peripherals. C-FLAT [1] fights against
control-flow hijacking via runtime control-flow verifica-
tion in TrustZone. TrustShadow [25]] shields the execu-
tion of an unmodified application from a compromised
operating system by building a lightweight runtime sys-
tem in the ARM TrustZone secure world. The runtime
system forwards the requests of system services to the
commodity operating systems in the normal world and
verifies the returns. Unlike previous systems, NINJA
leverage TrustZone to transparently debug and analyze
the ARM applications and malware.

4 System Architecture

Figure [2] shows the architecture of NINJA. The NINJA
consists of a target executing platform and a remote de-
bugging client. In the target executing platform, Trust-

Normal Domain Secure Domain

Normal OS Secure

i i

! Interrupt ATF |

Application | Handler !
I i

Application

,,,,,,,,,,,,,,, Target Executing
*************** Platform

Secure Serial Port

|

|

} Remote Debugging
| Platform

|
|
|

Remote
Debug Client

Figure 2: Architecture of NINJA.

Zone provides hardware-based isolation between the
normal and secure domains while the rich OS (e.g.,
Linux or Android) runs in the normal domain and NINJA
runs in the secure domain. We setup a customized excep-
tion handler in EL3 to handle asynchronous exceptions
(i.e., interrupts) of our interest. NINJA contains a Trace
Subsystem (TS) and a Debug Subsystem (DS). The TS is
designed to transparently trace the execution of a target
application, which does not need any human interaction
during the tracing. This feature is essential for automatic
large-scale analysis. In contrast, the DS relies on human
analysts. In the remote debugging platform, the analysts
send debug commands via a secure serial port and the DS
then response to the commands. During the execution of
an application, we use secure interrupts to switch into the
secure domain and then resume to the normal domain by
executing the exception return instruction eret.

4.1 Reliable Domain Switch

Normally, the smc instruction is used to trigger a domain
switch by signaling a Secure Monitor Call (SMC) excep-
tion which is handled in EL3. However, as the execution
of the smc instruction may be blocked by privileged mal-
ware, this software-based switch is not reliable.

Another solution is to trigger a secure interrupt which
is considered as an asynchronous exception in EL3.
ARM Generic Interrupt Controller (GIC) [3]] partitions
all interrupts into secure group and non-secure group,
and each interrupt is configured to be either secure or
non-secure. Moreover, the GIC Security Extensions en-
sures that the normal domain cannot access the config-
uration of a secure interrupt. Regarding to NINJA, we
configure PMI to be a secure interrupt so that an over-
flow of the PMU registers leads to a switch to the secure
domain. To increase the flexibility, we also use simi-
lar technology mentioned in [43] to configure the Gen-
eral Purpose Input/Output (GPIO) buttons as the source
of secure Non-Maskable Interrupt (NMI) to trigger the
switch. The switch from secure domain to normal do-
main is achieved by executing the exception return in-
struction eret.

36 26th USENIX Security Symposium

USENIX Association



4.2 The Trace Subsystem

The Trace Subsystem (TS) provides the analyst the abil-
ity to trace the execution of the target application in dif-
ferent granularities during automatic analysis including
instruction tracing, system call tracing, and Android API
tracing. We achieve the instruction and system call trac-
ing via hardware component ETM, and the Android API
tracing with help of PMU registers.

By default, we use the GPIO button as the trigger of
secure NMIs. Once the button is pressed, a secure NMI
request is signaled to the GIC, and GIC routes this NMI
to EL3. NINJA toggles the enable status of ETM after
receiving this interrupt and outputs the tracing result if
needed. Additionally, the PMU registers are involved
during the Android API trace. Note that the NMI of
GPIO buttons can be replaced by any system events that
trigger an interrupt (e.g., system calls, network events,
clock events, and etc.), and these events can be used to
indicate the start or end of the trace in different usage
scenarios.

Another advanced feature of ETM is that PMU events
can also be configured as an external input source. In
light of this, we specify different granularities of the trac-
ing. For example, we trace all the system calls by con-
figure the ETM to use the signal of PMU event EXC_SVC
as the external input.

4.3 The Debug Subsystem

In contrast to the TS, the Debug Subsystem (DS) is de-
signed for manual analysis. It establishes a secure chan-
nel between the target executing platform and the remote
debugging platform, and provides a user interface for hu-
man analysts to introspect the execution status of the tar-
get application.

To interrupt the execution of the target, we configure
the PMI to be secure and adjust the value of the PMU
counter registers to trigger an overflow at a desired point.
NINJA receives the secure interrupt after a PMU counter
overflows and pauses the execution of the target. A hu-
man analyst then issues debugging commands via the se-
cure serial port and introspects the current status of the
target following our GDB-like debugging protocol. To
ensure the PMI will be triggered again, the DS sets de-
sirable values to the PMU registers before exiting the se-
cure domain.

Moreover, similar to the TS, we specify the granu-
larity of the debugging by monitoring different PMU
events. For example, if we choose the event INST_R-
ETIRED which occurs after an instruction is retired, the
execution of the target application is paused after each
instruction is executed. If the event EXC_SVC is chosen,
the DS takes control of the system after each system call.

S Design and Implementation

We implement NINJA on a 64-bit ARMvS8 Juno r1 board.
There are two ARM Cortex-AS57 cores and four ARM
Cortex-AS53 cores on the board, and all of them include
the support for PMU, ETM, and TrustZone. Based on the
ATF and Linaro’s deliverables on Android 5.1.1 for Juno,
we build a customized firmware for the board. Note that
NINJA is compatible with commercial mobile devices
because it relies on existing deployed hardware features.

5.1 Bridge the Semantic Gap

As with the VMI-based [27]] and TEE-based [54] sys-
tems, bridging the semantic gap is an essential step for
NINJA to conduct the analysis. In particular, we face two
layers of semantic gaps in our system.

5.1.1 Gap between Normal and Secure Domains

In the DS, NINJA uses PMI to trigger a trap to EL3. How-
ever, the PMU counts the instructions executed in the
CPU disregarding to the current running process. That
means the instruction which triggers the PMI may belong
to another application. Thus, we first need to identify if
the current running process is the target. Since NINJA is
implemented in the secure domain, it cannot understand
the semantic information of the normal domain, and we
have to fill the semantic gap to learn the current running
process in the OS.

In Linux, each process is represented by an instance
of thread_info data structure, and the one for the
current running process could be obtained by SP &
~(THREAD_SIZE - 1) , where SP indicates the current
stack pointer and THREAD_SIZE represents the size of
the stack. Next, we can fetch the task_struct, which
maintains the process information (like pid, name, and
memory layout), from the thread_info. Then, the tar-
get process can be identified by the pid or process name.

5.1.2 Gap in Android Java Virtual Machine

Android maintains a Java virtual machine to interpret
Java bytecode, and we need to figure out the current exe-
cuting Java method and bytecode during the Android API
tracing and bytecode stepping. DroidScope [52] fills the
semantic gaps in the Dalvik to understand the current sta-
tus of the VM. However, as a result of Android upgrades,
Dalvik is no longer available in recent Android versions,
and the approach in DroidScope is not applicable for us.

By manually analyzing the source code of
ART, we learn that the bytecode interpreter uses
ExecuteGotoImpl or ExecuteSwitchImpl function
to execute the bytecode. The approaches we used to fill
the semantic gap in these two functions are similar, and

USENIX Association

26th USENIX Security Symposium 37



StackFrame StackFrame StackFrame

X19: stack frame
X21: dex_pc
X27: bytecode

link_ link_ link_

method_ method_ — method_
vregs_ vregs_ F vregs_

DexCache DexFile
Codeltem

i const/4 v0, 0

type 0

type 1
— >

ly;‘)‘el n

dex:ﬁle,

const/4 vi, 1
add-int, vO, vO, v1
return vO

Class

dex,r‘:‘a;lche, ——
dex_type_idx_

t

ArtMethod code 0

method 1

melhuod n

i
|
i
i
i
i
i
i
i
i
i
i
1

method 0 1
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i

declaring_class_ —- code n
dex_method_index_ +——

Figure 3: Semantics in the Function ExecuteGotoImpl.

we use function ExecuteGotoImpl as an example to
explain our approach. In Android, the bytecode of a Java
method is organized as a 16-bit array, and ART passes
the bytecode array to the function ExecuteGotoImpl
together with the current execution status such as the
current thread, caller and callee methods, and the call
frame stack that stores the call stack and parameters.
Then, the function ExecuteGotoImpl interprets the
bytecode in the array following the control flows, and a
local variable dex_pc indicates the index of the current
interpreting bytecode in the array. By manual checking
the decompiled result of the function, we find that the
pointer to the bytecode array is stored in register X27
while variable dex_pc is kept by register X21, and the
call frame stack is maintained in register X19. Figure 3]
shows the semantics in the function ExecuteGotoImpl.
By combining registers X21 and X27, we can locate the
current executing bytecode. Moreover, a single frame
in the call frame stack is represented by an instance of
StackFrame with the variable 1ink_ pointing to the
previous frame. The variable method_ indicates the
current executing Java method, which is represented
by an instance of ArtMethod. Next, we fetch the
declaring class of the Java method following the pointer
declaring class_. The pointer dex_cache_ in the
declaring class points to an instance of DexCache which
is used to maintain a cache for the DEX file, and the
variable dex_file_ in the DexCache finally points to
the instance of DexFile, which contains all information
of a DEX file. Detail description like the name of the
method can be fetched via the index of the method (i.e.,
dex_method_index_) in the method array maintained
by the DexFile. Note that both ExecuteGotoImpl
and ExecuteSwitchImpl functions have four different

template implementations in ART, and our approach is
applicable to all of them.

5.2 Secure Interrupts

In GIC, each interrupt is assigned to Group O (secure in-
terrupts) or Group 1 (non-secure interrupts) by a group
of 32-bit GICD_IGROUPR registers. Each bit in each
GICD_IGROUPR register represents the group information
of a single interrupt, and value O indicates Group 0 while
value 1 means Group 1. For a given interrupt ID n,
the index of the corresponding GICD_IGROUPR register
is given by n /32, and the corresponding bit in the reg-
ister is n mod 32. Moreover, the GIC maintains a target
process list in GICD_ITARGETSR registers for each inter-
rupt. By default, the ATF configures the secure interrupts
to be handled in Cortex-AS57 core 0.

As mentioned in Section [£.1} NINJA uses secure PMI
and NMI to trigger a reliable switch. As the secure inter-
rupts are handled in Cortex-A57 core 0, we run the tar-
get application on the same core to reduce the overhead
of the communication between cores. In Juno board,
the interrupt ID for PMI in Cortex-AS57 core 0 is 34.
Thus, we clear the bit 2 of the register GICD_IGROUPR1
(34 mod 32 = 2,34 /32 = 1) to mark the interrupt 34 as
secure. Similarly, we configure the interrupt 195, which
is triggered by pressing a GPIO button, to be secure by
clearing the bit 3 of the register GICD_IGROUPR6.

5.3 The Trace Subsystem
5.3.1 Instruction Tracing

NINJA uses ETM embedded in the CPU to trace the exe-
cuted instructions. Figure [] shows the ETM and related
components in Juno board. The funnels shown in the
figure are used to filter the output of ETM, and each of
them is controlled by a group of CoreSight Trace Funnel
(CSTF) registers [9]. The filtered result is then output
to Embedded Trace FIFO (ETF) which is controlled by
Trace Memory Controller (TMC) registers [[10].

In our case, as we only need the trace result from the
core 0 in the Cortex-A57 cluster, we set the EnSO bit in
CSTF Control Register of funnel 0 and funnel 2, and
clear other slave bits. To enable the ETF, we set the
TraceCaptEn bit of the TMC CTL register.

The ETM is controlled by a group of trace regis-
ters. As the target application is always executed in
non-secure ELO or non-secure EL1, we make the ETM
only trace these states by setting all EXLEVEL_S bits and
clearing all EXLEVEL_NS bits of the TRCVICTLR register.
Then, NINJA sets the EN bit of TRCPRGCTLR register to
start the instruction trace. In regard to stop the trace, we
first clear the EN bit of TRCPRGCTLR register to disable

38 26th USENIX Security Symposium

USENIX Association



Cortex-A57 cluster Cortex-A53 cluster

Core 0 Core 1 Core 0 Core 1 Core 2 Core 3
ETM ETM ETM ETM ETM ETM

S N e O S R S

Input 0 Input 1 Input 0 Input 1 Input 2 Input 3
Funnel 0 Funnel 1

’ ETFO

Input 0 Input 1
Funnel 2

Figure 4: ETM in Juno Board.

ETM and then set the StopOnF1 bit and the FlushMan
bits of FFCR register in the TMC registers to stop the
ETF. To read the trace result, we keep reading from RRD
register until OXFFFFFFFF is fetched. Note that the trace
result is an encoded trace stream, and we use an open
source analyzer ptm2human [26] to convert the stream to
a readable format.

5.3.2 System Call Tracing

The system call of Linux in ARM platforms is achieved
by supervisor call instruction svc, and an immediate
value following the svc instruction indicates the corre-
sponding system call number. Since the ETM can be
configured to trace the PMU event EXC_SVC, which oc-
curs right after the execution of a svc instruction, we
trace the system calls via tracing this event in ETM.

As mentioned in Section 4.2} we can configure the
ETM to trace PMU events during the instruction trace.
The TRCEXTINSELR register is used to trace at most four
external input source, and we configure one of them
to trace the EXC_SVC event. In Cortex-A57, the event
number of the EXC_SVC event is 0x60, so we set the
SELO bits of the TRCEXTINSELR register to be 0x60.
Also, the SELECT bits of the second trace resource se-
lection control register TRCRSCTLR2 (TRCRSCTLRO and
TRCRSCTLR1 are reserved) is configured to 0 to select
the external input 0 as tracing resource 2. Next, we con-
figure the EVENTO bit of TRCEVENTCTLOR register to 2 to
select the resource 2 as event 0. Finally, the INSTEN bit
of TRCEVENTCTL1R register is set to 0x1 to enable event
0. Note that the X bit of PMU register PMCR_ELO should
also be set to export the events to ETM. After the config-
uration, the ETM can be used to trace system calls, and
the configuration to start and stop the trace is similar to
the one in Section[5.3.1]

5.3.3 Android API Tracing

Unlike the instruction trace and system call trace, we
cannot use ETM to directly trace the Android APIs
as the existence of the semantic gap. As mentioned
in Section each Java method is interpreter by
ExecuteGotoImpl or ExecuteSwitchImpl function,

and ART jumps to these functions by a branch instruction
bl. Since a PMU event BR_RETIRED is fired after exe-
cution of a branch instruction, we use PMU to trace the
BR_RETIRED event and reconstruct the semantic informa-
tion following the approach described in Section[5.1.2]if
these functions are invoked.

There exist six PMU counters for each processor on
Juno board, and we randomly select the last one to be
used for the Android API trace and the DS. Firstly, the
E bit of PMCR_ELO register is set to enable the PMU.
Then, both PMCNTENSET_ELO and PMINTENSET _EL1 reg-
isters are set to 0x20 to enable the counter 6 and
the overflow interrupt of the counter 6. Next, we set
PMEVTYPER5_ELO register to 0x80000021 to make the
counter 6 count the BR_RETIRED event in non-secure
ELO. Finally, the counter PMEVCNTR5_ELO is set to its
maximum value OxFFFFFFFF. With this configuration,
a secure PMI is routed to EL3 after the execution of
the next branch instruction. In the interrupt handler, the
ELR_EL3 register, which is identical to the PC of the nor-
mal domain, is examined to identify whether the execu-
tion of normal domain encounters ExecuteGotoImpl or
ExecuteSwitchImpl function. If true, we fill the se-
mantic gap and fetch the information about the current
executing Java method. By the declaring class of the
method, we differentiate the Android APIs from the de-
veloper defined methods. Before returning to the normal
domain, we reset the performance counter to its maxi-
mum value to make sure the next execution of a branch
instruction leads to an overflow.

5.4 The Debug Subsystem

Debugging is another essential approach to learn the be-
havior of an application. NINJA leverages a secure serial
port to connect the board to an external debugging client.
There exists two serial port (i.e., UARTO and UART1) in
Juno board, and the ATF uses UARTO as the debugging
input/output of both normal domain and secure domain.
To build a secure debugging bridge, NINJA uses UART1
as the debugging channel and marks it as a secure de-
vice by configuring NIC-400 [3]]. Alternatively, we can
use a USB cable for this purpose. In the DS, an ana-
lyst pauses the execution of the target application by the
secure NMI or predefined breakpoints and send debug-
ging commands to the board via the secure serial port.
NINJA processes the commands and outputs the response
to the serial port with a user-friendly format. The table in
Appendix [A]shows the supported debugging commands.
The information about symbols in both bytecode and ma-
chine code are not supported at this moment, and we con-
sider it as our future work.

USENIX Association

26th USENIX Security Symposium 39



5.4.1 Single-instruction Stepping

The ARMvVS architecture provides instruction stepping
support for the debuggers by the SS bit of MDSCR_EL1
register. Once this bit is set, the CPU generates a soft-
ware step exception after each instruction is executed,
and the highest EL that this exception can be routed is
EL2. However, this approach has two fundamental draw-
backs: 1) the EL2 is normally prepared for the hard-
ware virtualization systems, which does not satisfy our
transparency requirements. 2) The instruction stepping
changes the value of PSTATE, which is accessible from
EL1. Thus, we cannot use the software step exception for
the instruction stepping. Another approach is to modify
the target application’s code to generate a SMC excep-
tion after each instruction. Nonetheless, the modification
brings the side effect that the self-checking malware may
be aware of it.

The PMU event INST_RETIRED is fired after the exe-
cution of each instruction, and we use this event to im-
plement instruction stepping by using similar approach
mentioned in Section With the configuration,
NINJA pauses the execution of the target after the exe-
cution of each instruction and waits for the debugging
commands.

Moreover, NINJA is capable of stepping Java byte-
code. Recall that the functions ExecuteGotoImpl
and ExecuteSwitchImpl interpret the bytecode in Java
methods. In both functions, a branch instruction is used
to switch to the interpretation code of each Java byte-
code. Thus, we use BR_.RETIRED event to trace the
branch instructions and firstly ensure the pc of normal
domain is inside the two interpreter functions. Next, we
fill the semantic gap and monitor the value of dex_pc. As
the change of dex_pc value indicates the change of cur-
rent interpreting bytecode, we pause the system once the
dex_pc is changed to achieve Java bytecode stepping.

5.4.2 Breakpoints

In ARMvS architecture, a breakpoint exception is gen-
erated by either a software breakpoint or a hardware
breakpoint. The execution of brk instruction is consid-
ered as a software breakpoint while the breakpoint con-
trol registers DBGBCR_EL1 and breakpoint value registers
DBGBVR_EL1 provide support for at most 16 hardware
breakpoints. However, similar to the software step ex-
ception, the breakpoint exception generated in the nor-
mal domain could not be routed to EL3, which breaks the
transparency requirement of NINJA. MalT [54] discusses
another breakpoint implementation that modifies the tar-
get’s code to trigger an interrupt. Due to the transparency
requirement, we avoid this approach to keep our system
transparent against the self-checking malware. Thus, we
implement the breakpoint based on the instruction step-

ping technique discussed above. Once the analyst adds
a breakpoint, NINJA stores its address and enable PMU
to trace the execution of instructions. If the address of
an executing instruction matches the breakpoint, NINJA
pauses the execution and waits for debugging commands.
Otherwise, we return to the normal domain and do not
interrupt the execution of the target.

5.4.3 Memory Read/Write

NINJA supports memory access with both physical and
virtual addresses. The TrustZone technology ensures
that EL3 code can access the physical memory of the
normal domain, so it is straight forward for NINJA to
access memory via physical addresses. Regarding to
memory accesses via virtual addresses, we have to find
the corresponding physical addresses for the virtual ad-
dresses in the normal domain. Instead of manually walk
through the page tables, a series of Address Translation
(AT) instructions help to translate a 64-bit virtual address
to a 48-bit physical addressE] considering the translation
stages, ELs and memory attributes. As an example, the
at s12e0r addr instruction performs stage 1 and 2 (if
available) translations as defined for ELO to the 64-bit
address addr, with permissions as if reading from addr.
The [47:12] bits of the corresponding physical address
are storing in the PA bits of the PAR_EL1 register, and
the [11:0] bits of the physical address are identical to the
[11:0] bits of the virtual address addr. After the transla-
tion, NINJA directly manipulates the memory in normal
domain according to the debugging commands.

5.5 Interrupt Instruction Skid

In ARMvVS manual, the interrupts are referred as asyn-
chronous exceptions. Once an interrupt source is trig-
gered, the CPU continues executing the instructions in-
stead of waiting for the interrupt. Figure [5] shows the
interrupt process in Juno board. Assume that an inter-
rupt source is triggered before the MOV instruction is ex-
ecuted. The processor then sends the interrupt request
to the GIC and continues executing the MOV instruction.
The GIC processes the requested interrupt according to
the configuration, and signals the interrupt back to the
processor. Note that it takes GIC some time to finish the
process, so some instructions following the MOV instruc-
tion have been executed when the interrupt arrives the
processor. As shown in Figure [5] the current executing
instruction is the ADD instruction instead of the MOV in-
struction when the interrupt arrives, and the instruction
shadow region between the MOV and ADD instructions is
considered as interrupt instruction skid.

2The ARMvS architecture does not support more bits in the physical
address at this moment

40 26th USENIX Security Symposium

USENIX Association



interrupt send interrupt
triggered request

A MOV X1, X0

GIC

| signal interrupt

””””” ADD X1, X0, #1

Figure 5: Interrupt Instruction Skid.

Normal Domain Secure domain

trap

MRS X0, PMCR_ELO
MOV X1, #31
AND X0, X1, X1 LSR #10

[ MOV X0, #0x41013000 |
exception
return

Figure 6: Protect the PMCR_ELO Register via Traps.

The skid problem is a well-known problem [42, 49]
and affects NINJA since the current executing instruction
is not the one that triggers the PMI when the PMI ar-
rives the processor. Thus, the DS may not exactly step
the execution of the processor. Although the skid prob-
lem cannot be completely eliminated, the side-effect of
the skid does not affect our system significantly, and we
provide a detailed analysis and evaluation in Section [7.5]

6 Transparency

As NINJA is not based on the emulator or other sand-
boxes, the anti-analysis techniques mentioned in [29, |36}
48| cannot detect the existence of NINJA. Moreover,
other anti-debugging techniques like anti-ptrace [53] do
not work for NINJA since our analysis does not use
ptrace. Nonetheless, NINJA leaves artifacts such as
changes of the registers and the slow down of the system,
which may be detected by the target application. Next,
we discuss the mitigation of these artifacts.

6.1 Footprints Elimination

Since NINJA works in the secure domain, the hardware
prevents the target application from detecting the code
or memory usage of NINJA. Moreover, as the ATF re-
stores all the general purpose registers while entering the
secure domain and resumes them back while returning
to the normal domain, NINJA does not affect the reg-
isters used by the target application as well. However,
as we use ETM and PMU to achieve the debugging and
tracing functions, the modification to the PMU registers
and the ETM registers leaves a detectable footprint. In
ARMYVS, the PMU and ETM registers are accessible via
both system-instruction and memory-mapped interfaces.

6.1.1 System-Instruction Interface

The system-instruction interface makes the system regis-
ters readable via MRS instruction and writable via MSR in-

struction. In NINJA, we ensure that the access to the tar-
get system registers via these instructions to be trapped
to EL3. The TPM bit of the MDCR_EL3 register and the
TTA bit of the CPTR_EL3 register help to trap the access
to PMU and ETM registers to EL3, respectively; then we
achieve the transparency by providing artificial values to
the normal domain. Figure [f]is an example of manipu-
lating the reading to the PMCR_ELO register and returning
the default value of the register. Before the MRS instruc-
tion is executed, a trap is triggered to switch to the secure
domain. NINJA then analyzes the instruction that triggers
the trap and learns that the return value of PMCR_ELO is
stored to the general-purpose register X0. Thus, we put
the default value 0x41013000 to the general-purpose reg-
ister X0 and resume to the normal domain. Note that the
PC register of the normal domain should also be modified
to skip the MRS instruction. We protect both the registers
that we modified (e.g., PMCR_ELO, PMCNTENSET_ELO)
and the registers modified by the hardware as a result
of our usage (e.g., PMINTENCLR_EL1, PMOVSCLR_ELO).

6.1.2 Memory Mapped Interface

Each of the PMU or ETM related components occupies
a distinct physical memory region, and the registers of
the component can be accessed via offsets in the region.
Since these memory regions do not locate in the DRAM
(i.e., main memory), the TrustZone Address Space Con-
troller (TZASC) [12], which partitions the DRAM into
secure regions and non-secure regions, cannot protect
them directly. Note that this hardware memory region
is not initialized by the system firmware by default and
the system software such as applications and OSes can-
not access it because the memory region is not mapped
into the virtual memory. However, advanced malware
might remap this physical memory region via functions
like mmap and ioremap. Thus, to further defend against
these attacks, we intercept the suspicious calls to these
functions and redirect the call to return an artificial mem-
ory region.

The memory size for both the PMU and ETM mem-
ory regions is 64k, and we reserve a 128k memory re-
gion on the DRAM to be the artificial PMU and ETM
memory. The ATF for Juno board uses the DRAM re-
gion 0x880000000 to OxOffffffff as the memory of the
rich OS and the region 0xa00000000 to 0x1000000000
of the DRAM is not actually initialized. Thus, we
randomly choose the memory region 0xa00040000 to
0xa00060000 to be the region for artificial memory
mapped registers. While the system is booting, we firstly
duplicate the values in the PMU and ETM memory re-
gions into the artificial regions. As the function calls are
achieved by bl instruction, we intercept the call to the
interested functions by using PMU to trigger a PMI on

USENIX Association

26th USENIX Security Symposium 41



the execution of branch instructions and compare the pc
of the normal domain with the address of these functions.
Next, we manipulate the call to these functions by mod-
ification to the parameters. Take ioremap function as
an example. The first parameter of the function, which
is stored in the register X0, indicates the target physical
address, and we modify the value stored at the register
to the corresponding address in the artificial memory re-
gion. With this approach, the application never reads
the real value of PMU and ETM registers, and cannot
be aware of NINJA.

6.2 Defending Against Timing Attacks

The target application may use the SoC or external timers
to detect the time elapsed in the secure domain since the
DS affects the performance of the processor and com-
municates with a human analyst. Note that the TS using
ETM does not affect the performance of the processor
and thus is immune to the timing attack.

The ARMvVS architecture defines two types of timer
components, i.e., the memory-mapped timers and the
generic timer registers [§]. Other than these timers, the
Juno board is equipped with an additional Real Time
Clock (RTC) component PLO31 [6] and two dual-timer
modules SP804 [4] to measure the time. For each one of
these components, we manipulate its value to make the
time elapsed of NINJA invisible.

Each of the memory-mapped timer components is
mapped to a pre-defined memory region, and all these
memory regions are writable in EL3. Thus, we record
the value of the timer or counter while entering NINJA
and restore it before existing NINJA. The RTC and dual-
timer modules are also mapped to a writable memory re-
gion, so we use a similar method to handle them.

The generic timer registers consist of a series of
timer and counter registers, and all of these regis-
ters are writable in EL3 except the physical counter
register CNTPCT_ELO and the virtual counter register
CNTVCT_ELO. For the writable registers, we use the
same approach as handling memory-mapped timers to
manipulate them. Although CNTPCT_ELO is not directly
writable, the ARM architecture requires a memory-
mapped counter component to control the generation
of the counter value [8]. In the Juno board, the
generic counter is mapped to a controlling memory frame
0x2a430000-0x2a43ffff, and writing to the memory ad-
dress 0x2a430008 updates the value of CNTPCT_ELO.
The CNTVCT_ELO register always holds a value equal
to the value of the physical counter register minus the
value of the virtual offset register CNTVOFF_EL2. Thus,
the update to the CNTPCT_ELO register also updates the
CNTVCT_ELO register.

Note that the above mechanism only considers the

time consumption of NINJA, and does not take the time
consumption of the ATF into account. Thus, to make
it more precise, we measure the average time consump-
tion of the ATF during the secure exception handling (see
Appendix |B) and minus it while restoring the timer val-
ues. Besides the timers, the malware may also leverage
the PMU to count the CPU cycles. Thus, NINJA checks
the enabled PMU counters and restores their values in a
similar way to the writable timers.

The external timing attack cannot be defended by
modifying the local timer since external timers are in-
volved. As the instruction tracing in NINJA is immune to
the timing attack, we can use the TS to trace the execu-
tion of the target with DS enabled and disabled. By com-
paring the trace result using the approaches described
in BareCloud [31] and MalGene [30], we may identify
the suspicious instructions that launch the attack and de-
fend against the attack by manipulating the control flow
in EL3 to bypass these instructions. However, the ef-
fectiveness of this approach needs to be further studied.
Currently, defending against the external timing attack is
an open research problem [20} 154].

7 Evaluation

To evaluate NINJA, we fist compare it with existing anal-
ysis and debugging tools on ARM. NINJA neither in-
volves any virtual machine or emulator nor uses the de-
tectable Linux tools like ptrace or strace. Moreover,
to further improve the transparency, we do not modify
Android system software or the Linux kernel. The de-
tailed comparison is listed in Table[I] Since NINJA only
relies on the ATF, the table shows that the Trusted Com-
puting Base (TCB) of NINJA is much smaller than exist-
ing systems.

7.1 Output of Tracing Subsystem

To learn the details of the tracing output, we write a sim-
ple Android application that uses Java Native Interface
to read the /proc/self/status file line by line (which
can be further used to identify whether ptrace is en-
abled) and outputs the content to the console. We use
instruction trace of the TS to trace the execution of the
application, and also measure the time usage. The status
file contains 38 lines in total, and it takes about 0.22 ms
to finish executing. After the execution, the ETF contains
9.92 KB encoded trace data, and the datarate is approxi-
mately 44.03 MB/s. Next, we use ptm2human [26] to de-
code the data, and the decoded trace data contains 1341
signpost instructions (80 in our custom native library and
the others in 1ibc. so). By manually introspect the sign-
post instructions in our custom native library, we can re-
build the whole execution control flow. To reduce the

42 26th USENIX Security Symposium

USENIX Association



Table 1: Comparing with Other Tools. The source lines of code (SLOC) of the TCB is calculated by sloccount [47]]

based on Android 5.1.1 and Linux kernel 3.18.20.

ATF = ARM Trusted Firmware, AOS = Android OS, LK = Linux Kernel

NINJA TaintDroid [22] TaintART [44] DroidTrace [S6] CrowDroid [1S] DroidScope [S2] CopperDroid [45] NDroid [38]

No VM/emulator v/ v v v v
No ptrace/strace v v v v v v
No modification to Android v v v v
Analyzing native instruction v v v v
Trusted computing base  ATF AOS + LK AOS + LK LK LK QEMU QEMU QEMU
SLOC of TCB (K) 27 56,355 56,355 12,723 12,723 489 489 489

storage usage of the ETM, we can use real-time con-
tinuous export via either a dedicated trace port capable
of sustaining the bandwidth of the trace or an existing
interface on the SoC (e.g., a USB or other high-speed

port) [L1].

7.2 Tracing and Debugging Samples

We pickup two samples ActivityLifecyclel and
PrivateDataLeak3 from DroidBench [21] project and
use NINJA to analyze them. We choose these two spe-
cific samples since they exhibit representative malicious
behavior like leaking sensitive information via local file,
text message, and network connection.

Analyzing ActivityLifecyclel. To get an overview
of the sample, we first enable the Android API tracing
feature to inspect the APIs that read sensitive informa-
tion (source) and APIs that leak information (sink), and
find a suspicious API call sequence. In the sequence,
the method TelephonyManager.getDeviceId and
method HttpURLConnection.connect are invoked in
turn, which indicates a potential flow that sends IMEI to a
remote server. As we know the network packets are sent
via the system call sys_sendto, we attempt to intercept
the system call and analyze the parameters of the system
call. In Android, the system calls are invoked by corre-
sponding functions in 1libc.so, and we get the address
of the function for the system call sys_sendto by disas-
sembling libc.so. Thus, we use NINJA to set a break-
point at the address, and the second parameter of the sys-
tem call, which is stored in register X1, shows that the
sample sends a 181 bytes buffer to a remote server. Then,
we output the memory content of the buffer and find that
it is a HTTP GET request to host www.google.de with
path /search?q=353626078711780. Note that the dig-
its in the path is exactly the IMEI of the device.

Analyzing PrivateDataLeak3. Similar to the previ-
ous analysis, the Android API tracing helps us to find a
suspicious API call sequence consisting of the methods
TelephonyManager.getDeviceld, Context.openF-

ileOutput, and SmsManager.sendTextMessage. As
the Android uses the system calls sys_openat to open a
file and sys_write to write a file, we set breakpoints at
the address of these calls. Note that the second parame-
ter of sys_openat represents the full path of the target
file and the second parameter of sys_write points to a
buffer writing to a file. Thus, after the breakpoints are hit,
we see that sample writing IMEI 353626078711780 to
the file /data/data/de.ecspride/files/out.txt.
The API SmsManager . sendTextMessage uses binder
to achieve IPC with the lower-layer SmsService in An-
droid system, and the semantics of the IPC is described
in CopperDroid [45]. By intercepting the system call
sys_ioctl and following the semantics, we finally find
the target of the text message “+49” and the content of
the message 353626078711780.

7.3 Transparency Experiments
7.3.1 Accessing System Instruction Interface

To evaluate the protection mechanism of the system in-
struction interface, we write an Android application that
reads the PMCR_ELO and PMCNTENSET_ELO registers via
MRS instruction. The values of these two registers rep-
resent whether a performance counter is enabled. We
first use the application to read the registers with NINJA
disabled, and the result is shown in the upper rectan-
gle of Figure The last bit of the PMCR_ELO regis-
ter and the value of the PMCNTENSET _ELO register are 0,
which means that all the performance counters are dis-
abled. Then we press a GPIO button to enable the An-
droid API tracing feature of NINJA and read the regis-
ters again. From the console output shown in Figure [7b]
we see that the access to the registers is successfully
trapped into EL3. And the output shows that the real
values of the PMCR_ELO and PMCNTENSET_ELO registers
are 0x41013011 and 0x20, respectively, which indicates
that the counter PMEVCNTR5_ELO is enabled. However,
the lower rectangle in Figure [7al shows that the value of
the registers fetched by the application keep unchanged.

USENIX Association

26th USENIX Security Symposium 43



01231
RegisterReader

Register name:
PMCNTENSET_ELO v READ

Result:

00:28:03| Read PMCR_ELO, value 0x41013000 Reading result while
00:28:06|Read PMCNTENSET_ELO, value 0x0 _the PMU is disabled

00:29:30|Read PMCR_ELO, value 0x41013000 Reading result while
00:29:44|Read PMCNTENSET_ELO, value 0x0 _the PMU is enabled

(a) Reading PMU Register in an Application.

led, GPIO Initialized
INFO:  Button clicked, interrupt id 195
INFO:  PMU enabled, trap set

INFO:  In EL3 PMCR_ELO [0x41013011] read to regster X8, fake value0x41013000}
iNFo: In EL3 PMCNTENSET_EL) read to regster X8, fake valug

Real values of Fake values of
the registers the registers

(b) EL3 Output in the Secure Console.

Figure 7: Accessing System Instruction Interface.

This experiment shows that NINJA effectively eliminates
the footprint on the system instruction interface.

7.3.2 Accessing Memory Mapped Interface

In this section, we take ioremap function as an exam-
ple to evaluate whether the interception to the memory-
mapping functions works. As the ioremap function can
be called only in the kernel space, we write a kernel mod-
ule that remaps the memory region of the ETM by the
ioremap function, and print the content of the first 32
bytes in the region. Similar to the approach discussed
above, we first load the kernel module with NINJA dis-
abled, and the output is shown in the upper rectangle in
Figure[8al Note that the 5th to the 8th bytes are mapped
as the TRCPRGCTLR register and the EN bit, which indi-
cates the status of the ETM, is the last bit of the register.
In the upper rectangle, the EN bit O shows that the ETM is
disabled. Next, we enable the instruction tracing feature
of NINJA and reload the kernel module. The lower rect-
angle in Figure [8a] shows that the content of the memory
fetched by the module remains the same. However, in the
Figure [8b] the output from EL3 shows that the memory
of the ETM has changed. This experiment shows that we
successfully hide the ETM status change to the normal
domain, and NINJA remains transparent.

7.3.3 Adjusting the Timers

To evaluate whether our mechanism that modifies the
local timers works, we write a simple application that
launches a dummy loop for 1 billion times, and calculate
the execution time of the loop by the return values of the
API call System.currentTimeMillis(). In the first
experiment, we record the execution time with NINJA
disabled, and the average time for 30 runs is 53.16s with
a standard deviation 2.97s. In the second experiment,
we enable the debugging mode of NINJA and pause the
execution during the loop by pressing the GPIO button.
To simulate the manual analysis, we send a command rr
to output all the general purpose registers and then read
them for 60s. Finally, a command c is sent to resume

Table 2: The TS Performance Evaluation Calculating 1
Million Digits of 7.

Mean STD # Slowdown
Base: Tracing disabled 2.133s 0.69 ms
Instruction tracing 2.135s 2.79 ms ~ 1x
System call tracing 2.134s 5.13 ms ~ 1x
Android API tracing 149.372 s 1287.88 ms ~70x

the execution of the target. We repeat the second exper-
iment with the timer adjusting feature of NINJA enabled
and disabled for 30 times each, and record the execu-
tion time of the loop. The result shows that the average
execution time with timer adjusting feature disabled is
116.33s with a standard deviation 2.24s, and that with
timer adjusting feature enabled is 54.33s with a standard
deviation 3.77s. As the latter result exhibits similar exe-
cution time with the original system, the malware cannot
use the local timer to detect the presence of the debug-
ging system.

7.4 Performance Evaluation

In this section, we evaluate the performance overhead of
the trace subsystem due to its automation characteristic.
Performance overhead of the debugging subsystem is not
noticed by an analyst in front of the command console,
and the debugging system is designed with human inter-
action.

To learn the performance overhead on the Linux bi-
naries, we build an executable that using an open source
7 calculation algorithm provided by the GNU Multiple
Precision Arithmetic Library [46]] to calculate 1 million
digits of the 7 for 30 times with the tracing functions dis-
abled and enabled, and the time consumption is shown
in Table 2] Since we leverage ETM to achieve the in-
struction tracing and system call tracing, the experiment
result shows that the ETM-based solution has negligible
overhead — less than 0.1%. In the Android API tracing,
the overhead is about 70x. This overhead is mainly due
to the frequent domain switch during the execution and
bridging the semantic gap. To reduce the overhead, we

44 26th USENIX Security Symposium

USENIX Association



375.072598] Remap memory region for ETM:

389.382726] Remap memory region for ETM:

375.076644] Remapped virtual address base: 0x657a000
375.081580] (0x0657a000: 3]

375.087097] | 0x06572010: 00000001 00000000 00000000 00000000

the ETM is disabled

389.386770] Remapped virtual address base: 0x657c000
389.391706]| 0x0657c000: 3|

389.397223]| 0x0657c010: 00000001 00000000 00000000 00000000

the ETM is enabled

(a) Reading ETM Memory Region.

Memory content while

Memory content while

INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:
INFO:

S A AAAA A AAAAAA KKK

Power domain enabled, GPIO Initialized

KKK KA AR KA A A KA KKK

Button clicked, interrupt id 195

Fake ETM region initialized
ETM enabled

ioremap detected

Current ETM memory:

Actual memory content
while the ETM is enabled

0x22040000: 1

0x22040010:000018c1 00000000 00000000 00000000

(b) EL3 Output in

Figure 8: Memory Mapped Interface.
Table 3: The TS Performance Evaluation with CF-Bench [[16].

the Secure Console.

Native Scores

Java Scores

Overall Scores

Mean STD Slowdown Mean STD Slowdown Mean STD Slowdown
Base: Tracing disabled ~ 25380 1023 18758 1142 21407 1092
Instruction tracing 25364 908 ~ Ix 18673 1095 ~ 1Ix 21349 1011 ~ 1Ix
System call tracing 25360 774 ~ 1Ix 18664 1164 ~Ix 21342 911 ~ 1Ix
Android API tracing 6452 24 ~ 4x 122 4 ~ 154x 2654 11 ~ 8x

can combine ETM instruction trace with data trace, and
leverage the trace result to rebuild the semantic informa-
tion and API usage offline.

To measure the performance overhead on the Android
applications, we use CF-Bench [16] downloaded from
Google Play Store. The CF-Bench focuses on measur-
ing both the Java performance and native performance
in Android system, and we use it to evaluate the over-
head for 30 times. The result in Table 3] shows that the
overheads of instruction tracing and system call tracing
are sufficiently small to ignore. The Android API tracing
brings 4x slowdown on the native score and 154x slow-
down on the Java score, and the overall slowdown is 8x.
Note that we make these benchmarks to be executed only
on Cortex-AS57 core 0 by setting their CPU affinity mask
to Ox1 since NINJA only stays in that core.

7.5 Skid Evaluation

In this subsection, we evaluate the influence of the skid
problem to NINJA. Since the instruction tracing, system
call tracing, and memory read/write do not involve PMI,
these functionalities are not affected by the skid prob-
lem. In ART, each bytecode is interpreted as an array of
machine code. Our bytecode stepping mechanism rec-
ognizes the corresponding bytecode once it is executing
any machine code in the array, i.e., the skid problem af-
fects the bytecode stepping if and only if the instruction
shadow covers all the machine code for a bytecode. We
evaluate the listed 218 bytecode opcode [24]] on the An-
droid official website, and it shows that the shadow re-
gion cannot cover the machine code for any of them.
Thus, the bytecode stepping does not suffer from the skid
problem. For a similar reason, the skid problem has no
influence on the Android API tracing.

However, the native code stepping and the breakpoint

Table 4: Instructions in the Skid Shadow with Represen-
tative PMU Events.

# of Instructions

Event Number Event Description

Mean STD
0x81-0x8F Exception related events that fir- 0 0
ing after taking exceptions
Ox11 CPU cycle event that firing after 2.73 2.30
each CPU cycle
0x08 Instruction retired event that fir- 6.03 4.99

ing after executing each instruc-
tion

are still affected, and both of them use instruction retired
event to overflow the counter. Since the skid problem is
due to the delay between the interrupt request and the in-
terrupt arrival, we first use PMU counter to measure this
delay by CPU cycles. Similar with the instruction step-
ping, we make the PMU counter to count CPU_CYCLES
event and initialize the value of the counter to its maxi-
mum value. Then, the counter value after switching into
EL3 is the time delay of the skid in CPU cycles. The
results of 30 experiments show that the delay is about
106.3 CPU cycles with a standard deviation 2.26. As
the frequency of our CPU is 1.15GHz, the delay is about
0.09us. We also evaluate the number of instructions in
the skid shadow with some representative PMU events.
For each event, we trigger the PMI for 30 times and
calculate the mean and standard deviation of the num-
ber of instructions in the shadow. Table [ shows the
result with different PMU events. Unlike the work de-
scribed in [42], the exception related events exhibits no
instruction shadow in our platform, and we consider it is
caused by different ARM architectures. It is worth not-
ing that the number of instructions in the skid shadow
of the CPU cycle event is less than the instruction re-
tired event. However, using the CPU cycle event may
lead to multiple PMIs for a single instruction since the

USENIX Association

26th USENIX Security Symposium 45



execution of a single instruction may need multiple CPU
cycles, which introduces more performance overhead but
with more fine-grained instruction-stepping. In practice,
it is a trade off between the performance overhead and
the debugging accuracy, and we can use either one based
on the requirement.

8 Discussion

NINJA leverages existing deployed hardware and is com-
patible with commercial mobile devices. However, the
secure domain on the commercial mobile devices is man-
aged by the Original Equipment Manufacturer (OEM).
Thus, it requires cooperation from the OEMs to imple-
ment NINJA on a commercial mobile device.

The approach we used to fill the semantic gaps re-
lies on the understanding of the kernel data structures
and memory maps, and thus is vulnerable to the privi-
leged malware. Patagonix [33] leverages a database of
whitelisted applications binary pages to learn the seman-
tic information in the memory pages of the target applica-
tion. However, this approach is limited by the knowledge
of the analyzer. Currently, how to transparently bridge
the semantic gap without any assumption to the system
is still an open research problem [27]].

The protection mechanism mentioned in Section
helps to improve transparency when the attackers try
to use PMU or ETM registers, and using shadow reg-
isters [35]] can further protect the critical system regis-
ters. However, if an advanced attacker intentionally uses
PMU or ETM to trace CPU events or instructions and
checks whether the trace result matches the expected one,
the mechanism of returning artificial or shadow register
values may not provide accurate result and thus affects
NINJA’s transparency. To address this problem, we need
to fully virtualize the PMU and ETM, and this is left as
our future work.

Though NINJA protects the system-instruction inter-
face access to the registers, the mechanism we used to
protect the memory mapped interface access maybe vul-
nerable to advanced attacks such as directly manipulat-
ing the memory-mapping, disabling MMU to gain phys-
ical memory access, and using DMA to access memory.
Note that these attacks might be difficult to implement in
practice (e.g., disabling MMU might crash the system).
To fully protect the memory-mapped region of ETM and
PMU registers, we would argue that hardware support
from TrustZone is needed. Since the TZASC only pro-
tects the DRAM, we may need additional hardware fea-
tures to extend the idea of TZASC to the whole physical
memory region.

Although the instruction skid of the PMI cannot be
completely eliminated, we can also enable ETM between
two PMIs to learn the instructions in the skid. More-

over, since the instruction skid is caused by the delay
of the PMI, similar hardware component like Local Ad-
vanced Programmable Interrupt Controller [54] on x86
which handles interrupt locally may help to mitigate the
problem by reducing the response time.

9 Conclusions

In this paper, we present NINJA, a transparent malware
analysis framework on ARM platform. It embodies a se-
ries of analysis functionalities like tracing and debugging
via hardware-assisted isolation execution environment
TrustZone and hardware features PMU and ETM. Since
NINJA does not involve emulator or framework modifi-
cation, it is more transparent than existing analysis tools
on ARM. To minimize the artifacts introduced by NINJA,
we adopt register protection mechanism to protect all in-
volving registers based on hardware traps and runtime
function interception. Moreover, as the TrustZone and
the hardware components are widely equipped by OTS
mobile devices, NINJA can be easily transplanted to ex-
isting mobile platforms. Our experiment results show
that performance overheads of the instruction tracing and
system call tracing are less than 1% while the Android
API tracing introduces 4 to 154 times slowdown.

10 Acknowledgements

We would like to thank our shepherd, Manuel Egele, and
the anonymous reviewers for their valuable comments
and feedback. Special thanks to He Sun, who offers early
discussion about the project. We also appreciate Saeid
Mofrad, Leilei Ruan, and Qian Jiang for their kindly re-
view and helpful suggestions.

References

[1] ABERA, T., ASOKAN, N., DAVI, L., EKBERG, J.-E., NYMAN,
T., PAVERD, A., SADEGHI, A.-R., AND TSUDIK, G. C-FLAT:
Control-flow attestation for embedded systems software. In Pro-
ceedings of the 23rd ACM SIGSAC Conference on Computer and
Communications Security (CCS’16) (2016).

[2] ANUBIS. Analyzing Unknown
//anubis.iseclab.org.

[3] ARM L1D. ARM CoreLink NIC-400 Network In-
terconnect  Technical Reference Manual. http:
//infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0475g/index.html!

[4] ARM LtD. ARM Dual-Timer Module (SP804) Technical Ref-
erence Manual. http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0271d/DDI0271.pdf.

[5] ARM L1D. ARM Generic Interrupt Controller Archi-
tecture Specification. http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ihi0048b/index.html.

[6] ARM LTD. ARM PrimeCell Real Time Clock Technical Ref-
erence Manual. http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0224b/DDI0224.pdf.

Binaries. http:

46 26th USENIX Security Symposium

USENIX Association


http://anubis.iseclab.org
http://anubis.iseclab.org
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0475g/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0475g/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0475g/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0271d/DDI0271.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0271d/DDI0271.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0048b/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0048b/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0224b/DDI0224.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0224b/DDI0224.pdf

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23

[t

ARM LTD. ARM Trusted Firmware. https://github.com/
ARM-software/arm-trusted-firmwarel

ARM LTD. ARMVS-A Reference Manual. http:
//infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0487a.k/index.html.

ARM LtD. CoreSight Components
Technical Reference Manual. http://

infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/
DDIO314H_coresight_components_trm.pdf.

ARM LTD. CoreSight Trace Memory Controller Technical Ref-
erence Manual. http://infocenter.arm.com/help/topic/
com.arm.doc.ddi0461b/DDI0461B_tmc_rOpl_trm.pdf.

ARM LT1D. Embedded Trace Macrocell Architecture

Specification. http://infocenter.arm.com/help/
index.jsp?topic=/com.arm.doc.ihi0014q/index.html|

ARM LTD. TrustZone Security Whitepaper.
//infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.prd29-genc-009492c/index.html,

http:

AZAB, A. M., NING, P., SHAH, J., CHEN, Q., BHUTKAR, R.,
GANESH, G., MA, J., AND SHEN, W. Hypervision Across
Worlds: Real-time Kernel Protection from the ARM TrustZone
Secure World. In Proceedings of the 21st ACM SIGSAC Con-
ference on Computer and Communications Security (CCS’14)
(2014).

BRASSER, F., KiM, D., LIEBCHEN, C., GANAPATHY, V.,
IFTODE, L., AND SADEGHI, A.-R. Regulating ARM TrustZone
devices in restricted spaces. In Proceedings of the 14th Annual
International Conference on Mobile Systems, Applications, and
Services (MobiSys’16) (2016).

BURGUERA, 1., ZURUTUZA, U., AND NADJM-TEHRANI, S.
Crowdroid: Behavior-based malware detection system for An-
droid. In Proceedings of the 1st ACM workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM’11) (2011).

CHAINFIRE. CF-Bench. https://play.google.com/store/
apps/details?id=eu.chainfire.cfbench.

DALL, C., AND NIEH, J. KVM/ARM: The design and im-

plementation of the linux ARM hypervisor. In Proceedings of

the 19th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS’14)
(2014).

DAsH, S. K., SUAREZ-TANGIL, G., KHAN, S., TAM, K., AH-
MADI, M., KINDER, J., AND CAVALLARO, L. DroidScribe:
Classifying Android malware based on runtime behavior. Mobile
Security Technologies (MoST’16) (2016).

DENG, Z., ZHANG, X., AND XU, D. Spider: Stealthy binary
program instrumentation and debugging via hardware virtualiza-
tion. In Proceedings of the 29th Annual Computer Security Ap-
plications Conference (ACSAC’13) (2013).

DINABURG, A., ROYAL, P., SHARIF, M., AND LEE, W. Ether:
Malware analysis via hardware virtualization extensions. In Pro-
ceedings of the 15th ACM Conference on Computer and Commu-
nications Security (CCS’08) (2008).

EC SPRIDE SECURE SOFTWARE ENGINEERING GROUP.
DroidBench. https://github.com/secure-software-
engineering/DroidBench,

ENCK, WILLIAM AND GILBERT, PETER AND COX, LANDON P
AND JUNG, JAEYEON AND MCDANIEL, PATRICK AND SHETH,
ANMOL N. TaintDroid: An Information-Flow Tracking System
for Realtime Privacy Monitoring on Smartphones. In Proceed-
ings of the 9th USENIX Symposium on Operating Systems Design
and Implementation (OSDI10) (2010).
FUTUREMARK. Best  Smartphones.
www.futuremark.com/hardware/mobile,

http://

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

GOOGLE INC. Dalvik  bytecode. https://
source.android.com/devices/tech/dalvik/dalvik-
bytecode.html.

GuaN, L., L1u, P, XING, X., GE, X., ZHANG, S., YU, M.,
AND JAEGER, T. TrustShadow: Secure execution of unmodified
applications with ARM trustzone. In Proceedings of the 15th An-
nual International Conference on Mobile Systems, Applications,
and Services (MobiSys’17) (2017).

HwaNg, C.-C. ptm2human.
hwangcc23/ptm2human.

https://github.com/

JAIN, B., BAIG, M. B., ZHANG, D., PORTER, D. E., AND
SION, R. Sok: Introspections on trust and the semantic gap.
In Proceedings of 35th IEEE Symposium on Security and Privacy
(S&P’14) (2014).

JANG, J. S., KONG, S., KiM, M., KM, D., AND KANG, B. B.
SeCReT: Secure Channel between Rich Execution Environment
and Trusted Execution Environment. In Proceedings of 22nd
Network and Distributed System Security Symposium (NDSS’15)
(2015).

JING, Y., ZHAO, Z., AHN, G.-J., AND HU, H. Morpheus: au-
tomatically generating heuristics to detect Android emulators. In
Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC’14) (2014).

KIRAT, DHILUNG AND VIGNA, GIOVANNI. MalGene: Auto-
matic extraction of malware analysis evasion signature. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security (CCS’15) (2015).

KIRAT, DHILUNG AND VIGNA, GIOVANNI AND KRUEGEL,
CHRISTOPHER. Barecloud: Bare-metal analysis-based evasive
malware detection. In Proceedings of the 23rd USENIX Security
Symposium (USENIX Security’14) (2014).

LENGYEL, T. K., MARESCA, S., PAYNE, B. D., WEBSTER,
G. D., VOGL, S., AND KIAYIAS, A. Scalability, fidelity and
stealth in the drakvuf dynamic malware analysis system. In
Proceedings of the 30th Annual Computer Security Applications
Conference (ACSAC’14) (2014).

LiTTY, L., LAGAR-CAVILLA, H. A., AND LIE, D. Hypervi-
sor support for identifying covertly executing binaries. In Pro-
ceedings of the 17th USENIX Security Symposium (USENIX Se-
curity’08) (2008).

MUTTI, S., FRATANTONIO, Y., BIANCHI, A., INVERNIZZI, L.,
CORBETTA, J., KIRAT, D., KRUEGEL, C., AND VIGNA, G.
BareDroid: Large-scale analysis of Android apps on real devices.
In Proceedings of the 31st Annual Computer Security Applica-
tions Conference (ACSAC’15) (2015).

NETHERCOTE, N., AND SEWARD, J. Valgrind: a framework for
heavyweight dynamic binary instrumentation. In Proceedings of
the 28th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI’07) (2007).

PETSAsS, T., VOoYATzIs, G., ATHANASOPOULOS, E., POLY-
CHRONAKIS, M., AND IOANNIDIS, S. Rage against the virtual
machine: hindering dynamic analysis of Android malware. In
Proceedings of the 7th European Workshop on System Security
(EurSec’14) (2014).

PORTOKALIDIS, G., HOMBURG, P., ANAGNOSTAKIS, K., AND
Bos, H. Paranoid Android: Versatile protection for smartphones.
In Proceedings of the 26th Annual Computer Security Applica-
tions Conference (ACSAC’10) (2010).

QIAN, C., Luo, X., SHAO, Y., AND CHAN, A. T. On tracking
information flows through jni in android applications. In Pro-
ceedings of The 44th Annual IEEE/IFIP International Confer-
ence on Dependable Systems and Networks (DSN’14) (2014).

USENIX Association

26th USENIX Security Symposium 47


https://github.com/ARM-software/arm-trusted-firmware
https://github.com/ARM-software/arm-trusted-firmware
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0487a.k/index.html
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H_coresight_components_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H_coresight_components_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0314h/DDI0314H_coresight_components_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0461b/DDI0461B_tmc_r0p1_trm.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.ddi0461b/DDI0461B_tmc_r0p1_trm.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench
https://play.google.com/store/apps/details?id=eu.chainfire.cfbench
https://github.com/secure-software-engineering/DroidBench
https://github.com/secure-software-engineering/DroidBench
http://www.futuremark.com/hardware/mobile
http://www.futuremark.com/hardware/mobile
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://source.android.com/devices/tech/dalvik/dalvik-bytecode.html
https://github.com/hwangcc23/ptm2human
https://github.com/hwangcc23/ptm2human

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

SHI, H., ALWABEL, A., AND MIRKOVIC, J. Cardinal pill testing
of system virtual machines. In Proceedings of the 23rd USENIX
Security Symposium (USENIX Security’14) (2014).

SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER,
1., KANG, M. G., LIANG, Z., NEWSOME, J., POOSANKAM, P.,
AND SAXENA, P. BitBlaze: A New Approach to Computer Secu-
rity via Binary Analysis. In Proceedings of the 4th International
Conference on Information Systems Security (ICISS’08) (2008).
SPENSKY, C., Hu, H., AND LEACH, K. LO-PHI: Low-
observable physical host instrumentation for malware analysis.
In Proceedings of 23rd Network and Distributed System Security
Symposium (NDSS’16) (2016).

SPISAK, M. Hardware-assisted rootkits: Abusing performance
counters on the ARM and x86 architectures. In Proceedings of the
10th USENIX Workshop on Olffensive Technologies (WOOT’16)
(2016).

SUN, H., SUN, K., WANG, Y., AND JING, J. TrustOTP: Trans-
forming smartphones into secure one-time password tokens. In
Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security (CCS’15) (2015).

SUN, M., WEI, T., AND Lul, J. TaintART: a practical multi-
level information-flow tracking system for Android RunTime. In
Proceedings of the 23rd ACM SIGSAC Conference on Computer
and Communications Security (CCS’16) (2016).

TAM, K., KHAN, S. J., FATTORI, A., AND CAVALLARO, L.
CopperDroid: Automatic reconstruction of Android malware be-
haviors. In Proceedings of 22nd Network and Distributed System
Security Symposium (NDSS’15) (2015).

THE GNU MULTIPLE PRECISION ARITHMETIC LIBRARY. Pi
with GMP. https://gmplib.org/.

UBUNTU. sloccount. http://manpages.ubuntu.com/
manpages/precise/manl/compute_all.1l.html,

VIDAS, T., AND CHRISTIN, N. Evading Android runtime anal-
ysis via sandbox detection. In Proceedings of the 9th ACM Sym-
posium on Information, Computer and Communications Security
(AsiaCCS’14) (2014).

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

VOGL, S., AND ECKERT, C. Using hardware performance events
for instruction-level monitoring on the x86 architecture. In Pro-
ceedings of the 2012 European Workshop on System Security (Eu-
roSecl2) (2012).

XEN PROJECT. Xen ARM with virtualization ex-
tensions. https://wiki.xenproject.org/wiki/
Xen_ARM_with_Virtualization_Extensions!

XINYANG GE, H. V., AND JAEGER, T. SPROBES: Enforcing
Kernel Code Integrity on the TrustZone Architecture. In Pro-
ceedings of the 2014 Mobile Security Technologies (MoST’14)
(2014).

YAN, LOK KWONG AND YIN, HENG. Droidscope: Seamlessly
reconstructing the OS and Dalvik semantic views for dynamic
Android malware analysis. In Proceedings of the 21st USENIX
Security Symposium (USENIX Security’12) (2012).

YU, R. Android packers: facing the challenges, building solu-
tions. In Proceedings of the Virus Bulletin Conference (VB’14)
(2014).

ZHANG, F., LEACH, K., STAVROU, A., AND WANG, H. Using
hardware features for increased debugging transparency. In Pro-
ceedings of The 36th IEEE Symposium on Security and Privacy
(S&P’15) (2015), pp. 55-69.

ZHANG, Y., YANG, M., XU, B., YANG, Z., GU, G., NING, P.,
WANG, X. S., AND ZANG, B. Vetting undesirable behaviors in
Android apps with permission use analysis. In Proceedings of
the 20th ACM SIGSAC Conference on Computer and Communi-
cations Security (CCS’13) (2013).

ZHENG, MIN AND SUN, MINGSHEN AND Lul, JoHN CS.
DroidTrace: A ptrace based Android dynamic analysis sys-
tem with forward execution capability. In 2014 International
Wireless Communications and Mobile Computing Conference
(IWCMC’14) (2014).

48

26th USENIX Security Symposium

USENIX Association


https://gmplib.org/
http://manpages.ubuntu.com/manpages/precise/man1/compute_all.1.html
http://manpages.ubuntu.com/manpages/precise/man1/compute_all.1.html
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions
https://wiki.xenproject.org/wiki/Xen_ARM_with_Virtualization_Extensions

A Debugging Commands

Command

Description

1T

rwnv

mras

mwav

baa

bd a

be

nb

nm

Output the value of all general purpose registers X0
to X30, the stack pointer, and the program counter.
Write 64-bit value v to the register named n and
output the name the register and its new value.
Output the content of the memory starting from 64-
bit virtual address a with size s. If the virtual ad-
dress does not exist, output Incorrect address.
Write 8-bit value v to the 64-bit virtual address a
and output the address and the 8-bit value stored in
the address. If the virtual address does not exist,
output Incorrect address.

Add a breakpoint at the 64-bit virtual address a and
output the address. If the virtual address does not
exist, output Incorrect address.

Delete the breakpoint at the 64-bit virtual address
a and output the address. If the virtual address
or breakpoint does not exist, output Incorrect
address.

Clear all the breakpoints and output succeed.
Step to the next instruction and output the instruc-
tion.

Step to the next Java bytecode and output the byte-
code.

Step to the next Java method and output the call
stack.

Continue the execution after a breakpoint and out-
put continued.

B Domain Switching Time

We use the PMU counter to count the CPU_CYCLES event
and calculate the elapsed time by the delta of the value
and the frequency of the CPU. First we read the PMU
counter twice continuously and calculate the elapsed cy-
cles, and the difference in CPU cycles indicate the time
elapsed between the two continuous PMU read instruc-
tions. Then we insert an SMC instruction between the
two read instructions to trigger a domain switching with
NINJA disabled, and the difference of the CPU cycles
represents the round trip time of the domain switching in
ATF. At last, we measure the CPU cycles with NINJA
enabled, and this time consumption includes the time
consumption of both ATF and our customized exception
handler. To avoid the bias introduced by the CPU fre-
quency scaling, we set the minimum scaling frequency
equal to the maximum one to ensure that the CPU is al-
ways running in the same frequency. The results of 30
experiments are shown in the following table.

ATF Enabled NINJA Enabled Mean STD 95% CI
0.007 us  0.000 us  [0.007 us, 0.007 ps]
v 0.202 us  0.013 us  [0.197 us, 0.207 ps]
v v 0.342 us  0.021 pus  [0.349 pus, 0.334 ps]

USENIX Association

26th USENIX Security Symposium 49






PRIME+ABORT: A Timer-Free High-Precision L3 Cache Attack
using Intel TSX

Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen
University of California, San Diego
{cdisselk, dkohlbre}@cs. ucsd.edu, leporter@eng.ucsd.edu, tullsen@cs.ucsd.edu

Abstract

Last-Level Cache (LLC) attacks typically exploit tim-
ing side channels in hardware, and thus rely heavily
on timers for their operation. Many proposed defenses
against such side-channel attacks capitalize on this re-
liance. This paper presents PRIME+ABORT, a new cache
attack which bypasses these defenses by not depending
on timers for its function. Instead of a timing side chan-
nel, PRIME+ABORT leverages the Intel TSX hardware
widely available in both server- and consumer-grade pro-
cessors. This work shows that PRIME+ABORT is not
only invulnerable to important classes of defenses, it
also outperforms state-of-the-art LLC PRIME+PROBE
attacks in both accuracy and efficiency, having a max-
imum detection speed (in events per second) 3 x higher
than LLC PRIME+PROBE on Intel’s Skylake architecture
while producing fewer false positives.

1 Introduction

State-of-the-art cache attacks [35, 7, 11, 21, 25, 29, 33,
34, 43] leverage differences in memory access times be-
tween levels of the cache and memory hierarchy to gain
insight into the activities of a victim process. These at-
tacks require the attacker to frequently perform a series
of timed memory operations (or cache management oper-
ations [7]) to learn if a victim process has accessed a crit-
ical address (e.g., a statement in an encryption library).

These attacks are highly dependent on precise and ac-
curate timing, and defenses can exploit this dependence.
In fact, a variety of defenses have been proposed which
undermine these timing-based attacks by restricting ac-
cess to highly precise timers [15, 27, 31, 39].

In this work, we introduce an alternate mechanism for
performing cache attacks, which does not leverage tim-
ing differences (timing side channels) or require timed
operations of any type. Instead, it exploits Intel’s im-
plementation of Hardware Transactional Memory, which

is called TSX [19]. We demonstrate a novel cache
attack based on this mechanism, which we will call
PRIME+ABORT.

The intent of Transactional Memory (and TSX) is to
both provide a simplified interface for synchronization
and to enable optimistic concurrency: processes abort
only when a conflict exists, rather than when a poten-
tial conflict may occur, as with traditional locks [14, 12].
Transactional memory operations require transactional
data to be buffered, in this case in the cache which has
limited space. Thus, the outcome of a transaction de-
pends on the state of the cache, potentially revealing in-
formation to the thread that initiates the transaction. By
exploiting TSX, an attacker can monitor the cache behav-
ior of another process and receive an abort (call-back) if
the victim process accesses a critical address. This work
demonstrates how TSX can be used to trivially detect
writes to a shared block in memory; to detect reads and
writes by a process co-scheduled on the same core; and,
most critically, to detect reads and writes by a process
executing anywhere on the same processor. This latter
attack works across cores, does not assume that the vic-
tim uses or even knows about TSX, and does not require
any form of shared memory.

The advantages of this mechanism over conven-
tional cache attacks are twofold. The first is that
PRIME+ABORT does not leverage any kind of timer;
as mentioned, several major classes of countermeasures
against cache attacks revolve around either restricting ac-
cess or adding noise to timers. PRIME+ABORT effec-
tively bypasses these countermeasures.

The second advantage is in the efficiency of the attack.
The TSX hardware allows for a victim’s action to directly
trigger the attacking process to take action. This means
the TSX attack can bypass the detection phase required
in conventional attacks. Direct coupling from event to
handler allows PRIME+ABORT to provide over 3x the
throughput of comparable state-of-the-art attacks.

The rest of this work is organized as follows. Sec-

USENIX Association

26th USENIX Security Symposium 51



tion 2 presents background and related work; Section 3
introduces our novel attack, PRIME+ABORT; Section 4
describes experimental results, making comparisons with
existing methods; in Section 5, we discuss potential
countermeasures to our attack; Section 7 concludes.

2 Background and Related Work

2.1 Cache attacks

Cache attacks [35, 7, 11, 21, 25, 29, 33, 34, 43]
are a well-known class of side-channel attacks which
seek to gain information about which memory lo-
cations are accessed by some victim program, and
at what times. In an excellent survey, Ge et
al. [4] group such attacks into three broad categories:
PRIME+PROBE, FLUSH+RELOAD, and EVICT+TIME.
Since EVICT+TIME is only capable of monitoring mem-
ory accesses at the program granularity (whether a
given memory location was accessed during execution
or not), in this paper we focus on PRIME+PROBE and
FLUSH+RELOAD, which are much higher resolution and
have received more attention in the literature. Cache at-
tacks have been shown to be effective for successfully
recovering AES [25], ElGamal [29], and RSA [43] keys,
performing keylogging [8], and spying on messages en-
crypted with TLS [23].

Figure 1 outlines all of the attacks which we will con-
sider. At a high level, each attack consists of a pre-attack
portion, in which important architecture- or runtime-
specific information is gathered; and then an active por-
tion which uses that information to monitor memory ac-
cesses of a victim process. The active portion of exist-
ing state-of-the-art attacks itself consists of three phases:
an “initialization” phase, a “waiting” phase, and a “mea-
surement” phase. The initialization phase prepares the
cache in some way; the waiting phase gives the victim
process an opportunity to access the target address; and
then the measurement phase performs a timed operation
to determine whether the cache state has changed in a
way that implies an access to the target address has taken
place.

Specifics of the initialization and measurement phases
vary by cache attack (discussed below). Some cache at-
tack implementations make a tradeoff in the length of the
waiting phase between accuracy and resolution—shorter
waiting phases give more precise information about the
timing of victim memory accesses, but may increase
the relative overhead of the initialization and measure-
ment phases, which may make it more likely that a vic-
tim access could be “missed” by occurring outside of
one of the measured intervals. In our testing, not all
cache attack implementations and targets exhibited ob-
vious experimental tradeoffs for the waiting phase dura-

tion. Nonetheless, fundamentally, all of these existing at-
tacks can only gain temporal information at the waiting-
interval granularity.

2.1.1 PRIME+PROBE

PRIME+PROBE [35, 21, 25, 34, 29] is the oldest and
largest family of cache attacks, and also the most general.
PRIME+PROBE does not rely on shared memory, unlike
most other cache attacks (including FLUSH+RELOAD
and its variants, described below). The original form of
PRIME+PROBE [35, 34] targets the L1 cache, but recent
work [21, 25, 29] extends it to target the L3 cache in In-
tel processors, enabling PRIME+PROBE to work across
cores and without relying on hyperthreading (Simultane-
ous Multithreading [38]). Like all L3 cache attacks, L3
PRIME+PROBE can detect accesses to either instructions
or data; in addition, L3 PRIME+PROBE trivially works
across VMs.

PRIME+PROBE targets a single cache set, detecting
accesses by any other program (or the operating system)
to any address in that cache set. In its active portion’s ini-
tialization phase (called “prime”), the attacker accesses
enough cache lines from the cache set so as to completely
fill the cache set with its own data. Later, in the mea-
surement phase (called “probe”), the attacker reloads the
same data it accessed previously, this time carefully ob-
serving how much time this operation took. If the victim
did not access data in the targeted cache set, this oper-
ation will proceed quickly, finding its data in the cache.
However, if the victim accessed data in the targeted cache
set, the access will evict a portion of the attacker’s primed
data, causing the reload to be slower due to additional
cache misses. Thus, a slow measurement phase implies
the victim accessed data in the targeted cache set during
the waiting phase. Note that this “probe” phase can also
serve as the “prime” phase for the next repetition, if the
monitoring is to continue.

Two different kinds of initial one-time setup are re-
quired for the pre-attack portion of this attack. The first
is to establish a timing threshold above which the mea-
surement phase is considered “slow” (i.e. likely suffering
from extra cache misses). The second is to determine a
set of addresses, called an “eviction set”, which all map
to the same (targeted) cache set (and which reside in dis-
tinct cache lines). Finding an eviction set is much easier
for an attack targeting the L1 cache than for an attack tar-
geting the L3 cache, due to the interaction between cache
addressing and the virtual memory system, and also due
to the “slicing” in Intel L3 caches (discussed further in
Sections 2.2.1 and 2.2.2).

52 26th USENIX Security Symposium

USENIX Association



PRIME+PROBE ~ FLUSH+RELOAD FLUSH+FLUSH EVICT+RELOAD  NAIVE TSX-BASED  PRIME+ABORT
% Establish timing
IS threshold Timing threshold  Timing threshold  Timing threshold  Timing threshold - -
<
_— Evicti D .
o Target acquisition Eviction set Shared mem Shared mem viction set AN Shared mem Eviction set
et shared mem
a
e B TR
o
® . . Start transaction Start transaction
N Initialization Prime targeted Flush targeted Flush targeted Prime targeted
£ set address address set Access targeted Prime targeted set
= address
. Wait Wait Wait Wait Wait Wait
Wait... l l
~ ) -
O %D (Victim makes access) @
o] s _J aborts aborts
= .
< =2 b
v o
= Wait... S
gt
© I
< L S
~ ©
b= Start timer Start timer Start timer Start timer Start timer g
()
S Measurement Prime targeted Access targeted Flush targeted Access targeted =w
§ operation set address address address a
© Q
§ Stop timer Stop timer Stop timer Stop timer Stop timer 5‘
Repeat (to Wait) (to Initialization) (to Wait) (to Initialization) (to Initialization) (to Initialization)
2
Q _— Abort status
= Detect victim " . . . Lo
© . Time > threshold  Time <threshold  Time >threshold  Time < threshold . Abort status indicates Cause #7
c access if indicates Cause #6 or 8
<

Figure 1: Comparison of the operation of various cache attacks, including our novel attacks.

2.1.2 FLUSH+RELOAD

The other major class of cache attacks is
FLUSH+RELOAD [7, 11, 43]. FLUSH+RELOAD
targets a specific address, detecting an access by any
other program (or the operating system) to that exact
address (or another address in the same cache line). This
makes FLUSH+RELOAD a much more precise attack
than PRIME+PROBE, which targets an entire cache set
and is thus more prone to noise and false positives.
FLUSH+RELOAD also naturally works across cores
because of shared, inclusive, L3 caches (as explained
in Section 2.2.1). Again, like all L3 cache attacks,
FLUSH+RELOAD can detect accesses to either instruc-
tions or data. Additionally, FLUSH+RELOAD can work
across VMs via the page deduplication exploit [43].

The pre-attack of FLUSH+RELOAD, like that of
PRIME+PROBE, involves determining a timing thresh-
old, but is limited to a single line instead of an entire
“prime” phase. However, FLUSH+RELOAD does not re-
quire determining an eviction set. Instead, it requires
the attacker to identify an exact target address; namely,
an address in the attacker’s virtual address space which
maps to the physical address the attacker wants to mon-
itor. Yarom and Falkner [43] present two ways to do
this, both of which necessarily involve shared memory;
one exploits shared libraries, and the other exploits page

deduplication, which is how FLUSH+RELOAD can work
across VMs. Nonetheless, this step’s reliance on shared
memory is a critical weakness in FLUSH+RELOAD, lim-
iting it to only be able to monitor targets in shared mem-
ory.

In FLUSH+RELOAD’s initialization phase, the attacker
“flushes” the target address out of the cache using Intel’s
CLFLUSH instruction. Later, in the measurement phase,
the attacker “reloads” the target address (by accessing
it), carefully observing the time for the access. If the
access was “fast”, the attacker may conclude that another
program accessed the address, causing it to be reloaded
into the cache.

An improved variant of FLUSH+RELOAD,
FLUSH+FLUSH [7], exploits timing variation in the
CLFLUSH instruction itself; this enables the attack to
combine its measurement and initialization phases,
much like PRIME+PROBE. A different variant,
EVICT+RELOAD [8], performs the initialization phase
by evicting the cacheline with PRIME+PROBE’s “prime”
phase, allowing the attack to work without the CLFLUSH
instruction at all—e.g., when the instruction has been
disabled, as in Google Chrome’s NaCl [6].

USENIX Association

26th USENIX Security Symposium 53



2.1.3 Timer-Free Cache Attacks

All of the attacks so far discussed—PRIME+PROBE,
FLUSH+RELOAD, and variants—are still fundamentally
timing attacks, exploiting timing differences as their un-
derlying attack vector. One recent work which, like
this work, proposes a cache attack without reference to
timers is that of Guanciale et al. [10]. Instead of timing
side channels, Guanciale et al. rely on the undocumented
hardware behavior resulting from disobeying ISA pro-
gramming guidelines, specifically with regards to virtual
address aliasing and self-modifying code. However, they
demonstrate their attacks only on the ARM architecture,
and they themselves suggest that recent Intel x86-64 pro-
cessors contain mechanisms that would render their at-
tacks ineffective. In contrast, our attack exploits weak-
nesses specifically in recent Intel x86-64 processors, so
in that respect our attack can be seen as complementary
to Guanciale et al.’s work. We believe that our work, in
addition to utilizing a novel attack vector (Intel’s hard-
ware transactional memory support), is the first timer-
free cache attack to be demonstrated on commodity Intel
processors.

2.2 Relevant Microarchitecture
2.2.1 Caches

[Basic Background] Caches in modern processors store
data that is frequently or recently used, in order to reduce
access time for that data on subsequent references. Data
is stored in units of “cache lines” (a fixed architecture-
dependent number of bytes). Caches are often orga-
nized hierarchically, with a small but fast “L1” cache, a
medium-sized “L2” cache, and a large but comparatively
slower “L3” cache. At each level of the hierarchy, there
may either be a dedicated cache for each processor core,
or a single cache shared by all processor cores.
Commonly, caches are “set-associative” which allows
any given cacheline to reside in only one of N locations
in the cache, where N is the “associativity” of the cache.
This group of N locations is called a “cache set”. Each
cacheline is assigned to a unique cache set by means of
its “set index”, typically a subset of its address bits. Once
a set is full (the common case) any access to a cacheline
with the given set index (but not currently in the cache)
will cause one of the existing N cachelines with the same
set index to be removed, or “evicted”, from the cache.
[Intel Cache Organization] Recent Intel processors
contain per-core L1 instruction and data caches, per-core
unified L2 caches, and a large L3 cache which is shared
across cores. In this paper we focus on the Skylake ar-
chitecture which was introduced in late 2015; important
Skylake cache parameters are provided in Table 1.

Table 1: Relevant cache parameters in the Intel Skylake
architecture.

Ll1-Data Ll-Inst L2 L3
Size 32KB  32KB  256KB 2-8 MB!
Assoc 8-way 8-way 4-way 16-way
Sharing Per-core  Per-core Per-core Shared
Line size | 64 B 64 B 64 B 64 B

! depending on model. This range covers all Skylake processors
(server, desktop, mobile, embedded) currently available as of Jan-
uary 2017 [20].

[Inclusive Caches] Critical to all cross-core cache at-
tacks, the L3 cache is inclusive, meaning that every-
thing in all the per-core caches must also be held in
the L3. This has two important consequences which
are key to enabling both L3-targeting PRIME+PROBE
and FLUSH+RELOAD to work across cores. First, any
data accessed by any core must be brought into not only
the core’s private L1 cache, but also the L3. If an at-
tacker has “primed” a cache set in the L3, this access to
a different address by another core necessarily evicts one
of the attacker’s cachelines, allowing PRIME+PROBE to
detect the access. Second, any cacheline evicted from
the L3 (e.g., in a “flush” step) must also be invalidated
from all cores’ private L1 and L2 caches. Any subse-
quent access to the cacheline by any core must fetch the
data from main memory and bring it to the L3, causing
FLUSH+RELOAD’s subsequent “reload” phase to regis-
ter a cache hit.

[Set Index Bits] The total number of cache sets in each
cache can be calculated as (total number of cache lines)
/ (associativity), where the total number of cache lines is
(cache size) / (line size). Thus, the Skylake L1 caches
have 64 sets each, the L2 caches have 1024 sets each,
and the shared L3 has from 2K to 8K sets, depending on
the processor model.

In a typical cache, the lowest bits of the address (called
the “line offset”) determine the position within the cache
line; the next-lowest bits of the address (called the “set
index”) determine in which cache set the line belongs,
and the remaining higher bits make up the “tag”. In our
setting, the line offset is always 6 bits, while the set index
will vary from 6 bits (L1) to 13 bits (L3) depending on
the number of cache sets in the cache.

[Cache Slices and Selection Hash Functions] However,
in recent Intel architectures (including Skylake), the sit-
uation is more complicated than this for the L3. Specif-
ically, the L3 cache is split into several “slices” which
can be accessed concurrently; the slices are connected
on a ring bus such that each slice has a different latency
depending on the core. In order to balance the load on
these slices, Intel uses a proprietary and undocumented
hash function, which operates on a physical address (ex-

54 26th USENIX Security Symposium

USENIX Association



cept the line offset) to select which slice the address ‘be-
longs’ to. The output of this hash effectively serves as
the top N bits of the set index, where 2N is the number
of slices in the system. Therefore, in the case of an 8
MB L3 cache with 8 slices, the set index consists of 10
bits from the physical address and 3 bits calculated using
the hash function. For more details, see [25], [32], [44],
[16], or [22].

This hash function has been reverse-engineered for
many different processors in Intel’s Sandy Bridge [25,
32, 44], Ivy Bridge [16, 22, 32], and Haswell [22, 32]
architectures, but to our knowledge has not been reverse-
engineered for Skylake yet. Not knowing the precise
hash function adds additional difficulty to determining
eviction sets for PRIME+PROBE—that is, finding sets of
addresses which all map to the same L3 cache set. How-
ever, our attack (following the approach of Liu et al. [29])
does not require knowledge of the specific hash function,
making it more general and more broadly applicable.

2.2.2 Virtual Memory

In a modern virtual memory system, each process has a
set of virtual addresses which are mapped by the oper-
ating system and hardware to physical addresses at the
granularity of pages [2]. The lowest bits of an address
(referred to as the page offset) remain constant during
address translation. Pages are typically 4 KB in size, but
recently larger pages, for instance of size 2 MB, have be-
come widely available for use at the option of the pro-
gram [25, 29]. Crucially, an attacker may choose to
use large pages regardless of whether the victim does or
not [29].

Skylake caches are physically-indexed, meaning that
the physical address of a cache line (and not its virtual ad-
dress) determines the cache set which the line is mapped
into. Like the slicing of the L3 cache, physical indexing
adds additional difficulty to the problem of determining
eviction sets for PRIME+PROBE, as it is not immediately
clear which virtual addresses may have the same set in-
dex bits in their corresponding physical addresses. Pages
make this problem more manageable, as the bottom 12
bits (for standard 4 KB pages) of the address remain con-
stant during translation. For the L1 caches, these 12 bits
contain the entire set index (6 bits of line offset + 6 bits of
set index), so it is easy to choose addresses with the same
set index. This makes the problem of determining evic-
tion sets trivial for L1 attacks. However, L3 attacks must
deal with both physical indexing and cache slicing when
determining eviction sets. Using large pages helps, as the
21-bit large-page offset completely includes the set index
bits (meaning they remain constant during translation),
leaving only the problem of the hash function. However,
the hash function is not only an unknown function itself,
but it also incorporates bits from the entire physical ad-

Table 2: Availability of Intel TSX in recent Intel CPUs,
based on data drawn from Intel ARK [20] in January
2017. Since Broadwell, all server CPUs and a majority
of i7/i5 CPUs support TSX.

?Igslzisel) Server? 17/i5 i3/m/etc
Eiﬁyzéflif 3/3 (100%) 23132 (72%) 12124 (50%)
(SX];];EI 5) 23/23 (100%)  27/42 (64%)  4/34 (12%)
?Sreo; %ﬂl) 77177 (100%) 11722 (50%)  2/18 (11%)
f}iiv?éﬁ@ 37/85 (44%) 287 (2%) 0/82 (0%)

! for the earliest available processors in the series
2 Xeon and Pentium-D
3 (i3/m/Pentium/Celeron)

dress, including bits that are still translated even when
using large pages.

2.3 Transactional Memory and TSX

Transactional Memory (TM) has received significant at-
tention from the computer architecture and systems com-
munity over the past two decades [14, 13, 37, 45]. First
proposed by Herlihy and Moss in 1993 as a hardware al-
ternative to locks [14], TM is noteworthy for its simplifi-
cation of synchronization primitives and for its ability to
provide optimistic concurrency.

Unlike traditional locks which require threads to wait
if a conflict is possible, TM allows multiple threads to
proceed in parallel and only abort in the event of a con-
flict [36]. To detect a conflict, TM tracks each thread’s
read and write sets and signals an abort when a conflict is
found. This tracking can be performed either by special
hardware [14, 13, 45] or software [37].

Intel’s TSX instruction set extension for x86 [12, 19]
provides an implementation of hardware TM and is
widely available in recent Intel CPUs (see Table 2).

TSX allows any program to identify an arbitrary sec-
tion of its code as a ‘transaction’ using explicit XBEGIN
and XEND instructions. Any transaction is guaranteed to
either: (1) complete, in which case all memory changes
which happened during the transaction are made visible
atomically to other processes and cores, or (2) abort, in
which case all memory changes which happened during
the transaction, as well as all other changes (e.g. to reg-
isters), are discarded. In the event of an abort, control
is transferred to a fallback routine specified by the user,
and a status code provides the fallback routine with some
information about the cause of the abort.

From a security perspective, the intended uses of
hardware transactional memory (easier synchronization

USENIX Association

26th USENIX Security Symposium 55



Table 3: Causes of transactional aborts in Intel TSX

1. Executing certain instructions, such as CPUID or the explicit

XABORT instruction

Executing system calls

OS interrupts'

Nesting transactions too deeply

Access violations and page faults

Read-Write or Write-Write memory conflicts with other

threads or processes (including other cores) at the cacheline

granularity—whether those other processes are using TSX or

not

7. A cacheline which has been written during the transaction
(i.e., a cacheline in the transaction’s “write set”) is evicted
from the L1 cache

8. A cacheline which has been read during the transaction (i.e.,
a cacheline in the transaction’s “read set”) is evicted from the
L3 cache

! This means that any transaction may abort, despite the absence of
memory conflicts, through no fault of the programmer. The pe-
riodic nature of certain interrupts also sets an effective maximum
time limit on any transaction, which has been measured at about
4ms [41].

S

or optimistic concurrency) are unimportant, so we will
merely note that we can place arbitrary code inside both
the transaction and the fallback routine, and whenever
the transaction aborts, our fallback routine will imme-
diately be given a callback with a status code. There
are many reasons a TSX transaction may abort; impor-
tant causes are listed in Table 3. Most of these are drawn
from the Intel Software Developer’s Manual [19], but the
specifics of Causes #7 and #8—in particular the asym-
metric behavior of TSX with respect to read sets and
write sets—were suggested by Dice et al. [3]. Our exper-
imental results corroborate their suggestions about these
undocumented implementation details.

While a transaction is in process, an arbitrary amount
of data must be buffered (hidden from the memory sys-
tem) or tracked until the transaction completes or aborts.
In TSX, this is done in the caches—transactionally writ-
ten lines are buffered in the L1 data cache, and transac-
tionally read lines marked in the L1-L3 caches. This
has the important ramification that the cache size and
associativity impose a limit on how much data can be
buffered or tracked. In particular, if cache lines being
buffered or tracked by TSX must be evicted from the
cache, this necessarily causes a transactional abort. In
this way, details about cache activity may be exposed
through the use of transactions.

TSX has been addressed only rarely in a security
context; to the best of our knowledge, there are only
two works on the application of TSX to security to
date [9, 24]. Guan et al. use TSX as part of a defense
against memory disclosure attacks [9]. In their system,
operations involving the plaintext of sensitive data nec-
essarily occur inside TSX transactions. This structurally
ensures that this plaintext will never be accessed by other

processes or written back to main memory (in either case,
a transactional abort will roll back the architectural state
and invalidate the plaintext data).

Jang et al. exploit a timing side channel in TSX itself
in order to break kernel address space layout randomiza-
tion (KASLR) [24]. Specifically, they focus on Abort
Cause #5, access violations and page faults. They note
that such events inside a transaction trigger an abort but
not their normal respective handlers; this means the op-
erating system or kernel are not notified, so the attack is
free to trigger as many access violations and page faults
as it wants without raising suspicions. They then exploit
this property and the aforementioned timing side chan-
nel to determine which kernel pages are mapped and un-
mapped (and also which are executable).

Neither of these works enable new attacks on memory
accesses, nor do they eliminate the need for timers in
attacks.

3 Potential TSX-based Attacks

We present three potential attacks, all of which share
their main goal with cache attacks—to monitor which
cachelines are accessed by other processes and when.
The three attacks we will present leverage Abort Causes
#6, 7, and 8 respectively. Figure 1 outlines all three of
the attacks we will present, as the PRIME+ABORT en-
try in the figure applies to both PRIME+ABORT-L1 and
PRIME+ABORT-L3.

All of the TSX-based attacks which we will propose
have the same critical structural benefit in common. This
benefit, illustrated in Figure 1, is that these attacks have
no need for a “measurement” phase. Rather than having
to conduct some (timed) operation to determine whether
the cache state has been modified by the victim, they sim-
ply receive a hardware callback through TSX immedi-
ately when a victim access takes place. In addition to
the reduced overhead this represents for the attack pro-
cedure, this also means the attacker can be actively wait-
ing almost indefinitely until the moment a victim access
occurs—the attacker does not need to break the attack
into predefined intervals. This results in a higher res-
olution attack, because instead of only coarse-grained
knowledge of when a victim access occurred (i.e. which
predefined interval), the attacker gains precise estimates
of the relative timing of victim accesses.

All of our proposed TSX-based attacks also share a
structural weakness when compared to PRIME+PROBE
and FLUSH+RELOAD. Namely, they are unable
to monitor multiple targets (cache sets in the
case of PRIME+PROBE, addresses in the case of
FLUSH+RELOAD) simultaneously while retaining the
ability to distinguish accesses to one target from ac-
cesses to another. PRIME+PROBE and FLUSH+RELOAD

56 26th USENIX Security Symposium

USENIX Association



are able to do this at the cost of increased overhead;
effectively, a process can monitor multiple targets con-
currently by performing multiple initialization stages,
having a common waiting stage, and then performing
multiple measurement stages, with each measurement
stage revealing the activity for the corresponding target.
In contrast, although our TSX-based attacks could
monitor multiple targets at once, they would be unable
to distinguish events for one target from events for
another without additional outside information. Some
applications of PRIME+PROBE and FLUSH+RELOAD
rely on this ability (e.g. [33]), and adapting them to
rely on PRIME+ABORT instead would not be triv-
ial. However, others, including the attack presented
in Section 4.4, can be straightforwardly adapted to
utilize PRIME+ABORT as a drop-in replacement for
PRIME+PROBE or FLUSH+RELOAD.

We begin by discussing the simplest, but also
least generalizable, of our TSX-based attacks, ul-
timately building to our proposed primary attack,
PRIME+ABORT-L3.

3.1 Naive TSX-based Attack

Abort Cause #6 enables a potentially powerful, but lim-
ited attack.

From Cause #6, we can get a transaction abort (which
for our purposes is an immediate, fast hardware callback)
whenever there is a read-write or write-write conflict be-
tween our transaction and another process. This leads
to a natural and simple attack implementation, where we
simply open a transaction, access our target address, and
wait for an abort (with the proper abort status code); on
abort, we know the address was accessed by another pro-
cess.

The style of this attack is reminiscent of
FLUSH+RELOAD [43] in several ways. It targets a
single, precise cacheline, rather than an entire cache
set as in PRIME+PROBE and its variants. It does not
require a (comparatively slow) “prime eviction set”
step, providing fast and low-overhead monitoring of
the target cacheline. Also like FLUSH+RELOAD, it
requires the attacker to acquire a specific address to
target, for instance exploiting shared libraries or page
deduplication.

Like the other attacks using TSX, it benefits in per-
formance by not needing the “measurement” phase to
detect a victim access. In addition to the performance
benefit, this attack would also be harder to detect and de-
fend against. It would execute without any kind of timer,
mitigating several important classes of defenses (see Sec-
tion 5). It would also be resistant to most types of cache-
based defenses; in fact, this attack has so little to do with
the cache at all that it could hardly be called a cache at-

tack, except that it happens to expose the same informa-
tion as standard cache attacks such as FLUSH+RELOAD
or PRIME+PROBE do.

However, in addition to only being able to moni-
tor target addresses in shared memory (the key weak-
ness shared by all variants of FLUSH+RELOAD), this
attack has another critical shortcoming. Namely, it can
only detect read-write or write-write conflicts, not read-
read conflicts. This means that one or the other of the
processes—either the attacker or the victim—must be is-
suing a write command in order for the access to be de-
tected, i.e. cause a transactional abort. Therefore, the
address being monitored must not be in read-only mem-
ory. Combining this with the earlier restriction, we find
that this attack, although powerful, can only monitor ad-
dresses in writable shared memory. We find this depen-
dence to render it impractical for most real applications,
and for the rest of the paper we focus on the other two
attacks we will present.

3.2 PRIME+ABORT-L1

The second attack we will present, called
PRIME+ABORT-L1, is based on Abort Cause #7.
Abort Cause #7 provides us with a way to monitor
evictions from the L1 cache in a way that is precise and
presents us with, effectively, an immediate hardware
callback in the form of a transactional abort. This allows
us to build an attack in the PRIME+PROBE family, as the
key component of PRIME+PROBE involves detecting
cacheline evictions. This attack, like all attacks in the
PRIME+PROBE family, does not depend in any way on
shared memory; but unlike other attacks, it will also not
depend on timers.

Like other PRIME+PROBE variants, our attack re-
quires a one-time setup phase where we determine an
eviction set for the cache set we wish to target; but
like early PRIME+PROBE attacks [35, 34], we find this
task trivial because the entire L1 cache index lies within
the page offset (as explained earlier). Unlike other
PRIME+PROBE variants, for PRIME+ABORT this is the
sole component of the setup phase; we do not need to
find a timing threshold, as we do not rely on timing.

The main part of PRIME+ABORT-L1 involves the
same “prime” phase as a typical PRIME+PROBE attack,
except that it opens a TSX transaction first. Once the
“prime” phase is completed, the attack simply waits for
an abort (with the proper abort status code). Upon receiv-
ing an abort, the attacker can conclude that some other
program has accessed an address in the target cache set.
This is similar to the information gleaned by ordinary
PRIME+PROBE.

The reason this works is that, since we will hold an en-
tire cache set in the write set of our transaction, any ac-

USENIX Association

26th USENIX Security Symposium 57



cess to a different cache line in that set by another process
will necessarily evict one of our cachelines and cause our
transaction to abort due to Cause #7. This gives us an
immediate hardware callback, obviating the need for any
“measurement” step as in traditional cache attacks. This
is why we call our method PRIME+ABORT—the abort
replaces the “probe” step of traditional PRIME+PROBE.

3.3 PRIME+ABORT-L3

PRIME+ABORT-L1 is fast and powerful, but because it
targets the (core-private) L1 cache, it can only spy on
threads which share its core; and since it must execute
simultaneously with its victim, this means it and its vic-
tim must be in separate hyperthreads on the same core.
In this section we present PRIME+ABORT-L3, an attack
which overcomes these restrictions by targeting the L3
cache. The development of PRIME+ABORT-L3 from
PRIME+ABORT-L1 mirrors the development of L3-
targeting PRIME+PROBE [29, 21, 25] from L1-targeting
PRIME+PROBE [35, 34], except that we use TSX.
PRIME+ABORT-L3 retains all of the TSX-provided ad-
vantages of PRIME+ABORT-L1, while also (like L3
PRIME+PROBE) working across cores, easily detecting
accesses to either instructions or data, and even working
across virtual machines.

PRIME+ABORT-L3 uses Abort Cause #8 to moni-
tor evictions from the L3 cache. The only meaningful
change this entails to the active portion of the attack is
performing reads rather than writes during the “prime”
phase, in order to hold the primed cachelines in the read
set of the transaction rather than the write set. For the
pre-attack portion, PRIME+ABORT-L3, like other L3
PRIME+PROBE attacks, requires a much more sophis-
ticated setup phase in which it determines eviction sets
for the L3 cache. This is described in detail in the next
section.

3.4 Finding eviction sets

The goal of the pre-attack phase for PRIME+ABORT is to
determine an eviction set for a specified target address.
For PRIME+ABORT-L1, this is straightforward, as de-
scribed in Section 2.2.2. However, for PRIME+ABORT—
L3, we must deal with both physical indexing and cache
slicing in order to find L3 eviction sets. Like [29] and
[21], we use large (2 MB) pages in this process as a con-
venience. With large pages, it becomes trivial to choose
virtual addresses that have the same physical set index
(i.e. agree in bits 6 to N, for some processor-dependent
N, perhaps 15), again as explained in Section 2.2.2. We
will refer to addresses which agree in physical set in-
dex (and in line offset, i.e. bits 0 to 5) as ser-aligned ad-
dresses.

Algorithm 1: Dynamically generating a prototype
eviction set for each cache slice, as implemented
in [42]
Input: a set of potentially conflicting cachelines lines, all
set-aligned
Output: a set of prototype eviction sets, one eviction set for each
cache slice; that is, a “prototype group”

group < {};
workingSet < {};

while /ines is not empty do

repeat forever :

line < random member of lines;

remove line from lines;

if workingSet evicts line then // Algorithm 2 or 3

c < line;
break;

end

add line to workingSet;

end

foreach member in workingSet do

remove member from workingSet;

if workingSet evicts c then  // Algorithm 2 or 3
‘ add member back to lines;

else
‘ add member back to workingSet;

end

end

foreach line in lines do

if workingSet evicts line then // Algorithm 2 or 3
‘ remove line from lines;

end

end
add workingSet to group;
workingSet < {};

end
return group;

We generate eviction sets dynamically using the algo-
rithm from Mastik [42] (inspired by that in [29]), which
is shown as Algorithm 1. However, for the subroutine
where Mastik uses timing methods to evaluate potential
eviction sets (Algorithm 2), we use TSX methods instead
(Algorithm 3).

Algorithm 3, a subroutine of Algorithm 1, demon-
strates how Intel TSX is used to determine whether a can-
didate eviction set can be expected to consistently evict
a given target cacheline. If “priming” the eviction set
(accessing all its lines) inside a transaction followed by
accessing the target cacheline consistently results in an
immediate abort, we can conclude that a transaction can-
not hold both the eviction set and the target cacheline in
its read set at once, which means that together they con-
tain at least (associativity + 1, or 17 in our case) lines
which map to the same cache slice and cache set.

Conceptually, the algorithm for dynamically generat-
ing an eviction set for any given address has two phases:
first, creating a “prototype group”, and second, special-
izing it to form an eviction set for the desired target ad-

58 26th USENIX Security Symposium

USENIX Association



Algorithm 2: PRIME+PROBE (timing-based)
method for determining whether an eviction set
evicts a given cacheline, as implemented in [42]

Input: a candidate eviction set es and a cacheline line
Output: rrue if es can be expected to consistently evict line

times < {};

repeat 16 times :
access line;
repeat 20 times :

foreach member in es do

‘ access member;

end
end
timed access to line;
times < times + {elapsed time};

end
if median of times > predetermined threshold then return zrue;
else return false;

Algorithm 3: PRIME+ABORT (TSX-based) method
for determining whether an eviction set evicts a given

cacheline
Input: a candidate eviction set es and a cacheline line
Output: true if es can be expected to consistently evict line

aborts < 0;
commits < 0;

while aborts < 16 and commits < 16 do
begin transaction;
foreach member in es do
access member;
end
access line;
end transaction;
if transaction committed then increment commits;
else if transaction aborted with appropriate status code then
increment aborts;

end
if aborts >= 16 then return true;
else return false;

dress. The algorithms shown (Algorithms 1, 2, and 3) to-
gether constitute the first phase of this larger algorithm.
In this first phase, we use only set-aligned addresses, not-
ing that all such addresses, after being mapped to an L3
cache slice, necessarily map to the same cache set inside
that slice. This phase creates one eviction set for each
cache slice, targeting the cache set inside that slice with
the given set index. We call these “prototype” eviction
sets, and we call the resulting group of one “prototype”
eviction set per cache slice a “prototype group”.

Once we have a prototype group generated by Algo-
rithm 1, we can obtain an eviction set for any cache set
in any cache slice by simply adjusting the set index of
each address in one of the prototype eviction sets. Not
knowing the specific cache-slice-selection hash function,
it will be necessary to iterate over all prototype eviction
sets (one per slice) in order to find the one which collides

with the target on the same cache slice. If we do not
know the (physical) set index of our target, we can also
iterate through all possible set indices (with each pro-
totype eviction set) to find the appropriate eviction set,
again following the procedure from Liu et al. [29].

4 Results

4.1 Characteristics of the Intel
Skylake Architecture

Our test machine has an Intel Skylake i7-6600U pro-
cessor, which has two physical cores and four virtual
cores. It is widely reported (e.g., in all of [16, 22, 25,
29, 32, 44]) that Intel processors have one cache slice per
physical core, based on experiments conducted on Sandy
Bridge, Ivy Bridge, and Haswell processors. However,
our testing on the Skylake dual-core i7-6600U leads us
to believe that it has four cache slices, contrary to pre-
vious trends which would predict it has only two. We
validate this claim by using Algorithm 1 to produce four
distinct eviction sets for large-page-aligned addresses.
Then we test our four distinct eviction sets on many ad-
ditional large-page-aligned addresses not used in Algo-
rithm 1. We find that each large-page-aligned address
conflicts with exactly one of the four eviction sets (by
Algorithm 3), and further, that the conflicts are spread
relatively evenly over the four sets. This convinces us
that each of our four eviction sets represents set index 0
on a different cache slice, and thus that there are indeed
four cache slices in the 17-6600U.

Having determined the number of cache slices, we can
now calculate the number of low-order bits in an address
that must be fixed to create groups of set-aligned ad-
dresses. For our i7-6600U, this is 16. Henceforth we can
use set-aligned addresses instead of large-page-aligned
addresses, which is an efficiency gain.

4.2 Dynamically Generating Eviction Sets

In the remainder of the Results section we com-
pare PRIME+ABORT-L3 to L3 PRIME+PROBE as im-
plemented in [42]. We begin by comparing the
PRIME+ABORT and PRIME+PROBE versions of Algo-
rithm 1 for dynamically generating prototype eviction
sets.

Table 4 compares the runtimes of the PRIME+ABORT
and PRIME+PROBE versions of Algorithm 1. The
PRIME+ABORT-based method is over 5x faster than the
PRIME+PROBE-based method in the median case, over
15x faster in the best case, and over 40% faster in the
worst case.

Next, we compare the “coverage” of prototype groups
(sets of four prototype eviction sets) derived and tested

USENIX Association

26th USENIX Security Symposium 59



Table 4: Runtimes of PRIME+ABORT- and
PRIME+PROBE-based versions of Algorithm 1
to generate a “prototype group” of eviction sets
(data based on 1000 runs of each version of Al-
gorithm 1)

\ PRIME+ABORT PRIME+PROBE
Min 4.5 ms 68.3 ms
1Q 10.1 ms 76.6 ms
Median | 15.0 ms 79.3 ms
3Q 21.3 ms 82.0 ms
Max 64.7 ms 91.0 ms

with the two methods. We derive 10 prototype groups
with each version of Algorithm 1; then, for each pro-
totype group, we use either timing-based or TSX-based
methods to test 1000 additional set-aligned addresses not
used for Algorithm 1 (a total of 10,000 additional set-
aligned addresses for PRIME+ABORT and 10,000 for
PRIME+PROBE). The testing procedure is akin to a sin-
gle iteration of the outer loop in Algorithm 2 or 3 re-
spectively. Using this procedure, each of the 10,000 set-
aligned addresses is tested 10,000 times against each of
the four prototype eviction sets in the prototype group.
This produces four “detection rates” for each set-aligned
address (one per prototype eviction set). We assume that
the highest of these four detection rates corresponds to
the prototype eviction set from the same cache slice as
the tested address, and we call this detection rate the
“max detection rate” for the set-aligned address. Both
PRIME+ABORT and PRIME+PROBE methods result in
“max detection rates” which are consistently indistin-

guishable from 100%. However, we note that out of
the 100 million trials in total, 13 times we observed the
PRIME+PROBE-based method fail to detect the access
(resulting in a “max detection rate” of 99.99% in 13
cases), whereas with the PRIME+ABORT-based method,
all 100 million trials were detected, for perfect max de-
tection rates of 100.0%. This result is due to the struc-
tural nature of transactional conflicts—it is impossible
for a transaction with a read set of size (1 +associativity)
to ever successfully commit; it must always abort.

Since each address maps to exactly one cache slice,
and ideally each eviction set contains lines from only
one cache slice, we expect that any given set-aligned
address conflicts with only one out of the four proto-
type eviction sets in a prototype group. That is, we ex-
pect that out of the four detection rates computed for
each line (one per prototype eviction set), one will be
very high (the “max detection rate”), and the other three
will be very low. Figure 2 shows the “second-highest
detection rate” for each line—that is, the maximum of
the remaining three detection rates for that line, which
is a measure of false positives. For any given detec-
tion rate on the x-axis, the figure shows what percent-
age of the 10,000 set-aligned addresses had a false-
positive detection rate at or above that level. Whenever
the “second-highest detection rate” is greater than zero,
it indicates that the line appeared to be detected by a pro-
totype eviction set meant for an entirely different cache
slice (i.e. a false positive detection). In Figure 2, we
see that with the PRIME+PROBE-based method, around
22% of lines have “second-highest detection rates” over
5%, around 18% of lines have “second-highest detec-

7 _ PRIME-+ABORT
%’D%o 100% - = =  PRIME+PROBE
< o
22
S 4
&3
o 50% -
c
- Q
25 S~ao
£B =
:§ \——————————————————————————————-
o\‘i_g 0% -
0% 20% 40% 60% 80% 100%

Detection Rate

Figure 2: “Double coverage” of prototype groups generated by PRIME+ABORT- and PRIME+PROBE-based versions
of Algorithm 1. With PRIME+PROBE, some tested cachelines are reliably detected by more than one prototype eviction
set. In contrast, with PRIME+ABORT each tested cacheline is reliably detected by only one prototype eviction set.

60 26th USENIX Security Symposium

USENIX Association



tion rates” over 10%, and around 7.5% of lines even
have “second-highest detection rates” of 100%, mean-
ing that more than one of the “prototype eviction sets”
each detected that line in 100% of the 10,000 trials. In
contrast, with the PRIME+ABORT-based method, none
of the 10,000 lines tested had “second-highest detection
rates” over 1%. PRIME+ABORT produces very few false
positives and cleanly monitors exactly one cache set in
exactly one cache slice.

4.3 Detecting Memory Accesses

Figures 3, 4, and 5 show the success of PRIME+ABORT
and two variants of PRIME+PROBE in detecting the
memory accesses of an artificial victim thread running
on a different physical core from the attacker. The vic-
tim thread repeatedly accesses a single memory loca-
tion for the duration of the experiment—in the “treat-
ment” condition, it accesses the target (monitored) lo-
cation, whereas in the “control” condition, it accesses an
unrelated location. We introduce delays (via busy-wait)
of varying lengths into the victim’s code in order to vary
the frequency at which it accesses the target location (or
unrelated location for control). Figures 3, 4, and 5 plot
the number of events observed by the respective attack-
ers, vs. the actual number of accesses by the victim, in
“control” and “treatment” scenarios. Data were collected
from 100 trials per attacker, each entailing separate runs
of Algorithm 1 and new targets. The y = x line is shown
for reference in all figures; it indicates perfect perfor-
mance for the “treatment” condition, with all events de-
tected but no false positives. Perfect performance in the
“control” condition, naturally, is values as low as possi-
ble in all cases.

We see in Figure 3 that PRIME+ABORT detects a large
fraction of the victim’s accesses at frequencies up to
several hundred thousand accesses per second, scaling
up smoothly and topping out at a maximum detection
speed (on our test machine) of around one million events
per second. PRIME+ABORT exhibits this performance
while also displaying relatively low false positive rates
of around 200 events per second, or one false positive
every 5000 ps. The close correlation between number of
detected events and number of victim accesses indicates
PRIME+ABORT’s low overheads—in fact, we measured
its transactional abort handler as executing in 20-40 ns—
which allow it to be essentially “always listening” for
victim accesses. Also, it demonstrates PRIME+ABORT’S
ability to accurately count the number of victim accesses,
despite only producing a binary output (access or no ac-
cess) in each transaction. Its high speed and low over-
heads allow it to catch each victim access in a separate
transaction.

Figure 4 shows the performance of unmodified

PRIME+PROBE as implemented in Mastik [42]'. We see
false positive rates which are significantly higher than
those observed for PRIME+ABORT—over 2000 events
per second, or one every 500 us. Like PRIME+ABORT,
this implementation of PRIME+PROBE appears to have a
top speed around one million accesses detected per sec-
ond under our test conditions. But most interestingly, we
observe significant “oversampling” at low frequencies—
PRIME+PROBE reports many more events than actually
occurred. For instance, when the victim thread performs
2600 accesses per second, we expect to observe 2600
events per second, plus around 2000 false positives per
second as before. However, we actually observe over
18,000 events per second in the median case. Likewise,
when the victim thread provides 26, 000 accesses per sec-
ond, we observe over 200,000 events per second in the
median case. Analysis shows that for this implementa-
tion of PRIME+PROBE on our hardware, single accesses
can cause long streaks of consecutive observed events,
sometimes as long as hundreds of observed events. We
believe this to be due to the interaction between this
PRIME+PROBE implementation and our hardware’s L3
cache replacement policy. One plausible explanation for
why PRIME+ABORT is not similarly afflicted, is that the
replacement policy may prioritize keeping lines that are
part of active transactions, evicting everything else first.
This would be a sensible policy for Intel to implement, as
it would minimize the number of unwanted/unnecessary
aborts. In our setting, it benefits PRIME+ABORT by en-
suring that a “prime” step inside a transaction cleanly
evicts all other lines.

To combat the oversampling behavior observed in
PRIME+PROBE, we investigate a modified implementa-
tion of PRIME+PROBE which “collapses” streaks of ob-
served events, meaning that a streak of any length is sim-
ply counted as a single observed event. Results with this
modified implementation are shown in Figure 5. We see
that this strategy is effective in combating oversampling,
and also reduces the number of false positives to around
250 per second or one every 4000 us. However, this im-
plementation of PRIME+PROBE performs more poorly
at high frequencies, having a top speed around 300,000
events per second compared to the one million per sec-
ond of the other two attacks. This effect can be explained
by the fact that as the victim access frequency increases,
streaks of observed events become more and more likely
to “hide” real events (multiple real events occur in the
same streak)—in the limit, we expect to observe an event

'We make one slight modification suggested by the maintainer of
Mastik: every probe step, we actually perform multiple probes, “count-
ing” only the first one. In our case we perform five probes at a time,
still alternating between forwards and backwards probes. All of the
results which we present for the “unmodified” implementation include
this slight modification.

USENIX Association

26th USENIX Security Symposium 61



il
# / Prme+ Aport Control
« ™ PRrRIME+ABORT |reatment

—
=
=1
1l

" 4

—
=
™
1l

Events detected per second
Il

—
=
il

////////;{/; ,;/;//////;//// v

7777 7
10° 10° 104 107 10¢ ing 10°
Victim accesses per second

\\

///////,
102 .-’”-’ L

Figure 3: Access detection rates for PRIME+ABORT in the “control” and “treatment” conditions. Data were collected
over 100 trials, each involving several different victim access speeds. Shaded regions indicate the range of the middle
75% of the data; lines indicate the medians. The y = x line is added for reference and indicates perfect performance
for the “treatment” condition (all events detected but no false positives or oversampling).

# / Prmue+Proee Control
107 4 «~  PrueE+ProBE Treatment

\.\\\\\\\\\ -

Events detected per second

T T T -
102 n# itk 10° 10" 107 108
Victim accesses per second

Figure 4: Access detection rates for unmodified PRIME+PROBE in the “control” and “treatment” conditions. Data
were collected over 100 trials, each involving several different victim access speeds. Shaded regions indicate the
range of the middle 75% of the data; lines indicate the medians. The y = x line is added for reference and indicates
perfect performance for the “treatment” condition (all events detected but no false positives or oversampling).

62 26th USENIX Security Symposium USENIX Association



10"

# / PrmeE+Proee Control
« ™ PrIME+PRrROBE Treatment

107 3
" 4
107 3

1t

107 5

Events detected per second

I'_/‘_/‘_/_/,/,/./,/‘_/_,‘_/ '/‘i R S S T S S R R S R R SRR R I A R BB iy R =,

. T N

\N\\S\S\uay

107 T T
102 10 1ot

T T T_
s 1" 107 "

Victim accesses per second

Figure 5: Access detection rates for our modified implementation of PRIME+PROBE which “collapses” streaks. Data
were collected over 100 trials, each involving several different victim access speeds. Shaded regions indicate the range
of the middle 75% of the data; lines indicate the medians. The y = x line is added for reference and indicates perfect
performance for the “treatment” condition (all events detected but no false positives or oversampling).

during every probe, but this approach will observe only
a single streak and indicate a single event occurred.

Observing the two competing implementations of
PRIME+PROBE on our hardware reveals an interesting
tradeoff. The original implementation has good high fre-
quency performance, but suffers from both oversampling
and a high number of false positives. In contrast, the
modified implementation has poor high frequency per-
formance, but does not suffer from oversampling and
exhibits fewer false positives. For the remainder of
this paper we consider the modified implementation of
PRIME+PROBE only, as we expect that its improved
accuracy and fewer false positives will make it more
desirable for most applications. Finally, we note that
PRIME+ABORT combines the desirable characteristics
of both PRIME+PROBE implementations, as it exhibits
the fewest false positives, does not suffer from oversam-
pling, and has good high frequency performance, with a
top speed around one million events per second.

4.4 Attacks on AES

In this section we evaluate the performance of
PRIME+ABORT in an actual attack by replicating the at-
tack on OpenSSL’s T-table implementation of AES, as
conducted by Gruss et al. [7]. As those authors ac-
knowledge, this implementation is no longer enabled
by default due to its susceptibility to these kinds of at-
tacks. However, as with their work, we use it for the
purpose of comparing the speed and accuracy of com-
peting attacks. Gruss et al. compared PRIME+PROBE,
FLUSH+RELOAD, and FLUSH+FLUSH [7]; we have

chosen to compare PRIME+PROBE and PRIME+ABORT,
as these attacks do not rely on shared memory. Follow-
ing their methods, rather than using previously published
results directly, we rerun previous attacks alongside ours
to ensure fairness, including the same hardware setup.

Figures 6 and 7 provide the results of this experiment.
In this chosen-plaintext attack, we listen for accesses to
the first cacheline of the first T-Table (TeO) while run-
ning encryptions. We expect that when the first four bits
of our plaintext match the first four bits of the key, the
algorithm will access this cacheline one extra time over
the course of each encryption compared to when the bits
do not match. This will manifest as causing more events
to be detected by PRIME+ABORT or PRIME+PROBE re-
spectively, allowing the attacker to predict the four key
bits. The attack can then be continued for each byte of
plaintext (monitoring a different cacheline of TeO in each
case) to reveal the top four bits of each key byte.

In our experiments, we used a key whose first four
bits were arbitrarily chosen to be 1110, and for each
method we performed one million encryptions with each
possible 4-bit plaintext prefix (a total of sixteen mil-
lion encryptions for PRIME+ABORT and sixteen mil-
lion for PRIME+PROBE). As shown in Figures 6 and
7, both methods correctly predict the first four key bits
to be 1110, although the signal is arguably cleaner and
stronger when using PRIME+ABORT.

5 Potential Countermeasures

Many countermeasures against side-channel attacks have
already been proposed; Ge et al. [4] again provide an

USENIX Association

26th USENIX Security Symposium 63



First four bits of plaintext

Figure 6: PRIME+ABORT attack against AES. Shown is,
for each condition, the percentage of additional events
that were observed compared to the condition yielding
the fewest events.

excellent survey. Examining various proposed defenses
in the context of PRIME+ABORT reveals that some are
effective against a wide variety of attacks including
PRIME+ABORT, whereas others are impractical or in-
effective against PRIME+ABORT. This leads us to ad-
vocate for the prioritization and further development of
certain approaches over others.

We first examine classes of side-channel counter-
measures that are impractical or ineffective against
PRIME+ABORT and then move toward countermeasures
which are more effective and practical.

Timer-Based Countermeasures: A broad class of
countermeasures ineffective against PRIME+ABORT are
approaches that seek to limit the availability of precise
timers, either by injecting noise into timers to make them
less precise, or by restricting access to timers in general.
There are a wide variety of proposals in this vein, includ-
ing [15], [27], [31], [39], and various approaches which
Ge et al. classify as “Virtual Time” or “Black-Box Miti-
gation”. PRIME+ABORT should be completely immune
to all timing-related countermeasures.

Partitioning Time: Another class of countermeasures
that seems impractical against PRIME+ABORT is the
class Ge et al. refer to as Partitioning Time. These coun-
termeasures propose some form of “time-sliced exclu-
sive access” to shared hardware resources. This would
technically be effective against PRIME+ABORT, because
the attack is entirely dependent on running simultane-
ously with its victim process; any context switch causes a
transactional abort, so the PRIME+ABORT process must
be active in order to glean any information. However,
since PRIME+ABORT targets the LLC and can monitor

=

2

Z 10.0% | a

]

|72}

3

o

w2

i

=

2

M 5.0% s

)

Q

N

N

£

g
e e e |

> 0.0% | -
e s s sy By s e
OO 1T OO A0 —HOHO 1O
OO A1 OO0 A 10O A 1O O™
OO OO A A A 1O OO O v v
OO OO OO0 A A A v

= _

=

& 10.0% |- 1

Q

w

e

o

z

=

4

m 5.0% | 1

=)

Q

N

N

<

=

S

Zz  0.0% |- 1
T T T T T T 1T T T T T T T TT
OO0 101 01O HOHO 10
OO A 1O O A1 OO A A OO
QOO0 A A A1 OO0 O v
QOO OO O0OO0OO d e

First four bits of plaintext

Figure 7: PRIME+PROBE attack against AES. Shown is,
for each condition, the percentage of additional events
that were observed compared to the condition yielding
the fewest events.

across cores, implementing this countermeasure against
PRIME+ABORT would require providing each user pro-
cess time-sliced exclusive access to the LLC. This would
mean that processes from different users could never run
simultaneously, even on different cores, which seems im-
practical.

Disabling TSX: A countermeasure which would os-
tensibly target PRIME+ABORT’s workings in particular
would be to disable TSX entirely, similarly to how hy-
perthreading has been disabled entirely in cloud environ-
ments such as Microsoft Azure [30]. While this is tech-
nically feasible—in fact, due to a hardware bug, Intel al-
ready disabled TSX in many Haswell CPUs through a
microcode update [17]—TSX’s growing prevalence (Ta-
ble 2), as well as its adoption by applications such as
glibc (pthreads) and the JVM [24], indicates its im-
portance and usefulness to the community. System ad-
ministrators are probably unlikely to take such a drastic
step.

Auditing: More practical but still not ideal is the class of
countermeasures Ge et al. refer to as Auditing, which is
based on behavioral analysis of running processes. Hard-
ware performance counters in the target systems can be
used to monitor LLC cache misses or miss rates, and thus
detect when a PRIME+PROBE- or FLUSH+RELOAD-
style attack is being conducted [1, 7, 46] (as any at-
tack from those families will introduce a large number
of cache misses—at least in the victim process). As
a PRIME+PROBE-style attack, PRIME+ABORT would
be just as vulnerable to these countermeasures as other
cache attacks are. However, any behavioral auditing
scheme is necessarily imperfect and subject to misclas-

64 26th USENIX Security Symposium

USENIX Association



sification errors in both directions. Furthermore, any au-
diting proposal targeting PRIME+ABORT which specifi-
cally monitors TSX-related events, such as transactions
opened or transactions aborted, seems less likely to be
effective, as many benign programs which utilize TSX
generate a large number of both transactions and aborts,
just as PRIME+ABORT does. This makes it difficult to
distinguish PRIME+ABORT from benign TSX programs
based on these statistics.

Constant-Time Techniques: The class of countermea-
sures referred to as “Constant-Time Techniques” in-
cludes a variety of approaches, some of which are likely
to be effective against PRIME+ABORT. These coun-
termeasures are generally software techniques to en-
sure important invariants are preserved in program ex-
ecution regardless of (secret) input data, with the aim
of mitigating side channels of various types. Some
“Constant-Time Techniques” merely ensure that critical
functions in a program always execute in constant time
regardless of secret data. This is insufficient to defend
against PRIME+ABORT, as PRIME+ABORT can track
cache accesses without relying on any kind of timing
side-channel. However, other so-called “Constant-Time
Techniques” are actually more powerful than their name
suggests, and ensure that no data access or control-flow
decision made by the program ever depends on any secret
data. This approach is effective against PRIME+ABORT,
as monitoring cache accesses (either for instructions or
data) would not reveal anything about the secret data be-
ing processed by the program.

Randomizing Hardware Operations: Another inter-
esting class of defenses proposes to insert noise into
hardware operations so that side-channel measurements
are more difficult. Although PRIME+ABORT is immune
to such efforts related to timers, other proposals aim
to inject noise into other side-channel vectors, such as
cache accesses. For instance, RPcache [40] proposes
to randomize the mapping between memory address and
cache set, which would render PRIME+ABORT and other
cache attacks much more difficult. Other proposals aim
to, for instance, randomize the cache replacement pol-
icy. Important limitations of this kind of noise injec-
tion (noted by Ge et al.) include that it generally can
only make side-channel attacks more difficult or less effi-
cient (not completely impossible), and that higher levels
of mitigation generally come with higher performance
costs. However, these kinds of schemes seem to be
promising, providing relatively lightweight countermea-
sures against a quite general class of side-channel at-
tacks.

Cache Set Partitioning: Finally, a very promising class
of countermeasures proposes to partition cache sets be-
tween processes, or disallow a single process to use all
of the ways in any given LLC cache set. This would

be a powerful defense against PRIME+ABORT or any
other PRIME+PROBE variant. Some progress has been
made towards implementing these defenses, such as
CATalyst [28], which utilizes Intel’s “Cache Allocation
Technology” [18]; or “cache coloring” schemes such as
STEALTHMEM [26] or that proposed by [5]. One unde-
sirable side effect of this approach is that it would reduce
the maximum size of TSX transactions, hindering legit-
imate users of the hardware transactional memory func-
tionality. However, the technique is still promising as an
effective defense against a wide variety of cache attacks.
For more examples and details of this and other classes of
side-channel countermeasures, we again refer the reader
to Ge et al. [4].

Our work with PRIME+ABORT leads us to recom-
mend the further pursuit of those classes of countermea-
sures which are effective against all kinds of cache at-
tacks including PRIME+ABORT, specifically so-called
“Constant-Time Techniques” (in their strict form), ran-
domizing cache operations, or providing mechanisms for
partitioning cache sets between processes.

6 Disclosure

We disclosed this vulnerability to Intel on January 30,
2017, explaining the basic substance of the vulnerability
and offering more details. We also indicated our intent
to submit our research on the vulnerability to USENIX
Security 2017 in order to ensure Intel was alerted before
it became public. We did not receive a response.

7 Conclusion

PRIME+ABORT leverages Intel TSX primitives to yield
a high-precision, cross-core cache attack which does not
rely on timers, negating several important classes of de-
fenses. We have shown that leveraging TSX improves
the efficiency of algorithms for dynamically generating
eviction sets; that PRIME+ABORT has higher accuracy
and speed on Intel’s Skylake architecture than previous
L3 PRIME+PROBE attacks while producing fewer false
positives; and that PRIME+ABORT can be successfully
employed to recover secret keys from a T-table imple-
mentation of AES. Additionally, we presented new evi-
dence useful for all cache attacks regarding Intel’s Sky-
lake architecture: that it may differ from previous archi-
tectures in number of cache slices, and that it may use
different cache replacement policies for lines involved in
TSX transactions.

8 Acknowledgments

We thank our anonymous reviewers for their helpful ad-
vice and comments. We also especially thank Yuval

USENIX Association

26th USENIX Security Symposium 65



Yarom for his assistance in improving the quality of this
work.

This material is based in part upon work supported by
the National Science Foundation. Any opinions, find-
ings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not neces-
sarily reflect the views of the National Science Founda-
tion.

References

[1] CHIAPPETTA, M., SAVAS, E., AND YILMAZ, C. Real time de-
tection of cache-based side-channel attacks using hardware per-
formance counters. Applied Soft Computing 49 (2016), 1162—
1174.

[2] DENNING, P. J. Virtual memory. ACM Computing Surveys
(CSUR) 2,3 (1970), 153-189.
[3] DICE, D., HARRIS, T., KOGAN, A., AND LEV, Y. The influ-

ence of malloc placement on TSX hardware transactional mem-
ory, 2015. https://arxiv.org/pdf/1504.04640.pdf.

[4] GE, Q., YAROM, Y., COCK, D., AND HEISER, G. A sur-
vey of microarchitectural timing attacks and countermeasures on
contemporary hardware. Journal of Cryptographic Engineering
(2016).

GODFREY, M. On the prevention of cache-based side-channel
attacks in a cloud environment. Master’s thesis, Queen’s Univer-
sity, 2013.

GOOGLE. Google Chrome Native Client SDK release notes.
https://developer.chrome.com/native-client/sdk/release-notes.

[5

=

[6

=

[7

—

GRUSS, D., MAURICE, C., WAGNER, K., AND MANGARD, S.
Flush+Flush: a fast and stealthy cache attack. In Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA),
Proceedings of the 13th Conference on (2016).

[8] GRUSS, D., SPREITZER, R., AND MANGARD, S. Cache tem-
plate attacks: automating attacks on inclusive last-level caches.
In Proceedings of the 24th USENIX Security Symposium (2015).

[9] GuaN, L., LIN, J., Luo, B., JING, J., AND WANG, J. Protect-
ing private keys against memory disclosure attacks using hard-
ware transactional memory. In Security and Privacy (SP), 2015
IEEE Symposium on (2015).

[10] GUANCIALE, R., NEMATI, H., BAUMANN, C., AND DAM, M.
Cache storage channels: alias-driven attacks and verified counter-
measures. In Security and Privacy (SP), 2016 IEEE Symposium
on (2016).

[11] GULLASCH, D., BANGERTER, E., AND KRENN, S. Cache
games - bringing access-based cache attacks on AES to practice.
In Security and Privacy (SP), 2011 IEEE Symposium on (2011).

[12] HAMMARLUND, P., MARTINEZ, A. J., BATWA, A. A., HILL,
D. L., HALLNOR, E., JIANG, H., DIXON, M., DERR, M.,
HUNSAKER, M., KUMAR, R., ET AL. Haswell: The fourth-
generation intel core processor. [EEE Micro 34, 2 (2014), 6-20.

[13] HAMMOND, L., WONG, V., CHEN, M., CARLSTROM, B. D.,
DAvIs, J. D., HERTZBERG, B., PRABHU, M. K., WIJAYA, H.,
KozYRAKIS, C., AND OLUKOTUN, K. Transactional memory
coherence and consistency. In ACM SIGARCH Computer Archi-
tecture News (2004), vol. 32, IEEE Computer Society, p. 102.

[14] HERLIHY, M., AND MoSS, J. E. B. Transactional memory:
Architectural support for lock-free data structures, vol. 21. ACM,
1993.

[15] Hu, W.-M. Reducing timing channels with fuzzy time. Journal
of Computer Security 1, 3-4 (1992), 233-254.

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

inci, M. S., GULMEZOGLU, B., IRAZOQUI, G., EISENBARTH,
T., AND SUNAR, B. Cache attacks enable bulk key recovery
on the cloud. In Cryptographic Hardware and Embedded Sys-
tems (CHES), Proceedings of the 18th International Conference
on (2016).

INTEL. Desktop 4th generation Intel Core processor family, desk-
top Intel Pentium processor family, and desktop Intel Celeron
processor family: specification update. Revision 036US, page
67.

INTEL. Improving real-time performance by utilizing Cache Al-
location Technology. Tech. rep., Intel Corporation, 2015.

INTEL. Intel 64 and IA-32 architectures software developer’s
manual. September 2016.

INTEL. ARK — your source for Intel product specifications, Jan
2017. https://ark.intel.com.

IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. S$A: a
shared cache attack that works across cores and defies VM sand-
boxing - and its application to AES. In Security and Privacy (SP),
2015 IEEE Symposium on (2015).

IRAZOQUI, G., EISENBARTH, T., AND SUNAR, B. Systematic
reverse engineering of cache slice selection in Intel processors.
In Digital System Design (DSD), 2015 Euromicro Conference on
(2015).

IRAZOQUL, G., INCI, M. S., EISENBARTH, T., AND SUNAR, B.
Lucky 13 strikes back. In Information, Computer, and Commu-
nications Security, Proceedings of the 10th ACM Symposium on
(2015).

JANG, Y., LEE, S., AND KiM, T. Breaking kernel address space
layout randomization with Intel TSX. In Computer and Com-
muncications Security, Proceedings of the 23rd ACM Conference
on (2016).

KAYAALP, M., ABU-GHAZALEH, N., PONOMAREV, D., AND
JALEEL, A. A high-resolution side-channel attack on last-level
cache. In Design Automation Conference (DAC), Proceedings of
the 53rd (2016).

Kim, T., PEINADO, M., AND MAINAR-RUIZ, G. STEALTH-
MEM: system-level protection against cache-based side channel
attacks in the cloud. In Proceedings of the 21st USENIX Security
Symposium (2012).

KOHLBRENNER, D., AND SHACHAM, H. Trusted browsers for
uncertain times. In Proceedings of the 25th USENIX Security
Symposium (2016).

Liu, F., GE, Q., YAROM, Y., MCKEEN, F., Rozas, C.,
HEISER, G., AND LEE, R. B. CATalyst: Defeating last-
level cache side channel attacks in cloud computing. In High-
Performance Computer Architecture (HPCA), IEEE Symposium
on (2016).

Liu, F., YAROM, Y., GE, Q., HEISER, G., AND LEE, R. B.
Last-level cache side-channel attacks are practical. In Security
and Privacy (SP), 2015 IEEE Symposium on (2015).

MARSHALL, A., HOWARD, M., BUGHER, G., AND HARDEN,
B. Security best practices for developing Windows Azure appli-
cations. Tech. rep., Microsoft Corp., 2010.

MARTIN, R., DEMME, J., AND SETHUMADHAVAN, S. Time-
Warp: rethinking timekeeping and performance monitoring
mechanisms to mitigate side-channel attacks. In International
Symposium on Computer Architecture (ISCA), Proceedings of the
39th Annual (2012).

MAURICE, C., LE SCOUARNEC, N., NEUMANN, C., HEEN,
O., AND FRANCILLON, A. Reverse engineering Intel last-level
cache complex addressing using performance counters. In Re-
search in Attacks, Intrusions, and Defenses (RAID), Proceedings
of the 18th Symposium on (2015).

66 26th USENIX Security Symposium

USENIX Association



[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

OREN, Y., KEMERLIS, V. P., SETHUMADHAVAN, S., AND
KEROMYTIS, A. D. The spy in the sandbox: practical cache
attacks in javascript and their implications. In Proceedings of the
22nd ACM SIGSAC Conference on Computer and Communica-
tions Security (2015).

OsVIK, D. A., SHAMIR, A., AND TROMER, E. Cache attacks
and countermeasures: the case of AES. In Proceedings of the
2006 Cryptographers’ Track at the RSA Conference on Topics in
Cryptology (2006).

PERCIVAL, C. Cache missing for fun and profit. In BSDCan
2005 (2005).

RAJWAR, R., AND GOODMAN, J. R. Transactional lock-free
execution of lock-based programs. In Proceedings of the 10th
International Conference on Architectural Support for Program-
ming Languages and Operating Systems (2002).

SHAVIT, N., AND TOUITOU, D. Software transactional memory.
Distributed Computing 10, 2 (1997), 99-116.

TULLSEN, D. M., EGGERS, S. J., AND LEVY, H. M. Simulta-
neous multithreading: Maximizing on-chip parallelism. In ACM
SIGARCH Computer Architecture News (1995), vol. 23, ACM,
pp. 392-403.

VATTIKONDA, B. C., DAS, S., AND SHACHAM, H. Eliminating
fine-grained timers in Xen. In Cloud Computing Security Work-
shop (CCSW), Proceedings of the 3rd ACM (2011).

WANG, Z., AND LEE, R. B. New cache designs for thwart-
ing software cache-based side channel attacks. In International
Symposium on Computer Architecture (ISCA), Proceedings of the
34th (2007).

WANG, Z., QIAN, H., L1, J., AND CHEN, H. Using restricted
transactional memory to build a scalable in-memory database. In
European Conference on Computer Systems (EuroSys), Proceed-
ings of the Ninth (2014).

YAROM, Y. Mastik: a micro-architectural side-channel toolkit.
http://cs.adelaide.edu.au/~yval/Mastik. Ver-
sion 0.02.

YAROM, Y., AND FALKNER, K. FLUSH+RELOAD: a high-
resolution, low-noise, L3 cache side-channel attack. In Proceed-
ings of the 23rd USENIX Security Symposium (2014).

YAROM, Y., GE, Q., Liu, F., LEE, R. B., AND HEISER, G.
Mapping the Intel last-level cache, 2015. http://eprint.iacr.org.

YEN, L., BOBBA, J., MARTY, M. R., MOORE, K. E., VoLOS,
H., HILL, M. D., SWIFT, M. M., AND WoOD, D. A. Logtm-se:
Decoupling hardware transactional memory from caches. In High
Performance Computer Architecture, 2007. HPCA 2007. IEEE
13th International Symposium on (2007), IEEE, pp. 261-272.

ZHANG, T., ZHANG, Y., AND LEE, R. B. Cloudradar: a real-
time side-channel attack detection system in clouds. In Research
in Attacks, Intrusions, and Defenses (RAID), Proceedings of the
19th Symposium on (2016).

USENIX Association

26th USENIX Security Symposium 67






On the effectiveness of mitigations
against floating-point timing channels

David Kohlbrenner*
UC San Diego

Abstract

The duration of floating-point instructions is a known
timing side channel that has been used to break Same-
Origin Policy (SOP) privacy on Mozilla Firefox and the
Fuzz differentially private database. Several defenses
have been proposed to mitigate these attacks.

We present detailed benchmarking of floating point
performance for various operations based on operand
values. We identify families of values that induce slow
and fast paths beyond the classes (normal, subnormal,
etc.) considered in previous work, and note that different
processors exhibit different timing behavior.

We evaluate the efficacy of the defenses deployed (or
not) in Web browsers to floating point side channel at-
tacks on SVG filters. We find that Google Chrome,
Mozilla Firefox, and Apple’s Safari have insufficiently
addressed the floating-point side channel, and we present
attacks for each that extract pixel data cross-origin on
most platforms.

We evaluate the vector-operation based defensive
mechanism proposed at USENIX Security 2016 by Rane,
Lin and Tiwari and find that it only reduces, not elimi-
nates, the floating-point side channel signal.

Together, these measurements and attacks cause us to
conclude that floating point is simply too variable to use
in a timing security sensitive context.

1 Introduction

The time a modern processor takes to execute a
floating-point instruction can vary with the instruction’s
operands. For example, subnormal floating-point val-
ues consumed or produced by an instruction can induce
an order-of-magnitude execution slowdown. In 2015,
Andrysco et al. [2] exploited the slowdown in subnor-
mal processing to break the privacy guarantees of a dif-
ferentially private database system and to mount pixel-
stealing attacks against Firefox releases 23-27. In a
pixel-stealing attack, a malicious web page learns the
contents of a web page presented to a user’s browser
by a different site, in violation of the browser’s origin-
isolation guarantees.

Andrysco et al. proposed mitigations against floating-
point timing attacks:

*dkohlbre@cs.ucsd.edu
thovav@cs.ucsd.edu

Hovav Shacham!
UC San Diego

e Replace floating-point computations with fixed-
point computations relying on the processor’s inte-
ger ALU.

e Use processor flags to cause subnormal values to be
treated as zero, avoiding slowdowns associated with
subnormal values.

e Shift sensitive floating-point computations to the
GPU or other hardware not known to be vulnerable.

At USENIX Security 2016, Rane, Lin, and Tiwari [15]
proposed additional mitigations:

e Use program analysis to identify floating-point op-
erations whose inputs cannot be subnormal; these
operations will not experience subnormal slow-
downs.

e Run floating-point operations whose inputs might
be subnormal on the the processor’s SIMD unit,
loading the a SIMD lane with a dummy operation
chosen to induce consistent worst-case execution
time.

Rane, Lin, and Tiwari implemented their proposed
mitigations in a research prototype Firefox browser.
Variants of the Andrysco et al. mitigations have been
adopted in the latest versions of Firefox, Safari, and
Chrome.

We evaluate how effective the proposed mitigations
are at preventing pixel stealing. We find that, other than
avoiding the floating point unit altogether, the proposed
mitigations are not effective at preventing pixel steal-
ing —at best, they reduce the rate at which pixels can
be read. Our attacks make use of details of floating point
performance beyond the subnormal slowdowns observed
by Andrysco et al.

Our contributions are as follows:

1. We give a more refined account of how floating-
point instruction timing varies with operand values
than did Andrysco et al. In particular, we show that
operands with a zero exponent or significand induce
small but exploitable speedups in many operations.

2. We evaluate the SIMD defense proposed by Rane,
Lin, and Tiwari, giving strong evidence that proces-
sors execute the two operations sequentially, not in
parallel.

USENIX Association

26th USENIX Security Symposium 69



Format  Size Subnormal Normal Normal
Name Bits Min Min Max
Half 16  6.0e—8 6.10e—5 6.55¢4
Single 32 1.4e—45 1.18¢—38 3.40e38
Double | 64  4.9¢—324 2.23¢—308 1.79¢308

Figure 1: IEEE-754 Format type ranges (Reproduced
with permission from [2])

3. We revisit browser implementations of SVG filters
two years after the Andrysco et al. attacks. Despite
attempts at remediation, we find that the latest ver-
sions of Chrome, Firefox, and Safari are all vulner-
able to pixel-stealing attacks.

4. We show that subnormal values induce slowdowns
in CUDA calculations on modern Nvidia GPUs.

Taken together, our findings demonstrate that the float-
ing point units of modern processors are more complex
than previously realized, and that defenses that seek to
take advantage of that unit without creating timing side
channels require careful evaluation.

[fl——2 —]] 22 |

Exponent Significand

S N\

(—1)%9m x 2ewponent—I127 s 1 significand

Figure 2: IEEE-754 single precision float

Ethics and disclosure. We have disclosed the pixel-
stealing attacks we found to Apple, Google, and Mozilla.
Mozilla has already committed to deploying a patch. We
will give Apple and Google adequate time to patch be-
fore publishing our findings.

2 Background

Many floating point instructions are known to ex-
hibit performance differences based on the operands.
Andrysco et al. [2] leveraged these timing differences to
defeat the claimed privacy guarantees of two systems:
Mozilla Firefox (versions 23-27) and the Fuzz differen-
tially private database. Andrysco et al.’s attack on Fire-
fox, and the attacks on browsers we present, use SVG
filter timing to break the Same-Origin Policy, an idea in-
troduced by Stone [16] and Kotcher et al. [13].

2.1 IEEE-754 floating point

For the purposes of this paper we will refer to floating
point, floats, and doubles to mean the IEEE-754 floating
point standard (see Figure 1) unless otherwise specified.

The floating point unit (FPU) accessed via Intel’s sin-
gle scalar Streaming SIMD (Single Instruction, Multiple
Data) Extensions (SSE) instructions adheres to this stan-
dard on all processors we discuss. We omit discussion of
the x87 legacy FPU that is still accessible on a modern
x86_64 processor.

The IEEE-754 floating point standard is the most com-
mon floating point implementation available on com-
modity CPUs. Figure 2 shows the layout of the IEEE-
754 single precision float and the value calculation.
Note that the actual exponent used in the 2“7 portion
is exponent — bias where the bias is half the unsigned
maximum value of the exponent’s range. This format al-
lows for the full range of positive and negative exponent
values to be represented easily. If the exponent has any
non 0 bits the value is normal, and the significand has an
implicit leading 1 bit. If the exponent is all O bits (i.e.,
exponent — bias = —bias) then the value is subnormal,
and there is no implicit leading 1 bit. As shown in fig-
ure 1 this means that subnormal values are fantastically
small. Subnormal values are valuable because they en-
able gradual underflow for floating point computations.
Gradual underflow guarantees that given any two floats,
a # b, there exists a floating point value ¢ # 0 that is
the difference a — b = c. The use of this property is
demonstrated by the simple pseudocode “if a # b then
x / (a—b),” which does not expect to generate an infinity
by dividing by zero. Without subnormals the IEEE-754
standard could not guarantee gradual underflow for nor-
mals and a number of adverse scenarios such as the one
above can occur. As Andrysco et al. [2] observe, subnor-
mal values do not frequently arise, and special hardware
or microcode is used to handle them on most CPUs.

Andrysco et al.’s attacks made use of the substantial
timing differences between operations on subnormal (or
denormal) floating point values and on normal floating
point values. See Figure 8 for a list of non-normal IEEE-
754 value types. In this paper we present additional
benchmarks that demonstrate that (smaller) timing dif-
ferences arise from more than just subnormal operands.
Section 3 describes our benchmarking results.

2.2 SVG floating point timing attacks

Andrysco et al. [2] presented an attack on Firefox SVG
filters that is very similar to the attacks detailed later in
this paper. Thus, we provide an overview of how that
attack works for reference.

Figure 3 shows the workflow of the SVG timing at-
tack.

1. The attacking page creates a large <iframe> of
the victim page inside of a container <div>

2. The container <div> is sized to 1x1 pixel
and can be scrolled to the current target pixel

70 26th USENIX Security Symposium

USENIX Association



Browser Window

Target pixel in red

Target

|
|
|
|
|
|
|
(1) iframe of target page |
i

-————

pixel white

(3) Pixel multiplication <div>

Y«

(4) SVG Filter

Filtered rendering

Target

@ pixel black

Figure 3: Cross-Origin SVG Filter Pixel Stealing Attack in Firefox, reproduced from [2] with permission

0.0 1.0 lel0 le+30 1e-30  le-41 le-42 256 257
Cycle count

0.0 6.57  6.57 6.60 6.58 6.59 6.57 6.59 6.58 6.59

1.0 6.59  6.59 6.59 6.57 6.56 | 130.90 130.85 6.58 6.57

lel0 | 6.57  6.59 6.58 6.59 6.56 | 130.90 13091 6.58 6.58

le+30 | 6.59  6.56 6.58 6.59 6.57 | 13090 13091 6.59 6.58

le-30 | 6.57  6.59 6.59 6.57 6.59 6.59 6.58 6.58 6.57
le-41 | 6.56 1 130.90 130.89 130.87 6.56 6.57 6.57 130.96 130.90
le-42 | 6.59 | 130.89 130.88 130.90 6.57 6.58 6.57 130.85 130.89

256 | 6.58  6.58 6.55 6.57 6.58 | 13092 130.88  6.57 6.56

257 | 6.56  6.55 6.59 6.58 6.57 | 130.89 130.88  6.57 6.58

Figure 4: Multiplication timing for single precision floats on Intel i5-4460

on the <iframe> using the scrollTop and
scrollLeft properties.

3. The target pixel is duplicated into a larger container
<div> using the -moz—-element CSS property.
This creates a <div> that is arbitrarily sized and
consists only of copies of the target pixel.

4. The SVG filter that runs in variable time
(feConvolveMatrix) is applied to the the pixel
duplication <div>

5. The rendering time of the filter is measured us-
ing requestAnimationFrame to get a call-
back when the next frame is completed and
performance.now for high resolution timing.

6. The rendering time is compared to the threshold de-
termined during the learning phase and categorized
as white or black.

Since the targeted <iframe> and the attacker page
are on different origins, the attacking page should not
be able to learn any information about the <iframe>’s

content. However, since the rendering time of the SVG
filter is visible to the attacker page, and the rendering
time is dependent on the <i frame> content, the attack-
ing page is able to violate this policy and learn pixel in-
formation.

3 New floating point timing observations

Andryso et al. [2] presented a number of timing varia-
tions in floating point computation based on subnormal
and special value arguments. We expand this category to
note that any value with a zero significand or exponent
exhibits different timing behavior on most Intel CPUs.

Figure 9 shows a summary of our findings for our pri-
mary test platform running an Intel i5-4460 CPU. Unsur-
prisingly, double precision floating point numbers show
more types of, and larger amounts of, variation than sin-
gle precision floats.

Figures 4, 5, 6, and 7 are crosstables showing average
cycle counts for division and multiplication on double
and single precision floats on the Intel i5-4460. We re-
fer to the type of operation (add, subtract, divide, etc) as
the operation, and the specific combination of operands

USENIX Association

26th USENIX Security Symposium 71



Divisor

Dividend 0.0 1.0 lel0 le+30  1e-30 le-41 le-42 256 257
Cycle count
0.0 6.55 6.50 6.58 6.57 6.54 6.57 6.56 6.58 6.59
1.0 6.58 6.58 6.58 6.57 6.57 152.59 152.57 6.59 6.60
lel0 6.58 6.58 6.58 6.59 6.58 152.57 152.56 6.56 6.58
le+30 6.57 6.57 6.59 6.57 6.56 152.59 152.51 6.58 6.60
le-30 6.57 6.57 155.37 6.57 6.58 152.54 152.59 6.57 6.54
le-41 6.58  149.75 6.57 6.56 15256 152.57 15259 149.72 152.55
le-42 6.59 | 149.72 6.56 6.56 152.60 152.56 152.49 149.74 152.54
256 6.58 6.60 6.56 6.60 6.55 152.53 152.70 6.58 6.58
257 6.58 6.58 6.57 6.57 6.54 152.59 152.51 6.57 6.55
Figure 5: Division timing for single precision floats on Intel i5-4460
0.0 1.0 lel0 1e+200 1e-300 1le-42 256 257 1e-320
Cycle count
0.0 6.59 6.56 6.59 6.58 6.58 6.57 6.58 6.59 6.57
1.0 6.57 6.59 6.55 6.57 6.57 6.56 6.56 6.56 130.89
lel0 6.55 6.55 6.56 6.58 6.56 6.56 6.56 6.57 130.95
1e+200 | 6.55 6.57 6.56 6.58 6.59 6.53 6.55 6.58 130.92
1e-300 | 6.51 6.57 6.56 6.59 6.57 6.57 6.55 6.58 6.54
le-42 | 6.55 6.57 6.55 6.57 6.55 6.58 6.58 6.58 6.55
256 6.58 6.53 6.56 6.54 6.56 6.56 6.58 6.57 130.94
257 6.59 6.57 6.60 6.56 6.58 6.56 6.57 6.59 130.90
le-320 | 6.59 | 130.90 130.92 130.94 6.59 6.58 | 130.95 130.91 6.56

Figure 6: Multiplication timing for double precision floats on Intel i5-4460

and operation as the computation. Cells highlighted in
blue indicate computations that averaged 1 cycle higher
than the mode across all computations for that operation.
Cells in orange indicate the same for 1 cycle less than
the mode. Bold face indicates a computation that had a
standard deviation of > 1 cycle (none of the tests on the
Intel 15-4460 had standard deviations above 1 cycle). All
other crosstables in this paper follow this format unless
otherwise noted.

We run each computation (operation and argument
pair) in a tight loop for 40,000,000 iterations, take the to-
tal number of CPU cycles during the execution, remove
loop overheads, and find the average cycles per compu-
tation. This process is repeated for each operation and
argument pair and stored. Finally, we run the entire test-
ing apparatus 10 times and store all the results. Thus, we
execute each computation 400,000,000 times split into
10 distinct samples. This apparatus measures the steady-
state execution time of each computation.

The entirety of our data across multiple generations of
Intel and AMD CPUs, as well as tools and instructions
for generating this data, are available at https://cs
eweb.ucsd.edu/~dkohlbre/floats.

It is important to note that the Andrysco et al. [2] fo-
cused on the performance difference between subnormal
and normal operands, while we observe that there are ad-
ditional classes of values worth examining. The specific
differences on powers-of-two are more difficult to detect
with a naive analysis as they cause a slight speedup when
compared to the massive slowdown of subnormals.

4 Fixed point defenses in Firefox

In version 28 Firefox switched to a new set of SVG fil-
ter implementations that caused the attack presented by
Andrysco et al. [2] to stop functioning. Many of these
implementations no longer used floating point math, in-
stead using their own fixed point arithmetic.

As the feConvolveMatrix implementation now
consists entirely of integer operations, we cannot use
floating point timing side channels to exploit it. We in-
stead examined a number of the other SVG filter imple-
mentations and found that several had not yet been ported
to the new fixed point implementation, such as the light-
ing filters.

72 26th USENIX Security Symposium

USENIX Association



Divisor

Dividend 0.0 1.0 lel0  1e+200 1e-300 le-42 256 257 le-320
Cycle count

0.0 6.56  6.59 6.58 6.55 6.57 6.58 6.57 6.57 6.59
1.0 6.58  6.58 12.19 12.17 12.22 12.24 6.57 12.24 | 165.76
lel0 6.58  6.55 12.25 12.20 12.23 12.25 6.57 12.22 | 165.81
1e+200 | 6.60  6.60 12.25 12.20 12.22 12.22 6.58 12.24 | 165.79
1e-300 | 6.59 657 17522 12.24 12.17 12.22 6.52 12.23 = 165.83
le-42 6.60 6.53 12.23 12.22 12.21 12.24 6.58 12.21  165.79
256 6.57  6.55 12.24 12.20 12.20 12.20 6.53 12.22  165.79
257 6.55 6.58 12.24 12.22 1224 12.23 6.56 12.21 | 165.80
le-320 | 6.56 150.73 165.79 6.59 165.78 165.76 150.66 165.80 165.78

Figure 7: Division timing for double precision floats on Intel i5-4460

Value Exponent Significand
Zero All Zeros Zero
Infinity All Ones Zero
Not-a-Number | All Ones Non-zero
Subnormal All Zeros Non-zero

Figure 8: IEEE-754 Special Value Encoding (Repro-
duced with permission from [2])

can generate intermediate values requiring the upper 32-
bits. Thus, none of the filters we examined using fixed
point had any instruction data timing based side chan-
nels. Handling the full range of floating point function-
ality in a fixed point and constant time way is expensive
and complex, as seen in [2].

A side effect of a simple implementation is that it can-
not handle more complex operations that could induce
NaNs or infinities and must process them.

Operation ‘ Default FTZ & DAZ

-ffast-math

4.2 Lighting filter attack

Single Precision
Add/Sub

Mul

Div

Sqrt

Zwvwn |l
|
[

Our Firefox SVG timing attack makes use of the
feSpecularLighting lighting model with an
fePointLight. This particular filter in this
configuration is not ported to fixed point, and
performs a scaling operation over the input al-
pha channel. The surfaceScale property in

Double Precision
Add/Sub

Mul

Div

Sqrt

Z zZ
Z Z

2w

feSpecularLighting controls this scaling opera-
tion and can be set to an arbitrary floating point value
when creating the filter. With this tool, we perform the
following attack similar to the one in section 2.2. We
need only to modify step 4 as seen below to enable the

Figure 9: Observed sources of timing differences under
different settings on an Intel i5-4460. — : no variation, S
: Subnormals are slower, Z : all zero exponent or signifi-
cand values are faster, M : mixture of several effects

4.1 Fixed point implementation

The fixed point implementation used in Firefox SVG fil-
ters is a simple 32-bit format with no Not-a-Number, In-
finity, or other special case handling. Since they make
use of the standard add/subtract/multiply operations for
32-bit integers, we know of no timing side channels
based on operands for this implementation. Integer di-
vision is known to be timing variable based on the up-
per 32-bits of 64-bit operands, but none of the filters

use of the new lighting filter attack.

1. Steps 1-3 are the same as section 2.2.

4.1. Apply an feColorMatrix to the pixel mul-
tiplier <div> that sets the alpha channel based en-
tirely on the input color values. This sets the alpha
channel to 1 for a black pixel input, and O for a white
pixel input.

4.2. Apply the timing variable
feSpecularLighting filter with a sub-
normal surfaceScale and an attached

fePointLight as the timing vulnerable fil-
ter.

5. Steps 5 and 6 are the same as section 2.2.

USENIX Association

26th USENIX Security Symposium 73



In this case, we differentiate between n? multiplica-
tions of subnormal x 0 (black) vs subnormal x 1 (white)
where 7 is the width/height of the copied pixel <div>.
Since our measurements show a difference of 7 cycles vs
130 cycles for each multiplication (see Figure 4), we can
easily detect this difference once we scale n enough that
the faster white pixel case takes longer than 16ms (circa
n = 200) in our tests. We need to cross this 16ms thresh-
old as frames take a minimum of 16ms to render (60fps)
on our test systems.

In our tests on an Intel i5-4460 with Firefox 49+ we
were able to consistently obtain > 99% accuracy (on
black and white images) at an average of 17ms per pixel.
This is approximately as fast as an attack using this
method can operate, since Firefox animates at a capped
60fps on all our test systems.

We notified Mozilla of this attack and they are
working on a comprehensive solution. Firefox has
patched the surfaceScale based attack on the
feSpecularLighting filter in Firefox 52 and as-
signed the attack CVE-2017-5407.

5 Safari

At the time of writing this paper, Safari has not im-
plemented any defensive mechanisms that hamper the
SVG timing attack presented in [2]. Thus, with a re-
work of the attack framework, we are able to mod-
ify the attack presented in Andrysco et al against the
feConvolveMatrix filter for Firefox 25 to work
against current Safari.

Webkit (Safari) uses its own SVG filter implementa-
tions not used in other browsers. None of the SVG filters
had GPU support at the time of this paper, but some CSS
transforms could be GPU accelerated.

The Webkit feConvolveMatrix filter is im-
plemented in the obvious way; multiply each ker-
nel sized pixel region against the kernel element-by-
element, sum, and divide the result by the divisor. We
can therefore cause operations with Oxsubnormal or
normal x subnormal depending on the target pixel. Since
as we have seen these can a Oxsubnormal can be 21 x
faster than a subnormal times a normal, we can easily de-
tect the difference between executing over a black pixel
or a white pixel.

We have disclosed the attack to Apple, and discussed
options for entirely disabling cross-origin SVG filtering.
Apple is working to address the issue.

We have removed details on the needed technical mod-
ifications to the attack for Safari as a patch is not yet
available for all users. A full description of the modifica-
tions required for the Safari variant will be released upon
a patch being available.

6 DAZ/FTZ FPU flag defenses in Chrome

Google Chrome implements CSS and SVG filter support
through the Skia ! graphics library. As of July of 2016,
when executing Skia filters on the CPU, Chrome enables
an FPU control flag based countermeasure to timing at-
tacks. Specifically, Chrome enables the Flush-to-Zero
(FTZ) and Denormals-are-Zero (DAZ) flags.

These flags are two of the many FPU control flags that
can be set. Flags determine options such as when to set
a floating point exception, what rounding options to use,
and how to handle subnormals. The FTZ flag indicates
to the FPU that whenever it would produce a subnormal
as the result of a calculation, it instead produces a zero.
The DAZ flag indicates to the FPU that any subnormal
operand should be treated as if it were zero in the com-
putation. Generally these flags are enabled together as a
performance optimization to avoid any use or generation
of subnormal values. However, these flags break strict
IEEE-754 compatibility and so some compilers do not
enable them without specific optimization flags. In the
case of Chrome, FTZ and DAZ are enabled and disabled
manually in the Skia rendering path.

6.1 Attacking Chrome

We present a cross-origin pixel stealing attack for Google
Chrome using the feConvolveMatrix filter. As in
our previous attacks, we observe the timing differences
between white and black pixels rendered with a spe-
cific convolution matrix. This attack works without any
changes on all major platforms for Chrome that support
GPU acceleration. We have tested it on Windows 10 (In-
tel 17-6700k), Ubuntu Linux 16.10 (Intel 15-4460), OSX
10.11.6 (Intel i7-3667U Macbook Air), and a Chrome-
book Pixel LS ChromeOS 55.0.2883.105 (i7-5500U) on
versions of Chrome from 54-56. The attack is very simi-
lar to the one detailed in section 2.2 and figure 3.

Unlike Firefox, we cannot trivially supply subnormal
value like “le-41”, as the Skia SVG float parsing code
treats them as 0s. The float parsing in Skia attempts to
avoid introducing subnormal values by disallowing ex-
ponents < —37. Thus we use the value 0.0000001e — 35
or simply the fully written out form, which is correctly
parsed into a subnormal value. Since the FTZ and DAZ
flags are set only on entering the Skia rendering code, the
parsing is not subject to these flags and we can always
successfully generate subnormals at parse time.

The largest obstacle we bypass is the use of the FTZ
and DAZ control flags. These flags reduce the precision
and representable space of floats, but prevent any perfor-
mance impact caused by subnormals for these filters in
our experiments. As shown in section 3 even with these
flags enabled the div and sgrt operations still have
timing variation. Unfortunately none of the current SVG
filter implementations we examined have tight division

74 26th USENIX Security Symposium

USENIX Association



<div id="pixel" style="width:500px;height:500px;overflow:hidden">
<div id="scroll" style="width:1lpx; height:1lpx; overflow:hidden; transform:scale(600.0);

margin:249px auto">

<iframe id="frame" position="absolute" frameborder="0" scrolling="no" src="TARGET_URL"/>

</div>
</div>

Figure 10: HTML and style design for the pixel multiplying structure used in our attacks on Safari and Chrome

Divisor
Dividend 0.0 1.0 lel0 1e4+200 1e-300 1le-42 256 257  1e-320
Cycle count

0.0 6.58 6.59 6.58 6.55 6.59 6.54 654 6.56 6.56
1.0 6.55 6.55 1223  12.19 12.22 1222 6.56 1225  6.56
lelO 6.58 6.59 1222 1222 1221 1221 6.59 1223 6.59
le+200 | 6.57 659 1222  12.20 12.17 1221 6.58 12.17  6.57
1e-300 | 6.59 6.57 12.18 12.23 1224 1222 6.59 1224  6.57
le-42 6.58 6.56 1221  12.25 12.23  12.18 6.56 12.21 6.58
256 6.57 6.60 1220 12.22 1224 1224 6.57 1223  6.54
257 6.57 6.58 1222 1223 1225 1220 6.57 1223  6.58
1e-320 | 6.57 6.58 6.60 6.51 6.59 6.57 6.58 6.55 6.58

Figure 11: Division timing for double precision floats on Intel i5-4460+FTZ/DAZ

loops over doubles, or tight square root operations over
floats. Thus, our attack must circumvent the use of the
FTZ and DAZ flags altogether.

Chrome enables the FTZ and DAZ control flags when-
ever a filter is set to run on the CPU, which disallows
our Firefox or Safari attacks from applying directly to
Chrome. However, we found that the FTZ and DAZ flags
are not set when a filter is going to execute on the GPU.
This would normally only be useful for a GPU-based at-
tack but we can force the feConvolveMatrix filter
to abort from GPU acceleration at the last possible mo-
ment and fall back to the CPU implementation by having
a kernel matrix over the maximum supported GPU size
of 36 elements. Chrome does not enable the FTZ and
DAZ flags when it executes this fallback, allowing our
timing attack to use subnormal values.

We force the target <diwv> to start on the GPU render-
ing path by applying a CSS transform:rotateY ()
to it. This is a well known trick for causing future anima-
tions and filters to be performed on the GPU, and it works
consistently. Without this, the feConvolveMatrix
GPU implementation would never fire, as it will not
choose the GPU over the CPU on its own. It is only be-
cause of our ability to force CPU fallback with the FTZ
and DAZ flags disabled that allows our CPU Chrome at-
tack to function.

Note that even if FTZ/DAZ are enabled in all cases
there are still scenerios that show timing variation as seen
in figures 11 and 9. Chrome’s Skia configuration cur-

rently uses single precision floats, and thus only need
avoid sqrt operations as far as we know. However, any
use of double precision floats will additionally require
avoidance of division. We did not observe any currently
vulnerable uses of single precision sqrt, or of double pre-
cision floating point operations in the Skia codebase.

We notified Google of this attack and a fix is in
progress.

6.2 Frame timing on Chrome

An additional obstacle to our Chrome attack was obtain-
ing accurate frame render times. Unlike on Firefox or
Safari, adding a filter to a <diwv>’s style and then calling
getAnimationFrame is insufficient to be sure that
the time until the callback occurs will accurately repre-
sent the rendering time of the filter. In fact, the frame
that the filter is actually rendered on differs by platform
and is not consistent on Linux. We instead run algorithm
1 to get the approximate rendering time of a given frame.
Since we only care about the relative rendering time be-
tween white and black pixels, the possibly extra time in-
cluded doesn’t matter as long as it is moderately consis-
tent. This technique allowed our attack to operate on all
tested platforms without modification.

7 Revisiting the effectiveness of Escort

Escort [15] proposes defenses against multiple types of
timing side channels, notably a defense using SIMD vec-

USENIX Association

26th USENIX Security Symposium 75



Result: Duration of SVG filter rendering
total_duration = Oms;
long_frame_seen = False;
while true do
/* Wait for next frame */
requestAnimationFrame;
if duration > 40ms then
/+ Long frame probably
containing the SVG
rendering occurred */
long_frame_seen = True;
total_duration += duration;
else
if long_frame_seen then
/+ A short frame after a
long frame */
return total_duration;
end

end
total_duration += duration;

end
Algorithm 1: How to measure SVG filter rendering
times in Chrome

tor operations to protect against the floating point attack
presented by Andrysco et al in [2].

Single Instruction, Multiple Data (SIMD) instructions
are an extension to the x86_64 ISA designed to improve
the performance of vector operations. These instructions
allow 1-4 independent computations of the same opera-
tion (divide, add, subtract, etc) to be performed at once
using large registers. By placing the first set of operands
in the top half of the register, and the second set of
operands in the bottom half, multiple computations can
be easily performed with a single opcode. Intel does not
provide significant detail about the execution of these in-
structions and does not provide guarantees about their
performance behavior.

7.1 Escort overview

Escort performs several transforms during compilation
designed to remove timing side channels. First, they
modify ’elementary operations’ (floating point math op-
erations for the purpose of this paper). Second, they per-
form a number of basic block linearizations, array access
changes, and branch removals to transform the control
flow of the program to constant time and minimize side
effects.

We do not evaluate the efficacy of the higher level con-
trol flow transforms and instead evaluate only the ele-
mentary operations.

Escort’s tool is to construct a set of dummy operands
(the escort) that are computed at the same time as the

Operation Default libdrag
Single Precision

Add/Sub - -
Mul S _
Div S zZ
Sqrt M Z
Double Precision

Add/Sub - -
Mul S -
Div M zZ
Sqrt M zZ

Figure 12: Timing differences observed for 1ibdrag vs
default operations on an Intel i5-4460. — : no variation, S
: Subnormals are slower, Z : all zero exponent or signifi-
cand values are faster, M : mixture of several effects

Operation Default libdrag

Single Precision
Add/Sub

Mul

Div

Sqrt

»nnwnnwn
|

Double Precision
Add/Sub

Mul

Div

Sqrt

»nwnnnwn

Figure 13: Timing differences observed for 1ibdrag
vs default operations on an AMD Phenom II X2 550. —
. no variation, S : Subnormals are slower, Z : all zero
exponent or significand values are faster, M : mixture of
several effects

secret operands to obscure the running time of the se-
cret operands. Escort places the dummy arguments in
one lane of the SIMD instruction, and the sensitive argu-
ments in another lane. Since the instruction only retires
when the full set of computations are complete, the run-
ning time of the entire operation is hypothesized to be
dependent only on the slowest operation. This is true if
and only if the different lanes are computed in parallel.
To obscure the running time of the sensitive operands,
Escort places two subnormal arguments in the dummy
lane of all modified operations under the assumption that
this will exercise the slowest path through the hardware.

Escort will replace most floating point operations it en-
counters. However, if it can prove (using the Z3 SMT
solver [4]) that the operation will never have subnormal
values as operands it declines to replace the operation.
This means that if a function filters out subnormals be-

76 26th USENIX Security Symposium

USENIX Association



Divisor

Dividend 0.0 1.0 lel0 1e+200 1e-300  1le-42 256 257 1e-320
Cycle count
0.0 186.46 186.48 186.50 186.44 186.42 186.49 186.50 186.48 186.51
1.0 186.45 186.48 19593 19594 19593 19586 186.48 195.87 186.48
lel10 186.51 186.49 19592 19590 19592 195.87 186.47 19586 186.46
1le+200 | 186.50 186.50 19590 19594 195.89 19591 186.46 19590 186.50
1e-300 186.48 186.44 19591 19588 19593 19592 186.53 19595 186.44
le-42 186.44 186.51 19592 19594 19587 19589 186.51 19593 186.47
256 186.49 186.49 19591 19591 19587 195.89 186.45 19591 186.44
257 186.46 186.47 19596 19592 19592 19596 18649 19598 186.45
1e-320 186.49 186.49 186.43 186.48 18649 186.49 186.50 186.52 186.46
Figure 14: Division timing for double precision floats on Intel i5-4460+Escort
Divisor
Dividend 0.0 1.0 1.0e-10  1.0e-323 1.0e-43 1.0e100 256 257
Runtime (Seconds)
0.0 10.09 10.08 10.08 10.08 10.08 10.08 10.08 10.10
1.0 10.08 10.08 10.55 10.08 10.55 10.55 10.08 = 10.55
1.0e-10 | 10.08 10.08 10.55 10.08 10.55 10.55 10.08 = 10.55
1.0e-323 | 10.08 10.08 10.08 10.08 10.08 10.08 10.08 10.08
1.0e-43 10.08 10.08 10.55 10.08 10.55 10.55 10.08 = 10.55
1.0e100 | 10.08 10.08 10.55 10.08 10.55 10.55 10.08 = 10.55
256 10.08 10.08 10.55 10.08 10.57 10.55 10.08 = 10.57
257 10.09 10.08 10.55 10.08 10.57 10.55 10.08 = 10.55

Figure 15: Division timing for double precision floats on Intel i5-4460 macro-test

fore performing computation, the computation will be
done with standard scalar floating point operations and
not vector operations. This results in significant perfor-
mance gains when applicable, as the scalar operations
can be two orders of magnitude faster than the subnormal
vector operations. The replacement operations consist of
hand-coded assembly contained in a library; 1ibdrag.

However, operations that do not receive subnormals
can still exhibit timing differences. As seen in figure 7
and summarized in figure 9 timing differences arise on
value types that can commonly occur (0, powers of 2,
etc). While significantly less obvious than the impact of
subnormals, these still constitute a potential timing side
channel. 1ibdrag can easily fix this, at serious perfor-
mance cost, by enabling the floating point replacements
for all floating point operations with no exceptions.

To determine if Escort closes floating point timing side
channel when enabled, we measured the timing behavior
of Escort’s 1ibdrag floating point operations, as well
as the end-to-end runtime of toy programs compiled un-
der Escort.

7.2 libdrag micro-benchmarks

For the micro-benchmarking of the 1ibdrag functions
we use a simple tool we developed for running timing
tests of library functions based on Intel’s recommenda-
tions for instruction timing. This is the same tool we
used to produce measurements for section 3.

We benchmarked each of libdrag’s functions
against a range of valid numbers on several different
CPUs. We do not present results for Not-a-Number
(NaN) or infinities.

7.2.1 Results on Intel i5-4460

Our results for the Intel 15-4460 CPU roughly correspond
to the variations presented in [15] (which tested on an In-
tel 17-2600) for 1ibdrag. We do not observe any mea-
surable timing variation in any add, multiply, or subtract
operations for single or double precision floating point.
We do observe notable timing differences based on argu-
ment values for single and double precision division and
square-root operations. The cross table results for dou-
ble precision division are shown in figure 14. Figure 12
summarizes the timing variations we observed.

For division, it appears that the numerator has no im-

USENIX Association

26th USENIX Security Symposium 77



pact on the running time of the computation. The de-
nominator shows variation based on if the significand or
exponent is all zero bits. When either portion is zero in
the denominator computations run consistently faster in
both single and double precision floating point. Differ-
ences observed range from 2% to 5% in contrast to the
2500% differences observed in section 3.

Square root shows a similar behavior, where if either
the significand or exponent is all O bits the computation
runs consistently faster. This matches the behavior seen
for many operations in scalar computations. (See figure
9)

An interesting outcome of this behavior is that subnor-
mal values cause a speedup under 11ibdrag rather than
the slowdown observed under scalar operations.

We speculate that this is the result of fast paths in the
microcode handling for vector operations. Using perfor-
mance counters we determined that all vector operations
containing a subnormal value execute microcode rather
than hardwired logic on the FPU hardware. As all val-
ues with a zero significand or exponent experienced a
speedup, we believe that the division and square root mi-
crocode handles these portions separately with a shortcut
in the case of zero. Intel did not release any details on the
cause of these timing effects when asked.

7.2.2 AMD Phenom II X2 550

Figure 13 summarizes our results on the AMD Phenom
I X2 550. As with the Intel i5-4460 we observe timing
variation in the AMD Phenom II X2 550. However, the
variation is now confined to addition and subtraction with
subnormal values. By examining the cycle times for each
operation in the default and 1ibdrag case we found
that the total cycle time for an escorted add or subtract is
approximately equal to the sum of the cycle counts for a
subnormal,subnormal operation and the test case. Thus,
we believe that the AMD Phenom II X2 550 is perform-
ing each operation sequentially and with the same hard-
ware or microcode as scalar operations for addition and
subtraction.

7.3 Escort compiled toy programs

For end-to-end tests we wrote toy programs that perform
a specified floating point operation an arbitrary number
of times, and compiled them under Escort and gcc. We
then use the Linux t ime utility to measure runtimes of
the entire program. We designed the test setup such that
each run of the test program performed the same value
parsing and setup steps regardless of the test values, with
only the values entering the computation differing be-
tween runs. We ran the target computation 160,000,000
times per execution, and ran each test 10 times. We see
the same effects as in our microbenchmarks. Figure 15

shows the crosstable for these results. Note that cells are
colorized if they differ by 2% rather than 1 cycle.

7.4 libdrag modified Firefox

We modified a build of Firefox 25 in consultation
with Rane et al [15] to match the version they tested.
Since multiply no longer shows any timing variation
in 1ibdrag we are restricted to observing a potential
< 2% difference in only the divide, which occurs once
per pixel regardless of the kernel. Additionally, since the
denominator is the portion controlled by the attacker and
the secret value is the numerator, we are not able to up-
date the pixel stealing attack for the modified Firefox 25.

The modifications to Firefox 25 were confined to hand
made changes to the feConvolveMatrix implemen-
tation targeted in [2]. We did not test other SVG filters
for vulnerability under the Escort/1ibdrag modifica-
tions.

Given the observed timing variations in the AMD Phe-
nom II X2 550 in section 7.2.2 we believe that multiple
SVG filters would be timing side channel vulnerable un-
der Escort on that CPU.

7.5 Escort summary

Unfortunately our benchmarks consistently demon-
strated a small but detectable timing difference for
libdrag’s vector operations based on operand values.
For our test Intel CPUs it appears that div and mul
exhibit timing differences under Escort. For our AMD
CPUs we observed variation only for add/sub. Addi-
tionally, these differences are no more than 5% as com-
pared to the 500% or more differences observed in scalar
operations. We have made Rane, Lin and Tiwari aware
of these findings.

The ’escort” mechanism can only serve as an effective
defense if vector operations are computed in parallel. In
all CPUs we tested the most likely explanation for the
observed timing difference is that vector operations are
executed serially when in microcode. As mentioned in
section 7.2.1 we know that any vector operation includ-
ing a subnormal argument is executed in microcode, and
all evidence supports the microcode executing vector op-
erations serially. Thus, absent substantial architectural
changes, we do not believe that the ’escort’ vector mech-
anism can close all floating point data timing channels.

8 GPU floating point performanace

In this section we discuss the results of GPU floating
point benchmarks, and the use of GPU acceleration in
SVG filters for Google Chrome.

8.1 Browser GPU support

All major browsers make use of GPU hardware accel-
eration to improve performance for various applications.
However, only two currently make use of GPUs for SVG

78 26th USENIX Security Symposium

USENIX Association



Divisor

Dividend 0.0 1.0 1el0 1e+30 1e-30 1le-41 1e-42 256 257
Cycle count
0.0 5.17 585 585 585 585 589 589 585 585
1.0 6.19 259 259 259 259 @ 864 864 259 259
lel0 6.1 259 259 259 596 864 864 259 259
le+30 6.19 259 259 259 596 864 864 259 259
le-30 6.19 259 782 6.51 259 | 840 840 259 259
le-41 6.19 1021 892 892 8.13 8.4l 841 1023 10.23
le-42 6.19 10.21 892 892 8.13 8.4l 841 1023 10.23
256 6.19 259 259 259 259 @ 864 864 259 259
257 6.1 259 259 259 259 | 864 864 259 259

Figure 16: Division timing for single precision floats on Nvidia GeForce GT 430

and CSS transforms; Safari and Chrome. Currently, Sa-
fari only supports a subset of CSS transformations on the
GPU, and none of the SVG transforms. Chrome supports
a subset of the CSS and SVG filters on the GPU. Firefox
intends to port filters to the GPU, but there is currently
no support.

8.2 Performance

We performed a series of CUDA benchmarks on an
Nvidia GeForce GT 430 to determine the impact of sub-
normal values on computation time. The results for divi-
sion are shown in figure 16. All other results (add, sub,
mul) were constant time regardless of the inputs..

As figure 16 shows, subnormals induce significant
slowdowns on divsion operations for single precision
floats. Unfortunately, no SVG filters implemented in
Chrome on the GPU perform tight division loops. Thus,
extracting timing differences from the occational divi-
sion they do perform is extremely difficult.

If a filter were found to perform tight division loops, or
a GPU that has timing variation on non-division opera-
tions were found, the same attacks as in previous sections
could be ported to the GPU accelerated filters.

We believe that even without a specific attack, the
demonstration of timing variation based on operand val-
ues in GPUs should invalidate “move to the GPU” as a
defensive strategy.

9 Related work

Felten and Schneider were the first to mount timing side-
channel attacks against browsers. They observed that re-
sources already present in the browser’s cache are loaded
faster than ones that must be requested from a server,
and that this can be used by malicious JavaScript to learn
what pages a user has visited [6]. Felten and Schneider’s
history sniffing attack was later refined by Zalewski [18].
Because many sites load resources specific to a user’s ap-

proximate geographic location, cache timing can reveal
the user’s location, as shown by Jia et al. [10].

JavaScript can also ask the browser to make a cross-
origin request and then learn (via callback) how long the
response took to arrive and be processed. Timing chan-
nels can be introduced by the code that runs on the server
to generate the response; by the time it takes the response
to be transmitted over the network, which will depend on
how many bytes it contains; or by the browser code that
attempts to parse the response. These cross-site timing
attacks were introduced by Bortz, Boneh, and Nandy [3],
who showed they could be used to learn the number of
items in a user’s shopping cart. Evans [5] and, later, Gel-
ernter and Herzberg [7], showed they could be used to
confirm the presence of a specific string in a user’s search
history or webmail mailbox. Van Goethem, Joosen, and
Nikiforakis [17] observed that callbacks introduced to
support HTMLS features allow attackers to time individ-
ual stages in the browser’s response-processing pipeline,
thereby learning response size more reliably than with
previous approaches.

The interaction of new browser features — TypedAr-
rays, which translate JavaScript variable references to
memory accesses more predictably, and nanosecond-
resolution clocks — allow attackers to learn whether spe-
cific lines have been evicted from the processor’s last-
level cache. Yossi Oren first showed that such mi-
croarchitectural timing channels can be mounted from
JavaScript [14], and used them to learn gross system ac-
tivity. Recently, Gras et al. [8] extended Oren’s tech-
niques to learn where pages are mapped in the browser’s
virtual memory, defeating address-space layout random-
ization. In response, browsers rounded down the clocks
provided to JavaScript to 5 us granularity. Kohlbren-
ner and Shacham [12] proposed a browser architecture
that degrades the clocks available to JavaScript in a more
principled way, drawing on ideas from the “fuzzy time”
mitigation [9] in the VAX VMM Security Kernel [11].

USENIX Association

26th USENIX Security Symposium 79



Browsers allow Web pages to apply SVG filters to
elements including cross-origin iframes. If filter pro-
cessing time varies with the underlying pixel values,
those pixel values will leak. Paul Stone [16] and, in-
dependently, Kotcher et al. [13], showed that such pixel-
stealing attacks are feasible; the filters they exploited had
pixel-dependent branches. Andrysco et al. [2] showed
that pixel-stealing was feasible even when the filter exe-
cuted the same instruction trace regardless of pixel val-
ues, provided those instructions exhibit data-dependent
timing behavior, as floating-point instructions do. Rane,
Lin, and Tiwari [15] proposed program transformation
that allow the processor floating-point unit to be used
while eliminating data-dependent instruction timing, in
the hope of defeating Andrysco et al.’s attacks.

10 Conclusions and future work

We have extensively benchmarked floating point perfor-
mance on a range of CPUs under scalar operations, FTZ/-
DAZ FPU flags, —-ffast-math compiler options, and
Rane, Lin, and Tiwari’s Escort. We identified operand-
dependent timing differences on all tested platforms and
in all configurations; many of the timing differences we
identified were overlooked in previous work.

In the case of Escort, our data strongly suggests that
processors execute SIMD operations on subnormal val-
ues sequentially, not in parallel. If this is true, a redesign
of the vector processing unit would be required to make
Escort effective at closing all floating-point timing chan-
nels.

We have revisited browser implementations of SVG
filters, and found (and responsibly disclosed) exploitable
timing variations in the latest versions of Chrome, Fire-
fox, and Safari.

Finally, we have shown that modern GPUs exhibit
slowdowns in processing subnormal values, meaning
that the problem extends beyond x86 processors. We
are currently evaluating whether these slowdowns al-
low pixel stealing using SVG filters implemented on the
GPU.

We have uncovered enough variation in timing across
Intel and AMD microarchitectural revisions that we be-
lieve that comprehensive measurement on many differ-
ent processor families—in particular, ARM — will be
valuable. For the specific processors we studied, we be-
lieve we are in a position to identify specific flags, spe-
cific operations, and specific operand sizes that run in
constant time. Perhaps the best one can hope for is an
architecture-aware library that could ensure no timing
variable floating point operations occur while preserving
as much of the IEEE-754 standard as possible.

Tools, proof-of-concept attacks, and additional bench-
mark data are available at https://cseweb.ucsd.e
du/~dkohlbre/floats.

‘We close with broader lessons from our work.

For software developers: We believe that floating
point operations as implemented by CPUs today are sim-
ply too unpredictable to be used in a timing-security sen-
sitive context. Only defensive measures that completely
remove either SSE floating point operations (fixed-point
implementations) or remove the sensitive nature of the
computation are completely effective. Software that op-
erates on sensitive, non-integer values should use fixed-
point math, for example by including Andrysco et al.’s
libfixedtimefixedpoint, which Almeida et al.
recently proved runs in constant time [1].

For browser vendors: Some browser vendors have
expended substantial effort in redesigning their SVG fil-
ter code in the wake of the Andrysco et al. attacks. Even
so, we were able to find (different) exploitable floating-
point timing differences in Chrome, Firefox, and Safari.
We believe that the attack surface is simply too large; as
new filters and features are added additional timing chan-
nels will inevitably open. We recommend that browser
vendors disallow cross-origin SVG filters and other com-
putation over cross-origin pixel data in the absence of
Cross-Origin Resource Sharing (CORS) authorization.

It is important that browser vendors also consider
patching individual timing side channels in SVG filters
as they are found. Even with a origin policy that blocks
the cross-origin pixel stealing, any timing side channel
allows an attacking page to run a history sniffing at-
tack. Thus, a comprehensive approach to SVG filters as a
threat to user privacy combines disallowing cross-origin
SVG filters and removes timing channels with constant
time coding techniques.

For processor vendors: Processor vendors have re-
sisted calls to document which of their instructions run
in constant time regardless of operands, even for opera-
tions as basic as integer multiplication. It is possible that
floating point instructions are unusual not because they
exhibit timing variation but because their operands have
meaningful algebraic structure, allowing intelligent ex-
ploration of the search space for timing variations; even
so, we identified timing variations that Andrysco et al.
overlooked. How much code that is conjectured to be
constant-time is in fact unsafe? Processor vendors should
document possible timing variations in at least those in-
structions commonly used in crypto software.

Acknowledgements

We thank Eric Rescorla and Jet Villegas for sharing their
insights about Firefox internals, and Philip Rogers, Joel
Weinberger, and Stephen White for sharing their insights
about Chrome internals.

We thank Eric Rescorla and Stefan Savage for helpful
discussions about this work.

80 26th USENIX Security Symposium

USENIX Association



We thank Ashay Rane for his assistance in obtaining
and testing the Escort compiler and 1ibdrag library.

This material is based upon work supported by
the National Science Foundation under Grants No.
1228967 and 1514435, and by a gift from Mozilla.

References

[1] J. B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, and
M. Emmi, “Verifying constant-time implementations,”
in Proceedings of USENIX Security 2016, T. Holz and
S. Savage, Eds. USENIX, Aug. 2016, pp. 53-70.

[2] M. Andrysco, D. Kohlbrenner, K. Mowery, R. Jhala,
S. Lerner, and H. Shacham, “On subnormal floating
point and abnormal timing,” in Proceedings of IEEE
Security and Privacy (“Oakland”) 2015, L. Bauer and
V. Shmatikov, Eds. IEEE Computer Society, May 2015.

[3] A. Bortz, D. Boneh, and P. Nandy, “Exposing private in-
formation by timing Web applications,” in Proceedings
of WWW 2007, P. Patel-Schneider and P. Shenoy, Eds.
ACM Press, May 2007, pp. 621-28.

[4] L. De Moura and N. Bjgrner, “Z3: An efficient SMT
solver,” in International conference on Tools and Al-
gorithms for the Construction and Analysis of Systems.
Springer, 2008, pp. 337-340.

[5] C. Evans, “Cross-domain search timing,” Online:
https://scarybeastsecurity.blogspot.com/2009/12/
cross-domain-search-timing.html, Dec. 2009.

[6] E. W. Felten and M. A. Schneider, “Timing attacks on
Web privacy,” in Proceedings of CCS 2000, S. Jajodia,
Ed. ACM Press, Nov. 2000, pp. 25-32.

[7]1 N. Gelernter and A. Herzberg, “Cross-site search attacks,”
in Proceedings of CCS 2015, C. Kruegel and N. Li, Eds.
ACM Press, Oct. 2015, pp. 1394-1405.

[8] B. Gras, K. Razavi, E. Bosman, H. Bos, and C. Giuffrida,
“ASLR on the line: Practical cache attacks on the MMU,”
in Proceedings of NDSS 2017, A. Juels, Ed.  Internet
Society, Feb. 2017.

[9] W.-M. Hu, “Reducing timing channels with fuzzy time,”
J. Computer Security, vol. 1, no. 3-4, pp. 233-54, 1992.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

Y. Jia, X. Dong, Z. Liang, and P. Saxena, “I know where
you’ve been: Geo-inference attacks via the browser
cache,” in Proceedings of W2SP 2014, L. Koved and
M. Fredrikson, Eds. IEEE Computer Society, May 2014.

P. A. Karger, M. E. Zurko, D. W. Bonin, A. H. Mason,
and C. E. Kahn, “A retrospective on the VAX VMM secu-
rity kernel,” IEEE Trans. Software Engineering, vol. 17,
no. 11, pp. 1147-65, Nov. 1991.

D. Kohlbrenner and H. Shacham, “Trusted browsers for
uncertain times,” in Proceedings of USENIX Security
2016, T. Holz and S. Savage, Eds. USENIX, Aug. 2016,
pp- 463-80.

R. Kotcher, Y. Pei, P. Jumde, and C. Jackson, “Cross-
origin pixel stealing: Timing attacks using CSS filters,” in
Proceedings of CCS 2013, V. Gligor and M. Yung, Eds.
ACM Press, Nov. 2013, pp. 1055-62.

Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D.
Keromytis, “The spy in the sandbox: Practical cache at-
tacks in JavaScript and their implications,” in Proceed-
ings of CCS 2015, C. Kruegel and N. Li, Eds. ACM
Press, Oct. 2015, pp. 1406-18.

A. Rane, C. Lin, and M. Tiwari, “Secure, precise, and fast
floating-point operations on x86 processors,” in Proceed-
ings of USENIX Security 2016, T. Holz and S. Savage,
Eds. USENIX, Aug. 2016, pp. 71-86.

P. Stone, “Pixel perfect timing attacks with
HTMLS,” Presented at Black Hat 2013, Jul. 2013,
online: https://www.contextis.com/documents/2/
Browser_Timing_Attacks.pdf.

T. Van Goethem, W. Joosen, and N. Nikiforakis, “The
clock is still ticking: Timing attacks in the modern web,”
in Proceedings of CCS 2015, C. Kruegel and N. Li, Eds.
ACM Press, Aug. 2015, pp. 1382-93.

M. Zalewski, “Rapid history extraction through non-
destructive cache timing,” Online: http://lcamtuf.cored
ump.cx/cachetime/, Dec. 2011.

Notes
'nttps://skia.org/

USENIX Association

26th USENIX Security Symposium 81






Constant-Time Callees with Variable-Time Callers

Cesar Pereida Garcia

Billy Bob Brumley

Tampere University of Technology
{cesar.pereidagarcia,billy.brumley} @tut.fi

Abstract

Side-channel attacks are a serious threat to security-
critical software. To mitigate remote timing and cache-
timing attacks, many ubiquitous cryptography software
libraries feature constant-time implementations of cryp-
tographic primitives. In this work, we disclose a vulner-
ability in OpenSSL 1.0.1u that recovers ECDSA private
keys for the standardized elliptic curve P-256 despite the
library featuring both constant-time curve operations and
modular inversion with microarchitecture attack mitiga-
tions. Exploiting this defect, we target the errant mod-
ular inversion code path with a cache-timing and im-
proved performance degradation attack, recovering the
inversion state sequence. We propose a new approach
of extracting a variable number of nonce bits from these
sequences, and improve upon the best theoretical result
to recover private keys in a lattice attack with as few as
50 signatures and corresponding traces. As far as we are
aware, this is the first timing attack against OpenSSL EC-
DSA that does not target scalar multiplication, the first
side-channel attack on cryptosystems leveraging P-256
constant-time scalar multiplication and furthermore, we
extend our attack to TLS and SSH protocols, both linked
to OpenSSL for P-256 ECDSA signing.

Keywords: applied cryptography; elliptic curve cryp-
tography; digital signatures; side-channel analysis; tim-
ing attacks; cache-timing attacks; performance degrada-
tion; ECDSA; modular inversion; binary extended Eu-
clidean algorithm; lattice attacks; constant-time soft-
ware; OpenSSL; NIST P-256; CVE-2016-7056

1 Introduction

Being a widely-deployed open-source cryptographic li-
brary, OpenSSL is a popular target for different cryptan-
alytic attacks, including side-channel attacks that target
cryptosystem implementation weaknesses that can leak

critical algorithm state. As a software library, Open-
SSL provides not only TLS functionality but also cryp-
tographic functionality for applications such as SSH,
IPSec, and VPNs.

Due to its ubiquitous usage, OpenSSL contains ar-
guably one of the most popular software implemen-
tations of the Elliptic Curve Digital Signature Algo-
rithm (ECDSA). OpenSSL’s scalar multiplication algo-
rithm was shown vulnerable to cache-timing attacks in
2009 [6], and attacks continue on the same code path to
this date [2, 4, 10, 27]. Recognizing and responding to
the threat cache-timing attacks pose to cryptosystem im-
plementations, OpenSSL mainlined constant-time scalar
multiplication for several popular standardized curves al-
ready in 2011 [16].

In this work, we disclose a software defect in the
OpenSSL (1.0.1 branch) ECDSA implementation that al-
lows us to design and implement a side-channel cache-
timing attack to recover private keys. Different from
previous work, our attack focuses on the modular inver-
sion operation instead of the typical scalar multiplication,
thus allowing us to target the standardized elliptic curve
P-256, circumventing its constant-time scalar multiplica-
tion implementation. The root cause of the defect is fail-
ure to set a flag in ECDSA signing nonces that indicates
only constant-time code paths should be followed.

We leverage the state-of-the-art FLUSH+RE-
LOAD [28] technique to perform our cache-timing
attack. We adapt the technique to OpenSSL’s implemen-
tation of ECDSA and the Binary Extended Euclidean
Algorithm (BEEA). Our spy program probes relevant
memory addresses to create a timing signal trace, then
the signal is processed and converted into a sequence of
right-shift and subtraction (LS) operations correspond-
ing to the BEEA execution state from which we extract
bits of information to create a lattice problem. The
solution to the lattice problem yields the ECDSA secret
key.

We discover that observing as few as 5 operations

USENIX Association

26th USENIX Security Symposium 83



from the LS sequence allows us to use every single cap-
tured trace for our attack. This significantly reduces both
the required amount of signatures and side-channel data
compared to previous work [8], and maintains a good
signature to lattice dimension ratio.

We build upon the performance degradation technique
of Allan et al. [2] to efficiently find the memory addresses
with the highest impact to the cache during the degrading
attack. This new approach allows us to accurately find
the best candidate memory addresses to slow the mod-
ular inversion by an average factor of 18, giving a high
resolution trace and allowing us to extract the needed bits
of information from all of the traces.

Unlike previous works targeting the wNAF scalar
multiplication code path (for curves such as BitCoin’s
secp256k1) or performing theoretical side-channel anal-
ysis of the BEEA, we are the first to demonstrate a practi-
cal cache-timing attack against the BEEA modular inver-
sion, and furthermore OpenSSL’s ECDSA signing im-
plementation with constant-time P-256 scalar multipli-
cation.

Our contributions in this work include the following:

We identify a bug in OpenSSL that allows a
cache-timing attack on ECDSA signatures, despite
constant-time P-256 scalar multiplication. (Sec-
tion 3)

We describe a new quantitative approach that ac-
curately identifies the most accessed victim mem-
ory addresses w.r.t. data caching, then we use them
for an improved performance degradation attack in
combination with the FLUSH+RELOAD technique.
(Section 4.3)

We describe how to combine the FLUSH+RELOAD
technique with the improved performance degrada-
tion attack to recover side-channel traces and algo-
rithm state from the BEEA execution. (Section 4)

* We present an alternate approach to recovering
nonce bits from the LS sequences, focused on min-
imizing required side-channel information. Using
this approach, we recover bits of information from
every trace, allowing us to use every signature query
to construct and solve a lattice problem, revealing
the secret key with as few as 50 signatures and cor-
responding traces. (Section 4.4)

We perform a key-recovery cache-timing attack on
the TLS and SSH protocols utilizing OpenSSL for
ECDSA functionality. (Section 5)

L]

2 Background

2.1 Elliptic Curve Cryptography

ECC. Developed in the mid 1980’s, elliptic curves were
introduced to cryptography by Miller [20] and Koblitz

[17] independently. Elliptic Curve Cryptography (ECC)
became popular mainly for two important reasons: no
sub-exponential time algorithm to solve the elliptic curve
discrete logarithm problem is known for well-chosen pa-
rameters and it operates in the group of points on an el-
liptic curve, compared to the classic multiplicative group
of a finite field, thus allowing the use of smaller param-
eters to achieve the same security levels—consequently
smaller keys and signatures.

Although there are more general forms of elliptic
curves, for the purposes of this paper we restrict to short
Weierstrass curves over prime fields. With prime p > 3,
all of the x,y € GF(p) solutions to the equation

E:y =x4ax+b

along with an identity element form an abelian group.
Due to their performance characteristics, the parameters
of interest are the NIST standard curves that set a = —3
and p a Mersenne-like prime.

ECDSA. Throughout this paper, we use the following
notation for the Elliptic Curve Digital Signature Algo-
rithm (ECDSA).

Parameters: A generator G € E of an elliptic curve group
of prime order n and an approved hash function / (e.g.
SHA-1, SHA-256, SHA-512).

Private-Public key pairs: The private key o is an integer
uniformly chosen from {1..n— 1} and the corresponding
public key D = [a¢]G where [i]G denotes scalar-by-point
multiplication using additive group notation. Calculat-
ing the private key given the public key requires solving
the elliptic curve discrete logarithm problem and for cor-
rectly chosen parameters, this is an intractable problem.

Signing: A given party, Alice, wants to send a signed
message m to Bob. Using her private-public key pair
(aa,Dy), Alice performs the following steps:

1. Select uniformly at random a secret nonce k such
that 0 < k < n.

2. Compute r = ([k]G), mod n.

3. Compute s = k= (h(m) + aar) mod n.

4. Alice sends (m,r,s) to Bob.

Verifying: Bob wants to be sure the message he re-
ceived comes from Alice—a valid ECDSA signature
gives strong evidence of authenticity. Bob performs the
following steps to verify the signature:

1. Reject the signature if it does not satisfy 0 < r < n
and 0 < s <n.

Compute w = s~ mod n and h(m).

Compute u; = h(m)w mod n and uy = rw mod n.
Compute (x,y) = [u1]G + [u2]Da.

Accept the signature if and only if x = r mod n
holds.

DA

84 26th USENIX Security Symposium

USENIX Association



2.2 Side-Channel Attacks

Thanks to the adoption of ECC and the increasing use of
digital signatures, ECDSA has become a popular algo-
rithm choice for digital signatures. ECDSA’s popularity
makes it a good target for side-channel attacks.

At a high level, an established methodology for EC-
DSA is to query multiple signatures, then partially re-
cover nonces k; from the side-channel, leading to a bound
on the value af; — u; that is shorter than the interval
{1..n— 1} for some known integers #; and ;. This leads
to a version of the Hidden Number Problem (HNP) [5]:
recover ¢ given many (f;,u;) pairs. The HNP instances
are then reduced to Closest Vector Problem (CVP) in-
stances, solved with lattice methods.

Over the past decade, several authors have described
practical side-channel attacks on ECDSA that exploit
partial nonce disclosure by different microprocessor fea-
tures to recover long-term private keys.

Brumley and Hakala [6] describe the first practical
side-channel attack against OpenSSL’s ECDSA imple-
mentation. They use the EVICT+RELOAD strategy and
an L1 data cache-timing attack to recover the LSBs of
ECDSA nonces from the library’s wNAF (a popular low-
weight signed-digit representation) scalar multiplication
implementation in OpenSSL 0.9.8k. After collecting
2,600 signatures (8K with noise) from the dgst com-
mand line tool and using the Howgrave-Graham and
Smart [15] lattice attack, the authors recover a 160-bit
ECDSA private key from standardized curve secp160r1.

Brumley and Tuveri [7] attack ECDSA with binary
curves in OpenSSL 0.9.80. Mounting a remote timing at-
tack, the authors show the library’s Montgomery Ladder
scalar multiplication implementation leaks timing infor-
mation on the MSBs of the nonce used and after collect-
ing that information over 8,000 TLS handshakes a 162-
bit NIST B-163 private key can be recovered with lattice
methods.

Benger et al. [4] target OpenSSL’s wNAF implemen-
tation and 256-bit private keys for the standardized GLV
curve [11] secp256k1 used in the BitCoin protocol. Us-
ing as few as 200 ECDSA signatures and the FLUSH+
RELOAD technique [28], the authors find some LSBs of
the nonces and extend the lattice technique of [21, 22] to
use a varying amount of leaked bits rather than limiting
to a fixed number.

van de Pol et al. [27] attack OpenSSL’s 1.0.1e wNAF
implementation for the curve secp256k1. Leveraging the
structure of the modulus #n, the authors use more infor-
mation leaked in consecutive sequences of bits anywhere
in the top half of the nonces, allowing them to recover
the secret key after observing as few as 25 ECDSA sig-
natures.

Allan et al. [2] improve on previous results by using

a performance-degradation attack to amplify the side-
channel. This amplification allows them to additionally
observe the sign bit of digits in the wNAF representa-
tion used in OpenSSL 1.0.2a and to recover secp256k1
private keys after observing only 6 signatures.

Fan et al. [10] increase the information extracted from
each signature by analyzing the wNAF implementation
in OpenSSL. Using the curve secp256k1 as a target, they
perform a successful attack after observing as few as 4
signatures.

Our work differs from previous ECDSA side-channel
attacks in two important ways. (1) We focus on NIST
standard curve P-256, featured in ubiquitous security
standards such as TLS and SSH. Later in Section 2.5,
we explain the reason previous works were unable to tar-
get this extremely relevant curve. (2) We do not target
the scalar-by-point multiplication operation (i.e. the bot-
tleneck of the signing algorithm), but instead Step 3 of
the signing algorithm, the modular inversion operation.

2.3 The FLUSH+RELOAD Attack

The FLUSH+RELOAD technique is a cache-based side-
channel attack technique targeting the Last-Level Cache
(LLC) and used during our attack. FLUSH+RELOAD is
a high resolution, high accuracy and high signal-to-noise
ratio technique that positively identifies accesses to spe-
cific memory lines. It relies on cache sharing between
processes, typically achieved through the use of shared
libraries or page de-duplication.

Input: Memory Address addr.
Result: True if the victim accessed the address.

begin

flush(addr)

Wait for the victim.

time < current_time ()

tmp < read(addr)

readTime < current_time() - time
return readTime < threshold

Figure 1: FLUSH+RELOAD Attack

A round of attack, depicted in Figure 1, consists of
three phases: (1) The attacker evicts the target memory
line from the cache. (2) The attacker waits some time
so the victim has an opportunity to access the memory
line. (3) The attacker measures the time it takes to reload
the memory line. The latency measured in the last step
tells whether or not the memory line was accessed by the
victim during the second step of the attack, i.e. identifies
cache-hits and cache-misses.

The FLUSH+RELOAD attack technique tries to
achieve the best resolution possible while keeping the

USENIX Association

26th USENIX Security Symposium 85



error rate low. Typically, an attacker encounters multi-
ple challenges due to several processor optimizations and
different architectures. See [2, 24, 28] for discussions of
these challenges.

2.4 Binary Extended Euclidean Algorithm

The modular inversion operation is one of the most ba-
sic and essential operations required in public key cryp-
tography. Its correct implementation and constant-time
execution has been a recurrent topic of research [1, 3, 8].

A well known algorithm used for modular inversion
is the Euclidean Extended Algorithm and in practice
is often substituted by a variant called the Binary Ex-
tended Euclidean Algorithm (BEEA) [18, Chap. 14.4.3].
This variant replaces costly division operations by simple
right-shift operations, thus, achieving performance ben-
efits over the regular version of the algorithm. BEEA is
particularly efficient for very long integers—e.g. RSA,
DSA, and ECDSA operands.

Input: Integers k and p such that ged(k,p) = 1.
Output: k! mod p.
ve—p,us—k,X—1,Y<+0
while u # 0 do
while even(u) do
u<+—u/2
if odd(X) then X < X + p
X+X/2
while even(v) do
v v/2
if odd(Y)thenY < Y +p
Y<+Y/2
if u > v then
U+ u—v
X+—X-Y

else

/* u loop */

/* v loop */

V& v—u
| Y <Y X

return ¥ mod p

Figure 2: Binary Extended Euclidean Algorithm.

Figure 2 shows the BEEA. Note that in each iteration
only one u or v while-loop is executed, but not both. Ad-
ditionally, in the very first iteration only the u while-loop
can be executed since v is a copy of p which is a large
prime integer n for ECDSA.

In 2007, independent research done by Aciicmez et al.
[1], Aravamuthan and Thumparthy [3] demonstrated
side-channel attacks against the BEEA. Aravamuthan
and Thumparthy [3] attacked BEEA using Power Anal-
ysis attacks, whereas Aciicmez et al. [1] attacked BEEA

through Simple Branch Prediction Analysis (SBPA),
demonstrating the fragility of this algorithm against side-
channel attacks.

Both previous works reach the conclusion that in order
to reveal the value of the nonce £, it is necessary to iden-
tify four critical input-dependent branches leaking infor-
mation, namely:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number and order of subtractions u := u —v.
4. Number and order of subtractions v :=v —u.

Moreover, both works present a BEEA reconstruction
algorithm that allows them to fully recover the nonce
k—and therefore the secret signing key—given a per-
fect side-channel trace that distinguish the four critical
branches.

Aravamuthan and Thumparthy [3] argue that a coun-
termeasure to secure BEEA against side-channel attacks
is to render u and v subtraction branches indistinguish-
able, thus the attack is computationally expensive to
carry out. As a response, Cabrera Aldaya et al. [8]
demonstrated a Simple Power Analysis (SPA) attack
against a custom implementation of the BEEA. The au-
thors’ main contribution consists of demonstrating it is
possible to partially determine the order of subtractions
on branches u and v only by knowing the number of
right-shift operations performed in every while-loop it-
eration. Under a perfect SPA trace, the authors use an
algebraic algorithm to determine a short execution se-
quence of u and v subtraction branches.

They manage to recover various bits of information
for several ECDSA key sizes. The authors are able to
recover information only from some but not all of their
SPA traces by using their algorithm and the partial infor-
mation about right-shift and subtraction operations. Fi-
nally, using a lattice attack they recover the secret signing
key.

As can be seen from the previous works, depending on
the identifiable branches in the trace and quality of the
trace it is possible to recover full or partial information
about the nonce k. Unfortunately, the information leaked
by most of the real world side-channels does not allow
us to differentiate between subtraction branches u and v,
therefore limiting the leaked information to three input-
dependent branches:

1. Number of right-shift operations performed on v.
2. Number of right-shift operations performed on u.
3. Number of subtractions.

2.5 OpenSSL History

OpenSSL has a rich and storied history as a prime se-
curity attack target [19], a distinction ascribed to the li-

86 26th USENIX Security Symposium

USENIX Association



brary’s ubiquitous real world application. One of the
main contributions of our work is identifying a new
OpenSSL vulnerability described later in Section 3. To
understand the nature of this vulnerability and facili-
tate root cause analysis, in this section we give a brief
overview of side-channel defenses in the OpenSSL li-
brary, along with some context and insight into what
prompted these code changes. Table 1 summarizes the
discussion.

0.9.7. Side-channel considerations started to induce code
changes in OpenSSL starting with the 0.9.7 branch. The
RSA cache-timing attack by Percival [23] recovered se-
cret exponent bits used as lookup table indices in slid-
ing window exponentiation using an EVICT+RELOAD
strategy on HyperThreading architectures. His work
prompted introduction of the BN_FLG_CONSTTIME flag,
with the intention of allowing special security treatment
of BIGNUMs having said flag set. At the time—and ar-
guably still—the most important use case of the flag is
modular exponentiation. Introduced alongside the flag,
the BN_mod_exp mont_consttime function is a fixed-
window modular exponentiation algorithm featuring data
cache-timing countermeasures. Recent research brings
the security of this solution into question [29].

0.9.8. The work by Aciicmez et al. [1] targeting BEEA
prompted the introduction of the BN mod_inverse no_-
branch function, an implementation with more favor-
able side-channel properties than that of BEEA. The
implementation computes modular inversions in a way
that resembles the classical extended Euclidean algo-
rithm, calculating quotients and remainders in each step
by calling BN_div updated to respect the BN_FLG_CON-
STTIME flag. Tracking callers to BN_mod_inverse, the
commit! enables the BN_FLG_CONSTTIME across several
cryptosystems where the modular inversion inputs were
deemed security critical, notably the published attack tar-
geting RSA.

1.0.1. Based on the work by Kisper [16], the 1.0.1
branch introduced constant-time scalar multiplication
implementations for several popular elliptic curves. This
code change was arguably motivated by the data cache-
timing attack of Brumley and Hakala [6] against Open-
SSL that recovered digits of many ECDSA nonces dur-
ing scalar multiplication on HyperThreading architec-
tures using the EVICT+RELOAD strategy. This informa-
tion was then used to construct a lattice problem and cal-
culate ECDSA private keys. The commit” included sev-
eral new EC_METHOD implementations, of which arguably
EC_GFp_nistp256_method has the most real world ap-
plication to date. This new scalar multiplication imple-

"https://github.com/openssl/openssl/commit/
bd31£b21454609b125adelad569ebcc2a2b9b73c

’https://github.com/openssl/openssl/commit/
3e00b4c9db42818c621£609e70569c7d9ae85717

Table 1: OpenSSL side-channel defenses across ver-
sions. Although BN_mod_exp_mont_consttime was in-
troduced in the 0.9.7 branch, here we are referring to its
use for modular inversion via FLT.

096 097 098 100 101 102

OpenSSL version

BN_mod_inverse v v v v
BN_FLG_CONSTTIME — v v v
BN_mod_inverse_no_branch — — v v

IENENENAN

ecnistp_64_gcc_ 128
BN_mod_exp_mont_consttime — — — —
EC_GFp_nistz256 method — — — — —

ENENENENENEN

mentation uses fixed-window combing combined with
secure table lookups via software multiplexing (mask-
ing), and is enabled with the ec_nistp_64_gcc_128 op-
tion at build time. For example, Debian 8.0 “Jessie” (cur-
rent LTS, not EOL) and 7.0 “Wheezy” (previous LTS,
not EOL) and Ubuntu 14.04 “Trusty” (previous LTS, not
EOL) enable said option when possible for their Open-
SSL 1.0.1 package builds. From the side-channel attack
perspective, we note that this change is the reason aca-
demic research (see Section 2.2) shifted to the secp256k1
curve—NIST P-256 no longer takes the generic wNAF
scalar multiplication code path like secp256k1.

1.0.2. Motivated by performance and the potential to
utilize Intel AVX extensions, a contribution by Gueron
and Krasnov [14] included fast and secure curve P-
256 operations with their custom EC_GFp nistz256_-
method. Here we focus on a cherry picked commit?
that affected the ECDSA sign code path for all elliptic
curves. While speed motivated the contribution, Moller
observes*: “It seems that the BN_MONT_CTX-related code
(used in crypto/ecdsa for constant-time signing) is en-
tirely independent of the remainder of the patch, and
should be considered separately.” Gueron confirms:
“The optimization made for the computation of the mod-
ular inverse in the ECDSA sign, is using const-time mod-
exp. Indeed, this is independent of the rest of the patch,
and it can be used independently (for other usages of
the library). We included this addition in the patch for
the particular usage in ECDSA.” Hence following this
code change, ECDSA signing for all curves now com-
pute modular inversion via BN_mod_exp_mont_const-
time and Fermat’s Little Theorem (FLT).

3 A New Vulnerability

From Table 1, starting with 1.0.1 the reasonable expec-
tation is that cryptosystems utilizing P-256 resist timing
attacks, whether they be remote, data cache, instruction

3https://github.com/openssl/openssl/commit/
8aed2a7548362e88e84a7feb795a3a97e8395008

“https://rt.openssl.org/Ticket/Display.html?id=
3149&user=guest&pass=guest

USENIX Association

26th USENIX Security Symposium 87


https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c
https://github.com/openssl/openssl/commit/bd31fb21454609b125ade1ad569ebcc2a2b9b73c
https://github.com/openssl/openssl/commit/3e00b4c9db42818c621f609e70569c7d9ae85717
https://github.com/openssl/openssl/commit/3e00b4c9db42818c621f609e70569c7d9ae85717
https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008
https://github.com/openssl/openssl/commit/8aed2a7548362e88e84a7feb795a3a97e8395008
https://rt.openssl.org/Ticket/Display.html?id=3149&user=guest&pass=guest
https://rt.openssl.org/Ticket/Display.html?id=3149&user=guest&pass=guest

cache, or branch predictor timings. We focus here on
the combination of ECDSA and P-256 within the library.
The reason this is a reasonable expectation is that ec_-
nistp_64_gcc_128 provides constant-time scalar multi-
plication to protect secret scalar nonces, and BN_mod_in-
verse_no_branch provides microarchitecture attack de-
fenses when inverting these nonces. For ECDSA, these
are the two most critical locations where the secret nonce
is an operand—to produce r and s, respectively.

The vulnerability we now disclose stems from the
changes introduced in the 0.9.8 branch. The BN_mod_-
inverse function was modified to first check the BN_-
FLG_CONSTTIME flag of the BIGNUM operands—if set,
the function then early exits to BN.-mod_inverse_no_-
branch to protect the security-sensitive inputs. If the
flag is not set, i.e. inputs are not secret, the control flow
continues to the stock BEEA implementation.

Paired with this code change, the next task was
to identify callers to BN mod_inverse within the li-
brary, and enable the BN_FLG_CONSTTIME flag for
BIGNUMs in cryptosystem implementations that are
security-sensitive. Our analysis suggests this was done
by searching the code base for uses of the BN_.FLG_EXP_-
CONSTTIME flag that was replaced with BN_FLG_CONST-
TIME as part of the changeset, given the evolution of
constant-time as concept within OpenSSL and no longer
limited to modular exponentiation. As a result, the code
changes permeated RSA, DSA, and Diffie-Hellman im-
plementations, but not ECC-based cryptosystems such as
ECDH and ECDSA.

This leaves a gap for 1.0.1 with respect to EC-
DSA. While ec_nistp_64_gcc_128 provides constant-
time scalar multiplication to compute the » component
of P-256 ECDSA signatures, the s component will com-
pute modular inverses of security-critical nonces with
the stock BN_mod_inverse function, not taking the BN_-
mod_inverse_no_branch code path. In the end, the root
cause is that the ECDSA signing implementation does
not set the BN_FLG_CONSTTIME flag for nonces. Scalar
multiplication with ec_nistp_64_gcc_128 is oblivious
to this flag and always treats single scalar inputs as
security-sensitive, yet BN_mod_inverse requires said
flag to take the new secure code path.

Figure 3 illustrates this vulnerability running in Open-
SSL 1.0.1u. The caller function ecdsa_sign_setup
contains the bulk of the ECDSA signing cryptosystem—
generating a nonce, computing the scalar multiple, in-
verting the nonce, computing r, and so on. When control
flow reaches callee BN_mod_inverse, inputs a and n are
the nonce and generator order, respectively. Stepping by
instruction, it shows that the call to BN_.mod_inverse_-
no_branch never takes place, since the BN_FLG_CONST-
TIME flag is not set for either of these operands. Failing
this security critical branch, the control flow continues to

+--bn_gcd.

1226 BIGNUM *BN_mod_inverse(BIGNUM *in,

1227 const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx)

1228 { |
B+ 229 BIGNUM *A, *B, *X, *Y, %M, *D, *T, %R = NULL; |

1230 BIGNUM *ret = NULL;

1231 int sign; |

1232 |

1233 if ((BN_get_flags(a, BN_FLG_CONSTTIME) != 0)

>|234 Il (BN_get_flags(n, BN_FLG_CONSTTIME) != 0)) {
1235 return BN_mod_inverse_no_branch(in, a, n, ctx);
1236 ¥ |

|0x7££££77dalc7 <BN_mod_inverse+56> mov  -0x90(%rbp),%rax |
|0x7££££77dalce <BN_mod_inverse+63> mov  0x14(%rax),%eax
|0x7f£££77daldl <BN_mod_inverse+66> and  $0x4,%eax
10x7££££77dald4 <BN_mod_inverse+69> test Y%eax,%eax
10x7££££77da1d6 <BN_mod_inverse+71> jne Ox7ffff77dale9 <BN_mod_inverse+90>
10x7££££77da1d8 <BN_mod_inverse+73> mov  -0x98(%rbp),%rax
|0x7££££77daldf <BN_mod_inverse+80> mov  0x14(%rax),%eax
|10x7££££77dale2 <BN_mod_inverse+83> and  $0x4,%eax
|0x7££££77dale5 <BN_mod_inverse+86> test Yeax,J%eax
>|0x7££ff77dale7 <BN_mod_inverse+88> je

0x7f£££77da212 <BN_mod_inverse+131>

native process 3399 In: BN_mod_inverse 1234 PC: Ox7ffff77dale7?
(gdb) run dgst -sha256 -sign prime256vl.pem -out lsb-release.sig /etc/lsb-release
Starting program: /usr/local/ssl/bin/openssl dgst -sha256 -sign prime256vi.pem ...

Breakpoint 1, BN_mod_inverse (...) at bn_gcd.c:229

(gdb) backtrace

#0 BN_mod_inverse (...) at bn_gcd.c:229

#1 0x00007ffff782aed9 in ecdsa_sign_setup (...) at ecs_ossl.c:182
#2  0x00007££f£782bc35 in ECDSA_sign_setup (...) at ecs_sign.c:105
#3  0x00007££f£782b29a in ecdsa_do_sign (...) at ecs_ossl.c:269

#4 0x00007££f£782bafd in ECDSA_do_sign_ex (...) at ecs_sign.c:74
#5 0x00007fff£782bb97 in ECDSA_sign_ex (...) at ecs_sign.c:89

#6 0x00007fff£782bb44 in ECDSA_sign (...) at ecs_sign.c:80 ...
(gdb) stepi

(gdb) macro expand BN_get_flags(a, BN_FLG_CONSTTIME)
expands to: ((a)->flags&(0x04))

(gdb) print BN_get_flags(a, BN_FLG_CONSTTIME)

$1=0

(gdb) print BN_get_flags(n, BN_FLG_CONSTTIME)

$2 =0

Figure 3: Modular inversion within OpenSSL 1.0.1u
(built with ec nistp_64_gcc_128 enabled) for P-256
ECDSA signing. Operands a and n are the nonce and
generator order, respectively. The early exit to BN_mod_-
inverse no_branch never takes place, since the caller
ecdsa_sign_setup fails to set the BN_.FLG_CONSTTIME
flag on the operands. Control flow continues to the stock,
classical BEEA implementation.

the stock, classical BEEA implementation.

3.1 Forks

OpenSSL is not the only software library affected by this
vulnerability. Following HeartBleed, OpenBSD forked
OpenSSL to LibreSSL in July 2014, and Google forked
OpenSSL to BoringSSL in June 2014. We now discuss
this vulnerability within the context of these two forks.

LibreSSL. An 04 Nov 2016 commit’ cherry picked the
EC_GFp_nistz256_method for LibreSSL. Interestingly,
LibreSSL is the library most severely affected by this
vulnerability. The reason is they did not cherry pick
the BN_mod_exp_mont_consttime ECDSA nonce in-
version. That is, as of this writing (fixed during dis-
closure) the current LibreSSL master branch can fea-
ture constant-time P-256 scalar multiplication with ei-
ther EC_GFp_nistz256_method or EC_GFp nistp256_—
method callees depending on compile-time options and
minor code changes, but inverts all ECDSA nonces with

Shttps://github.com/libressl-portable/openbsd/
commit/85b48e7c232e1dd18292a78a266c95dd317e23d3

88 26th USENIX Security Symposium

USENIX Association


https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3
https://github.com/libressl-portable/openbsd/commit/85b48e7c232e1dd18292a78a266c95dd317e23d3

the BN_mod_inverse callee that fails the same security
critical branch as OpenSSL, due to the caller ecdsa -
sign_setup not setting the BN_FLG_CONSTTIME flag for
ECDSA signing nonces. We confirmed the vulnerability
using a LibreSSL build with debug symbols, checking
the inversion code path with a debugger.

BoringSSL. An 03 Nov 2015 commit® picked up
the EC_GFp_nistz256_method implementation for Bor-
ingSSL. That commit also included the BN_mod_exp_-
mont_consttime ECDSA nonce inversion callee, which
OpenSSL cherry picked. The parent tree’ is slightly
older on the same day. Said tree features constant-
time P-256 scalar multiplication with callee EC_GFp_-
nistp256_method, but inverts ECDSA signing nonces
with callee BN_mod_inverse that fails the same security
critical branch, again due to the BN_FLG_CONSTTIME flag
not being set by the caller—i.e. it follows essentially the
same code path as OpenSSL. We verified the vulnerabil-
ity affects said tree using a debugger.

4 Exploiting the Vulnerability

Exploiting the vulnerability and performing our cache-
timing attack is a long and complex process, therefore
the analysis details are decomposed in several subsec-
tions. Section 4.1 discusses the hardware and software
setup used during our experimentation phase. Section 4.2
analyzes and describes the sources of leakage in Open-
SSL and the exploitation techniques. Section 4.3 and
Section 4.4 describe in detail our improvements on the
performance degradation technique and key recovery, re-
spectively. Figure 4 gives an overview of the attack sce-
nario followed during our experiments.

4.1 Attack Setup

Our attack setup consists of an Intel Core i5-2400 Sandy
Bridge 3.10GHz (32 nm) with 8GB of memory running
64-bit Ubuntu 16.04 LTS “Xenial”. Each CPU core has
an 8-way 32KB L1 data cache, an 8-way 32KB L1 in-
struction cache, an 8-way 256KB L2 unified cache, and
all the cores share a 12-way 6MB unified LLC (all with
64B cache lines). It does not feature HyperThreading.
We built OpenSSL 1.0.1u with debugging symbols
on the executable. Debugging symbols facilitate map-
ping source code to memory addresses, serving a dou-
ble purpose to us: (1) Improving our degrading attack
(see Section 4.3); (2) Probing the sequence of opera-
tions accurately. Note that debugging symbols are not

Shttps://boringssl.googlesource.com/boringssl/+/
18954938684e269ccd59152027d2244040e2b819%5E%21/

"https://boringssl.googlesource.com/boringssl/+/
27a0d086£7bbf7076270dbeeebe65552eb2eab3a

OpensSL

BN_rshift1 BN_usub bn_sqr8x_mont bn_mul4x_mont

Last-Level Cache

Figure 4: Simplified attack scenario depicting a victim,
a spy and two performance degradation processes each
running on a different core. OpenSSL is a shared library
and all the processes have a shared LLC.

loaded during run time, thus not affecting victim’s per-
formance. Attackers can map source code to memory
addresses by using reverse engineering techniques [9] if
debugging symbols are not available. We set enable-
ec_nistp_64_gcc_128 and shared as configuration op-
tions at build time to ensure faster execution, constant-
time scalar multiplication and compile OpenSSL as a
shared object.

4.2 Source of Leakage

As seen in the Figure 3 backtrace, when performing an
ECDSA digital signature, OpenSSL calls ecdsa_sign_—
setup to prepare the required parameters and compute
most of the actual signature. The random nonce & is cre-
ated and to avoid possible timing attacks [7] an equiva-
lent fixed bit-length nonce is computed. The length of
the equivalent nonce k is fixed to one bit more than that
of the group’s prime order n, thus the equivalent nonce
satisfies k = k+y-n where y € {1,2}.

Additionally, ecdsa_sign_setup computes the sig-
nature’s r using a scalar multiplication function pointer
wrapper (i.e. for P-256, traversing the constant-time code
path instead of generic wNAF) followed by the modular
inverse k!, needed for the s component of the signa-
ture. To compute the inversion, it calls BN_mod_inverse,
where the BN_FLG_CONSTTIME flag is checked but due
to the vulnerability discussed in Section 3 the condition
fails, therefore proceeding to compute k! using the clas-
sical BEEA.

Note that before executing the BEEA, the equivalent
nonce k is unpadded through a modular reduction oper-
ation, resulting in the original nonce k and voiding the
fixed bit-length countermeasure applied shortly before
by ecdsa_sign_setup.

The goal of our attack is to accurately trace and re-

USENIX Association

26th USENIX Security Symposium 89


https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/18954938684e269ccd59152027d2244040e2b819%5E%21/
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a
https://boringssl.googlesource.com/boringssl/+/27a0d086f7bbf7076270dbeee5e65552eb2eab3a

cover side-channel information leaked from the BEEA
execution, allowing us to construct the sequence of right-
shift and subtraction operations. To that end, we identify
the routines used in the BN_mod_inverse method leak-
ing side-channel information.

The BN mod_inverse method operates with very
large integers, therefore it uses several specific routines
to perform basic operations with BIGNUMs. Addition
operations call the routine BN_uadd, which is a wrapper
for bn_add_words—assembly code performing the ac-
tual addition. Two different routines are called to per-
form right-shift operations. The BN_rshiftl routine
performs a single right-shift by one bit position, used on
X and Y in their respective loops. The BN_rshift rou-
tine receives the number of bit positions to shift right as
an argument, used on u and v at the end of their respec-
tive loops. OpenSSL keeps a counter for the shift count,
and the loop conditions test # and v bit values at this off-
set. This is an optimization allowing u and v to be right-
shifted all at once in a single call instead of iteratively.
Additionally, subtraction is achieved through the use of
the BN_usub routine, which is a pure C implementation.

Similar in spirit to previous works [4, 24, 27] that
instead target other functionality within OpenSSL, we
use the FLUSH+RELOAD technique to attack OpenSSL’s
BEEA implementation. As mentioned before in Sec-
tion 2.4, unfortunately the side-channel and the algo-
rithm implementation do not allow us to efficiently
probe and distinguish the four critical input-dependent
branches, therefore we are limited to knowing only the
execution of addition, right-shift and subtraction opera-
tions.

After identifying the input-dependent branches in
OpenSSL’s implementation of the BEEA, using the FLU-
SH+RELOAD technique we place probes in code routines
BN_rshiftl and BN_usub. These two routines provide
the best resolution and combination of probes, allowing
us to identify the critical input-dependent branches.

The modular inversion is an extremely fast operation
and only a small fraction of the entire digital signa-
ture. It is challenging to get good resolution and enough
granularity with the FLUSH+RELOAD technique due to
the speed of the technique itself, therefore, we apply a
variation of the performance degradation attack to slow
down the modular inversion operation by a factor of ~18.
(See Section 4.3.)

Maximizing performance degradation by identifying
the best candidate memory lines gives us the granularity
required for the attack. Combining the FLUSH+RELOAD
technique with a performance degradation attack allows
us to determine the number of right-shift operations exe-
cuted between subtraction calls by the BEEA. From the
trace, we reconstruct the sequence of right-shift and sub-
traction operations (LS sequence) executed by the BEEA.

T T T T
L probe
S probe

Latency

Time

L probe
S probe

200

Latency

100

Time

Figure 5: Raw traces for the beginning of two BEEA ex-
ecutions. The L probe tracks right-shift latencies and the
S probe tracks subtraction. Latency is in CPU clock cy-
cles. For visualization, focus on the amplitude valleys,
i.e. low latency. Top: LS sequence starting SLLLL cor-
responds to j =5, {; =4, a; = 1. Bottom: LS sequence
starting LSLLSLS corresponds to j =7, ¢; =5, a; = 10.
See Section 4.4 for notation.

As Figure 4 illustrates, our attack scenario exploits
three CPU cores by running a malicious process in every
core and the victim process in the fourth core. The at-
tack consists of a spy process probing the right-shift and
subtraction operations running in parallel with the vic-
tim application. Additionally, two degrading processes
slow down victim’s execution, allowing us to capture the
LS sequence almost perfectly. Unfortunately there is not
always a reliable indicator in the signal for transitions
from one right-shift operation to the next, therefore we
estimate the number of adjacent right-shift operations by
taking into account the latency and the horizontal dis-
tance between subtractions. Figure 5 contains sample
raw traces captured in our test environment.

Our spy process accurately captures all the subtrac-
tion operations but duplicates some right-shift opera-
tions, therefore we focus on the first part of the sequence
to recover a variable amount of bits of information from
every trace. (See Section 4.4.)

4.3 Improving Performance Degradation

Performance degradation attacks amplify side-channel
signals, improving the quality and the amount of in-
formation leaked. Our performance degradation attack
improves upon the work of Allan et al. [2]. In their
work, the authors first need to identify “hot” memory
addresses, i.e. memory addresses frequently accessed.
They suggest two approaches to find suitable memory
lines to degrade. The first approach is to read and under-

90 26th USENIX Security Symposium

USENIX Association



stand the victim code in order to identify frequently ac-
cessed code sections such as tight loops. This approach
requires understanding the code, a task that might not al-
ways be possible, takes time and it is prone to errors [26],
therefore the authors propose another option.

The second and novel approach they propose is to au-
tomate code analysis by collecting code coverage infor-
mation using the gcov tool. The code coverage tool out-
puts accessed code lines and then using this information
it is possible for an attacker to locate the memory lines
corresponding to the code lines. Some caveats of this
approach are that source lines can be replicated due to
compiler optimizations, thus the gcov tool might misre-
port the number of memory accesses. Moreover, code
lines containing function calls can be twice as effective
compared to the gcov output. In addition to the caveats
mentioned previously, we note that the gcov profiling
tool adds instrumentation to the code. The instrumenta-
tion skews the performance of the program, therefore this
approach is suboptimal since it requires building the tar-
get code twice, one with instrumentation to identify code
lines and other only with debugging symbols to measure
the real performance.

Once the “hot” memory addresses are identified, the
next step is to evict them from the cache in a tight loop,
thus increasing the execution time of the process access-
ing those addresses. This technique allows to stealthily
degrade a process without alerting the victim, since the
increased execution time is not noticeable by a typical
user. Performance degradation attacks have been used
previously in conjunction with other side-channel attacks
(see e.g. [24]).

We note that it can be difficult and time consuming
to identify the “hot” memory addresses to degrade that
result in the best information leak. To that end, we fol-
low a similar but faster and more quantitative approach,
potentially more accurate since it leverages additional
metrics. Similar to [2] we test the efficiency of the at-
tack for several candidate memory lines. We compare
cache-misses between a regular modular inversion and
a degraded modular inversion execution, resulting in a
list of the “hottest” memory lines, building the code only
once with debugging symbols and using hardware regis-
ter counters.

The perf command in Linux offers access to per-
formance counters—CPU hardware registers counting
hardware events (e.g. CPU cycles, instructions executed,
cache-misses and branch mispredictions). We execute
calls to OpenSSL’s modular inverse operation, counting
the number of cache-misses during a regular execution of
the operation. Next, we degrade—by flushing in a loop
from the cache—one memory line at a time from the
caller BN_mod_inverse and callees BN_rshifti1, BN_-
rshift, BN_uadd, bn_add_words, BN_usub.

The perf command output gives us the real count
of cache-misses during the regular execution of BN_-
mod_inverse, then under degradation of each candidate
memory line. This effectively identifies the “hottest” ad-
dresses during a modular inverse operation with respect
to both the cache and the actual malicious processes we
will use during the attack.

Table 2 summarizes the results over 1,000 iterations of
a regular modular inversion execution versus the degra-
dation of different candidate memory lines identified us-
ing our technique. The table shows cache-miss rates
ranging from ~35% (BN_rshift and BN_usub) to ~172%
(BN_rshift1) for one degrading address. Degrading the
overall 6 “hottest” addresses accessed by the BN_mod_-
inverse function results in an impressive cache-miss
rate of ~1,146%.

Interestingly, the last column of Table 2 reveals the
real impact of cache-misses in the execution time of
the modular inversion operation. Despite the impres-
sive cache-miss rates, the clock cycle slow down is more
modest with a maximum slow down of ~18. These re-
sults suggest that in order to get a quality trace, the goal is
to achieve an increased rate of cache-misses rather than a
CPU clock cycle slow down because whereas the cache-
misses suggest a CPU clock cycle slow down, it is not
the case for the opposite direction.

The effectiveness of the attack varies for each use case
and for each routine called. Some of the routines iter-
ate over internal loops several times (e.g. BN_rshift1)
whereas in some other routines, iteration over internal
loops happens few times (e.g. BN_usub) or none at all.
Take for example previous “hot” addresses from Ta-
ble 2—degrading the most used address from each rou-
tine does not necessarily give the best result. Overall
“hottest” addresses in Table 2 shows the result of choos-
ing the best strategy for our use case, where the addresses
degraded in every routine varies from multiple addresses
per routine to no addresses at all.

For our use case, we observe the best results with 6
degrading addresses across two degrading processes ex-
ecuting in different CPU cores. Additional addresses do
not provide any additional slow down, instead they im-
pact negatively the FLUSH+RELOAD technique.

4.4 Improving Key Recovery

Arguably the most significant contribution of [8] is they
show the LS sequence is sufficient to extract a certain
number of LSBs from nonces, even when it is not known
whether branch u or v gets taken. They give an algebraic
method to recover these LSBs, and utilize these partial
nonce bits in a lattice attack, using the formalization in
[21, 22]. The disadvantage of that approach is that it fixes
the number of known LSBs (denoted ¢) per equation [8,

USENIX Association

26th USENIX Security Symposium 91



Table 2: perf cache-misses and CPU clock cycle statis-
tics over 1,000 iterations for relevant routines called by
the BN_mod_inverse method.

Cache Clock cM cc
Target misses (CM) cycles (CC) CMp; CCpgy
Baseline (BL) 13 211,324 1.0 1.0
BN_rshiftl 2,396 947,925 172.6 4.4
BN_usub 489 364,399 35.2 1.7
BN_mod_inverse 956 540,357 68.9 2.5
BN_uadd 855 485,088 61.6 2.2
bn_add_words 1,124 558,839 81.0 2.6
BN_rshift 514 367,929 37.0 1.7
Previous “hot” 10,280 2,576,360 740.5  12.1
Overall “hottest” 15,910 3,817,748 1,146.2 18.0

Sec. 5]: “when a set of signatures are collected such that,
for each of them, [/] bits of the nonce are known, a set
of equations . .. can be obtained and the problem of find-
ing the private key can be reduced to an instance of the
[HNP].” Fixing ¢ impacts their results in two important
ways. First, since their lattice utilizes a fixed ¢, they fo-
cus on the ability to algebraically recover only a fixed
number of bits from the LS sequence. From [8, Tbl. 1],
our target implementation is similar to their “Standard-
MO” target, and they focus on ¢ € {8,12,16,20}. For
example, to extract £ = 8 LSBs they need to query on
average 4 signatures, discarding all remaining signatures
that do not satisfy ¢ > 8. Second, this directly influences
the number of signatures needed in the lattice phase.
From [8, Tbl. 2-3], for 256-bit n and ¢ = 8, they re-
quire 168 signatures. This is because they are discard-
ing three out of four signatures on average where ¢ < 8,
then go on to construct a d 4+ 1-dimension lattice where
d = 168/4 = 42 from the signatures that meet the ¢ > 8
restriction. The metric of interest from the attacker per-
spective is the number of required signatures.

In this section, we improve with respect to both
points—extracting a varying number of bits from every
nonce, subsequently allowing our lattice problem to uti-
lize every signature queried, resulting in a significantly
reduced number of required signatures.

Extracting nonce bits. Rather than focusing on the aver-
age number of required signatures as a function of a num-
ber of target LSBs, our approach is to examine the aver-
age number of bits extracted as a function of LS sequence
length. We empirically measured this quantity by gener-
ating f; uniformly at random from {1..n— 1} for P-256
n, running the BEEA on f; and n to obtain the ground
truth LS sequence, and taking the first j operations from
this sequence. We then grouped the f3; by these length-
subsequence values, and finally determined the maximal
shared LSBs value of each group. Intuitively, this maps
any length-j subsequence to a known LSBs value. For
example, a sequence beginning LLS has j =3, £ =3,

a = 4 interpreted as a length-3 subsequence that leaks 3
LSBs with a value of 4.

We performed 22¢ trials (i.e. 1 < i < 2%°) for each
length 1 < j < 16 independently and Figure 6 contains
the results (see Table 6 in the appendix for the raw data).
Naturally as the length of the sequence grows, we are
able to extract more bits. But at the same time, in real-
ity for practical side-channels longer sequences are more
likely to contain trace errors (i.e. incorrectly inferred
LS sequences), ultimately leading to nonsensical lattice
problems for key recovery. So we are looking for the
right balance between these two factors. Figure 6 allows
us to draw several conclusions, including but not limited
to: (1) Sequences of length 5 or more allow us to ex-
tract a minimum of 3 nonce bits per signature; (2) Sim-
ilarly length 7 or more for a minimum of 4 nonce bits;
(3) The average number of bits extracted grows rapidly
at first, then the growth slows as the sequence length in-
creases. This observation pairs nicely with the nature
of side-channels: attempting to target longer sequences
(risking trace errors) only marginally increases the aver-
age number of bits extracted. From the lattice perspec-
tive, £ > 3 is a practical requirement [21, Sec. 4.2] so
in that respect sequences of length 5 is the minimum to
guarantee that every signature can be used as an equation
for the lattice problem.

To summarize, the data used to produce Figure 6 al-

lows us to essentially build a dictionary that maps LS
sequences of a given length to an (¢;,a;) pair, which we
now define and utilize.
Recovering private keys. We follow the formalization
of [21, 22] with the use of per-equation ¢; due to [4,
Sec. 4]. Extracted from our side-channel, we are left with
equations k; = 2t b; + a; where /; and a; are known, and
since 0 < k; < n it follows that 0 < b; < n/ZZf. Denote
| x|, modular reduction of x to the interval {0..n— 1}
and |x|, to the interval {—(n—1)/2..(n—1)/2}. Define
the following (attacker-known) values.

ti = [ri/(2"s:) ]
;= | (a;—hi/s;)/2" ]

It now follows that 0 < | at; — fi; |, < n/2%. Setting

u =1 —|—n/2£"+1, we obtain

vi = ot —ui, < ny24t

i.e. integers A; exist such that |ot; — u; — Ain| < n/ZE”rl
holds. The u; approximate ¢if; since they are closer than
a uniformly random value from {1..n — 1}, leading to
an instance of the HNP [5]: recover a given many (#;,u;)
pairs.

Consider the rational d + 1-dimension lattice gener-

92 26th USENIX Security Symposium

USENIX Association



max B B
mean
15  min v a |
a
13 a |
a
11 a |
o a
Q
3]
g 9 F 4 1
=
o
@ a
/M
7]
- 7+ a n
a
5+ a |
A v v v v v v v v v v
3 F 4 v v B
Ad v
1+ |
| I I I I I I I
1 3 5 7 9 11 13 15

Sequence length

Figure 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. Error bars are one standard deviation on each side.
See Table 6 in the appendix for the raw data.

ated by the rows of the following matrix.

20+, 0 . ... 0
0 20ty
B:

: - - 0 :
0 0 2ltly 0
2(1+]t1 2Zd+ltd1

Setting
¥=(A,..., Aq, @)
)7:(2['+'v1,...,2‘d“vd,a)
i= 20wy, 2%y, 0)

establishes the relationship XB — i = . Solving the CVP
with inputs B and # yields X and hence a. We use the
embedding strategy [13, Sec. 3.4] to heuristically reduce
CVP approximations to Shortest Vector Problem (SVP)
approximations. Consider the rational d + 2-dimension
lattice generated by the rows of the following matrix.

b=

u n

There is a reasonable chance that lattice-reduced B will
contain the short lattice basis vector (¥, —1)B = (¥, —n),

revealing &. To extend the search space, we use the ran-
domization technique inspired by Gama et al. [12, Sec.
5], shuffling the order of #; and u; and multiplying by a
random sparse unimodular matrix between lattice reduc-
tions.

Empirical results. Table 3 contains our empirical re-
sults for various lattice parameters targeting P-256. As
part of our experiments, we were able to successfully
reproduce and verify the £ € {8,12}, Ign ~ 256 lattice
results of Cabrera Aldaya et al. [8] in our environment
for comparison. While the goal is to minimize the num-
ber of required signatures, this should be weighed with
observed HNP success probability, affecting search dura-
tion. From Figure 6 we focus on LS subsequence lengths
J € {5,7} that yield ¢; nonce LSBs from ranges {3..5}
and {4..7}, respectively. Again this is in contrast to [8]
that fixes ¢ and discards signatures—this is the reason
their signature count is much higher than the d + 2 lattice
dimension in their case, but equal in ours.

A relevant metric affecting success probability is the
total number of known nonce bits for each HNP instance.
Naturally as this sum approaches lgn one expects correct
solutions to start emerging. On the other hand, increas-
ing this sum demands querying more signatures, at the
same time increasing d and lattice methods become less
precise. For a given HNP instance, denote / = Z?:] li,ie.
the total number of known nonce bits over all the equa-
tions for the particular HNP instance. Table 3 denotes
the mean value of [ over all successful HNP instances—
intuitively tracking how many known nonce bits needed
in total to reasonably expect success.

We ran 200 independent trials for each set of param-
eters on a computing cluster with Intel Xeon X5650
nodes. We allowed each trial to execute at most four
hours, and we say successful trials are those HNP in-
stances recovering the private key within this allotted
time. Our lattice implementation uses Sage software
with BKZ [25] reduction, block size 30.

To summarize, utilizing every signature in our HNP
instances leads to a significant improvement over previ-
ous work with respect to both the number of required
signatures and amount of side-channel data required.

5 Attacking Applications

OpenSSL is a shared library and therefore any vulnera-
bility present in it can potentially be exploited from any
application linked against it. This is the case for the
present work and to demonstrate the feasibility of our
attack in a concrete real-life scenario, we focus on two
applications implementing two ubiquitous security pro-
tocols: TLS within stunnel and SSH within OpenSSH.
OpenSSL provides ECDSA functionality for both ap-
plications and therefore we mount our attack against

USENIX Association

26th USENIX Security Symposium 93



Table 3: P-256 ECDSA lattice attack improvements for
BEEA leakage. Empirical values are over 200 trials (4hr
max trial duration). Lattice dimension is d +2. The
number of leaked LSBs per nonce is £. LS subsequence
length is j. The average total number of leaked nonce
bits per successful HNP instance is y;. CPU time is the
median.

Signa- Success CPU
Source tures d l J W Rate (%) Minutes
Prev. [8] 168 42 8 — 3360 100.0 0.7
Prev. [8] 312 24 12— 288.0 100.0 0.6
This work 50 50 {4..7} 7 2497 14.0 79.5
This work 55 55 {4..7} 7 2688 98.0 1.7
This work 60 60 {4..7y 7 2934 100.0 0.7
This work 70 70 {3..5} 5 2582 5.0 130.8
This work 80 80 {3..5} 5 286.1 94.5 13.2
This work 90 90 {3..5} 5 3212 100.0 4.0

OpenSSL’s ECDSA running within them. More pre-
cisely, this section describes the tools and the setup fol-
lowed to successfully exploit the vulnerability within
these applications. In addition, we explain the relevant
messages collected for each application, later used for
private key recovery together with the trace data and the
signatures.

5.1 TLS

Stunnel?® is a popular portable open source software ap-
plication that forwards network connections from one
port to another and provides a TLS wrapper. Network ap-
plications that do not natively support TLS communica-
tion benefit from the use of stunnel. More precisely, stun-
nel can be used to provide a TLS connection between a
public port exposing a TLS-enabled network service and
a localhost port providing a non-TLS network service. It
links against OpenSSL to provide TLS functionality.

For our experiments, we used stunnel 5.39 compiled
from stock source and linked against OpenSSL 1.0.1u.
We generated a P-256 ECDSA certificate for the stunnel
service and chose the ECDHE-ECDSA-AES128-SHA TLS
1.2 cipher suite.

In order to collect digital signature and digest tuples,
we wrote a custom TLS client that connects to the stun-
nel service. Our TLS client initiates TLS connections,
collects the protocol messages and continues the hand-
shake until it receives the ServerHelloDone message,
then it drops the connection. The protocol messages
contain relevant information for the attack. The Clien-
tHello and ServeHello messages contain each a 32-
byte random field, in practice these bytes represent a
4-byte UNIX timestamp concatenated with a 28-byte
nonce. The Certificate message contains the P-256

$https://www.stunnel.org

ECDSA certificate generated for the stunnel service. The
ServerKeyExchange message contains ECDH key ex-
change parameters including the curve type (named -
curve), the curve name (secp256r1l) and the Signa-
tureHashAlgorithm. Finally, the digital signature it-
self is sent as part of the ServerKeyExchange message.
The ECDSA signature is over the concatenated string

ClientHello.random + ServerHello.random +
ServerKeyExchange.params

and the hash function is SHA-512, proposed by the client
in the ClientHello message and accepted by the server
in the SignatureHashAlgorithm field (explicit values
0x06, 0x03). Our TLS client saves the hash of the con-
catenated string and the DER-encoded ECDSA signature
sent by the server.

In order to achieve synchronization between the spy
and the victim processes, our spy process is launched
prior to the TLS handshakes, therefore it collects the
trace for each ECDSA signature performed during the
handshakes, then it stops when the ServerHelloDone
message is received. The process is repeated as needed
to build up a set of distinct trace, digital signature, and
digest tuples. Section 5.3 contains accuracy results for
several LS subsequence patterns for an stunnel victim.

5.2 SSH

OpenSSH? is a widely used open source software suite to
provide secure communication over an insecure channel.
OpenSSH is a set of tools implementing the SSH net-
work protocol and it is typically linked against OpenSSL
to perform several cryptographic operations, including
digital signatures (excluding ed25519 signatures) and
key exchange.

For our experiments, we used OpenSSH 7.4p1 com-
piled from stock source and linked against OpenSSL
1.0.1u. The ECDSA key pair used by the server and tar-
geted by our attack is the default P-256 key pair gener-
ated during installation of OpenSSH.

Following a similar approach to Section 5.1, we wrote
a custom SSH client that connects to the OpenSSH server
to collect digital signatures and digest tuples. At the
same time, our spy process running on the server side
collects the timing signals leaked by the server during
the handshake.

Relevant to this work, the OpenSSH server was con-
figured with the ecdsa-sha2-nistp256 host key al-
gorithm and the default P-256 key pair. After the ini-
tial ClientVersion and ServerVersion messages, the
protocol defines the Diffie-Hellman key exchange pa-
rameters, the signature algorithm and the hash function

Shttp://www.openssh.com/

94 26th USENIX Security Symposium

USENIX Association


https://www.stunnel.org
http://www.openssh.com/

Client Server

PROTOCOL_VERSION

————— >
PROTOCOL_VERSION
SSH_MSG_KEXINIT
[Nonce, KEX_alg,
publicKey_alg]
< _____
SSH_MSG_KEXINIT
[Nonce, KEX_alg,
publicKey_alg]
SSH_MSG_KEX_ECDH_INIT
[Q_cl
————— >

SSH_MSG_KEX_ECDH_REPLY
[K_S, Q_S, Signature]
SSH_MSG_NEWKEYS

Application Data <----> Application Data

Figure 7: ECC SSH handshake flow with correspond-
ing parameters from all the messages to construct the di-
gest. Our spy process collects timing traces in parallel to
the server’s ECDSA sign operation, said digital signature
being included in a SSH_MSG_KEX_ECDH_REPLY field and
collected by our client.

identifiers in the SSH_MSG_KEXINIT message. To provide
host authentication by the client and the server, a 16-byte
random nonce is included in the SSH_.MSG_KEXINIT mes-
sage. The SSH_MSG_KEX_ECDH_REPLY'® message con-
tains the server’s public host key K_S (used to create and
verify the signature), server’s ECDH ephemeral public
key Q_S (used to compute the shared secret K in combi-
nation with the client’s ECDH ephemeral public key Q_C)
and the signature itself. The ECDSA signature is over the
hash of the concatenated string

ClientVersion + ServerVersion +
Client.SSH_MSG_KEXINIT +
Server.SSH_MSG_KEXINIT +
K.S+QC+ Q.S +K

Our SSH client was configured to use
ecdh-sha2-nistp256 and ecdsa-sha2-nistp256 as
key exchange and public key algorithms, respectively.
Similar to the previous case, our SSH client saves the
hash of the concatenated string and the raw bytes of the
ECDSA signature sent by the server. To synchronize the
spy and victim processes, our spy process is launched
prior to the SSH handshakes and it stops when the SSH_-
MSG_NEWKEYS message is received, therefore it collects

Onttps://tools.ietf.org/html/rfc5656

Table 4: Accuracy for length j = 5 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern ¢; a; Accuracy (%) Accuracy (%)
LLLLL 5 0 77.9 73.3
SLLLL 4 1 99.8 98.0
LSLLL 4 2 99.3 98.9
SLSLL 3 3 98.9 97.2
LLSLL. 4 4 98.0 96.7
SLLSL. 3 5 95.8 95.5
LSLSL 3 6 85.5 97.2
SLSLS 3 7 99.2 97.8
LLLSL 4 8 93.3 92.5
SLLLS 4 9 94.4 94.6
LSLLS 4 10 81.1 93.5
LLSLS 4 12 96.4 96.7
LLLLS 5 16 89.8 85.0

the trace for each ECDSA signature performed during
the handshakes. All the protocol messages starting from
SSH_MSG_NEWKEYS and any client responses are not re-
quired by our attack, therefore the client drops the con-
nection and repeats the process as needed to build up a
set of distinct trace, digital signature, and digest tuples.
Section 5.3 contains accuracy results for several LS sub-
sequence patterns for an SSH server victim.

5.3 Attack Results

Procurement accuracy. Table 4 and Table 5 show the
empirical accuracy results for patterns of length j =5
and j = 7, respectively. These patterns represent the
beginning of the LS sequence in the context of Open-
SSL ECDSA executing in real world applications (TLS
via stunnel, SSH via OpenSSH). From our empirical
results we note three trends: (1) Similar to previous
works [4, 24, 27], the accuracy of the subsequence de-
creases as ¢ increases due to the deviation in the right-
shift operation width. (2) The accuracy also decreases for
subsequences containing several contiguous right-shift
operations, e.g. first and last rows, due to the variable
width of right-shift operations within a single trace. (3)
SSH traces are slightly noisier than TLS traces; we spec-
ulate this is due to the computation of the ECDH shared
secret prior to the ECDSA signature itself. Using our
improved degradation technique (Section 4.3) we can re-
cover a with very high probability, despite the speed of
the modular inversion operation and the imperfect traces.
Key recovery. We close with a few data points
for our end-to-end attack, here focusing on TLS. In
this context, end-to-end means all steps from the at-
tacker perspective—i.e. launching the degrade processes,

USENIX Association

26th USENIX Security Symposium 95


https://tools.ietf.org/html/rfc5656

Table 5: Accuracy for length j = 7 subsequences over
15,000 TLS/SSH handshakes.

TLS SSH
Pattern l; a; Accuracy (%) Accuracy (%)
LLLLLLL 7 0 43.8 30.1
SLLLLSL 5 1 934 93.1
LSLLLLS 6 2 82.6 88.0
SLSLLSL 4 3 94.8 934
LLSLLLL 6 4 92.9 86.4
SLLSLSL 4 5 95.2 94.1
LSLSLLS 5 6 79.2 92.3
SLSLSLL 4 7 98.8 96.6
LLLSLLL 6 8 84.8 80.5
SLLLSLL 5 9 80.0 81.1
LSLLSLS 5 10 80.8 90.9
SLSLLLS 5 11 91.7 85.4
LLSLSLL 5 12 94.3 94.5
SLLSLLS 5 13 90.9 90.6
LSLSLSL 4 14 83.5 95.1
SLSLSLS 4 15 97.8 97.1
LLLLSLL 6 16 87.7 83.8
SLLLLLL 6 17 92.0 92.4
LSLLLSL 5 18 81.8 90.7
LLSLLSL 5 20 94.3 94.7
LSLSLLL 5 22 80.0 91.5
LLLSLSL 5 24 94.4 91.1
SLLLSLS 5 25 94.3 94.3
LSLLSLL 5 26 74.7 86.1
SLSLLLL 5 27 92.9 89.7
LLSLSLS 5 28 94.6 93.6
SLLSLLL 5 29 85.4 84.8
LLLLLSL 6 32 65.7 61.1
LSLLLLL 6 34 91.5 91.5
LLSLLLS 6 36 93.0 89.3
LLLSLLS 6 40 89.0 88.5
LLLLSLS 6 48 87.2 82.7
SLLLLLS 6 49 86.8 85.5
LLLLLLS 7 64 25.6 33.0

launching the spy process, and launching our custom
TLS client. Finally, repeating these steps to gather mul-
tiple trace and signature pairs, then running the lattice
attack for key recovery. That is, no steps in the attack
chain are abstracted away.

The experiments for Table 3 assume perfect traces.
However, as seen in Table 4 and Table 5, while we ob-
serve quite high accuracy, in our environment we are un-
able to realize absolutely perfect traces. Trace errors will
occur, and lattice methods have no recourse to compen-
sate for them. We resort to oversampling and randomized
brute force search to achieve key recovery in practice.

For the j = 5 case, we procured 150 signatures with

(potentially imperfect) trace data. Consulting Table 3,
we took 400 random subsets of size 80 from this set
and ran lattice attack instances on a computing cluster.
The first instance to succeed in recovering the private
key did so in roughly 8 minutes. Checking the ground
truth afterwards, 142 of these original 150 traces were
correct, i.e. ~0.18% of all possible subsets are error-free.
This successful attack is consistent with the probability
1—(1-0.0018)*° ~ 51.4%.

Similarly for the j = 7 case, we procured 150 signa-
tures with (potentially imperfect) trace data. Consulting
Table 3, we took 400 random subsets of size 55 from this
set and ran lattice attack instances on a computing clus-
ter. The first instance to succeed in recovering the private
key did so in under a minute. Checking the ground truth
afterwards, 137 of these original 150 traces were correct,
i.e. ~0.19% of all possible subsets are error-free. This
successful attack is also consistent with the probability
1—(1-0.0019)*Y ~ 53.3%.

It is worth noting that with this naive strategy, it
is always possible to trade signatures for more offline
search effort. Moreover, it is possible to traverse the
search space by weighting trace data subsets according
to known pattern accuracy, e.g. explore patterns with ac-
curacy > 95% sooner.

6 Conclusion

In this work, we disclose a new vulnerability in widely-
deployed software libraries that causes ECDSA nonce
inversions to be computed with the BEEA instead of a
code path with microarchitecture attack mitigations. We
design and demonstrate a practical cache-timing attack
against this insecure code path, leveraging our new per-
formance degradation metric. Combined with our im-
proved nonce bits recovery approach and lattice parame-
terization, this enable us to recover P-256 ECDSA pri-
vate keys from OpenSSL despite constant-time scalar
multiplication. As far as we are aware, this is the first
cache-timing attack targeting nonce inversion in Open-
SSL, and furthermore the first side-channel attack against
cryptosystems leveraging its constant-time P-256 scalar
multiplication methods. Our contributions traverse both
practice and theory, recovering keys with as few as 50
signatures and corresponding traces.

Stepping back from the concrete side-channel attack
we realized here, our improved nonce bit recovery ap-
proach coupled with tuned lattice parameters demon-
strates that even small leaks of BEEA execution can have
disastrous consequences. Observing as few as the first 5
operations in the LS sequence allows every signature to
be used as an equation for the lattice problem. Moreover,
our work highlights the fact that constant-time consider-
ations are ultimately about the software stack, and not

96 26th USENIX Security Symposium

USENIX Association



necessarily a single component in isolation.

The rapid development of cache-timing attacks paired
with the need for fast solutions and mitigations led to
the inclusion of the BN_FLG_CONSTTIME flag in Open-
SSL. Over the years, the flag proved to be useful when
introducing new constant-time implementations, but un-
fortunately its usage is now beyond OpenSSL’s original
design. As new cache-timing attacks emerged, the us-
age of the flag increased throughout the library. At the
same time the programming error probability increased,
and many of those errors permeated to forks such as
LibreSSL and BoringSSL. The recent exploitation sur-
rounding the flag’s usage, this work included, highlights
it as a prime example of why failing securely is a fun-
damental concept in security by design. For example,
P-256 takes the constant-time scalar multiplication code
path by default, oblivious to the flag, while in stark con-
trast modular inversion relies critically on this flag being
set to follow the code path with microarchitecture attack
mitigations.

Following responsible disclosure procedures, we re-
ported the issue to the developers of the affected products
after our findings. We lifted the embargo in December
2016. Despite OpenSSL’s 1.0.1 branch being a standard
package shipped with popular Linux distributions such
as Ubuntu (12.04 LTS and 14.04 LTS), Debian (7.0 and
8.0), and SUSE, it reached EOL in January 2017. Back-
porting security fixes to EOL packages is a necessary and
challenging task, and to contribute we provide a patch to
mitigate our attack. OpenSSL assigned CVE-2016-7056
based on our work. See the appendix for the patch.

Acknowledgments

We thank Tampere Center for Scientific Computing
(TCSC) for generously granting us access to computing
cluster resources.

Supported in part by Academy of Finland grant
303814.

This research was supported in part by COST Action
IC1306.

The first author was supported in part by the Pekka
Ahonen Fund through the Industrial Research Fund of
Tampere University of Technology.

References

[1] ACICMEZ, O., GUERON, S., AND SEIFERT, J. 2007. New branch
prediction vulnerabilities in OpenSSL and necessary software coun-
termeasures. In Cryptography and Coding, 11th IMA International
Conference, Cirencester, UK, December 18-20, 2007, Proceedings.
185-203.

[2] ALLAN, T., BRUMLEY, B. B., FALKNER, K. E., VAN DE POL,
J., AND YAROM, Y. 2016. Amplifying side channels through per-
formance degradation. In Proceedings of the 32nd Annual Confer-

ence on Computer Security Applications, ACSAC 2016, Los Ange-
les, CA, USA, December 5-9, 2016, S. Schwab, W. K. Robertson,
and D. Balzarotti, Eds. ACM, 422-435.

[3] ARAVAMUTHAN, S. AND THUMPARTHY, V. R. 2007. A par-
allelization of ECDSA resistant to simple power analysis attacks.
In 2007 2nd International Conference on Communication Systems
Software and Middleware. 1-7.

[4] BENGER, N., VAN DE POL, J., SMART, N. P., AND YAROM, Y.
2014. “Ooh aah... just a little bit” : A small amount of side chan-
nel can go a long way. In Cryptographic Hardware and Embedded
Systems - CHES 2014 - 16th International Workshop, Busan, South
Korea, September 23-26, 2014. Proceedings, L. Batina and M. Rob-
shaw, Eds. Lecture Notes in Computer Science, vol. 8731. Springer,
75-92.

[5] BONEH, D. AND VENKATESAN, R. 1996. Hardness of computing
the most significant bits of secret keys in Diffie-Hellman and related
schemes. In Advances in Cryptology - CRYPTO 96, 16th Annual
International Cryptology Conference, Santa Barbara, California,
USA, August 18-22, 1996, Proceedings. 129-142.

[6] BRUMLEY, B. B. AND HAKALA, R. M. 2009. Cache-timing tem-
plate attacks. In Advances in Cryptology - ASIACRYPT 2009, 15th
International Conference on the Theory and Application of Cryptol-
ogy and Information Security, Tokyo, Japan, December 6-10, 2009.
Proceedings, M. Matsui, Ed. Lecture Notes in Computer Science,
vol. 5912. Springer, 667-684.

[71 BRUMLEY, B. B. AND TUVERI, N. 2011. Remote timing attacks
are still practical. In Computer Security - ESORICS 2011 - 16th
European Symposium on Research in Computer Security, Leuven,
Belgium, September 12-14, 2011. Proceedings. 355-371.

[8] CABRERA ALDAYA, A., CABRERA SARMIENTO, A. J., AND
SANCHEZ-SOLANO, S. 2016. SPA vulnerabilities of the binary
extended Euclidean algorithm. J. Cryptographic Engineering.

[9] CIPRESSO, T. AND STAMP, M. 2010. Software reverse engineer-
ing. In Handbook of Information and Communication Security.
659-696.

[10] FAN, S., WANG, W., AND CHENG, Q. 2016. Attacking Open-
SSL implementation of ECDSA with a few signatures. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Com-
munications Security, Vienna, Austria, October 24-28, 2016. 1505—
1515.

[117 GALLANT, R. P., LAMBERT, R. J., AND VANSTONE, S. A.
2001. Faster point multiplication on elliptic curves with efficient
endomorphisms. In Advances in Cryptology - CRYPTO 2001, 21st
Annual International Cryptology Conference, Santa Barbara, Cal-
ifornia, USA, August 19-23, 2001, Proceedings, J. Kilian, Ed. Lec-
ture Notes in Computer Science, vol. 2139. Springer, 190-200.

[12] GAMA, N., NGUYEN, P. Q., AND REGEV, O. 2010. Lattice
enumeration using extreme pruning. In Advances in Cryptology -
EUROCRYPT 2010, 29th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, French Riv-
iera, May 30 - June 3, 2010. Proceedings, H. Gilbert, Ed. Lecture
Notes in Computer Science, vol. 6110. Springer, 257-278.

[13] GOLDREICH, O., GOLDWASSER, S., AND HALEVI, S. 1997.
Public-key cryptosystems from lattice reduction problems. In Ad-
vances in Cryptology - CRYPTO 97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August
17-21, 1997, Proceedings, B. S. K. Jr., Ed. Lecture Notes in Com-
puter Science, vol. 1294. Springer, 112-131.

USENIX Association

26th USENIX Security Symposium 97



[14] GUERON, S. AND KRASNOV, V. 2015. Fast prime field elliptic-
curve cryptography with 256-bit primes. J. Cryptographic Engi-
neering 5, 2, 141-151.

[15] HOWGRAVE-GRAHAM, N. AND SMART, N. P. 2001. Lattice at-
tacks on digital signature schemes. Des. Codes Cryptography 23, 3,
283-290.

[16] KASPER, E. 2011. Fast elliptic curve cryptography in OpenSSL.
In Financial Cryptography and Data Security - FC 2011 Work-
shops, RLCPS and WECSR 2011, Rodney Bay, St. Lucia, February
28 - March 4, 2011, Revised Selected Papers, G. Danezis, S. Di-
etrich, and K. Sako, Eds. Lecture Notes in Computer Science, vol.
7126. Springer, 27-39.

[17] KoBLITZ, N. 1987. Elliptic curve cryptosystems. Mathematics
of Computation 48, 177, 203-209.

[18] MENEZES, A., VAN OORSCHOT, P. C., AND VANSTONE, S. A.
1996. Handbook of Applied Cryptography. CRC Press.

[19] MEYER, C. AND SCHWENK, J. 2013. SoK: Lessons learned
from SSL/TLS attacks. In Information Security Applications - 14th
International Workshop, WISA 2013, Jeju Island, Korea, August 19-
21, 2013, Revised Selected Papers, Y. Kim, H. Lee, and A. Perrig,
Eds. Lecture Notes in Computer Science, vol. 8267. Springer, 189—
209.

[20] MILLER, V. S. 1985. Use of elliptic curves in cryptography. In
Advances in Cryptology - CRYPTO ’85, Santa Barbara, California,
USA, August 18-22, 1985, Proceedings. 417-426.

[21] NGUYEN, P. Q. AND SHPARLINSKI, I. E. 2002. The insecurity
of the Digital Signature Algorithm with partially known nonces. J.
Cryptology 15, 3, 151-176.

[22] NGUYEN, P. Q. AND SHPARLINSKI, I. E. 2003. The insecu-
rity of the Elliptic Curve Digital Signature Algorithm with partially
known nonces. Des. Codes Cryptography 30, 2, 201-217.

[23] PERCIVAL, C. 2005. Cache missing for fun and profit. In BSD-
Can 2005, Ottawa, Canada, May 13-14, 2005, Proceedings.

[24] PEREIDA GARciA, C., BRUMLEY, B. B., AND YAROM, Y.
2016. “Make sure DSA signing exponentiations really are constant-
time”. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, Vienna, Austria, October
24-28, 2016. 1639-1650.

[25] SCHNORR, C. AND EUCHNER, M. 1994. Lattice basis reduc-
tion: Improved practical algorithms and solving subset sum prob-
lems. Math. Program. 66, 181-199.

[26] SINHA, V., KARGER, D. R., AND MILLER, R. 2006. Relo:
Helping users manage context during interactive exploratory visu-
alization of large codebases. In 2006 IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC 2006), 4-8
September 2006, Brighton, UK. 187-194.

[27] VAN DE POL, J., SMART, N. P., AND YAROM, Y. 2015. Justa
little bit more. In Topics in Cryptology - CT-RSA 2015, The Cryp-
tographer’s Track at the RSA Conference 2015, San Francisco, CA,
USA, April 20-24, 2015. Proceedings, K. Nyberg, Ed. Lecture Notes
in Computer Science, vol. 9048. Springer, 3-21.

[28] YAROM, Y. AND FALKNER, K. 2014. FLUSH+RELOAD: A
high resolution, low noise, L3 cache side-channel attack. In Pro-
ceedings of the 23rd USENIX Security Symposium, San Diego, CA,
USA, August 20-22, 2014., K. Fu and J. Jung, Eds. USENIX Asso-
ciation, 719-732.

[29] YArROM, Y., GENKIN, D., AND HENINGER, N. 2016.
CacheBleed: A timing attack on OpenSSL constant time RSA. In
Cryptographic Hardware and Embedded Systems - CHES 2016 -
18th International Conference, Santa Barbara, CA, USA, August
17-19, 2016, Proceedings, B. Gierlichs and A. Y. Poschmann, Eds.
Lecture Notes in Computer Science, vol. 9813. Springer, 346-367.

A Mitigation

Below is the fix for CVE-2016-7056 in uuencode format.

begin-base64 664 fix_ CVE-2016-7056.patch
RnJvbSAyND1iY2YzMTQwNWUxNjIyZDA1ZWY2MGR jNWUSM2M1NGVmYTYOZ jNj
IE1vbiBTZXAgMTcgMDA6MDA6GMDAGM j AwMQpGem9Ot0iA9P1VURiI04P3E/Q2Vz
YXI9MjBQZXJ1aWRhPTIWR2FyYz1DMz1BRGE/PSA8Y2VzYXIucGVyZWlkYWdh
cmNpYUBOdXQuZmk+CkRhdGU6IEZyaSwgMTYgRGV jIDIWMTYgMTI6MDI6MTkg
KzAyMDAKU3ViamVjdDogW1BBVENIXSBFQORTQSB2dWxuZXJhYmx1IHRvIGNh
Y2h1LXRpbWluZyBhdHRhY2suIEJOX21vZF9pbnZlcnN1IGZhaWxzCiBObyBO
YWt1IGNvbnNOYWS0LXRpbWUgcGFOaCwgdGhlcyBsZWFraWsnIG5vbmN1 J3Mg
aW5smb3JtYXRpb24uCgotLSOKIGNyeXBOby91Y2RzYS91Y3Nfb3NzbC5jIHwg
MiArKwogMSBmaWx1IGNoYW5nZWQsIDIgaW5zZXJ0aW9ucygrKQoKZG1lmZiAt
LWdpdCBhL2NyeXBOby91Y2RzYS91Y3Nfb3NzbC5jIGIvY3J5cHRVL2V jZHNh
L2Vjc19vc3NsLmMKaWbkZXggNGM1ZmE2Yi4uNzJ1N2MwNSAxMDA2NDQKLSOt
IGEvY3J5cHRvL2VjZHNhL2Vjc19vc3NsLmMKKysrIGIvY3J5cHRVL2VjZHNh
L2Vjc19vc3NsLmMKQEAgLTEONyw2ICsxNDcsOCBAQCBzdGF0aWMgaW50IGV j
ZHNhX3NpZ25£fc2VOdXAoRUNfSOVZICplY2t1leSwgQk5fQ1RYICpjdHhfaWds
IEJJROSVTSAQKmtpbnZwLAogICAgICAgICAgICAgaWYgKCFCT19hZGQoaywg
aywgb3JkZXIpKQogICAgICAgICAgICAgICAgIGdvdG8gZXJyOwogCisgICAg
ICAgIEJOX3N1dF9mbGFncyhrLCBCT19GTEdfQO90U1RUSU1FKTsKKwogICAg
ICAgICAVKiBjb21wdXR1IHIgdGhlIHgtY29vcmRpbmFOZSBvZiBnZW51cmFO
b3IgKiBrICovCiAgICAgICAgIGImICghRUNfUE9JT1RfbXVsKGdyb3VwLCBO
bXBfcGI9pbnQsIGssIESVTEws IESVTEws IGNOeCkpIHsKICAgICAgICAgICAg
IEVDRFNBZXJyKEVDRFNBXOZfRUNEUOFfUO1HT19TRVRVUCwgRVJISX1JfRUNE
TE1CKTsKLSO0gCjIuNy40Cgo=

B Supplementary Empirical Data

Table 6 contains the raw data used to produce Figure 6.

Table 6: Empirical number of extracted bits for vari-
ous sequence lengths. Each sequence length consisted of
226 trials, over which we calculated the mean (with de-
viation), maximum, and minimum number of recovered
LSBs. See Figure 6 for an illustration.

j Mean St.Dev. Min Max
1 1.00 0.00 1 1
2 1.50 0.50 1 2
3 2.25 0.43 2 3
4 2.87 0.60 2 4
5 3.56 0.61 3 5
6 422 0.70 3 6
7 4.89 0.73 4 7
8 5.43 0.93 4 8
9 5.88 1.15 4 9
10 623 1.40 4 10
11 6.52 1.64 4 11
12 6.73 1.87 4 12
13 6.91 2.07 4 13
14 7.04 2.24 4 14
15 7.15 2.40 4 15
16 7.23 2.53 4 16

98 26th USENIX Security Symposium

USENIX Association



Neural Nets Can Learn Function Type Signatures From Binaries

Zheng Leong Chuatk Shiqgi Shen*

Prateek Saxena Zhenkai Liang

National University of Singapore
{chuazl, shiqiO4, prateeks, liangzk} @ comp.nus.edu.sg

Abstract

Function type signatures are important for binary analy-
sis, but they are not available in COTS binaries. In this
paper, we present a new system called EKLAVYA which
trains a recurrent neural network to recover function type
signatures from disassembled binary code. EKLAVYA
assumes no knowledge of the target instruction set se-
mantics to make such inference. More importantly,
EKLAVYA results are “explicable”: we find by analyz-
ing its model that it auto-learns relationships between in-
structions, compiler conventions, stack frame setup in-
structions, use-before-write patterns, and operations rel-
evant to identifying types directly from binaries. In
our evaluation on Linux binaries compiled with clang
and gcc, for two different architectures (x86 and x64),
EKLAVYA exhibits accuracy of around 84% and 81% for
function argument count and type recovery tasks respec-
tively. EKLAVYA generalizes well across the compilers
tested on two different instruction sets with various opti-
mization levels, without any specialized prior knowledge
of the instruction set, compiler or optimization level.

1 Introduction

Binary analysis of executable code is a classical problem
in computer security. Source code is often unavailable
for COTS binaries. As the compiler does not preserve a
lot of language-level information, such as types, in the
process of compilation, reverse engineering is needed
to recover the semantic information about the original
source code from binaries. Recovering semantics of ma-
chine code is important for applications such as code
hardening [54} [34} 153} 126} 152]], bug-finding [39, 147, [10],
clone detection [18}138]], patching/repair [17, (16} 41] and
analysis [12 22, 21]]. Binary analysis tasks can vary
from reliable disassembly of instructions to recovery of
control-flow, data structures or full functional semantics.

*Lead authors are alphabetically ordered.

The higher the level of semantics desired, the more spe-
cialized the analysis, requiring more expert knowledge.

Commercial binary analysis tools widely used in the
industry rely on domain-specific knowledge of compiler
conventions and specialized analysis techniques for bi-
nary analysis. Identifying idioms common in binary code
and designing analysis procedures, both principled and
heuristic-based, have been an area that is reliant on hu-
man expertise, often engaging years of specialized bi-
nary analysts. Analysis engines need to be continuously
updated as compilers evolve or newer architectures are
targeted. In this work, we investigate an alternative line
of research, which asks whether we can frain machines
to learn features from binary code directly, without spec-
ifying compiler idioms and instruction semantics explic-
itly. Specifically, we investigate the problem of recov-
ering function types / signatures from binary code — a
problem with wide applications to control-flow harden-
ing [54} 34} 53] and data-dependency analysis [31}, 140]
on binaries — using techniques from deep learning.

The problem of function type recovery has two sub-
problems: recovering the number of arguments a func-
tion takes / produces and their fypes. In this work, we
are interested in recovering argument counts and C-style
primitive data types ['| Our starting point is a list of func-
tions (bodies), disassembled from machine code, which
can be obtained using standard commercial tools or us-
ing machine learning techniques [7, 43]. Our goal is to
perform type recovery without explicitly encoding any
semantics specific to the instruction set being analyzed
or the conventions of the compiler used to produce the
binary. We restrict our study to Linux x86 and x64 ap-
plications in this work, though the techniques presented
extend naturally to other OS platforms.

Approach. We use a recurrent neural network (RNN)
architecture to learn function types from disassembled

lint, float, char, pointers, enum, union, struct

USENIX Association

26th USENIX Security Symposium 99



binary code of functions. The goal is to ascertain if
neural networks can effectively learn such types with-
out prior knowledge of the compiler or the instruction
set (beyond that implied by disassembly). Admittedly,
the process of designing such a system has been experi-
mental or ad-hoc (in our experience), fraught with trial-
and-error, requiring sifting through the choice of archi-
tectures and their parameters. For instance, we consid-
ered designs wherein disassembled code was directly fed
as text input, as one-hot encoded inputs, and with vari-
ous training epoch sizes and network depth. In several
cases, the results were unimpressive. In others, while the
results were positive, we had little insight into what the
model learnt from inputs.

Our guiding principle in selecting a final architecture
is its explicability: to find evidence whether the learning
network could learn something “explainable” or “‘compa-
rable” to conventions we know which experts and other
analysis tools use. To gather evidence on the correct-
ness of a learning network’s outputs, we employ tech-
niques to measure its explicability using analogical rea-
soning, dimensionality reduction (t-SNE visualization
plots), and saliency maps. Using these techniques, we
select network architectures that exhibit consistent evi-
dence of learning meaningful artifacts. Our resulting sys-
tem called EKLAVYA automatically learns several pat-
terns arising in binary analysis in general, and function
type recovery specifically. At the same time, its construc-
tional design is modular, such that its instruction set spe-
cific dependencies are separated from its type recovery
tasks. EXKLAVYA is the first neural network based sys-
tems that targets function signature recovery tasks, and
our methodology for explaining its learnt outcomes is
more generally useful for debugging and designing such
systems for binary analysis tasks.

Results. We have tested EKLAVYA on a testing set con-
sisting of a large number of Linux x86 and x64 bina-
ries, compiled at various optimization levels. EKLAVYA
demonstrates several promising results. First, EKLAVYA
achieves high accuracy of around 84% for count recov-
ery and has accuracy around 81% for type recovery. Sec-
ond, EKLAVYA generalizes in a compiler-agnostic man-
ner over code generated from clang and gcc, and
works for the x86 and x64 binaries, with a modest re-
duction of accuracy with increase in optimization levels.
In comparison to previous methods which use knowl-
edge of instruction sets and compiler conventions in their
analysis, EKLAVYA has comparable accuracy. Third,
EKLAVYA’s learnt model is largely “explicable”. We
show through several analytical techniques which input
features the model emphasizes in its decisions. These
features match many patterns that are familiar to human
analysts and used in existing tools as rules, such as iden-

tifying calling conventions, caller- and callee- save regis-
ters, stack-based arguments, “use- before-write” instruc-
tions, function stack allocation idioms, and many more.
All these are derived automatically without any explicit
knowledge of the instruction semantics or compiler used.

EKLAVYA’s architecture bears resemblance to other
neural network architectures that have been successful
in natural language processing (NLP) problems such
as machine translation, automatic summarization, and
sentence-generation. Specifically, we find the use of
word-embedding of instructions has been particularly
useful in our problem, which is used in NLP problems
too. We hypothesize a deeper similarity between (prob-
lems arising in) natural language and the language of ma-
chine instructions, and consider it worthy of future work.

Contributions. We present EKLAVYA, a novel RNN-
based engine that recovers functions types from x86/x64
machine code of a given function. We find in our exper-
imental evaluation that EKLAVYA is compiler-agnostic
and the same architecture can be used to train for dif-
ferent instruction sets (x86 and x64) without any spec-
ification of its semantics. On our x86 and x64 datasets,
EKLAVYA exhibits comparable accuracy with traditional
heuristics-based methods. Finally, we demonstrate that
EKLAVYA’s learning methods are explicable. Our analy-
sis exhibits consistent evidence of identifying instruction
patterns that are relevant to the task of analyzing func-
tion argument counts and types, lending confidence that
it does not overfit to its training datasets or learn un-
explained decision criteria. To our knowledge, ours is
the first use of techniques such as t-SNE plots, saliency
maps, and analogical reasoning to explain neural net-
work models for binary analysis tasks.

2 Problem Overview

Function type recovery involves identifying the number
and primitive types of the arguments of a function from
its binary code. This is often a sub-step in construct-
ing control-flow graphs and inter-procedural data depen-
dency analysis, which is widely used in binary analysis
and hardening tools.

Traditional solutions for function type recovery use
such conventions as heuristics for function type recov-
ery, which encode the semantics of all instructions, ABI
conventions, compiler idioms, and so on. These are spec-
ified apriori in the analysis procedure by human analysts.
Consider the example of a function in x64 binary code
shown in Figure[T] The example illustrates several con-
ventions that the compiler used to generate the code, such
as:

100 26th USENIX Security Symposium

USENIX Association



000000000040051b <main>  00000000004004ed <fun>

push Y%rbp push  %rbp —_— (a)
mov Yorsp,%orbp mov  %rsp, Yrbp

sub 0x20,%rsp = (b,c) mov  %edi,-0x24(%rbp)

movl  $0x7d,-0x14(%rbp) mov  %rsi,-0x30(%rbp) )

mov -0x14(%rbp),%eax  mov

-0x24(%rbp),%edx
mov Y%ordx,%rsi }(d) mov  %edx,%eax
mov Y%eax,%edi add  %eax,%eax ]-(e)
call 4004ed <fun> add  %edx,%eax
pop  %rbp —_— (a)
retq

Figure 1: Example assembly code with several idioms
and conventions. (a) refers to the push/pop instruc-
tions for register save-restore; (b) refers to the instruc-
tion using rsp as a special stack pointer register; (c)
refers to arithmetic instructions to allocate stack space;
(d) refers to instructions passing the arguments using
specific registers; (e) refers to the subsequent use of
integer-typed data in arithmetic operations.

(a) the use of push/pop instructions for register save-
restore;

(b) the knowledge of rsp as a special stack pointer reg-
ister which allocates space for the local frame be-
fore accessing arguments;

(c) the use of arithmetic instructions to allocate stack
space;

(d) the calling convention (use of specific register,
stacks offset for argument passing); and

(e) subsequent use of integer-typed data in arithmetic
operations only.

Such conventions or rules are often needed for tradi-
tional analysis to be able to locate arguments. Looking
one step deeper, the semantics of instructions have to be
specified in such analysis explicitly. For instance, recog-
nizing that a particular byte represents a push instruc-
tion and that it can operate on any register argument. As
compilers evolve, or existing analyses are retargeted to
binaries from newer instructions sets, analysis tools need
to be constantly updated with new rules or target back-
ends. An ideal solution will minimize the use of spe-
cialized knowledge or rules in solving the problem. For
instance, we desire a mechanism that could be trained to
work on any instruction set, and handle a large variety of
standard compilers and optimization supported therein.

In this work, we address the problem of function type
recovery using a stacked neural network architecture. We
aim to develop a system that automatically learns the
rules to identify function types directly from binary code,
with minimal supervision. Meanwhile, we design tech-
niques to ensure that the learnt model produces explica-

ble results that match our domain knowledge.

Problem Definition. We assume to have the following
knowledge of a binary: (a) the boundaries of a function,
(b) the boundary of instructions in a function, and (c) the
instruction representing a function dispatch (e.g. direct
calls). All of these steps are readily available from dis-
assemblers, and step (a) has been shown to be learnable
directly from binaries using a neural network architec-
ture similar to ours [43]. Step (b) on architectures with
fixed-length instructions (e.g. ARM) requires knowing
only the instruction length. For variable-length architec-
tures (e.g. x64/x86), it requires the knowledge of instruc-
tion encoding sufficient to recover instruction sizes (but
nothing about their semantics). Step (c) is a minimal-
istic but simplifying assumption we have made; in con-
cept, identifying which byte-sequences represent call
instruction may be automatically learnable as well.

The input to our final model .# is a target function
for which we are recovering the type signature, and set
of functions that call into it. Functions are represented
in disassembled form, such that each function is a se-
quence of instructions, and each instruction is a sequence
of bytes. The bytes do not carry any semantic meaning
with them explicitly. We define this clearly before giving
our precise problem definition.

Let T, and T,[i] respectively denote the disassembled
code and the i bytes of a target function a. Then, the k"
instruction of function a can be defined as:

Lk :=<T,m], T,im+1],....T,im+1] >

where m is the index to the start byte of instruction k]
and [ is the number of bytes in ,[k]. The disassembled
form of function a consisting of p instructions is defined
as:

T, =< L[],1[2], . Lu[p] >

With the knowledge of a call instruction, we deter-
mine the set of functions that call the target function a. If
a function b has a direct call to function a, we take allE]
the instructions in b preceding the call instruction. We
call this a caller snippet Cj, 4[], defined as:

Coalj] =< O] Ip[1]...Iy[j — 1] >

where I,[j] is a direct call to a. If I,[j] is not a direct
call to a, Cpqfj] := 0. We collect all caller snippets
calling a, and thus the input 7, is defined as:

7.=1,0(U (U culll))

beSa 0<j<|Ty)

where S, is the set of functions that call a.

2In our implementation, we limit the number of instructions to 500
for large functions.

USENIX Association

26th USENIX Security Symposium 101



Train Set

EKLAVYA
i : Function Fmmmmmmm -~ :
Input Binaries | Instruction Embedding !
: Instruction ! Word H
—— | Tokenization ! . |
- Embedding 1
Call Point del H
Extraction Mode :
1
1
1
1

Taskz |Arguments]
Counting

Argument :
Prediction |
Number Type
& Type : Task3 Task4 Recovery |
1

1
, From Caller From Callee

| Arguments Recovery

Figure 2: EKLAVYA Architecture. It takes in the binaries
as input and performs a pre-processing step on it. Then
it performs instruction embedding to produce embedded
vectors for train and test dataset. The argument recovery
module trains 4 RNN models M, M,, M3, M4to recover
the function argument count and types.

With the above definitions, we are now ready to state
our problem definition. Our goal is to learn a model .Z,
which is used to decide two properties for a target func-
tion a, from given data Z,, stated below:

Definition. (Arguments Counts) The number of argu-
ments passed to function a.

Definition. (Argument Types) For each argument of
function a, the C-style types defined as:

T::=int|char|float|void#|enumjunion|struct

Note that the above definition gives the inputs and out-
puts of the model .#, which can be queried for a tar-
get function. This is called the fest set. For training the
model ., the training set has a similar representation. It
consists of the disassembled functions input 7, as well
as labels (the desired outputs) that represent the ground
truth, namely the true number and types of each argu-
ment. For the training set, we extract the ground truth
from the debug symbols generated from source code.

3 Design

EKLAVYA employs neural network to recover argument
counts and types from binaries. The overall architecture
is shown in Figure [2| EKLAVYA has two primary mod-
ules: a) instruction embedding module and an b) argu-
ment recovery module. The instruction embedding mod-
ule learns the semantics of instructions by observing their
use in our dataset of binaries (from one instruction set). It
is possible to have one neural network that does not treat
these as two separate substeps. However, in this case, the

instruction semantics learnt may well be very specialized
to the task of argument recovery. In our design, we train
to extract semantics of the instruction set from binaries
separately, independent to the task of further analysis at
hand. This makes the design modular and allows reusing
the embedding module in multiple binary analysis tasks.
In addition, instead of keeping the semantics as an im-
plicit internal state, explicitly outputting the semantics
allows us to verify the correctness of each step indepen-
dently. This makes the process of designing and debug-
ging the architecture easier, thus motivating our choice
of two modules.

The instruction embedding module takes as input a
stream of instructions, represented as symbols. It out-
puts a vector representation of each instruction in a 256-
dimensional space, hence embedding the instructions in
a vector space. The objective is to map symbol into vec-
tors, such that distances between vectors capture inter-
instruction relationships.

Given the instructions represented as vectors,
EKLAVYA trains a recurrent neural network (RNN) over
the sequence of vectors corresponding to the function
body. This is done in the argument recovery module.
In some cases, EKLAVYA may only have the target
of the function body to analyze, and in others it may
have access to a set of callers to the target function.
For generality, EKLAVYA trains models for four tasks
defined below:

(a) Taskl: Counting arguments for each function based
on instructions from the caller;

(b) Task2: Counting arguments for each function based
on instructions from the callee;

(c) Task3: Recovering the type of arguments based on
instructions from the caller;

(d) Task4: Recovering the type of arguments based on
instructions from the callee;

We train one model for each task, over the same out-
puts of the instruction embedding module. For each in-
struction set, we learn a different instruction embedding
and RNN set. For a function to be tested, the user can
use the predictions of any or all of these tasks; our de-
fault is to report the output of Task2 for argument counts
and Task4 for types since this is analyzable from just the
callee’s function body (without knowing callers).

3.1 Instruction Embedding Module

The first key step in EKLAV YA is to uncover the semantic
information of each instruction through learning. Note
that the inputs to our learning algorithm are functions
represented as raw binaries, with known boundaries of
functions and instructions. In this representation, the

102 26th USENIX Security Symposium

USENIX Association



learning algorithm does not have access to any high-
level semantics of an instruction. Intuitively, the goal is
to infer the semantics of instructions from their contex-
tual use in the binary, such as by analyzing which group
appears sequentially together or in certain contexts rela-
tive to other groups. One general approach to extracting
contextual relationships is to employ a technique called
word embedding [8]]. Word embedding in EKLAVYA con-
verts each instruction’s raw symbol into a vector. All
instructions are thus represented in a high-dimensional
space (256 dimensions in our case). Intuitively, the dis-
tance between instructions encodes relationships. For
instance, the relative distance between the vectors for
push %edi and pop %edi is similar to distance be-
tween push %esi and pop %esi. We demonstrate
the kinds of relationships this module learns in Section[3]
through examples. In summary, the output of this module
is a map from instructions to a 256-dimensional vector.

There are other alternatives to word embedding, which
we have considered. One can employ one-hot encod-
ing analogous to a previous work on identifying func-
tion boundaries [43]]. One could represent the " instruc-
tion by a vector with its i’ element as 1 and all other
elements set to 0. For example, if there are 5 differ-
ent instructions, the second instruction is represented as
[0,1,0,0,0]. However, this technique is computationally
inefficient if we expect to learn instruction semantics us-
able for many different binary analysis tasks, since a sep-
arate sub-network will likely be needed to re-learn the
relationship between one-hot-encoded vectors for each
new analysis task.

For word embedding, we use the skip-gram nega-
tive sampling method outlined in the paper that intro-
duces word2vec technique for computing word em-
beddings [27]. The skip-gram is a shallow neural net-
work using the current instruction to predict the instruc-
tions around it. Compared to other approaches like
continuous bag-of-words (CBOW) technique [27], skip-
gram shows better performance on the large-scale dataset
and extracts more semantics for each instruction in our
experience. To train the word embedding model, we
tokenize the hexadecimal value of each instruction and
use them as the training input to the embedding model.
For example, the symbol or token for the instruction
push %ebp is its hexadecimal opcode 0x55. Note
that the hexadecimal opcode is used just as a name much
like ‘john’ or "apple’ and bears no numerical effects on
the embedding. We train the embedding model for 100
epochs with the learning rate of 0.001.

3.2 Arguments Recovery Module

The function arguments recovery module trains four neu-
ral networks, one for each task related to count and type

inference. To achieve each task outlined, we train a re-
current neural network (RNN). The input for training the
model is the sequence of vectors (each representing an
instruction) produced by word embedding, together with
labels denoting the number of arguments and types (the
ground truth). For argument type recovery, we have sev-
eral design choices. We could learn one RNN for the
first argument, one RNN for the second argument, and so
on. Alternatively, we can have one RNN that predicts the
type tuple for all the arguments of a function. Presently,
we have implemented the first choice, since it alleviates
any dependency on counting the number of arguments.

Recurrent Neural Networks. To design the argu-
ments recovery module, we have considered various ar-
chitectures, like a multilayer perceptron (MLP), a con-
volutional neural network (CNN) and a recurrent neural
network (RNN). We find that an RNN is a suitable choice
because it handles variable-length inputs gracefully, and
has a notion of “memory”. A key difference between
feedforward neural networks like a multi-layer percep-
tron (MLP) and a recurrent neural network (RNN) is that
an RNN incorporates the state of the previous input as
an additional input to the current time. Effectively, this
input represents an internal state that can accumulate the
effects of the past inputs, forming a memory for the net-
work. The recurrent structure of the network allows it to
handle variable-length input sequences naturally.

In order to deal with the exploding and vanishing gra-
dients during training [9], there are few commonly de-
sign options. One could use an LSTM network or use
an RNN model with gated recurrent units (GRUs). We
use GRUs since it has the control of whether to save or
discard previous information and may train faster due to
the fewer parameters. We find that an RNN with 3 layers
using GRUs is sufficient for our problem.

To avoid overfitting, we use the dropout mechanism,
which de-activates the output of a set of randomly cho-
sen RNN cells [48]. This mechanism acts as a stochastic
regularization technique. In our design, we experimented
with various dropout rates between 0.1 to 0.8. We exper-
imentally find the dropout rate of 0.8, corresponding to
randomly dropping 20% of the cell’s output, leads to a
good result. Our models appeared to overfit with higher
dropout rates.

3.3 Data Preprocessing & Implementation

We briefly discuss the remaining details related to prepa-
ration of the inputs to EKLAVYA, and its implementation.

The input for EKLAVYA is the disassembly binary
code of the target function. To obtain this data, the
first step is to identify the function boundaries. Func-
tion boundaries identification with minimal reliance of

USENIX Association

26th USENIX Security Symposium 103



instruction set semantics is an independent problem of
interest. Previous approaches range from traditional ma-
chine learning techniques [7] to neural networks [43]
to applying function interface verification [35]. In this
work, we assume the availability and the correctness of
function boundaries for recovering function arguments.
To implement this step, we downloaded the dataset Linux
packages and compiled them with both clang and gcc
with debugging symbols. The function boundaries, ar-
gument counts and types are obtained by parsing the
DWAREF entries from the binary. Our implementation
uses the pyel ftools which parses the DWARF infor-
mation [2]; additionally, to extract the argument counts
and types, we implemented a Python module with 179
lines of code. We extract the start and end of func-
tion boundaries using the standard Linux ob jdump util-
ity [1]]. According to Dennis et al. [6], modern disassem-
blers are highly accurate at performing instruction level
recovery for non-obfuscated binaries, especially for bi-
naries generated by gcc and clang. Thus we use this as
the ground truth, ignoring the marginal noise that errors
may create in the dataset. After disassembly, we iden-
tify call sites and the caller snippets. Our total additional
code implementation to perform these steps consists of
1273 lines of Python code.

To train the instruction embedding model and RNNSs,
we use Google Tensorflow [4]. Our implementation for
the instruction embedding and RNN learning is a total of
714 lines of Python code.

4 Explicability of Models

Our guiding principle is to create models that exhibit
learning of reasonable decision criteria. To explain what
the models learn, we use a different set of techniques for
the two parts of EKLAVYA: the instruction embedding
model and the learnt RNNs.

4.1 Instruction Embedding

Recall the instruction embedding module learns a map-
ping between instructions of an architecture to a high-
dimensional vector space. Visualizing such large dimen-
sionality vector space is a difficult challenge. To under-
stand these vectors, two common techniques are used —
t-SNE [25]] plots and analogical reasoning of vectors.

t-SNE Plots. t-SNE is a way to project high-
dimensional vectors into a lower dimension one while
preserving any neighborhood structures that might ex-
ist in the original vector space. Once projected, these
can be visualized with scatter plots. Methods such as
principal component analysis (PCA) [19] and classical

multidimensional scaling [50]] use linear transformations
to project onto the low dimension space. Though pow-
erful, these techniques often miss important non-linear
structure in the data. The primary advantage of t-SNE
is that it captures non-linear relationships in the local
and global structure of the datasetE] For example, if
word embedding learns that two instructions are sim-
ilar, then they will be nearby in the high-dimensional
space. t-SNE is expected to preserve this structure in
low-dimensional plots, which we can visually analyze to
check if it matches our knowledge of instruction seman-
tics and their similarity. Note that t-SNE does not nec-
essarily exhibit all the neighborhood structures that may
exist in high- dimensional space, but is a best-effort tool
at visualizing relationships.

Analogical Reasoning. Another way to infer relation-
ships between instructions represented as vectors is by
analogical reasoning. To understand the idea intuitively,
we point to how this technique is used in natural lan-
guage processing tasks. In natural language, analogy
question tests the ability to define relationships between
words and the understanding of the vocabulary. An ana-
logical question typically consist of two pairs of word,
e.g., (“man”, “king”) (“woman”, “queen”). To answer
how related the two pairs are, the analogy “man is to
king as woman is to queen” is formed of which the
validity is tested. The vector offset method proposed
by Mikolov et al. [29] frames this using vector arith-
metic. The analogical question can be represented as
I — I =~ I — I where I}, I, Is and I; are the embed-
ding vectors. Specifically, given the analogical question
“man”, “king”), (“woman”, ?), we can formulate it as
Iy — I + I = I4. To get the approximated result, we first
compute d = I3 — I} + 1. 1 is the vector that has the
greatest cosine similarity with d. Applying the idea to
our problem setting, we can find similar analogies be-
tween one pairs of instructions and others. If such analo-
gies match our prior knowledge of certain conventions
or idioms that we expect in binary code, we can confirm
that EKLAVYA is able to infer these similarities in its in-
struction embedding representation.

4.2 RNNs for Argument Recovery

We wish to determine for a given test function to an
RNN, which instructions the RNN considers as impor-
tant towards the prediction. If these instruction intu-
itively correspond to our domain knowledge of instruc-
tions that access arguments, then it increases our confi-
dence in the RNN learning the desired decision criteria.

3 A short primer on its design is presented in the Appendixfor the
interested reader.

104 26th USENIX Security Symposium

USENIX Association



One way to analyze such properties is to employ saliency
maps.

Saliency Map. Saliency maps for trained networks
provide a visualization of which parts of an input the net-
work considers important in a prediction. Intuitively, the
important part of an input is one for which a minimal
change results in a different prediction. This is com-
monly obtained by computing the gradient of the net-
work’s output with respect to the input. In our work, we
chose the approach described by Simonyan et al. to ob-
tain the gradient by back-propagation [44]]. Specifically,
we calculate the derivative of the output of the penulti-
mate layer with respect to each input instruction (which
is a vector). This results in a Jacobian matrix. Intuitively,
each element in a Jacobian matrix tells us how each di-
mension of the instruction vector will affect the output of
a specific class (a single dimension of the output). In this
case, we just want to know how much effect a particular
dimension has over the entire output, so we sum the par-
tial derivatives for all elements of the output with respect
to the particular input dimension. The result is a 256-
dimension vector which tells us the magnitude of change
each dimension have over the input. In order for us to
visualize our saliency map, we need a scalar representa-
tion of the gradient vector. This scalar should represent
the relative magnitude of change the entire input over the
output. As such, we choose to calculate the L2-norm of
the gradient vector of each instruction in the function. To
keep the value between O to 1, we divide each L2-norm
with the largest one (max (L2 —norms)) in the function.

5 Evaluation

Our goal is to experimentally analyze the following:

1. The accuracy in identifying function argument
counts and types (Section[5.2)); and
2. Whether the trained models learn semantics
that match our domain-specific knowledge (Sec-
tion[3.3).
Our experiments are performed on a server contain-
ing 2, 14-core Intel Xeon 2GHz CPUs with 64GB of

RAM. The neural network and data processing routines
are written in Python, using the Tensorflow platform [4].

5.1 Dataset

We evaluated EKLAVYA with two datasets. The bina-
ries for each dataset is obtained by using two commonly
used compilers: gcc and clang, with different optimiza-
tion levels ranging from OO0 to O3 for both x86 and x64.
We obtained the ground truth for the function arguments
by parsing the DWARF debug information [3]].

Following the dataset creation procedure used in pre-
vious work [43], our first dataset consists of binaries
from 3 popular Linux packages: binutils, coreutils and
findutils making up 2000 different binaries, resulting
from compiling each program with 4 optimization levels
(00~-03) using both compilers targeting both instruction
sets. For x86 binaries, there are 1,237,798 distinct in-
structions which make up 274,285 functions. Similarly
for x64, there are 1,402,220 distinct instructions which
make up 274,288 functions. This dataset has several du-
plicate functions, and we do not use it to report our final
results directly. However, an earlier version of the pa-
per reported on this dataset; for full disclosure, we report
results on this dataset in the Appendix.

For our second dataset, we extended the first dataset
with 5 more packages, leading to a total of 8 packages:
binutils, coreutils, findutils, sg3utils, utillinux, inetutils,
diffutils, and usbutils. This dataset contains 5168 differ-
ent binaries, resulting from compiling each program with
4 optimization levels (00—03) using both compilers tar-
geting both instruction sets. For x86 binaries, there are
1,598,937 distinct instructions which constitute 370,317
functions while for x64, there are a total of 1,907,694
distinct instructions which make up 370,145 functions.

Sanitization. For our full (second) dataset, we re-
moved functions which are duplicates of other functions
in the dataset. Given that the same piece of code com-
piled with different binaries will result in different off-
sets generated, naively hashing the function body is in-
sufficient to identify duplicates. To work around this,
we chose to remove all direct addresses used by instruc-
tions found in the function. For example, the instruction
‘Je 0x98’ arerepresented as ‘je ’. After the substitu-
tion, we hash the function and remove functions with the
same hashes. Other than duplicates, we removed func-
tions with less than four instructions as these small func-
tions typically do not have any operation on arguments.

After sanitation, for x86 binaries, there are 60,061
unique functions in our second dataset. Similarly for
x64, there are 59,291 functions. All our final results re-
port on this dataset.

We use separate parts of these datasets for training and
testing. We randomly sample 80% binaries of each pack-
age and designate it as the training set; the remaining
20% binaries are used for testing. Note that the training
set contains all binaries of one instruction set, compiled
with multiple optimization levels from both compilers.
EKLAVYA is tasked to generalize from these collectively.
The test results are reported on different categories of op-
timizations within each instruction set, to see the impact
of compiler and optimization on EKLAVYA’s accuracy.

USENIX Association

26th USENIX Security Symposium 105



Imbalanced classes. Our dataset has a different num-
ber of samples for different labels or classes. For in-
stance, the pointer datatype is several hundred times
more frequent than unions; similarly, functions with less
than 3 arguments are much more frequent that those with
9 arguments. We point out that this is a natural distri-
bution of labels in real-world binaries, not an artifact of
our choice. Since training and testing on labels with very
few samples is meaningless, we do not report our test
results on functions with more than 9 arguments for ar-
guments counts recovery, and the “union” and “struct”
datatypes here. The overall ratio of these unreported la-
bels totals less than 0.8% of the entire dataset. The label
distributions of the training dataset are reported in the
rows labeled “data distribution” in Table [T]and Table 2]

5.2 Accuracy

Our first goal is to evaluate the precision, recall, and ac-
curacy of prediction for each of the four tasks mentioned
in Section 3} Precision Pc; and recall Rc; are used to
measure the performance of EKLAV YA for class i and are
defined as:

TP, TP,

Pc; = ;Re; =
TP+ FP, TP+ FN;

where TP,, FP; and FN; are the true positive predic-
tion, false positive prediction and false negative predic-
tion of class i respectively.

We evaluate the accuracy of EKLAVYA by measuring
the fraction of test inputs with correctly predicted labels
in the test set. Readers can check that accuracy Acc can
alternatively be defined as:

n
Acc = Z P: X Rc;
i=1

where n is the number of labels in testing set and P;
is the fraction of samples belonging to label i in the test
runs. P; can be seen as an estimate of the occurrence of
label i in the real-world dataset and Rc; is the probability
of EKLAVYA labelling a sample as i given that its ground
truth is label i.

Given that our training and testing datasets have im-
balanced classes, it is helpful to understand EKLAVYA’s
accuracy w.r.t to the background distribution of labels in
the dataset. For instance, a naive classifier that always
predicts one particular label i irrespective of the given
test input, will have accuracy p; if the underlying label
occurs p; naturally in the test run. However, such a clas-
sifier will have a precision and recall of zero on labels
other than i. Therefore, we report both the background
data distribution of each label as well as precision and
recall to highlight EKLAVYA’s efficiency as a classifier.

Findings. Table [I] and Table 2] show the final results
over some classes in the test dataset for each task. We
have five key findings from these two tables:

(a) EKLAVYA has accuracy of around 84% for count re-
covery and 81% for type recovery tasks on average,
with higher accuracy of over 90% and 80% respec-
tively for these tasks on unoptimized binaries;

(b) EKLAVYA generalizes well across both compilers,
gcc and clang;

(c) EKLAVYA performs well even on classes that occur
less frequently, which includes samples with labels
occuring as low as 2% times in the training dataset;

(d) In comparison to x86, codename has higher accu-
racy on x64 for count and type recovery; and,

(e) With increase in optimization levels, the accuracy of
EKLAVYA drops on count recovery tasks but stays
the same on type recovery tasks.

First, EKLAVYA has higher accuracy on unoptimized
functions compared with previous work. The reported
accuracy of previous work that uses principled use-def
analysis and liveness analysis to count arguments is 78%
for callers and 83% for callees [51]. It uses domain-
specific heuristics about the calling convention to iden-
tify number of arguments — for example, their work
mentions that if r9 is used by a function then the func-
tion takes 6 arguments or more. However, EKLAVYA
does not need such domain knowledge and obtain higher
accuracy for count recovery. For example, the accuracy
of EKLAVYA on x86 and x64 are 91.13% and 92.03% re-
spectively from callers, while 92.70% and 97.48% sep-
arately from callees. For the task of type recovery, the
accuracy of EKLAVYA, averaged for the first three argu-
ments, on x86 and x64 are 77.20% and 84.55% respec-
tively from callers, and 78.18% and 86.77% correspond-
ingly from callees. A previous work on retargetable com-
pilation recovers types without using machine learning
techniques; however, a direct comparison is not possible
since the reported results therein adopt a different mea-
sure of accuracy called conservativeness rate which can-
not be translated directly to accuracy [14].

Second, EKLAVYA generalizes well over the choice of
two compilers, namely clang and gcc. The accuracy
of count recovery for x86 from callers and callees are
86.22% and 75.49% respectively for gcc binaries, and
85.30% and 80.05% for clang binaries. Similarly, the
accuracy of type recovery (averaged for the first three
arguments) on x86 from callers and callees is 80.92%
and 79.04% respectively for gcc binaries, whereas it is
75.58% and 73.91% respectively for clang binaries.
Though the average accuracy of gcc is slightly higher
than c1ang, this advantage does not consistently exhibit
across all classes.

106 26th USENIX Security Symposium

USENIX Association



Table 1: Evaluation result for argument count recovery from callers and callees for different optimization levels
given different architectures. Columns 3-50 report the evaluation result of EKLAVYA on test dataset with different
instruction set ranging from OO0 to O3. “-” denotes that the specific metric cannot be calculated.

. Number of Arguments
Arch | Task | Opt. Metrics 0 i 3 3 3 gs 3 7 3 9 Accuracy
Data Distribution | 0.059 | 0.380 | 0.288 | 0.170 | 0.057 | 0.023 | 0.012 | 0.004 | 0.004 | 0.001
00 Precision 0.958 | 0.974 | 0.920 | 0.868 | 0.736 | 0.773 | 0.600 | 0.388 | 0.231 | 0.167 0.9113
Recall 0.979 | 0.953 | 0.899 | 0.913 | 0.829 | 0.795 | 0.496 | 0.562 | 0.321 | 0.200
Data Distribution | 0.059 | 0.374 | 0.290 | 0.169 | 0.059 | 0.026 | 0.013 | 0.003 | 0.004 | 0.001
01 Precision 0.726 | 0.925 | 0.847 | 0.819 | 0.648 | 0.689 | 0.569 | 0.474 | 0.456 | 0.118 0.8348
Taskl Recall 0.872 | 0.911 | 0.836 | 0.756 | 0.759 | 0.703 | 0.719 | 0.444 | 0.758 | 0.133
Data Distribution | 0.056 | 0.375 | 0.266 | 0.187 | 0.057 | 0.032 | 0.015 | 0.004 | 0.005 | 0.001
02 Precision 0.692 | 0.907 | 0.828 | 0.758 | 0.664 | 0.620 | 0.606 | 0.298 | 0.238 | 0.250 0.8053
Recall 0.810 | 0.912 | 0.801 | 0.645 | 0.782 | 0.730 | 0.637 | 0.262 | 0.357 | 0.300
Data Distribution | 0.045 | 0.387 | 0.275 | 0.184 | 0.051 | 0.029 | 0.016 | 0.004 | 0.005 | 0.002
03 Precision 0.636 | 0.935 | 0.862 | 0.801 | 0.570 | 0.734 | 0.459 | 0.243 | 0.231 | 0.200 0.8391
<86 Recall 0.760 | 0.921 | 0.849 | 0.724 | 0.691 | 0.747 | 0.637 | 0.196 | 0.375 | 0.167
Data Distribution | 0.068 | 0.307 | 0.313 | 0.171 | 0.070 | 0.034 | 0.018 | 0.009 | 0.005 | 0.002
00 Precision 0.935 | 0.956 | 0.910 | 0.957 | 0.910 | 0.789 | 0.708 | 0.808 | 0.429 | 0.500 0.9270
Recall 0911 | 0.975 | 0.963 | 0.873 | 0.856 | 0.882 | 0.742 | 0.568 | 0.692 | 0.600
Data Distribution | 0.066 | 0.294 | 0.320 | 0.173 | 0.073 | 0.034 | 0.019 | 0.009 | 0.005 | 0.003
01 Precision 0.725 | 0.821 | 0.667 | 0.692 | 0.463 | 0.412 | 0.380 | 0.462 | 0.182 | 0.000 0.6934
Task2 Recall 0.697 | 0.822 | 0.795 | 0.574 | 0.420 | 0.466 | 0.284 | 0.115 | 0.167 | 0.000
Data Distribution | 0.065 | 0.283 | 0.326 | 0.179 | 0.068 | 0.036 | 0.021 | 0.011 | 0.005 | 0.002
02 Precision 0.721 | 0.761 | 0.655 | 0.639 | 0.418 | 0.535 | 0.484 | 0.667 | 0.200 | 0.000 0.6660
Recall 0.607 | 0.798 | 0.792 | 0.495 | 0.373 | 0.434 | 0.517 | 0.308 | 0.286 | 0.000
Data Distribution | 0.051 | 0.248 | 0.346 | 0.188 | 0.076 | 0.038 | 0.023 | 0.013 | 0.008 | 0.003
03 Precision 0.600 | 0.788 | 0.626 | 0.717 | 0.297 | 0.452 | 0.250 | 0.200 | 0.143 | 0.000 0.6534
Recall 0.682 | 0.822 | 0.801 | 0.509 | 0.321 | 0.326 | 0.190 | 0.071 | 0.167 | 0.000
Data Distribution | 0.061 | 0.385 | 0.288 | 0.166 | 0.056 | 0.021 | 0.012 | 0.004 | 0.004 | 0.0
00 Precision 0.858 | 0.957 | 0.914 | 0.916 | 0.818 | 0.891 | 0.903 | 0.761 | 0.875 | 0.333 0.9203
Recall 0.913 | 0.941 | 0.936 | 0.930 | 0.719 | 0.853 | 0.829 | 0.944 | 0.667 | 0.800
Data Distribution | 0.057 | 0.379 | 0.283 | 0.174 | 0.060 | 0.022 | 0.013 | 0.005 | 0.004 | 0.001
01 Precision 0.734 | 0.897 | 0.843 | 0.884 | 0.775 | 0.829 | 0.882 | 0.788 | 0.778 | 0.500 0.8602
Taskl Recall 0.766 | 0.899 | 0.901 | 0.817 | 0.677 | 0.815 | 0.714 | 0.839 | 0.359 | 0.818
Data Distribution | 0.055 | 0.384 | 0.260 | 0.187 | 0.061 | 0.027 | 0.014 | 0.004 | 0.006 | 0.001
02 Precision 0.624 | 0.900 | 0.816 | 0.842 | 0.775 | 0.741 | 0.866 | 0.708 | 0.667 | 0.545 0.8380
Recall 0.686 | 0.886 | 0.863 | 0.822 | 0.667 | 0.764 | 0.785 | 0.836 | 0.519 | 0.600
Data Distribution | 0.044 | 0.382 | 0.290 | 0.173 | 0.054 | 0.028 | 0.018 | 0.004 | 0.002 | 0.002
03 Precision 0.527 | 0.908 | 0.767 | 0.832 | 0.654 | 0.878 | 0.848 | 0.613 | 0.667 | 0.600 0.8279
<64 Recall 0.680 | 0.864 | 0.867 | 0.794 | 0.602 | 0.761 | 0.857 | 0.826 | 0.444 | 0.600
Data Distribution | 0.071 | 0.309 | 0.312 | 0.170 | 0.068 | 0.032 | 0.018 | 0.009 | 0.005 | 0.002
00 Precision 0.971 | 0.988 | 0.986 | 0.991 | 0.952 | 0.962 | 0.733 | 0.839 | 0.714 | 1.000 0.9748
Recall 0.981 | 0.992 | 0.985 | 0.980 | 0.972 | 0.969 | 0.873 | 0.565 | 0.556 | 0.500
Data Distribution | 0.066 | 0.297 | 0.319 | 0.175 | 0.070 | 0.034 | 0.019 | 0.010 | 0.005 | 0.002
(0)1 Precision 0.625 | 0.811 | 0.690 | 0.891 | 0.780 | 0.773 | 0.531 | 0.576 | 0.333 - 0.7624
Taskd Recall 0.649 | 0.833 | 0.853 | 0.662 | 0.697 | 0.780 | 0.680 | 0.487 | 0.059 | 0.000
Data Distribution | 0.059 | 0.272 | 0.336 | 0.179 | 0.071 | 0.037 | 0.020 | 0.012 | 0.006 | 0.003
02 Precision 0.669 | 0.814 | 0.733 | 0.911 | 0.785 | 0.761 | 0.486 | 0.353 | 0.333 - 0.7749
Recall 0.658 | 0.833 | 0.882 | 0.697 | 0.688 | 0.761 | 0.548 | 0.273 | 0.167 | 0.000
Data Distribution | 0.048 | 0.213 | 0.361 | 0.190 | 0.086 | 0.042 | 0.029 | 0.013 | 0.006 | 0.004
03 Precision 0.636 | 0.824 | 0.775 | 0.912 | 0.913 | 0.720 | 0.400 | 0.250 | 0.000 - 0.7869
Recall 0.875 | 0.884 | 0.912 | 0.722 | 0.764 | 0.720 | 0.429 | 0.111 | 0.000 | 0.000

USENIX Association

26th USENIX Security Symposium

107



Table 2: Evaluation result for argument type recovery from callers and callees for different optimization levels given
different architectures. Columns 4-67 report the evaluation result of EKLAVYA on test dataset with different instruc-
tion sets ranging from OO0 to O3. “-” denotes that the specific metric cannot be calculated.

Type of Ar t:
Arch | Task | Opt. Metrics 1st 2nd 3rd
char int float | pointer | enum char int float | pointer | enum char int float | pointer | enum
. D.ata. 0.0075 | 0.1665 | 0.0008 | 0.8008 | 0.0220 | 0.0097 | 0.3828 | 0.0002 | 0.5740 | 0.0304 | 0.0094 | 0.4225 | 0.0002 | 0.5588 | 0.0078
Distribution

00 Precision 0.5939 | 0.6630 | 1.0000 | 0.8954 | 0.5938 | 0.3929 | 0.6673 | 1.0000 | 0.8258 | 0.4141 | 0.3158 | 0.6245 - 0.8337 | 0.1429
Recall 0.6766 | 0.6469 | 0.1429 | 0.9145 | 0.4546 | 0.2391 | 0.7302 | 0.0556 | 0.8171 | 0.2405 | 0.4615 | 0.7905 | 0.0000 | 0.6954 | 0.1111

Accuracy 0.8385 0.7547 0.7228
Distll?izll)t:tion 0.0065 | 0.1634 | 0.0005 | 0.8101 | 0.0178 | 0.0082 | 0.3663 | 0.0001 | 0.5894 | 0.0336 | 0.0092 | 0.4274 | 0.0002 | 0.5535 | 0.0082
o1 Precision | 0.5315 | 0.6138 | 1.0000 | 0.9027 | 0.8202 | 0.3462 | 0.7108 | 1.0000 | 0.8282 | 0.6222 | 0.1613 | 0.7220 - 0.7890 | 0.3200
Task3 Recall 0.4370 | 0.5913 | 0.1539 | 0.9218 | 0.7559 | 0.2368 | 0.7482 | 0.1500 | 0.8303 | 0.3836 | 0.3333 | 0.7262 - 0.7867 | 0.2667
Accuracy 0.8475 0.7762 0.7537
DistI:iT)tjtion 0.0015 | 0.1664 | 0.0002 | 0.8056 | 0.0260 | 0.0084 | 0.3505 | 0.0000 | 0.5959 | 0.0446 | 0.0072 | 0.4031 | 0.0002 | 0.5768 | 0.0116
02 Precision 0.0000 | 0.6029 - 0.9262 | 0.7647 | 0.2500 | 0.6544 - 0.8193 | 0.6818 | 0.1429 | 0.7859 | 1.0000 | 0.7007 | 0.2222
Recall 0.0000 | 0.6874 | 0.0000 | 0.9126 | 0.7879 | 0.0833 | 0.6642 | 0.0000 | 0.8442 | 0.3214 | 1.0000 | 0.6647 | 1.0000 | 0.8269 | 0.1000
Accuracy 0.8606 0.7627 0.7328
. D.ata' 0.0012 | 0.1731 | 0.0002 | 0.8032 | 0.0218 | 0.0069 | 0.3763 | 0.0001 | 0.5633 | 0.0523 | 0.0074 | 0.4165 | 0.0001 | 0.5647 | 0.0101
x86 Distribution
03 Precision | 0.0000 | 0.6561 | 1.0000 | 0.9331 | 0.7273 | 0.0000 | 0.6582 | 1.0000 | 0.8464 | 0.8462 | 0.5000 | 0.7410 - 0.8048 | 0.4286
Recall 0.0000 | 0.7210 | 0.1429 | 0.9287 | 0.8000 - 0.6656 | 0.6667 | 0.8390 | 0.9296 | 1.0000 | 0.7613 | 0.0000 | 0.8079 | 0.2000
Accuracy 0.8794 0.7878 0.7742
Dist?i?jtion 0.0056 | 0.1944 | 0.0015 | 0.7910 | 0.0052 | 0.0073 | 0.3151 | 0.0003 | 0.6654 | 0.0086 | 0.0102 | 0.3828 | 0.0016 | 0.5931 | 0.0107
00 Precision | 0.7500 | 0.7620 | 0.6000 | 0.9024 | 0.0870 | 0.5882 | 0.5359 | 1.0000 | 0.8856 | 0.3333 | 0.1111 | 0.5516 - 0.8278 | 0.5000
Recall 0.5000 | 0.6536 | 0.3000 | 0.9400 | 0.2609 | 0.7692 | 0.7165 | 0.2500 | 0.7874 | 0.1111 | 0.2500 | 0.6447 | 0.0000 | 0.7896 | 0.0476
Accuracy 0.8582 0.7618 0.7254
DistIr)iil‘)t:tion 0.0060 | 0.2156 | 0.0012 | 0.7707 | 0.0049 | 0.0075 | 0.3243 | 0.0001 | 0.6587 | 0.0065 | 0.0127 | 0.3976 | 0.0020 | 0.5732 | 0.0127
o1 Precision | 0.3333 | 0.5998 | 0.5000 | 0.8909 | 0.5833 | 0.0000 | 0.4776 - 0.8424 | 0.5833 | 0.0588 | 0.5268 | 0.0000 | 0.7991 | 0.4000
Task4 Recall 0.1500 | 0.5977 | 0.1667 | 0.9049 | 0.2258 | 0.0000 | 0.5238 | 0.0000 | 0.8269 | 0.2414 | 0.1667 | 0.5765 | 0.0000 | 0.7743 | 0.1177
Accuracy 0.8305 0.7435 0.7012
" D.ata. 0.0041 | 0.2219 | 0.0006 | 0.7682 | 0.0050 | 0.0071 | 0.2995 | 0.0002 | 0.6841 | 0.0081 | 0.0097 | 0.3636 | 0.0000 | 0.6132 | 0.0122
Distribution

02 Precision 0.0000 | 0.7396 - 0.9125 | 0.0000 | 1.0000 | 0.4940 - 0.8297 | 1.0000 | 0.0000 | 0.4439 - 0.7633 | 1.0000
Recall 0.0000 | 0.7188 | 0.0000 | 0.9321 | 0.0000 | 0.2500 | 0.5061 | 0.0000 | 0.8343 | 0.2500 - 0.5901 | 0.0000 | 0.6775 | 0.1539

Accuracy 0.8737 0.7447 0.6269
DistI:iEI‘)t:tion 0.0032 | 0.2050 | 0.0000 | 0.7869 | 0.0047 | 0.0039 | 0.2856 | 0.0000 | 0.6996 | 0.0103 | 0.0086 | 0.3503 | 0.0026 | 0.6221 | 0.0164
03 Precision 0.0000 | 0.6759 | 1.0000 | 0.9438 | 0.0000 | 0.0000 | 0.4142 | 1.0000 | 0.8864 | 0.0000 | 0.0000 | 0.3858 - 0.8309 | 0.0000
Recall 0.0000 | 0.7337 | 0.5000 | 0.9394 | 0.0000 - 0.5690 | 0.3333 | 0.8079 - 0.0000 | 0.6129 | 0.0000 | 0.7125 | 0.0000
Accuracy 0.8974 0.7607 0.6624
. D.ata . 0.0077 | 0.1721 | 0.0008 | 0.7935 | 0.0232 | 0.0101 | 0.3907 | 0.0003 | 0.5650 | 0.0307 | 0.0099 | 0.4296 | 0.0002 | 0.5508 | 0.0083
Distribution

00 Precision 0.9579 | 0.8404 | 0.5000 | 0.9342 | 0.7829 | 0.2381 | 0.7421 | 0.0000 | 0.8711 | 0.5818 | 0.2222 | 0.7491 - 0.8362 | 0.0000
Recall 0.4893 | 0.7577 | 0.0500 | 0.9747 | 0.7126 | 0.2778 | 0.7551 | 0.0000 | 0.8974 | 0.2743 | 0.2500 | 0.7254 | 0.0000 | 0.8661 | 0.0000

Accuracy 0.9156 0.8182 0.8028
DistI:iell)tliltion 0.0062 | 0.1608 | 0.0005 | 0.8073 | 0.0235 | 0.0079 | 0.3795 | 0.0003 | 0.5761 | 0.0338 | 0.0081 | 0.4389 | 0.0001 | 0.5438 | 0.0077
o1 Precision | 0.9474 | 0.8457 - 0.9202 | 0.5872 | 0.3846 | 0.6831 | 1.0000 | 0.8578 | 0.5562 | 0.2222 | 0.7447 | 0.0000 | 0.8375 | 0.0000
Task3 Recall 0.3000 | 0.6871 | 0.0000 | 0.9771 | 0.7214 | 0.1852 | 0.7340 | 0.2353 | 0.8573 | 0.2973 | 0.2857 | 0.7481 | 0.0000 | 0.8491 | 0.0000
Accuracy 0.9038 0.7870 0.7985
Dist]r)if:tion 0.0016 | 0.1520 | 0.0001 | 0.8193 | 0.0265 | 0.0077 | 0.3632 | 0.0001 | 0.5797 | 0.0483 | 0.0079 | 0.4417 | 0.0001 | 0.5404 | 0.0090
02 Precision - 0.8630 | 1.0000 | 0.9269 | 0.7217 | 0.0000 | 0.6712 | 1.0000 | 0.8783 | 0.8556 | 0.0000 | 0.7741 | 1.0000 | 0.8426 | 0.0000
Recall 0.0000 | 0.7408 | 0.1000 | 0.9745 | 0.8925 | 0.0000 | 0.7004 | 0.1250 | 0.8918 | 0.4477 - 0.7608 | 0.5000 | 0.8733 | 0.0000
Accuracy 0.9121 0.8181 0.8135
. D.ata. 0.0007 | 0.1847 | 0.0001 | 0.7932 | 0.0206 | 0.0079 | 0.3933 | 0.0000 | 0.5461 | 0.0513 | 0.0070 | 0.4200 | 0.0000 | 0.5569 | 0.0142
x64 Distribution
03 Precision 0.8633 0.8286 | 0.0000

- - 0.9271 | 0.8611 | 0.0000 | 0.7021 - 0.8739 | 0.7273 | 0.0000 | 0.6885 -

Recall 0.0000 | 0.7538 | 0.0000 | 0.9755 | 0.8378 - 0.7003 | 0.0000 | 0.8754 | 0.7742 - 0.7395 | 0.0000 | 0.8085 | 0.0000
Accuracy 0.9155 0.8203 0.7663

DistIr)izl‘)t:tion 0.0057 | 0.2006 | 0.0015 | 0.7843 | 0.0055 | 0.0074 | 0.3223 | 0.0005 | 0.6581 | 0.0083 | 0.0107 | 0.3879 | 0.0013 | 0.5891 | 0.0094

(0]1] Precision 0.6842 | 0.8987 | 0.8000 | 0.9777 | 0.2000 | 0.6000 | 0.7214 | 1.0000 | 0.9221 | 0.1429 | 0.2500 | 0.5782 | 1.0000 | 0.8880 | 0.4444
Recall 0.6191 | 0.9301 | 0.4000 | 0.9789 | 0.0625 | 0.5455 | 0.7314 | 0.1667 | 0.9260 | 0.0769 | 1.0000 | 0.7398 | 0.1250 | 0.8199 | 0.1333

Accuracy 0.9562 0.8725 0.7742

Dist?ial‘)tjtion 0.0055 | 0.2033 | 0.0010 | 0.7830 | 0.0058 | 0.0069 | 0.3128 | 0.0005 | 0.6685 | 0.0090 | 0.0116 | 0.3816 | 0.0011 | 0.5938 | 0.0103

o1 Precision 0.7143 | 0.7936 | 0.4000 | 0.9714 | 0.1429 | 0.1818 | 0.6157 | 1.0000 | 0.9071 | 0.3333 | 0.2857 | 0.4703 - 0.8677 | 0.1667

Task4 Recall 0.3125 | 0.9053 | 0.2500 | 0.9444 | 0.0769 | 0.2222 | 0.6801 | 0.4000 | 0.8828 | 0.0909 | 1.0000 | 0.7457 | 0.0000 | 0.7035 | 0.0345
Accuracy 0.9240 0.8267 0.6918

" D_ata . 0.0042 | 0.2261 | 0.0002 | 0.7639 | 0.0051 | 0.0056 | 0.2956 | 0.0003 | 0.6897 | 0.0074 | 0.0090 | 0.3667 | 0.0013 | 0.6110 | 0.0110

Distribution

02 Precision 0.0000 | 0.8067 - 0.9726 - 0.0000 | 0.6014 | 1.0000 | 0.9014 - 0.0000 | 0.5206 - 0.8428 | 0.0000

Recall 0.0000 [ 0.9311 | 0.0000 | 0.9473 | 0.0000 | 0.0000 | 0.6692 | 0.5000 | 0.8777 | 0.0000 - 0.7128 | 0.0000 | 0.7569 | 0.0000
Accuracy 0.9305 0.8240 0.7093

Dist?i‘rl))t:tion 0.0030 | 0.2341 | 0.0004 | 0.7576 | 0.0049 | 0.0058 | 0.2917 | 0.0005 | 0.6937 | 0.0083 | 0.0152 | 0.3660 | 0.0000 | 0.5989 | 0.0200

03 Precision - 0.7250 - 0.9894 - - 0.6136 - 09172 - - 0.4700 - 0.8553 | 0.3333

Recall 0.0000 | 0.9667 - 0.9256 - - 0.6750 - 0.8944 - - 0.6912 | 0.0000 | 0.7647 | 0.0769
Accuracy 0.9256 0.8507 0.6980

108 26th USENIX Security Symposium USENIX Association



Third, EKLAVYA has high precision and recall on cate-
gories that occur relatively less frequently in our dataset.
For example, the inputs with 4 arguments only count for
around 6% in our training set, whereas the precision and
recall of count recovery from callers are around 67% and
78% separately on x86. Similarly, inputs whose first ar-
gument is “enum” data type only occupy around 2% over
our training set. However, the precision and recall of type
recovery are around 76% and 69% from callers on x86.

Fourth, the accuracy of EKLAVYA on x64 is higher
than x84. As shown in Table [T} the average accuracy
of EKLAVYA for counts recovery task are 1.4% (from
callers) and 9.0% (from callees) higher for x64 binaries
than x86. Type recovery tasks exhibit a similar finding.
Table [2] shows that the accuracy averaged for the task
of recovering types for the first, second, and third argu-
ments. EKLAVYA has an average accuracy 3 — 9% higher
for a given task on x64 than of the same task on x86
binaries. This is possibly because x86 has fewer regis-
ters, and most argument passing is stack-based in x86.
EKLAVYA likely recognizes registers better than stack
offsets.

Finally, the accuracy of the model with respect to the
optimization levels is dependent on type of task. Opti-
mization levels do not have a significant effect on the ac-
curacy of the predictions in type recovery tasks , whereas
the EKLAVYA performs better on O0 than on 01 - 03
for arguments counts recovery. For example, the accu-
racy of type recovery for the first argument from callers
on 00 - O3 are nearly the same, which is around 85%
on x86. But, the accuracy for count recovery from callers
on x86, for instance, is 91.13%, which drops to 83.48%
when we consider binaries compiled with O1. The accu-
racy for count recovery does not change significantly for
optimization levels O1 to 03.

5.3 Explicability of Models

Our guiding principle in selecting the final architecture
is its explicability. In this section, we present our results
from qualitatively analyzing what EKLAVYA learns. We
find that EKLAVYA automatically learns the semantics
and similarity between instructions or instruction set, the
common compiler conventions or idioms, and instruction
patterns that differentiate the use of different values. This
strengthens our belief that the model learns information
that matches our intuitive understanding.

5.3.1 Instruction Semantics Extraction

In this analysis, we employ t-SNE plots and analogical
reasoning to understand the relations learned by the word
embedding model between instructions.

cﬁovl $0x44e784, %eax

Figure 3: t-SNE visualization of mov instructions on
x64. Each dot represent one mov instruction. Red dots
are where Figure is.

movl $0, 0x21adea(%rip)

movq %rax, 0x21e561(%rip)  “MoVa %rsi, 0x210e9c(%rip)

'movl $0x4ecc80, %eax

'movl $0x4ccdd5, %eax

movq 0x205a42(%rip), %rcx

movl $0x4d9902, %eax
movl $0x4d17b8, %eax
#movl $0x5b9e90, %eax
movl $0x459405, %eax
movl $0x46ea3b, %eax
smovl $0x453bcd, %eax

movl $0x4e0530, %eax

movl $0x44e784, %eax
Thovl $0x454fff, %eax

t-SNE visualization of a cluster of mov
%$register instructions on x64.

Figure 4:
Sconstant,

Semantic clustering of instructions. t-SNE plots al-
low us to project the points on the 256 dimension space
to that of a two-dimensional image giving us a visualiza-
tion of the clustering. Figure |3| shows one cluster corre-
sponding to mov family of instructions, which EKLAVYA
learns to have similarity. Due to a large amount of in-
structions (over a million), a complete t-SNE plot is dif-
ficult to analyze. Therefore, we randomly sampled 1000
instructions from the complete set of instructions, and
select all instructions belonging to the mov family. This
family consists of 472 distinct instruction vectors which
we project onto a two-dimension space using t-SNE.
Then we “zoom-in” Figure [3] and show two inter-
esting findings. These two findings are shown in Fig-
ure [ and Figure 5] In Figure 4 we recognize mov
Sconstant, %register instructions, which indi-
cates that EKLAVYA recognizes the similarity between

USENIX Association

26th USENIX Security Symposium 109



movl 0x20449a(%rip), %eax
mova 0x33148e(%rip), %rbp

movq 0x252fcc(%rip), %r15

movq 0x24dc35(%rip), %r14

movq 0x20503c(%rip), %r14

movl $0x40bd8e, %ecx
movl $0x4d228a, %edx
movl $0x4c7f31, %ecx

movl $0x4136f7, %esi

Figure 5: t-SNE  visualization of mov
constant (%$rip), %register and mov
Sconstant, %register instructions on x64.

all instructions that assign constant values to regis-
ters, and abstract out the register. Figure [5 shows
that EKLAVYA learns the similar representation for
mov constant (%rip), $register instructions.
These two findings show the local structures that embed-
ding model learned within “mov” family.

Relation between instructions. We use analogical
reasoning techniques to find similarity between sets of
instructions. In this paper, we show two analogies that
our embedding model learned. The first example is
that cosine distance between the instructions in the pair
(push %edi, pop %edi) is nearly the same as the
distance between instructions in the pair (push %esi,
pop %esi). This finding corresponds to the fact that
the use of push—pop sequences on one register is anal-
ogous to the use of push—pop sequences on another
register. In essence, this finding shows that the model
abstracts away the operand register from the use of
push-pop (stack operation) instructions on x86/x64.
As another example, we find that the distance be-
tween the instructions in the pair (sub $0x30, $rsp,
add $0x30, $rsp) and the distance between the pair
(sub $0x20,%rsp, add $0x20, $rsp) is nearly
the same. This analysis exhibits that EKLAVYA recog-
nizes that the integer operand can be abstracted away
from such sequences (as long the same integer value is
used). These instruction pairs are often used to allo-
cate / deallocate the local frame in a function, so we find
that EKLAVYA correctly recognizes their analogical use
across functions. Due to space reasons, we limit the pre-
sented examples to three. In our manual investigation,
we find several such semantic analogies that are auto-
learned.

Table 3: The relative score of importance generated by
saliency map for each instruction from four distinct func-
tions to determine the number of arguments given the
whole function.

Instruction Relative Score Instruction Relative Score

pushl %ebp 0.149496

movl %esp, %ebp 0.265591 subq $0x38, %rsp 0.356728
pushl %ebx 0.179169 movq %r8, %rl3 1.000000
subl $0x14, %esp 0.370329 movq %rcx, %rl5 0.214237
movl 0xc(%ebp), %eax 1.000000 movq %rdx, %rbx 0.140916
movl 8(%ebp), %ecx 0.509958 movq %rsi, 0x10(%rsp) 0.336599
leal 0x8090227, %edx 0.372616 movq %rdi, 0x28(%rsp) 0.253754

(b) “parse_stab_struct_fields” compiled
with clang and O1 on 64-bit (having
5 arguments)

(a) “print_name_without_quoting” compiled
with clang and OO0 on 32-bit (having
2 arguments)

Instruction Relative Score Instruction Relative Score

subq $0x80, %rsp 1.000000 subq $0x40, %rsp 0.411254
leaq (%rsp), %rdi 0.683561 movq %rdi, -0x10(%rbp) 0.548005
xorl %eax, %eax 0.161366 movq %rsi, -0x18(%rbp) 1.000000
movl $0x10, %ecx 0.658702 movq %rdx, -0x20(%rbp) 0.725123
movq %rcx, -0x28(%rbp) 0.923426

movl %ecx, %eax 0.049905 movq -0x10(%rbp), %recx 0.453617
movq %rcx, -0x30(%rbp) 0.129167

addq %rdx, %rcx 0.093260

(d) “check_sorted” compiled
with clang and OO0 on 64-bit (having
4 arguments)

(c) “EmptyTerminal” compiled
with clang and O1 on 64-bit (having
0 arguments)

5.3.2 Auto-learning Conventions

Next, we analyze which input features are considered
important by EKLAVYA towards making a decision on
a given input. We use the saliency map to score the rela-
tive importance of each instruction in the input function.
Below, we present our qualitative analysis to identify the
conventions and idioms that EKLAVYA auto-learns. For
each case below, we compute saliency maps for 20 ran-
domly chosen functions for which EKLAVYA correctly
predicts signatures, and inspect them manually.

We find that instructions that are marked as high in rel-
ative importance for classification suggest that EKLAVYA
auto-learns several important things. We find consis-
tent evidence that EKLAVYA learns calling conventions
and idioms, such as the argument passing conventions,
“use-before-write” instructions, stack frame allocation
instructions, and setup instructions for stack-based ar-
guments to predict the number of arguments accepted
by the function. EKLAVYA consistently identifies in-
structions that differentiate types (e.g. pointers from
char) as important.

Identification of argument registers. We find that the
RNN model for counting arguments discovers the spe-
cific registers used to pass the arguments. We selected
20 sample functions for which types were correctly pre-
dicted, and we consistently find that the saliency map
marks instructions processing caller-save and callee-
save registers as most important. Consider the func-
tion parse_stab_struct_fields shown in Table 3

110 26th USENIX Security Symposium

USENIX Association



as example, wherein the RNN model considers the in-
struction movg %r8, %rl3; movqg %rcx, %$rlb;
movqg %$rdx, %rbx; movqg %rsi, 0x10(%rsp)
and movg %rdi, 0x28(%rsp) as the relatively
most important instructions for determining the num-
ber of arguments, given the whole function body. This
matches our manual analysis which shows that rdi,
rsi, rdx, rcx, r8 are used to pass arguments. We
show 4 different functions taking different number of ar-
guments as parameters in Table[3] In each example, one
can see that the RNN identifies the instructions that first
use the incoming arguments as relatively important com-
pared to other instructions.

Further, EKLAVYA seems to correctly place empha-
sis on the instruction which reads a particular regis-
ter before writing to it. This matches our intuitive
way of finding arguments by identifying “use-before-
write” instructions (with liveness analysis). For exam-
ple, in the function check_sorted (Table [3(d)), the
register rcx is used in a number of instructions. The
saliency map marks the most important instruction to be
the correct one that uses the register before write. Fi-
nally, the function EmptyTerminal also shows ev-
idence EKLAVYA is not blindly memorizing register
names (e.g. rcx) universally for all functions. It cor-
rectly de-emphasizes that the instruction movqg %ecx,
%$eax is not related to argument passing. In this example,
rcx has been clobbered before in the instruction mov1l
$0x10, %ecx on rcx before reaching the movq in-
struction, and EKLAVYA accurately recognizes that rcx
is not used as an argument here. We have manually ana-
lyzed this finding consistently on 20 random samples we
analyzed.

Argument accesses after local frame creation. In our
analyzed samples, EKLAVYA marks the arithmetic in-
struction that allocates the local stack frame as relatively
important. This is because in the compilers we tested, the
access to arguments begins after the stack frame pointer
has been adjusted to allocate the local frame. EKLAVYA
learns this convention and emphasizes its importance in
locating instructions that access arguments (see Table 3)).

We highlight two other findings we have confirmed
manually. First, EKLAVYA correctly identifies arguments
passed on the stack as well. This is evident in 20 func-
tions we sampled from the set of functions that accept
arguments on stack, which is a much more common phe-
nomenon in x86 binaries that have fewer registers. Sec-
ond, the analysis of instructions passing arguments from
the body of the caller is nearly as accurate as that from
that of callees. A similar saliency map based analysis of
the caller’s body identifies the right registers and setup of
stack-based arguments are consistently marked as rela-
tively high in importance. Due to space reasons, we have

Table 4: The relative score of importance generated by
saliency map for each instruction from four distinct func-
tions to determine the type of arguments given the whole
function.

Relative Score Instruction Relative Score
0.297477

0.861646

Instruction
subl $0xc, %esp
movl 0x10(%esp), %oedx

subq $0x328, %rsp 0.774363

movzbl 0x28(%edx), %eax 1.000000 movq %rcx, %rl2 0.881474
movl %eax, %ecx 0.332725 movq %rdx, %rl5 0.452816
andl $7, %ecx 0.481093 movq %rsi, %rbx 0.363804

0.248921 movq %rdi, %r14 0.442176

cmpb $1, %cl
movl (%rbx), %eax 1.000000
(b) “do_fprintf” compiled with
clang-64-O1 (2nd argument - pointer)
Instruction Relative Score

(a) “bfd_set_symtab” compiled with
gee-32-02 (1Ist argument - pointer)
Instruction Relative Score

pushl %ebx 0.235036
subl $0x10, %esp 0.383451
fldl 0x1c(%esp) 1.000000
movl 0x18(%esp), %ecx 0.511937
flds 0x8050a90 0.873672
fxch %st(1) 0.668212

0.431204
0.399483
1.000000
0.336855
0.254520
0.507721
0.280275

movl %ecx, %rl15d

movq %rdx, %rl4

movzbl (%rsi), %ebp

testb $0x20, 0x20b161(%rip)
jne 0x2d

movl 0x18(%r14), %eax
movq 0x20b15c(%rip), Jercx

(d) “print_icmp_header” compiled with
clang-64-O1 (2nd argument - pointer)

(c) “dtotimespec” compiled with
gee-32-03 (2nd argument - float)

not shown the salience maps for these examples here.

Operations to type. With a similar analysis of saliency
maps, we find that EKLAVYA learns instruction patterns
to identify types. For instance, as shown in examples
of Table |4} the saliency map highlights the relative im-
portance of instructions. One can see that instructions
that use byte-wide registers (e.g. dl) are given impor-
tance when EKLAV YA predicts the type to be char. This
matches our semantic understanding that the char type
is one byte and will often be used in operands of the cor-
responding bit-width. Similarly, we find that in cases
where EKLAVYA predicts the type to be a pointer,
the instructions marked as important have indirect reg-
ister base addressing with the right registers carrying the
pointer values. Where f1oat is correctly predicted, the
instructions highlighted involve XMM registers or float-
ing point instructions. These findings consistently ex-
hibit in our sampled sets, showing that EKLAV YA mirrors
our intuitive understanding of the semantics.

5.3.3 Network Mispredictions

We provide a few concrete examples of EKLAVYA mis-
predictions. These examples show that principled pro-
gram analysis techniques would likely discern such er-
rors; therefore, EKLAVYA does not mimic a full liveness
tracking function yet. To perform this analysis, we in-
spect a random subset of the mispredictions for each of
the tasks using the saliency map. In some cases, we can
speculate the reasons for mispredictions, though there
are best-effort estimates. Our findings are presented in
the form of 2 case studies below.

As shown in Table [5] the second argument is mis-

USENIX Association

26th USENIX Security Symposium 111



Table 5: x86 multiple type mispredictions for second ar-
guments.

Instruction Relative Insturction Relative
Score Score

subl $0x1c, %oesp 0.719351 pushl %edi 0.545965
movsbl 0x24(%esp), %eax 1.000000 movl %edx, %edi 0.145597
movl %eax, 8(%esp) 0.246975 pushl %esi 0.021946
movl $OxFITTTEET, 4(%esp) 0.418808 pushl %ebx 0.068469
movl 0x20(%esp), %eax 0.485717 movl %eax, %ebx 0.188693
movl %eax, (%esp) 0.260028 subl $0x20, %esp 0.446094
calll Oxffffff3e 0.801598 movl O0xc(%eax), %eax 0.890956
addl $0x1c, %esp 0.403249 movl $0, 0x1c(%esp) 1.000000
retl 0.383143 leal Ox1c(%esp), % esi 0.805058
cmpb %dl, (%eax) 0.824601

(b) “d_exprlist” compiled with gcc and O2
(true type is char but predicted as pointer)

(a) “quotearg_char” compiled with gcc and O1
(true type is char but predicted as int)

Table 6: x64 mispredictions.

Relative Relative

Instruction Instruction

Score Score

pushq %rbx 0.175079
movq %rdi, %rbx 0.392229 pushq %rbx 0.025531
callq 0x3fc 1.000000 subq $0x100, %rsp 0.163929
testq %rax, %orax 0.325375 movq %rdi, -0xe8(%rbp) 0.314619
je 0x1004 0.579551 movq %rsi, -0xf0(%rbp) 0.235489
popq %rbx 0.164043 movl %edx, %eax 0.308323
retq 0.135274 movq %rex, -0x100(%rbp)  0.435364
movq %rbx, %rdi 0.365685 movl %r8d, -0xf8( %rbp) 0.821577
callq Oxe6d 0.665486 movq %r9, -0x108(%rbp) 1.000000

movb %al, -0xf4(%rbp) 0.24482

(b) “prompt” compiled with gcc and O0
(number of arguments is 6 but
predicted as 7)

(a) “ck_fopen” compiled with clang and O1
(true type of first argument is pointer but
predicted as int)

predicted as an integer in the first example, while
in the second case study, the second argument is mis-
predicted as a pointer. From these two examples, it
is easy to see how the model has identified instructions
which provide hints to what the types are. In both cases,
the highlighted instructions suggest possibilities of mul-
tiple types and the mispredictions corresponds to one of
it. The exact reasons for mispredictions are unclear but
this seems to suggest that the model is not robust against
situations where there can be multiple type predictions
for different argument positions. We speculate that this
is due to the design choice of training for each specific
argument position a separate sub-network which poten-
tially requires the network to infer calling conventions
from just type information.

In the same example as above, the first argument is
mispredicted as well. The ground truth states that the
first argument is a pointer, whereas EKLAVYA pre-
dicts an integer. This shows another situation where
the model makes a wrong prediction, namely when the
usage of the argument within the function body provides
insufficient hints for the type usage.

We group all mispredictions we have analyzed into
three categories: insufficient information, high argument
counts and off-by-one errors. A typical example of a mis-
prediction due to lack of information is when the func-
tion takes in more arguments than it actually uses. The
first example in Table 6] shows an example of it.

Typically, for a functions with high argument counts

(greater than 6), the model will highlight the use of $r9
and some subsequent stack uses. However in example 2
of Table [6] it shows how the model focuses on $r9 but
still made the prediction of an argument count of 7. The
lack of training data for such high argument counts may
be a reason for lack of robustness.

Off-by-one errors are those in which the network is
able to identify instructions which indicate the number
of arguments but the prediction is off by one. For exam-
ple, the network may identify the use of $rcx as impor-
tant but make the prediction that there are 5 arguments
instead of 4 arguments. No discernible reason for these
has emerged in our analysis.

6 Related Work

Machine Learning on Binaries. Extensive literature
exists on applying machine learning for other binaries
analysis tasks. Such tasks include malware classifi-
cation [42, 15 [30, 20, 136, [15] and function identifica-
tion [37, [7, 143]. The closest related work to ours is by
Shin et al. [43]], which apply RNNs to the task of function
boundary identification. These results have high accu-
racy, and such techniques can be used to create the inputs
for EKLAVYA. At a technical level, our work employs
word-embedding techniques and we perform in-depth
analysis of the model using dimensionality reduction,
analogical reasoning and saliency maps. These analy-
sis techniques have not been used in studying the learnt
models for binary analysis tasks. For function identi-
fication, Bao et al. [7] utilize weighted prefix trees to
improve the efficiency of function identification. Many
other works use traditional machine learning techniques
such as n-grams analysis [42], SVMs [36], and condi-
tional random fields [37] for binary analysis tasks (dif-
ferent from ours).

Word embedding is a commonly used technique in
such tasks, since these tasks require a way to repre-
sent words as vectors. These word embeddings can
generally be categorized into two approaches, count-
based [13}32] and prediction-based [24} 28]. Neural net-
works are also frequently used for tasks like language
translation [11}49]], parsing [46} 43].

Function Arguments Recovery. In binary analysis,
recovery of function arguments [51} 23| [14] is an im-
portant component used in multiple problems. Some ex-
amples of the tasks include hot patching [33] and fine-
grained control-flow integrity enforcement [51]. To sum-
marize, there are two main approaches used to recover
the function argument: liveness analysis and heuristic
methods based on calling convention and idioms. Veen
et. al. [51]] in their work make use of both these methods

112 26th USENIX Security Symposium

USENIX Association



to obtain the function argument counts. Lee et. al. [23]
formulate the usage of different data types in binaries to
do type reconstruction. In addition, EIWazeer et al.[14]
apply liveness analysis to provide a fine-grained recovery
of arguments, variables and their types. A direct compar-
ison to this work is difficult because their work considers
a different type syntax than our work. At a high level,
EKLAVYA provides a comparable level of accuracy, al-
beit on more coarse-grained types.

7 Conclusion

In this paper, we present a neural-network-based system
called EKLAVYA for addressing function arguments re-
covery problem. EKLAVYA is compiler and instruction-
set agnostic system with comparable accuracy. In ad-
dition, we find that EKLAVYA indeed learns the calling
conventions and idioms that match our domain knowl-
edge.

8 Acknowledgements

We thank the anonymous reviewers of this work for their
helpful feedback. We thank Shweta Shinde, Wei Ming
Khoo, Chia Yuan Cho, Anselm Foong, Jun Hao Tan and
RongShun Tan for useful discussion and feedback on ear-
lier drafts of this paper. We also thank Valentin Ghita
for helping in the preparation of the final dataset. This
research is supported in part by the National Research
Foundation, Prime Ministers Office, Singapore under
its National Cybersecurity R&D Program (TSUNAMi
project, Award No. NRF2014NCR-NCRO001-21). This
research is also supported in part by a research grant from
DSO, Singapore. All opinions expressed in this paper are
solely those of the authors.

References

[1] GitHub - eliben/pyelftools: Pure-python library for pars-
ing ELF and DWARF. https://github.com/eliben/
pyelftools.

[2] GNU Binutils.
binutils/\

[3] The DWARF Debugging Standard.
dwarfstd.org/}

https://www.gnu.org/software/
http://www.

[4] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN,
Z., CiTrRO, C., CORRADO, G. S., DAvIS, A., DEAN, J.,
DEVIN, M., GHEMAWAT, S., GOODFELLOW, 1., HARP, A,
IRVING, G., ISARD, M., JIA, Y., JOZEFOWICZ, R., KAISER,
L., KUDLUR, M., LEVENBERG, J., MANE, D., MONGA,
R., MOORE, S., MURRAY, D., OLAH, C., SCHUSTER, M.,
SHLENS, J., STEINER, B., SUTSKEVER, I., TALWAR, K.,
TUCKER, P., VANHOUCKE, V., VASUDEVAN, V., VIEGAS, F.,
VINYALS, O., WARDEN, P., WATTENBERG, M., WICKE, M.,
YU, Y., AND ZHENG, X. TensorFlow: Large-scale machine
learning on heterogeneous systems, 2015. Software available
from tensorflow.org.

(3]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

ABOU-ASSALEH, T., CERCONE, N., KESELJ, V., AND SWEI-
DAN, R. N-gram-based detection of new malicious code. In
Computer Software and Applications Conference, 2004. COMP-
SAC 2004. Proceedings of the 28th Annual International (2004),
vol. 2, IEEE, pp. 41-42.

ANDRIESSE, D., CHEN, X., VAN DER VEEN, V., SLOWINSKA,
A., AND Bos, H. An in-depth analysis of disassembly on full-
scale x86/x64 binaries. In USENIX Security Symposium (2016).

BAO, T., BURKET, J., W00, M., TURNER, R., AND BRUMLEY,
D. Byteweight: Learning to recognize functions in binary code.
In USENIX Security (2014), pp. 845-860.

BENGIO, Y., DUCHARME, R., VINCENT, P., AND JAUVIN, C.
A neural probabilistic language model. Journal of machine learn-
ing research 3, Feb (2003), 1137-1155.

BENGIO, Y., SIMARD, P., AND FRASCONI, P. Learning long-
term dependencies with gradient descent is difficult. /[EEE trans-
actions on neural networks 5,2 (1994), 157-166.

CHIPOUNOV, V., KUZNETSOV, V., AND CANDEA, G. S2e:
A platform for in-vivo multi-path analysis of software systems.
ACM SIGPLAN Notices 46, 3 (2011), 265-278.

CHO, K., VAN MERRIENBOER, B., GULCEHRE, C., BAH-
DANAU, D., BOUGARES, F., SCHWENK, H., AND BENGIO, Y.
Learning phrase representations using rnn encoder-decoder for
statistical machine translation. In Proceedings of the Empiricial
Methods in Natural Language Processing (EMNLP 2014) (2014).

CHRISTODORESCU, M., JHA, S., SESHIA, S. A., SONG, D.,
AND BRYANT, R. E. Semantics-aware malware detection. In
2005 IEEE Symposium on Security and Privacy (S&P’05) (2005),
IEEE, pp. 32-46.

DEERWESTER, S., DuMAIS, S. T., FURNAS, G. W., LAN-
DAUER, T. K., AND HARSHMAN, R. Indexing by latent semantic
analysis. Journal of the American society for information science
41, 6 (1990), 391.

ELWAZEER, K., ANAND, K., KOTHA, A., SMITHSON, M.,
AND BARUA, R. Scalable variable and data type detection in
a binary rewriter. ACM SIGPLAN Notices 48, 6 (2013), 51-60.

FIRDAUSI, I., ERWIN, A., NUGROHO, A. S., ET AL. Analysis
of machine learning techniques used in behavior-based malware
detection. In Advances in Computing, Control and Telecommu-
nication Technologies (ACT), 2010 Second International Confer-
ence on (2010), IEEE, pp. 201-203.

FRIEDMAN, S. E., AND MUSLINER, D. J. Automatically repair-
ing stripped executables with cfg microsurgery. In Self-Adaptive
and Self-Organizing Systems Workshops (SASOW), 2015 IEEE
International Conference on (2015), IEEE, pp. 102-107.

GHORMLEY, D. P., RODRIGUES, S. H., PETROU, D., AND
ANDERSON, T. E. Slic: An extensibility system for commod-
ity operating systems. In USENIX Annual Technical Conference
(1998), vol. 98.

HEMEL, A., KALLEBERG, K. T., VERMAAS, R., AND DOL-
STRA, E. Finding software license violations through binary code
clone detection. In Proceedings of the 8th Working Conference
on Mining Software Repositories (2011), ACM, pp. 63-72.

HOTELLING, H. Analysis of a complex of statistical variables
into principal components. Journal of educational psychology
24,6 (1933), 417.

KOLTER, J. Z., AND MALOOF, M. A. Learning to detect mali-
cious executables in the wild. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and
data mining (2004), ACM, pp. 470-478.

USENIX Association

26th USENIX Security Symposium 113


https://github.com/eliben/pyelftools
https://github.com/eliben/pyelftools
https://www.gnu.org/software/binutils/
https://www.gnu.org/software/binutils/
http://www.dwarfstd.org/
http://www.dwarfstd.org/

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

KRUEGEL, C., KIRDA, E., MUTZ, D., ROBERTSON, W., AND
VIGNA, G. Automating mimicry attacks using static binary anal-
ysis. In Proceedings of the 14th conference on USENIX Security
Symposium-Volume 14 (2005), USENIX Association, pp. 11-11.

KRUEGEL, C., ROBERTSON, W., AND VIGNA, G. Detecting
kernel-level rootkits through binary analysis. In Computer Secu-
rity Applications Conference, 2004. 20th Annual (2004), IEEE,
pp. 91-100.

LEE, J., AVGERINOS, T., AND BRUMLEY, D. Tie: Principled
reverse engineering of types in binary programs.

LEVY, O., GOLDBERG, Y., AND DAGAN, I. Improving distri-
butional similarity with lessons learned from word embeddings.
Transactions of the Association for Computational Linguistics 3
(2015), 211-225.

MAATEN, L. V. D., AND HINTON, G. Visualizing data using t-
sne. Journal of Machine Learning Research 9, Nov (2008), 2579—
2605.

MCCAMANT, S., AND MORRISETT, G. Evaluating sfi for a cisc
architecture. In Usenix Security (2006), vol. 6.

MIKoOLOV, T., CHEN, K., CORRADO, G., AND DEAN, J. Effi-
cient estimation of word representations in vector space. CoRR
abs/1301.3781 (2013).

MIkoLoV, T., SUTSKEVER, I., CHEN, K., CORRADO, G. S.,
AND DEAN, J. Distributed representations of words and phrases
and their compositionality. In Advances in neural information
processing systems (2013), pp. 3111-3119.

MikoLrov, T., YIH, W.-T., AND ZWEIG, G. Linguistic regulari-
ties in continuous space word representations. In Proceedings of
NAACL-HLT (2013), pp. 746-751.

MOSKOVITCH, R., FEHER, C., TZACHAR, N., BERGER, E.,
GITELMAN, M., DOLEV, S., AND ELOVICI, Y. Unknown mal-
code detection using opcode representation. In Intelligence and
Security Informatics. Springer, 2008, pp. 204-215.

NEWSOME, J., AND SONG, D. Dynamic taint analysis: Au-
tomatic detection, analysis, and signature generation of exploit
attacks on commodity software. In In In Proceedings of the 12th
Network and Distributed Systems Security Symposium (2005),
Citeseer.

PENNINGTON, J., SOCHER, R., AND MANNING, C. D. Glove:
Global vectors for word representation. In EMNLP (2014),
vol. 14, pp. 1532-1543.

PERKINS, J. H., KiM, S., LARSEN, S., AMARASINGHE, S.,
BACHRACH, J., CARBIN, M., PACHECO, C., SHERWOOD,
F., SIDIROGLOU, S., SULLIVAN, G., ET AL. Automatically
patching errors in deployed software. In Proceedings of the
ACM SIGOPS 22nd symposium on Operating systems principles
(2009), ACM, pp. 87-102.

PRAKASH, A., HU, X., AND YIN, H. vfguard: Strict protection
for virtual function calls in cots c++ binaries. In NDSS (2015).

QIAO, RUI AND SEKAR, R. Effective Function Recovery for
COTS Binaries using Interface Verification. Tech. rep., Depart-
ment of Computer Science, Stony Brook University, May 2016.

RIECK, K., HoLz, T., WILLEMS, C., DUSSEL, P., AND
LASKOV, P. Learning and classification of malware behavior.
In International Conference on Detection of Intrusions and Mal-
ware, and Vulnerability Assessment (2008), Springer, pp. 108—
125.

ROSENBLUM, N. E., ZHU, X., MILLER, B. P., AND HUNT,
K. Learning to analyze binary computer code. In AAAI (2008),
pp. 798-804.

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

SZEBIJORNSEN, A., WILLCOCK, J., PANAS, T., QUINLAN, D.,
AND SU, Z. Detecting code clones in binary executables. In Pro-
ceedings of the eighteenth international symposium on Software
testing and analysis (2009), ACM, pp. 117-128.

SAXENA, P., POOSANKAM, P., MCCAMANT, S., AND SONG,
D. Loop-extended symbolic execution on binary programs. In
Proceedings of the eighteenth international symposium on Soft-
ware testing and analysis (2009), ACM, pp. 225-236.

SAXENA, P., SEKAR, R., AND PURANIK, V. Efficient fine-
grained binary instrumentationwith applications to taint-tracking.
In Proceedings of the 6th annual IEEE/ACM international sym-
posium on Code generation and optimization (2008), ACM,
pp. 74-83.

SCHULTE, E. M., WEIMER, W., AND FORREST, S. Repairing
cots router firmware without access to source code or test suites:
A case study in evolutionary software repair. In Proceedings of
the Companion Publication of the 2015 Annual Conference on
Genetic and Evolutionary Computation (2015), ACM, pp. 847—
854.

SCHULTZ, M. G., ESKIN, E., ZADOK, F., AND STOLFO, S. J.
Data mining methods for detection of new malicious executa-
bles. In Security and Privacy, 2001. S&P 2001. Proceedings.
2001 IEEE Symposium on (2001), IEEE, pp. 38—49.

SHIN, E. C. R., SONG, D., AND MOAZZEZI, R. Recognizing
functions in binaries with neural networks. In 24th USENIX Se-
curity Symposium (USENIX Security 15) (2015), pp. 611-626.

SIMONYAN, K., VEDALDI, A., AND ZISSERMAN, A. Deep
inside convolutional networks: Visualising image classification
models and saliency maps. In ICLR Workshop (2014).

SOCHER, R., LIN, C. C., MANNING, C., AND NG, A. Y. Pars-
ing natural scenes and natural language with recursive neural net-

works. In Proceedings of the 28th international conference on
machine learning (ICML-11) (2011), pp. 129-136.

SOCHER, R., MANNING, C. D., AND NG, A. Y. Learning con-
tinuous phrase representations and syntactic parsing with recur-
sive neural networks. In Proceedings of the NIPS-2010 Deep
Learning and Unsupervised Feature Learning Workshop (2010),
pp. 1-9.

SONG, D., BRUMLEY, D., YIN, H., CABALLERO, J., JAGER,
I., KANG, M. G., LIANG, Z., NEWSOME, J., POOSANKAM, P.,
AND SAXENA, P. Bitblaze: A new approach to computer security
via binary analysis. In International Conference on Information
Systems Security (2008), Springer, pp. 1-25.

SRIVASTAVA, N., HINTON, G. E., KRIZHEVSKY, A.,
SUTSKEVER, I., AND SALAKHUTDINOV, R. Dropout: a sim-
ple way to prevent neural networks from overfitting. Journal of
Machine Learning Research 15, 1 (2014), 1929-1958.

SUTSKEVER, 1., VINYALS, O., AND LE, Q. V. Sequence to
sequence learning with neural networks. In Advances in neural
information processing systems (2014), pp. 3104-3112.

TORGERSON, W. S. Multidimensional scaling: I. theory and
method. Psychometrika 17,4 (1952),401-419.

VAN DER VEEN, V., GOKTAS, E., CONTAG, M., PAWLOWSKI,
A., CHEN, X., RAWAT, S., Bos, H., HoLz, T., ATHANA-
SOPOULOS, E., AND GIUFFRIDA, C. A tough call: Mitigating
advanced code-reuse attacks at the binary level. In IEEE Sympo-
sium on Security and Privacy (S&P) (2016).

WARTELL, R., MOHAN, V., HAMLEN, K. W., AND LIN, Z. Se-
curing untrusted code via compiler-agnostic binary rewriting. In
Proceedings of the 28th Annual Computer Security Applications
Conference (2012), ACM, pp. 299-308.

114

26th USENIX Security Symposium

USENIX Association



[53] ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES, L.,
MCcCAMANT, S., SONG, D., AND Zou, W. Practical control
flow integrity and randomization for binary executables. In Secu-
rity and Privacy (SP), 2013 IEEE Symposium on (2013), IEEE,
pp. 559-573.

[54] ZHANG, M., AND SEKAR, R. Control flow integrity for cots
binaries. In Usenix Security (2013), vol. 13.

A Evaluation on the First Dataset

In this section, we will highlight the importance of hav-
ing a good dataset. To do this, we will look at the ac-
curacy evaluation using the dataset consisting of only
coreutils, binutils and findutils. Table [7] depicts the re-
sults of the evaluation. Qualitative analysis of the results
remains largely the same. For example, the high me-
dian and low minimum F1 indicates that EKLAVYA mis-
predicts for some cases of which we have verified that
these mis-predicted classes correspond to classes that are
under-represented in our training set. However, a key
difference we observed is the actual accuracy of the re-
sults. The accuracy of the smaller, unsanitized dataset is
consistently high even in cases where we expect other-
wise. For example, the F1 score for argument counting
task is consistently over 0.90 even across optimization
levels. We speculate that the difference in the accuracy
is due to the presence of similar functions across the bi-
naries. Manual inspection into the dataset confirms that
there is indeed significant shared code amongst the bina-
ries skewing the results. We find that it is not uncommon
for programs within the same package, or even across
packages to share the same static libraries or code. This
problem is especially pronounced in binaries within the
same package as these binaries typically share common
internal routines. Note that this problem exists for bina-
ries between packages too. There have been examples
of functions of binaries from different packages having
different names but is nearly identical in terms of the bi-
nary code. In our paper, we propose a simple method to
remove similar functions but a better way of quantifying
the similarities can be utilized to generate a more robust

dataset. Finally, we hope that this can be built upon into
a high quality, publicly available binary dataset where
future binary learning approaches can be evaluated on.

B Short Primer on t-SNE

To maintain the neighborhood identity, t-SNE first use
the conditional probabilities to represent the euclidean
distance between high-dimension dataset. For instance,
the similarity between two distinct instruction /; and /; is
represented as the conditional probability p;;. The con-
ditional probability has following definition:

exp(— ||l —1|)* /(262)

Pjli = 2
Yisiexp(— Il — K> /(267))
Pjli + Pilj
pPij = Ton

where n is the number of data points and o is the vari-
ance of distribution which is centered at each data point
x;. Here, t-SNE determines the value of o; by binary
search with the given perplexity value.

The perplexity can be considered as the measurement
of valid number of neighbors, which is defined as:

perplexity(p;) = x"(P)

H(p) ==Y pjilogp
J

The second step is to minimize the difference between
the conditional probability between high-dimensional
dataset and low-dimensional dataset. For the conditional
probability g;; of low-dimensional data point y; and y;,
t-SNE applies similar method:

Oyl
=
! Tt (1+ |y =yl [*) !

Given the conditional probabilities, we can apply gra-
dient descent method to do the minimization task.

USENIX Association

26th USENIX Security Symposium 115



Table 7: Evaluation result on the first dataset for count recovery and type recovery tasks from callers and callees for
different optimization levels given different architectures.Columns 3-18 report the evaluation result of EKLAV YA on
test dataset with different optimization level ranging from OO to O3. The median, max, and min F1 are calculated over
the reported labels, whereas the accuracy is calculated over the whole test set.

Arch Task - o0 - - o1 - - 02 - - 03 0
Median | Max | Min Ace Median | Max | Min Ace Median | Max | Min Ace Median | Max | Min Acc
F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
Task1 0.978 | 0.994 | 0.923 | 0.983 0.960 | 0.991 | 0.925 | 0.972 | 0.968 | 0.997 | 0.938 | 0.977 0.967 0.998 | 0.936 | 0.979
Task2 0.984 | 0.993 | 0.952 | 0.986 | 0.965 0.988 | 0.933 | 0.967 | 0.970 | 0.982 | 0.948 | 0.973 0.966 | 0.982 | 0.942 | 0.972
st 0915 | 0.989 - 0979 | 0.934 | 0.990 | 0.400 | 0.983 0.950 | 0.991 - 0.985 0.968 0.993 - 0.988
<86 Task3 | 2nd | 0.981 1.000 | 0.904 | 0.976 | 0.980 1.000 | 0.909 | 0.976 | 0.981 1.000 - 0.984 | 0.984 1.000 - 0.984
3rd 0.962 | 0.982 - 0.978 0.976 | 0.993 | 0.500 | 0.981 0.988 1.000 | 0.926 | 0.985 0.977 1.000 | 0.667 | 0.984
1st 0.983 | 0.994 | 0.857 | 0.989 | 0.994 1.000 | 0.945 | 0.990 | 0.997 1.000 | 0.750 | 0.994 | 0972 | 0.997 | 0.857 | 0.994
Task4 | 2nd | 0.980 1.000 | 0.975 | 0.987 0.989 1.000 | 0.976 | 0.988 | 0.984 | 0.996 - 0.993 0.985 0.996 - 0.993
3rd 0.986 1.000 | 0.714 | 0.991 0.983 0.998 | 0.727 | 0.989 | 0.985 1.000 | 0.800 | 0.989 | 0.986 1.000 | 0.667 | 0.989
Task1 0.985 0.996 | 0.967 | 0.985 0.975 0.997 | 0.873 | 0.971 0978 | 0.997 | 0.934 | 0.979 | 0.977 0.999 | 0.946 | 0.982
Task2 0.997 | 0.999 | 0.975 | 0.998 0976 | 0.988 | 0.942 | 0.976 | 0.980 | 0.991 | 0.946 | 0.979 | 0.979 | 0.991 | 0.950 | 0.978
1st 0.934 | 0.992 | 0.667 | 0.984 | 0.938 0.992 | 0.400 | 0.985 0.954 | 0.993 - 0.987 0.969 | 0.994 - 0.989
<64 Task3 | 2nd | 0.984 1.000 | 0.975 | 0.980 | 0.985 1.000 | 0.978 | 0.982 | 0.985 1.000 - 0.986 | 0.987 0.990 - 0.990
3rd 0970 | 0.991 | 0.667 | 0.987 0.988 0.997 | 0.800 | 0.991 0.993 1.000 | 0.988 | 0.992 | 0.995 1.000 | 0.990 | 0.994
1st 0.987 | 0.997 | 0.667 | 0.995 0.981 0.995 | 0.667 | 0.991 0.970 | 0.996 | 0.857 | 0.993 0.971 0.997 | 0.857 | 0.994
Task4 | 2nd | 0.991 1.000 | 0.667 | 0.989 | 0.984 | 0.993 | 0.667 | 0.989 | 0.997 1.000 - 0.996 | 0.997 1.000 - 0.995
3rd 0.983 | 0.993 | 0.857 | 0.989 | 0.984 1.000 | 0.727 | 0.990 | 0.985 1.000 | 0.800 | 0.991 0.988 1.000 | 0.800 | 0.992

116 26th USENIX Security Symposium USENIX Association



CAn’t Touch This: Software-only Mitigation against Rowhammer Attacks
targeting Kernel Memory

Ferdinand Brasser!, Lucas DaviZ, David Gens!, Christopher Liebchen!, and
Ahmad-Reza Sadeghi'

ITechnische Universitit Darmstadt, Germany
{ferdinand.brasser,david.gens,christopher.liebchen,ahmad.sadeghi } @trust.tu-darmstadt.de

2University of Duisburg-Essen, Germany
lucas.davi@wiwinf.uni-due.de

Abstract

Rowhammer is a hardware bug that can be exploited to
implement privilege escalation and remote code execu-
tion attacks. Previous proposals on rowhammer mitiga-
tions either require hardware changes or follow heuristic-
based approaches (based on CPU performance coun-
ters). To date, there exists no instant protection against
rowhammer attacks on legacy systems.

In this paper, we present the design and implemen-
tation of a practical and efficient software-only defense
against rowhammer attacks. Our defense, called CATT,
prevents the attacker from leveraging rowhammer to cor-
rupt kernel memory from user mode. To do so, we ex-
tend the physical memory allocator of the OS to phys-
ically isolate the memory of the kernel and user space.
We implemented CATT on x86 and ARM to mitigate
rowhammer-based kernel exploits. Our extensive evalua-
tion shows that our mitigation (i) can stop available real-
world rowhammer attacks, (ii) imposes virtually no run-
time overhead for common user and kernel benchmarks
as well as commonly used applications, and (iii) does not
affect the stability of the overall system.

1 Introduction

CPU-enforced memory protection is fundamental to
modern computer security: for each memory access re-
quest, the CPU verifies whether this request meets the
memory access policy. However, the infamous rowham-
mer attack [11] undermines this access control model
by exploiting a hardware fault (triggered through soft-
ware) to flip targeted bits in memory. The cause for
this hardware fault is due to the tremendous density in-
crease of memory cells in modern DRAM chips, allow-
ing electrical charge (or the change thereof) of one mem-
ory cell to affect that of an adjacent memory cell. Un-
fortunately, increased refresh rates of DRAM modules —
as suggested by some hardware manufacturers — cannot

eliminate this effect [3]. In fact, the fault appeared as
a surprise to hardware manufacturers, simply because it
does not appear during normal system operation, due to
caches. Rowhammer attacks repetitively read (hammer)
from the same physical memory address in very short
time intervals which eventually leads to a bit flip in a
physically co-located memory cell.

Rowhammer Attack Diversity. Although it might
seem that single bit flips are not per-se dangerous, re-
cent attacks demonstrate that rowhammer can be used to
undermine access control policies and manipulate data
in various ways. In particular, it allows for tampering
with the isolation between user and kernel mode [20]].
For this, a malicious user-mode application locates vul-
nerable memory cells and forces the operating system to
fill the physical memory with page-table entries (PTEs),
i.e., entries that define access policies to memory pages.
Manipulating one PTE by means of a bit flip allows the
malicious application to alter memory access policies,
building a custom page table hierarchy, and finally as-
signing kernel permissions to a user-mode memory page.
Rowhammer attacks have made use of specific CPU in-
structions to force DRAM access and avoid cache ef-
fects. However, prohibiting applications from executing
these instructions, as suggested in [20], is ineffective be-
cause recent rowhammer attacks do no longer depend on
special instructions [3]. As such, rowhammer has be-
come a versatile attack technique allowing compromise
of co-located virtual machines [[18l 26], and enabling
sophisticated control-flow hijacking attacks [6} [19] 22]
without requiring memory corruption bugs [4, [7, 20].
Lastly, a recent attack, called Drammer [24], demon-
strates that rowhammer is not limited to x86-based sys-
tems but also applies to mobile devices running ARM
processors.

Rowhammer Mitigation. The common belief is that
the rowhammer fault cannot be fixed by means of any

USENIX Association

26th USENIX Security Symposium 117



software update, but requires production and deployment
of redesigned DRAM modules. Hence, existing legacy
systems will remain vulnerable for many years, if not
forever. An initial defense approach performed through
a BIOS update to increase the DRAM refresh rate was
unsuccessful as it only slightly increased the difficulty
to conduct the attack [20]. The only other software-
based mitigation of rowhammer, we are aware of, is a
heuristic-based approach that relies on hardware perfor-
mance counters [3]. However, it induces a worst-case
overhead of 8% and suffers from false positives which
impedes its deployment in practice.

Goals and Contributions. The goal of this paper is to
develop the first practical software-based defense against
rowhammer attacks that can instantly protect existing
vulnerable legacy systems without suffering from any
performance overhead and false positives. From all the
presented rowhammer attacks [4} [7, [17, 18}, 20} 24, 26|,
those which compromise the kernel memory to achieve
privilege escalation are the most practical attacks and
most challenging to mitigate. Other attacks can be ei-
ther mitigated by disabling certain system features, or are
impractical for real-world attacks: rowhammer attacks
on virtual machines [18 26] heavily depend on memory
deduplication which is disabled in most production envi-
ronments by default. Further, the browser attacks shown
by Bosman et al. [4] require 15 to 225 minutes. As such,
they are too slow for browser attacks in practice. Hence,
we focus in this paper on practical kernel-based rowham-
mer attacks.

We present the design and implementation of a prac-
tical mitigation scheme, called CATT, that does not aim
to prevent bit flips but rather remove the dangerous ef-
fects (i.e., exploitation) of bit flips. This is achieved by
limiting bit flips to memory pages that are already in the
address space of the malicious application, i.e., memory
pages that are per-se untrusted. For this, we extend the
operating system kernel to enforce a strong physical iso-
lation of user and kernel space.

In detail, our main contributions are:

e We present a practical software-based defense
against rowhammer. In contrast to existing
solutions, our defense requires no hardware
changes [11]], does not deploy unreliable heuris-
tics [3l], and still allows legacy applications to
execute instructions that are believed to alleviate
rowhammer attacks [20].

e We propose a novel enforcement-based mechanism
for operating system kernels to mitigate rowham-
mer attacks. Our design isolates the user and ker-
nel space in physical memory to ensure that the at-

Figure 1: Organization of a DRAM module.

tacker cannot exploit rowhammer to flip bits in ker-
nel memory.

e We present our prototype implementation for the
Linux kernel version 4.6, and demonstrate its ef-
fectiveness in mitigating all previously presented
rowhammer attacks [7,, [20].

e We successfully applied our Linux kernel patch
for CATT to the Android version 4.4 for Google’s
Nexus devices. This allows us to also mitigate
Drammer [24], a recent rowhammer-based privilege
escalation exploit targeting ARM.

e We extensively evaluate the performance, robust-
ness and security of our defense against rowham-
mer attacks to demonstrate the effectiveness and
high practicality of CATT. In particular, our per-
formance measurements indicate no computational
overhead for common user and kernel benchmarks.

For a more comprehensive version of this paper with
other rowhammer defense solutions, options and more
technical details we refer to our full technical report
available online [5].

2 Background

In this section, we provide the basic background knowl-
edge necessary for understanding the remainder of this

paper.

2.1 Dynamic Random Access Memory

(DRAM)

A DRAM module, as shown in Figure [I] is structured
hierarchically. The hardware module is called Dual In-
line Memory Module (DIMM), which is physically con-
nected through a channel to the memory controller. Mod-
ern desktop systems usually feature two channels facil-
itating parallel accesses to memory. The DIMM can be
divided into one or two ranks corresponding to its front-

118 26th USENIX Security Symposium

USENIX Association



Column

Figure 2: Organization of a Bank.

and backside. Each rank contains multiple chips which
are comprised of one or multiple banks that contain the
memory cells. Each bank is organized in columns and
rows, as shown in Figure @

An individual memory cell consists of a capacitor and
a transistor. To store a bit in a memory cell, the capacitor
is electrically charged. By reading a bit from a memory
cell, the cell is discharged, i.e., read operations are de-
structive. To prevent information loss, read operations
also trigger a process that writes the bit back to the cell.
A read operation always reads out the bits from a whole
row, and the result is first saved in the row buffer before
it is then transferred to the memory controller. The row
buffer is also used to write back the content into the row
of memory cells to restore their content.

It is noteworthy to mention that there exists the map-
ping between physical memory address and the rank-,
bank- and row-index on the hardware module is non-
linear. Consequently, two consecutive physical memory
addresses can be mapped to memory cells that are lo-
cated on different ranks, banks, or rows. For example, on
Intel Ivy Bridge CPUs the 20th bit of the physical address
determines the rank. As such, the consecutive physical
addresses Ox2FFFFF and 0x300000 can be located on
front and back side of the DIMM for this architecture.
The knowledge of the physical memory location on the
DIMM is important for both rowhammer attacks and de-
fenses, since bit flips can only occur on the same bank.
For Intel processors, the exact mapping is not officially
documented, but has been reverse engineered [[15 [26].

2.2 Rowhammer Overview and Challenges

As mentioned before, memory access control is an es-
sential building block of modern computer security, e.g.,
to achieve process isolation, isolation of kernel code
and data, and manage read-write-execute permission on
memory pages. Modern systems feature a variety of
mechanisms to isolate memory, e.g., paging [10], virtual-

ization [1} 9], IOMMU [2f], and special execution modes
like SGX [10] and SMM [10]]. However, these mecha-
nisms enforce their isolation through hardware that me-
diates the physical memory accesses (in most cases the
CPU). Hence, memory assigned to isolated entities can
potentially be co-located in physical memory on the
same bank. Since a rowhammer attack induces bit flips
in co-located memory cells, it provides a subtle way to
launch a remote attack to undermine memory isolation.

Recently, various rowhammer-based attacks have been
presented [4.[7, 117,18} 120} 24} 26]]. Specifically, rowham-
mer was utilized to undermine isolation of operating sys-
tem and hypervisor code, and escape from application
sandboxes leveraged in web browsers. As discussed be-
fore, only the attacks that perform privilege escalation
from user to kernel mode are considered as practical. In
the following, we describe the challenges and workflow
of rowhammer attacks. A more elaborated discussion on
real-world, rowhammer-based exploits will be provided
in Section

The rowhammer fault allows an attacker to influence
the electrical charge of individual memory cells by acti-
vating neighboring memory cells. Kim et al. [11] demon-
strate that repeatedly activating two rows separated by
only one row, called aggressor rows (1) and (3) in Fig-
ure , lead to a bit flip in the enclosed row (2), called vic-
tim rowE] To do so, the attacker has to overcome the fol-
lowing challenges: (i) undermine memory caches to di-
rectly perform repetitive reads on physical DRAM mem-
ory, and (ii) gain access to memory co-located to data
critical to memory isolation.

Overcoming challenge (i) is complicated because
modern CPUs feature different levels of memory caches
which mediate read and write access to physical mem-
ory. Caches are important as processors are orders of
magnitude faster than current DRAM hardware, turning
memory accesses into a bottleneck for applications [25]].
Usually, caches are transparent to software, but many
systems feature special instructions, e.g., c1flush or
movnt i for x86 [17,120], to undermine the cache. Fur-
ther, caches can be undermined by using certain read-
access patterns that force the cache to reload data from
physical memory [3]. Such patterns exist, because CPU
caches are much smaller than physical memory, and sys-
tem engineers have to adopt an eviction strategy to ef-
fectively utilize caches. Through alternating accesses to
addresses which reside in the same cache line, the at-
tacker can force the memory contents to be fetched from
physical memory.

The attacker’s second challenge (ii) is to achieve the
physical memory constellation shown in Figure [2] For
this, the attacker needs access to the aggressor rows in

IThis rowhammer approach is called double-sided hammering.
Other rowhammer techniques are discussed in SectionE]

USENIX Association

26th USENIX Security Symposium 119



order to activate (hammer) them (rows (1) and 3) in Fig-
ure 2). In addition, the victim row must contain data
which is vulnerable to a bit flip (2) in Figure . Both
conditions cannot be enforced by the attacker. How-
ever, this memory constellation can be achieved with
high probability using the following approaches. First,
the attacker allocates memory hoping that the aggressor
rows are contained in the allocated memory. If the oper-
ating system maps the attacker’s allocated memory to the
physical memory containing the aggressor rows, the at-
tacker has satisfied the first condition. Since the attacker
has no influence on the mapping between virtual mem-
ory and physical memory, she cannot directly influence
this step, but she can increase her probability by repeat-
edly allocating large amounts of memory. Once control
over the aggressor rows is achieved, the attacker releases
all allocated memory except the parts which contain the
aggressor rows. Next, victim data that should be manip-
ulated has to be placed on the victim row. Again, the at-
tacker cannot influence which data is stored in the phys-
ical memory and needs to resort to a probabilistic ap-
proach. The attacker induces the creation of many copies
of the victim data with the goal that one copy of the vic-
tim data will be placed in the victim row. The attacker
cannot directly verify whether the second step was suc-
cessful, but can simply execute the rowhammer attack
and validate whether the attack was successful. If not,
the second step is repeated until the rowhammer success-
fully executes.

Seaborn et al. [20] successfully implemented this ap-
proach to compromise the kernel from an unprivileged
user process. They gain control over the aggressor rows
and then let the OS create huge amounts of page table en-
tries with the goal of placing one page table entry in the
victim row. By flipping a bit in a page table entry, they
gained control over a subtree of the page tables allowing
them to manipulate memory access control policies.

3 Threat Model and Assumptions

Our threat model is in line with related work [4. (7] [17,
1811201 26]]:

e We assume that the operating system kernel is not
vulnerable to software attacks. While this is hard to
implement in practice it is a common assumption in
the context of rowhammer attacks.

e The attacker controls a low-privileged user mode
process, and hence, can execute arbitrary code but
has only limited access to other system resources
which are protected by the kernel through manda-
tory and discretionary access control.

e We assume that the system’s RAM is vulnerable to

Physical Memory Kernel
l:l:l:l:l‘ CATT Memory
' Alocator
l:l:l:lj"‘\ . Security Domain A
R N\ List of Memory Handler
ﬁmﬁﬁ Available (user-mode)
L
Security Domain B
- ﬁ Memory Handler
H Security Domain (kernel-mode)
- ). Memory Tracking
73 T

|

Figure 3: CATT constrains bit flips to the process’ secu-
rity domain.

rowhammer attacks. Many commonly used systems
(see Table|l) include vulnerable RAM.

4 Design of CATT

In this section, we present the high-level idea and design
of our practical software-based defense against rowham-
mer attacks. Our defense, called CATTE] tackles the ma-
licious effect of rowhammer-induced bit flips by instru-
menting the operating system’s memory allocator to con-
strain bit flips to the boundary where the attacker’s mali-
cious code executes. CATT is completely transparent to
applications, and does not require any hardware changes.

Overview. The general idea of CATT is to tolerate bit
flips by confining the attacker to memory that is already
under her control. This is fundamentally different from
all previously proposed defense approaches that aimed
to prevent bit flips (cf. Section[9). In particular, CATT
prevents bit flips from affecting memory belonging to
higher-privileged security domains, e.g., the operating
system kernel or co-located virtual machines. As dis-
cussed in Section [2.2] a rowhammer attack requires the
adversary to bypass the CPU cache. Further, the attacker
must arrange the physical memory layout such that the
targeted data is stored in a row that is physically adjacent
to rows that are under the control of the attacker. Hence,
CATT ensures that memory between these two entities is
physically separated by at least one rowE]

To do so, CATT extends the physical memory allo-
cator to partition the physical memory into security do-
mains.

Figure [3| illustrates the concept. Without CATT, the
attacker is able to craft a memory layout, where two ag-

2CAn’t Touch This

3Kim et al. [I1] mention that the rowhammer fault does not only
affect memory cells of directly adjacent rows, but also memory cells of
rows that are next to the adjacent row. Although we did not encounter
such cases in our experiments, CATT supports multiple row separation
between adversary and victim data memory. Further detailed discus-
sion can be found in Section@

120 26th USENIX Security Symposium

USENIX Association



gressor rows enclose a victim row of a higher-privileged
domain such as row (2) in Figure[2] With CATT in place,
the rows which are controlled by the attacker are grouped
into the security domain A, whereas memory belonging
to higher-privileged entities resides with their own secu-
rity domain (e.g., the security domain B). Both domains
are physically separated by at least one row which will
not be assigned to any security domain.

Security Domains. Privilege escalation attacks are
popular and pose a severe threat to modern systems. In
particular, the isolation of kernel and user-mode is crit-
ical and the most appealing attack target. If a user-
space application gains kernel privileges, the adversary
can typically compromise the entire system. We define
and maintain two security domains: a security domain
for kernel memory allocations, and one security domain
for user-mode memory allocations (see also Figure[3).

Challenges. The physical isolation of data raises the
challenge of how to effectively isolate the memory of
different system entities. To tackle this challenge, we
first require knowledge of the mapping between physi-
cal addresses and memory banks. Since an attacker can
only corrupt data within one bank, but not across banks,
CATT only has to ensure that security domains of differ-
ent system entities are isolated within each bank. How-
ever, as mentioned in Section [2.1] hardware vendors do
not specify the exact mapping between physical address
and banks. Fortunately, Pessl et al. [[15] and Xiao et
al. [26] provide a methodology to reverse engineer the
mapping. For CATT, we use this methodology to dis-
cover the physical addresses of rows.

We need to ensure that the physical memory manage-
ment component is aware of the isolation policy. This
is vital as the memory management components have
to ensure that newly allocated memory is adjacent only
to memory belonging to the same security domain. To
tackle this challenge, we instrumented the memory allo-
cator to keep track of the domain association of physi-
cal memory and serve memory requests by selecting free
memory from different pools depending on the security
domain of the requested memory.

S Implementation

Our software-based defense is based on modifications to
low-level system software components, i.e., the physical
memory allocator of the operating system kernel. In our
proof-of-concept implementation of CATT, we focus on
hardening Linux against rowhammer-based attacks. We
successfully applied the mentioned changes to the x86-
kernel version 4.6 and the Android kernel for Nexus de-

vices in version 4.4. We chose Linux as our target OS for
our proof-of-concept implementations for two reasons:
(1) its source code is freely available, and (2) it is widely
used on workstations and mobile devices. In the follow-
ing we will explain the implementation of CATT’s pol-
icy enforcement mechanism in the Linux kernel which
allows for the partitioning of physical memory into iso-
lated security domains. We note that CATT targets both
x86 and ARM-based systems. Until today, rowham-
mer attacks have only been demonstrated for these two
prominent architectures. However, our concept can be
applied to other architectures, as well.

The basic idea underlying our software-based
rowhammer defense is to physically separate rows that
belong to different security domains. Operating systems
are not per-se aware of the notions of cells and rows,
but rather build memory management based on paging.
Commodity operating systems use paging to map virtual
addresses to physical addresses. The size of a page
varies among architectures. On x86 and ARM, the page
size is typically 4096 bytes (4K). As we described in
Section DRAM hardware consists of much smaller
units of memory, i.e., individual memory cells storing
single bits. Eight consecutive memory cells represent a
byte, 4096 consecutive bytes a page frame, two to four
page frames a row. Hence, our implementation of CATT
changes low-level components of the kernel to make the
operating system aware of the concept of memory rows.

In the following, we describe how we map individual
memory pages to domains, keep track of different do-
mains, modify the physical memory allocator, and define
partitioning policies for the system’s DRAM hardware.

5.1 Mapping Page Frames to Domains

To be able to decide whether two pages belong to the
same security domain we need to keep track of the secu-
rity domain for each page frame. Fortunately, the kernel
already maintains meta data about each individual page
frame. More specifically, each individual page frame is
associated with exactly one meta data object (struct
page). The kernel keeps a large array of these objects
in memory. Although these objects describe physical
pages, this array is referred to as virtual memory map, or
vmemmap. The Page Frame Number (PFN) of a physical
page is used as an offset into this array to determine the
corresponding struct page object. To be able to as-
sociate a page frame with a security domain, we extend
the definition of struct page to include a field that
encodes the security domain. Since our prototype imple-
mentation targets rowhammer attacks that aim at violat-
ing the separation of kernel and user-space, we encode
security domain O for kernel-space, and 1 for user-space.

USENIX Association

26th USENIX Security Symposium 121



5.2 Tracking Security Domains

The extension of the page frame meta data objects en-
ables us to assign pages to security domains. However,
this assignment is dynamic and changes over time. In
particular, a page frame may be requested, allocated, and
used by one domain, after it has been freed by another
domain. Note that this does not violate our security guar-
antees, but is necessary for the system to manage phys-
ical memory dynamically. Yet, we need to ensure that
page frames being reallocated continue to obey our secu-
rity policy. Therefore, we reset the security domain upon
freeing a page.

Upon memory allocation, CATT needs to correctly set
the security domain of the new page. To do so, we re-
quire information about the requesting domain. For our
case, where we aim at separating kernel and user-space
domains, CATT utilizes the call site information, which
is propagated to the memory allocator by default. Specif-
ically, each allocation request passes a set of flags to the
page allocator. These flags encode whether an allocation
is intended for the kernel or the user-space. We leverage
this information and separate the two domains by setting
the domain field of the respective page frame.

When processes request memory, the kernel initially
only creates a virtual mapping without providing actual
physical page frames for the process. Instead, it only
assigns physical memory on demand, i.e., when the re-
questing process accesses the virtual mapping a page
fault is triggered. Thereafter, the kernel invokes the phys-
ical page allocator to search for usable pages and installs
them under the virtual address the process attempted to
access. We modified the page fault handler, which ini-
tiates the allocation of a new page, to pass information
about the security domain to the page allocator. Next,
the page is allocated according to our policy and sets the
domain field of the page frame’s meta data object to the
security domain of the interrupted process.

5.3 Modifying the Physical Page Allocator

The Linux kernel uses different levels of abstraction
for different memory allocation tasks. The physical
page allocator, called zoned buddy allocator, is the
main low-level facility handling physical page alloca-
tions. It exports its interfaces through functions such as
alloc_pages which can be used by other kernel com-
ponents to request physical pages. In contrast to higher-
level allocators, the buddy allocator only allows for al-
locating sets of memory pages with a cardinality which
can be expressed as a power of two (this is referred to
as the order of the allocation). Hence, the buddy allo-
cator’s smallest level of granularity is a single memory
page. The buddy allocator already partitions the system

RAM into different zones. We modify the implementa-
tion of the physical page allocator in the kernel to in-
clude a dedicated memory zone for the kernel. This en-
ables CATT to separate kernel from user pages accord-
ing to the security domain of the origin of the allocation
request. Hence, any requests for kernel pages will be
served from the dedicated memory zone. We addition-
ally instrument a range of maintenance checks to make
them aware of our partitioning policy before the alloca-
tor returns a physical page. If any of these checks fail,
the page allocator is not allowed to return the page in
question.

5.4 Defining DRAM Partitioning Policies

Separating and isolating different security domains is es-
sential to our proposed mitigation. For this reason, we
incorporate detailed knowledge about the platform and
its DRAM hardware configuration into our policy imple-
mentation. While our policy implementation for a tar-
get system largely depends on its architecture and mem-
ory configuration, this does not represent a fundamen-
tal limitation. Indeed, independent research [15} 26] has
provided the architectural details for the most prevalent
architectures, i.e., it shows that the physical address to
DRAM mapping can be reverse engineered automati-
cally for undocumented architectures. Hence, it is pos-
sible to develop similar policy implementations for ar-
chitectures and memory configurations beyond x86 and
ARM. We build on this prior research and leverage the
physical address to DRAM mapping information to en-
force strict physical isolation. In the following, we de-
scribe our implementation of the partitioning strategy for
isolating kernel and user-space.

Kernel-User Isolation. To achieve physical separation
of user and kernel space we adopt the following strat-
egy: we divide each bank into a top and a bottom part,
with a separating row in-between. Page frames for one
domain are exclusively allocated from the part that was
assigned to that domain. The part belonging to the kernel
domain is determined by the physical location of the ker-
nel imageE] As aresult, user and kernel space allocations
may be co-located within one bank, but never within ad-
jacent rowsE] Due to this design memory allocated to
the kernel during early boot is allocated from a mem-
ory region which is part of the kernel’s security domain,
hence, the isolation covers all kernel memory. Different
partitioning policies would be possible in theory: for in-
stance, we could confine the kernel to a certain DRAM

4This is usually at 1MB, although Kernel Address Space Layout
Randomization (KASLR) may slightly modify this address according
to a limited offset.

5The exact location for the split can be chosen at compile time.
Hence, the partitioning is not fixed but can be chosen arbitrarily (e.g.,
20-80, 50-50, 75-25, etc.).

122 26th USENIX Security Symposium

USENIX Association



System  Operating System System Model

S1 Ubuntu 14.04.4 LTS  Dell OptiPlex 7010
S2 Debian 8.2 Dell OptiPlex 990
S3 Kali Linux 2.0 Lenovo ThinkPad x220

Table 1: Model numbers of the vulnerable systems used
for our evaluation.

bank to avoid co-location of user domains within a sin-
gle bank. However, this would likely result in a severe in-
crease of memory latency, since reads and writes to a spe-
cific memory bank are served by the bank’s row buffer.
The benefit of our partitioning policy stems from the fact
that we distribute memory belonging to the kernel secu-
rity domain over multiple banks thereby not negatively
impacting performance. Additionally, the bank split be-
tween top and bottom could be handled at run time, e.g.,
by dynamically keeping track of the individual bank-split
locations similar to the watermark handling already im-
plemented for different zones in the buddy allocator. In
our current prototype, we only need to calculate the row
index of a page frame for each allocation request. More
specifically, we calculate this index from the physical ad-
dress (PA) in the following way:

PA
Row(PA) :=
oW(PA) 1= e Size PagesPerDIMM - DIMMs

Here, we calculate the number of pages per DIMM
as PagesPerDIMM := PagesPerRow - BanksPerRank -
RanksPerDIMM. Because all possible row indices are
present once per bank, this equation determines the row
index of the given physical addressE] We note that this
computation is in line with the available rowhammer ex-
ploits [20] and the reported physical to DRAM mapping
recently reverse engineered [15} 26]. Since the row size
is the same for all Intel architectures prior to Skylake [[7]],
our implementation for this policy is applicable to a wide
range of system setups, and can be adjusted without in-
troducing major changes to fit other configurations as
well.

6 Security Evaluation

The main goal of our software-based defense is to pro-
tect legacy systems from rowhammer attacks. We tested

The default values for DDR3 on x86 are 4K for the page size,
2 pages per row, 8 banks per rank, 2 ranks per DIMM and between
1 and 4 DIMMs per machine. For DDR4 the number of banks per rank
was doubled. DDR4 is supported on x86 starting with Intel’s Skylake
and AMD’s Zen architecture.

the effectiveness of CATT on diverse hardware configu-
rations. Among these, we identified three hardware con-
figurations, where we observed many reproducible bit
flips. Table[T|and Table[2]lists the exact configurations of
the three platforms we use for our evaluation. Our effec-
tiveness evaluation of CATT is based on two attack sce-
narios. For the first scenario, we systematically search
for reproducible bit flips based on a tool published by
Gruss et alm Our second attack scenario leverages a real-
world rowhammer exploit published by Google’s Project
Zeroﬂ We compared the outcome of both attacks on
our vulnerable systems before and after applying CATT.
Next, we elaborate on the two attack scenarios and their
mitigation in more detail.

6.1 Rowhammer Testing Tool

We use a slightly modified version of the double-sided
rowhammering tool, which is based on the original test
by Google’s Project Zero [20]]. Specifically, we extended
the tool to also report the aggressor physical addresses,
and adjusted the default size of the fraction of physical
memory that is allocated for the test. The tool scans the
allocated memory for memory cells that are vulnerable
to the rowhammer attack. To provide comprehensive re-
sults, the tool needs to scan the entire memory of the sys-
tem. However, investigating the entire memory is hard to
achieve in practice since some parts of memory are al-
ways allocated by other system components. These parts
are therefore not available to the testing tool, i.e., mem-
ory reserved by operating system. To achieve maximum
coverage, the tool allocates a huge fraction of the avail-
able memory areas. However, due to the lazy allocation
of Linux the allocated memory is initially not mapped to
physical memory. Hence, each mapped virtual page is
accessed at least once, to ensure that the kernel assigns
physical pages. Because user space only has access to the
virtual addresses of these mappings, the tool exploits the
/proc/pagemap kernel interface to retrieve the phys-
ical addresses. As a result, most of the systems physical
memory is allocated to the rowhammering tool.
Afterwards, the tool analyzes the memory in order to
identify potential victim and aggressor pages in the phys-
ical memory. As the test uses the double-sided rowham-
mering approach two aggressor pages must be identified
for every potential victim page. Next, all potential victim
pages are challenged for vulnerable bit flips. For this, the
potential victim page is initialized with a fixed bit pat-
tern and “hammered” by accessing and flushing the two
associated aggressor pages. This ensures that all of the

7 https://github.com/IAIK/rowhammeris/tree/
master/native

8 https://bugs.chromium.orqg/p/project-zero/
issues/detail?i1d=283

USENIX Association

26th USENIX Security Symposium 123


https://github.com/IAIK/rowhammerjs/tree/master/native
https://github.com/IAIK/rowhammerjs/tree/master/native
https://bugs.chromium.org/p/project-zero/issues/detail?id=283
https://bugs.chromium.org/p/project-zero/issues/detail?id=283

CPU RAM
System  Version Cores  Speed Size Speed Manufacturer Part number
S1 i5-3570 4 3.40GHz 2x2GB 1333 MHz Hynix Hyundai HMT325U6BFR8C-H9
1x4GB 1333 MHz  Corsair CMV4GX3M1A1600C11
S2 i7-2600 4 3.4GHz 2x4GB 1333 MHz Samsung M378B5273DH0-CH9
S3 i5-2520M 4 2.5GHz 2x4GB 1333 MHz Samsung M471B5273DH0-CH9

Table 2: Technical specifications of the vulnerable systems used for our evaluation.

Rowhammer Exploit: Success (avg. # of tries)

Vanilla System CATT
S1 v/(11) X(3821)
S2 v/ (42) X(3096)
S3 v (53) X(3768)

Table 3: Results of our security evaluation. We found
that CATT mitigates rowhammer attacks. We executed
the rowhammer test on each system three times and av-
eraged the amount of bit flips.

accesses activate a row in the respective DRAM module.
This process is repeated 10° timesﬂ Lastly, the potential
victim address can be checked for bit flips by comparing
its memory content with the fixed pattern bit. The test
outputs a list of addresses for which bit flips have been
observed, i.e., a list of victim addresses.

Preliminary Tests for Vulnerable Systems. Using the
rowhammering testing tool we evaluated our target sys-
tems. In particular, we were interested in systems that
yield reproducible bit flips, as only those are relevant for
practical rowhammer attacks. This is because the attack
requires two steps. First, the attacker needs to allocate
chunks of memory, and test each chunk to identify vul-
nerable memory. Second, the attacker needs to exploit
the vulnerable memory. Since the attacker cannot force
the system to allocate page tables at a certain physical
position in RAM, the attacker has to repeatedly spray the
memory with page tables to increase the chances of hit-
ting the desired memory location. Both steps relay on
reproducible bit flips.

Hence, we configured the rowhammering tool to only
report memory addresses where bit flips can be triggered
repeatedly. We successively confirmed that this list in-
deed yields reliable bit flips by individually triggering
the reported addresses and checking for bit flips within
an interval of 10 seconds. Additionally, we tested the bit

9This value is the hardcoded default value. Prior research [11}[12]
reported similar numbers.

flips across reboots through random sampling.

The three systems mentioned in Table [T] and Table 2]
are highly susceptible to reproducible bit flips. Executing
the rowhammer test on these three times and rebooting
the system after each test run, we found 133 pages with
exploitable bit flips for S1, 31 pages for S2, and 23 pages
for S3.

To install CATT, we patched the Linux kernel of each
system to use our modified memory allocator. Recall that
CATT does not aim to prevent bit flips but rather con-
strain them to a security domain. Hence, executing the
rowhammer test on CATT-hardened systems still locates
vulnerable pages. However, in the following, we demon-
strate based on a real-world exploit that the vulnerable
pages are not exploitable.

6.2 Real-world Rowhammer Exploit

To further demonstrate the effectiveness of our mitiga-
tion, we tested CATT against a real-world rowhammer
exploit. The goal of the exploit is to escalate the privi-
leges of the attacker to kernel privileges (i.e., gain root
access). To do so, the exploit leverages rowhammer to
manipulate the page tables. Specifically, it aims to ma-
nipulate the access permission bits for kernel memory,
i.e., reconfigure its access permission policy. A second
option is to manipulate page table entries in such a way
that they point to attacker controlled memory thereby al-
lowing the attacker to install new arbitrary memory map-
pingsm

To launch the exploit, two conditions need to be satis-
fied: (1) a page table entry must be present in a vulner-
able row, and (2) the enclosing aggressor pages must be
allocated in attacker-controlled memory.

Since both conditions are not directly controllable by
the attacker, the attack proceeds as follows: the attacker
allocates large memory areas. As a result, the operat-
ing system needs to create large page tables to maintain
the newly allocated memory. This in turn increases the
probability to satisfy the aforementioned conditions, i.e.,
a page table entry will eventually be allocated to a victim

10The details of this attack option are described by Seaborn et
al. [20].

124 26th USENIX Security Symposium

USENIX Association



page. Due to vast allocation of memory, the attacker also
increases her chances that aggressor pages are co-located
to the victim page.

Once the preconditions are satisfied, the attacker
launches the rowhammer attack to induce a bit flip in
victim page. Specifically, the bit flip modifies the page
table entry such that a subtree of the paging hierarchy is
under the attacker’s control. Lastly, the attacker modi-
fies the kernel structure that holds the attacker-controlled
user process privileges to elevate her privileges to the su-
peruser root. Since the exploit is probabilistic, it only
succeeds in five out of hundred runs (5%). Nevertheless,
a single successful run allows the attacker to compromise
the entire system.

Effectiveness of CATT. Our defense mechanism does
not prevent the occurrence of bit flips on a system.
Hence, we have to verify that bit flips cannot affect data
of another security domain. Rowhammer exploits rely
on the fact that such a cross domain bit flip is possible,
i.e., in the case of our exploit it aims to induce a bit flip
in the kernel’s page table entries.

However, since the exploit by itself is probabilistic,
an unsuccessful attempt does not imply the effectiveness
of CATT. As described above, the success rate of the
attack is about 5%. After deploying CATT on our test
systems, we repeatedly executed the exploit to minimize
the probability of the exploit failing due to the random
memory layout rather than due to our protection mech-
anism. We automated the process of continuously exe-
cuting the exploit and ran this test for 48h, on all three
test systems. In this time frame the exploit made on aver-
age 3500 attempts of which on average 175 should have
succeeded. However, with CATT, none of the attempts
was successful. Hence, as expected, CATT effectively
prevents rowhammer-based exploits.

As we have demonstrated, CATT successfully pre-
vents the original attack developed on x86 by physically
isolating pages belonging to the kernel from the user-
space domain. In addition to that, the authors of the
Drammer exploit [24] confirm that CATT prevents their
exploit on ARM. The reason is, that they follow the same
strategy as in the original kernel exploit developed by
Project Zero, i.e., corrupting page table entries in the ker-
nel from neighboring pages in user space. Hence, CATT
effectively prevents rowhammer exploits on ARM-based
mobile platforms as well.

7 Performance Evaluation

One of our main goals is practicability, i.e., inducing neg-
ligible performance overhead. To demonstrate practica-
bility of our defense, we thoroughly evaluated the perfor-

mance and stability impact of CATT on different bench-
mark and testing suites. In particular, we used the SPEC
CPU2006 benchmark suite [8] to measure the impact on
CPU-intensive applications, LMBench3 [14]] for measur-
ing the overhead of system operations, and the Phoronix
test suite [16] to measure the overhead for common ap-
plications. We use the Linux Test Project, which aims at
stress testing the Linux kernel, to evaluate the stability
of our test system after deploying CATT. We performed
all of our performance evaluation on system S2 (cf. Ta-

ble2).

7.1 Run-time Overhead

Table [] summarizes the results of our performance
benchmarks. In general, the SPEC CPU2006 bench-
marks measure the impact of system modifications on
CPU intensive applications. Since our mitigation mainly
affects the physical memory management, we did not
expect a major impact on these benchmarks. However,
since these benchmarks are widely used and well estab-
lished we included them in our evaluation. In fact, we
observe a minimal performance improvement for CATT
by 0.49% which we attribute to measuring inaccuracy.
Such results have been reported before when executing
a set of benchmarks for the same system with the ex-
act same configuration and settings. Hence, we conclude
that CATT does not incur any performance penalty.

LMBench3 is comprised of a number of micro bench-
marks which target very specific performance parame-
ters, e.g., memory latency. For our evaluation, we fo-
cused on micro benchmarks that are related to mem-
ory performance and excluded networking benchmarks.
Similar to the previous benchmarks, the results fluctuate
on average between —0.4% and 0.11%. Hence, we con-
clude that our mitigation has no measurable impact on
specific memory operations.

Finally, we tested the impact of our modifications on
the Phoronix benchmarks. In particular, we selected a
subset of benchmarksE] that, on one hand, aim to mea-
sure memory performance (I0Zone and Stream), and, on
the other hand, test the performance of common server
applications which usually rely on good memory perfor-
mance.

To summarize, our rigorous performance evaluation
with the help of different benchmarking suites did not
yield any measurable overhead. This makes CATT a
highly practical mitigation against rowhammer attacks.

"I"The Phoronix benchmarking suite features a large number of tests
which cover different aspects of a system. By selecting a subset of the
available tests we do not intend to improve our performance evaluation.
On the contrary, we choose a subset of tests that is likely to yield mea-
surable performance overhead, and excluded tests which are unrelated
to our modification, e.g., GPU or machine learning benchmarks.

USENIX Association

26th USENIX Security Symposium 125



SPEC2006 CATT Phoronix CATT LMBench3 CATT LMBench3 CATT
perlbench 0.29% 10Zone 0.05% Context Local Bandwidth:

bzip2 0.00%  Unpack -0.50% Switching: Pipe 0.18%
gee -0.71%  Kernel 2p/0K -2.44% AF UNIX -0.30%
mcf -1.12%  PostMark  0.92% 2p/16K 0.00% File Reread -0.38%
gobmk 0.00% 1-Zip 1.18% 2p/64K 2.00% Mmap reread 0.00%
hmmer 023%  OpenSSL  -0.22% 8p/16K -1.73% Bcopy (libc) 0.08%
sjeng 0.19% PyBench -0.59% 8p/64K 0.00% Bcopy (hand) 0.34%
libquantum -1.63%  Apache -0.21% 16p/16K -1.33% Mem read 0.00%
h264ref 0.00%  PHPBench  0.35% 16p/64K 0.99% Mem write 0.43%
omnetpp -0.28% stream 1.96% Mean -0,36% Mean 0.04%
astar 045%  ramspeed 0.00% File & Memory Latency:

xalan -0.14% cachebench  0.05% VM Latency: LS 0.00%
milc -1.79% Mean 0.27% OK File Create 0.27% 123 0.00%
namd -1.82% OK File Delete 0.89% Main mem 2.09%
dealll 0.00% 10K File Create  -0.35% Rand mem 1.66%
soplex 0.00% 10K File Delete  0.47% Mean 0.11%
povray -0.46% Mmap Latency -1.81%

Ibm -1.12% Mean -0,12%

sphinx3 -0.58%

Mean -0.49%

Table 4: The benchmarking results for SPEC CPU2006, Phoronix, and LMBench3 indicate that CATT induce no
measurable performance overhead. In some cases we observed negative overhead, hence, performance improvements.

However, we attribute such results to measuring inaccuracy.

7.2 Memory Overhead

CATT prevents the operating system from allocating cer-
tain physical memory.

The memory overhead of CATT is constant and de-
pends solely on number of memory rows per bank. Per
bank, CATT omits one row to provide isolation between
the security domains. Hence, the memory overhead is
1 /#rows (#rows being rows per bank). While the number
of rows per bank is dependent on the system architecture,
it is commonly in the order of 215 rows per bank, i.e., the
overhead is 275 = 0,003% [

7.3 Robustness

Our mitigation restricts the operating system’s access to
the physical memory. To ensure that this has no effect on
the overall stability, we performed numerous stress tests
with the help of the Linux Test Project (LTP) [[13]]. These

12 https://lackingrhoticity.blogspot .de/2015/
05/ how-physical — addresses-—map—to - rows — and -
banks.html

tests are designed to stress the operating system to iden-
tify problems. We first run these tests on a vanilla Debian
8.2 installation to receive a baseline for the evaluation of
CATT. We summarize our results in Table 5] and report
no deviations for our mitigation compared to the base-
line. Further, we also did not encounter any problems
during the execution of the other benchmarks. Thus, we
conclude that CATT does not affect the stability of the
protected system.

8 Discussion

Our prototype implementation targets Linux-based sys-
tems. Linux is open-source allowing us to implement
our defense. Further, all publicly available rowhammer
attacks target this operating system. CATT can be easily
ported to memory allocators deployed in other operating
systems. In this section, we discuss in detail the gener-
ality of our software-based defense against rowhammer.
For a detailed discussion of possible extensions and ad-
ditional policies we refer to our technical report [S]].

126 26th USENIX Security Symposium

USENIX Association


https://lackingrhoticity.blogspot.de/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://lackingrhoticity.blogspot.de/2015/05/how-physical-addresses-map-to-rows-and-banks.html
https://lackingrhoticity.blogspot.de/2015/05/how-physical-addresses-map-to-rows-and-banks.html

Linux Test Project Vanilla CATT
clone v v
ftruncate v v
pretl v 4
ptrace v v
rename v v
sched_prio_max v v
sched_prio_min v v
mmstress v v
shmt X X
vhangup X X
ioctl X X

Table 5: Result for individual stress tests from the Linux
Test Project.

8.1 Applying CATT to Mobile Systems

The rowhammer attack is not limited to x86-based sys-
tems, but has been recently shown to also affect the ARM
platform [24]. The ARM architecture is predominant
in mobile systems, and used in many smartphones and
tablets. As CATT is not dependent on any x86 specific
properties, it can be easily adapted for ARM based sys-
tems. We demonstrate this by applying our extended
physical memory allocator to the Android kernel for
Nexus devices in version 4.4. Since there are no major
deviations in the implementation of the physical page al-
locator of the kernel between Android and stock Linux
kernel, we did not encounter any obstacles during the
port.

8.2 Single-sided Rowhammer Attacks

From our detailed description in Section@one can easily
follow that our proposed solution can defeat all known
rowhammer-based privilege escalation attacks in gen-
eral, and single-sided rowhammer attacks [24] in partic-
ular. In contrast to double-sided rowhammer attacks (see
Figure [2)), single-sided rowhammer attacks relax the ad-
versary’s capabilities by requiring that the attacker has
control over only one row adjacent to the victim memory
row. As described in more detail in Section[d}, CATT iso-
lates different security domains in the physical memory.
In particular, it ensures that different security domains
are separated by at least one buffer row that is never used
by the system. This means that the single-sided rowham-
mer adversary can only flip bits in own memory (that it
already controls), or flip bits in buffer rows.

8.3 Benchmarks Selection

We selected our benchmarks to be comparable to the re-
lated literature. Moreover, we have done evaluations that
go beyond those in the existing work to provide addi-
tional insight. Hereby, we considered different evalua-
tion aspects: We executed SPEC CPU2006 to verify that
our changes to the operating system impose no overhead
of user-mode applications. Further, SPEC CPU2006 is
the most common benchmark in the field of memory-
corruption defenses, hence, our solutions can be com-
pared to the related work. LMBench3 is specifically
designed to evaluate the performance of common sys-
tem operations, and used by the Linux kernel developers
to test whether changes to the kernel affect the perfor-
mance. As such LMBench3 includes many tests. For
our evaluation, we included those benchmarks that per-
form memory operations and are relevant for our de-
fense. Finally, we selected a number of common applica-
tions from the Phoronix test suite as macro benchmarks,
as well as the pts/memory tests which are designed to
measure the RAM and cache performance. For all our
benchmarks, we did not observe any measurable over-
head (see Table [4)).

8.4 Vicinity-less Rowhammering

All previous Rowhammer attacks exploit rows which are
physically co-located [4,[7}, 120, 24]. However, while Kim
et al. [L1] suggested that physical adjacency accounts for
the majority of possible bit flips, they also noted that
this was not always the case. More specifically, they at-
tributed potential aggressor rows with a greater row dis-
tance to the re-mapping of faulty rows: DRAM manu-
facturers typically equip their modules with around 2%
of spare rows, which can be used to physically replace
failing rows by re-mapping them to a spare row [23]].
This means, that physically adjacent spare rows can be
assigned to arbitrary row indices, potentially undermin-
ing our isolation policy. For this, an adversary requires a
way of determining pairs of defunct rows, which are re-
mapped to physically adjacent spare rows. We note that
such a methodology can also be used to adjust our policy
implementation, e.g., by disallowing any spare rows to
be assigned to kernel allocations. Hence, re-mapping of
rows does not affect the security guarantees provided by
CATT.

9 Related Work

In this section, we provide an overview of existing
rowhammer attack techniques, their evolution, and pro-
posed defenses. Thereafter, we discuss the shortcomings

USENIX Association

26th USENIX Security Symposium 127



of existing work on mitigating rowhammer attacks and
compare them to our software-based defense.

9.1 Rowhammer Attacks

Kim et al. [11] were the first to conduct experiments and
analyze the effect of bit flipping due to repeated mem-
ory reads. They found that this vulnerability can be
exploited on Intel and AMD-based systems. Their re-
sults show that over 85% of the analyzed DRAM mod-
ules are vulnerable. The authors highlight the impact on
memory isolation, but they do not provide any practi-
cal attack. Seaborn and Dullien [20] published the first
practical rowhammer-based privilege-escalation attacks
using the x86 clflush instruction. In their first at-
tack, they use rowhammer to escape the Native Client
(NaCl) [27]] sandbox. NaCl aims to safely execute na-
tive applications by 3rd-party developers in the browser.
Using rowhammer malicious developers can escape the
sandbox, and achieve remote code execution on the tar-
get system. With their second attack, Seaborn and Dul-
lien utilize rowhammer to compromise the kernel from
an unprivileged user-mode application. Combined with
the first attack, the attacker can remotely compromise
the kernel without exploiting any software vulnerabili-
ties. To compromise the kernel, the attacker first fills
the physical memory with page-table entries by allocat-
ing a large amount of memory. Next, the attacker uses
rowhammer to flip a bit in memory. Since the physical
memory is filled with page-table entries, there is a high
probability that an individual page-table entry is mod-
ified by the bit flip in a way that enables the attacker
to access other page-table entries, modify arbitrary (ker-
nel) memory, and eventually completely compromise the
system. Qiao and Seaborn [17] implemented a rowham-
mer attack with the x86 movnti instruction. Since the
memcpy function of 1ibc — which is linked to nearly
all C programs — utilizes the movnt i instruction, the at-
tacker can exploit the rowhammer bug with code-reuse
attack techniques [21]]. Hence, the attacker is not re-
quired to inject her own code but can reuse existing code
to conduct the attack. Aweke et al. [3] showed how to
execute the rowhammer attack without using any spe-
cial instruction (e.g., c1f1lush and movnti). The au-
thors use a specific memory-access pattern that forces
the CPU to evict certain cache sets in a fast and reliable
way. They also concluded that a higher refresh rate for
the memory would not stop rowhammer attacks. Gruss
et al. [7]] demonstrated that rowhammer can be launched
from JavaScript. Specifically, they were able to launch
an attack against the page tables in a recent Firefox ver-
sion. Similar to Seaborn and Dullien’s exploit this attack
is mitigated by CATT. Later, Bosman et al. [4] extended
this work by exploiting the memory deduplication fea-

ture of Windows 10 to create counterfeit JavaScript ob-
jects, and corrupting these objects through rowhammer
to gain arbitrary read/write access within the browser. In
their follow-up work, Razavi et al. [18] applied the same
attack technique to compromise cryptographic (private)
keys of co-located virtual machines. Concurrently, Xiao
et al. [20] presented another cross virtual machine attack
where they use rowhammer to manipulate page-table en-
tries of Xen. Further, they presented a methodology to
automatically reverse engineer the relationship between
physical addresses and rows and banks. Independently,
Pessl et al. [15] also presented a methodology to reverse
engineer this relationship. Based on their findings, they
demonstrated cross-CPU rowhammer attacks, and prac-
tical attacks on DDR4. Van der Veen et al. [24] recently
demonstrated how to adapt the rowhammer exploit to es-
calate privileges in Android on smartphones. Since the
authors use the same exploitation strategy of Seaborn
and Dullien, CATT can successfully prevent this privi-
lege escalation attack. While the authors conclude that
it is challenging to mitigate rowhammer in software, we
present a viable implementation that can mitigate practi-
cal user-land privilege escalation rowhammer attacks.

Note that all these attacks require memory belonging
to a higher-privileged domain (e.g., kernel) to be phys-
ically co-located to memory that is under the attacker’s
control. Since our defense prevents direct co-location,
we mitigate these rowhammer attacks.

9.2 Defenses against Rowhammer

Kim et al. [11] present a number of possible mitigation
strategies. Most of their solutions involve changes to
the hardware, i.e., improved chips, refreshing rows more
frequently, or error-correcting code memory. However,
these solutions are not very practical: the production
of improved chips requires an improved design, and a
new manufacturing process which would be costly, and
hence, is unlikely to be implemented. The idea behind
refreshing the rows more frequently (every 32ms instead
of 64ms) is that the attacker needs to hammer rows many
times to destabilize an adjacent memory cell which even-
tually causes the bit flip. Hence, refreshing (stabilizing)
rows more frequently could prevent attacks because the
attacker would not have enough time to destabilize indi-
vidual memory cells. Nevertheless, Aweke et al. [3]] were
able to conduct a rowhammer attack within 32ms. There-
fore, a higher refresh rate alone cannot be considered as
an effective countermeasure against rowhammer. Error-
correcting code (ECC) memory is able to detect and cor-
rect single-bit errors. As observed by Kim et al. [11]
rowhammer can induce multiple bit flips which cannot
be detected by ECC memory. Further, ECC memory has
an additional space overhead of around 12% and is more

128 26th USENIX Security Symposium

USENIX Association



expensive than usual DRAM, therefore it is rarely used.

Kim et al. [11] suggest to use probabilistic adjacent
row activation (PARA) to mitigate rowhammer attacks.
As the name suggests, reading from a row will trigger
an activation of adjacent rows with a low probability.
During the attack, the malicious rows are activated many
times. Hence, with high probability the victim row gets
refreshed (stabilized) during the attack. The main advan-
tage of this approach is its low performance overhead.
However, it requires changes to the memory controller.
Thus, PARA is not suited to protect legacy systems.

To the best of our knowledge Aweke et al. [3] pro-
posed the only other software-based mitigation against
rowhammer. Their mitigation, coined ANVIL, uses per-
formance counters to detect high cache-eviction rates
which serves as an indicator of rowhammer attacks [3l].
However, this defense strategy has three disadvantages:
(1) it requires the CPU to feature performance coun-
ters. In contrast, our defense does not rely on any spe-
cial hardware features. (2) ANVIL’s worst-case run-
time overhead for SPEC CPU2006 is 8%, whereas our
worst-case overhead is 0.29% (see Table [d). (3) ANVIL
is a heuristic-based approach. Hence, it naturally suf-
fers from false positives (although the FP rate is below
1% on average). In contrast, we provide a determinis-
tic approach that is guaranteed to stop rowhammer-based
kernel-privilege escalation attacks.

10 Conclusion

Rowhammer is a hardware fault, triggered by software,
allowing the attacker to flip bits in physical memory
and undermine CPU-enforced memory access control.
Recently, researchers have demonstrated the power and
consequences of rowhammer attacks by breaking the iso-
lation between virtual machines, user and kernel mode,
and even enabling traditional memory-corruption attacks
in the browser. In particular, rowhammer attacks that
undermine the separation of user and kernel mode are
highly practical and critical for end-user systems and de-
vices.

Contrary to the common belief that rowhammer re-
quires hardware changes, we show the first defense strat-
egy that is purely based on software. CATT is a practical
mitigation that tolerates rowhammer attacks by dividing
the physical memory into security domains, and limiting
rowhammer-induced bit flips to the attacker-controlled
security domain. To this end, we implemented a mod-
ified memory allocator that strictly separates memory
rows of user and kernel mode. Our detailed evaluation
of CATT demonstrates that our defense mechanism pre-
vents all known rowhammer-based kernel privilege esca-
lation attacks while neither affecting the run-time perfor-
mance nor the stability of the system.

Acknowledgment

The authors thank Simon Schmitt for sacrificing his per-
sonal laptop to the cause of science, and Victor van der
Veen, Daniel Gruss and Kevin Borgolte for their feed-
back.

This work was supported in part by the German Sci-
ence Foundation (project P3, CRC 1119 CROSSING),
the European Union’s Horizon 2020 Research and In-
novation Programme under grant agreement No. 643964
(SUPERCLOUD), the Intel Collaborative Research In-
stitute for Secure Computing (ICRI-SC), and the Ger-
man Federal Ministry of Education and Research within
CRISP.

References

[1] AMD. Intel 64 and IA-32 architectures software de-
veloper’s manual - Chapter 15 Secure Virtual Machine
nested paging. http : / / developer . amd . com /
resources/documentation-articles/developer—
guides—-manuals, 2012.

[2] 1. AMD. /O virtualization technology (IOMMU) specification.
AMD Pub, 34434, 2007.

[3] Z.B. Aweke, S. F. Yitbarek, R. Qiao, R. Das, M. Hicks, Y. Oren,
and T. Austin. Anvil: Software-based protection against next-
generation rowhammer attacks. In 27st International Conference
on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS, 2016.

[4] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup est
machina: Memory deduplication as an advanced exploitation
vector. In 37th IEEE Symposium on Security and Privacy, S&P,
2016.

[5] F. Brasser, L. Davi, D. Gens, C. Liebchen, and A.-R. Sadeghi.
CAn’t Touch This: Practical and Generic Software-only De-
fenses Against Rowhammer Attacks. | https://arxiv.
org/abs/1611.08396),2016. arXiv:1611.08396 [cs.CR].

[6] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, C. Liebchen,
M. Negro, M. Qunaibit, and A.-R. Sadeghi. Losing control: On
the effectiveness of control-flow integrity under stack attacks. In
ACM SIGSAC Conference on Computer and Communications Se-
curity, CCS, 2015.

[7] D. Gruss, C. Maurice, and S. Mangard. Rowhammer.js: A cache
attack to induce hardware faults from a website. In 13th Confer-
ence on Detection of Intrusions and Malware and Vulnerability
Assessment, DIMVA, 2016.

[8] J. L. Henning. SPEC CPU2006 memory footprint. SIGARCH
Computer Architecture News, 35, 2007.

[9] Intel. Intel 64 and IA-32 architectures software devel-
oper’s manual - Chapter 28 VMX support for address
translation. http://www. intel . com/content /
dam / www / public /us /en/documents /manuals /
64-1a-32—-architectures-software-developer—
manual-325462.pdf.

[10] Intel. Intel 64 and IA-32 architectures software devel-
oper’s manual. http://www-ssl. intel.com/
content/www/us/en/processors/architectures—
software-developer—-manuals.html, 2015.

USENIX Association

26th USENIX Security Symposium 129


http://developer.amd.com/resources/documentation-articles/developer-guides-manuals
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals
http://developer.amd.com/resources/documentation-articles/developer-guides-manuals
https://arxiv.org/abs/1611.08396
https://arxiv.org/abs/1611.08396
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www-ssl.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilker-
son, K. Lai, and O. Mutlu. Flipping bits in memory without ac-
cessing them: An experimental study of dram disturbance errors.
In 41st Annual International Symposium on Computer Architec-
ture, ISCA, 2014.

M. Lanteigne. How rowhammer could be used to exploit weak-
nesses in computer hardware. | https://www.thirdio.
com/rowhammer .pdf, 2016.

LTP developer. The linux test project.
test-project.github.io/} 2016.

https://linux—

L. McVoy and C. Staelin. Lmbench: Portable tools for perfor-
mance analysis. In USENIX Technical Conference, ATEC, 1996.

P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard.
Drama: Exploiting dram addressing for cross-cpu attacks. In 25th
USENIX Security Symposium, USENIX Sec, 2016.

Phoronix. Phoronix test suite.
test-suite.com/, 2016.

http://www.phoronix-—

R. Qiao and M. Seaborn. A new approach for rowhammer at-
tacks. In IEEE International Symposium on Hardware Oriented
Security and Trust, HOST, 2016.

K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Giuffrida, and
H. Bos. Flip feng shui: Hammering a needle in the software
stack. In 25th USENIX Security Symposium, USENIX Sec, 2016.

F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi,
and T. Holz. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications.
In 36th IEEE Symposium on Security and Privacy, S&P, 2015.

M. Seaborn and T. Dullien. Exploiting the dram
rowhammer bug to gain kernel privileges. https :
/ / googleprojectzero . blogspot .de/ 2015/ 03/

[21]

[22]

[23]

[24]

[25]

[26]

[27]

exploiting-dram-rowhammer—-bug-to—-gain.html,
2016.

H. Shacham. The geometry of innocent flesh on the bone: return-
into-libc without function calls (on the x86). In ACM SIGSAC
Conference on Computer and Communications Security, CCS,
2007.

K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen,
and A. Sadeghi. Just-in-time code reuse: On the effectiveness of
fine-grained address space layout randomization. In 34th IEEE
Symposium on Security and Privacy, S&P, 2013.

A. J. Van De Goor and I. Schanstra. Address and data scram-
bling: Causes and impact on memory tests. In The First IEEE
International Workshop on Electronic Design, Test and Applica-
tions, DELTA, 2002.

V. van der Veen, Y. Fratantonio, M. Lindorfer, D. Gruss, C. Mau-
rice, G. Vigna, H. Bos, K. Razavi, and C. Giuffrida. Dram-
mer: Deterministic rowhammer attacks on commodity mobile
platforms. In ACM SIGSAC Conference on Computer and Com-
munications Security, CCS, 2016.

W. A. Wulf and S. A. McKee. Hitting the memory wall: impli-
cations of the obvious. ACM SIGARCH computer architecture
news, 23(1):20-24, 1995.

Y. Xiao, X. Zhang, Y. Zhang, and M.-R. Teodorescu. One bit
flips, one cloud flops: Cross-vm row hammer attacks and privi-
lege escalation. In 25th USENIX Security Symposium, USENIX
Sec, 2016.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar. Native client: A sandbox
for portable, untrusted x86 native code. In 30th IEEE Symposium
on Security and Privacy, S&P, 2009.

130 26th USENIX Security Symposium

USENIX Association


https://www.thirdio.com/rowhammer.pdf
https://www.thirdio.com/rowhammer.pdf
https://linux-test-project.github.io/
https://linux-test-project.github.io/
http://www.phoronix-test-suite.com/
http://www.phoronix-test-suite.com/
https://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html
https://googleprojectzero.blogspot.de/2015/03/exploiting-dram-rowhammer-bug-to-gain.html

Efficient Protection of Path-Sensitive Control Security

Ren Ding” Chenxiong Qian” Chengyu Song William Harris Taesoo Kim
Georgia Tech Georgia Tech UC Riverside Georgia Tech Georgia Tech
Wenke Lee

Georgia Tech

* Equal contribution joint first authors

Abstract

Control-Flow Integrity (CFI), as a means to prevent
control-flow hijacking attacks, enforces that each instruc-
tion transfers control to an address in a set of valid targets.
The security guarantee of CFI thus depends on the defi-
nition of valid targets, which conventionally are defined
as the result of a static analysis. Unfortunately, previous
research has demonstrated that such a definition, and thus
any implementation that enforces it, still allows practical
control-flow attacks.

In this work, we present a path-sensitive variation of
CFI that utilizes runtime path-sensitive point-to analysis
to compute the legitimate control transfer targets. We
have designed and implemented a runtime environment,
PITTYPAT, that enforces path-sensitive CFI efficiently by
combining commodity, low-overhead hardware monitor-
ing and a novel runtime points-to analysis. Our formal
analysis and empirical evaluation demonstrate that, com-
pared to CFI based on static analysis, PITTYPAT ensures
that applications satisfy stronger security guarantees, with
acceptable overhead for security-critical contexts.

1 Introduction

Attacks that compromise the control-flow of a program,
such as return-oriented programming [33], have criti-
cal consequences for the security of a computer system.
Control-Flow Integrity (CFI) [1] has been proposed as a
restriction on the control-flow transfers that a program
should be allowed to take at runtime, with the goals of
both ruling out control-flow hijacking attacks and being
enforced efficiently.

A CFI implementation can be modeled as program
rewriter that (1) before a target program P is executed, de-
termines feasible targets for each indirect control transfer
location in P, typically done by performing an analysis
that computes a sound over-approximation of the set of
all memory cells that may be stored in each code pointer

(i.e., a static points-to analysis [2, 34]). The rewriter then
(2) rewrites P to check at runtime before performing each
indirect control transfer that the target is allowed by the
static analysis performed in step (1).

A significant body of work [1, 21, 41] has introduced
approaches to implement step (2) for a variety of exe-
cution platforms and perform it more efficiently. Unfor-
tunately, the end-to-end security guarantees of such ap-
proaches are founded on the assumption that if an attacker
can only cause a program to execute control branches
determined to be feasible by step (1), then critical appli-
cation security will be preserved. However, recent work
has introduced new attacks that demonstrate that such an
assumption does not hold in practice [5, 12, 32]. The lim-
itations of existing CFI solutions in blocking such attacks
are inherent to any defense that uses static points-to infor-
mation computed per control location in a program. Cur-
rently, if a developer wants to ensure that a program only
chooses valid control targets, they must resort to ensure
that the program satisfies data integrity, a significantly
stronger property whose enforcement typically incurs pro-
hibitively large overhead and/or has deployment issues,
such as requiring the protected program being recompiled
together with all dependent libraries and cannot be ap-
plied to programs that perform particular combinations of
memory operations [17, 22-24].

In this work, we propose a novel, path-sensitive vari-
ation of CFI that is stronger than conventional CFI (i.e.,
CFI that relies on static points-to analysis). A program
satisfies path-sensitive CFI if each control transfer taken
by the program is consistent with the program’s entire
executed control path. Path-sensitive CFI is a stronger
security property than conventional CFI, both in principle
and in practice. However, because it does not place any
requirements on the correctness of data operations, which
happen much more frequently, it can be enforced much
more efficiently than data integrity. To demonstrate this,
we present a runtime environment, named PITTYPAT, that
enforces path-sensitive efficiently using a combination of

USENIX Association

26th USENIX Security Symposium 131



commodity, low-overhead hardware-based monitoring
and a new runtime points-to analysis.

PITTYPAT addressed two key challenges in building an
efficient path-sensitive CFI solution. The first challenge
is how to efficiently collect the path information about a
program’s execution so as to perform the analysis and de-
termine if the program has taken only valid control targets.
Collecting such information is not straightforward for dy-
namic analysis. An approach that maintains information
inside the same process address space of the monitored
program (e.g., [17]) must carefully protect the informa-
tion; otherwise it would be vulnerable to attacks [11]. On
the other hand, an approach that maintains information in
a separate process address space must efficiently replicate
genuine and sufficient data from the monitored program.

The second key challenge is how to use collected infor-
mation to precisely and efficiently compute the points-to
relationship. Niu et al. [26] have proposed leveraging
execution history to dynamically activate control transfer
targets. However, since the activation is still performed
over the statically computed control-flow graph, its accu-
racy can degrade to the same as pure static-analysis-based
approach. We compare PITTYPAT to such approaches in
detail in $6.

PITTYPAT applies two key techniques in addressing
these two challenges. First, PITTYPAT uses an event-
driven kernel module that collects all chosen control-
transfer targets from the Processor Tracing (PT) feature
available on recent Intel processors [31]. PT is a hardware
feature that efficiently records conditional and indirect
branches taken by a program. While PT was originally in-
troduced to enable detailed debugging through complete
tracing, our work demonstrates that it can also be ap-
plied as an effective tool for performing precise, efficient
program analysis for security.

The second technique is an abstract-interpretation-
based incremental points-to analysis. Our analysis embod-
ies two key innovations. First, raw PT trace is highly com-
pressed (see §3 for details). As a result, reconstructing the
control-flow (i.e., source address to destination address)
itself is time consuming and previous work has utilized
multiple threads to reduce the decoding latency [13]. Our
insight to solve this problem is to sync up our analysis
with the execution, so that our analysis only needs to
know what basic blocks being executed, not the control
transfer history. Therefore, we can directly map the PT
trace to basic blocks using the control-flow graph (CFG).
The second optimization is based on the observation that
static points-to analyses collect and solve a system of
constraints over all pairs of pointer variables in the pro-
gram [2, 15]. While this approach has good throughput,
it introduces unacceptable latency for online analysis. At
the same time, to enforce CFI, we only need to know the
points-to information of code pointers. Based on this ob-

servation, our analysis eagerly evaluates control relevant
points-to constraints as they are generated.

We implemented PITTYPAT as an instrumenting com-
piler for the LLVM compiler [20] and a tool for Linux;
the instrumenting compiler is an artifact of the current
version of our prototype: PITTYPAT does not fundamen-
tally rely on the ability to compile and instrument a target
program. To evaluate PITTYPAT, we used it to enforce
path-sensitive CFI for a set of security benchmarks devel-
oped in independent work. The results demonstrate that
PITTYPAT can detect recent attacks on the control flow
of benign benchmarks [5], as well as subversion of con-
trol flow in programs explicitly crafted to contain control
vulnerabilities that are difficult to detect [12, 32]. In com-
mon cases where CFI allows a program to choose from
tens of control transfer targets, PITTYPAT typically deter-
mines that only a single target is valid, based on the pro-
gram’s executed control path. On even compute-intensive
benchmarks, PITTYPAT incurs reasonable performance
overhead: a geometric mean of 12.73% over all SPEC
CPU2006 benchmarks, whereas techniques that enforce
data integrity incur 122.60%.

The rest of this paper is organized as follows. In §2,
we illustrate PITTYPAT by example. In §3, we review
previous work on which PITTYPAT is based. In §4, we
present the security guarantees that PITTYPAT establishes,
and describe the design of PITTYPAT. In §5, we describe
the implementation of PITTYPAT in detail. In §6, we
present an empirical evaluation of PITTYPAT. In §7, we
compare PITTYPAT to related work. In §8, we conclude
our work.

2  Overview

In this section, we present PITTYPAT by introducing a
running example. In §2.1, we present a program dispatch
that contains a control-flow vulnerability. In §2.2, we
use dispatch to illustrate that any defense that enforces
conventional CFI allows effective attacks on control-flow.
In §2.3, we illustrate that path-sensitive CFI enforced by
PITTYPAT does not allow the attack introduced in §2.2. In
§2.4, we illustrate how PITTYPAT enforces path-sensitive
CFL

2.1 Subverting control flow

Figure 1 contains a C program, named dispatch, that
we will use to illustrate PITTYPAT. dispatch declares a
pointer handler (line L7) to a function that takes an argu-
ment of a struct request (defined at line L1-L4), which
has two fields: auth_user represents a user’s identity, and
args stores the arguments. dispatch contains a loop (line
L16-L23) that continuously accepts requests from users,

132 26th USENIX Security Symposium

USENIX Association



struct request {
int auth_user;

char args[100];
};

1
2
3
4
5
6 void dispatch() {

7 void (*handler) (struct request *) = 0;
8§ struct request req;

9

10 while(1) {

11 // parse the next request

12 parse_request(&req);

13 if (req.auth_user == ADMIN) {
14 handler = priv;

15 } else {

16 handler = unpriv;

17 // NOTE. buffer overflow, which can overwrite
18 // the handler variable

19 strip_args(req.args);

20 }

21 // invoke the hanlder

22 handler(&req);

23}

24}

Figure 1: A motivating example that illustrates the advan-
tages of control-path validity.

and calls parse_request (line 12) to parse the next re-
quest. If the request is an administrator (line L13), the
function pointer handler will be assigned with priv. Oth-
erwise, handler is assigned to unpriv (line L16), and
dispatch will call strip_args (line L19) to strip the re-
quest’s arguments. At last, dispatch calls handler to
perform relevant behaviors.

However, the procedure strip_args contains a buffer-
overflow vulnerability, which allows an attacker with con-
trol over input to strip_args to potentially subvert the
control flow of a run of dispatch by using well-known
techniques [28]. In particular, the attacker can provide
inputs that overwrite memory outside of the fixed-size
buffer pointed to by req.args in order to overwrite the
address stored in handler to be the address of a function
of their choosing, such as execve.

2.2 Limitations of existing CFI

Protecting dispatch so that it satisfies conventional
control-flow integrity (CFI) [1] does not provide strong
end-to-end security guarantees. An implementation of
CFI attempts to protect a given program P in two steps. In
the first step, the CFI implementation computes possible
targets of each indirect control transfer in P by running
a flow-sensitive points-to analysisl [2, 15, 34]. Such an
approach, when protecting dispatch, would determine
that when the execution reaches each of the following
control locations L, the variable handler may store the

ISome implementations of CFI [25, 41, 42] use a type-based alias
analysis to compute valid targets, but such approaches are even less
precise.

following addresses p(L):

p(L7) ={0}
p(L16) ={unpriv}

p(L14) ={priv})
p(L22) ={priv,unpriv}

While flow-sensitive points-to analysis may implement
various algorithms, the key property of each such analy-
sis is that it computes points-to information per control
location. If there is any run of the program that may reach
control location L with a pointer variable p storing a par-
ticular address a, then the result of the points-to analysis
must reflect that p may point to a at L. In the case of
dispatch, any flow-sensitive points-to analysis can only
determine that at line L22, handler may point to either
priv or unpriv.

After computing points-to sets p for program P, the
second step of a CFI implementation rewrites P so that at
each indirect control-transfer instruction in each run, the
rewritten P can only transfer control to a control location
that is a points-to target in the target register according
to p. Various implementations have been proposed for
encoding points-to sets and validating control transfers
efficiently [1, 9, 41].

However, all such schemes are fundamentally limited
by the fact that they can only validate if a transfer target
is allowed by checking its membership in a flow-sensitive
points-to set, computed per control location. dispatch
and the points-to sets p illustrate a case in which any
such scheme must allow an attacker to subvert control
flow. In particular, an attacker can send a request with
the identity of anonymous user. When dispatch accepts
such a request, it will store unpriv in handler, and then
strip the arguments. The attacker can provide arguments
crafted to overwrite handler to store priv, and allow
execution to continue. When dispatch calls the function
stored in handler (line L22), it will attempt to transfer
control to priv, a member of the points-to set for L22.
Thus, dispatch rewritten to enforce CFI must allow the
call. Let the sequence of key control locations visited in
the above attack be denoted py = [L7,L16,L22].

Although PathArmor [37] enforces context-sensitive
CFI by inspecting the history of branches taken at run-
time before allowing the monitored execution to perform a
security-sensitive operation, it decides to allow execution
to continue if the path contains a sequence of control trans-
fers that are feasible according to a static, flow-sensitive
points-to analysis computed before the program is run.
As a result, PathArmor is susceptible to a similar attack.

Per-input CFI (denoted 7-CFI) [26] avoids some of the
vulnerabilities in CFI inherent to its use of flow-sensitive
points-to sets, such as the vulnerability described above
for dispatch. m-CFI updates the set of valid targets of
control transfers of each instruction dynamically, based
on operations performed during the current program ex-
ecution. For example, 7-CFI only allows a program to

USENIX Association

26th USENIX Security Symposium 133



perform an indirect call to a function whose address was
taken during an earlier program operation. In particular, if
dispatch were rewritten to enforce 7-CFI, then it would
block the attack described above: in the execution of 7-
CFI described, the only instruction that takes the address
of handler (line L14) is never executed, but the indirect
call at L22 uses priv as the target of an indirect call.

However, in order for 7-CFI to enforce per-input CFI
efficiently, it updates valid points-to targets dynamically
using simple, approximate heuristics, rather than a precise
program analysis that accurately models the semantics of
instructions executed. For example, if a function f ap-
pears in the static points-to set of a given control location
L and has its address taken at any point in an execution,
then f remains in the points-to set of L for the rest of
the execution, even if f is no longer a valid target as the
result of program operations executed later. In the case of
dispatch, once dispatch takes the address of priv, priv
remains in the points-to set of control location L22 for the
remainder of the execution.

An attacker can thus subvert the control flow of
dispatch rewritten to enforce 7-CFI by performing the
following steps. (1) An administrator sends a request,
which causes dispatch to store priv in handler, call it,
and complete an iteration of its loop. (2) The attacker
sends an anonymous request, which causes dispatch to
set unpriv in handler. (3) The attacker provides argu-
ments that, when handled by strip_args, overwrite the
address in handler to be priv, which causes dispatch to
call priv with arguments provided by the attacker.

Because priv will be enabled as a control target as
a result of the operations performed in step (1), priv
will be a valid transfer target at line L22 in step (3).
Thus, the attacker will successfully subvert control flow.
Let the key control locations in the control path along
which the above attack is performed be denoted p; =
[L7,L14,122,L16,L22].

2.3 Path-sensitive CFI

In this paper, we introduce a path-sensitive version of
CFI that addresses the limitations of conventional CFI
illustrated in §2.2. A program satisfies path-sensitive
CFI if at each indirect control transfer, the program only
transfers control to an instruction address that is in the
points-to set of the target register according to a points-to
analysis of the whole executed control path.

dispatch rewritten to satisfy path-sensitive CFI would
successfully detect the attacks given in §2.2 on existing
CFI. One collection of valid points-to sets for handler
for each control location in subpath pg (§2.2) are the
following:

(L7,{0}), (16, {unpriv}), (L22, {unpriv})

R
IR Data s
Point-To
Table

update

fpl | f1
Analyzer fp2 | f2
4 query | ..
'@intercept f !
[ write l@notif
I@restore \ Owait! © Y
o T
0S------- {oriver =22 |
Tdump trace
[cpU [e1] |

Figure 2: The architecture of PITTYPAT. P denotes a
target program. The analyzer and driver modules of
PITTYPAT are described in §2.4.

When execution reaches L22, priv is not in the points-to
set of handler, and the program halts.

Furthermore, dispatch rewritten to satisfy path-
sensitive CFI would block the attack given in §2.2 on
7-CFI. One collection of valid points-to sets for handler
for each control location in subpath p; are the following:

(L7,{0})

(L16, {unpriv})

(L14,{priv}) (LZZ,{priv})

(L22, {unpriv})

When execution reaches L22 in the second iteration of
the loop in dispatch, priv is not in the points-to set of
handler, and the program determines that the control-
flow has been subverted.

2.4 Enforcing path-sensitive CFI efficiently

The points-to sets for control paths considered in §2.3
illustrate that if a program can be rewritten to satisfy path-
sensitive CFI, it can potentially satisfy a strong security
guarantee. However, ensuring that a program satisfies
path-sensitive CFI is non-trivial, because the program
must be extended to dynamically compute the results
of sophisticated semantic constraints [2] over the exact
control path that it has executed.

A key contribution of our work is the design of a run-
time environment, PITTYPAT, that enforces path-sensitive
CFI efficiently. PITTYPAT’s architecture is depicted in
Figure 2. For program P, the state and code of PITTYPAT
consist of the following modules, which execute concur-
rently: (1) a user-space process in which P executes, (2)
a user-space analysis module that maintains points-to in-
formation for the control-path executed by P, and (3) a
kernel-space driver that sends control branches taken by
P to the analyzer and validates system calls invoked by P
using the analyzer’s results.

Before a program P is monitored, the analysis mod-
ule is given (1) an intermediate representation of P and
(2) meta data including a map from each instruction ad-
dress in the binary representation of P to the instruction
in the intermediate representation of P. We believe that it
would also be feasible to implement PITTYPAT to protect

134 26th USENIX Security Symposium

USENIX Association



a program given only as a binary, given that the analyzer
module only must perform points-to analysis on the se-
quence of executed instructions, as opposed to inferring
the program’s complete control-flow graph.

As P executes a sequence of binary instructions, the
driver module copies the targets of control branches taken
by P from PT’s storage to a ring buffer shared with the
analyzer. PT’s storage is privileged: it can only be written
by hardware and flushed by privileged code, and cannot
be tampered with by P or any other malicious user-space
process. The analyzer module reads taken branches from
the ring buffer, uses them to reconstruct the sequence
of IR instructions executed by P since the last branch
received, and updates the points-to information in a table
that it maintains for P’s current state by running a points-
to analysis on the reconstructed sequence.

When P invokes a system call, the driver first intercepts
P (@), while waiting for the analyzer module to determine
in parallel if P has taken a valid sequence of control targets
over the entire execution up to the current invocation (&
and ©). The analyzer validates the invocation only if P has
taken a valid sequence, and the driver allows execution of
P to continue only if the invocation is validated (@).

There are two key challenges we must address to make
PITTYPAT efficient. First, trace information generated
by PT is highly compressed; e.g., for each conditional
branch that a program executes, PT provides only a sin-
gle bit denoting the value of the condition tested in the
branch. Therefore additional post-processing is necessary
to recover transfer targets from such information. The ap-
proach used by the perf tool of Linux is to parse the next
branch instruction, extract the offset information, then
calculate the target by adding the offset (if the branch is
taken) or the length of instruction (if branch is not taken).
However, because parsing x86 instructions is non-trivial,
such an approach is too slow to reconstruct a path online.

Our insight to solve this problem is that, to reconstruct
the executed path, an analysis only needs to know the
basic blocks executed. We have applied this insight by
designing the analysis to maintain the current basic block
executed by the program. The analysis can maintain such
information using the compressed information that PT
provides. E.g., if PT provides only a bit denoting the value
of a condition tested in a branch, then the analysis inspects
the conditional branch at the end of the maintained block,
and from the branch, updates its information about the
current block executed.

The second key challenge in designing PITTYPAT is to
design a points-to analysis that can compute accurate
points-to information while imposing sufficiently low
overhead. Precise points-to analyses solve a system of
constraints over all pairs of pointer variables in the pro-
gram [2, 15]; solving such constraints uses a significant
amount of time that is often acceptable in the context of

Packet [ Description |

TIP.PGE IP at which the tracing begin

TIP.PGD | Marks the ending of tracing

TNT Taken/non-taken decisions of conditional branches
TIP Target addresses of indirect branches

FUP The source addresses of asynchronous events

Table 1: Control-relevant trace packets from Intel PT.

an offline static analysis, but would impose unacceptable
overhead if used by PITTYPAT’s online analysis process.
Other analyses bound analysis time to be nearly linear
with increasing number of pointer variables, but gener-
ate results that are often too imprecise to provide strong
security guarantees if used to enforce CFI [34].

To address the limitations of conventional points-to
analysis, we have designed an online points-to analysis
that achieves the precision of precise analysis at high per-
formance. The analysis eagerly evaluates control relevant
points-to constraints as they are generated, while updating
the points-to relations table used for future control trans-
fer validation. The analysis enables PITTYPAT, when
analyzing runs of dispatch that execute paths pg and py,
to compute the accurate points-to information given in
§2.3. On practical benchmarks, it allows significantly
smaller sets of control targets to be taken at each control
branch, and detects attacks on control flow not detected
by state-of-the-art defenses. Combined with our efficient
path-reconstruction process, it also enables PITTYPAT to
execute with an average of 12.73% overhead (geometric
mean) on even compute-intensive benchmarks, such as
SPEC CPU2006 (see §6).

3 Background

3.1 Intel Processor Trace

Intel PT is a commodity, low-overhead hardware designed
for debugging by collecting complete execution traces of
monitored programs. PT captures information about pro-
gram execution on each hardware thread using dedicated
hardware facilities so that after execution completes, the
captured trace data can be reconstructed to represent the
exact program flow.

The captured control flow information from PT is pre-
sented in encoded data packets. The control relevant
packet types are shown in Table 1. PT records the begin-
ning and the end of tracing through TIP.PGE and TIP.PGD
packets, respectively. Because the recorded control flow
needs to be highly compressed in order to achieve the
efficiency, PT employs several techniques to achieve this
goal. In particular, PT only records the taken/non-taken
decision of each conditional branches through TNT, along
with the target of each indirect branches through TIP. A
direct branch does not trigger a PT packet because the

USENIX Association

26th USENIX Security Symposium 135



control target of a direct branch is fixed.

Besides the limited packet types necessary for recov-
ering complete execution traces, PT also adopts compact
packet format to reduce the data throughput aggressively.
For instance, TNT packets use one bit to indicate the di-
rection of each conditional branches. TIP packets, on the
other hand, contain compressed target address if the upper
address bytes match the previous address logged. Thus
on average, PT tracing incurs less than 5% overhead [13].

When configured appropriately, PT monitors a single
program as well as its descendants based on CR3 filter-
ing, and outputs all collected packets to physical memory
allocated by its kernel driver. In the current implemen-
tation of PITTYPAT, a ring buffer is allocated so that it
can be reused throughout execution. The details of its
implementation are described in §5.1.

3.2 Conventional CFI

A control analysis, given program P, computes a sound
over-approximation of the instruction pointers that may
be stored in each pointer when P executes each instruc-
tion. An abstract domain D [8] consists of a set of abstract
states, a concretization relation from abstract states to the
program states that they represent, and for each program
instruction i, an abstract transformer 7p[i] : D — D that
describes how each abstract state is updated by a program.
Each abstract domain defines a transition relation pp of
steps valid according to D. In particular, for each instruc-
tion i, domain element D, and all states ¢ and o, if &
represented by D and ¢’ is represented by 7p[i](D), then
(0,i,0’) € pp. A control-analysis domain D is an ab-
stract domain extended with a relation from each abstract
domain element and instruction pointer to code pointers
in states represented by D.

A valid flow-sensitive description in D of a program
P is a map from each program point in P to an element
in D that is consistent with the semantics of program
instructions. There is always a most-precise valid flow-
sensitive description in D, denoted u[D].

Definition 1 For control domain D, program P satisfies
(conventional) CFI modulo D if, in each run of P, at each
indirect branch point L, P transfers control to a control
target in [D](L).

We provide a complete formal definition of conventional
CFl in §C.1.

An analysis that computes such a description is a con-
trol analysis. Control analyses conventionally are imple-
mented as points-to analyses, such as Andersen’s analy-
sis [2] or Steensgard’s analysis [34].

4 Design

A program P satisfies path-sensitive CFI under control
domain D if each step of P is valid according to D (as
described in §3.2).

Definition 2 For control domain D, program P satisfies
path-sensitive CFI modulo D if, in each run of P consist-
ing of states 0y, ..., Oy, for each 0 < j < n where o; steps
to Gj41 on instruction i, (Gj,1,0j11) € Pp.

A formal definition of path-sensitive CFI, along with
results establishing that path-sensitive CFI is strictly
stronger than conventional CFI, are given in §C.2.

PITTYPAT enforces path-sensitive CFI by maintaining
a shadow execution/analysis that only examines control
relevant data, while running concurrently with the mon-
itored process. Using the complete traces reconstructed
from Intel PT, only control-relevant data are computed
and maintained as points-to relations throughout the exe-
cution, using an online points-to analysis. Analyzing only
control-relevant data satisfies the need to validate control-
transfer targets but significantly optimizes the analysis,
because only parts of the program will be examined in the
shadow execution/analysis. Such an analysis, along with
the low overhead incurred by commodity hardware, allow
PITTYPAT to achieve path-sensitive CFI with practical
runtime overhead.

The architecture of PITTYPAT is depicted in §2.4, Fig-
ure 2. PITTYPAT consists of two modules. The first
module executes a given program P in a designated mon-
itor process and collects the targets of control transfers
taken by P. We describe the operation of this module in
§4.1 and give the details of its implementation in §5.1.
The second module receives control-branch targets taken
by P from the first module, reconstructs the control path
executed by P from the received targets, and performs a
points-to analysis along the reconstructed control path of
P. We describe the operation of the analysis module in
§4.2 and describe details of its implementation in §5.2.

4.1 Sharing taken branches efficiently

PITTYPAT uses the PT extension for Intel processors [31]
to collect the control branches taken by P. A naive im-
plementation of PITTYPAT would receive from the moni-
toring module the complete target address of each branch
taken by P in encoded packets and decode the traces of-
fline for analysis. PITTYPAT, given only Boolean flags
from PT, decodes complete branch targets on the fly.

To do so, PITTYPAT maintains a copy of the current
control location of P. For example, in Figure 1, when
dispatch steps through the path [L10,L16,L22], the rele-
vant PT trace contains only two TNT packets and one TIP
packet. A TNT packet is a two-bit stream: 10. The first

136 26th USENIX Security Symposium

USENIX Association



bit, 1, represents the conditional branch at L10 is taken
(i.e., the execution enters into the loop). The second bit, 0,
indicates the conditional branch at L13 is not taken, and
the executed location is now in the else branch. The TIP
packet contains the address of function unpriv, which
shows an indirect jump to unpriv.

PITTYPAT uses the Linux perf infrastructure to extract
the execution trace of P. In particular, PITTYPAT uses the
perf kernel driver to (1) allocate a ring buffer shared by
the hardware and itself and (2) mark the process in which
the target program executes (and any descendant process
and thread) as traced so as to enable tracing when context
switching into a descendant and disable tracing when
context switching out of a descendant. The driver then
transfers the recorded PT packets, together with thread ID
and process ID, to the analyzer module through the shared
buffer. This sharing mechanism has proved to be efficient
on all performance benchmarks on which we evaluated
PITTYPAT, typically incurring less than 5% overhead.

PITTYPAT intercepts the execution of a program at
security-sensitive system calls in the kernel and does not
allow the program to proceed until the analyzer validates
all control branches taken by the program. The list of inter-
cepted system calls can be easily configured; the current
implementation checks write, mmap, mprotect, mremap,
sendmsg, sendto, execve, remap_file_pages, sendmmsg,
and execveat. The above system calls are intercepted be-
cause they can either disable DEP/W@X, directly execute
an unintended command, write to files on the local host,
or send traffic over a network.

4.2 Online points-to analysis

The analyzer module executes in a process distinct from
the process in which the monitored process executes. Be-
fore monitoring a run of the program, the analyzer is given
the monitored program’s LLVM IR and meta information
about mapping between IR and binary code. At runtime,
the analyzer receives the next control-transfer target taken
by the protected program from the monitor module, and
either chooses to raise an alarm signaling that the con-
trol transfer taken would violate path-sensitive CFI, or
updates its state and allows the original program to take
its next step of execution.

The updated states contain two components: (1) the
callstack of instructions being executed (i.e., the pc’s) and
(2) points-to relations over models of memory cells that
are control relevant only. The online points-to analysis
addresses the limitations of conventional points-to anal-
yses. In particular, it reasons precisely about the calling
context of the monitored program by maintaining a stack
of register frames. It avoids maintaining constraints over
pairs of pointer variables by eagerly evaluating the sets of
cells and instruction addresses that may be stored in each

register and cell. It updates this information efficiently in
response to program actions by performing updates on a
single register frame and removing register frames when
variables leave scope on return from a function call.

In general, a program may store function pointers in
arbitrarily, dynamically allocated data structures before
eventually loading the pointer and using it as the target
of an indirect control transfer. If the analyzer were to
maintain precise information about the points-to relation
of all heap cells, then it would maintain a large amount
of information never used and incur a significant cost to
performance. We have significantly optimized PITTYPAT
by performing aggressive analyses of a given program P
offline, before monitoring the execution of P on a given
input. PITTYPAT runs an analyzer developed in previous
work on code-pointer integrity (CPI) [17] to collect a
sound over-approximation of the instructions in a program
that may affect a code pointer used as the target of a
control transfer. At runtime, the analyzer only analyzes
instructions that are control relevant as determined by its
offline phase.

A program may contain many functions that perform
no operations on data structures that indirectly contain
code pointers, and do not call any functions that perform
such operations. We optimized PITTYPAT by applying
an offline analysis based on a sound approximation of
the program’s call graph to identify all such functions.
At runtime, PITTYPAT only analyzes functions that may
indirectly perform relevant operations.

To illustrate the analyzer’s workflow, consider the exe-
cution path [L10,L12,116,19,L22] in Figure 1 as an exam-
ple. Initially, the analyzer knows that the current instruc-
tion being executed is L10, and the points-to table is empty.
The analyzer then receives a taken TNT packet, and so it
updates the pc to L12, which calls a non-sensitive function
parse_request. However instead of tracing instructions
in parse_request, the analyzer waits until receiving a
TIP packet signaling the return from parse_request be-
fore continue its analysis. Next, it updates the pc to L16
after receiving a non-taken TNT packet, which indicates
that the else branch is taken. Here, the analyzer updates
the points-to table to allow handler to point to unpriv
when it handles L16. Because the program also calls a
non-sensitive function at L19, the analyzer waits again
and updates the pc to L22 only after receiving another
TIP packet. Finally, at L22, the analyzer waits for a TIP
packet at the indirect call, and checks whether the target
address collected by the monitor module is consistent
with the value pointed by handler in the points-to table.
In this case, if the address in the received TIP packet is
not unpriv, the analyzer throws an alarm.

We have described the analyzer as validating taken con-
trol branches and eagerly throwing alarms when it detects
an incorrect branch in order to simplify its description.

USENIX Association

26th USENIX Security Symposium 137



The actual implementation of the analyzer only provides
such an alarm in response to a request from PITTYPAT’s
kernel module when a monitored process attempts to in-
voke a system call, as described in §5.1.

5 Implementation

5.1 Monitor module

PITTYPAT controls the Intel PT extension and collects an
execution trace from a monitored program by adapting
the Linux v4.4 perf infrastructure. Because perf was
originally designed to aid debugging, the original version
provided with Linux 4.4 only supports decoding and pro-
cessing traces offline. In the original implementation, the
perf kernel module continuously outputs packets of PT
trace information to the file system in user space as a log
file to be consumed later by a userspace program. Such
a mechanism obviously cannot be used directly within
PITTYPAT, which must share branch information at a
speed that allows it to be run as an online monitor.

We modified the kernel module of perf, which be-
gins and ends collection of control targets taken after
setting a target process to trace, allocates a ring buffer
in which it shares control branches taken with the ana-
lyzer, and monitors the amount of space remaining in
the shared buffer. The module also notifies the analyzer
when taken branches are available in its buffer, along with
how many chosen control targets are available. The no-
tification mechanism reuses the pseudo-file interface of
the perf kernel module. The analyzer creates one thread
to wait (i.e., poll) on this file handler for new trace data.
Once woken up by the kernel, it fetches branches from
the shared ring buffer with minimal latency.

System calls are intercepted by a modified version of
the system-call mechanism provided by the Linux ker-
nel. When the monitored process is created, it—along
with each of its sub-processes and threads created later—
is flagged with a true value in a PT_CPV field of its
task_struct in kernel space. When the kernel receives a
request for a system call, the kernel checks if the request-
ing process is flagged. If so, the kernel inspects the value
in register rax to determine if it belongs to the configured
list of marked system calls as described in §4.1. The
interception mechanism is implemented as a semaphore,
which blocks the system call from executing further code
in kernel space until the analyzer validates all branches
taken by the monitored process and signals the kernel.

The driver module and modifications to the kernel con-
sist of approximately 400 lines of C code.

5.2 Analyzer module

PITTYPAT’s analyzer module is implemented as two core
components. The first component consists of a LLVM
compiler pass, implemented in 500 lines, that inserts an
instruction at the beginning of each basic block before the
IR is translated to binary instructions. Such instructions
are used to generate a map from binary basic blocks to
LLVM IR basic blocks. Thus when PITTYPAT receives
a TNT packet for certain conditional branch, it knows the
corresponding IR basic block that is the target of the
control transfer. The inserted instructions are removed
when generating binary instructions; therefore no extra
overhead is introduced to the running program.

The second component, implemented in 5,800 lines
C++ code, performs a path-sensitive points-to analysis
over the control path taken by the monitored process, and
raises an error if the monitored process ever attempts to
transfer control to a branch not allowed by path-sensitive
CFI. Although the analysis inspects only low-level code,
it directly addresses several challenges in analyzing code
compiled from high-level languages. First, to analyze
exception-handling by a C++ program, which unwinds
stack frames without explicit calls to return instructions,
the analyzer simply consumes the received TNT packets
generated when the program compares the exception type
and updates the pc to the relevant exception handler.

To analyze a dynamic dispatch performed by a C++
program, the analyzer uses its points-to analysis to deter-
mine the set of possible objects that contain the vtable at
each dynamic-dispatch callsite. The analyzer validates
the dispatch if the requested control target stored in a
given TIP packet is one of the members of the object from
which the call target is loaded. At each call to setjmp, the
analyzer stores all possible setjmp buffer cells that may
be used as arguments to set jmp, along with the instruction
pointer at which setjmp is called, in the top stack frame.
At each call to longjmp, the analyzer inspects the target
T of the indirect call and unwinds its stack until it finds a
frame in which setjmp was called at T, with the argument
buffer of longjmp may have been the buffer passed as an
argument to setjmp.

6 Evaluation

We performed an empirical evaluation to answer the fol-
lowing experimental questions. (1) Are benign applica-
tions transformed to satisfy path-sensitive CFI less sus-
ceptible to an attack that subverts their control security?
(2) Do applications that are explicitly written to perform
malicious actions that satisfy weaker versions of CFI fail
to satisfy path-sensitive CFI? (3) Can PITTYPAT enforce
path-sensitive CFI efficiently?

To answer these questions, we used PITTYPAT to en-

138 26th USENIX Security Symposium

USENIX Association



force path-sensitive CFI on a set of benchmark programs
and workloads, including both standard benign applica-
tions and applications written explicitly to conceal ma-
licious behavior from conventional CFI frameworks. In
summary, our results indicate that path-sensitive CFI pro-
vides a stronger security guarantee than state-of-the-art
CFI mechanisms, and that PITTYPAT can enforce path-
sensitive CFI while incurring overhead that is acceptable
in security-critical contexts.

6.1 Methodology

We collected a set of benchmarks, each described in detail
in §6.2. We compiled each benchmark with LLVM 3.6.0,
and ran them on a set of standard workloads. During
each run of the benchmark, we measured the time used by
the program to process the workload. If a program con-
tained a known vulnerability that subverted conventional
CFI, then we ran the program on inputs that triggered
such a vulnerability as well, and observed if PITTYPAT
determined that control-flow was subverted along the exe-
cution. Over a separate run, at each control branch taken
by the program, we measured the size of the points-to set
of the register that stored the target of the control transfer.
We then built each benchmark to run under a state-of-
the-art CFI framework implemented in previous work,
n-CFI [26]. While n-CFI validates control targets per
control location, it instruments a subject program so that
control edges of the program are disabled by default, and
are only enabled as the program executes particular trig-
gering actions (e.g., a function can only be called after its
address is taken). It thus allows sets of transfer targets that
are no larger than those allowed by conventional imple-
mentations of CFI, and are often significantly smaller [26].
For each benchmark program and workload, we observed
whether 7-CFI determined that the control-flow integrity
of the program was subverted while executing the work-
load and measured the runtime of the program while ex-
ecuted under 7-CFI. We compared PITTYPAT to 7-CFI
because it is the framework most similar to PITTYPAT
in concept: it validates control-transfer targets based not
only on the results of a static points-to analysis, but col-
lecting information about the program’s dynamic trace.

6.2 Benchmarks

To evaluate the ability of PITTYPAT to protect long-
running, benign applications, and to evaluate the over-
head that it incurs at runtime, we evaluated it on the
SPEC CPU2006 benchmark suite, which consists of 162
C/C++ benchmarks. We ran each benchmark three times

2We don’t include 447.dealII, 471.omnetpp, and
483.xalancbmk because their LLVM IR cannot be completely
mapped to the binary code.

over its provided reference workload. For each run, we
measured the runtime overhead imposed by PITTYPAT
and the number of control targets allowed at each indirect
control transfer, including both indirect calls and returns.
We also evaluated PITTYPAT on the NGINX server—a
common performance macro benchmark, configured to
run with multiple processes.

To evaluate PITTYPAT’s ability to enforce end-to-end
control security, we evaluated it on a set of programs ex-
plicitly crafted to contain control vulnerabilities, both as
analysis benchmarks and in order to mount attacks on crit-
ical applications. In particular, we evaluated PITTYPAT
on programs in the RIPE benchmark suite [39], each
of which contains various vulnerabilities that can be
exploited to subvert correct control flow (e.g. Return-
Oriented Programming (ROP) or Jump-oriented Program-
ming (JOP)). We compiled 264 of its benchmarks in our
x64 Linux test environment and evaluated PITTYPAT on
each. We also evaluated PITTYPAT on a program that im-
plements a proof-of-concept COOP attack [32], a novel
class of attacks on the control-flow of programs written in
object-oriented languages that has been used to success-
fully mount attacks on the Internet Explorer and Firefox
browsers. We determined if PITTYPAT could block the
attack that the program attempted to perform.

6.3 Results
6.3.1 Protecting benign applications

Figure 3 contains plots of the control-transfer targets al-
lowed by 7-CFI and PITTYPAT over runs of example
benchmarks selected from §6.2. In the plots, each point
on the x-axis corresponds to an indirect control transfer in
the run. The corresponding value on the y-axis contains
the number of control targets allowed for the transfer.

Previous work on CFI typically reports the average
indirect-target reduction (AIR) of a CFI implementation;
we computed the AIR of PITTYPAT. However, the re-
sulting data does not clearly illustrate the difference be-
tween PITTYPAT and alternative approaches, because all
achieve a reduction in branch targets greater than 99%
out of all branch targets in the program. This is consistent
with issues with AIR as a metric established in previous
work [4]. Figure 3, instead, provides the absolute mag-
nitudes of points-to sets at each indirect control transfer
over an execution.

Figure 3a contains a Cumulative Distribution Graph
(CDF) of all points-to sets at forward (i.e., jumps and
calls) indirect control transfers of size no greater than
40 when running 403.gcc under 7-CFI and PITTYPAT.
We used a CDF over a portion of the points-to sets in or-
der to display the difference between the two approaches
in the presence of a small number of large points-to sets,

USENIX Association

26th USENIX Security Symposium 139



(%)

Percentage

1600 —
picfi + T

S

1400 - P et

o

20

Points-to Set Size

/ H+ g
4/f441 1 o
T 1200 |- - ]
ot 1 8 i
o~ e
1 @ 1000 [ ;*‘* R
3 ¢
| 12}
800 - I
9 ii’ . g S
1 o + et R
+ 600 | +H B
] 5 M‘# #
5 ﬁf + + b o
| 400 - ~ - |
N i
S 4
PittyPat —=— U
o . . . . .
0 5 10 15 20 25 30 35 40 o4
Points-to Set Size Return Step
(a) Partial CDF of allowed targets on forward edges taken by 463.gcc. (b) m-CFI points-to set of backward edges taken by 483.gcc.
PittyPat —=— sl d
-
=
40 - B
15 | B
) U ]
-
0w
L 30Ff
[}
« -
10 - 1 ot K|
D -
; i
520 + 4
= —- .
0 15| ¥ +
o + b
—

Ty
4

@
-
bttt

4
+

‘l!

0
Indirect Branch Step

(c) m-CFI and PITTYPAT points-to sets for forward edges taken by

444 .namd.

Return Step
(d) m-CFI points-to sets for backward edges taken by 444 .namd.

Figure 3: Control-transfer targets allowed by 7-CFI and PITTYPAT over 403.gcc and 444 .namd.

explained below. Figure 3a shows that PITTYPAT can con-
sistently maintain significantly smaller points-to sets for
forward edges than that of 7-CFI, leading to a stronger
security guarantee. Figure 3a indicates that when pro-
tecting practical programs, an approach such as 7-CFI
that validates per location allows a significant number of
transfer targets at each indirect callsite, even using dy-
namic information. In comparison, PITTYPAT uses the
entire history of branches taken to determine that at the
vast majority of callsites, only a single address is a valid
target. The difference in the number of allowed targets
can be explained by the different heuristics adopted in 7-
CFI, which monotonically accumulates allowed points-to
targets without any disabling schemes once targets are
taken, and the precise, context-sensitive points-to analysis
implemented in PITTYPAT. Similar difference between
7-CFI and PITTYPAT can also be found in all other C
benchmarks from SPEC CPU2006.

For the remaining 4% of transfers not included in Fig-

ure 3a, both 7-CFI and PITTYPAT allowed up to 218
transfer targets; for each callsite, PITTYPAT allowed no
more targets than 7-CFI. The targets at such callsites
are loaded from vectors and arrays of function pointers,
which PITTYPAT’s current points-to analysis does not
reason about precisely. It is possible that future work on
a points-to analysis specifically designed for reasoning
precisely about such data structures over a single path
of execution—a context not introduced by any previous
work on program analysis for security—could produce
significantly smaller points-to sets.

A similar difference between 7-CFI and PITTYPAT is
demonstrated by the number of transfer targets allowed
for other benchmarks. In particular, Figure 3¢ contains
similar data for the 444.namd benchmark. 444.namd, a
C++ program, contains many calls to functions loaded
from vtables, a source of imprecision for implementations
of CFI that can be exploited by attackers [32]. PITTYPAT
allows a single transfer target for all forward edges as

140 26th USENIX Security Symposium

USENIX Association



a result of its online points-to analysis. The difference
between 7-CFI and PITTYPAT are also found for other
C++ benchmarks, such as 450.soplex, 453.povray and
473.astar.

7-CFI and PITTYPAT consistently allow dramatically
different numbers of transfer targets for return instruc-
tions. While monitoring 403 .gcc, 7-CFI allows, for some
return instructions, over 1,400 return targets (Figure 3b).
While monitoring 444 .namd, 7-CFI allows, for some re-
turn instructions, more than 46 transfer targets (Figure 3d).
Because PITTYPAT maintains a stack of points-to infor-
mation during its analysis, it will always allow only a
single transfer target for each return instruction, over all
programs and workloads. PITTYPAT thus significantly
improves defense against ROP attacks, which are still one
of the most popular attacks software.

6.3.2 Mitigating malicious applications

To determine if PITTYPAT can detect common attacks
on control, we used it to monitor selected RIPE bench-
marks [39]. For each of the 264 benchmarks that ran in
our experimental setup, PITTYPAT was able to success-
fully detect attacks on the benchmark’s control security.
We constructed a proof-of-concept program vulnera-
ble to a COOP [32] attack that corrupts virtual-function
pointers to perform a sequence of method calls not pos-
sible by a well-defined run of the program. In Figure 4,
the program defines two derived classes of SchoolMember
(line L1-L4), Student (line L5-L10) and Teacher (line
L11-L16). Both Student and Teacher define their own
implementation of the virtual function registration()
(lines L7—9 and L13-15, respectively). set_buf() (line
L17-1L21) allocates a buffer buf on the stack of size 4 (line
L.18), but does not bound the amount of data that it reads
into buf (line L20). The main function (line L22-L37)
constructs instances of Student and Teacher (lines L23
and L24, respectively), and stores them in SchoolMember
pointers (lines L26 and 27 respectively). main then calls
the registration() method of each instance (lines L29—
L31), reads input from a user by calling set_buf() (line
L33), and calls Student: :registration() a second time
(line L35). A malicious user can subvert control flow of
the program by exploiting the buffer overflow vulnerabil-
ity in set_buf to overwrite the vptr of Student to that of
Teacher and run Teacher: :registration() at line L35.
Previous work introducing COOP attacks [32] estab-
lished such an attack cannot be detected by CFI. 7-CFI
was not able to detect an attack on the above program be-
cause it allows a dynamic method as a call target once its
address is taken. However, PITTYPAT detected the attack
because its analyzer module accurately models the effect
of each load of a function pointer used to implement the
dynamic calls over the program’s well-defined runs.

class SchoolMember {
public:
virtual void registration(void){}
};
class Student :
public:
void registration(void){
cout << "I am a Student\n";

public SchoolMember{

© 9 AW —

9 }

10 3};

11 class Teacher : public SchoolMember{
12 public:

13 void registration(void){

14 cout << "This is sensitive!\n";
15 }

16 };

17 void set_buf(void){
18 char buf[4];
19 //change vptr to that of Teacher’s sensitive func
20 gets(buf);
}

22 int main(int argc, char *argv[]){

23 Student st;

24 Teacher te;

25 SchoolMember “member_1, *member_2;

26 member_1 = &te;

27 member_2 = &st;

28 //Teacher calling its virtual functions
29 member_1l->registration();

30 //Student calling its virtual functions
31 member_2->registration();

32 //buffer overflow to overwrite the vptr
33 set_buf(Q;

34 //Student calling its virtual functions again
35 member_2->registration();

36 return 0;

Figure 4: A program vulnerable to a COOP attack.

6.3.3 Enforcing path-sensitive CFI efficiently

Table 2 contains measurements of our experiments that
evaluate performance of PITTYPAT when monitoring
benchmarks from SPEC CPU2006 and NGINX server,
along with the performance results replicated from the
paper that presented 7-CFI [26]. A key feature observable
from Table 2 is that PITTYPAT induces overhead that is
consistently larger than, but often comparable to, the over-
head induced by 7-CFI. The results show that PITTYPAT
incurs a geometric mean of 12.73% overhead across the
16 SPEC CPU2006 benchmarks, along with a 11.9% in-
creased response time for NGINX server over one million
requests with concurrency level of 50. Overhead of shar-
ing branch targets taken is consistently less than 5%. The
remaining overhead, incurred by the analysis module, is
proportional to the number of memory operations (e.g.,
loads, stores, and copies) performed on memory cells that
transitively point to a target of an indirect call, as well
as the number of child processes/threads spawned during
execution of multi-process/-threading benchmarks.
Another key observation from Table 2 is that PITTYPAT
induces much smaller overhead than CETS [23] and Soft-
Bound [22], which can only be applied to a small selec-
tion of the SPEC CPU2006 benchmarks. CETS provides

USENIX Association

26th USENIX Security Symposium 141



Program Features Payload Features 7-CFI Features PITTYPAT Features CETS+SB Features

Name [ KLoC Exp [ Tm (sec) Alarm [ Overhd (%) Alarm [ Overhd (%) Alarm [ Overhd (%)
400 .perlbench 128 No 332 No 8.7% No 47.3% Yes -
401.bzip2 6 No 317 No 1.3% No 17.7% No 91.4%
403.gcc 383 No 179 No 6.2% No 34.1% Yes -
429.mcf 2 No 211 No 4.3% No 32.2% Yes -
433.milc 10 No 514 No 1.9% No 1.8% Yes -
444 .namd 4 No 556 No -0.3% No 28.8% Yes -
445 . gobmk 158 No 328 No 11.4% No 4.0% Yes -
450.soplex 28 No 167 No -1.1% No 27.5% Yes -
453.povray 79 No 100 No 11.9% No 16.0% Yes -
456. hmmer 21 No 258 No 0.2% No 20.2% Yes -
458.sjeng 11 No 359 No 8.5% No 6.7% No 80.1%
462.1libquantum 3 No 234 No -1.5% No 14.1% Yes -
464.h264ref 36 No 339 No 8.0% No 11.8% No 251.7%
470.1bm 1 No 429 No 1.4% No 0.7% Yes -
473.astar 4 No 289 No 2.2% No 22.5% Yes -
482.sphinx3 13 No 338 No 1.7% No 16.0% Yes -
Geo. Mean 15 - 285 - 3.30% - 12.73% - 122.60%
nginx-1.10.2 122 No 25.41 No 2.7% No 11.9% Yes -

Table 2: “Name” contains the name of the benchmark. “KLoC” contains the number of lines of code in the benchmark.
Under “Payload Features,” “Exp” shows if the benchmark contains an exploit and “Tm (sec)” contains the amount of
time used by the program, when given the payload. Under “7-CFI Featues”, “PITTYPAT Features,” and “CETS+SB
Features,” “Alarm” contains a flag denoting if a given framework determined that the payload was an attack and aborted;
“Overhd (%)” contains the time taken by the framework, expressed as the ratio over the baseline time.

temporal memory safety and SoftBound provides spa-
tial memory safety; both enforce full data integrity for
C benchmarks, which entails control security. However,
both approaches induce significant overhead, and cannot
be applied to programs that perform particular combi-
nations of memory-unsafe operation [17]. Our results
thus indicate a continuous tradeoff between security and
performance among exisiting CFI solution, PITTYPAT,
and data protection. PITTYPAT offers control security
that is close to ideal, i.e. what would result from data
integrity, but with a small percentage of the overhead of
data-integrity protection.

7 Related Work

The original work on CFI [1] defined control-flow in-
tegrity in terms of the results of a static, flow-sensitive
points-to analysis. A significant body of work has adapted
the original definition for complex language features and
developed sophisticated implementations that enforce it.
While CFI is conventionally enforced by validating the
target of a control transfer before the transfer, control-
flow locking [3] validates the target after the transfer to
enable more efficient use of system caches. Compact
Control Flow Integrity and Randomization (CCFIR) [41]
optimizes the performance of validating a transfer target
by randomizing the layout of allowable transfer targets
at each jump. Opaque CFI (O-CFI) [21] ensures that
an attacker who can inspect the rewritten code cannot
learn additional information about the targets of control
jumps that are admitted as valid by the rewritten code.

All of the above approaches enforce security defined by
the results of a flow-sensitive points-to analysis; previous
work has produced attacks [5, 12, 32] that are allowed by
any approach that relies on such information. PITTYPAT
is distinct from all of the above approaches because it
computes and uses the results of a points-to analysis com-
puted for the exact control path executed. As a result, it
successfully detects known attacks, such as COOP [32]
(see §6.3.2).

Previous work has explored the tradeoffs of implement-
ing CFI at distinct points in a program’s lifecycle. CF
restrictor [30] performs CFI analysis and instrumenta-
tion completely at the source level in an instrumenting
compiler, and further work developed CFI integrated into
production compilers [36]. BinCFI [42] implements CFI
without access to the program source, but only access
to a stripped binary. Modular CFI [25] implements CFI
for programs constructed from separate compilation units.
Unlike each of the above approaches, PITTYPAT consists
of a background process that performs an online analysis
of the program path executed.

Recent work on control-flow bending has established
limitations on the security of any framework that enforces
only conventional CFI [5], and proposes that future work
explore CFI frameworks that validate branch targets us-
ing an auxiliary structure, such as a shadow stack. The
conclusions of work on control-flow bending are strongly
consistent with the motivation of PITTYPAT: the key con-
tribution of PITTYPAT is that it enforces path-sensitive
CFI, provably stronger than conventional CFI, and does so
not only by maintaining a shadow stack of points-to infor-

142 26th USENIX Security Symposium

USENIX Association



mation, but by validating the targets of indirect branches
using path-sensitive points-to analysis. Per-input CFI (7-
CFI) [26] only enables control transfers to targets that
are enabled depending on previous operations taken by a
program in a given run; §6 contains a detailed comparison
of 7-CFI to PITTYPAT.

Several implementations of CFI use hardware features
that efficiently record control targets chosen by a program.
CFIMon [40] collects the transfer targets chosen by the
program from the processor’s branch tracing store, and
validates the chosen target against the results of a flow-
sensitive points-to analysis. Previous work has also pro-
posed customized architectures with extended instruction
sets that directly implement primitive operations required
in order to enforce CFI [9]. Such approaches are thus
distinct from our approach for the same reason as all ap-
proaches that use the results of a flow-sensitive analysis.
kBouncer [29] interposes when a program attempts to ex-
ecute a system call and inspects the Last Branch Record
(LBR) provided on Intel processors to detect patterns of
transfer targets that indicate an ROP attack. ROPecker [7]
similarly interposes at key security events and inspects the
LBR, but combines information from inspecting the his-
tory of chosen branches with a forward analysis. PathAr-
mor [37] interposes key system calls, collects the last
transfer targets collected in the LBR, and determines if
there is a feasible path through the program’s control-flow
graph that reaches each transfer target. Further work [6]
introduced counterattacks against such defenses that ex-
ploit the fact that each of the defenses only inspects the
LBR to analyze a bounded number of transfer targets
chosen immediately before a system call.

The above approaches are similar to PITTYPAT in that
they inspect the results of hardware features that collect
some subset of the control targets taken by a program at
runtime. However, they are all distinct from PITTYPAT
because PITTYPAT uses hardware features to maintain ac-
curate points-to information by inspecting a/l branch tar-
gets chosen by a program over its execution. Recent work
has proposed approaches that leverage Intel PT. Most such
approaches use PT to debug programs [16, 35], whereas
PITTYPAT uses PT to protect their control security. Some
approaches [13, 14, 19] use PT to enforce that an appli-
cation satisfies CFI as defined by a static flow-sensitive
analysis; PITTYPAT uses PT to ensure that a program
satisfies a stronger, path-sensitive variation of CFI.

Points-to analysis is a classic problem in static pro-
gram analysis, with different approaches that achieve dis-
tinct tradeoffs in either higher precision [2] or scalabil-
ity [34]. Points-to analyses are characterized on multiple
dimensions, including flow-sensitivity [2, 34] and context-
sensitivity [10, 18, 27, 38, 43]. However, a key property
of all such analyses is that they are performed statically,
and thus compute information either per program point

or per group of stack configurations [15]. PITTYPAT
uses a points-to analysis to compute points-to informa-
tion based on the exact program path executed. As a
result, PITTYPAT does not merge points-to information
over multiple paths that reach a given control location
or stack configuration, which heavily influenced the de-
sign of the novel points-to analysis that it uses. Recent
work [17] has introduced Code-Pointer Integrity (CPI),
which protects the integrity of all addresses that indirectly
affect the value of a function pointer used as the target of
an indirect branch. A key finding of the original work on
CPlI is that CPI is relatively expensive to enforce for pro-
grams that contain a large number of code pointers, such
as binaries compiled from programs in object-oriented
languages. As a result, CPI was proposed along with
code-pointer separation (CPS), in which the values of
code pointers are protected, but pointers to cells con-
taining code pointers are left unprotected. Subsequent
work on counterfeit object-oriented programming [32]
demonstrated that CPS is insufficiently strong to block
code-reuse attacks on object-oriented programs.

PITTYPAT, along with all approaches for enforcing
various versions of CFI, differs fundamentally from CPI
in that it does not attempt to protect any segment of
a program’s data at runtime. Instead, PITTYPAT vali-
dates candidate targets of indirect control transfers based
only on the history of control branches taken. CPI and
PITTYPAT have complementary strengths and should be
applied in complementary security settings. In particular,
CPI often incurs slightly lower overhead, but can only
be applied in scenarios in which the source code of the
entire program to be protected is available to be analyzed
and instrumented. Such conditions are not satisfied in
cases in which a program relies on large, untrusted third-
party or shared libraries. PITTYPAT can potentially incur
larger performance overhead than CPI. However, because
it performs an points-to analysis that can be easily run on
sequences of low-level instructions, it can be applied to
protect program modules that are only available as bina-
ries. It also need not instrument any code of a protected
application. Our current implementation of PITTYPAT
uses an analysis proposed in the work on CPI only to
optimize the points-to analysis performed at runtime to
validate branch targets.

8 Conclusion

We introduced a path-sensitive variation of CFI and an
efficient runtime enforcement system, PITTYPAT. Our
formal analysis and empirical evaluation demonstrate
that, PITTYPAT provides strictly stronger security guaran-
tees than conventional CFI, while incurring an acceptable
amount of runtime overhead.

USENIX Association

26th USENIX Security Symposium 143



References

(1]

(2]

[3

—

(4]

[5

—

[6

—_

(71

[8

—_—

(9]

(10]

(11]

(12]

(13]

[14]

ABADI, M., BUDIU, M., ERLINGSSON, [j., AND LI1G-
ATTI, J. Control-flow integrity. In CCS (2005).

ANDERSEN, L. O. Program analysis and specialization
for the C programming language. PhD thesis, U. Cophen-
hagen, 1994.

BLETSCH, T., JIANG, X., AND FREEH, V. Mitigating
code-reuse attacks with control-flow locking. In ACSAC
(2011).

BUROW, N., CARR, S. A., BRUNTHALER, S., PAYER,
M., NASH, J., LARSEN, P., AND FRANZ, M. Control-
flow integrity: Precision, security, and performance. arXiv
preprint arXiv:1602.04056 (2016).

CARLINI, N., BARRESI, A., PAYER, M., WAGNER, D.,
AND GRoOSS, T. R. Control-flow bending: On the effec-
tiveness of control-flow integrity. In USENIX Security
(2015).

CARLINI, N., AND WAGNER, D. ROP is still dangerous:
Breaking modern defenses. In USENIX Security (2014).

CHENG, Y., ZHOU, Z., YU, M., DING, X., AND DENG,
R. H. Ropecker: A generic and practical approach for
defending against ROP attacks. In NDSS (2014).

CousoT, P., AND COUSOT, R. Abstract interpretation: a
unified lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In POPL (1977).

Davi, L., KOEBERL, P., AND SADEGHI, A.-R.
Hardware-assisted fine-grained control-flow integrity: To-
wards efficient protection of embedded systems against
software exploitation. In DAC (2014).

EMAMI, M., GHIYA, R., AND HENDREN, L. J. Context-
sensitive interprocedural points-to analysis in the presence
of function pointers. In PLDI (1994).

EvANs, 1., FINGERET, S., GONZALEz, J., OT-
GONBAATAR, U., TANG, T., SHROBE, H., SIDIROGLOU-
Douskos, S., RINARD, M., AND OKHRAVI, H. Missing
the point (er): On the effectiveness of code pointer in-
tegrity. In SP (2015).

EvAaNs, 1., LONG, F., OTGONBAATAR, U., SHROBE,
H., RINARD, M., OKHRAVI, H., AND SIDIROGLOU-
Douskos, S. Control jujutsu: On the weaknesses of
fine-grained control flow integrity. In CCS (2015).

GE, X., Cul, W., AND JAEGER, T. Griffin: Guarding
control flows using intel processor trace. In ASPLOS
(2017).

GU, Y., ZHAO, Q., ZHANG, Y., AND LIN, Z. Pt-cfi:
Transparent backward-edge control flow violation detec-
tion using intel processor trace. In CODASPY (2017).

[15]

[16]

(17]

(18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

HARDEKOPF, B., AND LIN, C. The ant and the grasshop-
per: fast and accurate pointer analysis for millions of lines
of code. In PLDI (2007).

KASIKCI, B., SCHUBERT, B., PEREIRA, C., POKAM,
G., AND CANDEA, G. Failure sketching: A technique for
automated root cause diagnosis of in-production failures.
In SOSP (2015).

KUZNETSOV, V., SZEKERES, L., PAYER, M., CANDEA,
G., SEKAR, R., AND SONG, D. Code-pointer integrity.
In OSDI (2014).

LATTNER, C., LENHARTH, A., AND ADVE, V. Mak-
ing context-sensitive points-to analysis with heap cloning
practical for the real world. In PLDI (2007).

Liu, Y., SHI, P., WANG, X., CHEN, H., ZANG, B., AND
GUAN, H. Transparent and efficient cfi enforcement with
intel processor trace. In HPCA (2017).

The LLVM compiler infrastructure project. http://11lvm.
org/, 2016. Accessed: 2016 May 12.

MOHAN, V., LARSEN, P., BRUNTHALER, S., HAMLEN,
K. W., AND FRANZ, M. Opaque control-flow integrity.
In NDSS (2015).

NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. Softbound: highly compatible and com-
plete spatial memory safety for c. In PLDI (2009).

NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND
ZDANCEWIC, S. Cets: compiler enforced temporal safety
for c. In ISMM (2010).

NEcULA, G. C., MCPEAK, S., AND WEIMER, W.
Ccured: Type-safe retrofitting of legacy code. In PLDI
(2002).

N1U, B., AND TAN, G. Modular control-flow integrity. In
PLDI (2014).

NI1U, B., AND TAN, G. Per-input control-flow integrity.
In CCS (2015).

NYSTROM, E. M., KiM, H.-S., AND WEN-MEI, W. H.
Bottom-up and top-down context-sensitive summary-
based pointer analysis. In International Static Analysis
Symposium (2004).

ONE, A. Smashing the stack for fun and profit. Phrack
magazine 7,49 (1996).

PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS,
A. D. Transparent ROP exploit mitigation using indirect
branch tracing. In USENIX Security (2013).

PEWNY, J., AND HoLz, T. Control-flow restrictor:
Compiler-based CFI for iOS. In ACSAC (2013).

REINDERS, J. Processor tracing - Blogs@Intel. https:
//blogs.intel.com/blog/processor-tracing/,
2013. Accessed: 2016 May 12.

144  26th USENIX Security Symposium

USENIX Association


http://llvm.org/
http://llvm.org/
https://blogs.intel.com/blog/processor-tracing/
https://blogs.intel.com/blog/processor-tracing/

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

SCHUSTER, F., TENDYCK, T., LIEBCHEN, C., DAVI,
L., SADEGHI, A.-R., AND HoLZ, T. Counterfeit object-
oriented programming: On the difficulty of preventing
code reuse attacks in C++ applications. In SP (2015).

SHACHAM, H. The geometry of innocent flesh on the
bone: Return-into-libc without function calls (on the x86).
In CCS (2007).

STEENSGAARD, B. Points-to analysis in almost linear
time. In POPL (1996).

THALHEIM, J., BHATOTIA, P., AND FETZER, C. Inspec-
tor: Data provenance using intel processor trace (pt). In
ICDCS (2016).

TICE, C., ROEDER, T., COLLINGBOURNE, P., CHECK-
OWAY, S., ERLINGSSON, U., LOZANO, L., AND PIKE,
G. Enforcing forward-edge control-flow integrity in gcc
& llvm. In USENIX Sec. (2014).

VAN DER VEEN, V., ANDRIESSE, D., GOKTAS, E.,
GRAS, B., SAMBUC, L., SLOWINSKA, A., Bos, H.,
AND GIUFFRIDA, C. Practical context-sensitive CFI. In
CCS (2015).

WHALEY, J., AND LAM, M. S. Cloning-based context-
sensitive pointer alias analysis using binary decision dia-
grams. In PLDI (2004).

WILANDER, J., NIKIFORAKIS, N., YOUNAN, Y.,
KAMKAR, M., AND JOOSEN, W. RIPE: Runtime in-
trusion prevention evaluator. In ACSAC (2011).

XIA, Y., L1U, Y., CHEN, H., AND ZANG, B. Cfimon:
Detecting violation of control flow integrity using perfor-
mance counters. In DSN (2012).

ZHANG, C., WEI, T., CHEN, Z., DUAN, L., SZEKERES,
L., MCCAMANT, S., SONG, D., AND ZoU, W. Prac-
tical control flow integrity and randomization for binary
executables. In SP (2013).

ZHANG, M., AND SEKAR, R. Control flow integrity for
COTS binaries. In Usenix Sec. (2013).

ZHU, J., AND CALMAN, S. Symbolic pointer analysis
revisited. In PLDI (2004).

instrs := ops REGS, REGS, REGS |alloc REGS (1)
| 1d REGS,REGS | store REGS,REGS 2
| br REGS,REGS | call REGS | return 3)

Figure 5: A space of instructions, Instrs, in a target lan-
guage. Instrs is defined over registers Regs and data oper-
ations Ops.

Appendix

A Language definition

In this section, we define the syntax (§A.1) and semantics (§A.2)
of programs in PITTYPAT’s target language.

A.1 Syntax

Figure 5 contains the syntax of a space of program instructions,
Instrs. An instruction may compute the value of an operation
in ops over values stored in registers and store the result in a
register, may allocate a fresh memory cell (Eqn. 1), may load a
value stored in the address in one operand register into a target
register, may store a value in an operand register at the address
stored in a target register (Eqn. 2), may test if the value in a
register is non-zero and if so transfer control to an instruction
at the address stored in an operand register, may perform an
indirect call to a target address stored in an operand, or may
return from a call (Eqn. 3). Although all operations are assumed
to be binary, when convenient we will depict operations as using
fewer registers (e.g., a copy instruction copy r@,rl in §4.2).

A program is a map from instruction addresses to instructions.
That is, for space of instruction addresses |Addrs containing a
designated initial address 1 € |Addrs, the language of programs
is Lang = IAddrs — Instrs.

Instrs does not contain instructions similar to those in an
architecture with a complex instruction-set, which may, e.g., per-
form operations directly on memory. The design of PITTYPAT
directly generalizes to analyze programs that use such an instruc-
tion set. In particular, the actual implementation of PITTYPAT
monitors programs compiled for x86.

A.2 Semantics

Each program P € Lang defines a language of sequences of
program states, called runs, that are generated by executing a
sequence of instructions in P from an initial state. In particular,
each program P defines two languages of runs. The first is
the language of well-defined runs, in which each step from the
current state is defined by the semantics of the next instruction
in P. The second is the language of feasible runs contain some
state ¢ from which P executes an instruction that is not defined at
q (e.g., dereferencing an invalid address). When the successive
state of g is not defined and the program takes a step of execution,
the program may potentially perform an operation that subverts
security.

USENIX Association

26th USENIX Security Symposium 145



A state is a stack of assignments from registers to values and a
memory, which maps each memory cell to a value. Let Words be
a space of data words and let Cells be a space of memory cells. A
value is an instruction address (§A.1), a data word, or a memory
cell; i.e., Values = IAddrs U Words U Cells. Let the space of
registers be denoted Regs. A register frame is the address of the
current instruction and a map from each register to a value; i.e.,
the space of register frames, for RegMaps = Regs — Values, is
denoted

Frames = IAddrs x RegMaps

For each register frame f € Frames, the instruction address of
f is denoted as ip[f].

A cell memory is a map from each memory cell to a value;
i.e., the space of cell memories is Mems = Cells — Values. A
state is a pair of a non-empty stack of register frames and a cell
memory; i.e., the space of states is denoted

States = Frames™ x Mems

For each state g, the instruction address of the top frame of ¢
is denoted ip[g]. For each sequence of states r € States”, the
sequence of corresponding instruction pointers of each state in
r is denoted IPs(r) € IAddrs*. The states consisting of a single
stack frame whose instruction pointer is 1 are the initial states,
denoted Statesy C States.

A transition relation relates each pre-state and instruction to
their resulting post-states. I.e., the space of transition relations
is TransRels = (States X Instrs) x States. The semantics of
Lang is defined by the well-defined transition relation of Lang,
denoted p[WellDef] € TransRels. Each step of execution that
is safe is a step in p[WellDef]. The definition of p[WellDef] is
standard, and we omit a complete definition.

For each transition relation p € TransRels, the runs of p in
P are the sequences of states r in which each state in r steps to
the successive state in r under p in P; the language of all such
runs is denoted Runs[p, P]. The runs of P under p[WellDef] are
the well-defined runs of P, denoted

Runs[WellDef, P| = Runs[p[WellDef], P

The feasible transition relation of Lang is p[WellDef] ex-
tended to relate each pre-state and instruction undefined in
p[WellDef] to each post-state. The feasible transition relation
thus includes safe steps of execution that a program may take,
along with unsafe steps taken when the program executes an
instruction from a state in which the instruction is not defined
(i.e., loading from an address that does not point to allocated
memory). The feasible transition relation of Lang is denoted

p[Feasible] = p[WellDef]U
((States x Instrs) \ Dom(p[WellDef])) x States

where Dom(p[WellDef]) denotes the domain of p[WellDef].
The runs of P under p[Feasible] are the feasible runs of P,
denoted Runs[Feasible, P] = Runs[p[Feasible], P].

B Formal definition of points-to analysis

A control analysis takes a program P and computes a sound over-
approximation of the instruction pointers that may be stored in

each register when P executes a given instruction over a well-
defined run. A control-analysis domain is an abstract domain [8]
consisting of a set of abstract states, a concretization relation
from abstract states to the program states that they represent,
and an abstract transformer that describes how each abstract
state is updated by a program.

Definition 3 A control-analysis domain is a triple (A,Y,7),
with: (1) An abstract domain A. (2)A concretization rela-
tion ¥ C A x States. There must be initial and empty ele-
ments Init,Empty € A such that (a) {Init} x Statesy C v and
(b) {Empty} x StatesNy = 0. (3) An abstract transformer
T:A X Instrs x |Addrs — A, where for each abstract state a € A,
each state q € States such that (a,q) € 7, and each instruction
i € Instrs and state q' € States such that (q,1,q') € p[WellDef],
it holds that (t(a, i,iplq']),q) € 7.

For each control domain D, we refer to the abstract states, con-
cretization relation, and abstract transformer of D as A[D], ¥[D],
and t[D], respectively. The space of control-analysis domains is
denoted Doms.

The initial and empty elements in A[D] are denoted Init[D]
and None[D)]. The binary relation C°C A[D] x A[D] is defined
as follows. For all abstract states ag,a; € A[D], if for each
concrete state g € States such that (ag,q) € y[D] it holds that
(a1,9) € ¥ID], then ag = ay.

C Formal definitions of control security

C.1 Conventional CFI

For each control domain D and program P, a valid description
of P in D over-approximates the control targets stored bound to
registers and memory when control reaches each of instruction
address of P. In particular, a valid description 6§ maps each
instruction address to an abstract state of D that such that (1)
0 maps 1 to Init[D] and (2) § is consistent with the abstract
transformers of each instruction over D.

Definition 4 For each control domain D € Doms and program
P € Lang, let 8 : 1Addrs — A[D] be such that (1) 6(1) = Init[D];
(2) for all instruction addresses agy,a; € |Addrs and instruction
i € Instrs, it holds that T[D)(8(ap),i,a1) CP 8(ay). Then § is
a valid description of P in D.

For each control domain D € Doms and program P €
Lang, the space of valid descriptions of P in D is denoted
ValidDescs|D, P].

For each control domain D € Doms and program P € Lang
the most precise description of P in D, denoted u[D,P] €
ValidDescs[D, P}, is the valid description of P in D such that
for all valid descriptions &’ € ValidDescs[D, P] and each in-
struction address a € IAddrs, u[D, P](a) CP §'(a). Under well-
understood conditions [8], D has a most-precise description for
each program P that can be computed efficiently [2, 34].

Example 1 For program dispatch (§2.1) and any control do-
main D that maps each instruction pointer to a set of instruction
addresses, the most precise description of dispatch restricted
to function pointers is given in §2.2.

146 26th USENIX Security Symposium

USENIX Association



Each program P and domain D define a transition relation in
which at each step from each instruction address a, the program
only transfers control to an instruction address that is feasible in
the most precise description of P under D at a.

Definition 5 For each program P € Lang and control do-
main D € Doms, let p € TransRels be such that for all in-
struction addresses a,a’ € Addrs, each instruction i € Instrs
with t[D](u[D,P](a),i,a’) # None[D] and all states q,q' €
States with (u[D,P)(a),q) and (L[D,P)(d’),q’), it holds that
((q,1),q') € p. Then p is the flow-sensitive transition relation
of D and P.

For each domain D and program P, the flow-sensitive transition
relation of D and P is denoted FS[D, P].

For each control domain D and program P, the most precise
flow-sensitive description of P in D (Appendix D) defines an
instance of generalized control security that is equivalent to
CFI [1].

Definition 6 For all programs P,P' € Lang and each control-
analysis domain D € Doms, if P’ satisfies generalized control
security under FS[D, P] (Appendix D, Defn. 5) with respect to
P, then P’ satisfies CFI modulo D with respect to P.

Defn. 6 is equivalent to “ideal” CFI as defined in previous work
to establish fundamental limitations on CFI [5].

C.2 Path-sensitive CFI

The problem of enforcing CFI is typically expressed as instru-
menting a given program P to form a new program P’ that
allows each indirect control transfer in each of its executions
only if the target of the transfer is valid according to a flow-
sensitive description of the control-flow graph of P. To present
our definition of path-sensitive CFI, we will introduce a general
definition of control security parameterized on a given transition
relation p. P’ satisfies generalized control security under p with
respect to P if (1) P’ preserves each well-defined run of P and
(2) each feasible run of P’ has instruction addresses identical to
the instruction addresses of some run of P under p.

Definition 7 For each transition relation p € TransRels, let
programs P,P' € Lang be such that (1) Runs[WellDef,P] C
Runs[WellDef, P']; (2) for each run ¥ € Runs[Feasible, P'],
there is some run r € Runs[p,P] such that |Ps(r) = IPs(r).
Then P’ satisfies generalized control security under p with re-
spect to P.

We now define path-sensitive CFI, an instance of generalized
control security that is strictly stronger than CFI. Each control
domain D defines a transition relation over program states that
are described by abstract states of D connected by the abstract
transformer of D.

Definition 8 For each control domain D € Doms (§3.2,
Defn. 3), let p[D] € TransRels, be such that for each abstract
state a € A[D], each state q € States such that (a,q) € YD),
and each instruction i € Instrs and state q' € States such that
(t[D)(a,1,ip[d']),q") € YD), it holds that (q,1,q') € p[D). Then
p[D] is the transition relation modulo D.

For all programs P and P’ and each control domain D, P’
satisfies path-sensitive CFI modulo D with respect to P if each
step of each run of P’ corresponds to a step of P over states with
the same description under D.

Definition 9 For all programs P,P' € Lang and each control
domain D € Doms, if P' satisfies control security under p[D]
(Defn. 8) with respect to P, then P’ satisfies path-sensitive CFI
modulo D with respect to P.

Path-sensitive CFI is conceptually similar to, but stronger
than, context-sensitive CFI [37], which places a condition on
only bounded suffixes of a program’s control path before the
program attempts to execute a critical security event, such as a
system call.

Path-sensitive CFI is as strong as CFI.

Lemma 1 For each control domain D and all programs P,P’ €
Lang such that P’ satisfies path-sensitive CFI modulo D with
respect to P, P satisfies CFI modulo D with respect to P.

Lemma 1 follows immediately from the fact that any control-
transfer target that is along a given control path must be a valid
target in a meet-over-all-paths solution.

Path-sensitive CFI is in fact strictly stronger than CFL.

Lemma 2 For some control domain D and programs P,P' €
Lang, P’ satisfies CFI with respect to P modulo D but P' does
not satisfy path-sensitive CFI with modulo D respect to P.

Lemma 2 is immediately proven using any domain D that is
sufficiently accurate between two control states and a program
P that generates state with either control configuration at a
particular program point.

D Formal definition of online analysis

The behavior of the analyzer module is determined by a
fixed control-analysis domain D (§3.2, Defn. 3). We refer to
PITTYPAT instantiated to use control domain D for points-to
analysis as PITTYPAT[D].

As the analyzer module executes, it maintains a control-
domain abstract state d € A[D]. In each step of execution, the
analyzer module receives from the monitor process the next
control-transfer target taken by the monitored program P, and
either chooses to raise an alarm that transferring control to the
target would cause P to break path-sensitive CFI modulo D, or
updates its state and allows P to take its next step of execution.

In each step of execution, the analyzer module receives the
next control target a € |Addrs taken by the monitored program,
and either raises an alarm or updates its maintained control
description d as a result. If a is not a feasible target from d over
the next sequence of non-branch instructions, then the analyzer
module throws an alarm signaling that control flow has been
subverted, and aborts.

Theorem 1 For D € Doms and P € Lang, the program P’ sim-
ulated by running P in PITTYPAT[D] satisfies path-sensitive
CFI modulo D with respect to P (Defn. 9).

USENIX Association

26th USENIX Security Symposium 147



We have given the design of an analyzer module that uses an
arbitrary control domain generically; i.e., the analyzer can use
any control-analysis domain that satisfies the definition given in
§3.2, Defn. 3. However, we have found that the performance of
the analyzer module can be improved significantly by using a
control domain that takes advantage of the particular context of
online path-sensitive analysis by maintaining points-to informa-
tion about exactly the variables that are live in each live stack
frame in the program state. We now define in detail the control
domain used by our analysis, OnlinePtsTo = (4,7, 7).

Each element in the space A is either None[A], which repre-
sents no states, or a tuple consisting of (1) a stack in which each
entry is a map from each register r to a set of memory cells and
instruction pointer that r may store and (2) a map from each cell
to the cells and instruction pointers that it may store. Le., for

Addrs = |Addrs U Cells
RegPtsMaps = Regs — Z7(Addrs)
FramePtsTo = IAddrs x RegPtsMaps

CellPtsTo = Cells — &2 (Addrs)

with &7 (Addrs) the powerset of addresses, the abstract states are
A = FramePtsTo " x CellPtsTo. The stack containing a single
frame that maps each register to the empty set of addresses,
paired with an empty memory map, is the initial element of A.

Example 2 §2.3 contains examples of elements of A. In order
to simplify the presentation, in §2.3, only bindings to the function
pointer handler are shown, because these bindings are the only
ones that need to be inspected to determine the security of a
given run of dispatch.

Concretization relation ¥ C A x States relates each stack
and memory of points-to information to each concrete state
with a similarly structured stack and heap. For each n € N, let
ag,.-.,ap € IAddrs, Ry,...,R, € RegMaps, and R)),...,R), €
RegPtsMaps be such that for each i < n and each register r €
Regs, if R;(r) € Addrs, then R;(x) € Rj(x). Let m € Mems and
m’ € CellPtsTo be such that for each cell ¢ € Cells, m(c) €
m'(c). Then:

(([(i07R6)’ LRRR) (in’R;l)Lm/)7
([(i()vRO)v XS (iﬂﬂRn)Lm)) €y

The abstract transformer 7 : A X Instrs x |Addrs — A is de-
fined as follows. For each set of memory cells C C Cells, let
fresh(C) € Cells\ C be a fresh memory cell not in C. For all
register frames fj, ..., fn € FramePtsTo, each register map m €
RegPtsTo, each cell points-to map ¢ € CellPtsTo, all registers
r0,r1,r2 € Regs, and all instruction addresses a,a’ € IAddrs, a
store instruction store r®, rl updates the cell map so that each
cell bound to r1 points to each cell points to each cell bound to
0. Le., for ¢y, ...,c, € R(r1),

7(((a,R) :: F,m),store 0, rl,d) =
((d',R) :: F,m[co + R(r9),...,cn — R(x0)])

A branch instruction requires that the target instruction address
is in the points-to set of the target register of the branch. Le., if
@ € R(r0), then

7(((a,R) :: F,m),br r0,a’) = ((a’,R) :: F,m)

Otherwise, T maps the abstract state to None[A]. A call instruc-
tion increments the instruction pointer in the top frame and
pushes onto the stack a frame with an empty register map. Le.,
ifd € R(x),

7(((a,R):: F,m),call r8,d') =
((d',0):: (a+1,R):: F,m)

Otherwise, T maps the abstract state to None[A]. A return
instruction pops the top register frame from the stack. ILe.,
7(((a,R) :: F,m),return,d’) = (F,m) A data operation updates
only the instruction address:

7(((a,R) :: F,m),op r0,rl,r2,d’) = ((d',R):: F,m)

An allocation alloc r® updates the register map in the top frame
of the stack so that r points to a fresh memory cell. Le.,

7(((a,R) :: F,m),alloc r0,a’) =
((d',R[r® — fresh(Rng(m))]) :: F,m)

where (a,R):: F denotes (a,R) prepended to F and Rng(m)
denotes the range of m. A copy instruction copy r®, rlupdates
the register map so that each cell that may be stored in r® may
be stored in r1. Le.,

7(((a,
((d,

A load instruction load r@®, rl updates the register map in the
top frame so that each cell that may be pointed to by a cell bound
to r® is bound to ri:

R)::F,m),copy r®, rl,d)=
R[rl— R(x0)]):: F,m)

7(((a,R) :: F,m),1d r0, rl,d’) =
((d Rrrw | m(c)]):=F,m)
c€R(r0)

The abstract transformers for other instructions, such as data
operations that perform pointer arithmetic, are defined similarly,
and we do not give explicit definitions here in order to simplify
the presentation.

Example 3 Consider descriptions of states of dispatch and its
instruction call handler (§2.1). For abstract state

Ao = ([(L22,[handler — {priv}])],0)

T(Ag,call handler,priv) consists of a fresh stack frame for
priv pushed onto the stack [(L22,handler — priv)]. For ab-
stract state

A1 = ([(L22,[handler — {unpriv}]),0)
T(A},call handler,priv) is None[A].

We have given an online points-to analysis for a simple lan-
guage with only calls and returns. Practical languages typically
support additional interprocedural control instructions that, e.g.,
resolve calls targets through dynamic dispatch or unwind the
callstack. Our complete implementation handles each such in-
struction using an appropriate abstract transformer.

The fact that (D, 7y, T) defines a sound analysis can be proven
using standard techniques from abstract interpretation [8].

148 26th USENIX Security Symposium

USENIX Association



Digtool: A Virtualization-Based Framework for Detecting
Kernel Vulnerabilities

Jianfeng Pan, Guanglu Yan, Xiaocao Fan
IceSword Lab, 360 Internet Security Center

Abstract

Discovering vulnerabilities in operating system (OS) ker-
nels and patching them is crucial for OS security. How-
ever, there is a lack of effective kernel vulnerability de-
tection tools, especially for closed-source OSes such as
Microsoft Windows. In this paper, we present Digtool,
an effective, binary-code-only, kernel vulnerability de-
tection framework. Built atop a virtualization monitor
we designed, Digtool successfully captures various dy-
namic behaviors of kernel execution, such as kernel ob-
ject allocation, kernel memory access, thread scheduling,
and function invoking. With these behaviors, Digtool
has identified 45 zero-day vulnerabilities such as out-
of-bounds access, use-after-free, and time-of-check-to-
time-of-use among both kernel code and device drivers
of recent versions of Microsoft Windows, including Win-
dows 7 and Windows 10.

1 Introduction

Software vulnerabilities have been well studied over
the years, but they still remain a significant threat to
computer security today. For instance, improper use
of parameters or memory data can lead to program
bugs, some of which can become vulnerabilities, such
as time-of-check-to-time-of-use (TOCTTOU), use-after-
free (UAF), and out-of-bounds (OOB) vulnerabilities.
These vulnerabilities are often the root cause of suc-
cessful cyberattacks. However, symptoms resulting
from these vulnerabilities tend to be delayed and non-
deterministic, which makes them difficult to discover by
regular testing. Therefore, dedicated vulnerability iden-
tification tools that can systematically find software vul-
nerabilities are urgently needed.

There are usually two aspects in detecting vulnerabil-
ities: path exploration and vulnerability identification.
Combining path exploration with vulnerability identi-
fication tools is an effective way to detect vulnerabil-

ities. Most fuzzing tools, such as AFLFast [12] and
SYMFUZZ [16], only adopt path exploration to probe
code branches. As a typical example of a path explorer,
S2E [17], based on virtualization technology, combines
virtual machine monitoring with symbolic execution to
automatically explore paths. Vulnerability identification
tools are used for recording exceptions (e.g., the abuse
of parameters or illegal memory access) in the paths that
have been probed. While we could have also investigated
path exploration, the main focus of Digtool is vulnerabil-
ity detection.

Depending on the detection targets, vulnerability iden-
tification tools can be classified into two categories: (1)
tools for checking applications in user mode, and (2)
tools for detecting programs in kernel mode. However,
most of the current vulnerability identification tools,
such as DESERVE [29], Boundless [15], and LBC [21],
have been designed for applications in user mode. They
cannot be directly used to detect kernel vulnerabilities.
However, vulnerabilities in OS kernels or third-party
drivers have a far more severe threat than user-level vul-
nerabilities. Thus, there is still a need for effective detec-
tion of kernel vulnerabilities.

Several Linux kernel vulnerability identification
tools, such as Kmemcheck [32], Kmemleak [6], and
KEDR [35], have been developed. They can effectively
capture kernel vulnerabilities. However, since they rely
on the implementation details and the source code of the
0S8, it is difficult to port these tools to other OSes, espe-
cially to a closed-source OS such as Windows.

In Windows OS, a notable tool for checking kernel
vulnerabilities is Driver Verifier [28], which is used to
detect illegal function calls or actions that might corrupt
the system. While Driver Verifier is able to detect many
potential bugs, it is an integrated system, but not a ded-
icated tool for detecting kernel vulnerabilities. For in-
stance, it cannot be used to identify certain vulnerabili-
ties, such as TOCTTOU vulnerabilities.

USENIX Association

26th USENIX Security Symposium 149



Vulnerability identification tools based on virtualiza-
tion are much more portable to support different OSes,
including closed-source ones. However, the current vul-
nerability identification tools based on virtualization,
such as VirtualVAE [18] and PHUKO [38], are dedi-
cated to detecting a single, specific type of vulnerabili-
ties. Moreover, they have not been evaluated in detecting
zero-day kernel vulnerabilities. It is worth noting that the
virtualization-based tool Xenpwn [41] makes use of Lib-
vmi [34] to discover vulnerabilities in para-virtualized
devices of Xen (not for the Windows OS). It traces guest
physical addresses through extended page tables (EPTs).
However, it is not appropriate for monitoring guest vir-
tual addresses.

For closed-source OSes such as Windows, it is even
more difficult to build a vulnerability identification tool.
We are neither able to insert detection code at compile-
time to detect program errors like those tools for Linux,
nor able to rewrite or modify the OS source code like
Driver Verifier. Under these constraints, we adopt virtu-
alization to hide the internal details of the Windows OS,
and carry out the detection at a lower level, i.e., at the hy-
pervisor. Therefore, a novel vulnerability identification
framework named Digtool is proposed, which captures
dynamic behavior characteristics to discover kernel vul-
nerabilities in the Windows OS by using virtualization
technology.

Contributions. In short, we make the following contri-
butions in this paper:

e A virtualization-based vulnerability identification
framework, Digtool, is proposed to detect different
types of kernel-level vulnerabilities in the Windows
OS. It does not need to crash the OS, and thus it can
capture multiple vulnerabilities and provide the ex-
act context of kernel execution. It is designed to be
independent of kernel source code, which enlarges
its applicable scope. In addition, it does not depend
on any current virtualization platform (e.g., Xen) or
emulator (e.g., bochs).

e Based on the framework, virtualization-based de-
tection algorithms are designed to discover four
types of vulnerabilities, including UNPROBE (no
probe, i.e., no checking on the user pointer to the
input buffer), TOCTTOU, UAF, and OOB. These
algorithms can effectively detect kernel vulnerabil-
ities by accurately capturing their dynamic charac-
teristics.

e With Digtool, we found 45 zero-day kernel vulner-
abilities from both Windows kernel code and third-
party device driver code. These vulnerabilities had
never been published before. We have made respon-
sible disclosure and have helped the corresponding

vendors fix the vulnerabilities. The root cause of
some of the vulnerabilities is also analyzed in this

paper.

The rest of this paper is organized as follows. In Sec-
tion 2, we describe the background. In Section 3, we
provide the overall design of the framework. In Section
4, we detail the implementation of Digtool, and, in Sec-
tion 5, evaluate its effectiveness and efficiency. In Sec-
tion 6, we discuss its limitations and directions for future
research. In Section 7, we review the related work, and
in Section 8 we conclude.

2 Background

UNPROBE, TOCTTOU, UAF, and OOB vulnerabilities
have widely appeared in various programs including OS
kernels. They can lead to denial-of-service attacks, lo-
cal privilege escalation, and even remote code execution,
which directly affect the stability and security of the vic-
tim program.

No checking of a user pointer to an input buffer could
lead to a vulnerability that is denoted UNPROBE in this
paper. Many kernel modules omit the checking for user
pointers (especially when the user pointers are nested in
a complex structure). According to the historical data
of common vulnerabilities and exposures (CVEs), there
have been many UNPROBE vulnerabilities in the Win-
dows kernels, and there are also many such vulnerabili-
ties in third-party drivers (e.g., the vulnerabilities in the
experiment described herein). An UNPROBE vulnera-
bility could result in an invalid memory reference, an ar-
bitrary memory read, or even an arbitrary memory over-
write. Therefore, detection of UNPROBE is necessary.
While fuzzing based on path exploration can help solve
some problems, it is difficult to test all pointer arguments
nested in complicated structures.

A TOCTTOU vulnerability stems from fetching a
value from user memory more than once. Usually, a
brittle system-call handler fetches a parameter for the
first time to check it and for the second time to use it.
Thus, an attacker has a chance to tamper with the pa-
rameter in the user space between the two steps. Con-
sequently, the system-call handler will fetch and use the
compromised parameter, which will lead to a TOCTTOU
vulnerability. Similar to UNPROBE above, TOCTTOU
could also result in an invalid memory reference, an ar-
bitrary memory read, or an arbitrary memory overwrite.
It is difficult to detect this type of vulnerability through
fuzzing based only on path exploration. Bochspwn [24]
was developed to identify many TOCTTOU vulnerabil-
ities in the Windows kernel. However, its application is
extremely restricted by the disappointing performance of
the bochs emulator [25]. In addition, the bochs emulator

150 26th USENIX Security Symposium

USENIX Association



User Space

e Lo At

Kernel Space

’ Middleware

Guest OS

VMM Infrastructure

Hypervisor

| Hard (CPU + virtualizati ions)

Figure 1: Digtool architecture.

cannot simulate all actual operations and functionalities
of a real-world machine (e.g., inability to emulate certain
real, hardware-specific kernel modules, such as modern
video card drivers). As a result, Bochspwn cannot cover
all of the kernel modules.

A UAF vulnerability stems from reuse of freed mem-
ory. An OOB vulnerability results from accessing mem-
ory that is beyond the bounds of allocated heaps or mem-
ory objects. In many cases, these vulnerabilities could
lead to local privilege escalation. For the Linux OS, tools
such as AddressSanitizer [36] have been released to de-
tect these vulnerabilities. For the closed-source Windows
08, it is difficult for a third party to build such detection
tools. Driver Verifier [28] proposed by Microsoft can be
used to discover these types of vulnerabilities. However,
it is much more likely to miss a vulnerability in some
scenarios (e.g., the UAF detection scenario described in
Section 4.3.1).

Digtool adopts virtualization technology to detect the
above four types of vulnerabilities in Windows kernels
and device drivers with better detection results. As a
framework, it could also be used to detect some other
types of vulnerabilities, such as double-free and infor-
mation leakage, by expanding its detection algorithms.

3 Overview

The overall architecture of Digtool is illustrated in Figure
1. The subsystems and logic modules of the Digtool are
distributed across user space, kernel space, and the hy-
pervisor. The thin arrows in the figure indicate that there
are direct invoking relationships or direct channels for
passing messages between modules. The thick arrows il-
luminate that two modules act on each other indirectly
via some event-triggering mechanisms.

One of the most important tasks for the hypervisor is to
monitor virtual memory access. This is the basis for in-
terface detection and memory detection. However, the
memory monitor methods in current vulnerability iden-

tification tools are unsuitable for our scenario. Without
source code, we cannot monitor memory access through
patching source code like Driver Verifier [28], or through
configuring compile-time instrumentation like Address-
Sanitizer [36]. Patching the system exception handler to
intercept memory references by using page access rights
is an alternative, but it will introduce significant, internal
modifications in the kernel that may impact the stabil-
ity of the OS and be the least portable. Binary rewrit-
ing could help to solve part of the problem. However,
tools such as Pin [27] and DynamoRIO [13] work well
in user mode, but it is difficult for these tools to work in
kernel mode. Drk [5] tried to port the DynamoRIO to
the kernel space for Linux, but it has not been updated
for years, and there are few special tools for the Win-
dows kernel. As an alternative, QEMU [11] or the recent
extension PEMU [42] could be used to implement ker-
nel program instrumentation for the Windows OS, but it
is complicated and has a heavier effect on performance
even without monitoring memory access.

Therefore, there is a clear need to develop an effi-
cient alternative mechanism for tracing memory access
outside a guest OS. As most programs run in virtual ad-
dress space, we should focus more on the virtual address
than on the physical address. Thus, the method of us-
ing EPT to trace physical addresses, like Xenpwn [41],
cannot be directly used in our scenario, especially for the
Windows OS, whose memory mapping between virtual
and physical addresses is nonlinear. In view of the poor
performance of Bochspwn [24], we did not adopt a full-
stack emulator. In order to build a practical framework
that focuses on the virtual address space, a shadow page
table (SPT) based on hardware virtualization technology
is employed to monitor virtual memory access, which is
very different from Xenpwn and Bochspwn in both de-
sign and implementation.

In kernel space, the major work includes setting the
monitored memory area, communicating with the hyper-
visor, and intercepting specified kernel functions. The
monitored memory area depends on the type of vulner-
ability to be detected. It will be changed along with the
occurrence of some kernel events (e.g., allocating or re-
leasing memory). Hence, it is necessary to trace these
events in kernel space. For communication, the service
interfaces are exported by Digtool. Kernel code invokes
these interfaces to request services from the hypervisor.
In addition, some kernel functions of the OS should be
hooked to trace some particular events. All of these tasks
that should be reserved in kernel space make up the mid-
dleware.

The loader, fuzzer, and log analyzer are placed in user
space to simplify the code and make the entire system
more stable. The loader activates the hypervisor and
loads the fuzzer that is used to probe program paths.

USENIX Association

26th USENIX Security Symposium 151



Thus, the behavior characteristics in the probed paths can
be recorded for the log analyzer.

Unlike emulator-based tools (e.g., Bochspwn [24]),
Digtool is able to run in a physical machine with this
architecture design. It is widely applicable to almost all
main kernels and third-party drivers.

3.1 Hypervisor Components

Digtool does not rely on any current hypervisor such as
Xen or KVM, and we implemented our own hypervi-
sor that contains three important components, including
VMM infrastructure (VMM, i.e., virtual machine moni-
tor, which is equivalent to a hypervisor), interface detec-
tion, and memory detection.

To begin with, VMM infrastructure checks the hard-
ware environment and the OS version to ensure compat-
ibility. It then initializes the hypervisor and loads the
original OS into a VM. The initialization of the hyper-
visor mainly consists of the following tasks: (1) build-
ing SPTs to monitor virtual memory access in the guest
0OS, (2) initializing modules for tracing thread schedul-
ing, and (3) establishing communication between the OS
kernel and the hypervisor. As such, the interface detec-
tion and memory detection components can monitor and
handle some special events.

Interface detection monitors the parameters passed
from user-mode programs during the system-call execu-
tion. It traces the use and the check of these parameters to
discover potential vulnerabilities. The SPTs are needed
to monitor the user memory space during the system-call
execution. As system calls are always invoked in kernel
mode, we do not need to monitor user memory when the
processor runs in user mode. Otherwise, many VMEXIT
events will be triggered, which will bring a substantial
decrease in performance. In order to focus on vulnera-
bilities in a limited scope of system calls, interface de-
tection is able to configure the detection scope of sys-
tem calls through correlative service interfaces. Thus, it
can obtain the potential vulnerabilities in specified sys-
tem calls.

Memory detection monitors the use of kernel mem-
ory in the guest OS to detect illegal memory access. The
SPTs are used to monitor the kernel memory. To detect
some specified types of vulnerabilities in different detec-
tion targets (e.g., the multi-user Win32 driver: Win32k),
memory detection is able to set monitored memory area
and configure detection targets. It also dynamically cali-
brates the monitored memory area when capturing events
of memory allocation or deallocation. All of these are
implemented through corresponding service interfaces.
Thus, it will obtain the exact characteristics of potential
vulnerabilities during the memory access process.

3.2 Kernel-Space Components

The middleware locates in the kernel space of the guest
OS. It is used to connect the subsystems in the hyper-
visor and the programs in the user space. For example,
before loading the fuzzer, we can set the detection scope
of system calls through the configuration file. Then, the
middleware transfers the configuration information and
the fuzzer process information from the loader to the hy-
pervisor. Thus, the hypervisor can detect vulnerabilities
in the environment of the fuzzer process.

For interface detection, the middleware records all be-
havior events in log files through a work thread. The
recorded data include system call number, event type,
event time, instruction address, and accessed memory
of the event. Thus, the log analyzer can detect poten-
tial UNPROBE and TOCTTOU vulnerabilities from the
log files. Note that only the system calls in the detec-
tion scope are recorded, which is meaningful when the
system calls are invoked frequently. The number of fre-
quent system calls could be limited to reduce the perfor-
mance cost and alleviate the stress on the log analyzer.
We can then obtain more effective data with less perfor-
mance overhead.

For memory detection, the middleware helps dynam-
ically calibrate the monitored memory by hooking some
specified memory functions. In order to obtain more rel-
evant data and reduce performance cost, it also limits
the areas of monitored memory and the scope of kernel
code (e.g., the code segment of Win32k) through invok-
ing the service interfaces. If a potential vulnerability is
found, the middleware records it and interrupts the guest
OS through single-step mode or a software interruption.
Thus, the guest OS is able to be connected with a debug
tool such as Windbg, and the exact context is obtained to
analyze the vulnerability.

3.3 User-Space Components

There are three modules in the user space: loader, fuzzer,
and log analyzer. The loader is used for loading the tar-
get process, after which Digtool provides a process en-
vironment for detecting vulnerabilities. The loader can
also limit the detection scope of system calls and set the
virtual addresses of the boundary for ProbeAccess events
(which will be described in Section 4.2) through the con-
figuration file.

The fuzzer is responsible for discovering code
branches. It is loaded by the loader. In Digtool, the
fuzzer needs to invoke the system calls in the detection
scope, and discovers as many branches as possible in the
code of a system call by adjusting the corresponding pa-
rameters. A higher path-coverage rate can certainly help
achieve a more comprehensive test. However, as this

152 26th USENIX Security Symposium

USENIX Association



paper mainly focuses on the vulnerability identification
tool, not path exploration, we will not go into much de-
tail regarding the fuzzer or the path coverage.

The log analyzer is designed to discover potential
vulnerabilities from log files. It extracts valuable in-
formation from the large amount of recorded data ac-
cording to the characteristics of vulnerabilities. The log
analyzer's vulnerability detection algorithm needs to be
changed depending on the types of vulnerabilities (e.g.,
UNPROBE or TOCTTOU) to be detected, since we use
different policy to detect them.

4 Implementation

In this section, we provide the implementation details
of how we implement Digtool, especially its hypervisor
components, including VMM infrastructure, interface
detection, and memory detection. The implementation
of other components, such as the middleware, loader,
fuzzer, and log analyzer, is also described in this section.

4.1 VMM Infrastructure

The main task of VMM infrastructure is to initialize
the hypervisor and provide some basic facilities. After
initializing the hypervisor, it loads the original OS into
a VM. Then, the hypervisor is able to monitor the OS
through the facilities.

The initialization process runs as follows. In the be-
ginning, Digtool is loaded into the OS kernel space as a
driver that checks whether processors support hardware
virtualization through CPUID instruction. If they support
it, VMM infrastructure builds some facilities for the hy-
pervisor. Then, it starts the hypervisor for every proces-
sor by initializing some data structures (e.g., VMCS) and
registers (e.g., CR4). Finally, it sets the state of guest
CPUs according to the state of the original OS. Thus, the
original OS becomes a guest OS running in a VM.

The Intel developer’s manual [23] can be referenced
to obtain the implementation details of hardware virtual-
ization. This paper mainly focuses on the modules that
help to identify vulnerabilities. These modules include
the virtual page monitor, thread scheduling monitor,
CPU emulator, communication between kernel and hy-
pervisor, and the events monitor. Among these, the CPU
emulator and events monitor are associated with partic-
ular types of vulnerabilities, so these two parts will be
described in corresponding subsections.

4.1.1 Virtual Page Monitor

Digtool adopts SPTs to monitor virtual memory ac-
cess. To reduce performance cost, SPTs are only

employed for the monitored threads (i.e., the fuzzer
threads). For non-monitored threads, the original page
tables in the guest OS are used. When thread scheduling
occurs, the virtual page monitor needs to judge whether
the new thread that will get control is a monitored thread.
Only when it is a monitored thread, will a SPT be built
for it. Thus, performance is optimized.

Figure 2 shows the workflow of the virtual page mon-
itor for a monitored thread. Digtool adopts a sparse
BitMap that traces virtual pages in a process space. Each
bit in the BitMap represents a virtual page. If a bit is set
to 1, the corresponding page needs to be monitored, and
the P flag in its page table entry (PTE) of the SPT should
be clear [note that the SPT is constructed according to the
guest page table (GPT)]. Thus, access to the monitored
virtual page will trigger a #PF (i.e., page fault) exception
that will be captured by the hypervisor.

When the #PF exception is captured, the page-fault
handler in the hypervisor will search for the BitMap.
If the bit for the page that causes the #PF exception is
0, the page is not monitored. The SPT will be updated
through GPT. Then, the instruction that causes the ex-
ception will re-execute successfully. If the bitis 1, itis a
monitored page. Then, the Handle module will be used
to handle this exception. It will (1) record the exception,
or (2) inject a private interrupt (Ox 1c interrupt, which has
not been used) into the guest OS. The recording process
for the exception is described in the following (i.e., the
part of shared memory described in Section 4.1.3). The
private interrupt handler stores some information (e.g.,
the memory address that is accessed, and the instruction
that causes the #PF) about the #PF exception, and then
it connects to a debug tool by triggering another excep-
tion, such as software interruption, in the guest OS. After
that, Digtool “single steps” the instructions in the guest
OS by setting a MTF (monitor trap flag, which can be
used in new version of processors) or TF (trap flag, which
is used in old versions of processors) in the hypervisor.
Meanwhile, the SPT is updated through GPT to make the
instruction that causes the exception re-execute success-
fully. Because of MTF or TF, a VMEXIT will be triggered
after executing one instruction in the guest OS, and then
the hypervisor will get control again. Thus, the handler
of MTF or TF in the hypervisor has a chance to clear the P
flag, and the page will be monitored once again. Finally,
it disables the MTF or TF to cancel the single-stepping
operation.

We have noticed that, in most cases, we need to mon-
itor a memory region rather than an entire memory page.
A memory region covers only one part of a memory
page or contains several pages. All of the memory pages
owned by a monitored memory region should be traced.
When a #PF exception is triggered, its handler needs to

USENIX Association

26th USENIX Security Symposium 153



Not{match
GPT ‘ VA ‘ PA ‘ ‘ Log ‘ ‘ Inject Interruption ‘
Propagatei
SPT MA Clear® ' \irg/rF Handler
/ A
CR3 HVMEXIT
Update

Set MTF/TF }4—

Figure 2: Workflow of virtual page monitor.

further recognize whether the address causing the #PF
exception is in the monitored memory region.

4.1.2 Thread Scheduling Monitor

As discussed above, Digtool only focuses on the mon-
itored threads. It needs to trace thread scheduling to en-
able detection for monitored threads and disable detec-
tion for non-monitored threads. Thus, it achieves better
performance with more effective data. The method of the
thread scheduling monitor is shown below.

In the Windows OS, the _KPRCB structure contains the
running thread information for its corresponding proces-
sor. The _KPRCB is referenced by the _KPCR structure
whose address can be obtained through the FS regis-
ter (for x64 architecture, the GS register). The running
thread of the current processor can be obtained through
the following relationship:

FS->_KPCR->_KPRCB->CurrentThread.

With respect to how to acquire _KPRCB, the methods
described in ARGOS [43] could be leveraged to uncover
this data structure, though currently we use manual re-
verse engineering and internal Windows kernel knowl-
edge to get it. Note that there are also other data struc-
ture agnostics approaches to detect kernel threads, such
as using kernel stack pointer (e.g., [20]). After obtain-
ing the _KPRCB structure, the CurrentThread member
in the _KPRCB is monitored. Any write operation to the
CurrentThread means a new thread will become the
running state, and this will be captured by the hypervi-
sor. If the new thread is a monitored thread, the virtual
page monitor will be activated to detect vulnerabilities.

4.1.3 Communication Between Kernel and Hyper-
visor

The communication between kernel and hypervisor in-
cludes two main aspects. One is that the kernel compo-
nent makes a request to the hypervisor, and the hyper-
visor provides service. The other is that the hypervisor

User Space

Kernel Space

Target Module

Hypervisor \J
1 Hypervisor Components

Figure 3: Communication between kernel and hypervi-
sor via shared memory.

sends messages to the kernel component, and the kernel
component handles the messages. The former is mainly
implemented by the service interfaces, and the latter is
carried out through the shared memory.

Digtool exports some service interfaces for the kernel-
space components. They can be directly invoked by
kernel code. The service interfaces are implemented
through a VMCALL instruction, which will trigger a
VMEXIT to trap into the hypervisor. Thus, the service
routines in the hypervisor can handle the requests.

The shared memory is applied to exchange data be-
tween the hypervisor and kernel code. The hypervisor
writes the captured behavior information to the shared
memory and notifies the kernel space components. Then,
the kernel space components read and deal with the data
in the shared memory. The workflow of the shared mem-
ory is shown in Figure 3.

The main data flow is represented by the thick arrows
in the figure. When the hypervisor captures some behav-
ior characteristics, it records them into shared memory.
The middleware in the kernel space uses a work thread
to read the data in the shared memory. It also records
characteristic information into log files.

The following stream of instructions is shown by the
thin arrows in Figure 3: (1) When the target module
(which is being detected) triggers an event monitored by
the hypervisor, a VMEXIT will be captured by the hyper-
visor. (2) The hypervisor records the event information
into shared memory. If the shared memory is full, it will
inject a piece of code into the guest OS. The code will
notify the work thread to handle the data in shared mem-
ory (i.e., read them from shared memory and write them
into log files). If the shared memory is not full, it will
jump back to the target module (the arrow represented
by 2’). (3) After notifying the work thread, the injected
code will return to the target module and re-execute the
instruction that causes the VMEXIT.

154  26th USENIX Security Symposium

USENIX Association



——
' i ' '
'on V] \nt2 n+3 | n+d
| 1 | | |
v v v v v
’ Syscall ‘ ’ ProbeRead ‘ ’ MemAccess ’ RetUser

’ MemAccess

(Check M;) (Access M;) (Access M)

Figure 4: Example of recorded events during a system call.

4.2 Detecting Vulnerabilities at System
Call Interface

Interface detection traces the execution process of sys-
tem calls and monitors their parameters passed from
user-mode programs. It then decides whether the check
or the use of these parameters will create potential haz-
ards.

Interface detection monitors the entire execution pro-
cess of system calls from the point of entering into kernel
mode to the point of returning to user mode. During this
process, it monitors how the kernel code handles the user
memory. Then, it records the behavior characteristics to
analyze potential vulnerabilities. Interface detection is
implemented by defining and intercepting different be-
havior events during the execution of system calls. These
behavior events and their interception methods make up
the events monitor.

Ten types of behavior events are defined in the event
monitor: Syscall, Trap2b, Trap2e, RetUser, MemAc-
cess, ProbeAccess, ProbeRead, ProbeWrite, GetPebTeb,
and AllocVirtualMemory events. Particular combina-
tions of these events can help locate potential vulnera-
bilities in the large amount of log data (e.g., two contin-
uous MemAccess events suggest a potential TOCTTOU
vulnerability). The behavior events recorded in the exe-
cution of a system call are shown in Figure 4. The boxes
denote recorded events. The values (e.g., n and n+ 1)
above the boxes are the event time (which only records
order but not the actual intervals). The M; and M; under
the boxes represent the user memory addresses accessed
by the event.

In the Windows OS, fast system call, interruption of
0x2b, and interruption of 0x2e are the three entry points
that allow user-mode code to invoke kernel functions.
The fast system call adopts the sysenter/syscall in-
struction to go into kernel mode. The interruption of
0x2b is used to return from a user-mode callout to the
kernel-mode caller of a callback function. The inter-
ruption of 0x2e is responsible for entering into kernel
mode in older Windows OSes. In Digtool, the three en-
try points are traced by intercepting corresponding en-
tries in the interrupt descriptor table (IDT) or MSR reg-
ister. They are defined as three types of behavior events,
which are marked as Syscall event, Trap2b event, and
Trap2e event, respectively.

The return point is obtained by another way. When
the control flow returns to the user mode, the processor
will prefetch the user-mode instructions. Thus, Digtool
obtains the point of returning to user mode by monitor-
ing the user-mode pages access. This behavior event is
marked as RetUser event.

After obtaining the two key points (i.e., the Syscall/-
Trap2b/Trap2e event and RetUser event), interface de-
tection will record the instructions that manipulate user
memory between the two points. To achieve this, one
important function is to monitor access to the user mem-
ory through SPTs. This behavior event is marked as
a MemAccess event. It is noticed that, the user-mode
pages are monitored only if the processor runs in kernel
mode, and this will significantly reduce the performance
cost.

To improve the efficiency of discovering and ana-
lyzing vulnerabilities, interface detection also defines
and intercepts some other behavior events, including
ProbeAccess, ProbeRead, ProbeWrite, GetPebTeb, and
AllocVirtualMemory. Among the five events, the first
three are used to record whether the user memory ad-
dress has been checked by the kernel code, while the last
two events suggest that the user memory address is legal;
that is, there is no need to check it again and thus false
positives can be reduced. These events are intercepted
by hooking corresponding kernel functions, except for
the ProbeAccess event.

GetPebTeb and AllocVirtualMemory events are used
to reduce false positives. In order to improve the de-
tection accuracy, we should focus on the user memory
that is passed as parameters from the user-mode program,
rather than on the memory that has been checked or that
will be deliberately accessed by kernel code. For ex-
ample, kernel code sometimes accesses a user memory
region returned by a PsGetProcessPeb function or al-
located by a NtAllocateVirtualMemory function dur-
ing a system call. In these cases, the user memory is
not a parameter passed from a user-mode program, and
it has less of a chance of causing a vulnerability. Dig-
tool defines GetPebTeb and AllocVirtualMemory events,
respectively, to handle these cases. These events inform
the log analyzer that the access to user memory is legal
and that no bug exists.

In addition to invoking the ProbeForRead (i.e.,
ProbeRead event) or ProbeForWrite (i.e., Probe-
Write event) function, kernel code can also adopt
direct comparison to check the legitimacy of the user
memory address; for example, “cmp esi, dword
ptr [nt!MmUserProbeAddress (83fa271c)]”
where the esi register stores the user memory
address to be checked, and the exported variable
nt!MmUserProbeAddress stores the boundary of the
user memory space. This kind of behavior event is

USENIX Association

26th USENIX Security Symposium 155



marked as a ProbeAccess event. We cannot intercept it
by hooking a kernel function as this event is not handled
by any kernel function. Moreover, there is no access
to user memory space. Hence, we cannot intercept it
through monitoring a MemAccess event either. For this
particular type of event, the CPU emulator is proposed.

The CPU emulator is placed in the hypervisor to help
obtain behavior characteristics that are difficult to obtain
through regular methods. The CPU emulator is imple-
mented by interpreting and executing a piece of code of
the guest OS. Its workflow is shown in Figure 5. The DR
registers are used to monitor the target memory. For the
ProbeAccess event, the target memory stores the bound-
ary that is used for checking the user-mode address. Usu-
ally, the exported variable, nt ! MmUserProbeAddress,
is one of the target memory. Kernel code can reference
this variable directly or restore its value into another vari-
able, such as win32k!W32UserProbeAddress. All of
these variables are target memory. The address of tar-
get memory can be set by the configuration file of the
loader, and then the hypervisor obtains the target mem-
ory through the middleware and monitor the memory ac-
cess through DR registers. When the guest OS accesses
target memory, the debug exception handler (DR han-
dler) in the hypervisor will capture it. The handler up-
dates the processor state of the CPU emulator (i.e., Vir-
tual CPU) through that of the VM (i.e., Guest CPU).
Thus, the CPU emulator is activated to interpret and ex-
ecute the code of the guest OS around the instruction that
causes the debug exception. Since the debug exception
is a trap event, the start address for the CPU emulator is
the instruction directly before the guest EIP register.

As the ProbeAccess event adopts direct comparison to
check pointer parameters for a system call, the CPU em-
ulator should focus on cmp instructions when it interprets
and executes the code of the guest OS. The user-mode
virtual address (UVA) for a pointer passed from a user-
mode program is obtained by analyzing cmp instructions.
Then, the ProbeAccess event is recorded in log files via
shared memory.

There may be more than one UVA to be checked in a
system call. The device driver may restore the value from
target memory to a register and then check the UVAs by
comparing them to the register separately. The maximum
number of UVAs (represented by the letter N in Figure 5)
could be set through the configuration file. After finish-
ing N cmp instructions or a fixed number of instructions,
the hypervisor will stop interpreting and executing, and
return to the guest OS to continue executing the follow-
ing instructions.

#DR 4’{ Memory H DR Handler

EAX EAX

EBX Update EBX

»»»»»» >

EIP EP | |
Guest CPU Virtual CPU

Figure 5: Workflow of CPU emulator.

4.2.1 Detecting UNPROBE Vulnerabilities

For the Windows kernel and device drivers, user mem-
ory (pointed by a user pointer) can be accessed under
the protection of structured exception handling (SEH) at
any time. It is safe to de-reference a user pointer if it
points into the user space. Otherwise, it will bring on a
serious vulnerability that is called UNPROBE in this pa-
per. Theoretically, before using a pointer passed from a
user-mode program, a system-call handler should check
it to ensure that it points into the user-mode space. As a
consequence, it will cause a ProbeAccess, ProbeRead, or
ProbeWrite event before a MemAccess event under nor-
mal circumstances. If there is no such type of checking
event before a MemAccess event, there may be an UN-
PROBE vulnerability in the kernel code.

To detect an UNPROBE vulnerability, we focus on
whether there is a checking event before a MemAccess
event, and whether the virtual addresses in the two events
are the same. As discussed above, the ProbeRead and
ProbeWrite events are directly obtained by hooking the
checking functions in the kernel. The difficulty lies in
the ProbeAccess event. In the Windows kernel, there is
much code that checks parameters via direct comparison.
Only intercepting ProbeRead and ProbeWrite events will
result in a large number of false positives. A signifi-
cant number of false positives will create more workload
and make it more complicated to perform reverse analy-
sis. Hence, monitoring a ProbeAccess event through the
CPU emulator is of significant importance. We therefore
propose the use of CPU emulator to detect UNPROBE
vulnerabilities.

Take Figure 4 as an example, at the event time of
“n+ 37, the kernel code triggers a MemAccess event
by accessing user memory. If there is no ProbeAc-
cess/ProbeRead/ProbeWrite event to check the user ad-
dress beforehand, or no AllocVirtualMemory/GetPebTeb
event to imply the legitimacy of the address, an UN-
PROBE vulnerability may exist in the kernel code. In
contrast, if there is a ProbeAccess/ProbeRead/Probe-
Write event or GetPebTeb/AllocVirtualMemory event to
suggest that the user address is legal, and the event is trig-

156 26th USENIX Security Symposium

USENIX Association



gered in the same system call as the MemAccess event,
the code is safe.

To detect an UNPROBE vulnerability, the fuzzer in-
vokes the test system calls and tries to discover as many
branches as possible by adjusting their parameters. Fur-
thermore, the log analyzer looks for MemAccess events
in which the user addresses have not been verified by a
ProbeAccess/ProbeRead/ProbeWrite or GetPebTeb/Al-
locVirtualMemory event during a system-call execution.

4.2.2 Detecting TOCTTOU Vulnerabilities

There are two key factors in a TOCTTOU vulnerability.
One is that the parameter passed from a user-mode pro-
gram should be a pointer. The other is that the system-
call handler fetches the parameter from user memory
more than once. Thus, the user-mode code has a chance
to change the parameter referenced by the pointer.

Take Figure 4 again for instance, if a piece of ker-
nel code accesses the same user memory at the time of
“n+2” and “n+ 3, there may be a TOCTTOU vul-
nerability in the kernel code. To discover this type of
vulnerability, the key point is to look for the user mem-
ory that has been accessed more than once in the log
files. The event time could help to improve the accu-
racy. If there are two MemAccess events that fetch from
the same user memory, we can judge whether they are
triggered in the same system call by comparing the two
events’ times with the Syscall/Trap2b/Trap2e event time
and the RetUser event time. Only when they are in the
same system-call execution, may a TOCTTOU vulnera-
bility exist.

The fuzzer needs to invoke the test system calls, and it
should discover as many branches as possible by adjust-
ing parameters. At the same time, interface detection
records the dynamic characteristics via the middleware.
Then, the log analyzer is used to look for the user mem-
ory addresses that have been accessed more than once
during a system-call execution.

4.3 Detecting Vulnerabilities via Memory
Footprints

Memory-footprint-based detection is used to detect il-
legal use of kernel memory by tracing the behavior of
memory allocation, release, and access. In this paper, we
will focus on two aspects of illegal memory use: access-
ing beyond the bounds of allocated heaps and referenc-
ing to freed memory. These can lead to OOB and UAF
vulnerabilities.

To capture the dynamic characteristics of vulnerabili-
ties, we need to monitor the allocated, unallocated, and
freed memory. Accessing allocated memory is allowed,
but using unallocated or freed memory is illegal. Digtool

monitors the kernel memory through the virtual page
monitor. Illegal memory access will be captured by its
page-fault handler in the hypervisor. Then, it records the
memory access error or submits it to a kernel debug tool
like Windbg [8]. Thus, the exact context of kernel exe-
cution can be provided for the vulnerability detection.

In order to obtain more relevant data and reduce per-
formance overhead, the monitored memory pages can be
restricted. The middleware helps to limit the scope of
monitored pages, and passes the scope to the memory
detection by invoking our exported service interfaces of
Digtool. For instance, when detecting UAF vulnerabil-
ities, we are only concerned with freed memory, so we
need to limit the scope to freed pages. Furthermore, to
put more emphasis on the kernel code under test, Digtool
can also specify target modules to define a scope of ker-
nel code. Only the instructions in the target modules that
cause illegal memory access are recorded. Thus, we can
concentrate on the target code tested by the fuzzer.

For tracing the allocated and freed mem-
ory, Digtool hooks memory functions such as
ExAllocatePoolWithTag and ExFreePoolWithTag.
These functions are used to allocate or free kernel
memory in the guest OS. Thus, we can determine which
memory region is allocated and which is freed. As
the size of freed memory cannot be directly obtained
through the arguments of the free functions, Digtool
records the memory address and the memory size via the
parameters of allocation functions. Thus, when a free
function is called, the memory size can be obtained by
searching for the record.

Memory allocations before Digtool is loaded cannot
be captured. Therefore, Digtool should be loaded as
early as possible to achieve more precise detection. It
is feasible to load Digtool during boot time by setting
the registry. Thus, there are only a few modules loaded
before Digtool and the unmonitored memory allocations
are few, which largely limits the attack surfaces. To
summarize, the memory allocations before loading Dig-
tool have a negligible impact on precision. Built atop
virtualization technology, our memory-footprint-based
approach can be applied to various kernels and device
drivers without any compile-time requirements.

4.3.1 Detecting UAF Vulnerabilities

UAF results from reusing the freed memory. To detect
it, memory detection needs to trace the freed memory
pages until they are allocated again. Any access to the
freed memory will be marked as a UAF vulnerability.

In order to trace freed memory, memory
functions such as ExAllocatePoolWithTag,
ExFreePoolWithTag, RtlAllocateHeap, and
RtlFreeHeap (as discussed above, hooking mem-

USENIX Association

26th USENIX Security Symposium 157



ory allocation functions is done to record the size
of freed memory) need to be hooked. Note that
the Windows OS implements some wrapper func-
tions for these. For instance, both ExAllocatePool
and ExAllocatePoolEx are the wrapper func-
tions for ExAllocatePoolWithTag. To avoid
multiple monitoring and repetitive records, Digtool
only hooks underlying memory functions such as
ExAllocatePoolWithTag rather than wrapper func-
tions. Inappropriate use of lookaside lists will also cause
UAF vulnerabilities. Digtool hooks the corresponding
functions, including InterlockedPushEntrySList
and InterlockedPopEntrySList, to monitor the
freed memory blocks in the lookaside lists.

Any instruction operating on the freed memory (or
blocks) is regarded as the “use” instruction of a UAF vul-
nerability. It is obtained through the virtual page moni-
tor. The “free” instruction of a UAF vulnerability is ob-
tained by recording the free function when it is invoked,
and its call-stack information is recorded through a back-
trace of the stack to facilitate analysis.

A UAF vulnerability may be missed in some scenar-
i0s. Considering such situations, there is a memory block
A referenced by pointer P. After freeing block A, another
program allocates a memory block B that covers the en-
tire memory of block A. Then, the first program tries
to manipulate block A through the pointer P. Obviously,
there is a UAF vulnerability in the first program. How-
ever, as the memory region of block A is allocated again,
it is difficult to detect the vulnerability. This is the rea-
son that Driver Verifier may miss a UAF vulnerability.
In order to solve this problem, Digtool delays the release
of the freed memory to extend the detection time win-
dow. The freed memory will be released until it reaches
a certain size.

4.3.2 Detecting OOB Vulnerabilities

An OOB vulnerability can be caused by accessing mem-
ory that is beyond the bounds of allocated heaps. To de-
tect it, the monitored memory space should be limited to
the unallocated memory areas. Any access to the unallo-
cated memory areas will prompt an OOB vulnerability.
Digtool calibrates the unallocated memory areas
through the help of the middleware. In general, except
for the memory areas occupied by kernel modules and
stacks, the rest of the memory pools are defined as ini-
tial unallocated memory areas. As the kernel memory
state keeps changing, memory functions that allocate or
free memory need to be hooked. Thus, it can adjust the
unallocated memory areas dynamically. During the de-
tection process, Digtool needs to search the records of al-
located or unallocated memory areas. An AVL tree (i.e.,
a self-balancing binary search tree) is employed to im-

prove the performance of the memory search. It adds a
node when a memory area is allocated, and deletes the
node if the memory is freed. Thus, when a monitored
page (not a memory area) is accessed (note that the mon-
itoring granularity of memory virtualization is a page,
but the size of a memory area may be less than a page;
the monitored pages are recorded via the BitMap, while
the monitored memory areas are stored in the AVL tree.),
Digtool searches the AVL tree for the accessed memory
area. If no related node is found, an OOB vulnerability
may exist.

Note that, as unallocated memory contains freed mem-
ory in the detection, an “OOB” may be caused by ac-
cessing a freed memory area. Some reverse-engineering
effort is needed to further distinguish between OOB and
UAF vulnerabilities.

An OOB vulnerability may be missed in some scenar-
ios. Considering such situations, two memory blocks A
and B are allocated and they are adjacent. A brittle pro-
gram tries to access block A with a pointer and an offset,
but the offset is so large that the accessed address locates
in block B. This is an obvious OOB vulnerability. How-
ever, block B is also in the AVL tree, so it is difficult to
detect this error. To solve this problem, Digtool will al-
locate an extra memory area with M bytes when a hooked
memory allocation function is invoked. As a result, the
total size of block A is sizeof (A)+M, and the start ad-
dress of block B will be backward for M bytes. However,
the size of block A recorded in the AVL tree is still de-
fined as sizeof (A) bytes. As a consequence, the extra
memory area with M bytes is not in the AVL tree. Thus,
instead of block B, the brittle program will access the ex-
tra memory area, and an OOB vulnerability will be then
captured by Digtool.

5 Evaluation

5.1 Effectiveness

We checked the detection capability of Digtool by testing
the programs of different products, including the Win-
dows OS and some anti-virus software (all of the prod-
ucts were the latest version at the time of the experi-
ments). The experimental environments included Win-
dows 7 and Windows 10. (Digtool can support Windows
XP/Vista/7/8/10, etc.) We chose some zero-day vulner-
abilities that had been responded to and fixed by the re-
sponsible vendors as examples to illustrate the experi-
mental results. All of the vulnerabilities discussed below
were first discovered by Digtool (all have been reported
to the corresponding vendors, among which Microsoft,
Avast, and Dr. Web have confirmed and fixed their vul-
nerabilities).

158 26th USENIX Security Symposium

USENIX Association



Table 1: List of UNPROBE vulnerabilities.

Software products Unsafe system calls
Avast Free Antivirus NtAllocateVirtualMemory
11.2.2262 NtCreateSection
Dr. Web 11.0 NONE
NtQuery ValueKey
NtCreateKey
NtDeleteValueKey
NtLoadKey
NtOpenKey
NtSetValueKey
NtUnloadKey
NtCreateMutant
Norman Security Suite NtCreateEvent
11.0.0 NtCreateFile
NtCreateSemaphore
NtCreateFile
NtCreateKey
NtDeleteFile
NtDelete ValueKey
NtOpenFile
NtOpenKey
NtOpenSection
NtSetInformationFile
NtSetValueKey
NtWriteVirtualMemory

AhnLab 8.0

Spyware Detector
2.0.0.3

5.1.1 Detecting Vulnerabilities via Interface

We chose five anti-virus software products as test tar-
gets since they intercept many system calls that could
be invoked by user-mode applications. The test was
mainly carried out on Avast for its strength of complex-
ity. The other four anti-virus software products included
Dr. Web, Ahnlab, Norman, and Spyware Detector. We
used some zero-day vulnerabilities discovered through
Digtool to verify its ability to detect UNPROBE and
TOCTTOU vulnerabilities. The middleware recorded the
behavior characteristics into log files to help locate vul-
nerabilities.

Detecting UNPROBE. Taking a vulnerability in Avast
11.2.2262 as an example, through the log analyzer, the
following data were obtained from the Digtool’s log file
for Avast 11.2.2262:

ProbeForRead and ProbeForWrite functions to check
a user pointer (this is a common scenario in third-party
drivers), no human effort is needed for further confirma-
tion as the detection is precise due to the facts that the
start address and length information of the input buffer
can be obtained through the corresponding kernel func-
tion. If the driver uses direct comparison to check a user
pointer, Digtool may produce false positives or false neg-
atives. This results from a lack of accurate address ranges
in the ProbeAccess event as we cannot obtain the “size”
of the input buffer. We must assume the length for the
input user-mode buffer. If the assumed length is larger
then the real one, false negatives may be produced. Oth-
erwise, false positives may be generated.

In the case of ProbeAccess, Digtool only helps point
out a potential vulnerability. Human effort is still
needed to obtain the exact length of the input user-mode
buffer through reverse analysis so that we can determine
whether the instruction (given by the log analyzer) could
really cause an UNPROBE vulnerability.

Detecting TOCTTOU. Taking a vulnerability in Dr.
Web 11.0 as an example, through the log analyzer
the following dynamic characteristics were distilled from
Digtool’s log file for Dr. Web 11.0:

NtCreateSection:

Count :3 ==============

Eip: 83f0907f Address:3b963c Sequence:398 rw:
Eip: 89370d54 Address:3b963c Sequence:399 rw:
Eip: 89370d7b Address:3b963c Sequence:401 rw:
KiFastSystemCallRet

o o T

NtAllocateVirtualMemory:

Eip: 89993f3d, Address: 0023f304, rw: R
Eip: 84082ed9, Address: 0023f304, PROBE!
KiFastSystemCallRet

aswSP.sys, the Avast driver program, used the in-
struction at the address 0x89993f3d to fetch the
value from the user address (i.e., 0x23f304) with-
out checking. The subsequent checking instruc-
tion at the address 0x84082ed9 belonged to the
NtAllocateVirtualMemory function. Therefore, there
was a typical UNPROBE vulnerability in aswSP. sys.
Using Digtool, 23 similar vulnerabilities were found
in the five anti-virus software programs tested. The re-
sults are shown in Table 1. For security reasons, we only
give the system calls for which vulnerabilities exist.
When the log analyzer points out a potential UN-
PROBE vulnerability, and the tested driver only uses the

The user address 0x3b963c was accessed by the ker-
nel instructions more than once, so there may be a TOCT-
TOU vulnerability. dwprot.sys, the Dr. Web driver
program, used the instruction at the address 0x89370d54
to fetch the value from the user address (i.e., 0x3b963c),
and then it invoked the ProbeForRead function to check
it. At the address 0x89370d7b, the dwprot . sys fetched
the value again to use it. Therefore, there was a typical
TOCTTOU vulnerability in dwprot.sys.

With the help of Digtool, 18 kernel-level TOCTTOU
vulnerabilities were found in the five anti-virus software
programs tested. The results are shown in Table 2. For
security reasons, we only give the system calls for which
vulnerabilities exist.

Digtool may produce false positives that originate
from the fact that it detects TOCTTOU vulnerabilities
through double-fetch. Further manual analysis is needed
to confirm that double-fetch is a TOCTTOU vulnerabil-

1ty.
5.1.2 Detecting Vulnerabilities via Memory Foot-
prints

We chose 32-bit Windows 10 as a test target. Some zero-
day vulnerabilities discovered by Digtool were selected

USENIX Association

26th USENIX Security Symposium 159




Table 2: List of TOCTTOU vulnerabilities.

Software products

Unsafe system calls

Avast Free Antivirus
11.2.2262

NtUserOpenDesktop
NtQueryObject
NtUserBuildNameList
NtOpenSection
NtCreateEvent
NtCreateEventPair
NtCreateIoCompletion
NtCreateMutant
NtCreateSection

Single step exception - code 80000004
win32kbase ! RGNMEMOBJ :: bFastFill+0x385:
93e34bf9 895304 mov dword ptr [ebx+4],edx

NtCreateSemaphore
NtCreateTimer
NtOpenEvent
NtOpenEventPair
NtOpenloCompletion
NtOpenMutant
NtOpenSemaphore
NtOpenTimer
Dr. Web 11.0 NtCreateSection
AhnLab 8.0 NONE
Norman Security Suite
11.0.0 NONE
Spyware Detector
2003 NONE

to verify its effectiveness in detecting UAF and OOB vul-
nerabilities. Instead of logging, the middleware was set
to interrupt the guest OS and connect to Windbg when a
program error was captured. Thus, an exact context can
be provided for analysis.

Detecting UAF. The following content is
shown by Windbg when the UAF vulnerability
(MS16-123/CVE-2016-7211 [3]) is captured in
win32kfull.sys; this vulnerability was first discov-
ered through Digtool:

Single step exception - code 80000004
win32k!_ScrollDC+0x21:
96b50f3e 83ff01 cmp edi,l

The “Single-step exception” is triggered by Digtool.
As it is a trap event, the instruction that triggers the ex-
ception has already been finished, and the guest OS is
interrupted at the address of the next instruction to be ex-
ecuted. The instruction just before 0x96b50£f3e is the
exact instruction that tries to access a freed memory area
and causes the UAF vulnerability. We can obtain it by
Windbg as follows and its address is 0x96b50£3b. The
esi register (at the address of 0x96b50£3b) stores the
address of the freed heap:

96b50f3b 8b7e68 mov edi,dword ptr [esi+68h]
96b50f3e 83ff01 cmp edi,1//win32k!_ScrollDC+0x21

Detecting 0OB. Vulnerabilities includ-
ing MS16-090/CVE-2016-3252 [2],
MS16-034/CVE-2016-0096 [1], and

MS16-151/CVE-2016-7260 [4] were first discov-
ered by Digtool. Taking MS16-090/CVE-2016-3252
as an example to illustrate the detection result, the
following content was shown when the vulnerability was
captured in win32kbase:

This is similar to the content of the above UAF, and
0x93e34bf9 is the address of the next instruction to be
executed. The instruction just before 0x93e34bf9 is the
exact instruction that tries to access an unallocated mem-
ory area and causes the OOB vulnerability.

Note that there is no false positive in the UAF/OOB
detection, and no human effort is needed for locating or
confirming the vulnerability. Whenever an exception is
captured, it is always a vulnerability.

5.2 Efficiency

Owing to the fact that Bochspwn [24], which is based on
the bochs emulator [25], only detects TOCTTOU vulner-
abilities among the four types of vulnerabilities by now,
we tested Digtool’s performance cost in detecting TOCT-
TOU vulnerabilities, and compared its performance with
that of the bochs emulator in the same environment (i.e.,
the same hardware platform, OS version, parameters of
system calls, and arguments of the test program). We
chose ten common system calls that are the most widely
used and hooked by anti-virus software to test the ef-
ficiency. In order to obtain a more comprehensive re-
sult, we also chose a frequently used program, WinRAR
5.40 [7], for an efficiency test. The performance cost is
shown in Figure 6 (the result may be affected by some
factors, such as the parameters of system calls and the
WinRAR input file).

The performance cost of Digtool is divided into two
categories: “unrecorded” and “recorded.” “Unrecorded”
means that the system calls are not included in the config-
uration file, and thus no page is monitored and no log is
recorded for them. However, the other modules in inter-
face detection are activated. This class of performance
cost can provide a comprehensive comparison with the
bochs emulator since the bochs emulator records noth-
ing. In addition, it also reflects the state of the entire
system since most of system calls and threads are un-
monitored when detecting TOCTTOU. “Recorded” indi-
cates that the system calls are put into the configuration
file and their behaviors are recorded. It describes the per-
formance cost of the related system calls in the specified
monitored thread, but has nothing to do with the perfor-
mance of the other system calls and threads. “Windows”
denotes the performance of a clean OS without any tools,
and “bochs” represents the performance cost of the OS
running into bochs emulator.

In the case of “unrecorded,” the result of system calls
showed that Digtool is from 2.18 to 5.03 times slower
than “Windows,” but 45.4 to 156.5 times faster than
“bochs.” From the WinRAR result, Digtool is 2.25

160 26th USENIX Security Symposium

USENIX Association




1000000
° 100000 o —
=3 I i - - R Y N
S 10000 \/ \(
el 1000
: D - S e o s —— I
= 100 -4 o g ¢ 4
£
10
! NtMapVi NtWriteVi | NtFreeVi
NtCreate | NtCreateS tMap !e NtLoadDri tWriteVi| NtFreeVir NtAlpcCo | NtOpenEv | NtCreateT | NtCreate .
. wOfSectio rtualMem | tualMem X WinRAR
Mutant ection ver nnectPort ent imer Key
n ory ory
== Windows 112.4 109.5 128.2 125 156 469 719 115.4 112.4 300.2 147
== Digtool(unrecorded) | 565.4 547 584.4 575.2 609.4 1578 1565.4 562.6 565.6 750 3314
== Digtool(recorded) 9893.2 9226.7 20398.3 2052 16771 10101.7 24969 8987 8187.2 22997.7 1977.8
bochs 34398.3 | 31844.2 | 48943.6 | 36572.5 | 53940.2 71573 | 244921.8 | 33296.8 32573 | 103036.5 | 142104.3

Figure 6: Performance overhead.

times slower than “Windows,” but 428.8 times faster than
“bochs.” In the case of “recorded,” most of the moni-
tored system calls are from 70 to 90 times (which de-
pends on the arguments and system calls) slower than
“Windows,” but still much faster than ‘“bochs.” From the
WinRAR result (all of the system calls in the NT kernel
are recorded), the “recorded” case is 13.45 times slower
than “Windows.” This finding offers another perspective
on the average performance cost of an application un-
der the situation of monitoring all system calls. In this
extreme case, Digtool is still 71.8 times faster than the
bochs emulator. Thus, Digtool achieves an acceptable
level of performance.

5.3 Comparison and Analysis

Next, we illustrate Digtool’s advantages by comparison
with Driver Verifier [28], which is a notable tool for
checking Windows kernels.

Crash resilient. Digtool is able to capture dynamic char-
acteristics of potential vulnerabilities without needing a
“Blue Screen of Death” (BSOD). As the analysis pro-
cess only requires the recorded data containing accessed
memory address, event type, and event time, there is no
need for triggering a BSOD to locate a program error.
The fuzzer only needs to discover as many code branches
as possible, and it does not have to crash the OS. During
this process, Digtool will record all dynamic character-
istics. Without a BSOD, it keeps recording, which will
help find more vulnerabilities.

However, it is inevitable that Driver Verifier will cause
a BSOD to locate and analyze a vulnerability. It does not
stop crashing the OS at the address of the same program
error until the error is fixed. This will make it difficult
to test other vulnerabilities. For example, when we test
Avast with Driver Verifier, the cause of a BSOD is always
the same:

Argl:f6,
Arg2:0c,

Referencing user handle as KernelMode.
Handle value being referenced.

The BSOD results from using a user-mode handle un-
der the KernelMode flag. If the problem is not solved,
Driver Verifier cannot further test Avast.

Interrupting the OS with an exact context. Through
the middleware, Digtool can be set to interrupt the guest
OS when a program error happens. Thus, it can provide
an exact context for the vulnerability by connecting to a
debug tool.

Driver Verifier has to crash the OS to locate and an-
alyze a program error. However, the context has been
changed since the OS is not stopped at the moment the
program error occurs (usually, the OS will keep running
for a moment to trigger the program error). Much more
human effort is needed to locate the error.

Taking MS16-090/CVE-2016-3252 [2] as an exam-
ple, Digtool exactly locates the instruction (just before
0x93e34bf9) that causes the vulnerability:

win32kbase ! RGNMEMOBJ :: bFastFill+0x385:
93e34bf9 895304 mov dword ptr[ebx+4],edx

However, from Driver Verifier, the captured context is
as follows:

BAD_POOL_HEADER (19)

FOLLOWUP_IP:
win32kfull!NSInstrumentation::PlatformFree+10
al0efaade 5d pop ebp

Driver Verifier only points out a “bad pool” (OOB) er-
ror, but does not provide an exact context for the vulner-
ability. Much more reverse-engineering effort is required
to locate the vulnerability from the above information.

Capturing more vulnerabilities. Digtool can effec-
tively detect UNPROBE and TOCTTOU vulnerabilities.
However, as no similar detection rule is designed, Driver
Verifier cannot be used to detect them. Moreover, Driver

USENIX Association

26th USENIX Security Symposium 161




Verifier may sometimes miss a UAF or OOB vulnera-
bility because the vulnerability may happen to access a
valid memory page, and does not cause a BSOD. Thus,
Driver Verifier cannot find it.

The above UAF vulnerability
(MS16-123/CVE-2016-7211) discovered by Dig-
tool is an example. It accesses a freed memory block
that is almost immediately reallocated again under
normal circumstances. As a consequence, the physical
page of the freed memory block is valid, and it does not
violate the rule of Driver Verifier, no BSOD is caused,
and no bug is found. However, the vulnerability can
be captured by Digtool due to the fact that it delays
the release of freed memory. Thus, Digtool is more
powerful in this regard.

To summarize, Digtool discovers 45 zero-day ker-
nel vulnerabilities, and effectively detects the four types
of program errors: UNPROBE, TOCTTOU, UAF, and
OOB. In terms of efficiency, it achieves significantly bet-
ter performance than Bochspwn. Compared to Driver
Verifier, it can capture multiple vulnerabilitie with an ex-
act execution context. As such, Digtool can be consid-
ered a complement to Driver Verifier.

6 Discussion

Digtool has a number of limitations. First, the perfor-
mance cost could be optimized. Although it is much
faster than an emulator, the performance overhead is still
costly in the monitored threads. The performance cost
mainly comes from the frequent switches between the
hypervisor and guest OS. How to reduce the switches and
the performance cost could be a research topic.

Second, the supported platforms could be extended.
Digtool currently only supports the Windows OS. Via
virtualization technology, the hypervisor runs outside of
the guest OS, which tends to be more portable and has the
potential of supporting other OSes. However, the middle-
ware in the kernel space is platform-specific. The main
work of supporting various platforms (e.g., MacOS) is
adapting the middleware.

Third, there is still room for extension in the detec-
tion algorithms. Currently, Digtool is able to detect UN-
PROBE, TOCTTOU, UAF, and OOB vulnerabilities. As
it can almost monitor any memory page, it could be used
to detect some other types of vulnerabilities, such as race
conditions, by extending the detection algorithms.

7 Related Work

7.1 Static Analysis

Static analysis is to detect potential vulnerabilities from
programming language literature. Unlike other detec-

tion methods, it does not depend on executable binary
files. Wagner et al. [39] proposed an automated detec-
tion method of finding program bugs in C code that can
discover potential buffer overrun vulnerabilities by an-
alyzing source code. Grosso et al. [19] also presented a
method of detecting buffer overflows for C code that does
not need human intervention to define and tune genetic
algorithm weights, and therefore it becomes completely
automated.

Static analysis achieves a high rate of code coverage,
but its precision may be insufficient when dealing with
difficult language constructs and concepts. In addition, it
cannot detect program bugs without source code.

7.2 Source Instrumentation

Source instrumentation is also called compile-time in-
strumentation; it inserts detection code at compile-time
to detect program bugs. CCured [30] is used to detect
unsafe pointers for C programs. It combines instrumen-
tation with static analysis to eliminate redundant checks.
AddressSanitizer [36] creates poisoned redzones around
heaps, stacks, and global objects to detect overflows and
underflows. Compared to other methods, it can detect
errors not only in heaps, but also in stacks and global
variables.

Source instrumentation has higher precision, but its
code coverage may be less comprehensive than static
analysis. In addition, it has the same limitation as static
analysis; that is, it cannot detect program bugs without
source code.

7.3 Binary Instrumentation

Binary instrumentation inserts detection code into exe-
cutable binary files and detects program bugs at runtime.
Purify [22] is an older tool for checking program bugs
based on binary instrumentation that can detect mem-
ory leaks and memory access errors. Valgrind [31] is
a dynamic binary instrumentation framework designed
to build heavyweight binary analysis tools like Mem-
check [37]. Dr. Memory [14] is a memory-checking tool
that operates on applications under both Windows and
Linux environments.

These tools do not rely on source code, and exhibit
an ability to effectively detect program errors. However,
many of them only detect bugs for applications in user
mode and cannot operate on programs in kernel mode,
especially on the Windows kernel. Some Qemu-based
tools support the instrumentation of Windows OS kernel,
but these tools cannot be used to detect vulnerabilities in
a physical machine and their average performance over-
head is quite high.

162 26th USENIX Security Symposium

USENIX Association



7.4 Specialized Memory Allocator

Another class of vulnerability identification tool uses a
specialized memory allocator and does not change the
rest of the executable binary files. It analyzes the legal-
ity of memory access by replacing or patching memory
functions.

Some tools make use of the page-protection mecha-
nism of processors. Each allocated region is placed into
a dedicated page (or a set of pages). One extra page
at the right (or/and the left) is allocated and marked as
inaccessible. A page fault will be reported as an OOB
error when instructions access the inaccessible page.
Duma [9] and GuardMalloc [26] are in this category.

Some other tools add redzones around the allocated
memory. In addition to the redzones, they also popu-
late the newly allocated memory or freed memory with
special “magic” values. If a magic value is read, the pro-
gram may have accessed an out-of-bounds or uninitial-
ized memory. If a magic value in a redzone is overwrit-
ten, it will be detected later, when the redzone is exam-
ined for freed memory. Therefore, there is no immediate
detection of the memory access error. Tools in this cate-
gory include DieHarder [33] and Dmalloc [40].

These tools do not depend on source code either and
are well suited for discovering memory errors, but they
share the limitation encountered in other tools, namely
that many of them cannot operate on the Windows ker-
nel. Moreover, it is difficult for them to check for UN-
PROBE or TOCTTOU vulnerabilities.

7.5 Kernel-Level Analysis Tools

There are only a few vulnerability identification tools
for programs in kernel mode, and most of them are
aimed at Linux. Kmemcheck [32] and Kmemleak [6]
are memory-checking tools for the Linux kernel. Kmem-
check monitors the legality of memory access by tracing
read and write operations. Kmemleak is used to detect
memory leaks by checking allocated memory blocks and
their pointers. Both tools can help discover memory er-
rors in the Linux kernel. However, all of the similar tools
need to expand the source code of Linux or insert detec-
tion code at compile-time, and thus it is difficult to port
them to a closed-source OS like Windows.

Driver Verifier [28] is the major tool for detecting bugs
in the Windows kernel. It can find program bugs that are
difficult to discover during regular testing. These bugs
include illegal function calls, memory corruption, bad
I/O packets, deadlocks, and so on. Driver Verifier is an
integrated system for detecting illegal actions that might
corrupt the OS, but not a dedicated tool for detecting vul-
nerabilities (see Section 5.3 for a discussion of Driver
Verifier’s ability to detect vulnerabilities). As part of the

kernel, in fact, Driver Verifier also relies on the source
code of the OS.

Although the above tools can be applied to detect ker-
nel vulnerabilities, they are too tightly coupled with im-
plementation details and the source code of OSes, so they
cannot work when no source code is available. More-
over, it is difficult to port them to another type of OS.

7.6 Virtualization/Emulator-Based Meth-
ods

Virtualization/emulator-based vulnerability identifica-
tion tools detect potential vulnerabilities by tracing func-
tion calls and monitoring memory access. Through vir-
tualization or emulator technology, they can overcome
most OS differences and easily support various OSes.

Among the more common virtualization-based tools
and methods are the following. VirtualVAE [18] is
a vulnerability analysis environment that is based on
QEMU [11]. In [18], it is claimed that it can detect
bugs for programs in both kernel mode and user mode.
PHUKO [38], based on Xen [10], detects buffer overflow
attack, and it checks return addresses for dangerous func-
tions to determine vulnerabilities. These virtualization-
based methods only focus on a single type of program er-
ror. They are not built as a framework for detecting var-
ious vulnerabilities. Moreover, the implementation de-
tails for some of them are not exhaustive, and the detec-
tion effects have not been illustrated through detection of
vulnerabilities in the real world. Their performance may
be influenced by a full-stack virtualization framework.

Bochspwn [24] is a notable emulator-based vulnera-
bility identification tool. Dozens of TOCTTOU vulner-
abilities have been found in the Windows kernel using
Bochspwn. However, its scope of application is limited
by the bochs emulator.

8 Conclusions

In this paper, a virtualization-based vulnerability iden-
tification framework called Digtool is proposed. It can
detect different types of kernel vulnerabilities including
UNPROBE, TOCTTOU, UAF, and OOB in the Windows
OS. It successfully captures various dynamic behaviors
of kernel execution such as kernel object allocation, ker-
nel memory access, thread scheduling, and function in-
voking. With these behaviors, Digtool has identified 45
zero-day vulnerabilities among both kernel code and de-
vice drivers. It can help effectively improve the security
of kernel code in the Windows OS.

USENIX Association

26th USENIX Security Symposium 163



Acknowledgement

We are grateful to the anonymous reviewers for their in-
sightful comments, which have significantly improved
our paper. We also would like to thank Ella Yu and Yao
Wang for their invaluable feedback on earlier drafts of
this paper.

References

[1] Cve-2016-0096. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-0096.

[2] Cve-2016-3252. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-3252.

[3] Cve-2016-7211. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-7211.

[4] Cve-2016-7260. http://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2016-7260.

[5] drk. https://github.com/DynamoRI0/drk.

[6] Kernel memory leak detector.  http://www.
mjmwired.net/kernel/Documentation/
kmemleak.txt.

[7] Rarlab. http://www.rarlab.com/.
[8] Windbg. http://www.windbg.org/.

[9] Hayati Aygiin and M Eddington. Duma-detect un-
intended memory access, 2013.

[10] Paul Barham, Boris Dragovic, Keir Fraser, Steven
Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian
Pratt, and Andrew Warfield. Xen and the art of vir-
tualization. In ACM SIGOPS operating systems re-
view, volume 37, pages 164—177. ACM, 2003.

[11] Fabrice Bellard. Qemu, a fast and portable dynamic
translator. In USENIX Annual Technical Confer-
ence, FREENIX Track, pages 41-46, 2005.

[12] Marcel Bohme, Van-Thuan Pham, and Abhik Roy-
choudhury. Coverage-based greybox fuzzing as
markov chain. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communi-
cations Security, pages 1032-1043. ACM, 2016.

[13] Derek Bruening, Timothy Garnett, and Saman
Amarasinghe. An infrastructure for adaptive dy-
namic optimization. In Code Generation and Op-
timization, 2003. CGO 2003. International Sympo-
sium on, pages 265-275. IEEE, 2003.

[14] Derek Bruening and Qin Zhao. Practical mem-
ory checking with dr. memory. In Proceedings of
the 9th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization, pages
213-223. IEEE Computer Society, 2011.

[15] Marc Briinink, Martin SiiBkraut, and Christof Fet-
zer. Boundless memory allocations for memory
safety and high availability. In Dependable Systems
& Networks (DSN), 2011 IEEE/IFIP 41st Interna-
tional Conference on, pages 13-24. IEEE, 2011.

[16] Sang Kil Cha, Maverick Woo, and David Brumley.
Program-adaptive mutational fuzzing. In Security
and Privacy (SP), 2015 IEEE Symposium on, pages
725-741. 1IEEE, 2015.

[17] Vitaly Chipounov, Volodymyr Kuznetsov, and
George Candea. S2e: A platform for in-vivo multi-
path analysis of software systems. ACM SIGPLAN
Notices, 46(3):265-278, 2011.

[18] Wang Chunlei, Wen Yan, and Dai Yiqgi. A soft-
ware vulnerability analysis environment based on
virtualization technology. In Wireless Commu-
nications, Networking and Information Security
(WCNIS), 2010 IEEE International Conference on,
pages 620-624. IEEE, 2010.

[19] Concettina Del Grosso, Giuliano Antoniol, Ettore
Merlo, and Philippe Galinier. Detecting buffer
overflow via automatic test input data generation.
Computers & Operations Research, 35(10):3125—
3143, 2008.

[20] Yangchun Fu and Zhiqiang Lin. Exterior: Using a
dual-vm based external shell for guest-os introspec-
tion, configuration, and recovery. In Proceedings of
the Ninth Annual International Conference on Vir-
tual Execution Environments, Houston, TX, March
2013.

[21] Niranjan Hasabnis, Ashish Misra, and R Sekar.
Light-weight bounds checking. In Proceedings of
the Tenth International Symposium on Code Gen-
eration and Optimization, pages 135-144. ACM,
2012.

[22] Reed Hastings and Bob Joyce. Purify: Fast de-
tection of memory leaks and access errors. In In
proc. of the winter 1992 usenix conference. Cite-
seer, 1991.

[23] Intel. Intel 64 and ia-32 architectures software de-
veloper’s manuals. 2016.

[24] Mateusz Jurczyk, Gynvael Coldwind, et al. Iden-
tifying and exploiting windows kernel race condi-
tions via memory access patterns. 2013.

164 26th USENIX Security Symposium

USENIX Association



[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Kevin P Lawton. Bochs: A portable pc emulator
for unix/x. Linux Journal, 1996(29es):7, 1996.

Mac OS X Developer Library. Mem-
ory usage performance guidelines: En-
abling the malloc debugging features.

http://developer.apple.com/library/
mac/#documentation/darwin/reference/
manpages/man3/libgmalloc.3.html.

Chi-Keung Luk, Robert Cohn, Robert Muth, Har-
ish Patil, Artur Klauser, Geoff Lowney, Steven Wal-
lace, Vijay Janapa Reddi, and Kim Hazelwood. Pin:
building customized program analysis tools with

dynamic instrumentation. In Acm sigplan notices,
volume 40, pages 190-200. ACM, 2005.

Daniel Mihai, Gerald Maffeo, and Silviu Calinoiu.
Driver verifier, February 23 2006. US Patent App.
11/360,153.

Amatul Mohosina and Mohammad Zulkernine. De-
serve: a framework for detecting program security
vulnerability exploitations. In Software Security
and Reliability (SERE), 2012 IEEE Sixth Interna-
tional Conference on, pages 98—107. IEEE, 2012.

George C Necula, Scott McPeak, and Westley
Weimer. Ccured: Type-safe retrofitting of legacy
code. In ACM SIGPLAN Notices, volume 37, pages
128-139. ACM, 2002.

Nicholas Nethercote and Julian Seward. Valgrind:
a framework for heavyweight dynamic binary in-
strumentation. In ACM Sigplan notices, volume 42,
pages 89-100. ACM, 2007.

Vegard Nossum. Getting started with kmemcheck,
2012. http://www.mjmwired.net/kernel/
Documentation/kmemcheck.txt.

Gene Novark and Emery D Berger. Dieharder: se-
curing the heap. In Proceedings of the 17th ACM
conference on Computer and communications se-
curity, pages 573-584. ACM, 2010.

Bryan D Payne. Libvmi. Technical report, Sandia
National Laboratories, 2011.

Vladimir V Rubanov and Eugene A Shatokhin.
Runtime verification of linux kernel modules based
on call interception. In Software Testing, Verifica-
tion and Validation (ICST), 2011 IEEE Fourth In-
ternational Conference on, pages 180-189. IEEE,
2011.

(36]

[37]

(38]

(39]

[40]
[41]

[42]

[43]

Konstantin Serebryany, Derek Bruening, Alexan-
der Potapenko, and Dmitriy Vyukov. Addresssani-
tizer: A fast address sanity checker. In USENIX An-
nual Technical Conference, pages 309-318, 2012.

Julian Seward and Nicholas Nethercote. Using
valgrind to detect undefined value errors with bit-
precision. In USENIX Annual Technical Confer-
ence, General Track, pages 17-30, 2005.

Donghai Tian, Xi Xiong, Changzhen Hu, and Peng
Liu. Defeating buffer overflow attacks via virtu-
alization. Computers & Electrical Engineering,
40(6):1940-1950, 2014.

David Wagner, Jeffrey S Foster, Eric A Brewer,
and Alexander Aiken. A first step towards auto-
mated detection of buffer overrun vulnerabilities. In
NDSS, 2000.

Gray Watson. Dmalloc—debug malloc library, 2004.

Felix Wilhelm. Tracing privileged memory ac-
cesses to discover software vulnerabilities. 2015.

Junyuan Zeng, Yangchun Fu, and Zhigiang Lin.
Pemu: A pin highly compatible out-of-vm dynamic
binary instrumentation framework. In Proceedings
of the 11th Annual International Conference on
Virtual Execution Environments, Istanbul, Turkey,
March 2015.

Junyuan Zeng and Zhigiang Lin. Towards auto-
matic inference of kernel object semantics from bi-
nary code. In International Symposium on Recent
Advances in Intrusion Detection, pages 538-561.
Springer, 2015.

USENIX Association

26th USENIX Security Symposium 165






KAFL: Hardware-Assisted Feedback Fuzzing for OS Kernels

Sergej Schumilo
Ruhr-Universitit Bochum

Sebastian Schinzel

Miinster University of Applied Sciences

Abstract

Many kinds of memory safety vulnerabilities have
been endangering software systems for decades.
Amongst other approaches, fuzzing is a promising
technique to unveil various software faults. Recently,
feedback-guided fuzzing demonstrated its power, pro-
ducing a steady stream of security-critical software bugs.
Most fuzzing efforts—especially feedback fuzzing—are
limited to user space components of an operating system
(OS), although bugs in kernel components are more
severe, because they allow an attacker to gain access
to a system with full privileges. Unfortunately, kernel
components are difficult to fuzz as feedback mechanisms
(i.e., guided code coverage) cannot be easily applied.
Additionally, non-determinism due to interrupts, kernel
threads, statefulness, and similar mechanisms poses
problems. Furthermore, if a process fuzzes its own
kernel, a kernel crash highly impacts the performance of
the fuzzer as the OS needs to reboot.

In this paper, we approach the problem of coverage-
guided kernel fuzzing in an OS-independent and
hardware-assisted way: We utilize a hypervisor and In-
tel’s Processor Trace (PT) technology. This allows us
to remain independent of the target OS as we just re-
quire a small user space component that interacts with
the targeted OS. As a result, our approach introduces
almost no performance overhead, even in cases where
the OS crashes, and performs up to 17,000 executions
per second on an off-the-shelf laptop. We developed a
framework called kernel-AFL (kAFL) to assess the secu-
rity of Linux, macOS, and Windows kernel components.
Among many crashes, we uncovered several flaws in the
ext4 driver for Linux, the HFS and APFS file system of
macOS, and the NTFS driver of Windows.

1 Introduction

Several vulnerability classes such as memory corrup-
tions, race-conditional memory accesses, and use-after-

Cornelius Aschermann
Ruhr-Universitit Bochum

Robert Gawlik
Ruhr-Universitit Bochum

Thorsten Holz
Ruhr-Universitidt Bochum

free vulnerabilities, are known threats for programs run-
ning in user mode as well as for the operating system
(OS) core itself. Past experience has shown that attack-
ers typically focus on user mode applications. This is
likely because vulnerabilities in user mode programs are
notoriously easier and more reliable to exploit. How-
ever, with the appearance of different kinds of exploit
defense mechanisms — especially in user mode, it has
become much harder nowadays to exploit known vul-
nerabilities. Due to those advanced defense mechanisms
in user mode, the kernel has become even more appeal-
ing to an attacker since most kernel defense mechanisms
are not widely deployed in practice. This is due to more
complex implementations, which may affect the system
performance. Furthermore, some of them are not part
of the official mainline code base or even require sup-
port for the latest CPU extension (e.g., SMAP / SMEP
on x86-64). Additionally, when compromising the OS,
an attacker typically gains full access to the system re-
sources (except for virtualized systems). Kernel-level
vulnerabilities are usually used for privilege escalation
or to gain persistence for kernel-based rootkits.

For a long time, fuzzing has been a critical compo-
nent in testing and establishing the quality of software.
However, with the development of American Fuzzy Lop
(AFL), smarter fuzzers have gained significant traction
in the industry [1] as well as in research [8, 14, 35, 37].
This trend was further amplified by Google’s OSS Fuzz
project that successfully found—and continues to find—
a significant number of critical bugs in highly security-
relevant software. Finally, DARPA’s Cyber Grand Chal-
lenge showed that fuzzing remains highly relevant for
the state-of-the-art in bug finding. The latest generation
of feedback-driven fuzzers generally uses mechanisms
to learn which inputs are interesting and which are not.
Interesting inputs are used to produce more inputs that
may trigger new execution paths in the target. Inputs that
did not trigger interesting behavior in the program are
discarded. Thus, the fuzzer is able to “learn” the input

USENIX Association

26th USENIX Security Symposium 167



format. This greatly improves efficiency and usability
of fuzzers, especially by reducing the need for an oracle
which generates semi-valid inputs or an extensive corpus
that covers most paths in the target.

Unfortunately, AFL is limited to user space applica-
tions and lacks kernel support. Fuzzing kernels has a
set of additional challenges when compared to userland
(or ring 3) fuzzing: First, crashes and timeouts mandate
the use of virtualization to be able to catch faults and
continue gracefully. Second, kernel-level code has sig-
nificantly more non-determinism than the average ring 3
program—mostly due to interrupts, kernel threads, state-
fulness, and similar mechanisms. This makes fuzzing
kernel code challenging. Furthermore, there is no equiv-
alent to command line arguments or stdin to interact
with kernels or drivers in a generic way except for plain
interrupt or sysenter instructions. In addition, the Win-
dows kernel and many relevant drivers and core compo-
nents (for Windows, macOS and even Linux) are closed
source and cannot be instrumented by common tech-
niques without a significant performance overhead.

Previous approaches to kernel fuzzing were not
portable because they relied on certain drivers or recom-
pilation [10, 34], were very slow due to emulation to
gather feedback [7], or simply were not feedback-driven
atall [11].

In this paper, we introduce a new technique that al-
lows applying feedback fuzzing to arbitrary (even closed
source) x86-64 based kernels, without any custom ring
0 target code or even OS-specific code at all. We
discuss the design and implementation of kernel-AFL
(kAFL), our prototype implementation of the proposed
techniques. The overhead for feedback generation is very
small (Iess than 5%) due to a new CPU feature: Intel’s
Processor Trace (PT) technology provides control flow
information on running code. We use this information
to construct a feedback mechanism similar to AFL’s in-
strumentation. This allows us to obtain up to 17,000 ex-
ecutions per second on an off-the-shelf laptop (Thinkpad
T460p, 17-6700HQ and 32 GB RAM) for simple target
drivers. Additionally, we describe an efficient way for
dealing with the non-determinisms that occur during ker-
nel fuzzing. Due to the modular design, kAFL is exten-
sible to fuzz any x86/x86-64 OS. We have applied kAFL
to Linux, macOS, and Windows and found multiple pre-
viously unknown bugs in kernel drivers in those OSs.

In summary, our contributions in this paper are:

* OS independence: We show that feedback-driven
fuzzing of closed-source kernel mode components
is possible in an (almost) OS-independent manner
by harnessing the hypervisor (VMM) to produce
coverage. This allows targeting any x86 operating
system kernel or user space component of interest.

* Hardware-assisted feedback: Our fuzzing ap-
proach utilizes Intel’s Processor Trace (PT) tech-
nology, and thus has a very small performance over-
head. Additionally, our PT-decoder is up to 30 times
faster than Intel’s ptxed decoder. Thereby, we ob-
tain complete trace information that we use to guide
our evolutionary fuzzing algorithm to maximize test
coverage.

Extensible and modular design: Our modular de-
sign separates the fuzzer, the tracing engine, and
the target to fuzz. This allows to support additional
x86 operating systems’ kernel space and user space
components, without the need to develop a system
driver for the target OS.

kernel-AFL: We incorporated our design con-
cepts and developed a prototype called kernel-AFL
(kAFL) which was able to find several vulnerabili-
ties in kernel components of different operating sys-
tems. To foster research on this topic, we make the
source code of our prototype implementation avail-
able at https://github.com/RUB-SysSec/kAFL.

2 Technical Background

We use the Intel Processor Trace (Intel PT) extension of
IA-32 CPUs to obtain coverage information for ring 0
execution of arbitrary (even closed-source) OS code. To
facilitate efficient and OS-independent fuzzing, we also
make use of Intel’s hardware virtualization features (In-
tel VT-x). Hence, our approach requires a CPU that sup-
ports both Intel VI-x and Intel PT. This section provides a
brief overview of these hardware features and establishes
the technical foundation for the later sections.

2.1 x86-64 Virtual Memory Layouts

Every commonly used x86-64 OS uses a split virtual
memory layout: The kernel is commonly located at the
upper half of each virtual memory space, whereas each
user mode process memory is located in the lower half.
For example, the virtual memory space of Linux is typ-
ically split into kernel space (upper half) and user space
(lower half) each with a size of 2*7 due to the 48-bit
virtual address limit of current x86-64 CPUs. Hence,
the kernel memory is mapped to any virtual address
space and therefore it is located always at the same
virtual address. If an user mode process executes the
syscall/sysenter instruction for kernel interaction or
causes an exception that has to be handled by the OS, the
OS will keep the current CR3 value and thus does not
switch the virtual memory address space. Instead, the
current virtual memory address space is reused and the
kernel handles the current user mode process related task
within the same address space.

168 26th USENIX Security Symposium

USENIX Association


https://github.com/RUB-SysSec/kAFL

2.2 Intel VT-x

The kernel fuzzing approach introduced in this paper re-
lies on modern x86-64 hardware virtualization technol-
ogy. Hence, we provide a brief overview of Intel’s hard-
ware virtualization technology, Intel VT-x.

We differentiate between three kinds of CPUs: phys-
ical CPUs, logical CPUs, and virtual CPUs (vCPUs). A
physical CPU is a CPU that is implemented in hardware.
Most modern CPUs support mechanisms to increase
multithreading performance without additional physical
CPU cores on the die (e.g., Intel Hyper-Threading). In
this case, there are multiple logical CPUs on one phys-
ical CPU. These different logical CPUs share the phys-
ical CPU and, thus, only one of them can be active at
a time. However, the execution of the different logical
CPUs is interleaved by the hardware and therefore the
available resources can be utilized more efficiently (e.g.,
one logical CPU uses the arithmetic logic unit while an-
other logical CPU waits for a data fetch) and the oper-
ating system can reduce the scheduling overhead. Each
logical CPU is usually treated like a whole CPU by the
operating system. Finally, it is possible to create multiple
hardware-supported virtual machines (VMs) on a single
logical CPU. In this case, each VM has a set of its own
vCPUs.

The virtualization role model is divided into two com-
ponents: the virtual machine monitor (VMM) and the
VM. The VMM, also named hypervisor or host, is priv-
ileged software that has full control over the physical
CPU and provides virtualized guests with restricted ac-
cess to physical resources. The VM, also termed guest, is
a piece of software that is transparently executed within
the virtualized context provided by the VMM.

To provide full hardware-assisted virtualization sup-
port, Intel VT-x adds two additional execution modes
to the well-known protection ring based standard mode
of execution. The default mode of executions is called
VMX OFF. It does not implement any hardware virtual-
ization support. When using hardware-supported virtual-
ization, the CPU switches into the VMX ON state and dis-
tinguishes between two different execution modes: the
higher-privileged mode of the hypervisor (VMX root or
VMM), and the lower privileged execution mode of the
virtual machine guest (VMX non-root or VM).

When running in guest mode, several privileged ac-
tions or reasons (execution of restricted instructions, ex-
pired VMX-preemption timer, or access to certain em-
ulated devices) in the VM guest will trigger a VM-Exit
event and transfer control to the hypervisor. This way,
it is possible to run arbitrary software that expects priv-
ileged access to the hardware (such as an OS) inside a
VM. At the same time, a higher authority can meditate

and control the operations performed with a small per-
formance overhead.

To create, launch, and control a VM, the VMM has to
use a virtual machine control structure (VMCS) for each
vCPU [28]. The VMCS contains all essential informa-
tion about the current state and how to perform VMX
transitions of the vCPU.

2.3 Intel Processor Trace

With the fifth generation of Intel Core processors (Broad-
well architecture), Intel has introduced a new processor
feature called Intel Processor Trace (Intel PT) to provide
execution and branch tracing information. Unlike other
branch tracing technologies such as Intel Last Branch
Record (LBR), the size of the output buffer is no longer
strictly limited by special registers. Instead, it is only
limited by the size of the main memory. If the output
target is repeatedly and timely emptied, we can create
traces of arbitrary length. The processor’s output format
is packet-oriented and separated into two different types:
general execution information and control flow informa-
tion packets. Intel PT produces various types of con-
trol flow related packet types during runtime. To obtain
control-flow information from the trace data, we require
a decoder. The decoder needs the traced software to in-
terpret the packets that contain the addresses of condi-
tional branches.

Intel specifies five types of control flow affecting in-
structions called Change of Flow Instruction (CoFI). The
execution of different CoFI types results in different se-
quences of flow information packets. The three CoFI
types relevant to our work are:

1. Taken-Not-Taken (TNT): If the processor exe-
cutes any conditional jump, the decision whether
this jump was taken or not is encoded in a TNT
packet.

2. Target IP (TIP): If the processor executes an indi-
rect jump or transfer instruction, the decoder will
not be able to recover the control flow. There-
fore, the processor produces a TIP packet upon the
execution of an instruction of the type indirect
branch, near ret or far transfer. These TIP
packets store the corresponding target instruction
pointer executed by the processor after the transfer
or jump has occurred.

3. Flow Update Packets (FUP): Another case where
the processor must produce a hint packet for the
software decoder are asynchronous events such as
interrupts or traps. These events are recorded as
FUPs and usually followed by a TIP to indicate the
following instruction.

USENIX Association

26th USENIX Security Symposium 169



To limit the amount of trace data generated, Intel PT
provides multiple options for runtime filtering. Depend-
ing on the given processor, it might be possible to con-
figure multiple ranges for instruction-pointer filtering (/P
Filter). In general, these filter ranges only affect virtual
addresses if paging is enabled; this is always the case
in x86-64 long-mode. Therefore, it is possible to limit
trace generation to selected ranges and thus avoid huge
amounts of superfluous trace data. In accordance to the
IP filtering mechanism, it is possible to filter traces by
the current privilege level (CPL) of the protection ring
model (e.g ring 0 or ring 3). This filter allows us to select
only the user mode (CPL > 0) or kernel mode (CPL = 0)
activity. kAFL utilizes this filter option to limit tracing
explicitly to kernel mode execution. In most cases, the
focus of tracing is not the whole OS within all user mode
processes and their kernel interactions. To limit trace
data generation to one specific virtual memory address
space, software can use the CR3 Filter. Intel PT will only
produce trace data if the CR3 value matches the config-
ured filter value. The CR3 register contains the pointer to
the current page table. The value of the CR3 register can
thus be used to filter code executed on behalf of a certain
ring 3 process, even in ring 0 mode.

Intel PT supports various configurable target domains
for output data. KAFL focuses on the Table of Physical
Addresses (ToPA) mechanism that enables us to specify
multiple output regions: Every ToPA table contains mul-
tiple ToPA entries, which in turn contain the physical ad-
dress of the associated memory chunk used to store trace
data. Each ToPA entry contains the physical address, a
size specifier for the referred memory chunk in physical
memory, and multiple type bits. These type bits specify
the CPU’s behavior on access of the ToPA entry and how
to deal with filled output regions.

3 System Overview

We now provide a high-level overview of the design of an
OS-independent and hardware-assisted feedback fuzzer
before presenting the implementation details of our tool
called kKAFL in Section 4.

Our system is split into three components: the
fuzzing logic, the VM infrastructure (modified versions
of QEMU and KVM denoted by QEMU-PT and KVM-
PT), and the user mode agent. The fuzzing logic runs
as a ring 3 process on the host OS. This logic is also re-
ferred to as KAFL. The VM infrastructure consists of a
ring 3 component (QEMU-PT) and a ring 0 component
(KVM-PT). This facilitates communication between the
other two components and makes the Intel PT trace data
available to the fuzzing logic. In general, the guest only
communicates with the host via hypercalls. The host can
then read and write guest memory and continues VM ex-

ring 0 [KvMm-PT
\
ring3 GEwuRT| | ]
@
KAFL w w@

Figure 1: High-level overview of the KAFL architecture.
The setup process (D-B) is not shown.

ecution once the request has been handled. A overview
of the architecture can be seen in Figure 1.

We now outline the events and communication that
take place during a fuzz run, as depicted in Figure 2.
When the VM is started, the first part of the user mode
agent (the loader) uses the hypercall HC_SUBMIT_PANIC
to submit the address of the kernel panic handler (or the
BugCheck kernel address in Windows) to QEMU-PT (D).
QEMU-PT then patches a hypercall calling routine at the
address of the panic handler. This allows us to get noti-
fied and react fast to crashes in the VM (instead of wait-
ing for timeouts / reboots).

Then the loader uses the hypercall HC_GET_PROGRAM to
request the actual user mode agent and starts it ). Now
the loader setup is complete and the fuzzer begins its ini-
tialization. The agent triggers a HC_SUBMIT_CR3 hyper-
call that will be handled by KVM-PT. The hypervisor
extracts the CR3 value of the currently running process
and hands it over to QEMU-PT for filtering 3. Finally,
the agent uses the hypercall HC_SUBMIT_BUFFER to in-
form the host at which address it expects its inputs. The
fuzzer setup is now finished and the main fuzzing loop
starts.

During the main loop, the agent requests a new input
using the HC_GET_INPUT hypercall @. The fuzzing logic
produces a new input and sends it to QEMU-PT. Since
QEMU-PT has full access to the guest’s memory space,
it can simply copy the input into the buffer specified by
the agent. Then it performs a VM-Entry to continue ex-
ecuting the VM (). At the same time, this VM-Entry
event enables the PT tracing mechanism. The agent now
consumes the input and interacts with the kernel (e.g.,
it interprets the input as a file system image and tries to
mount it &). While the kernel is being fuzzed, QEMU-
PT decodes the trace data and updates the bitmap on de-
mand. Once the interaction is finished and the kernel
handed control back to the agent, the agent notifies the
hypervisor via a HC_FINISHED hypercall. The resulting
VM-EXxit stops the tracing and QEMU-PT decodes the
remaining trace data (7). The resulting bitmap is passed

170 26th USENIX Security Symposium

USENIX Association



VMM: Ring 3 Ring 0 VM: Ring 3 Ring 0

'KAFL QEMU-PT KVM-PT ' 'Loader Agent "  Kernel

HC_SUBMIT_CRASH

-
Loader [.] install crash handler

HC_GET_PROGRAM

<
] copy agent to loader

e HC_SUBMIT_CR3

HC_SUBMIT_BUFFER

<
[]generate next input

[] copy input to VM, activate PT
Fuzzing]
Loop

<

=<
HC_FINISHED [I]

deactivate PT, decod
__ bitmap ['] eactivate , decode trace

-
process bitmap |

Figure 2: Overview of the kKAFL hypercall interaction.

to the logic for further processing ). Afterwards, the
agent can continue to run any untraced clean-up routines
before issuing another HC_GET_INPUT to start the next
loop iteration.

3.1 Fuzzing Logic

The fuzzing logic is the command and controlling com-
ponent of kKAFL. It manages the queue of interesting
inputs, creates mutated inputs, and schedules them for
evaluation. In most aspects, it is based on the algo-
rithms used by AFL. Similarly to AFL, we use a bitmap
to store basic block transitions. We gather the AFL
bitmap from the VMs through an interface to QEMU-PT
and decide which inputs triggered interesting behaviour.
The fuzzing logic also coordinates the number of VMs
spawned in parallel. One of the bigger design differences
to AFL is that kKAFL makes extensive use of multipro-
cessing and parallelism, where AFL simply spawns mul-
tiple independent fuzzers which synchronize their input
queues sporadically'. In contrast, KAFL executes the de-
terministic stage in parallel, and all threads work on the
most interesting input. A significant amount of time is
spent in tasks that are not CPU-bound (such as guests
that delay execution). Therefore, using many parallel
processes (upto 5-6 per CPU core) drastically improves
performance of the fuzzing process due to a higher CPU
load per core. Lastly, the fuzzing logic communicates
with the user interface to display current statistics in reg-
ular intervals.

'AFL recently added experimental support for distributing the
deterministic stage, see https://github.com/mirrorer/afl/blob/
master/docs/parallel_fuzzing. txt#L60-L66.

3.2 User Mode Agent

We expect a user mode agent to run inside the virtual-
ized target OS. In principle, this component only has to
synchronize and gather new inputs by the fuzzing logic
via the hypercall interface and use it to interact with the
guest’s kernel. Example agents are programs that try to
mount inputs as file system images, pass specific files
such as certificates to kernel parser or even execute a
chain of various syscalls.

In theory, we only need one such component. In prac-
tice, we use two different components: The first program
is the loader component. Its job is to accept an arbitrary
binary via the hypercall interface. This binary represents
the user mode agent and is executed by the loader com-
ponent. Additionally, the loader component will check
if the agent has crashed (which happens often in case of
syscall fuzzing) and restarts it if necessary. This setup
has the advantage that we can pass any binary to the
VM and reuse VM snapshots for different fuzzing com-
ponents.

3.3 Virtualization Infrastructure

The fuzzing logic uses QEMU-PT to interact with KVM-
PT to spawn the target VMs. KVM-PT allows us to trace
individual vCPUs instead of logical CPUs. This com-
ponent configures and enables Intel PT on the respec-
tive logical CPU before the CPU switches to guest ex-
ecution and disables tracing during the VM-Exit tran-
sition. This way, the associated CPU will only pro-
vide trace data of the virtualized kernel itself. QEMU-
PT is used to interact with the KVM-PT interface to
configure and toggle Intel PT from user space and ac-
cess the output buffer to decode the trace data. The

USENIX Association

26th USENIX Security Symposium 171


https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt##L60-L66
https://github.com/mirrorer/afl/blob/master/docs/parallel_fuzzing.txt##L60-L66

decoded trace data is directly translated into a stream
of addresses of executed conditional branch instruc-
tions. Moreover, QEMU-PT also filters the stream of
executed addresses—based on previous knowledge of
non-deterministic basic blocks—to prevent false-positive
fuzzing results, and makes those available to the fuzzing
logic as AFL-compatible bitmaps. We use our own cus-
tom Intel PT decoder to cache disassembly results, which
leads to significant performance gains compared to the
off-the-shelf solution provided by Intel.

3.4 Stateful and Non-Deterministic Code

Tracing operating systems results in a significant amount
of non-determinism.  The largest source of non-
deterministic basic block transitions are interrupts, which
can occur at any point in time. Additionally, our imple-
mentation does not reset the whole state after each exe-
cution since reloading the VM from a memory snapshot
is costly. Thus we have to deal with the stateful and asyn-
chronous aspects of the kernel. An example for stateful
code might be a simple call to kmalloc(): Depending
on the number of previous allocations, kmalloc () might
simply return a fresh pointer or map a whole range of
pages and update a significant amount of metadata. We
use two techniques to deal with these challenges.

The first one is to filter out interrupts and the transi-
tion caused while handling interrupts. This is possible
using the Intel PT trace data. If an interrupt occurs, the
processor emits a TIP instruction since the transfer is not
visible in the code. To avoid confusion during an inter-
rupt occurring at an indirect control flow instruction, the
TIP packet is marked with FUP (flow update packet) to
indicate an asynchronous event. After identifying such a
signature, the decoder will drop all basic blocks visited
until the corresponding iret instruction is encountered.
To link the interrupts with their corresponding iret, we
track all interrupts on a simple call stack. This mecha-
nism is necessary since the interrupt handler may itself
be interrupted by another interrupt.

The second mechanism is to blacklist any basic block
that occurs non-deterministically. Each time we en-
counter a new bit in the AFL bitmap, we re-run the in-
put several times in a row. Every basic block that does
not show up in all of the trials will be marked as non-
deterministic and filtered from further processing. For
fast access, the results are stored in a bitmap of black-
listed basic block addresses. During the AFL bitmap
translation, any transition hash value—which combines
the current basic block address and the previous ba-
sic block address—involving a blacklisted block will be
skipped.

3.5 Hypercalls

Hypercalls are a feature introduced by virtualization. On
Intel platforms, hypercalls are triggered by the vmcall
instruction. Hypercalls are to VMMs as syscalls are to
kernels. If any ring 3 process or the kernel in the VM ex-
ecutes a vmcall instruction, a VM-EXit event is triggered
and the VMM can decide how to process the hypercall.
We patched KVM-PT to pass through our own set of hy-
percalls to the fuzzing logic if a magic value is passed
in rax and the appropriate hypercall-ID is set in rbx.
Additionally, we also patched KVM-PT to accept hyper-
calls from ring 3. Arguments for specific hypercalls are
passed through rcx. We use this mechanism to define
an interface that user mode agent can use to communi-
cate with the fuzzing logic. One example hypercall is
HC_SUBMIT_BUFFER. Its argument is a guest pointer that
is stored in rcx. Upon executing the vmcall instruction,
a VM-Exit is triggered and QEMU-PT stores the buffer
pointer that was passed. It will later copy the new input
data into this buffer (see step 3 in Figure 2). Finally, the
execution of the VM is continued.

cli

mov rax, KAFL_MAGIC_VALUE
mov rbx, HC_CRASH

mov rcx, 0x0

vmcall

Listing 1: Hypercall crash notifier.

Another use case for this interface is to notify the
fuzzing logic when a crash occurs in the target OS kernel.
In order to do so, we overwrite the kernel crash handler
of the OS with a simple hypercall routine. The injected
code is shown in Listing 1 and displays how the hyper-
call interface is used on the assembly level. The cli in-
struction disables all interrupts to avoid any kind of asyn-
chronous interference during the hypercall routine.

4 Implementation Details

Based on the design outlined in the previous section, we
built a prototype of our approach called KAFL. In the fol-
lowing, we describe several implementation details. The
source code of our reference implementation is available
at https://github.com/RUB-SysSec/kAFL.

4.1 KVM-PT

Intel PT allows us to trace branch transitions without
patching or recompiling the targeted kernel. To the best
of our knowledge, no publicly available driver is able to
trace only guest executions of a single vCPU using In-
tel PT for long periods of time. For instance, Simple-PT
[29] does not support long-term tracing by design. The

172 26th USENIX Security Symposium

USENIX Association



https://github.com/RUB-SysSec/kAFL

perf-subsystem [5] supports tracing of VM guest oper-
ations and long-term tracing. However, it is designed to
trace logical CPUs, not vCPUs. Even if VMX execution
is traced, the data would be associated with logical CPUs
and not with vCPUs. Hence, the VMX context must be
reassembled, which is a costly task.

To address these shortcomings, we developed KVM-
PT. It allows us to trace vCPUs for an indefinite amount
of time without any scheduling side effects or any loss
of trace data due to overflowing output regions. The ex-
tension provides a fast and reliable trace mechanism for
KVM vCPUs. Moreover, this extension exposes, much
like KVM, an extensive user mode interface to access
this tracing feature from user space. QEMU-PT utilizes
this novel interface to interact with KVM-PT and to ac-
cess the resulting trace data.

4.1.1 vCPU Specific Traces

To enable Intel PT, software that runs within ring
0 (in our case KVM-PT) has to set the corre-
sponding bit of a model specific register (MSR)
(IA32_RTIT_CTL_MSR.TraceEn) [28]. After tracing is
enabled, the logical CPU will trace any executed code if
it satisfies the configured filter options. The modification
has to be done before the CPU switches from the host
context to the VM operation; otherwise the CPU will ex-
ecute guest code and is technically unable to modify any
host MSRs. The inverse procedure is required after the
CPU has left the guest context. However, enabling or dis-
abling Intel PT manually will also yield a trace contain-
ing the manual MSR modification. To prevent the collec-
tion of unwanted trace data within the VMM, we use the
MSR autoload capabilities of Intel VT-x. MSR autoload-
ing can be enabled by modifying the corresponding en-
tries in the VMCS (e.g., VM_ENTRY_CONTROL_MSR
for VM-entries). This forces the CPU to load a list of pre-
configured values for defined MSRs after either a VM-
entry or VM-exit has occurred. By enabling tracing via
MSR autoloading, we only gather Intel PT trace data for
one specific vCPU.

4.1.2 Continuous Tracing

Once we have enabled Intel PT, the CPU will write the
resulting trace data into a memory buffer until it is full.
The physical addresses of this buffer and how to han-
dle full buffers is specified by an array of data structures
called Table of Physical Addresses (ToPA) entries.

The array can contain multiple entries and has to be
terminated by a single END entry Q). There are two
different ways the CPU can handle an overflow: It can
stop the tracing (while continuing the execution—thus

o INT ]
®| STOP \ﬁ Main Buffer
®| END I Overflow Buffer ]

Figure 3: KVM-PT ToPA configuration.

resulting in incomplete traces) or it can raise an inter-
rupt. This interrupt causes a VM-exit since it is not mask-
able. We catch the interrupt on the host and consume the
trace data. Finally, we reset the buffers and continue with
the VM execution. Unfortunately, this interrupt might be
raised at an unspecified time after the buffer was filled.
Our configuration of the ToPA entries can be seen in Fig-
ure 3. To avoid losing trace data, we use two different
ToPA entries. The first one is the main buffer (D). Its
overflow behavior is to trigger the interrupt. Once the
main buffer is filled, a second entry is used until the in-
terrupt is actually delivered. The ToPA specifies another
smaller buffer ). Overflowing the second buffer would
lead to the stop of the tracing. To avoid the resulting
data loss, we chose the second buffer to be about four
times larger than the largest overflowing trace we have
ever seen in our tests (4 KB).

In case the second buffer also overflows, the following
trace will contain a packet indicating that some data is
missing. In that case the size of the second buffer can
simply be increased. This way, we manage to obtain pre-
cise traces for any amount of trace data.

42 QEMU-PT

To make use of the KVM extension KVM-PT, an user
space counterpart is required. QEMU-PT is an extension
of QEMU and provides full support for KVM-PT’s user
space interface. This interface provides mechanisms to
enable, disable, and configure Intel PT at runtime as well
as a periodic ToPA status check to avoid overruns. KVM-
PT is accessible from user mode via ioctl () commands
and an mmap () interface.

In addition to being a userland interface to KVM-PT,
QEMU-PT includes a component that decodes trace data
into a form more suitable for the fuzzing logic: We de-
code the Intel PT packets and turn them into an AFL-like
bitmap.

4.2.1 PT Decoder

Extensive kernel fuzzing may generate several hundreds
of megabytes of trace data per second. To deal with

2This is due to the current implementation of this interrupt. Intel
specifies the interrupt as not precise, which means it is likely that fur-
ther data will be written to the next buffer or tracing will be terminated
and data will be discarded.

USENIX Association

26th USENIX Security Symposium 173



CPU }—

KVM-PT H QEMU-PT H Filter H KAFL

Provides raw Intel Provides continous
PT data trace data for each
vCPU

Decodes trace data
in user space

Removes nonde- Uses AFL bitmap
terministic basic to detect new be-
blocks and creates havior

bitmap

Figure 4: Overview of the pipeline that converts Intel PT traces to kAFL bitmaps.

such large amounts of incoming data, the decoder must
be implemented with a focus on efficiency. Otherwise,
the decoder may become the major bottleneck during
the fuzzing process. Nevertheless, the decoder must also
be precise, as inaccuracies during the decoding process
would result in further errors. This is due to the nature of
Intel PT decoding since the decoding process is sequen-
tial and is affected by previously decoded packets.

To ease efforts to implement an Intel PT software
decoder, Intel provides its own decoding engine called
libipt [4]. libipt is a general-purpose Intel PT decod-
ing engine. However, it does not fit our purposes very
well because 1ibipt decodes trace data in order to pro-
vide execution data and flow information. Furthermore,
libipt does not cache disassembled instructions and has
performed poorly in our use cases.

Since kAFL only relies on flow information and the
fuzzing process is repeatedly applied to the same code,
it is possible to optimize the decoding process. Our In-
tel PT software decoder acts like a just-in-time decoder,
which means that code sections are only considered if
they are executed according to the decoded trace data.
To optimize further look-ups, all disassembled code sec-
tions are cached. In addition, we simply ignore packets
that are not relevant for our use case.

Since our PT decoder is part of QEMU-PT, trace data
is directly processed if the ToPA base region is filled.
The decoding process is applied in-place since the buffer
is directly accessible from user space via mmap(). Un-
like other Intel PT drivers, we do not need to store large
amounts of trace data in memory or on storage devices
for post-mortem decoding. Eventually, the decoded trace
data is translated to the AFL bitmap format.

4.3 AFL Fuzzing Logic

We give a brief description of the fuzzing parts of AFL
because the logic we use to perform scheduling and mu-
tations closely follows that of AFL. The most important
aspect of AFL is the bitmap used to trace which basic
block transitions where encountered. Each basic block
has a randomly assigned ID, and each transition from ba-
sic block A to another basic block B is assigned an offset
into the bitmap according to the following formula:

(id(A)/2@id(B)) % SIZE_OF_BITMAP

Instead of the compile-time random, kAFL uses the
addresses of the basic blocks. Each time the transition is
observed, the corresponding byte in the bitmap is incre-
mented. After finishing the fuzzing iteration, each entry
of the bitmap is rounded such that only the highest bit re-
mains set. Then the bitmap is compared with the global
static bitmap to see if any new bit was found. If a new bit
was found, it is added to the global bitmap and the input
that triggered the new bit is added to the queue. When
a new interesting input is found, a deterministic stage is
executed that tries to mutate each byte individually.

Once the deterministic stage is finished, the non-
deterministic phase is started. During this non-
deterministic phase, multiple mutations are performed at
random locations. If the deterministic phase finds new
inputs, the non-deterministic phase will be delayed un-
til all deterministic phases of all interesting inputs have
been performed. If an input triggers an entirely new tran-
sition (as opposed to a change in the number of times the
transition was taken), it will be favored and fuzzed with
a higher priority.

5 Evaluation

Based on our implementation, we now describe the
different fuzzing campaigns we performed to evaluate
kAFL. We evaluate KAFL’s fuzzing performance across
different platforms. Section 5.5 provides an overview of
all reported vulnerabilities, crashes, and bugs that were
found during the development process of kAFL. We also
evaluate KAFL’s ability to find a previously known vul-
nerability. Finally, in Section 5.6 the overall fuzzing
performance of kAFL is compared to ProjectTriforce,
the only other OS-independent feedback fuzzer avail-
able. TriforceAFL is based on the emulation backend
of QEMU instead of hardware-assisted virtualization and
Intel PT. The performance overhead of KVM-PT is dis-
cussed in Section 5.7. Additionally, a performance com-
parison of our PT decoder and an Intel implementation
of a software decoder is given in Section 5.8.

If not stated otherwise, the benchmarks were per-
formed on a desktop system with an Intel 17-6700 pro-
cessor and 32GB DDR4 RAM. To avoid distortions due

174 26th USENIX Security Symposium

USENIX Association



to poor I/O performance, all benchmarks are performed
on a RAM disk. Similar to AFL, we consider a crash-
ing input to be unique if it triggered at least one basic
block transition which has not been triggered by any pre-
vious crash (i.e., the bitmap contains at least one new
bit). Note this does not imply that the underlying bugs
are truly unique.

5.1 Fuzzing Windows

We implemented a small Windows 10 specific user mode
agent that mounts any data chunk (fuzzed payload) as
NTFS-partitioned volume (289 lines of C code). We
used the Virtual Hard Disk (VHD) API and various
IOCTLS to mount and unmount volumes programmat-
ically [31, 32]. Unfortunately, mounting volumes is a
slow operation under Windows and we only managed
to achieve a throughput of 20 executions per second.
Nonetheless, kAFL managed to find a crash in the NTFS
driver. The fuzzer ran for 4 days and 14 hours and re-
ported 59 unique crashes, all of which were division by
zero crashes. After manual investigation we suspect that
there is only one unique bug. While it does not allow
code execution, it is still a denial-of-service vulnerability,
as for example, a USB stick with that malicious NTFS
volume plugged into a critical system will crash that sys-
tem with a blue screen. It seems that we only scratched
the surface and NTFS was not thoroughly fuzzed yet.
Hence, we assume that the NTFS driver under Windows
is a valuable target for coverage-based feedback fuzzing.

Furthermore, we implemented a generic system call
(syscall) fuzzing agent that simply passes a block of data
to a syscall by setting all registers and the top stack re-
gion (55 lines of C and 46 lines of assembly code). This
allows to set parameters for a syscall with a fuzzing pay-
load independent of the OS ABI. The same fuzzer can
be used to attack syscalls on different operation sys-
tems such as Linux or macOS. However, we evaluated
it against the Windows kernel given the proprietary na-
ture of this OS. We did not find any bugs in 13 hours
of fuzzing with approx 6.3M executions since many
syscalls cause the userspace agent to terminate: Due
to the coverage-guided feedback, kAFL quickly learned
how to generate payloads to execute valid syscalls, and
this led to the unexpected execution of user mode call-
backs via the kernel within the fuzzing agent. These
crashes require rather expensive restarts of the agent and
therefore we only achieved approx. 134 executions per
second, while normally kAFL achieves a throughput of
1,000 to 4,000 tests per second (see Section 5.2). Ad-
ditionally, the Windows syscall interface has already re-
ceived much attention by the security community.

0 hours 16 hours 32 hours

3000

[ execs/s
2000 il i
AL 2 SIS Al I
1000 fi @ T
0 #inputs
L total
1000 | pending
r 1 #favorites
[ total
0 L pending
100 - e | == #unique panic
P | = #unique timeout
7 L
/(’ s S
b -
0 = . .

Figure 5: Fuzzing the ext4 kernel module for 32 hours.

5.2 Fuzzing Linux

We implemented a similar agent for Linux, which
mounts data as ext4 volumes (66 lines of C code). We
started the fuzz campaign with a minimal 64KB ext4 im-
age as initial input. However, we configured the fuzzer
such that it only fuzzes the first two kilobytes during
the deterministic phase. In contrast to Windows, the
Linux mount process is very fast, and we reached 1,000
to 2,000 tests per second on a Thinkpad laptop with a
17-6700HQ@2.6GHz CPU and 32GB RAM. Due to this
high performance, we obtained significantly better cov-
erage and managed to discover 160 unique crashes and
multiple (confirmed) bugs in the ext4 driver during a
twelve-day fuzzing campaign. Figure 5 shows the first
32 hours of another fuzzing run. The fuzzing process was
still finding new paths and crashes on a fairly regular ba-
sis after 32 hours. An interesting observation is that there
was no new coverage produced between hours 16 and 25,
yet the number of inputs increased due a higher number
of loop iterations. After hour 25, a truly new input was
found that unlocked significant parts of the codebase.

5.3 Fuzzing macOS

Similarly to Windows and Linux, we targeted multiple
file systems for macOS. So far, we found approximately
150 crashes in the HFS driver and manually confirmed
that at least three of them are unique bugs that lead to
a kernel panic. Those bugs can be triggered by unprivi-
leged users and, therefore, could very well be abused for
local denial-of-service attacks. One of these bugs seems
to be a use-after-free vulnerability that leads to full con-
trol of the rip register. Additionally, kKAFL found 220
unique crashes in the APFS kernel extension. All 3 HFS
vulnerabilities and multiple APFS flaws have been re-
ported to Apple.

USENIX Association

26th USENIX Security Symposium 175



5.4 Rediscovery of Known Bugs

We evaluated KAFL on the keyctl interface, which al-
lows a user space program to store and manage vari-
ous kinds of key material in the kernel. More specif-
ically, it features a DER (see RFC5280) parser to load
certificates. This functionality had a known bug (CVE-
2016-0758%). We tested kAFL against the same interface
on a vulnerable kernel (version 4.3.2). kAFL was able
to uncover the same problem and one additional previ-
ously unknown bug that was assigned CVE-2016-8650*.
kAFL managed to trigger 17 unique KASan reports and
15 unique panics in just one hour of execution time. Dur-
ing this experiment, kKAFL generated over 34 million in-
puts, found 295 interesting inputs, and performed nearly
9,000 executions per second. This experiment was per-
formed while running 8 processes in parallel.

5.5 Detected Vulnerabilities

During the evaluation, KAFL found more than a thou-
sand unique crashes. We evaluated some manually and
found multiple security vulnerabilities in all tested op-
erating systems such as Linux, Windows, and macOS.
So far, eight bugs were reported and three of them were
confirmed by the maintainers:

* Linux: keyctl Null Pointer Dereference® (CVE-
2016-8650)

* Linux: ext4 Memory Corruption’
» Linux: ext4 Error Handling®
 Windows: NTFS Div-by-Zero’

+ macOS: HFS Div-by-Zero'”

+ macOS: HFS Assertion Fail'”

+ macOS: HFS Use-After-Free!”

» macOS: APFS Memory Corruption'?

Red Hat has assigned a CVE number for the first re-
ported security flaw, which triggers a null pointer def-
erence and a partial memory corruption in the kernel
ASN.1 parser if an RSA certificate with a zero expo-
nent is presented. For the second reported vulnerabil-
ity, which triggers a memory corruption in the ext4 file

3https://access.redhat.com/security/cve/cve-2016-0758
“https://access.redhat.com/security/cve/cve-2016-8650
Shttp://seclists.org/fulldisclosure/2016/Nov/76
Shttps://access.redhat.com/security/cve/cve-2016-8650
7h'ctp: //seclists.org/fulldisclosure/2016/Nov/75
8http://seclists.org/bugtraq/2016/Nov/1

Reported to Microsoft Security.

10Reported to Apple Product Security.

system, a mainline patch was proposed. The last re-
ported Linux vulnerability, which calls in the ext4 error
handling routine panic() and hence results in a kernel
panic, was at the time of writing not investigated any fur-
ther. The NTFS bug in Windows 10 is a non-recoverable
error condition which leads to a blue screen. This bug
was reported to Microsoft, but has not been confirmed
yet. Similarly, Apple has not yet verified or confirmed
our reported macOS bugs.

5.6 Fuzzing Performance

We compare the overall performance of kAFL across dif-
ferent operating systems. To ensure comparable results,
we created a simple driver that contains a JSON parser
based on jsmn!! for each aforementioned operating sys-
tem and used it to decode user input (see Listing 2). If
the user input is a JSON string starting with "KAFL", a
crash is triggered. We traced both the JSON parser as
well as the final check. This way kAFL was able to learn
correct JSON syntax. We measured the time used to find
the crash, the number of executions per second, and the
speed for new paths to be discovered on all three target
operating systems.

jsmn_parser parser;
jsmntok_t tokens[5];
jsmn_init (&parser);

int res=jsmn_parse (&parser,
if(res >= 2){
if (tokens[0].type == JSMN_STRING){
int json_len = tokens[0].end - tokens[0@].
start;

input, size, tokens, 5);

int s = tokens[@].start;

if(json_len > @ && input[s+0] == 'K'){
if(json_len > 1 && input[s+1] == 'A'){
if(json_len > 2 && input[s+2] == 'F'){
if(json_len > 3 && input[s+3] == 'L'){

panic (KERN_INFO "KAFL...\n");
33333

}

Listing 2: The JSON parser kernel module used for the
coverage benchmarks.

We performed five repeated experiments for each op-
erating system. Additionally we tested Triforce AFL with
the Linux target driver. TriforceAFL is unable to fuzz
Windows and macOS. To compare TriforceAFL with
kAFL, the associated TriforceLinuxSyscallFuzzer was
slightly modified to work with our vulnerable Linux ker-
nel module. Unfortunately, it was not possible to com-
pare kAFL against Oracle’s file system fuzzer [34] due
to technical issues with its setup.

During each run, we fuzzed the JSON parser for 30
minutes. The averaged and rounded results are displayed
in Table 1. As we can see, the performance of kKAFL
is very similar across different systems. It should be re-
marked that the variance in this experiment is rather high

Uhttp://zserge.com/jsmn.html

176 26th USENIX Security Symposium

USENIX Association



https://access.redhat.com/security/cve/cve-2016-0758
https://access.redhat.com/security/cve/cve-2016-8650
http://seclists.org/fulldisclosure/2016/Nov/76
https://access.redhat.com/security/cve/cve-2016-8650
http://seclists.org/fulldisclosure/2016/Nov/75
http://seclists.org/bugtraq/2016/Nov/1

Execs/Sec Execs/Sec Time to Crash  Time to Crash  Paths/Min Paths/Min
(1 Process) (8 Processes) (1 Process) (8 Processes) (1 Process) (8 Processes)
Triforce AFL 150 320 a A 10.08 b
Linux (initramfs) 3000 5700 7:50 6:00 15.84 15.62
Debian 8 3000 5700 4:55 6:30 16.20 16.00
Debian 8 (KASan) | 4300 5700 9:20 6:00 16.22 15.90
macOS (10.12.4) 5100 8100 7:43 5:10 14.50 15.06
Windows 10 4300 8700 4:14 4:50 11.50 12.02
4 Not found during 30-minute experiments.
b This value cannot be obtained since TriforceAFL does not synchronize in such short time frames.
Table 1: KAFL and Triforce AFL fuzzing performance on the JSON sample driver.
execs/sec 17100
#paths
found | 1 KAFL — 15000
1ol | Triforce -—- 10000
L /r,__,,____-_ ------ 123 paths 6830
100 |/ 22'6 ™ T | 5000
7’ /é,/— 0 13 315 _ _
20 I i\é\Q@o “\é\@& '5\ &
1 Fo S &"@Q A él
0 15 30 Time (min)

Figure 6: Coverage comparison of KAFL (initramfs) and
Triforce AFL. KAFL takes less than 3 minutes to find the
same number of paths as Triforce AFL does in 30 minutes
(each running 1 process).

and explains some of the surprising results. This is due to
the stochastic nature of fuzzing, since each fuzzer finds
vastly different paths, some of which may take signifi-
cantly longer to process, especially crashing paths and
loops. One example for high variance is the fact that on
Debian 8 (initramfs), the multiprocessing configuration
on average needed more time to find the crash than one
process.

TriforceAFL. 'We used the JSON driver to compare
kAFL and Triforce AFL with respect to execution speed
and code coverage. However, the results where biased
heavily in two ways: TriforceAFL did not manage to find
a path that triggers the crash within 30 minutes (usually
it takes approximately 2 hours), making it very hard to
compare the code coverage of kAFL and Triforce AFL.
The number of discovered paths is not a good indica-
tor for the amount of coverage: With increasing running
time, it becomes more difficult to discover new paths.
Secondly, the number of executions per second is also bi-
ased by slower and harder to reach paths and especially
crashing inputs. The coverage reached over time can be
seen in Figure 6. It is obvious from the figure that KAFL
found a significant number of paths that are very hard to

Figure 7: Raw execution performance comparison.

reach for TriforceAFL. KAFL mostly stops finding new
paths around the 10-15 minute mark, because the target
driver simply doesn’t contain any more paths to be un-
covered. Therefore, the coverage value in Table 1 (stated
as Paths/Min) is limited to the first 10 minutes of each
30-minute run.

We also compare raw execution performance instead
of overall fuzzing performance, which is biased because
of the execution of different paths, the sampling process
for the non-determinism-filter, and various synchroniza-
tion mechanisms. Especially on smaller inputs, these
factors disproportionately affect the overall fuzzing per-
formance. To avoid this, we compared the performance
during the first havoc stage. Figure 7 shows the raw ex-
ecution performance of KAFL compared to TriforceAFL
during this havoc phase. kAFL provides up to 54 times
better performance compared to TriforceAFL’s QEMU
CPU emulation. Slightly lower performance boosts are
seen in single-process execution (48 times faster).

syzkaller We did not perform a performance compari-
son against syzkaller [10]. This has two reasons: First of
all, syzkaller is a highly specific syscall fuzzer that en-
codes a significant amount of domain knowledge and is
therefore not applicable to other domains such as filesys-
tem images. On the other hand, syzkaller would most
likely generate a significantly higher code coverage even
without any feedback since it knows how to generate

USENIX Association

26th USENIX Security Symposium 177



Overhead ®
4% o\g °
2% y B < N Wallclock
| Y | s = User
=} © =3
0% Kernel
S 3%
& £ &8
O {:\@ o v“?/(,o
Pl &0

Figure 8: Overhead for compiling QEMU-2.6.0 in a
traced VM.

valid syscalls and hence is able to trigger valid paths
without any learning. Therefore, the coverage compar-
ison would be highly misleading unless we implement
the same syscall logic; a task that is out of the scope of
this paper. Additionally, the coverage collection via kcov
is highly specific to Linux and not applicable to closed-
source targets.

5.7 KVM-PT Overhead

Our KVM extension KVM-PT adds overhead to the raw
execution of KVM. Therefore, the performance overhead
was compared with several KVM-PT setups on an i5-
6500@3.2Ghz desktop system with §GB DDR4 RAM.
This includes KVM-PT in combination with the PT de-
coder, KVM-PT without the PT decoder but processing
frequent ToPA state checks, and KVM-PT without any
ToPA consideration. For this benchmark, a 13MB ker-
nel code range was configured via IP filtering ranges and
traced with one of the aforementioned setups of KVM-
PT. These benchmarks consider only the kernel core, but
neither considers any kernel module. During KVM-PT
execution only supervisor mode was traced.

To generate Intel PT load, QEMU-2.6.0 was com-
piled within a traced VM using the . /configure option
--target-1ist=x86_64-softmmu. We restricted trac-
ing to the whole kernel address space. This benchmark
was executed on a single vCPU. The resulting compile
time was measured and compared. The following figure
illustrates the relative overhead compared to KVM ex-
ecution without KVM-PT (see Figure 8). We ran three
experiments to determine the overhead of the different
components. In each experiment, we measured three dif-
ferent overheads: wall-clock time, user, and kernel. The
difference in overall time is denoted by the wall-clock
overhead. Additionally, we measured how much more
time is spent in the kernel and how much time is spend
only in user space. Since we only trace the kernel, we
expect the users space overhead to be insignificant. Intel

Slowdown 1738

1000x -
351
100x 69 | B
34
10x ; | | o120 | | KAFL PT
R Decoder
2
1wl 1B | | | | | | | | Intel ptxed
Trace Size

53 W® 165“'\6 W eV 560

Figure 9: kKAFL and ptxed decoding time on multiple
copies of the same trace (kAFL is up to 30 times faster).

describes a performance penalty of < 5 % compared to
execution without enabled Intel PT [30]. Accordingly,
we expect approximately 5% of kernel overhead. In
the first experiment, the traces were discarded without
further analysis (KVM-PT). In the second experiment
(KVM-PT & ToPA Check), we enabled repeated check-
ing and clearing of the ToPA buffers. In the final ex-
periment (KVM-PT & PT decoder), we tested the whole
pipeline including our own decoder and conversion to an
AFL bitmap.

During our benchmarks, an overhead between 1% —
4% was measured empirically. Since the resulting over-
head is small, we do not expect it to have a major influ-
ence on the overall fuzzing performance.

5.8 Decoder Engine

In contrast to KVM-PT, the decoder has significant in-
fluence on the overall performance of the fuzzing pro-
cess since the decoding process is—other than Intel PT
and hence KVM-PT—not hardware-accelerated. There-
fore, this process is costly and has to be as efficient as
possible. Consequently, the performance of our devel-
oped PT decoder was compared to that of ptxed. This
decoder is Intel’s example implementation of an Intel PT
software decoder and is based on libipt. To compare
both decoder engines, a small Intel PT trace sample was
generated by executing

find / > /dev/null 2> /dev/null

within a Linux VM (Linux debian 4.8.0-1-amd64)
traced by KVM-PT. This performance benchmark was
processed on an i5-6500@3.2Ghz desktop system with
8GB DDR4 RAM. Only code execution in supervisor
mode was traced. The generated sample is 9.4MB in
size and contains over 431,650 TNT packets, each repre-
senting up to 7 branch transitions. The sample also con-
tains over 100,045 TIPs. We sanitized the sample by re-
moving anything but flow information packets (see Sec-
tion 2.3) to avoid any influence of decoding large amount

178 26th USENIX Security Symposium

USENIX Association



of execution information packets, since those are not con-
sidered by our PT decoder. The result is a 5.3MB trace
file. To test the effectiveness of the caching approach of
our PT decoder, we created cases containing 1, 5, 10,
50, and 250 copies of the trace. This is a realistic test
case, since during fuzzing we see the same (or very sim-
ilar) paths repeatedly. Figure 9 illustrates the measured
speedup of our PT decoder compared to ptxed.

The figure also shows that our PT decoder easily out-
performs the Intel decoder implementation, even if the
PT decoder processes data for the very first time. This is
most likely due to the fact that even a single trace already
contains a significant amount of loops. Another possible
factor is the use of Capstone [2] as the instruction decod-
ing backend. As we decode more and more copies of the
same trace, it can be seen that our decoder becomes in-
creasingly faster (only using 56 times as much time to
decode 250 times that amount of data). The caching ap-
proach outperforms Intel’s implementation and is up to
25 to 30 times faster.

6 Related Work

Fuzzers are often classified according to the amount
of interaction with the target program. For black-box
fuzzers, the fuzzer does not use any information about
the target program at all. White-box fuzzers typically use
advanced program analysis techniques to uncover inter-
esting properties of the target. Somewhere in the mid-
dle are so called gray-box fuzzers that will typically use
some kind of feedback from the target (such as cover-
age information) to guide their search, without analyzing
the logic of the target program itself. In this section, we
provide a brief overview of the work performed in the
corresponding areas of fuzzing.

6.1 Black-Box Fuzzers

The oldest class of fuzzers are black-box fuzzers. These
fuzzers typically have no interaction with the target pro-
gram beyond executing it on newly generated inputs. To
increase effectiveness, a number of assumptions are usu-
ally made: Either a large corpus of good coverage inputs
get mutated and recombined repeatedly. Examples for
this class are Radamsa [3] or zzuf [12]. Or, the pro-
grammer needs to specify how to generate new semi-
valid input files that almost look like real files. Exam-
ples including tools like Peach [6] or Sulley [9]. Both
approaches have one very important drawback: It is a
time-consuming task to use these tools.

To improve the performance of black-box fuzzers,
many techniques have been proposed. Holler et al.
[27] introduced learning interesting parts of the input
grammar from old crashing inputs. Others even sought

to infer the whole input grammar from program traces
[13,24,38]. The selection of more interesting inputs was
optimized by Rebert et al. [36]. Similar approaches have
been used to optimize the mutation rate [17,40].

6.2 White-Box fuzzers

To reduce the burden on the tester, techniques where in-
troduced that apply insights from program analysis to
find more interesting inputs. Tools like SAGE [23],
DART [22], KLEE [15], SmartFuzz [33], or Mayhem
[16] try to enumerate complex paths by using techniques
such as symbolic execution and constraint solving. Tools
like TaintScope [39], BuzzFuzz [21] and Vuzzer [35]
utilize taint tracing and similar dynamic analysis tech-
niques to uncover new paths. These tools are often able
to find very complicated code paths that are hidden be-
hind checksums, magic constants, and other constraints
that are very unlikely to be satisfied by random inputs.
Another approach is to use the same kind of information
to bias the search towards dangerous behavior instead of
new code paths [26].

The downside is that these techniques are often signif-
icantly harder to implement, scale to large programs, and
parallelize. To the best of our knowledge, there are no
such tools for operating system fuzzing.

6.3 Gray-Box Fuzzers

Gray-box fuzzers try to retain the high throughput and
simplicity of black-box fuzzers while gaining some of
the additional coverage provided by the advanced me-
chanics in white-box fuzzing. The prime example for
gray-box fuzzing is AFL, which uses coverage informa-
tion to guide its search. This way, AFL voids spend-
ing additional time on inputs that do not trigger new
behaviors. Similar techniques are used by many other
fuzzers [8,25].

To further increase the effectiveness of gray-box
fuzzing, many of the tricks already used in black-box
fuzzing can be applied. Béhme et al. [14] showed how to
use the insight gained from modelling gray-box fuzzing
as a walk on a Markov chain to increase the performance
of gray-box fuzzing by up to an order of magnitude.

6.4 Coverage-Guided Kernel Fuzzers

A project called syzkaller was released by Vyukov; it
is the first publicly available gray-box coverage-guided
kernel fuzzer [10]. Nossum and Casanovas demonstrate
that most Linux file system drivers are vulnerable to
feedback-driven fuzzing by using an adapted version of
AFL [34]. This modified AFL version is based on glue
code to the kernel consisting of a driver interface to

USENIX Association

26th USENIX Security Symposium 179



measure feedback during fuzzing file system drivers of
the kernel and expose this data to the user space. This
fuzzer runs inside the targeted OS; a crash terminates the
fuzzing session.

In 2016, Hertz and Newsham released a modified ver-
sion of AFL called Triforce AFL [7]. Their work is based
on a modification of QEMU and utilizes the correspond-
ing emulation backend to measure fuzzing progress by
determining the current instruction pointer after a control
flow altering instruction has been executed. In theory,
their fuzzer is able to fuzz any OS emulated in QEMU. In
practice, the Triforce AFL fuzzer is limited to operating
systems that are able to boot from read-only file systems,
which narrows down the candidates to classic UNIX-like
operating systems such as Linux, FreeBSD, NetBSD, or
OpenBSD. Therefore, Triforce AFL is currently not able
to fuzz closed-source operating systems such as macOS
or Windows.

7 Discussion

Even though our approach is general, fast and mostly in-
dependent of the underlying OS, there are some limita-
tions we want to discuss in this section.

OS-Specific Code. We use a small amount (usually
less than 150 lines) of OS-dependent ring 3 code that per-
forms three tasks. First, it interacts with the OS to trans-
late the inputs from the fuzzing engine to interactions
with the OS (e.g., mount the data as a partition). Second,
it obtains the address of the crash handler of the OS such
that we can detect crashes faster than it would take to
wait for the timeout. Third, it can return the addresses of
certain drivers. These addresses can be used to limit trac-
ing to the activity of said drivers, which improves perfor-
mance when only fuzzing individual drivers.

None of these functions are necessary and only im-
prove performance in some cases. The first use case
can be avoided by using generic syscall fuzzing. In that
case a single standard C program which does not use any
platform-specific API would suffice to trigger sysenter/
syscall instructions. We do not strictly need the address
of the crash handler, since there are numerous other ways
to detect whether the VM crashed. It would also be quite
easy to obtain crash handlers dynamically by introduc-
ing faults and analyzing the obtained traces. Finally, we
can always trace the whole kernel, taking a slight perfor-
mance hit (mostly introduced by the increased amount of
non-determinism). In cases such as syscall fuzzing, we
need to trace the whole kernel, therefore syscall fuzzing
would not be impacted if this ability was missing. In
summary, this is the first approach that can fuzz arbitrary
x86-64 kernels without any customization and a near-
native performance.

Supported CPUs. Due to the usage of Intel PT and
Intel VT-x, our approach is limited to certain Intel CPUs
supporting these extensions. Virtually all modern Intel
CPUs support Intel VI-x. Unfortunately, Intel is rather
vague as to which CPUs exactly support process trace
inside of VMs and various other extensions (such as IP
filtering and multi-entry ToPA). We tested our system
on the following CPU models: Intel Core i5-6500, In-
tel Core i17-6700HQ, and Intel Core i5-6600. We believe
that at the time of writing, most Skylake and Kabylake
CPUs have the necessary hardware support.

Just-In-Time Code. Intel PT does not provide a com-
plete list of executed instruction pointers. Instead, Intel
PT generates as little information as necessary to reduce
the amount of data produced by the processor. Con-
sequently, the Intel PT software decoder does not only
require control flow information to reconstruct the con-
trol flow but also needs the program that was executed
during tracing. If the program is modified during run-
time, as often done by just-in-time (JIT) compilers in
user and kernel mode, the decoder is unable to exactly
restore the runtime control flow. To bypass this limita-
tion, the decoder requires information about all modi-
fications applied to the program instead of an ordinary
memory dump or the executable file. As Deng et al. [18]
have shown, this is possible by making use of EPT viola-
tions when executing written pages. Another, somewhat
more old-fashioned, method to achieve the same is to use
shadow page tables [19]. Once one it is possible to hook
the execution of modified code, self-modifying code can
be dumped. Reimplementing this technique was out of
the scope of this work. It should be noted though that
fuzzing kernel JIT code is a very interesting topic since
kernel JIT components, such as the BPF JIT in Linux,
have often been part of serious vulnerabilities.

Multibyte Compares. Similar to AFL, we are unable
to effectively bypass checks for large magic values in
the inputs. However, we support specifying dictionaries
of interesting constants to improve performance if such
magic values are known in advance (e.g., from RFCs,
source code, or disassembly). Some solutions involving
techniques such as concolic execution (e.g., Driller [37])
or taint tracking (e.g., Vuzzer [35]) have been proposed.
However, none of these techniques can easily be adapted
to closed-source operating system kernels. Therefore it
remains an open research problem how to deal with those
situations on the kernel level.

Ring 3 Fuzzing. We only demonstrated this technique
against kernel-level code. However, the exact same tech-
nique can be used to fuzz closed-source ring 3 code as

180 26th USENIX Security Symposium

USENIX Association



well. Since our approach has a very modest tracing over-
head, we expect that this technique will outperform cur-
rent dynamic binary instrumentation based techniques
for feedback fuzzing of closed-source ring 3 programs
such as winAFL [20].

8 Conclusion

The latest generation of feedback-driven fuzzing meth-
ods has proven to be an effective approach to find vul-
nerabilities in an automated and comprehensive fashion.
Recent work has also demonstrated that such techniques
can be applied to kernel space. While previous feedback-
driven kernel fuzzers were able to find a large amount of
security flaws in certain operating systems, their benefit
was either limited by poor performance due to CPU emu-
lation or a lack of portability due to the need for compile-
time instrumentations.

In this paper, we presented a novel mechanism to uti-
lize the latest CPU features for a feedback-driven kernel
fuzzer. As shown in the evaluation, combining all com-
ponents provides the ability to apply kernel fuzz testing
to any target OS with significantly better performance
than the alternative approaches.

Acknowledgment

This work was supported by the German Federal
Ministry of Education and Research (BMBF Grant
16KIS0592K HWSec). We would like to thank our shep-
herd Suman Jana for his support in finalizing this paper
and the anonymous reviewers for their constructive and
valuable comments. Furthermore, we would also like
to thank Ralf Spenneberg and Hendrik Schwartke from
OpenSource Security for supporting this research. Fi-
nally, we would like to thank Ali Abbasi, Tim Blazytko,
Teemu Rytilahti and Christine Utz for their valuable
feedback.

References

[1] Announcing oss-fuzz: Continuous fuzzing for
open source software. https://testing.
googleblog.com/2016/12/announcing-o0ss-
fuzz-continuous-fuzzing.html. Accessed:
2017-06-29.

[2] Capstone disassembly framework. http://www.
capstone-engine.org/. Accessed: 2017-06-29.

[3] A general-purpose fuzzer. https://github.com/
aoh/radamsa. Accessed: 2017-06-29.

[4] Intel Processor Trace Decoder Library. https:
//github.com/@1org/processor-trace. Ac-
cessed: 2017-06-29.

[5] Linux 4.8, perf Documentation.
//git.kernel.org/cgit/linux/kernel/
git/torvalds/linux.git/plain/tools/perf/
Documentation/intel-pt.txt?id=refs/tags/
v4.8. Accessed: 2017-06-29.

https:

[6] Peach. http://www.peachfuzzer.com/. Ac-
cessed: 2017-06-29.

[7] Project Triforce: Run AFL on Everything!
https://www.nccgroup. trust/us/about-
us/newsroom-and-events/blog/2016/june/
project-triforce-run-afl-on-everything/.
Accessed: 2017-06-29.

[8] Security oriented fuzzer with powerful analysis op-
tions. https://github.com/google/honggfuzz.
Accessed: 2017-06-29.

[9] Sulley. https://github.com/OpenRCE/sulley.
Accessed: 2017-06-29.

[10] syzkaller: Linux syscall fuzzer. https://github.
com/google/syzkaller. Accessed: 2017-06-29.

[11] Trinity: Linux system call fuzzer. https:
//github.com/kernelslacker/trinity. Ac-
cessed: 2017-06-29.

[12] zzuf. https://github.com/samhocevar/zzuf.
Accessed: 2017-06-29.

[13] O. Bastani, R. Sharma, A. Aiken, and P. Liang.
Synthesizing program input grammars. In ACM
SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2017.

[14] M. Bohme, V.-T. Pham, and A. Roychoudhury.
Coverage-based greybox fuzzing as markov chain.
In ACM Conference on Computer and Communica-
tions Security (CCS), 2016.

[15] C. Cadar, D. Dunbar, and D. R. Engler. Klee: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In Symposium

on Operating Systems Design and Implementation
(OSDI), 2008.

[16] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brum-
ley. Unleashing Mayhem on Binary Code. In I[EEE
Symposium on Security and Privacy, 2012.

[17] S. K. Cha, M. Woo, and D. Brumley. Program-
adaptive mutational fuzzing. In IEEE Symposium
on Security and Privacy, 2015.

[18] Z. Deng, X. Zhang, and D. Xu. Spider: Stealthy
binary program instrumentation and debugging via
hardware virtualization. In Annual Computer Secu-
rity Applications Conference (ACSAC), 2013.

USENIX Association

26th USENIX Security Symposium 181


https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
https://testing.googleblog.com/2016/12/announcing-oss-fuzz-continuous-fuzzing.html
http://www.capstone-engine.org/
http://www.capstone-engine.org/
https://github.com/aoh/radamsa
https://github.com/aoh/radamsa
https://github.com/01org/processor-trace
https://github.com/01org/processor-trace
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
https://git.kernel.org/cgit/linux/kernel/git/torvalds/linux.git/plain/tools/perf/Documentation/intel-pt.txt?id=refs/tags/v4.8
http://www.peachfuzzer.com/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://www.nccgroup.trust/us/about-us/newsroom-and-events/blog/2016/june/project-triforce-run-afl-on-everything/
https://github.com/google/honggfuzz
https://github.com/OpenRCE/sulley
https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://github.com/kernelslacker/trinity
https://github.com/kernelslacker/trinity
https://github.com/samhocevar/zzuf

[19] A. Dinaburg, P. Royal, M. Sharif, and W. Lee. [33] D. Molnar, X. C. Li, and D. Wagner. Dynamic
Ether: malware analysis via hardware virtualization Test Generation to Find Integer Bugs in x86 Binary
extensions. In ACM Conference on Computer and Linux Programs. In USENIX Security Symposium,
Communications Security (CCS), 2008. 20009.

[20] Fratric, Ivan.  WinAFL: A fork of AFL for  [34] V. Nossum and Q. Casasnovas. Filesystem Fuzzing
fuzzing Windows binaries. https://github.com/ with American Fuzzy Lop. Vault 2016, 2016.
ivanfratric/winafl, 2017.

[35] S. Rawat, V. Jain, A. Kumar, L. Cojocar, C. Giuf-

[21] V. Ganesh, T. Leek, and M. Rinard. Taint-based frida, and H. Bos. Vuzzer: Application-aware evo-
directed whitebox fuzzing. In International Con- lutionary fuzzing. In Symposium on Network and
Jference on Software Engineering (ICSE), 2009. Distributed System Security (NDSS), 2017.

[22] P. Godefr01d, N. Klarlund, and K Sen. DART: Di- [36] A. Rebert, S. K. Cha, T. Avgerinos, J. M. Foote,
rected Automated Random Testing. In ACM SIG- D. Warren, G. Grieco, and D. Brumley. Optimiz-
PLAN Conference on Programming Language De- ing seed selection for fuzzing. In USENIX Security
sign and Implementation (PLDI), 2005. Symposium, 2014.

[23] P. Gpdefrmd, M Y. Levin, an.d D. M(?lnar. SAGE: [37] N. Stephens, J. Grosen, C. Salls, A. Dutcher,
Whitebox Fuzzing for Security Testing. Queue, R. Wang, J. Corbetta, Y. Shoshitaishvili,
10(1):20, 2012. C. Kruegel, and G. Vigna. Driller: Augment-

[24] P. Godefroid, H. Peleg, and R. Singh. Learn&fuzz: ing fuzzing through selective symbolic execution.
Machine learning for input fuzzing. Technical re- In Symposium on Network and Distributed System
port, January 2017. Security (NDSS), 2016.

[25] P. Goodman. Shin GRR: Make Fuzzing Fast  [38] J. Viide, A. Helin, M. Laakso, P. Pietikdinen,
Again. https://blog.trailofbits.com/2016/ M. Seppinen, K. Halunen, R. Puuperi, and J. Ron-
11/02/shin-grr-make-fuzzing-fast-again/. ing. Experiences with model inference assisted
Accessed: 2017-06-29. fuzzing. In USENIX Workshop on Offensive Tech-

. nologies (WOOT), 2008.

[26] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos. Dowsing for overflows: A guided fuzzer to [39] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope:
find buffer boundary violations. In USENIX Secu- A checksum-aware directed fuzzing tool for auto-
rity Symposium, 2013. matic software vulnerability detection. In IEEE

. . . Symposium on Security and Privacy, 2010.

